WO2015007990A1 - Utilisation de certaines plantes accumulatrices de plantinoides pour la mise en oeuvre de réactions de chimie organique - Google Patents

Utilisation de certaines plantes accumulatrices de plantinoides pour la mise en oeuvre de réactions de chimie organique Download PDF

Info

Publication number
WO2015007990A1
WO2015007990A1 PCT/FR2014/051823 FR2014051823W WO2015007990A1 WO 2015007990 A1 WO2015007990 A1 WO 2015007990A1 FR 2014051823 W FR2014051823 W FR 2014051823W WO 2015007990 A1 WO2015007990 A1 WO 2015007990A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
chosen
rhodium
palladium
plant
Prior art date
Application number
PCT/FR2014/051823
Other languages
English (en)
Inventor
Claude Grison
Vincent ESCANDE
Clémence BES
Brice-Loïc RENARD
Original Assignee
Centre National De La Recherche Scientifique
Universite Montpellier 2 Sciences Et Techniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite Montpellier 2 Sciences Et Techniques filed Critical Centre National De La Recherche Scientifique
Priority to US14/905,119 priority Critical patent/US10066029B2/en
Priority to EP14750569.7A priority patent/EP3021963A1/fr
Priority to CN201480048866.8A priority patent/CN105579130A/zh
Priority to JP2016526677A priority patent/JP2016534089A/ja
Publication of WO2015007990A1 publication Critical patent/WO2015007990A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/36Biochemical methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • B09C1/105Reclamation of contaminated soil microbiologically, biologically or by using enzymes using fungi or plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/16Preparation of carboxylic acid nitriles by reaction of cyanides with lactones or compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4261Heck-type, i.e. RY + C=C, in which R is aryl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the use of platinum group metal accumulator plants (platinoids) for the implementation of chemical reactions.
  • CNRS is studying the phytostabilisation technique, which involves planting soil contaminated by plants capable of growing in the presence of heavy metals ( speak of tolerance) (Frérot et al., Specifies interactions between local metallicolous plants to improve phytostabilazation of mines, Plant and Soil, 282, 53-65, 2006). Some of these plant species used have the particularity of accumulating metals in large quantities in their vacuoles (we speak of hyperaccumulating plants). It is then phytoextraction.
  • Thlaspi caenilescens (synonym Noccaea caenilescens) belonging to the family Brassicaceae, has remarkable properties of tolerance and hyperaccumulation of zinc, cadmium, nickel. It concentrates them at the level of the aerial parts (leaves and stems). This plant is able to store zinc at concentrations 100 times higher than that of a conventional plant. In addition, it is able to extract and concentrate zinc and cadmium in aerial tissues, even on soils with low concentrations of these two metals.
  • Zinc chloride is one of the most used and is indispensable in many industrial and laboratory reactions. It is also frequently used in heterocyclic organic chemistry to catalyze many electrophilic aromatic substitutions. It is also a catalyst of choice for carrying out the hydrogenations of primary alcohols with the Lucas reagent, the acetalization reactions, aldolization or Diels-Alder type cycloaddition reactions.
  • the catalysts are also very useful in analytical electrochemistry, electrometallurgy and liquid-solid extraction where the fields of application are numerous and directly involved in the different fields of economic life (batteries, batteries and accumulators, spectroscopic apparatus detectors, metallurgy, welding ...)
  • Thlaspi caendescens now called Noccaea caendescens and Anthyllis vulneraria
  • WO 201 1/064487 describes the use of many other metallophyte hyperaccumulative heavy metal plants for the preparation of catalysts for use in organic chemistry.
  • the invention described in WO 201 1/064487 relates to the use of a calcined plant or part of a calcined plant having accumulated at least one metal in M (II) form chosen especially from zinc ( Zn), nickel (Ni) or copper (Cu) as defined above, wherein said plant is chosen in particular from the family Brassicaceae, including species of the genus Thlaspi (synonym Noccaea) in particular T. goesingense, T. tatrense, T. rotundifolhim, T. praecox, species of the genus Arabidopsis, in particular Arabidopsis hallerii, and of the genus Alyssum, in particular A. bertolonii, A.
  • Thlaspi species of the genus Thlaspi (synonym Noccaea) in particular T. goesingense, T. tatrense, T. rotundifolhim, T. praecox, species of the genus Arab
  • the plants of the genus Sedum are succulent plants that belong to the crassulaceae family, composed of more than 400 species. They have natural abilities to grow on poor, dry, open soil and difficult conditions. Their foliar system is fleshy and their crops are well-off.
  • Sedum phimbizincicola and Sedum jinianum have a remarkable ability to extract zinc from polluted soils in southern and eastern China. They have a real potential in phytoextraction and are called "plumbizincicolafor".
  • Examples of plant genera with hyperaccumulator species of manganese are: Alyxia, Azolla, Beauprea, Bea preopsis, Bridelia, Crotalaria, Dicranopteris, Dipteris, Genia, Garciania, Gleichenia, Gossia, Grevillea, Macadamia, Maytemis, Pimis, Spermacone, Stenocarp, Virotia.
  • the bio-sourced catalysts make it possible to develop heterogeneous catalysts which are very interesting because they can be recovered by simple filtration and rinsing; they are therefore recyclable.
  • the present application therefore has for first object, the use after heat treatment of a plant or part of a plant belonging to one of the genera selected from the green arum (Peltandra virginica), the cucumber (Cucumis sativus) , watercress (Lepidhim sativ tn), Canada water lily (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea mays) , white mustard (Sinapis alba), brown mustard (Brassica j ncea), barley (Hordeum vulgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish (Raphan s sativus), common ryegrass (Loli m perenne), Italian ryegrass (Lolium midtiflorum), whorled fox
  • the invention also relates to the use as a catalyst of a composition containing a metal catalyst derived after acid treatment of the ash obtained after thermal treatment of a plant or part of a plant belonging to one of the genera chosen from green arum (Peltandra virginica), cucumber (Cucumis sativus), watercress (Lepidium sativum), Canada water lily (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes) , alfalfa (Medicago sativa), corn (Zea mays), white mustard (Sinapis alba), brown mustard (Brassica juncea), barley (Hordenm vulgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish (Raphamis sativiis), common ryegrass (Lolhim perenne), ryegrass (Lo
  • the subject of the invention is also the use as described above, characterized in that the heat treatment of a plant or part of a plant is carried out in air.
  • the subject of the invention is also the use as described above, characterized in that the heat treatment of a plant or part of a plant is carried out under an inert gas atmosphere, preferably argon.
  • the present application also relates to the use of a composition prepared by heat treatment of a plant or part of a plant belonging to one of the genera chosen from the green arum (Peltandra virginica), the cucumber ( Cucumis sativus), watercress (Lepidhim sativum), Canada water lily (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea mays), white mustard (Sinapis alba), brown mustard (Brassica juncea), barley (Hordeum vulgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish (Raphamis sativus), common ryegrass (Lolium perenne), Italian ryegrass (Lolium multiflorum), whorled foxtail (Setaria verticill
  • the present application also relates to the use of a composition prepared by heat treatment with air of a plant or part of a plant belonging to one of the genera selected from the green arum (Peltandra virginica) , cucumber (Cucumis sativus), watercress (Lepidium sativum), Canada water lily (Elodea ccmadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea mays), white mustard (Sinapis alba), brown mustard (Brassica juncea), barley (Hordeum vulgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish (Raphanus sativus), common ryegrass (Lolhim perenne), Italian ryegrass (Lolhtm multifloriim), whorled
  • the present application also relates to the use as described above after heat treatment followed by acid treatment of a plant or part of a plant selected from the genus selected from the green arum (Peltandra virginica). ), cucumber (Cucumis sativus), watercress (Lepidium sativum), Canada water lily (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa) , maize (Zea mays), white mustard (Sinapis alba), brown mustard (Brassica juncea), barley (Hordeum vulgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish ( Raphanus sativus), common ryegrass (Lolhtm perenne), Italian ryegrass (Lolium multiflorum), whorled fox
  • the present application also relates to the use as described above after heat treatment followed by acid treatment of a plant or part of a plant selected from the genus selected from the green arum (Peltandra virginicd) , cucumber (C citmis sativus), watercress (Lepidhim sativum), Canada water lily (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativd) , maize (Zea mays), white mustard (Sinapis alba), brown mustard (Brassica juncea), barley (Hordeum vi station), nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish (Rophomis sativus), common ryegrass (Lo ⁇ him perenne), Italian ryegrass (Loliiun ltiflor m
  • the subject of the present invention is also a process for the preparation of a composition comprising a metal or polymetallic agent comprising at least one of the platinoids chosen from platinum, palladium, osmium, iridium, ruthenium and rhodium, preferably platinum (Pt), palladium (Pd) or rhodium (Rh) characterized in that it comprises the following steps: a) Dehydration, preferably at room temperature or in an oven at a temperature of the order of 70 ° C of the biomass comprising the leaves, stems and / or roots of a plant or plant extract belonging to one of the genera selected from the green arum ⁇ Peltandra virginica), the cucumber (Cucumis sativus), watercress (Lepidhim sativ m), Canada seaweed (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago
  • step b) milling the dry biomass of a plant or a plant extract obtained in stage a) optionally in the presence of a salt or a mixture of salts, preferably sodium chloride and potassium disulfate, c) Heat treatment with air or argon of the biomass obtained in step a) or the ground mixture obtained in step b) in a furnace preferably in one or more steps preferably in a step at 500-600 ° for several hours, preferably for about 2 hours or in two stages the first to a temperature below 500 ° C, preferably of the order of 350 ° and at a second stage at a temperature of the order of 550 ° each of these steps being carried out for about 3 hours
  • stage c) treatment of the ash obtained in stage c) with a salt or a mixture of several salts, preferably a mixture of sodium chloride and potassium disulphate so as to obtain a melted mixture after heating
  • an acid solution said acid being preferably chosen from hydrochloric acid, preferably at a concentration chosen between 1M and 12M, or nitric acid, sulfuric acid, trifluoromethanesulfonic acid, nitric acid, formic acid, oxalic acid, perchloric acid, phosphoric acid, trifluoroacetic acid or para-acid
  • toluene sulphonic acids are preferably used at a high concentration, preferably from 10 to 30%, followed, if desired, by filtration preferably on celite and dehydration of the solution or suspension preferably obtained under reduced pressure. to obtain a dry residue which can be dried at 120 ° C, and, if desired,
  • stage d) of the process the optional obtaining of a molten mixture between the ashes obtained in stage c) and the acid salts is preferably carried out with plants or parts of Rhodium accumulating plants.
  • the subject of the present invention is therefore a process characterized in that when steps a) to c) of the process are carried out with rhodium-accumulating plants, the ashes obtained in stage c) are treated with a salt or a mixture of several salts. preferably a mixture of sodium chloride and potassium disulfate so as to obtain a molten mixture.
  • the catalysts derived from the accumulating platinum-forming biomasses are prepared as follows: Specific preparation of palladium or platinum catalysts:
  • the leaves, stems or preferably the collected roots are dehydrated, either at room temperature or in an oven (70 ° C).
  • the dry mass obtained is subjected to a heat treatment at 550 ° C. for 2 hours in air (Eco-Pd cat i) or under argon (Eco-Pd ca t2) in order to destroy the organic matter.
  • the catalysts, Eco-Pd catl and Eco-Pd cat2> mixtures of polymetallic species and organic material, are used directly or stored for the following catalyst preparation operations.
  • Acid treatment of Eco-Pd cat i and Eco-Pd cat 2 from biomass catalytic type 2: Eco-Pd cat 3 and Eco-Pd cat4
  • the Eco-Pd cat and Eco-Pd cat2 catalysts obtained after thermal treatment of the biomass are introduced into an Erlenmeyer flask equipped with a magnetic bar, then an acid solution, which, when hydrochloric acid is used, can have a concentration. between 1 and 12 M is introduced gradually, with stirring.
  • Other acids such as nitric or sulfuric acid can be used in high concentrations, preferably from 10 to 30%.
  • Pd ca t4 obtained following the previous treatment, in particular to form a catalyst in the form of acetate, more soluble in organic solvents.
  • 100 mg of Eco-Pd cat 3 are introduced into a flask fitted with a magnetic stirring bar, then 10 ml of 95% acetic acid and 60 ⁇ l of nitric acid (65%) are added. The resulting solution is stirred at reflux for 3 hours. This is then concentrated under reduced pressure until an orange solid is obtained. This solid is taken up with a solvent such as acetone or ethyl acetate. Evaporation of this organic phase leads to the catalyst being obtained in acetate form.
  • Catalyst supported on mineral support catalyst type 4 Different mineral supports can be used to support the catalyst and thus perform a supported catalysis. Typically, montmorillonite K10, silica, alumina or hydrotalcite have been used as support. 1 g of mineral support is introduced into a balloon fitted with a magnetic bar, then 50 mg of type 2 or 3 catalyst are added. 10 ml of water are added and the resulting suspension is then stirred at ambient temperature for 5 hours. This is then filtered, the solid is washed with 10 ml of distilled water, and the latter is collected for drying in an oven (120 ° C.). during one night. Once its mass is stabilized, the resulting catalyst is stored in the desiccator.
  • montmorillonite K10, silica, alumina or hydrotalcite have been used as support. 1 g of mineral support is introduced into a balloon fitted with a magnetic bar, then 50 mg of type 2 or 3 catalyst are added. 10 ml of water are added and the resulting suspension is then stirred at
  • the catalyst may also be supported on organic solids, in particular of natural origin, such as chitosan derivatives.
  • organic solids in particular of natural origin, such as chitosan derivatives. This involves the preparation of an organic support from chitosan according to the following procedure: in a flask equipped with a magnetic ban-water are introduced: 15 ml of methanol, 1 g of chitosan, 1.6 g (15 mmol ) 2-pyridinecarboxaldehyde, 1.5 mL (26 mmol) concentrated acetic acid. The whole is refluxed, with stirring, for 10 h, under a stream of dinitrogen.
  • Catalyst treated with a reducing organic acid, formic acid or oxalic acid catalyst type 6: Eco-Pd ca t7 and Eco-Pd ca t8
  • the Pd (II) of the polymetallic catalyst can be reduced to Pd (0) by dihydrogen, hydrazine, sodium borohydride, formaldehyde, but the search for green conditions rather suggests the use of formic acid or one of these salts, or oxalic acid.
  • the oxides obtained after thermal treatment of the biomass are ground in a mortar with a mixture of sodium chloride and potassium disulphate.
  • the mixture is placed in a Pyrex crystallizer or porcelain crucible and then heated in an oven at 500-600 ° C for 2 hours.
  • the finely ground reddish solid is introduced into a concentrated aqueous hydrochloric acid solution, stirred for 1 hour under reflux.
  • the resulting solution is concentrated by evaporation under reduced pressure until a catalytic solid is obtained. This is recovered and its drying is completed in an oven (120 ° C) until stabilization of the mass of the solid.
  • This catalyst is then stored in a desiccator.
  • a high purity catalyst can be prepared by precipitation of the RhCl (PPh 3 ) 3 complex.
  • An example of such a preparation is given below in the experimental part.
  • a high purity catalyst can be obtained by purification on ion exchange resins.
  • the ion exchange technique is widely used for the recycling and separation of Rhodium from other platinoids, transition metals and alkali metals.
  • the rhodium complexes can be purified for example on cation exchange resins such as Wafatit KPS-200 or Vionit CS-3.
  • the present application also relates to a method characterized in that the plants belonging to one of the genera selected from the green arum ⁇ Peltandra virginica), the cucumber (Cucumis sativus), the cress (Lepidhim sativum), the elodea (Elodea canadensis), spinach (Spinacia oleraced), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea mays), white mustard (Sinapis alba), brown mustard (Brassica juncea), barley (Hordeum vulgare), stinging nettle (Urtica dioica), phacelia (Phacelia tanacetifolid), radish (Raphanus sativus), common ryegrass (Loiumium perenne), ryegrass (Lolium multiflorum), foxtail (Setaria verticillata) and tobacco (Nico
  • the preferred procedure is to use effluents contaminated with PGE, to preferably subject these effluents to an acidification treatment in order to lower the pH in a range between pH 3 and pH 6 to increase the solubility of PGEs and the availability of PGE for the plants and then cultivate potentially hyperaccumulative plants in contact with its effluents.
  • the subject of the invention is therefore a process characterized in that the effluents contaminated with one of the platinoids chosen from platinum, palladium, osmium, iridium, ruthenium and rhodium, preferably platinum (Pt), palladium (Pd) or rhodium (Rh) are treated with an acid chosen preferably from hydrochloric acid, nitric acid, sulfuric acid, trifluoromethanesulphonic acid, nitric acid, perchloric acid, phosphoric acid or an organic acid such as acetic acid, citric acid, malic acid, lactic acid so as to obtain a solution whose pH is preferably between 3 and 6 before being brought into contact with the plants accumulators of the platinoids.
  • platinum (Pt), palladium (Pd) or rhodium (Rh) are treated with an acid chosen preferably from hydrochloric acid, nitric acid, sulfuric acid, trifluoromethanesulphonic acid, ni
  • the subject of the invention is also a process characterized in that the effluents contaminated with one of the platinoids chosen from platinum, palladium, osmium, iridium, ruthenium and rhodium, preferably platinum (Pt), palladium (Pd) or rhodium (Rh) are treated with an acid preferably selected from hydrochloric acid, nitric acid, sulfuric acid, trifluoromethanesulfonic acid, nitric acid, perchloric acid, or phosphoric acid, preferably nitric acid used alone, so as to obtain a solution whose pH is preferably between 2 and 6 before being brought into contact with the accumulator plants of the platinoids.
  • platinum palladium
  • osmium iridium
  • an acid preferably selected from hydrochloric acid, nitric acid, sulfuric acid, trifluoromethanesulfonic acid, nitric acid, perch
  • the subject of the invention is therefore a process characterized in that the cultures of plants belonging to one of the genera chosen from among the green arum (Peltandra virginica), the cucumber (Cucumis sativus) and the cress (Lepidi m sativum).
  • the platinoid storage plants are cultivated as follows: 1) Cultivation on uncontaminated sand:
  • the species are germinated in pots containing sterile sand and placed in large tanks containing the culture solution, starting with water and fertilizer. Then after 2 weeks of growth, the culture solution is replaced by a new solution consisting of previously thermally treated effluents then taken up by H 0 3 (and optionally neutralization with ammonia) and fertilizer. After 4 weeks of exposure the roots and aerial parts of the plants are harvested, washed, dried and weighed. The samples are then burned in a muffle furnace at 350 ° C for 3 hours and then at 550 ° C for 3 hours. Then the ashes are used for the preparation of the catalysts. This method is optimal for plants that can not be grown in hydroponics and less tolerant of excess PGE. High concentrations in the roots are reached.
  • the species are germinated in tubes of coconut "fleximix root it organic Starter Cubes". This substrate consists of fibers, peat and coconut bark.
  • the seeds of each species are then grouped on seedlings watered with water, on a daily basis to avoid drying out. For 15 days, the seedlings are arranged under neon lights under a light output of 1 1000 lumens.
  • the monitoring of the germination rate of the 260 seeds of 3 species, Brassica juncea, Lolhim multiflorum and Sinapsis alba shows particularly interesting values for Brassica juncea, and especially Lolhim multiflorum. The optimal value is around 12 to 13 days.
  • the germination rates are as follows:
  • Brassica juncea 78.5%; Lolium multiflorum: 84.6%; Sinapis alba: 48%
  • a growth protocol through one of the clay balls placed in baskets, deposited in turn on clay balls placed at the bottom of the vat of culture makes it possible to optimize the root growth.
  • the clay balls make it possible to move the roots away from the nutrient solution and to promote the growth of the primary root. Fertilizers introduced into the nutrient solution must be introduced in low concentrations so as not to burn the young roots.
  • the plants are then transplanted and placed under mercury lamps that provide a light output of 37,000 lumens.
  • This lighting system promotes the development of the plant placed in hydroponics, but also the evapotranspiration of plant species, engine of root absorption.
  • An evolution of the average length of the longest root over time shows a rapid and continuous growth of the initial primary root for Lolium.
  • the inter-specific comparison of the size of the largest root at 40 days gives the following results:
  • Brassica juncea 40 cm; Lolium multiflorum: 8 cm; Sinapis alba: 8 cm
  • the effluent is an aqueous solution whose metal species are derived from organic reactions, such as coupling reactions such as the Suzuki reaction.
  • the salts were previously heat-treated and then with HNO 3 (and optionally neutralization with ammonia).
  • HNO 3 and optionally neutralization with ammonia.
  • the solution to be reprocessed is rich in palladium nitrate or a derivative salt such as ammonium palladium nitrate.
  • An ideal concentration is close to 40 mg / L and the pH should be kept at 3, in order to avoid the precipitation of salts.
  • the pH must be adjusted to the nature of each salt.
  • the samples are then burned in a muffle furnace at 350 ° C for 3 hours and then at 550 ° C for 3 hours.
  • the heat treatment is carried out either in air or under argon.
  • the ashes are used for the preparation of the catalysts. This method is optimal because it allows to quickly have a large biomass and allows a better accumulation of roots, it is ideal for aquatic plants and / or tolerant to excess PGE.
  • the subject of the invention is therefore a process for cultivating plants belonging to one of the genera chosen from among the green arum ⁇ Peltandra virginica), the cucumber (Cucumis sativus), the watercress (Lepidium sativum), the Pélodée du Canada ( Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea ays), white mustard (Sinapis alba), brown mustard (Brassica juncea) ), barley (Hordeum vulgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish (Raphanus sativus), common ryegrass (Lolium perenne), Italian ryegrass ( Lolium multiflorum), whorled foxtail (Setaria verticillata)
  • the subject of the invention is therefore a process for cultivating plants belonging to one of the genera chosen from among the green arum (Peltandra virginica), the cucumber (Cucumis sativus), the cress (Lepidium sativum), the elodea of the Canada (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea mays), white mustard (Sinapis alba), brown mustard ( Brassica j ncea), barley (Hordeum v lgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifolid), radish (Raph nus sativus), common ryegrass (Lolhim perenne), Italian grass (Lolhim midtiflorum), whorled foxtail (Setaria verticillat
  • the subject of the invention is in particular a method for cultivating plants belonging to one of the genera chosen from among the green arum (Peltandra virginica), the cucumber (Cucumis sativus), the cress (Lepidium sativum), the elodea of the Canada (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea mays), white mustard (Sinapis alba), brown mustard ( Brassica juncea), barley (Hordeum vulgare), stinging nettle (Urtica dioica), phacelia (Phacelia tanacetifolia), radish (Raphanus sativus), common ryegrass (Lolhim perenne), ryegrass Italy (Lolhim multiflorum), foxtail (Setaria verticillata) and tobacco (
  • the present invention also relates to a method for treating effluents contaminated with PGE in order to remedy the contaminated media while providing an alternative source of PGE useful for catalysis purposes for the green chemistry industry.
  • the subject of the present invention is also a process as described above, characterized in that the aqueous phase of the reaction mixture obtained after using, as catalyst, compositions containing a metal catalyst derived after acid treatment of the ashes obtained after thermal treatment of a plant. or a plant part as described above is recycled by rhizofiltration using said plants.
  • the subject of the invention is therefore a method for decontaminating the effluents contaminated by at least one platinoid chosen from platinum, palladium, osmium, iridium, ruthenium and rhodium, characterized in that plants capable of accumulating at least one of the platinoids belonging to one of the genera selected from the green arum (Peltandra virginicd), the cucumber (Cucumis sativus), the watercress (Lepidium sativum), the Canadian water lily (Elodea canadensis), spinach (Spinacia oleracea), water hyacinth (Eicchornia crassipes), alfalfa (Medicago sativa), corn (Zea mays), white mustard (Sinapis alba), brown mustard (Brassica juncea), barley (Hordeum vulgare), nettle (Urtica dioica), phacelia (Phacelia tanacetifoli
  • the overall procedure is the same as that indicated above, it consists in recovering effluents contaminated with PGE, treating these effluents to increase the solubility of the PGEs and then cultivating potentially hyperaccumulating plants in contact with these effluents.
  • Two methods are possible: 1) using effluents to water plants grown in an uncontaminated medium (eg sand) or 2) growing plants hydroponically directly in the contaminated medium (effluents). Of many species are able to collect the PGEs and some are able to concentrate them in their roots at a very high concentration.
  • the subject of the present invention is also the use in which the composition containing at least one metallic or preferably polymetallic catalyst as described above is used in the implementation of the organic synthesis reactions of functional transformations by catalysis chosen from the carbon-carbon bond formation reactions selected from Suzuki reaction, Heck reaction, Sonogashira reaction, aryl coupling reactions selected from Kumada reaction, Negishi and Fukuyama reaction, Hiyama reaction, and the reaction of Stille; the nucleophilic addition reactions of an enamine on the pi-allylic complexes, the Buchwald-Hartwig type reactions, the carbonylation reactions and the ene-reactions, the oxidation of Wacker-Tsuji, the oxidation of alcohols, the oxidative coupling of aromatic compounds, regioselective reactions between an alkene and an aromatic derivative, cyclopropanation of alkenes, reduction of olefins and nitro compounds, hydrosilylation of olefins and alkynes, cycloadditions, cascade
  • the subject of the present invention is also the use of a composition containing at least one metallic or preferably polymetallic catalyst as described above for carrying out the organic synthesis reactions of functional transformations by catalysis chosen from the reactions of formation of carbon-carbon bonds such as the Suzuki reaction, the Heck reaction, the Sonogashira reaction, nucleophilic addition reactions of an enamine on pi-allylic complexes, Buchwald-Hartwig type reactions, carbonylation reactions and ene-reactions, Wacker-Tsuji oxidation, alcohol oxidation, reduction of olefins and nitro and nitrile compounds, hydrosilylation of olefins and alkynes, allylic isomerization.
  • catalysis chosen from the reactions of formation of carbon-carbon bonds such as the Suzuki reaction, the Heck reaction, the Sonogashira reaction, nucleophilic addition reactions of an enamine on pi-allylic complexes, Buchwald-Hartwig type reactions, carbonylation reactions and ene-reactions, Wacker
  • the present invention more particularly relates to the use as described above wherein the reaction is selected from the Suzuki reaction, the reaction of Heck, the reaction of Sonogashira, and the reduction of olefins and nitro compounds and nitriles.
  • the present invention more particularly relates to the use as described above in which the reaction is selected from the formation of carbon-carbon bonds via the Heck reaction, the Suzuki reaction, the green reductions.
  • the present invention more particularly relates to the use as described above characterized in that the metal catalyst or preferably polymetallic Palladium preferably contained in the composition as described in one of these claims for the implementation organic reaction reactions of catalytic functional transformations selected from among the Suzuki reaction, the Heck reaction, the Sonogashira reaction, and the reduction of olefins and nitro compounds, is used at very low doses, for example example of the order of at least 0.001 mol% to 0.15 mol%, preferably of the order of at least 0.0025 mol% of Pd.
  • the present invention more particularly relates to the use as described above characterized in that, in the composition containing at least one mono or polymetallic agent used in the implementation of organic synthesis reactions of functional transformations by catalysis, the metal concentration is between 600 and 120,000 mg.kg- 1 for platinum, between 5,000 and 180,000 mg.kg- 1 for palladium and between 30 and 22,000 mg-kg- 1 for rhodium.
  • compositions containing at least one metallic or preferably polymetallic catalyst as described above in the implementation of the organic synthesis reactions of functional transformations by catalysis is preferably carried out under the following conditions: Bio-sourced chemistry of palladium
  • biobased catalysts that are the subject of the present application is their ability to catalyze the formation of carbon-carbon bonds with very small amounts of catalysts.
  • This aspect is fundamental, given the particularly high cost of EMPs. This aspect is illustrated in detail with the reactions of carbopalladations of the Heck type and of cutting such as the reaction of
  • Ar mono or polycyclic aromatic radical, carbocyclic or heterocyclic, preferably phenyl or naphthyl.
  • Aryl can be mono or disubstituted.
  • the reaction can also be performed by replacing the Ar group with a vinyl group
  • R 1 aromatic group, COOR, CHO, C (O) R, CN, P (O) (OR) 2 in which R represents an alkyl radical having from 1 to 6 carbon atoms.
  • R 1 aromatic group, COOR, CHO, C (O) R, CN, P (O) (OR) 2 in which R represents an alkyl radical having from 1 to 6 carbon atoms.
  • phosphine ligands are not useful.
  • the present process does not require organic ligands, palladium being readily reduced in situ by the species present in the reaction medium as described in (a) Beletskaya, I. P .; Cheprakov, A. V., The Heck Reaction to a Sharpening Stone of Palladium Catalysis. Chemical Reviews 2000, 100 (8), 3009-3066; (b) Ziegler, C. B .; Heck, R.F., Palladium-catalyzed vinylic substitution with highly activated aryl halides. The Journal of Organic Chemistry 1978, 43 (15), 2941-2946. This is a significant advantage given their cost and chemical or thermal instability.
  • the absence of phosphine ligands also reflects the good stability of the biosourced catalytic systems.
  • Ar and Ar ' represent a mono- or polycyclic, carbocyclic or heterocyclic aromatic radical, mono- or disubstituted, preferably a phenyl or a naphthyl.
  • the reaction can also be carried out by replacing the group Ar or Ar 'with a vinyl group
  • the catalysts of type 1, 2, 3 and 4 prove very effective for this reaction, in heterogeneous catalysis. These can be reused after reaction and reactivation by washing and drying. They can also be recycled by plants according to the method described in the rhizofiltration part.
  • the reaction is general, including with non-activated halogenated derivatives, including chlorinated ones.
  • the nature of the thermal treatment of biomass slightly affects the catalytic activity; it is better to use a heat treatment in the air.
  • the acid treatment brings a very important beneficial effect.
  • the comparison of the results with Plos One 2014, 9, issue 1, e87192 (Parker et al) are suggestive.
  • the authors describe examples of Suzki reaction involving 12 mol% palladium. If the Eco-Pd catalysts of type 1, 2, 3 and 4 have a catalytic activity, Eco-Pd cat 3 leads to very good yields from 0.0025% of Pd!
  • the reactivity of the ⁇ -allyl complexes is illustrated by the nucleophilic addition of an enamine to a ⁇ -allylic complex.
  • the Buchwald-Hartwig reaction has been illustrated in a cyanation version, based on the use of copper (I) thiocyanate in place of the conventionally used highly toxic cyanides.
  • the biosourced Pd catalysts can also catalyze these two families of reaction from the same substrate.
  • Wacker-Tsuji allows the production of ketones from alkenes in a process of industrial importance (industrial synthesis of ethanal to from ethene).
  • Biobased Pd catalysts effectively catalyze the reaction and can be readily recycled when supported (particularly for type 3 catalyst).
  • the controlled oxidation of a primary alcohol to aldehyde by dioxygen is quantitative when catalyzed by biobased Pd catalysts.
  • Nucleophiles such as alcohols or amines are capable of adding to a double or triple bond by type 2 or 3 biosourced Pd catalysis, the chemo-selectivity being different depending on the type of catalyst used. This is a good way to access heterocycles.
  • Functionalized cyclopropanes which are present in many molecules of industrial interest, can be obtained from biobased Pd-catalyzed alkenes and diazotized reagents.
  • the catalyst reacts actively on the hydrolysis of sodium borohydrides with hydrochloric acid which liberates hydrogen. This in situ generated hydrogen reduces adsorption double bonds on Pt (0). Triple bonds also react. Lowering the reaction temperature to -25 ° C from the same assembly considerably increases the selectivities of the catalysis.
  • Hydrosilylation of unsaturated compounds is a commonly used reaction in the silicone industry that can be catalyzed by biosourced Pt catalysts.
  • Metathesis and cycloisomerization of enynes are two examples of cycloaddition efficiently catalyzed by biosourced Pt catalysts.
  • the biosourced Pt catalysts make it possible to carry out the carbocyclization in cascade of polyunsaturated compounds.
  • the reaction is conducted with a hydride donor simple to produce (by Hantzsch reaction) and without danger of manipulation.
  • the reaction works as efficiently on electron-enriched alkenes as on non-enriched unsaturated derivatives.
  • the use of an insoluble ligand (chitosan-pyridyl) makes it possible to reuse the catalyst at the end of the reaction by simple filtration:
  • Cycloadditions such as cyclotrimerization [4 + 2 + 2] of enyne with 1,3-butadiene can be facilitated by biobased Rh catalysis.
  • R alkyl, aryl, heteroatom
  • Example 1.2 Aryl coupling reaction with organometallic compounds, example of a typical Suzuki reaction
  • Example 1.3 Chemistry of the ⁇ -allyl complexes The reactivity of the ⁇ -allyl complexes is illustrated by the nucleophilic addition of an enamine to a ⁇ -allylic complex.
  • Example 2.1 Oxidation of Wacker-Tsuji: oxidation of decene
  • type 2 or 4 catalyst 0.1 equivalent Pd
  • CuCl 1 equivalent
  • a mixture DMSO / water 7/1.
  • the whole is fed with oxygen by a balloon stung through a septum surmounting the reaction setup.
  • the whole is stirred vigorously to allow the enrichment of the solution in 0 2 at AT.
  • 1-decene (1 equivalent) is introduced dropwise over 10 minutes.
  • the medium is stirred for 24 h at RT, under a dioxygen atmosphere.
  • GC-MS analyzes indicate a yield of dodecanone of 70%.
  • Vibration bands at 1442 cm -1 and between 1599 and 1624 cm -1 reflect the Lewis acidity of the catalyst.
  • Several types of Lewis acid sites are highlighted. The acidity of Lewis is different from that observed with commercial PdCl 2 : the signals around 1600 cm -1 have a higher frequency than for PdCl 2, which suggests that certain Lewis acid sites are stronger than in PdCl 2 .
  • the signals at 1448 and 1606 cm -1 correspond to the acidity of Lewis, close to PdCl 2 .
  • a signal marked at 1527 cm -1 is weak and therefore difficult to assimilate to the Brönsted acidity
  • the signal at 1636 cm -1 can be due to a stronger Lewis acidity.
  • Eco-Pd cat 4 and Eco-Pd cat3 have a different and complementary acidity. Eco-Pd ca t 4 is clearly distinguishable from commercial PdCl 2 .
  • the analyzes are performed with the Thermo Electron ESCALAB 250.
  • the excitation source is the monochromatic source, line Al Ka (1486.6 eV).
  • the analyzed surface has a diameter of 400 ⁇ .
  • the photoelectron spectra are calibrated as binding energy with respect to the energy of the C-C component of the Cls Carbon at 284.8 eV.
  • the powder is dispersed on a graphite scotch.
  • the quantization step consists of counting the electrons emitted by the various constituents of the material. Without the use of reference samples, all the electrons collected are considered to represent 100% of the constituents of the sample. It is therefore a method of semi-quantification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Botany (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biomedical Technology (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Pyrane Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

L'invention concerne l'utilisation de produits dérivés de cendres de plantes accumulatrices de métaux du groupe du platine (platinoïdes) pour la mise en oeuvre de réactions chimiques.

Description

UTILISATION DE CERTAINES PLANTES ACCUMULATRICES DE PLATINOIDES POUR LA MISE EN ŒUVRE DE REACTIONS DE CHIMIE
ORGANIQUE
L'invention concerne l'utilisation de plantes accumulatrices de métaux du groupe du platine (platinoïdes) pour la mise en œuvre de réactions chimiques.
La décontamination biologique des sols pollués par les métaux, les métalloïdes, les déchets et rejets organiques industriels et agricoles ou les radio-isotopes ainsi que le traitement des effluents contaminés par des résidus métalliques sont des problèmes très préoccupants car le sol exerce des fonctions essentielles qui déterminent en grande partie la production des produits alimentaires et la qualité de l'eau.
Parmi les différentes substances polluantes, les métaux lourds font partie des composés les plus nocifs, car ils ne sont pas biodégradables et se concentrent dans les sols. Des exemples de sites existent en France, en Belgique, au Luxembourg, dans le Jura, les Préalpes suisses ou dans les Pyrénées, pour ne citer que les régions les plus proches ainsi que dans des régions plus éloignées telle que la Nouvelle-Calédonie où le Nickel est plus particulièrement exploité. Différents pays africains tels que le Gabon, le Mali, l'Afrique du Sud, mais aussi le Mexique, la Chine, l'Inde ou l'Australie sont aussi des exemples démonstratifs. Les technologies de dépollution du sol sont difficiles à élaborer, car il s'agit d'un milieu hétérogène, complexe et dynamique, qui joue un rôle clé tampon et de transformateur des polluants.
Différentes techniques de phytoremédiation (phytoextraction, phytodégradation, phytostabilisation, phytostimulation, phytotransformation, phytovolatilisation et rhizofiltration) sont actuellement en plein développement (Terry, N. et Banuelos G., editors, Phytoremédiation of contaminated soil in water, Lewis Publishers, Boca Raton, F1.2000).
Le CNRS étudie la technique de phytostabilisation qui consiste à végétaliser les sols contaminés par des plantes capables de croître en présence de métaux lourds (on parle de tolérance) (Frérot et al., Spécifie interactions between local metallicolous plants improve the phytostabilazation of mine soils, Plant and Soil, 282, 53-65, 2006). Certaines de ces espèces végétales utilisées ont la particularité d'accumuler des métaux en grande quantité dans leurs vacuoles (on parle de plantes hyperaccumulatrices). Il s'agit alors de phytoextraction.
L'équipe a étudié tout particulièrement deux plantes, l'une Thlaspi caenilescens (synonyme Noccaea caenilescens) appartenant à la famille des Brassicacées, possède des propriétés remarquables de tolérance et d'hyperaccumulation du zinc, cadmium, nickel. Elle les concentre au niveau des parties aériennes (feuilles et tiges). Cette plante est capable de stocker le zinc à des concentrations 100 fois supérieures à celle d'une plante classique. Par ailleurs, elle est capable d'extraire et concentrer le zinc et le cadmium dans les tissus aériens, même sur des sols ayant une faible concentration de ces deux métaux.
Au-delà de leur tolérance inhabituelle à Zn2+ et Cd2+ et à d'autres métaux, les plantes hyperaccumulatrices sont capables d'extraire les métaux et les transférer aux parties aériennes où ils se concentrent. De ce fait, les racines contiennent très peu de métaux lourds contrairement aux espèces végétales non accumulatrices. Cette triple propriété de tolérance/accumulation/concentration dans les parties récoltables en fait un outil pertinent en phytoremédiation. Par ailleurs, les métaux lourds sont couramment utilisés en chimie organique comme catalyseurs indispensables à la réalisation de transformations chimiques qui nécessitent une énergie d'activation importante. Le rôle des catalyseurs est alors d'abaisser la barrière énergétique.
Leur mode de fonctionnement repose fréquemment sur leurs propriétés d'acide de Lewis. Le chlorure de zinc fait partie des plus utilisés et est indispensable dans de nombreuses réactions industrielles et de laboratoire. Il est aussi fréquemment utilisé en chimie organique hétérocyclique pour catalyser de nombreuses substitutions électrophiles aromatiques. Il est également un catalyseur de choix pour réaliser les hydrogénations d'alcools primaires avec le réactif de Lucas, les réactions d'acétalisation, d'aldolisation ou des réactions de cycloadditions de type Diels-Alder...
Les catalyseurs sont également très utiles en électrochimie analytique, électrométallurgie et extraction liquide-solide où les champs d'application sont nombreux et directement impliqués dans les différents domaines de la vie économique (batteries, piles et accumulateurs, détecteurs d'appareils spectroscopiques, métallurgie, soudures...)
Dans la demande internationale WO 201 1/064462 et la demande WO 201 1/064487 publiées le 3 juin 201 1 est décrite et revendiquée l'invention du Professeur Grison et du Docteur Escarré relative à l'utilisation d'une plante calcinée ou d'une partie de plante calcinée ayant accumulé au moins un métal sous forme M(II) choisi notamment parmi le zinc (Zn), le nickel (Ni) ou le cuivre (Cu), pour la préparation d'une composition contenant au moins un catalyseur métallique dont le métal est l'un des susdits métaux sous forme M(II) provenant de ladite plante, ladite composition étant dépourvue de chlorophylle, et permettant la mise en œuvre de réactions de synthèse organique faisant intervenir ledit catalyseur.
En plus des espèces mentionnées ci-dessus, Thlaspi caendescens maintenant appelée Noccaea caendescens et Anthyllis vulneraria) la demande WO 201 1/064487 décrit l'utilisation de nombreuses autres plantes métallophytes hyperaccumulatrices de métaux lourds pour la préparation de catalyseurs utilisables en chimie organique.
C'est ainsi que l'invention décrite dans WO 201 1/064487 concerne l'utilisation d'une plante calcinée ou d'une partie de plante calcinée ayant accumulé au moins un métal sous forme M(II) choisi notamment parmi le zinc (Zn), le nickel (Ni) ou le cuivre (Cu) telle que définie ci-dessus, dans laquelle ladite plante est choisie notamment parmi la famille des Brassicaceae, notamment les espèces du genre Thlaspi (synonyme Noccaea) en particulier T. goesingense, T. tatrense, T. rotundifolhim, T. praecox, les espèces du genre Arabidopsis, en particulier Arabidopsis hallerii, et du genre Alyssum, en particulier A. bertolonii, A. serpyllifolium, des Fabaceae, des Sapotaceae, notamment les espèces Sebertia acuminata, Planchonella oxyedra, des Convolvulaceae, notamment les espèces Ipomea alpina, des Rubiaceae, notamment les espèces Psychotria douarrei, en particulier P. costivenia, P. démentis, P. vanhermanii, des Cunoniaceae, notamment les Geissois, des Scrophulariaceae, en particulier les espèces du genre Bacopa, notamment Bacopa monnieri, les algues, en particulier les algues rouges, notamment les rhodophytes, plus particulièrement Rhodophyta bostrychia, les algues vertes ou les algues brunes. De ce fait, les déchets végétaux sont directement valorisés et transformés en catalyseurs « verts » ou en réactifs non conventionnels.
Dans la demande de brevet français N° 12/52045 déposée le 6 mars 2012 et non encore publiée, Le Professeur Grison et les chercheurs Escande et Losfeld ont montré que de façon inattendue certaines autres plantes qui appartiennent au genre Sedum ainsi qu'une plante différente, Potentilla griffithii, possèdent des propriétés métallophytes hyperaccumulatrices de métaux lourds différentes qui les rendent particulièrement intéressantes pour une utilisation dans la catalyse en chimie organique.
Les plantes du genre Sedum sont des plantes grasses qui appartiennent à la famille des crassulacées, composée de plus de 400 espèces. Elles ont des aptitudes naturelles à se développer sur des sols pauvres, secs, en milieu ouvert et à des conditions difficiles. Leur système foliaire est charnu et leurs cultures aisées.
Parmi elles, trois espèces ont développé des propriétés inhabituelles d'extraction du zinc et du cadmium. Sedum phimbizincicola et Sedum jinianum possèdent en particulier une capacité remarquable à extraire le zinc des sols pollués du sud et de l'est de la Chine. Elles possèdent un réel potentiel en phytoextraction et sont qualifiées de «plumbizincicolafor».
Cependant, l'application d'extraits de ces plantes comme catalyseurs n'avait jamais été décrite auparavant et fait l'objet de la demande brevet français N° 12/52045.
L'équipe du Pr Grison a ensuite découvert que la richesse du sol en espèces minérales telles que le manganèse, peut également être à l'origine de l'adaptation progressive de communautés végétales, qui deviennent tolérantes et hyperaccumulatrices d'éléments traces métalliques, en particulier le Mn (II).
Des exemples de genres de plantes comportant des espèces hyperaccumulatrices de manganèse sont les suivants: Alyxia, Azolla, Beauprea, Bea preopsis, Bridelia, Crotalaria, Dicranopteris, Dipteris, E genia, Garciania, Gleichenia, Gossia, Grevillea, Macadamia, Maytemis, Pimis, Spermacone, Stenocarp s, Virotia.
Ces espèces métallophytes sont ainsi capables de concentrer dans leur système foliaire jusqu'à 110 000 ppm de manganèse (en matière sèche). Leur aptitude à se développer sur de sites miniers érodés, appauvris en matière organique et exposés à la sécheresse, confère à ces plantes un grand intérêt pour la restauration écologique de sites meurtris par les exploitations minières intensives.
La culture de telles espèces, comme par exemple celles du genre Grevillea, présente un intérêt complémentaire à la restauration écologique. Elles sont à l'origine de nouveaux catalyseurs acides de Lewis et réactifs oxydants très performants, dont la réactivité peut être ajustée par le contrôle du degré d'oxydation du Mn et la composition du milieu. Dans un contexte de crise environnementale et de durcissement de la réglementation européenne de la chimie, la mise au point de nouveaux systèmes oxydants doux, efficaces et respectueux de l'environnement est une véritable opportunité.
Les traitements et préparations des catalyseurs et systèmes oxydants sont aisés, faciles à mettre en œuvre et respectent des contraintes vertes et écologiques.
L'utilisation de ces plantes est décrite et revendiquée dans la demande française F 12/57135 non encore publiée. Dans la demande brevet européen N° EP 13 305 208 non encore publiée, l'équipe du Pr Grison a ensuite découvert que certaines plantes choisies parmi Psychotria douarrei, Geissois Pminosa, Alyssum murale, Noccaea caendescens et Anthyllis vulneraria avaient la propriété d'accumuler de grandes quantités de Nickel (Ni) et pouvaient servir à la préparation de catalyseurs utilisables en chimie organique. Par ailleurs, la chimie des platinoïdes regroupe un domaine essentiel de la synthèse organique, celui des réactions catalysées par les métaux précieux : le platine, le palladium, l'osmium, l'iridium, le ruthénium et le rhodium. Ce domaine de la chimie est indispensable à tous les secteurs de la chimie fine : pharmacie, agroalimentaire, agrochimie, cosmétique et parfumerie. Cependant, l'accès aux ressources est devenu un problème clé : elles sont principalement concentrées sur un nombre limité de pays, souvent instables politiquement ; les ressources mondiales sont en voie d'épuisement ; l'extraction du minerai est tributaire de l'augmentation du coût de l'énergie. Ce contexte général est en train de conduire à une augmentation record du coût de production.
Face à une telle situation, des procédés de recyclage innovants prennent une importance considérable des platinoïdes.
Les inventeurs des demandes citées ci-dessus ont montré que le développement de plantes accumulatrices de cations métalliques sur sites miniers dégradés, ou en milieux aqueux pollués, puis leur valorisation en chimie catalytique permettaient de résoudre deux difficultés majeures :
- les catalyseurs bio-sourcés permettent de développer des catalyseurs hétérogènes, très intéressants, car récupérables par simple filtration et rinçage ; ils sont donc recyclables.
- leurs performances, sont analogues ou supérieures à celles de leurs homologues solubles.
Ces résultats sont une véritable révolution dans le domaine de la chimie catalytique. Ils consituent également une solution très motivante pour résoudre les problèmes écologiques et environnementaux des activités post-mines ou de traitement des effluents industriels. Les inventeurs de la présente demande ont montré qu'il est possible d'étendre l'ensemble du procédé à la chimie des platinoïdes. Les résultats ouvrent de nouvelles perspectives dans le domaine de la catalyse chimique et de la chimie verte. Les enjeux économiques et stratégiques sont considérables. Ils sont vitaux pour l'économie européeenne. Le platine (Pt), le palladium (Pd) et le rhodium (Rh) sont 3 éléments qui font partie du groupe des platinoïdes (PGE). Ce sont des éléments présents en faible quantité dans la croûte terrestre, 0.005 mg.kg"1 pour Pt, 0.015 mg.kg"1 pour Pd et 0.0001 mg.kg"1 pour Rh, mais dont l'exploitation n'a cessé d'augmenter depuis la deuxième moitié du 20eme siècle. Cette augmentation est due en particulier à leur introduction dans les pots catalytiques des véhicules et à la mise en évidence de leurs propriétés exceptionnelles en tant que catalyseurs. Le recyclage ne représente encore qu'une faible part dans la production mondiale des PGE mais étant donné le coût actuel de leur production minière c'est une voie alternative qui mériterait d'être plus développée. D'autre part avec l'augmentation de la production et de la consommation mondiale des PGE, il a été observé une augmentation de leur émission dans l'environnement (gaz d'échappements des véhicules, effluents industriels et hospitaliers) induisant une contamination en PGE à tous les niveaux, air, eau et sol.
La présente demande a donc pour premier objet, l'utilisation après traitement thermique d'une plante ou d'une partie de plante appartenant à l'un des genres choisis parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidhim sativ tn), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica j ncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphan s sativus), le ray-grass commun (Loli m perenne), le ray-grass d'Italie (Lolium midtiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum) ayant accumulé au moins l'un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) pour la préparation d'une composition contenant au moins un agent mono ou polymétallique dont le métal ou les métaux sont choisis parmi les métaux provenant de ladite plante, ladite composition étant pratiquement dépourvue de matière organique, pour la mise en œuvre de réactions de synthèse organique faisant intervenir ledit agent comme catalyseur. L'invention a également pour objet l'utilisation comme catalyseur d'une composition contenant un catalyseur métallique provenant après traitement acide des cendres obtenues après traitement thermique d'une plante ou d'une partie de plante appartenant à l'un des genres choisis parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordenm vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis {Raphamis sativiis), le ray-grass commun (Lolhim perenne), le ray-grass d'Italie (Lolhim miiltifloritm), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabaciim), de préférence la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), le ray-grass d'Italie (Lolium multiflorum), ayant accumulé au moins l'un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh), catalyseur métallique dont le métal ou les métaux sont choisis parmi les métaux provenant de ladite plante et dont le métal ou les métaux présents dans la composition de l'invention proviennent exclusivement de la plante avant calcination et de préférence sans rajout de métal provenant d'une autre origine que ladite plante pour la mise en œuvre de réactions de synthèse organique faisant intervenir ledit agent comme catalyseur.
L'invention a également pour objet l'utilisation telle que décrite ci-dessus caractérisée en ce que le traitement thermique d'une plante ou d'une partie de plante est effectuée à l'air.
L'invention a également pour objet l'utilisation telle que décrite ci-dessus caractérisée en ce que le traitement thermique d'une plante ou d'une partie de plante est effectuée sous une atmosphère de gaz inerte, de préférence l'argon.
La présente demande a également pour objet l'utilisation d'une composition préparée par traitement thermique d'une plante ou d'une partie de plante appartenant à l'un des genres choisis parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidhim sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphamis sativus), le ray-grass commun (Lolium perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum) ayant accumulé l'un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) et contenant au moins un agent mono ou polymétallique dont le métal ou les métaux sont choisis parmi les métaux provenant de ladite plante, pour la mise en œuvre de réactions de synthèse organique faisant intervenir ledit agent comme catalyseur.
La présente demande a également pour objet l'utilisation d'une composition préparée par traitement thermique à l'air d'une plante ou d'une partie de plante appartenant à l'un des genres choisis parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea ccmadensis), l'épinard {Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne {Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray-grass commun (Lolhim perenne), le ray-grass d'Italie (Lolhtm multifloriim), la sétaire verticillée (Setaria ver ti cillât a) et le tabac (Nicotiana tabac m) ayant accumulé l'un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) et contenant au moins un agent mono ou polymétallique dont le métal ou les métaux sont choisis parmi les métaux provenant de ladite plante et dont le métal ou les métaux présents dans la composition proviennent exclusivement de la plante avant traitement thermique et sans rajout de métal provenant d'une autre origine que ladite plante, pour la mise en œuvre de réactions de synthèse organique faisant intervenir ledit agent comme catalyseur.
La présente demande a également pour objet, l'utilisation telle que décrite ci-dessus après traitement thermique suivie d'un traitement acide d'une plante ou d'une partie de plante choisie parmi le genre choisis parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray-grass commun (Lolhtm perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum), ayant accumulé au moins un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisée en ce que le traitement acide est effectué de préférence par de l'acide chlorhydrique, en particulier HC1 gazeux ou aqueux de préférence à une concentration choisie entre IN à 12N, de l'acide sulfurique, de l'acide acétique, de l'acide trifluorométhanesulfonique de l'acide nitrique, de l'acide perchlorique, de l'acide phosphorique, de l'acide trifluoroacétique ou de l'acide para-toluène sulfonique ces acides étant de préférence utilisés à une concentration élevée de préférence de 10 à 30 %.
La présente demande a également pour objet l'utilisation telle que décrite ci-dessus après traitement thermique suivie d'un traitement acide d'une plante ou d'une partie de plante choisie parmi le genre choisis parmi l'arum vert (Peltandra virginicd), le concombre {C citmis sativus), le cresson (Lepidhim sativum), l'élodée du Canada (Elodea canadensis), l'épinard {Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativd), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vi gare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Rophomis sativus), le ray-grass commun (Loïhim perenne), le ray-grass d'Italie (Loliiun ltiflor m), la sétaire verticillée (Setcu a verticillatd) et le tabac {Nicotiana tabacum), ayant accumulé au moins un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisée en ce que le traitement acide est effectué de préférence par de l'acide chlorhydrique, en particulier HC1 gazeux, HC1 IN à 12N, de l'acide sulfurique, de l'acide trifluoiOméthanesulfonique de l'acide nitrique, de l'acide perchlorique, de l'acide phosphorique, de l'acide trifluoroacétique de l'acide para-toluène sulfonique de l'acide acétique, de l'acide formique, de l'acide oxalique ou un mélange d'acides tel que le mélange acide chlorhydrique- acide nitrique ou le mélange acide acétique-acide nitrique de préférence utilisé à une concentration élevée de préférence de 10 à 30 %.
On peut également faire précéder le traitement acide des cendres, obtenues par traitement thermique des plantes indiquées ci-dessus, par un traitement de ces cendres par un sel ou un mélange de plusieurs sels, de préférence un mélange de chlorure de sodium et de disulfate de potassium, de manière à obtenir un mélange fondu, mélange fondu que l'on traite ensuite par un acide comme indiqué ci-dessus. Le traitement des cendres par un sel est utilisé de préférence lorsque l'utilisation selon la présente demande est effectuée avec des plantes ou des parties de plantes accumulatrices de Rhodium.
La présente invention a également pour objet un procédé de préparation d'une composition comprenant un agent métallique ou polymétallique comprenant au moins un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisé en ce qu'il comprend les étapes suivantes : a) Déshydratation, de préférence à température ambiante ou dans une étuve à une température de l'ordre de 70°C de la biomasse comprenant les feuilles, les tiges et/ou les racines d'une plante ou d'un extrait de plante appartenant à l'un des genres choisis parmi l'arum vert {Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidhim sativ m), Pélodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie {Phacelia tcmacetifolia), le radis (Raphanus sativus), le ray- grass commun (Lolium perenn ), le ray-grass d'Italie {Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum) ayant accumulé un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh),
et, si désiré
b) Broyage de la biomasse sèche d'une plante ou d'un extrait de plante obtenue au stade a) éventuellement en présence d'un sel ou d'un mélange de sels, de préférence le chlorure de sodium et le disulfate de potassium, c) Traitement thermique à l'air ou sous atmosphère d'argon de la biomasse obtenue au stade a) ou du mélange broyé obtenu au stade b) dans un four de préférence en une ou plusieurs étapes de préférence en une étape à 500-600° pendant plusieurs heures, de préférence pendant environ 2 heures ou en deux étapes la première à une température inférieure à 500°C de préférence de l'ordre de 350° et à une seconde étape à une température de l'ordre de 550° chacune de ces étapes étant réalisée pendant environ 3 heures
et, si désiré,
d) Traitement des cendres obtenues au stade c) par un sel ou un mélange de plusieurs sels de préférence un mélange de chlorure de sodium et de disulfate de potassium de manière à obtenir un, mélange fondu après chauffage
et, si désiré,
e) Traitement des cendres obtenues au stade c) ou du mélange fondu obtenu au stade d) par une solution d'acide, ledit acide étant choisi de préférence parmi l'acide chlorhydrique de préférence à une concentration choisie entre 1M et 12 M ou l'acide nitrique, l'acide sulfurique, l'acide trifluorométhanesulfonique, l'acide nitrique, de l'acide formique, de l'acide oxalique, l'acide perchlorique, l'acide phosphorique, l'acide trifluoroacétique ou l'acide para-toluène sulfonique, ces acides étant de préférence utilisés à une concentration élevée de préférence de 10 à 30 % traitement suivi si désiré d'une filtration de préférence sur célite et d'une déshydratation de la solution ou suspension obtenue de préférence sous pression réduite de manière à obtenir un résidu sec qui peut être séché à 120°C, et, si désiré,
f) Action sur le produit obtenu au stade c), d) ou e) de l'acide acétique en présence d'un acide fort de préférence l'acide nitrique pour obtenir après concentration sous pression réduite un solide qui est ensuite repris avec un solvant organique, de préférence l'acétone ou l'acétate d'éthyle pour donner après évaporation un produit sous forme d'acétate
et, si désiré
g) Réaction du produit obtenu au stade e) contenant du rhodium avec de la triphénylphosphine pour obtenir par précipitation un complexe pur de formule RhCl(PPh3)3
et, si désiré
h) Mélange ou traitement du produit obtenu au stade c), d), e), f) ou g) en milieu acide avec un support minéral choisi parmi la montmorillonite K10, la silice, l'alumine, l'hydrotalcite, le charbon actif ou un support organique de préférence le chitosan pour obtenir après filtration puis séchage à étuve ou sous vide un catalyseur supporté sur support minéral ou organique
et, si désiré,
i) Purification partielle du résidu sec obtenu au stade c), d), e), f), g) ou h) sur résines échangeuses d'ions suivie si désiré d'une déshydratation de la solution obtenue de préférence sous pression réduite de manière à obtenir un résidu sec et, si désiré
j) Réaction du produit obtenu au stade c), d), e), f), g), h) ou i) sous forme sèche avec des ligands de préférence organiques sous l'action éventuelle de micro-ondes pour obtenir des agents ligandés.
Au stade d) du procédé, l'obtention optionnelle d'un mélange fondu entre les cendres obtenues au stade c) et les sels d'acides est réalisée de préférence avec des plantes ou des parties de plantes accumulatrices de Rhodium.
La présente invention a donc particulièrement pour objet un procédé caractérisé en ce que lorsque les stades a) à c) du procédé sont réalisés avec des plantes accumulatrices de rhodium les cendres obtenues au stade c) sont traités par un sel ou un mélange de plusieurs sels de préférence un mélange de chlorure de sodium et de disulfate de potassium de manière à obtenir un, mélange fondu.
De manière préférentielle et sans que cela constitue une limitation à la présente demande, les catalyseurs dérivés des biomasses accumulatrices de platinoïdes sont préparés comme suit : ) Préparation spécifique des catalyseurs au Palladium ou au Platine :
• Traitement de la biomasse : catalyseurs de type 1 : Eco-Pdcati et Eco-Pdcat2
Les feuilles, tiges ou de préférence les racines collectées sont déshydratées, soit à température ambiante, soit en étuve (70°C). La masse sèche obtenue est soumise à un traitement thermique à 550°C durant 2 h à l'air (Eco-Pdcati) ou sous argon (Eco-Pdcat2) afin de détruire la matière organique. Les catalyseurs, Eco-Pdcatl et Eco-Pdcat2> mélanges d'espèces polymétalliques et de matière organique, sont utilisés directement ou stockés en vue des opérations suivantes de préparation de catalyseurs.
Traitement acide des Eco-Pdcati et Eco-Pdcat2 issus de la biomasse : cataly type 2 : Eco-Pdcat3 et Eco-Pdcat4 Les catalyseurs Eco-Pdcati et Eco-Pdcat2 obtenus après traitement thermique de la biomasse sont introduits dans un erlenmeyer muni d'un barreau magnétique, puis une solution d'acide, qui lorsque l'acide chlorhydrique est utilisé peut avoir une concentration comprise entre 1 et 12 M est introduite progressivement, sous agitation. D'autres acides comme l'acide nitrique ou sulfurique sont utilisables sous de fortes concentrations de préférence de 10 à 30 %.
Typiquement, 100 mL de solution d'acide sont utilisés pour 10 g de Eco-Pdcati ou Eco- Pdcat2). La suspension résultante est chauffée à reflux, sous agitation, durant 24 h. Le mélange est ensuite filtré sur célite et la solution résultante est concentrée par évaporation sous pression réduite, jusqu'à obtention d'un solide catalytique. Celui-ci est récupéré puis son séchage est achevé à l'étuve (120°C) jusqu'à stabilisation de la masse du solide. Ce catalyseur est ensuite stocké en dessiccateur.
• Modification de contre-ion : formation d'acétate : catalyseur de type 3 : Eco-Pdcat5 et Eco-Pdcat6 II est possible de procéder à un échange de contre-ion à partir d'Eco-Pdcat3 ou Eco-
Pdcat4 obtenu suite au précédent traitement, notamment afin de former un catalyseur sous forme d'acétate, plus soluble en solvants organiques. Typiquement, 100 mg d'Eco-Pdcat3 sont introduits dans un ballon muni d'un barreau magnétique puis 10 mL d'acide acétique à 95% et 60 μΐ, d'acide nitrique (65 %) sont ajoutés. La solution obtenue est agitée, à reflux, durant 3 heures. Celle-ci est ensuite concentrée sous pression réduite, jusqu'à obtention d'un solide orangé. Ce solide est repris avec un solvant tel que l'acétone ou l'acétate d'éthyle. L'évaporation de cette phase organique conduit à l'obtention du catalyseur sous forme acétate.
• Catalyseur supporté sur support minéral : catalyseur de type 4 Différents supports minéraux peuvent être utilisés pour supporter le catalyseur et ainsi réaliser une catalyse sur support. Typiquement, la montmorillonite K10, la silice, l'alumine ou l'hydrotalcite ont été utilisées comme support. 1 g de support minéral est introduit dans un ballon muni d'un barreau magnétique, puis sont ajoutés 50 mg de catalyseur de type 2 ou 3. 10 mL d'eau sont ajoutés puis la suspension résultante est agitée à température ambiante durant 5 h. Celle-ci est ensuite filtrée, le solide est lavé avec 5 10 mL d'eau distillée, puis celui-ci est recueilli pour séchage à l'étuve (120°C) durant une nuit. Une fois sa masse stabilisée, le catalyseur résultant est stocké au dessiccateur.
• Catalyseur supporté sur support organique : catalyseur de type 5
Le catalyseur peut également être supporté sur solides organiques, notamment d'origine naturelle, tels que des dérivés du chitosan. Ceci implique la préparation d'un support organique à partir du chitosan selon la procédure suivante : dans un ballon muni- d'un ban-eau magnétique sont introduits : 15 mL de méthanol, 1 g de chitosan, 1,6 g (15 mmol) de 2-pyridinecarboxaldehyde, 1,5 mL (26 mmol) d'acide acétique concentré. L'ensemble est chauffé à reflux, sous agitation, durant 10 h, sous courant de diazote. Le mélange est ensuite filtré, le solide résiduel est lavé à l'eau (25 mL), Péthanol (25 mL) puis l'acétone (25 mL), puis séché sous vide durant 3 h à 60°C. Ce solide est ensuite utilisé comme support de catalyseur préparé selon la procédure suivante : dans un ballon muni d'un barreau magnétique, sont introduits : 100 mg de support organique préparé ci- dessus, 10 mg de catalyseur de type 2 et 10 mL d'acétone. Le mélange est agité à température ambiante durant 48 h puis filtré, lavé à l'eau (25 mL), l'éthanol (25 mL) puis l'acétone (25 mL), puis séché sous vide durant 3 h à 60°C.
• Catalyseur traité par un acide organique réducteur, acide formique ou oxalique : catalyseur de type 6 : Eco-Pdcat7 et Eco-Pdcat8
5g d'Eco-PdCat i ou Eco-Pdcat2 obtenus par traitement thermique à 400°C des racines correspondantes, sont dispersés dans 150 mL d'acide formique. La solution est agitée à 90°C. La solution noircit assez rapidement. Après 3 Oh d'agitation, le mélange réactionnel est filtré sur célite. Une solution jaune pâle et un solide résiduel noir sont isolés et mis de côté. Le résidu solide est composé en partie de palladium (0) est lavé à l'eau bouillante. 3, 210 g d'un solide noir est analysé en ICP MS. Il est composé de 9,1% de Pd.
• Catalyseur ligandé par le cyclooctadiène : catalyseur de type 7 :
Dans un ballon de 5 mL, on introduit lOmg d'Eco-Pdcat3 et 200 μΐ d'HCl 37%. Lors de l'apparition d'une suspension jaune pâle, on ajoute 2 mL d'éthanol et 60 μΐ de cyclooctadiène. Après concentration sous azote et lavage par 3x2 mL d'acétate d'éthyle et séchage sur sulfate de sodium, le milieu est concentré sous vide. 5,6 mL d'une huile jaune vif sont conservés dans 10 mL d'acétone. Une analyse ICP MS indique 463 ppm de Pd.
• Catalyseur traité par un mélange d'acide chlorhydrique, d'acide nitrique et de charbon actif avant réduction : catalyseur de type 8 : Eco-Pdcat8 et Eco-Pdcat9
Typiquement, 10g de catalyseurs de type 2 sont mis en solution dans 20 ml d'acide chlorhydrique concentré and 50 mL d'eau. La solution est diluée avec 100 mL d'eau, puis versée dans 90g de charbon préalablement activé par une solution d'acide nitrique à 10% pendant 2 heures, lavé, filtré et séché dans une étuve à 100°C. L'ensemble est agité, séché par un bain marie puis une étuve à 100°C. Le solide (environ 100g) est placé dans un dessicateur sous vide en présence de chlorure de calcium. .Le Pd(II) du catalyseur polymétallique peut être réduit en Pd(0) par le dihydrogène, l'hydrazine, le borohydrure de sodium, le formaldéhyde, mais la recherche de conditions vertes suggère plutôt l'utilisation de l'acide formique ou un de ces sels, ou l'acide oxalique. 2) Préparation spécifique du catalyseur au Rhodium :
Les oxydes obtenus après traitement thermique de la biomasse sont broyés dans un mortier avec un mélange de chlorure de sodium et de disulfate de potassium. Le mélange est placé dans un cristallisoir en pyrex ou un creuset en porcelaine puis chauffé dans un four à 500-600°C pendant 2 heures. Après refroidissement, le solide rougeâtre finement broyé est introduit dans une solution aqueuse d'acide chlorhydrique concentrée, agitée pendant 1 heure à reflux. La solution résultante est concentrée par évaporation sous pression réduite, jusqu'à obtention d'un solide catalytique. Celui-ci est récupéré puis son séchage est achevé à l'étuve (120°C) jusqu'à stabilisation de la masse du solide. Ce catalyseur est ensuite stocké en dessiccateur. Certaines réactions nécessitent un catalyseur au rhodium biosourcé de haute pureté. Dans le cas des hydrogénations catalytiques, un catalyseur de haute pureté peut être préparé par précipitation du complexe RhCl(PPh3)3. Un exemple d'une telle préparation est donné ci-après dans la partie expérimentale. Dans le cas de réactions ne nécessitant pas de complexe RhCl(PPh3)3, un catalyseur de haute pureté peut être obtenu par purification sur résines échangeuses d'ions. La technique d'échange d'ions est largement utilisée pour le recyclage et la séparation du Rhodium des autres platinoïdes, métaux de transition et métaux alcalins. Les complexes de rhodium peuvent être purifiés par exemple sur des résines échangeuses de cations telles que la Wofatit KPS-200 ou la Vionit CS-3. La présente demande a également pour objet un procédé caractérisé en ce que les plantes appartenant à l'un des genres choisis parmi l'arum vert {Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidhim sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleraced), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolid), le radis (Raphanus sativus), le ray- grass commun (Loîium perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana labacwn) sont cultivées en présence d'effluents contaminés par un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh), de manière à accumuler lesdits métaux dans les feuilles, les tiges et/ou les racines.
Le mode opératoire préféré consiste à utiliser des effluents contaminés en PGE, à soumettre de préférence ces effluents à un traitement d'acidification afin de baisser le pH dans une gamme comprise entre pH 3 et pH 6 pour augmenter la solubilité des PGE et la disponibilité des PGE pour les plantes et ensuite de cultiver des plantes potentiellement hyperaccumulatrices en contact avec ses effluents.
L'invention a donc pour objet un procédé caractérisé en ce que les effluents contaminés par un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) sont traités par un acide choisi de préférence parmi l'acide chlorhydrique, l'acide nitrique, l'acide sulfurique, l'acide trifluorométhanesulfonique, l'acide nitrique, l'acide perchlorique, l'acide phosphorique ou un acide organique tel que l'acide acétique, l'acide citrique, malique, lactique de manière à obtenir une solution dont le pH est compris de préférence entre 3 et 6 avant d'être mis en contact avec les plantes accumulatrices des platinoïdes. L'invention a également pour objet un procédé caractérisé en que les effluents contaminés par un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) sont traités par un acide choisi de préférence parmi l'acide chlorhydrique, l'acide nitrique, l'acide sulfurique, l'acide trifluorométhanesulfonique, l'acide nitrique, l'acide perchlorique, ou l'acide phosphorique, de préférence l'acide nitrique utilisé seul, de manière à obtenir une solution dont le pH est compris de préférence entre 2 et 6 avant d'être mis en contact avec les plantes accumulatrices des platinoïdes.
Il peut être préférable de procéder à une neutralisation à l'ammoniac lorsque l'acide nitrique est utilisé seul.
En ce qui concerne la culture des plantes accumulatrices de platinoïdes, deux méthodes de culture sont possibles, 1) utiliser les effluents pour arroser des plantes cultivées dans un médium non contaminé (sable par exemple) ou 2) cultiver les plantes en hydroponie directement dans le médium contaminé (effluents). De nombreuses espèces sont capables de prélever les PGE et certaines sont capables de les concentrer dans leurs racines à une très forte concentration lorsqu'elles sont cultivées de ces façons.
L'invention a donc pour objet un procédé caractérisé en ce que les cultures des plantes appartenant à l'un des genres choisis parmi parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson {Lepidi m sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medic go sativa), le maïs (Zea tnays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vidgare), l'ortie (Urtica dioica), la phacélie (Phacelio tanacetifolia), le radis {Raphanus sativus), le ray- grass commun {Lolhim perenne), le ray-grass d'Italie (Lolium multifloru ), la sétaire verticillée (Setaria verticillatd) et le tabac (Nicotiana tabacum) sont cultivés dans un milieu stérile arrosé par les effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) ou sont cultivés en hydroponie ou aéroponie dans les effluents contaminés.
De manière préférentielle et sans que cela constitue une limitation à la présente demande, les plantes accumulatrices de platinoïdes sont cultivées comme suit : 1) Culture sur sable non contaminé :
Les espèces sont mises à germer dans des pots contenant du sable stérile et placés dans des grands bacs contenant la solution de culture, au départ de l'eau et de l'engrais. Puis après 2 semaines de croissance, la solution de culture est remplacée par une nouvelle solution constituée des effluents préalablement traités thermiquement puis repris par H 03 (et éventuellement neutralisation à l'ammoniac) et d'engrais. Après 4 semaines d'exposition les racines et les parties aériennes des plantes sont récoltées, lavées, séchées et pesées. Puis les échantillons sont brûlés dans un four à moufle à 350°C pendant 3 heures puis à 550°C pendant 3 heures. Ensuite les cendres sont utilisées pour la préparation des catalyseurs. Cette méthode est optimale pour des plantes ne pouvant pas être cultivées en hydroponie et moins tolérantes à un excès de PGE. Des concentrations élevées dans les racines sont atteintes.
Figure imgf000020_0001
2) Culture en hydroponie destinée à la rhizofiltration d'effluents
Les espèces sont mises à germer dans des tubes de coco « fleximix root it organic Starter Cubes ». Ce substrat est constitué de fibres, tourbe et écorces de coc. Les graines de chaque espèce sont ensuite regroupées sur des plaques de semis arrosées à l'eau, de manière quotidienne pour éviter le dessèchement. Durant 15 jours, les plantules sont disposées sous néons, sous une puissance lumineuse de 1 1 000 lumens. Le suivi du taux de germination des 260 graines de 3 espèces, Brassica juncea, Lolhim multiflorum et Sinapsis alba, montre des valeurs particulièrement intéressantes pour Brassica juncea, et surtout Lolhim multiflorum. La valeur optimale se situe aux alentours de 12 à 13 jours. Les taux de germination sont les suivants :
Brassica juncea : 78,5% ; Lolium multiflorum : 84, 6% ; Sinapis alba : 48%
Un protocole de croissance à travers un des billes d'argile placées dans des pots paniers, déposés à leur tour sur des billes d'argile disposées au fond du bac de culture permet d'optimiser la croissance racinaire. Ainsi les billes d'argile permettent d'éloigner les racines de la solution nutritive et de favoriser la croissance de la racine primaire. Les engrais introduits dans la solution nutritive doit être introduit en faibles concentrations afin de ne pas brûler les jeunes racines.
Les plants sont ensuite transplantés et placés sous des lampes au mercure qui permettent de fournir une puissance lumineuse de 37 000 lumens. Ce système d'éclairage favorise le développement de la plante placée en hydroponie, mais aussi l'évapotranspiration des espèces végétales, moteur de l'absorption racinaire. Une évolution de la longueur moyenne de la plus longue racine au cours du temps montre une croissance rapide et continue de la racine primaire initiale pour Lolium. La comparaison inter-spécifique de la taille de la plus grande racine à 40 jours donne les résultats suivants :
Brassica juncea : 40 cm ; Lolium multiflorum : 8 cm ; Sinapis alba : 8 cm
Des racines adventives sur la racine initialement mesurée apparaissent rapidement, dans le cas de Lolium multiflorum. Les racines forment rapidement un tapis racinaire idéal pour l'extraction des métaux présents dans les effluents à épurer.
Figure imgf000022_0001
Les expériences d'accumulation sont réalisées en hydroponie ou en aéroponie. Il est conseillé de ne pas utiliser de substrat tel que sable fin, billes d'argile, amis de privilégier une exposition directe des racines dans l'effluent, afin de pas entraîner l'absorption des métaux de l'effluent par le substrat. Une suspension des pots à travers une plaque de polystyrène est une solution simple.
Figure imgf000022_0002
L'effluent est une solution aqueuse dont les espèces métalliques sont issues de réactions organiques, telles que des réactions de couplage telles que la réaction de Suzuki. Les sels ont été préalablement traités thermiquement puis par HN03 (et éventuellement neutralisation à l'ammoniac). Ainsi, dans le cas d'une réaction de Suzuki, la solution à retraiter est riche en nitrate de palladium ou un sel dérivé tel que l'ammonium nitrate de palladium. Une concentration idéale est proche de 40 mg/L et le pH doit être maintenu à 3, afin d'éviter la précipitation des sels. Le pH doit être ajusté à la nature de chaque sel.
Après 2 semaines d'exposition les racines et les parties aériennes des plantes sont récoltées, lavées, séchées et pesées. L'effluent est analysé chaque semaine pour contrôler l'efficacité de l'épuration. Le facteur de bioaccumulation hebdomadaire est évalué. Après 8 jours, l'effluent est purifié à hauteur de 82% avec Brassica juncea. Cependant, la floraison rapide des brassicacées limite un traitement prolongé par floraison rapide, rendant difficile une extraction totale. Une espèce comme Lolium mutiflorum ne pose ce problème. Son extraction est moins spectaculaire, mais il est largement compensé par sa surface racinaire et son rythme biologique plus en accord avec les objectifs. Ses performances sont illustrées par la bioaccumulation dans les racines présentées ci-après, mais aussi par l'abondance de la biomasse racinaire qui correspond parfaitement aux objectifs de valorisation par catalyse chimique.
Puis les échantillons sont brûlés dans un four à moufle à 350°C pendant 3 heures puis à 550°C pendant 3 heures. Le traitement thermique est réalisé soit à l'air, soit sous argon. Ensuite les cendres sont utilisées pour la préparation des catalyseurs. Cette méthode est optimale car elle permet d'avoir rapidement une biomasse importante et permet une meilleure accumulation des racines, elle est idéale pour des plantes aquatiques et/ou tolérantes à des excès en PGE.
Il n'y a pas de phénomène de translocation observée dans les trois exemples ci- dessous, c'est pourquoi seules les données racinaires sont présentées.
Figure imgf000023_0001
L'invention a donc pour objet un procédé de culture des plantes appartenant à l'un des genres choisis parmi parmi l'arum vert {Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), Pélodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea ays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray-grass commun (Lolium perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum) dans un milieu stérile arrosé par les effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisé en ce que lesdites plantes sont cultivées sur sable non contaminé pendant environ 2 semaines en présence d'une solution de culture constituée principalement d'eau et d'engrais puis pendant environ 2 semaines en présence d'une solution de culture constituée principalement des effluents et d'engrais.
L'invention a donc pour objet un procédé de culture des plantes appartenant à l'un des genres choisis parmi parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard {Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica j ncea), l'orge (Hordeum v lgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetîfolid), le radis (Raph nus sativus), le ray-grass commun (Lolhim perenne), le ray-grass d'Italie (Lolhim midtiflorum), la sétaire verticillée {Setaria verticillata) et le tabac (Nicotiana tabacum) dans un milieu stérile arrosé par les effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisé en ce que lesdites plantes sont cultivées en hydroponie pendant environ 2 semaines en présence d'une solution de culture constituée principalement d'eau et d'engrais puis pendant environ 1 semaines en présence d'une solution de culture constituée principalement des effluents.
L'invention a notamment pour objet un procédé de culture des plantes appartenant à l'un des genres choisis parmi parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray-grass commun (Lolhim perenne), le ray-grass d'Italie (Lolhim multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum) caractérisé en ce que la concentration des métaux dans les racines des plantes est comprise entre 40 et 8 000 mg.kg"1 pour le platine, entre 1 100 et 32 000 mg.kg"1 pour le palladium et entre 30 et 1 900 mg.kg"1 pour le rhodium.
La présente invention a également pour objet une méthode de traitement des effluents contaminés en PGE afin de remédier les milieux contaminés tout en fournissant une source alternative de PGE utiles à des fins de catalyse pour l'industrie de la chimie verte.
La présente invention a également pour objet un procédé tel que décrit ci-dessus caractérisé en ce que la phase aqueuse du mélange réactionnel obtenue après utilisation comme catalyseur des compositions contenant un catalyseur métallique provenant après traitement acide des cendres obtenues après traitement thermique d'une plante ou d'une partie de plante telle que décrite ci-dessus est recyclée par rhizofiltration à l'aide desdites plantes.
L'invention a donc pour objet une méthode de décontamination des effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium caractérisée en ce que des plantes capables d'accumuler au moins l'un des platinoïdes appartenant à l'un des genres choisis parmi l'arum vert {Peltandra virginicd), le concombre {Cucumis sativus), le cresson {Lepidium sativum), l'élodée du Canada {Elodea canadensis), l'épinard {Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne {Medicago sativa), le maïs {Zea mays), la moutarde blanche {Sinapis alba), la moutarde brune {Brassica juncea), l'orge {Hordeum vulgare), l'ortie {Urtica dioica), la phacélie {Phacelia tanacetifolia), le radis {Raphanus sativus), le ray-grass commun {Lolium perenne), le ray-grass d'Italie {Lolium midtiflorum), la sétaire verticillée {Setaria verticillata) et le tabac {Nicotiana tabacum) sont cultivées dans un milieu arrosé par les effluents contaminés ou en hydroponie dans les effluents contaminés.
Le mode opératoire global est le même que celui indiqué ci-dessus, il consiste à récupérer des effluents contaminés en PGE, à traiter ces effluents pour augmenter la solubilité des PGE et ensuite de cultiver des plantes potentiellement hyperaccumulatrices au contact de ces effluents. Deux méthodes sont possibles, 1) utiliser les effluents pour arroser des plantes cultivées dans un médium non contaminé (sable par exemple) ou 2) cultiver les plantes en hydroponie directement dans le médium contaminé (effluents). De nombreuses espèces sont capables de prélever les PGE et certaines sont capables de les concentrer dans leurs racines à une très forte concentration.
La présente invention a également pour objet l'utilisation dans laquelle la composition contenant au moins un catalyseur métallique ou de préférence polymétallique telle que décrite ci-dessus est utilisée dans la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse choisies parmi les réactions de formation de liaisons carbone-carbone choisies parmi la réaction de Suzuki, la réaction de Heck, la réaction de Sonogashira, les réactions de couplage arylique choisies parmi la réaction de Kumada, la réaction de Negishi et Fukuyama, la réaction de Hiyama, et la réaction de Stille ; les réactions d'addition nucléophile d'une énamine sur les complexes pi- allyliques, les réactions du type Buchwald-Hartwig, les réactions de carbonylation et ène- réactions, l'oxydation de Wacker-Tsuji, l'oxydation d'alcools, le couplage oxydant de composés aromatiques, les réactions régiosélectives entre un alcène et un dérivé aromatique, la cyclopropanation d'alcènes, la réduction des oléfmes et des composés nitrés, l'hydrosilylation d'oléfines et d'alcynes, les cycloadditions, la carbocylisation en cascade de composés polyinsaturés, l'hydrogénation catalytique, l'isomérisation allylique, la cycloaddition, les ène-réactions, les cycloisomérisations, l'hydroboration.
La présente invention a également pour objet l'utilisation d'une composition contenant au moins un catalyseur métallique ou de préférence polymétallique telle que décrite ci- dessus pour la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse choisies parmi les réactions de formation de liaisons carbone- carbone telles que la réaction de Suzuki, la réaction de Heck, la réaction de Sonogashira, ; les réactions d'addition nucléophile d'une énamine sur les complexes pi-allyliques, les réactions du type Buchwald-Hartwig, les réactions de carbonylation et ène-réactions, l'oxydation de Wacker-Tsuji, l'oxydation d'alcools, la réduction des oléfmes et des composés nitrés et nitriles, l'hydrosilylation d'oléfines et d'alcynes, l'isomérisation allylique.
La présente invention a plus particulièrement pour objet l'utilisation telle que décrite ci- dessus dans laquelle la réaction est choisie parmi la réaction de Suzuki, la réaction de Heck, la réaction de Sonogashira, et la réduction des oléfmes et des composés nitrés et nitriles.
La présente invention a plus particulièrement pour objet l'utilisation telle que décrite ci- dessus dans laquelle la réaction est choisie parmi la formation de liaisons carbone- carbone via la réaction de Heck, la réaction de Suzuki, les réductions vertes.
La présente invention a plus particulièrement pour objet l'utilisation telle que décrite ci- dessus caractérisée en ce que le catalyseur métallique ou de préférence polymétallique de préférence le Palladium contenu dans la composition telle que décrite à l'une de ces revendications pour la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse choisies parmi de préférence parmi la réaction de Suzuki, la réaction de Heck, la réaction de Sonogashira, et la réduction des oléfmes et des composés nitrés, est utilisé à des doses très faibles, par exemple de l'ordre de au moins 0,001 mole % à 0,15 mole % , de préférence de l'ordre de au moins 0,0025 mol% de Pd . La présente invention a plus particulièrement pour objet l'utilisation telle que décrite ci- dessus caractérisée en ce que, dans la composition contenant au moins un agent mono ou polymétallique utilisée dans la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse, la concentration en métal est comprise entre 600 et 120 000 mg.kg"1 pour le platine, entre 5 000 et 180 000 mg.kg"1 pour le palladium et entre 30 et 22 000 mg.kg"1 pour le rhodium.
Cette utilisation des compositions contenant au moins un catalyseur métallique ou de préférence polymétallique telle que décrite ci-dessus dans la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse est de préférence réalisée dans les conditions suivantes : Chimie bio-sourcée du palladium
I- Chimie du Pd(0)
Un des avantages des catalyseurs biosourcés objets de la présente demande est leur capacité à catalyser la formation de liaisons Carbone-Carbone avec de très faibles quantités de catalyseurs. Cet aspect est fondamental, compte-tenu du coût particulièrement élevé des PGE. Cet aspect est illustré de façon détaillée avec les réactions de carbopalladations de type Heck et de coupage telles que la réaction de
Suzuki.
1) Réaction d'halogénures d'aryle avec des alcènes ou aromatiques (réaction de Heck)
Catalyseur Pd
biosourcé
Figure imgf000028_0001
X = I, Br, Cl, N2 +
Ar = radical aromatique mono ou polycyclique, carbocyclique ou hétérocyclique de préférence un phényle ou un naphtyle. L'aryle peut être mono ou disubstitué.
La réaction peut également effectuée en remplaçant le groupe Ar par un groupe vinyle
Ri = groupe aromatique, COOR, CHO, C(0)R, CN, P(0)(OR)2 dans lesquels R représente un radical alkyle ayant de 1 à 6 atomes de carbone. La nature du catalyseur Eco-Pd utilisable est variée :
Les catalyseurs de type 1 , 2 , 3, 4, 5 et 6.
- D'un point de général, les activités catalytiques croissent de la façon suivante : catalyseurs de type 3 > catalyseurs de type 2 > catalyseurs de type 4 > catalyseurs de type 1 > catalyseurs de type 5. - Différentes bases ont été testées : la triéthylamine, souvent préconisée dans les réactions de Heck conventionnelles, des carbonates alcalins et l'acétate de sodium. C'est ici la base la plus faible et la plus verte, AcONa, qui est la plus efficace.
- La présence ou l'absence d'eau ne sont pas des facteurs déterminants. En revanche, il est important de travailler sous atmosphère inerte. L'azote est suffisant. - L'ajout de diode classiquement conseillé pour limiter la formation d'agglomérats de Pd (0) n'est pas utile. En revanche, la présence de bromure tétrabutyl ammonium améliore les rendements d'une façon appréciable (20% en moyenne).
L'ajout de ligands phosphines n'est pas utile. Le présent procédé ne nécessite pas de ligands organiques, le palladium étant facilement réduit in situ par les espèces présentes dans le milieu réactionnel comme décrit dans (a) Beletskaya, I. P.; Cheprakov, A. V., The Heck Reaction as a Sharpening Stone of Palladium Catalysis. Chemical Reviews 2000, 100 (8), 3009-3066; (b) Ziegler, C. B.; Heck, R. F., Palladium-catalyzed vinylic substitution with highly activated aryl halides. The Journal of Organic Chemistry 1978, 43 (15), 2941-2946. Il s'agit d'un avantage appréciable compte-tenu de leur coût et de l'instabilité chimique ou thermique. L'absence de ligands phosphines traduit également la bonne stabilité des systèmes catalytiques biosourcés.
Quelques exemples typiques et réalisés avec le système catalyseur de type 3 (1 ,17xl0"4 mmol de Pd)/TBAB (6xl 0"2 mmol)/AcONa (0,13 mmole/ ArX (0,10 mmole) /oléfine (0,16 mmole)/ sous azote/24h/140°C sont regroupés dans le tableau suivant :
Figure imgf000029_0001
Figure imgf000030_0001
Compte-tenu du contexte géoéconomique actuel, le facteur le plus important est la quantité minimale de palladium nécessaire à la réaction. Les systèmes traditionnels engagent des quantités de l'ordre de 2-5 mol % (Chem Rev. 2000, 100, 3009-3066 ; Tetrahedron lett. 1998, 39, 8449-8452). Les systèmes optimisés ont pu réduire les quantités de Pd à 1 -1 ,5 mol%. Dans un procédé typique, M. Retz et al. (Tetrahedron lett. 1998, 39, 8449-8452) décrit un mode expérimental à 1 ,5 mol% et évoque la possibilité de diminuer la quantité à 0,0009 mol % dans des conditions spécifiques. D'autres auteurs proposent des systèmes catalytiques 0, 01 mol % (J. Am. Chem. Soc. 2001 , 123, 5990- 5999 ; 0,05% (Org. Lett. 2003, 5, 3285-3288) et 0,004% (J. Mol. Cat. A. 2009, 154, 39- 44).
Les résultats présentés sont donc particulièrement favorables, car ils décrivent un procédé général à 0,07 mol% de Pd. Conjugué à la possibilité de recyclage écologique, le procédé décrit est donc particulièrement intéressant tant du point de vue chimique qu'écologique. 2) Réaction de couplage arylique avec des composés organométalliques (Mg : Kumada, Zn : Negishi et Fukuyama, Si : Hiyama, B : Suzuki, Sn : Stille)
Ce mécanisme est illustré avec la réaction de Suzuki :
Catalyseur Pd
biosourcé
Ar-X + Ar'- B(OR)2 Ar-Ar'
Ar, Ar' = radical aromatique R = H, alkyle, aryle X = I, Br,
Cl, OS(0)2R
Ar et Ar' représentent un radical aromatique mono ou polycyclique, carbocyclique ou hétérocyclique, mono ou disubstitué, de préférence un phényle ou un naphtyle.
La réaction peut également effectuée en remplaçant le groupe Ar ou Ar' par un groupe vinyle
Les catalyseurs de type 1 , 2, 3 et 4 s'avèrent très efficaces pour cette réaction, en catalyse hétérogène. Ceux-ci peuvent être réutilisés après réaction et réactivation par lavage et séchage. Ils peuvent également être recyclés par les plantes selon le procédé décrit dans la partie rhizofiltration.
La réaction est générale, y compris avec des dérivés halogénés non activés, y compris chlorés. La nature du traitement thermique de la biomasse affecte légèrement l'activité catalytique ; il est préférable d'utiliser un traitement thermique à l'air. En revanche, le traitement acide apporte un effet bénéfique très important. La comparaison des résultats avec Plos One 2014, 9, issue 1, e87192 (Parker et al) sont évocateurs. Les auteurs décrivent des exemples de réaction de Suzki impliquant 12% mol en palladium. Si les catalyseurs Eco-Pd de type 1 , 2, 3 et 4 ont une activité catalytique, Eco-Pdcat3 conduit à de très bons rendements à partir de 0,0025 % de Pd ! Ce résultat est non seulement très supérieur à ceux de cet article, mais ils le sont à tous les exemples décrits dans la littérature avec des systèmes catalytiques non biosourcés. La réaction est possible avec les chlorures d'aryles, habituellement peu réactifs, sans qu'il ne soit nécessaire d'ajouter du bromure de tétrabutylammonium (TBAB) classiquement décrit comme utile pour prévenir la formation d'agrégats de particules de Pd(0) responsables d'une perte d'activité catalytique. Il semble que la nature polymétallique des Eco-Pd évite la formation de ces agrégats qui affectent classiquement l'activité catalytique. Il est possible que les autres cations présents dans les catalyseurs (Cf. analyses ICP MS présentées plus haut) exercent un effet donneur qui favorise l'addition oxydante sur le Pd par formation d'autres complexes. Cet aspect technique est important, car les procédés nécessitant des ajouts de sels tels que TBAB, NaCl, Na2S04, ... augmentent la quantité de déchets formés, qui entraînent un traitement supplémentaire des effluents résiduels. Les Eco-Pd évitent ce problème et conduisent à des systèmes plus verts. Dans ces cas difficiles, Eco-Pdcat3 est préféré à Eco-Pdcat4. Il est possible d'ajouter des phosphines (telle que PPh3) ; une légère amélioration des rendements est observée.
Quelques exemples typiques accompagnés des conditions opératoires sont rassemblés dans le tableau ci-dessous :
Figure imgf000032_0001
murale lageEco- Br (CO)Me H 0*05 K3PO4 120/16 100
Pdcat3
Eco-Pdcat4 Br (CO)Me H 0,05 K3PO4 120/16 100
Eco-Pdcat3 Br (CO)Me H 0,0025 K3PO4 120/16 73
Eco-Pdcat3 Cl H H 0,05 3P04 120/7 57
Eco-Pdcat3 Cl H H 0,05 l% Ni K3P04 120/7 68 d'Eco-Ni
Eco-Pdcat3 C! CN H 0, 10 - K3P04 120/16 76
Eco-Pdcat4 Cl CN H 0,10 3P04 120/16 15
Eco-Pdcat3 Cl N02 H 0, 10 K3P04 120/16 63
Eco-Pdcat4 Cl N02 H 0,10 3P04 120/16 <10
3) Chimie des complexe π-allyliques
La réactivité des complexes π -allyliques est illustrée par l'addition nucléophile d'une énamine sur un complexe π -allylique.
Préparation du complexe :
Figure imgf000033_0001
Réaction du complexe avec un nucléophile
Figure imgf000034_0001
4) Arylation et alcénylation de C, N, O, S, P et Se nucléophiles (Réactions type Buchwald-Hartwig)
La réaction de Buchwald-Hartwig a été illustrée dans une version de cyanation, basée sur l'utilisation de thiocyanate de cuivre (I) à la place des cyanures hautement toxiques classiquement utilisés.
Catalyseur
Pd biosourcé
CuSCN
Figure imgf000034_0002
HCOONa, HCOOH,
DMSO/H20
5) Carbonylation et ène-réaction
L'insertion d'un motif carbonyle est possible : elle constitue une bonne voie d'accès aux esters carboxyliques. Les catalyseurs Pd biosourcés sont également utilisés pour les ène- réactions.
Les catalyseurs Pd biosourcés peuvent également catalyser ces deux familles de réaction à partir d'un même substrat.
Figure imgf000034_0003
Chimie du Pd(II)
1) Oxydation de Wacker-Tsuji
La réaction d'oxydation de Wacker-Tsuji permet la production de cétones à partir d'alcènes dans un procédé d'importance industrielle (synthèse industrielle de l'éthanal à partir de l'éthène). Les catalyseurs à base de Pd biosourcé catalysent efficacement la réaction et peuvent être aisément recyclés lorsqu'ils sont supportés (en particulier pour le catalyseur de type 3).
CuCI, 02, DMF/H20
2) Oxydation d'alcools
L'oxydation contrôlée d'un alcool primaire en aldéhyde par le dioxygène est quantitative lorsqu'elle est catalysée par les catalyseurs au Pd biosourcés.
Figure imgf000035_0001
3) Réaction d'alcènes ou d'alcynes avec des nucléophiles oxygénés, azotés ou
carbonés
Les nucléophiles tels qu'alcools ou aminés sont capables de s'additionner sur une double ou triple liaison par catalyse au Pd biosourcé de type 2 ou 3, la chimiosélectivité pouvant être différente suivant le type de catalyseur utilisé. Il s'agit d'une bonne voie d'accès aux hétérocycles.
4) Couplage oxydant de composés aromatiques
Cette réaction fonctionne particulièrement bien à partir d'acétates de platinoïdes. Ceux-ci peuvent être formés in situ à partir de la forme chlorure et d'acétate de sodium :
Figure imgf000035_0002
5) Réactions régiosélectives basées sur la chélation et la participation d'hétéroatomes
Le couplage entre un alcène et un dérivé aromatique est une réaction possible ; sa régiosélectivité peut être contrôlée par chélation intramoléculaire.
Figure imgf000036_0001
6) Cyclopropanation d'alcènes à l'aide de composés diazo
Les cyclopropanes fonctionnalisés, motifs présents dans de nombreuses molécules d'intérêt industriel, peuvent être obtenus à partir d'alcènes et de réactifs diazotés catalysée au Pd biosourcé.
Chimie bio-sourcée du platine
1) Réduction en un seul pot des oléfmes et composés nitrés (exemple de référence avec un hydrure):
Le catalyseur réagit activement sur l'hydrolyse des borohydrures de sodium par de l'acide chlorhydrique qui libère de l'hydrogène. Cet hydrogène généré in situ réduit les doubles liaisons par adsorption sur le Pt(0). Les triples liaisons entrent aussi en réaction. L'abaissement de la température des réactions à -25°C partant du même montage fait augmenter considérablement les sélectivités de la catalyse.
Exemple
Catalyseur Pt biosourcé
EtOH, NaBH4/H30+,
charbon actif
TA 2) Hydrosilylation d'oléfines et d'alcynes
L'hydrosilylation de composés insaturés est une réaction couramment utilisée dans l'industrie des silicones qui peut être catalysée par les catalyseurs au Pt biosourcés.
Cat. Pt biosourcé
Et SiH + Ph- -Ph
Figure imgf000037_0001
75 %
3) Cycloadditions
La métathèse et la cycloisomérisation d'énynes sont deux exemples de cycloaddition catalysée efficacement par les catalyseurs au Pt biosourcés.
Figure imgf000037_0002
Figure imgf000037_0003
4) Réactions en cascade
Les catalyseurs au Pt biosourcés permettent de réaliser la carbocyclisation en cascade de composés polyinsaturés.
Figure imgf000038_0001
Chimie bio-sourcée du rhodium
1) Hydrogénation catalytique a) Exemple de réaction d'hydrogénation (exemple de référence avec l'hydrogène):
Catalyseur RhCI(PPh3)3
biosourcé
Figure imgf000038_0002
toluène, H2 (pression
atmosphérique)
b) Réduction de doubles-liaisons en présence de donneur d'hydrure :
La réaction est conduite avec un donneur d'hydrure simple à produire (par réaction de Hantzsch) et sans danger de manipulation. La réaction fonctionne aussi efficacement sur les alcènes enrichis en électrons que sur les dérivés insaturés non enrichis. L'utilisation d'un ligand insoluble (chitosan-pyridyl) permet de réutiliser le catalyseur en fin de réaction par simple filtration :
Figure imgf000039_0001
Figure imgf000039_0002
80-100 %
2) Isomérisation allylique
Les réactions d'isomérisation catalysées par les catalyseurs au Rh biosourcé constitue une bonne voie d'accès à des éthers d'énol ou à des énamines.
Figure imgf000039_0003
3) Cycloaddition
Les cycloadditions telles que la cyclotrimerisation [4+2+2] d'une ényne avec le 1,3- butadiène peuvent être facilitées par catalyse au Rh biosourcé.
Figure imgf000040_0001
D'autres réactions de cyclisation telles que les ène-réactions et les cycloisomérisations de diènes ou d'énynes sont également possibles.
4) Ene-réaction
Figure imgf000040_0002
5) Cycloisomérisation
Figure imgf000040_0003
6) Hydroboration
La préparation régiosélective d'un alcool par hydroboration d'un alcène à l'aide des catalyseurs au Rh biosourcés est une réaction très efficace.
Cat. Rh biosourcé
Figure imgf000040_0004
III - Réductions vertes Les écocatalyseurs Eco-Pdcat l j2,3,4s5,6,8 possèdent des propriétés réductrices intéressantes qui ont été testées avec succès sur trois réactions modèles, la réduction des dérivés nitrés en aminé (1) et la réduction sélective du citral en citronellal (2).
Figure imgf000041_0001
R = a lkyle, aryle, hétéroatome
Figure imgf000041_0002
Les écocatalyseurs actifs dans ces trois réactions sont rassemblés dans le tableau ci-dessous :
Figure imgf000041_0003
Eco-Pdcat8 2,58% Pd(0) Thermique à HCOOH/Et3N
600°C sous /reflux
argon
Eco-Pdcat9 9,20% Pd(0) - HCOOH/Et3N
PARTIE EXPERIMENTALE :
Chimie bio-sourcée du palladium
Exemple 1: Chimie du Pd(0)
Exemple 1.1: Réaction d'halogénures d'aryle avec des akènes ou aromatiques (réaction de Heck)
Protocole expérimental typique : Dans un réacteur monocol, placer 1 mg de catalyseur de type 3 (soit l ,17xl0"4 mmol de Pd) dans 2mL de N-méthyl 2-Méthyl Pyrrolidone. Après s'être placé sous atmosphère d'azote, ajouter 6x10" mmole (19,3 mg) de TBAB, 0,13 mmole (10,7 mg) d'acétate de sodium, 0,10 mmole (1 1 ,2 μΐ) d'iodobenzène et 0,16 mmole (16 μΐ) de styrène. Le mélange réactionnel est chauffé à 140°C pendant 24h sous azote. Après refroidissement, on ajoute au mélange 5mL de cyclohexane et 5 mL d'eau. Après décantation, la phase organique est lavée à l'eau (5x5mL). Les phases organiques sont réunies, séchées sur MgS04, filtrées et concentrées sous vide. Le produit brut est facilement purifié par chromatographie si nécessaire. La phase aqueuse est conservée pour être traitée et recyclée par rhizofiltration à l'aide des métallophytes décrits. En utilisant un support d'origine naturel insoluble, le chitosan, et en le dérivatisant convenablement, il est possible de former un polymère ligandé aux platinoïdes, ce qui permet de réaliser les réactions de couplage en phase hétérogène : Catalyseur platinoïdes
biosourcés
Figure imgf000043_0001
Catalyseur hétérogène platinoïdes biosourcés
Ce catalyseur peut ainsi être récupéré par simple filtration et réutilisé. Son efficacité est maintenue dans la réaction de Heck :
Figure imgf000043_0002
Y = H, OMe
R = Ph, COOMe
Exemple 1.2: Réaction de couplage arylique avec des composés organométalliques, exemple d'une réaction typique de Suzuki
Dans un tube de Schlenk sont introduits, sous courant de diazote, 5 mL de toluène, la 4- bromoacétophénone (1,0 mmol), l'acide phénylboronique (1,2 mmol), K3P04 (3,0 mmol) et le catalyseur Eco-Pdcat4 (quantité correspondant à 0,05 % mol de Pd selon analyses ICP-MS). L'ensemble est chauffé sous agitation à 120°C. L'avancement de la réaction est suivi par prélèvements réguliers analysés en GC-MS, le rendement atteignant 100 % en 16 h.
Dans le cas de substrats peu réactifs, l'ajout de 1 % mol de Eco-Ni(PPh3)3 conduit à une amélioration importante du rendement de la réaction, ce rendement étant supérieur à celui obtenu avec les catalyseurs biosourcés au Eco-Pd ou au Eco-Ni (PPh3)3 seuls, séparément.
Exemple 1.3: Chimie des complexes π -allyliques La réactivité des complexes π -allyliques est illustrée par l'addition nucléophile d'une énamine sur un complexe π -allylique.
Préparation du complexe dérivé iso-octène
Dans un ballon de 5 mL sont introduits : 1 mL d'eau distillée, dégazée par bullage de N2, une quantité de catalyseur de type 2 ou 3 correspondant à 1 équivalent de Pd selon dosages ICP-MS ainsi que du chlorure de potassium (2 équivalents). La solution est agitée à TA durant 1 h puis 3 équivalents de 2-méthylheptène sont ajoutés. L'ensemble est agité à TA durant 20 h. Le milieu réactionnel est extrait au dichlorométhane, séché sur MgSÛ4, puis évaporé, conduisant au complexe souhaité sans purification supplémentaire. Réaction du complexe avec un nucléophile, le 1 -pyrrilidino-l-cylohexène :
Dans un tube scellé muni d'un barreau magnétique, 47 mg (0,088 mmol) du complexe précédent sont dissous dans un mélange de DMSO/éthanol (1 ,5 mL/1,0 mL), puis 42 mg (0,28 mmol) de 1 -pyrrilidino-l-cylohexène sont ajoutés. L'ensemble est chauffé à 100°C en bain d'huile jusqu'à complétion de la réaction (suivi CCM). Après ajout d'une solution diluée d'acide chlorhydrique 1 M, le milieu réactionnel est extrait au dichlorométhane, la phase organique est séchée sur MgS04, évaporée puis purifiée par chromatographie sur gel de silice, pour conduire au produit final avec un rendement de 38 %.
Exemple 1.4: Arylation et alcénylation de C, N, O, S, P et Se nucléophiles (Réactions type Buchwald-Hartwig) : la cyanation du 4-iodioanisaole
Dans un tube scellé sont introduits : CuSCN (1 équivalent), iodoanisole (1,25 équivalent), le catalyseur Pd-biosourcé de type 3 (de préférence, mais les catalyseurs de type 2, 4 et 5 catalysent également la réaction dans une moindre mesure) (0,01 équivalent), HCOONa (3 équivalents), HCOOH (0,1 équivalent) ainsi qu'un mélange DMSO/eau (8/1) (3 mL). L'ensemble est chauffé en bain d'huile à 100°C, durant 36 h, durée nécessaire pour la complétion de la réaction d'après les prélèvements effectués pour analyse GC-MS. Le rendement atteint 62 %.
Exemple 2: Chimie du Pd(II)
Exemple 2.1: Oxydation de Wacker-Tsuji : oxydation du décène Dans un ballon muni d'un barreau magnétique, sont introduits : catalyseur de type 2 ou 4 (0,1 équivalent Pd), CuCl (1 équivalent) et un mélange DMSO/eau (7/1). L'ensemble est alimenté en dioxygène par un ballon de baudruche piqué au travers d'un septum surmontant le montage réactionnel. L'ensemble est agité vigoureusement pour permettre l'enrichissement de la solution en 02, à TA. Après une heure d'agitation, le 1 -décène (1 équivalent) est introduit goutte-à-goutte, sur 10 minutes. Le milieu est agité durant 24 h à TA, sous atmosphère de dioxygène. Les analyses GC-MS indiquent un rendement en dodécanone de 70 %.
Exemple 3 de référence avec un hydrure: Chimie bio-sourcée du platine : Réduction en un seul pot des oléfines et composés nitrés Exemple de la réduction de l'octène
Dans un ballon muni d'un septum et d'un barreau magnétique, sont introduits : 1 g de charbon actif finement réduit, 40 mL d'éthanol anhydre, 1 mL d'une solution à 0,2 M de catalyseur Pt biosourcé de type 1. 5 mL d'une solution éthanolique de NaBH4 1 ,0 M sont ensuite introduits, puis après une minute d'agitation, 4 mL d'une solution d'acide chlorhydrique 6 M sont injectés, pour formation in situ de dihydrogène. 6,3 mL (40 mmoles) de 1-octène sont alors ajoutés à la seringue, goutte-à-goutte. L'hydrogénation est totale en 30 minutes.
Exemple 4: Chimie bio-sourcée du rhodium
Chimie bio-sourcée du rhodium
Isomérisation allylique de la néryldiethylamine en énamine
Dans un ballon monocol résistant à la pression, lmmol de néryldiethylamine est diluée dans 6 ml de THF anhydre sous atamosphère inerte. Le complexe au rhodium biosourcé est ajouté (1% mol Rh). Le mélange est chauffé à 110°C pour conduire à l'énamine brute de façon quantitative. Le solvant est éliminé sous pression réduite et l'énamine est rapidement chromatographiée. Exemple 5 : Caractérisation des catalyseurs
Les propriétés acides de Lewis
La préparation d'un catalyseur issu de cendres dérivés de racines riches en PGE (groupe des platinoïdes ) et traitées par HC1 est inédite. On a déterminé les propriétés acides de Lewis par la technique de sorption/désorption à la pyridine et étude par spectroscopie IR. Les résultats présentés ci-après concernent Eco-Pdcat3 et Eco-Pdcat4.
- Eco-Pdcat4
Des bandes de vibration à 1442 cm"1 et entre 1599 et 1624 cm"1 traduisent l'acidité de Lewis du catalyseur. Plusieurs types de sites acides de Lewis sont mis en évidence. L'acidité de Lewis est différente de celle observée avec PdCl2 commercial : les signaux vers 1600 cm"1 ont une fréquence plus élevée que pour PdCl2, ce qui laisse supposer que certains sites acides de Lewis sont plus forts que dans PdCl2.
Une bande à 1526 cm"1 correspond à l'acidité de Brônsted, qui était absente avec PdCl2. - Eco-Pdcal3
Les signaux à 1448 et 1606 cm"1 correspondent à l'acidité de Lewis, proches de PdCl2.
Un signal repéré à 1527 cm"1 est faible, et donc difficilement assimilable à l'acidité de Brônsted. Le signal à 1636 cm"1 peut être dû à une acidité de Lewis plus forte.
On constate que l'acidité de Lewis de ce catalyseur est plus proche de l'acidité de Lewis de PdCl2.
Conclusion
Eco-Pdcat4 et Eco-Pdcat3 présentent une acidité différente et complémentaire. Eco-Pdcat4 se distingue nettement de PdCl2 commercial.
Exemple 6 : Réductions vertes
Mode opératoire général : A un mélange de substrat, d'écocatalyseur Eco-Pd activé et de triéthylamine est ajouté l'acide formique à 97% à température ambiante. La solution est portée à reflux et suivie par GC MS jusqu'à disparition du substrat ou non avancement de la réaction. Le catalyseur est éliminé par filtration et le résidu lavé à l'acétate d'éthyle. Les phases organiques sont rassemblées, séchées sur sulfate de magnésium, filtrées et concentrées. Exemple 7 : Caractérisation des degrés d'oxydation par XPS dans les différents catalyseurs
Tous les catalyseurs préparés ont été analysés par XPS. Le traitement thermique des racines est plus difficile que celui de systèmes foliaires. Ainsi quelque soient les conditions mises en œuvre, C, N, S, P sont présents au contact des matériaux métalliques. Le soufre est particulièrement présent dans les cendres et catalyseurs qui dérivent des brassicacées, telles que Brassica jiincea et Sinapis alba. Le phosphore est issu des nombreux métabolites phosphorylés des plantes. Il est présent sous forme de phosphates et ne constitue donc pas un poison pour les catalyseurs. Des différences significatives sont observées entre les matériaux préparés.
Les analyses sont réalisées avec l'appareil ESCALAB 250 de Thermo Electron. La source d'excitation est la source monochromatique, raie Al Ka (1486.6 eV). La surface analysée a un diamètre de 400 μηι. Les spectres de photoélectrons sont calibrés en énergie de liaison par rapport à l'énergie de la composante C-C du Carbone Cls à 284.8 eV. La poudre est dispersée sur un scotch graphite.
L'étape de quantification consiste à compter les électrons émis par les différents constituants du matériau. Sans l'utilisation d'échantillons de référence, l'ensemble des électrons collectés est considéré comme représentant 100% des constituants de l'échantillon. Il s'agit donc d'une méthode de semi-quantification.
Par ailleurs, pour tenir compte des différents phénomènes d'interaction rayonnement/matière et électron/matière, on applique à ce nombre d'électrons collectés, des facteurs correctifs (coefficients de Scofield). On obtient des pourcentages atomiques pour chacun des constituants.
Ainsi pour EcoPdcat2, voici les éléments majeurs trouvés : Name Peak BE FWHM eV Area (P) CPS.eV At. % Q
CI2p 199.26 1.82 2370.18 2.62
1
C1 s 284.88 1.86 29317.1 1 74.55
1
Pd3d 335.63 1.09 3057.57 0.49
1
Ca2p 347.40 1.45 1836.65 0.93
1
01 s 533.03 4.14 20105.61 17.97
1
Na1 s 1072.23 1.50 9269.86 3.44
1
Figure 3 : Scan Pd3d et Ca2p
Figure imgf000048_0001
On note la présence de beaucoup de carbone, ce qui est normal lors d'une calcination douce de racines. Il y a également de l'oxygène et un peu de chlore (eau adoucie pour les racines) et de sodium. Les pics du Palladium ont été déconvolués. Une seule espèce est présente pour le palladium, ce qui indique que seul 1 degré d'oxydation du palladium est présent. D'après la littérature, la composante 3d5/2 avec une énergie de liaison à 335,67 eV correspond à du Palladium(O). On peut donc en conclure que Eco-Pdcat2 ne contient que du palladium métallique. Ce résultat est à remarquer et à comparer avec la publication récemment parue :
Plos One 2014, 9, issue 1, e87192 (Parker et al). Les auteurs décrivent l'utilisation d'une plante modèle de laboratoire, soumis à une culture en hydroponie à l'aide d'une solution de tétrachloropalladate de potassium. Les méthodes et objectifs sont donc très différents. Les aspects écologiques ne sont pas pris en compte : la nature de la plante (une plante de laboratoire non adaptée au problème), les sels de Pd (K2PdCl4 au lieu de sels nitrés issus de réactions de chimie organique), les connaissances biologiques (rythme biologique, capacité de croissance du système racinaire, dynamique végétative, capacité de bioaccumulation et objectifs de recyclage) ne sont pas pris en compte. Les résultats des analyses XPS conduisent à un mélange Pd(II)/Pd(0), ce qui traduit l'intérêt de notre démarche. Cet intérêt est renforcé par la supériorité des catalyseurs Eco-Pd en synthèse organique.
Les analyses XPS des autres catalyseurs conduisent aux conclusions suivantes :
Figure imgf000049_0001

Claims

REVENDICATIONS
1. Utilisation comme catalyseur d'une composition contenant un catalyseur métallique provenant après traitement acide des cendres obtenues après traitement thermique d'une plante ou d'une partie de plante appartenant à l'un des genres choisis parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativ s), le cresson (Lepidi m sativ m), Pélodée du Canada {Elodea canadensis), Pépinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge {Horde m vidgare), l'ortie {Urtica dioica), la phacélie {Phacelia tanacetifolia), le radis (Raphanus sativus), le ray- grass commun (Lolium perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac {Nicotiana tabacum), de préférence la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), le ray-grass d'Italie (Lolium multiflorum), ayant accumulé au moins l'un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh), catalyseur métallique dont le métal ou les métaux sont choisis parmi les métaux provenant de ladite plante et dont le métal ou les métaux présents dans la composition de l'invention proviennent exclusivement de la plante avant calcination et sans rajout de métal provenant d'une autre origine que ladite plante pour la mise en œuvre de réactions de synthèse organique faisant intervenir ledit agent comme catalyseur.
2. Utilisation selon la revendication 1 caractérisée en ce que le traitement thermique d'une plante ou d'une partie de plante est effectuée à Pair.
3. Utilisation selon la revendication 1 caractérisée en ce que le traitement thermique d'une plante ou d'une partie de plante est effectuée sous une atmosphère de gaz inerte, de préférence l'argon.
4. Utilisation d'une composition préparée par traitement thermique à l'air d'une plante ou d'une partie de plante appartenant à l'un des genres choisis parmi l'arum vert {Peltandra virginica), le concombre (Ciicumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vidgare), l'ortie {Urtica dioica), la phacélie {Phacelia tanacetifolia), le radis {Raphan s sativus), le ray-grass commun {Lolhim perenne), le ray-grass d'Italie {Lolhim multiflorum), la sétaire verticillée (Se tari a verticillata) et le tabac (Nicotiana tabacum) ayant accumulé l'un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) et contenant au moins un agent mono ou polymétallique dont le métal ou les métaux sont choisis parmi les métaux provenant de ladite plante et dont le métal ou les métaux présents dans la composition proviennent exclusivement de la plante avant traitement thermique et sans rajout de métal provenant d'une autre origine que ladite plante, pour la mise en œuvre de réactions de synthèse organique faisant intervenir ledit agent comme catalyseur.
Utilisation selon l'une des revendications 1 à 4 après traitement thermique suivie d'un traitement acide d'une plante ou d'une partie de plante choisie parmi le genre choisis parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray- grass commun (Lolhim perenne), le ray-grass d'Italie (Lolhim multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum), ayant accumulé au moins un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisée en ce que le traitement acide est effectué de préférence par de l'acide chlorhydrique, en particulier HC1 gazeux, HC1 IN à 12N, de l'acide sulfurique, de l'acide trifluorométhanesulfonique de l'acide nitrique, de l'acide perchlorique, de l'acide phosphorique, de l'acide trifluoroacétique de l'acide para-toluène sulfonique de l'acide acétique, de l'acide formique, de l'acide oxalique ou un mélange d'acides tel que le mélange acide chlorhydrique- acide nitrique ou le mélange acide acétique-acide nitrique de préférence utilisé à une concentration élevée de préférence de 10 à 30 %.
6. Procédé de préparation d'une composition et comprenant un agent métallique ou polymétallique comprenant au moins un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisé en ce qu'il comprend les étapes suivantes : a) Déshydratation, de préférence à température ambiante ou dans une étuve à une température de l'ordre de 70° de la biomasse comprenant les feuilles, les tiges et/ou les racines d'une plante ou d'un extrait de plante appartenant à l'un des genres choisis parmi l'arum vert (Peltcmdra virginica), le concombre (Cticumis sotivus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zeo mays), la moutarde blanche (Sinapis alba), la moutarde brune {Brassica jimcea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie {Phacelia tanacetifolid), le radis {Raphanus sativus), le ray- grass commun {Loli m perenne), le ray-grass d'Italie (Lolhtm miûtiflonim), la sétaire verticillée {Setaria verticillata) et le tabac (Nicotiana tabacum) ayant accumulé un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh),
et, si désiré b) Broyage de la biomasse sèche d'une plante ou d'un extrait de plante obtenue au stade a) éventuellement en présence d'un sel ou d'un mélange de sels, de préférence le chlorure de sodium et le disulfate de potassium, c) Traitement thermique à l'air ou sous atmosphère d'argon de la biomasse obtenue au stade a) ou du mélange broyé obtenu au stade b) dans un four de préférence en une ou plusieurs étapes de préférence en une étape à 500-600° pendant plusieurs heures, de préférence pendant environ 2 heures ou en deux étapes la première à une température inférieure à 500°C de préférence de l'ordre de 350° et à une seconde étape à une température de l'ordre de 550° chacune de ces étapes étant réalisée pendant environ 3 heures
et, si désiré,
d) Traitement des cendres obtenues au stade c) par un sel ou un mélange de plusieurs sels de préférence un mélange de chlorure de sodium et de disulfate de potassium de manière à obtenir un, mélange fondu après chauffage
et, si désiré,
e) Traitement des cendres obtenues au stade c) ou du mélange fondu obtenu au stade d) par une solution d'acide, ledit acide étant choisi de préférence parmi l'acide chlorhydrique de préférence à une concentration choisie entre 1 M et 12 M ou l'acide nitrique, l'acide sulfurique, l'acide trifluorométhanesulfonique, l'acide nitrique, l'acide perchlorique, l'acide phosphorique, l'acide trifluoroacétique ou l'acide para-toluène sulfonique, de l'acide acétique, de l'acide formique, de l'acide oxalique ou un mélange d'acides tel que le mélange acide chlorhydrique- acide nitrique ou le mélange acide acétique-acide nitrique, ces acides étant de préférence utilisés à une concentration élevée de préférence de 10 à 30 % traitement suivi si désiré d'une filtration de préférence sur célite et d'une déshydratation de la solution ou suspension obtenue de préférence sous pression réduite de manière à obtenir un résidu sec qui peut être séché à 120°C, et, si désiré,
f) Action sur le produit obtenu au stade c) d) ou e) de l'acide acétique en présence d'un acide fort de préférence l'acide nitrique pour obtenir après concentration sous pression réduite un solide qui est ensuite repris avec un solvant organique, de préférence l'acétone ou l'acétate d'éthyle pour donner après évaporation un produit sous forme d'acétate
et, si désiré
g) Réaction du produit obtenu au stade e) contenant du rhodium avec de la triphénylphosphine pour obtenir par précipitation un complexe pur de formule RhCl(PPh3)3
et, si désiré h) Mélange ou traitement du produit obtenu au stade c), d), e), f) ou g) en milieu acide avec un support minéral choisi parmi la montmorillonite K10, la silice, l'alumine ou l'hydrotalcite ou un support organique de préférence le chitosan ou de préférence, un support carbone pour obtenir après filtration puis séchage à l'étuve ou sous vide un catalyseur supporté sur support minéral ou organique et, si désiré,
i) Purification totale ou partielle, de préférence partielle, du résidu sec obtenu au stade c), d), e), f), g) ou h) sur résines échangeuses d'ions suivie si désiré d'une déshydratation de la solution obtenue de préférence sous pression réduite de manière à obtenir un résidu sec
et, si désiré
j) Réaction du produit obtenu au stade c), d), e), f), g), h) ou i) sous forme sèche avec des ligands de préférence organiques sous l'action éventuelle de micro-ondes pour obtenir des agents chélatés, de préférence des catalyseurs ligandés,
7. Procédé selon la revendication 4 caractérisé en ce que lorsque les stades a) à c) du procédé sont réalisés avec des plantes accumulatrices de rhodium les cendres obtenues au stade c) sont traitées par un sel ou un mélange de plusieurs sels de préférence un mélange de chlorure de sodium et de disulfate de potassium de manière à obtenir un, mélange fondu.
8. Procédé selon l'une des revendications 6 ou 7 caractérisé en ce que les plantes appartenant à l'un des genres choisis parmi l'arum vert {Peïtandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis olba), la moutarde brune {Brassica juncea), l'orge {Hordenm vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolid), le radis (Raphcmus sativus), le ray-grass commun (Lolium perertne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum) sont cultivées en présence d'effluents contaminés par un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh), de manière à accumuler lesdits métaux dans les feuilles, les tiges et/ou les racines.
9. Procédé selon la revendication 8 caractérisé en que les effluents contaminés par un des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) sont traités par un acide choisi de préférence parmi l'acide chlorhydrique, l'acide nitrique, l'acide sulfurique, l'acide trifluorométhanesulfonique, l'acide nitrique, l'acide perchlorique, ou l'acide phosphorique, de préférence l'acide nitrique utilisé seul, de manière à obtenir une solution dont le pH est compris de préférence entre 2 et 6 avant d'être mis en contact avec les plantes accumulatrices des platinoïdes.
10. Procédé selon la revendication 6 caractérisé en ce que les cultures des plantes appartenant à l'un des genres choisis parmi parmi l'arum vert {Peltandra virginica), le concombre {Cucamis sativus), le cresson {Lepidhim sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne {Medicago sativa), le maïs (Zea mays), la moutarde blanche {Sinapis alba), la moutarde brune {Brassica juncea), l'orge {Hordeum v lgare), l'ortie (Urtica dioicd), la phacélie {Phacelia tanacetifolia), le radis {Raphanus sativus), le ray-grass commun (Loliwn perenne), le ray-grass d'Italie {Lolium multiflorum), la sétaire verticillée {Setaria verticillatd) et le tabac {Nicotiana tabacum) sont cultivés dans un milieu stérile arrosé par les effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) ou sont cultivés en hydroponie ou aéroponie dans les effluents contaminés.
11. Procédé selon la revendication 6 de culture des plantes appartenant à l'un des genres choisis parmi l'arum vert {Peltandra virginica), le concombre (Cuc mis sativus), le cresson {Lepidhim sativum), l'élodée du Canada {Elodea canadensis), l'épinard {Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune {Brassica juncea), l'orge (Hordeum vidgare), l'ortie {Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray- grass commun (Lolium perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée {Setaria verticillata) et le tabac (Nicotiana tabacum) dans un milieu stérile arrosé par les effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisé en ce que lesdites plantes sont cultivées sur sable non contaminé pendant environ 2 semaines en présence d'une solution de culture constituée principalement d'eau et d'engrais puis pendant environ 2 semaines en présence d'une solution de culture constituée principalement des effluents et d'engrais.
12. Procédé selon la revendication 6 de culture des plantes appartenant à l'un des genres choisis parmi l'arum vert {Pel teindra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), Pélodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne {Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vidgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray- grass commun (Lolium perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillata) et le tabac (Nicotiana tabacum) dans un milieu stérile arrosé par les effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium, de préférence le platine (Pt), le palladium (Pd) ou le rhodium (Rh) caractérisé en ce que lesdites plantes sont cultivées en hydroponie pendant environ 2 semaines en présence d'une solution de culture constituée principalement d'eau et d'engrais puis pendant au moins 1 semaine en présence d'une solution de culture constituée principalement des effluents.
13. Procédé selon l'une des revendications 6 à 10 de culture des plantes appartenant à l'un des genres choisis parmi parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidium sativum), l'élodée du Canada {Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau {Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie {Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphamis sativus), le ray-grass commun (Lolium perenne), le ray-grass d'Italie (Lolium m ltiflorum), la sétaire verticillée {Setaria verticillatd) et le tabac (Nicotiana tabacum) caractérisé en ce que la concentration des métaux dans les racines des plantes est comprise entre 40 et 8 000 mg.kg"1 pour le platine, entre 1 100 et 32 000 mg.kg"1 pour le palladium et entre 30 et 1 900 mg.kg"1 pour le rhodium.
14. Procédé selon l'une des revendications 8 à 13 caractérisé en ce que la phase aqueuse du mélange réactionnel obtenue après utilisation comme catalyseur des compositions contenant un catalyseur métallique provenant après traitement acide des cendres obtenues après traitement thermique d'une plante ou d'une partie de plante telle que décrite à la revendication 1 est recyclée par rhizofiltration à l'aide desdites plantes.
15. Méthode de décontamination des effluents contaminés par un au moins des platinoïdes choisis parmi le platine, le palladium, l'osmium, l'iridium, le ruthénium, le rhodium caractérisée en ce que des plantes capables d'accumuler au moins l'un des platinoïdes appartenant à l'un des genres choisis parmi parmi l'arum vert (Peltandra virginica), le concombre (Cucumis sativus), le cresson (Lepidhtm sativum), l'élodée du Canada (Elodea canadensis), l'épinard (Spinacia oleracea), la jacinthe d'eau (Eicchornia crassipes), la luzerne (Medicago sativa), le maïs (Zea mays), la moutarde blanche (Sinapis alba), la moutarde brune (Brassica juncea), l'orge (Hordeum vulgare), l'ortie (Urtica dioica), la phacélie (Phacelia tanacetifolia), le radis (Raphanus sativus), le ray-grass commun (Lolium perenne), le ray-grass d'Italie (Lolium multiflorum), la sétaire verticillée (Setaria verticillatd) et le tabac (Nicotiana tabacum) sont cultivées dans un milieu stérile arrosé par les effluents contaminés ou en hydroponie dans les effluents contaminés.
16. Utilisation selon l'une des revendications 1 à 5 d'une composition contenant au moins un catalyseur métallique ou de préférence polymétallique telle que décrite à l'une de ces revendications pour la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse choisies parmi les réactions de formation de liaisons carbone-carbone telles que la réaction de
Suzuki, la réaction de Heck, la réaction de Sonogashira, ; les réactions d'addition nucléophile d'une énamine sur les complexes pi-allyliques, les réactions du type Buchwald-Hartwig, les réactions de carbonylation et ène-réactions, l'oxydation de Wacker-Tsuji, l'oxydation d'alcools, la réduction des oléfmes et des composés nitrés et nitriles, l'hydrosilylation d'oléfmes et d'alcynes, l'isomérisation allylique.
17. Utilisation selon l'une des revendications 1 à 7 d'une composition contenant au moins un catalyseur métallique ou de préférence polymétallique telle que décrite à l'une de ces revendications pour la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse choisies parmi la réaction de Suzuki, la réaction de Heck, la réaction de Sonogashira, et la réduction des oléfmes et des composés nitrés et nitriles.
18. Utilisation selon l'une des revendications 1 à 5 et 15 ou 17 caractérisée en ce que le catalyseur métallique pu de préférence polymétallique de préférence le Palladium contenu dans la composition telle que décrite à l'une de ces revendications pour la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse choisies parmi de préférence parmi la réaction de Suzuki, la réaction de Heck, la réaction de Sonogashira, et la réduction des oléfmes et des composés nitrés, est utilisé à des doses très faibles, par exemple de l'ordre de au moins 0,001mole % à 0,15 mole % , de préférence de l'ordre de au moins 0,0025 mol% de Pd .
19. Utilisation selon l'une des revendications 1 à 3 caractérisée en ce que, dans la composition contenant au moins un agent mono ou polymétallique utilisée dans la mise en œuvre des réactions de synthèse organique de transformations fonctionnelles par catalyse, la concentration en métal est comprise entre 600 et 120 000 mg.kg"1 pour le platine, entre 5 000 et 180 000 mg.kg"1 pour le palladium et entre 30 et 22 000 mg.kg"1 pour le rhodium.
PCT/FR2014/051823 2013-07-15 2014-07-15 Utilisation de certaines plantes accumulatrices de plantinoides pour la mise en oeuvre de réactions de chimie organique WO2015007990A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/905,119 US10066029B2 (en) 2013-07-15 2014-07-15 Uses of certain platinoid accumulating plants for use in organic chemical reactions
EP14750569.7A EP3021963A1 (fr) 2013-07-15 2014-07-15 Utilisation de certaines plantes accumulatrices de plantinoides pour la mise en oeuvre de réactions de chimie organique
CN201480048866.8A CN105579130A (zh) 2013-07-15 2014-07-15 某些铂族金属累积性植物用于实施有机化学反应的用途
JP2016526677A JP2016534089A (ja) 2013-07-15 2014-07-15 有機化学反応を実施するための特定のプラチノイド蓄積植物の使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1356964A FR3008323A1 (fr) 2013-07-15 2013-07-15 Utilisation de certaines plantes accumulatrices de platinoides pour la mise en œuvre de reactions de chimie organique
FR13/56964 2013-07-15

Publications (1)

Publication Number Publication Date
WO2015007990A1 true WO2015007990A1 (fr) 2015-01-22

Family

ID=49780013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051823 WO2015007990A1 (fr) 2013-07-15 2014-07-15 Utilisation de certaines plantes accumulatrices de plantinoides pour la mise en oeuvre de réactions de chimie organique

Country Status (6)

Country Link
US (1) US10066029B2 (fr)
EP (1) EP3021963A1 (fr)
JP (1) JP2016534089A (fr)
CN (1) CN105579130A (fr)
FR (1) FR3008323A1 (fr)
WO (1) WO2015007990A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009116A1 (fr) * 2014-07-15 2016-01-21 Centre National De La Recherche Scientifique (C.N.R.S.) Utilisation de certaines plantes hyperaccumulatrices de métaux de transition pour des réductions de composés organiques par voies vertes
WO2016151261A1 (fr) 2015-03-24 2016-09-29 Centre National De La Recherche Scientifique Composition contenant du palladium dérivée de cendres de jacinth d'eau pour la mise en oeuvre de réactions de chimie organique telles que la synthese de composes organiques aux proprietes electroluminescentes conductrices
US10066029B2 (en) 2013-07-15 2018-09-04 Centre National De La Recherche Scientifique (C.N.R.S) Uses of certain platinoid accumulating plants for use in organic chemical reactions
WO2018178374A1 (fr) * 2017-03-31 2018-10-04 Centre National De La Recherche Scientifique Procede de preparation de materiau d'origine vegetale riche en acides phenoliques, comprenant au moins un metal, pour la mise en oeuvre de reactions de synthese organique

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE540693C2 (sv) 2014-03-20 2018-10-09 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE538187C2 (sv) * 2014-03-20 2016-03-29 Scania Cv Ab Förfarande för att styra en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för att styra en sådan hybriddrivlina, samt en datorprogramprodukt innefattande programkod
SE539662C2 (sv) 2014-03-20 2017-10-24 Scania Cv Ab Förfarande för att starta en förbränningsmotor i en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram föratt starta en förbränningsmotor, samt en datorprogramproduk t innefattande programkod
SE539028C2 (sv) 2014-03-20 2017-03-21 Scania Cv Ab Förfarande för ivägkörning av ett fordon med en hybriddrivlina, fordon med en sådan hybriddrivlina, datorprogram för attstyra ivägkörning av ett fordon, samt en datorprogramproduk t innefattande programkod
CN104718934B (zh) * 2015-02-15 2018-02-27 华北理工大学 用黑麦草辅助尾矿修复及在修复地上种植黑麦草的方法
CN107602370B (zh) * 2017-02-28 2020-12-08 新疆中泰化学股份有限公司 一种合成丙烯酸或丙烯酸酯的方法
CN112812197B (zh) * 2021-01-11 2022-05-31 中国药科大学 一种兰州百合多糖及其制备方法和应用
CN113510144B (zh) * 2021-04-22 2022-11-08 贵州星硕铭越环保科技有限公司 一种土法炼锌污染区农用地重金属污染治理方法
WO2023026025A1 (fr) * 2021-08-24 2023-03-02 Johnson Matthey Public Limited Company Procédé de traitement d'effluent
CN114101320B (zh) * 2021-12-08 2023-04-11 沈阳大学 一种利用禾本科植物黑麦草修复磷酸三(1-氯-2-丙基)酯污染土壤的方法
CN114101321B (zh) * 2021-12-08 2023-04-07 沈阳大学 一种利用豆科植物苕子吸收、降解土壤中磷酸三(1-氯-2-丙基)酯的方法
CN114471540B (zh) * 2022-02-22 2023-08-08 北京化工大学 一种亚纳米Pt选择性加氢催化剂、制备方法及其应用
CN116199800B (zh) * 2023-02-08 2024-02-27 中国林业科学研究院林产化学工业研究所 一种具有抗弧菌活性的壳聚糖-柠檬醛-钙盐复合物的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1604768A (en) * 1978-05-31 1981-12-16 Johnson Mattheys & Co Ltd Recovery of platinum group metal values
US4525218A (en) * 1982-05-11 1985-06-25 Purdue Research Foundation Selective hydrolysis of cellulose to glucose without degradation of glucose using zinc chloride
WO1994029226A1 (fr) * 1993-06-04 1994-12-22 Phytotech, Inc. Procede d'extraction de metaux solubles a partir d'une phase aqueuse
WO1997034714A1 (fr) * 1996-03-21 1997-09-25 Phytotech, Inc. Procede d'hyperaccumulation de metaux dans des pousses de plantes
WO2000028093A1 (fr) * 1998-11-10 2000-05-18 Chaney Rufus L Recuperation de metaux presents dans des sols
US20050217174A1 (en) * 2004-04-01 2005-10-06 Angle Jay S Bacterial effects on metal accumulation by plants
WO2006096472A1 (fr) * 2005-03-04 2006-09-14 Cornell Resaerch Foundations, Inc. Restauration et recuperation des metaux lourds presents dans un liquide aqueux
EP1806177A1 (fr) * 2004-09-06 2007-07-11 Japan Envirochemicals, Ltd. Catalyseur de réaction d'oxydation et procédé servant à produire un composé en utilisant celui-ci
WO2007083304A2 (fr) * 2006-01-17 2007-07-26 Bar-Ilan University Procede d’elimination d’ions de metal lourd dans l'eau
US20080008676A1 (en) * 2006-07-06 2008-01-10 The Procter & Gamble Company Deodorant composition comprising metallic deodorizing agent
CN101381351A (zh) * 2008-10-21 2009-03-11 华南理工大学 葡萄糖的甲酸高温催化脱水联产5-羟甲基糠醛、乙酰丙酸和甲酸的方法
EP2327476A1 (fr) * 2009-11-10 2011-06-01 Korea Institute of Energy Research Catalyseurs dotés d'un catalyseur de nanoparticules métalliques supporté sur des fibres de cellulose naturelle carbonisées dont la surface a été traitée et procédé de préparation correspondant
WO2011064487A1 (fr) * 2009-11-26 2011-06-03 Centre National De La Recherche Scientifique Utili sation de plantes accumulatrices de metaux pour la preparation de catalyseurs utili sables dans des reactions chimiques
WO2013150197A1 (fr) * 2012-03-06 2013-10-10 Centre National De La Recherche Scientifique Utilisation de certaines plantes accumulatrices de metaux pour la mise en oeuvre de reactions de chimie organique
WO2014016509A1 (fr) * 2012-07-23 2014-01-30 Centre National De La Recherche Scientifique Utilisation de certaines plantes accumulatrices de manganese pour la mise en œuvre de reactions de chimie organique
WO2014128283A1 (fr) * 2013-02-22 2014-08-28 Centre National De La Recherche Scientifique Utilisation de compositions obtenues par calcination de plantes particulières accumulant des métaux pour la mise en œuvre de réactions catalytiques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364451A (en) * 1993-06-04 1994-11-15 Phytotech, Inc. Phytoremediation of metals
US7268273B2 (en) * 1995-06-06 2007-09-11 The University Of Maryland Recovering metals from soil
US5711784A (en) * 1995-06-06 1998-01-27 University Of Maryland At College Park Method for phytomining of nickel, cobalt and other metals from soil
US6786948B1 (en) * 1996-08-30 2004-09-07 The United States Of America As Represented By The Secretary Of Agriculture Method for phytomining of nickel, cobalt and other metals from soil
FR3008323A1 (fr) 2013-07-15 2015-01-16 Centre Nat Rech Scient Utilisation de certaines plantes accumulatrices de platinoides pour la mise en œuvre de reactions de chimie organique

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1604768A (en) * 1978-05-31 1981-12-16 Johnson Mattheys & Co Ltd Recovery of platinum group metal values
US4525218A (en) * 1982-05-11 1985-06-25 Purdue Research Foundation Selective hydrolysis of cellulose to glucose without degradation of glucose using zinc chloride
WO1994029226A1 (fr) * 1993-06-04 1994-12-22 Phytotech, Inc. Procede d'extraction de metaux solubles a partir d'une phase aqueuse
WO1997034714A1 (fr) * 1996-03-21 1997-09-25 Phytotech, Inc. Procede d'hyperaccumulation de metaux dans des pousses de plantes
WO2000028093A1 (fr) * 1998-11-10 2000-05-18 Chaney Rufus L Recuperation de metaux presents dans des sols
US20050217174A1 (en) * 2004-04-01 2005-10-06 Angle Jay S Bacterial effects on metal accumulation by plants
EP1806177A1 (fr) * 2004-09-06 2007-07-11 Japan Envirochemicals, Ltd. Catalyseur de réaction d'oxydation et procédé servant à produire un composé en utilisant celui-ci
WO2006096472A1 (fr) * 2005-03-04 2006-09-14 Cornell Resaerch Foundations, Inc. Restauration et recuperation des metaux lourds presents dans un liquide aqueux
WO2007083304A2 (fr) * 2006-01-17 2007-07-26 Bar-Ilan University Procede d’elimination d’ions de metal lourd dans l'eau
US20080008676A1 (en) * 2006-07-06 2008-01-10 The Procter & Gamble Company Deodorant composition comprising metallic deodorizing agent
CN101381351A (zh) * 2008-10-21 2009-03-11 华南理工大学 葡萄糖的甲酸高温催化脱水联产5-羟甲基糠醛、乙酰丙酸和甲酸的方法
EP2327476A1 (fr) * 2009-11-10 2011-06-01 Korea Institute of Energy Research Catalyseurs dotés d'un catalyseur de nanoparticules métalliques supporté sur des fibres de cellulose naturelle carbonisées dont la surface a été traitée et procédé de préparation correspondant
WO2011064487A1 (fr) * 2009-11-26 2011-06-03 Centre National De La Recherche Scientifique Utili sation de plantes accumulatrices de metaux pour la preparation de catalyseurs utili sables dans des reactions chimiques
WO2011064462A1 (fr) * 2009-11-26 2011-06-03 Centre National De La Recherche Scientifique Utilisation de plantes accumulatrices de metaux pour la preparation de catalyseurs utilisables dans des reactions chimiques
WO2013150197A1 (fr) * 2012-03-06 2013-10-10 Centre National De La Recherche Scientifique Utilisation de certaines plantes accumulatrices de metaux pour la mise en oeuvre de reactions de chimie organique
WO2014016509A1 (fr) * 2012-07-23 2014-01-30 Centre National De La Recherche Scientifique Utilisation de certaines plantes accumulatrices de manganese pour la mise en œuvre de reactions de chimie organique
WO2014128283A1 (fr) * 2013-02-22 2014-08-28 Centre National De La Recherche Scientifique Utilisation de compositions obtenues par calcination de plantes particulières accumulant des métaux pour la mise en œuvre de réactions catalytiques

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
GUILLAUME LOSFELD ET AL: "Design and performance of supported Lewis acid catalysts derived from metal contaminated biomass for FriedelCrafts alkylation and acylation", CATALYSIS TODAY, ELSEVIER, NL, vol. 189, no. 1, 21 February 2012 (2012-02-21), pages 111 - 116, XP028400049, ISSN: 0920-5861, [retrieved on 20120305], DOI: 10.1016/J.CATTOD.2012.02.044 *
HU P J ET AL: "Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii", ENVIRONMENTAL AND EXPERIMENTAL BOTANY, ELSEVIER, AMSTERDAM, NL, vol. 66, no. 2, 1 May 2009 (2009-05-01), pages 317 - 325, XP026161711, ISSN: 0098-8472, [retrieved on 20090313], DOI: 10.1016/J.ENVEXPBOT.2009.02.014 *
JAMES R. KASTNER ET AL: "Low Temperature Catalytic Oxidation of Hydrogen Sulfide and Methanethiol Using Wood and Coal Fly Ash", ENVIRONMENTAL SCIENCE & TECHNOLOGY, vol. 37, no. 11, 1 June 2003 (2003-06-01), pages 2568 - 2574, XP055123527, ISSN: 0013-936X, DOI: 10.1021/es0259988 *
KHAIWAL RAVINDRA ET AL: "Platinum group elements in the environment and their health risk", SCIENCE OF THE TOTAL ENVIRONMENT, vol. 318, no. 1-3, 1 January 2004 (2004-01-01), pages 1 - 43, XP055112626, ISSN: 0048-9697, DOI: 10.1016/S0048-9697(03)00372-3 *
KOLAR ET AL: "Low temperature catalytic oxidation of aldehydes using wood fly ash and molecular oxygen", APPLIED CATALYSIS B: ENVIRONMENTAL, ELSEVIER, AMSTERDAM, NL, vol. 76, no. 3-4, 29 October 2007 (2007-10-29), pages 203 - 217, XP022318395, ISSN: 0926-3373 *
LIEVENS C ET AL: "Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, biomass species and solid heat carrier on the behaviour of heavy metals", FUEL, IPC SCIENCE AND TECHNOLOGY PRESS, GUILDFORD, GB, vol. 87, no. 10-11, 1 August 2008 (2008-08-01), pages 1894 - 1905, XP022611182, ISSN: 0016-2361, [retrieved on 20071121], DOI: 10.1016/J.FUEL.2007.10.021 *
PRABHA K PADMAVATHIAMMA ET AL: "Phytoremediation Technology: Hyper-accumulation Metals in Plants", WATER, AIR, AND SOIL POLLUTION, KLUWER ACADEMIC PUBLISHERS, DO, vol. 184, no. 1-4, 22 May 2007 (2007-05-22), pages 105 - 126, XP019535063, ISSN: 1573-2932, DOI: 10.1007/S11270-007-9401-5 *
See also references of EP3021963A1 *
STALS M ET AL: "Flash pyrolysis of heavy metal contaminated biomass from phytoremediation: Influence of temperature, entrained flow and wood/leaves blended pyrolysis on the behaviour of heavy metals", JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, ELSEVIER BV, NL, vol. 87, no. 1, 1 January 2010 (2010-01-01), pages 1 - 7, XP026807617, ISSN: 0165-2370, [retrieved on 20090915] *
TEOFILO VAMERALI ET AL: "Field crops for phytoremediation of metal-contaminated land. A review", ENVIRONMENTAL CHEMISTRY LETTERS, SPRINGER, BERLIN, DE, vol. 8, no. 1, 30 December 2009 (2009-12-30), pages 1 - 17, XP019765247, ISSN: 1610-3661 *
YANG ET AL: "Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest using hydrothermal upgrading process", BIORESOURCE TECHNOLOGY, ELSEVIER BV, GB, vol. 101, no. 19, 1 October 2010 (2010-10-01), pages 7653 - 7657, XP027089417, ISSN: 0960-8524, [retrieved on 20100523] *
YANG J G ET AL: "Heavy metal removal and crude bio-oil upgrade from Sedum alfredii Hance harvest using hydrothermal upgrading", JOURNAL OF HAZARDOUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 179, no. 1-3, 15 July 2010 (2010-07-15), pages 1037 - 1041, XP027044961, ISSN: 0304-3894, [retrieved on 20100511] *
ZHANG S ET AL: "A newly found cadmium accumulatorMalva sinensis Cavan", JOURNAL OF HAZARDOUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 173, no. 1-3, 15 January 2010 (2010-01-15), pages 705 - 709, XP026782519, ISSN: 0304-3894, [retrieved on 20090904], DOI: 10.1016/J.JHAZMAT.2009.08.142 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066029B2 (en) 2013-07-15 2018-09-04 Centre National De La Recherche Scientifique (C.N.R.S) Uses of certain platinoid accumulating plants for use in organic chemical reactions
WO2016009116A1 (fr) * 2014-07-15 2016-01-21 Centre National De La Recherche Scientifique (C.N.R.S.) Utilisation de certaines plantes hyperaccumulatrices de métaux de transition pour des réductions de composés organiques par voies vertes
FR3023732A1 (fr) * 2014-07-15 2016-01-22 Centre Nat Rech Scient Utilisation de certaines plantes hyperaccumulatrices de metaux de transition pour des reductions de composes organiques par voies vertes
US10166530B2 (en) 2014-07-15 2019-01-01 Centre National De La Recherche Scientifique (C.N.R.S.) Use of certain transition metal hyperaccumulator plants for reducing organic compounds in a green manner
WO2016151261A1 (fr) 2015-03-24 2016-09-29 Centre National De La Recherche Scientifique Composition contenant du palladium dérivée de cendres de jacinth d'eau pour la mise en oeuvre de réactions de chimie organique telles que la synthese de composes organiques aux proprietes electroluminescentes conductrices
WO2018178374A1 (fr) * 2017-03-31 2018-10-04 Centre National De La Recherche Scientifique Procede de preparation de materiau d'origine vegetale riche en acides phenoliques, comprenant au moins un metal, pour la mise en oeuvre de reactions de synthese organique
FR3064496A1 (fr) * 2017-03-31 2018-10-05 Centre National De La Recherche Scientifique Utilisation de materiaux naturels d'origine vegetale riches en acides phenoliques pour la mise en oeuvre de reaction de chimie organique et le recyclage de catalyseurs
FR3064497A1 (fr) * 2017-03-31 2018-10-05 Centre National De La Recherche Scientifique Utilisation de materiaux d'origine vegetale riches en acides phenoliques pour la mise en oeuvre de reactions de chimie organique et le recyclage de catalyseurs
US11254597B2 (en) 2017-03-31 2022-02-22 Centre National De La Recherche Scientifique Method for the production of a material of plant origin that is rich in phenolic acids, comprising at least one metal, for carrying out organic synthesis reactions
US11319232B2 (en) 2017-03-31 2022-05-03 Centre National De La Recherche Scientifique Treatment of quarry liquid effluent

Also Published As

Publication number Publication date
JP2016534089A (ja) 2016-11-04
US20160159934A1 (en) 2016-06-09
EP3021963A1 (fr) 2016-05-25
US10066029B2 (en) 2018-09-04
FR3008323A1 (fr) 2015-01-16
CN105579130A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
EP3021963A1 (fr) Utilisation de certaines plantes accumulatrices de plantinoides pour la mise en oeuvre de réactions de chimie organique
FR2987759A1 (fr) Utilisation de certaine plantes accumulatrices de metaux pour la mise en oeuvre de reactions de chimie organique
US11731117B2 (en) Compositions of certain manganese accumulating plants
Berkessel et al. Light-induced enantioselective hydrogenation using chiral derivatives of Casey’s iron–cyclopentadienone catalyst
Annen et al. Catalytic Aerobic Dehydrogenative Coupling of Primary Alcohols and Water to Acids Promoted by a Rhodium (I) Amido N‐Heterocyclic Carbene Complex
WO2014128283A1 (fr) Utilisation de compositions obtenues par calcination de plantes particulières accumulant des métaux pour la mise en œuvre de réactions catalytiques
Stavber et al. Aerobic oxidative iodination of organic compounds with iodide catalyzed by sodium nitrite
FR3064497A1 (fr) Utilisation de materiaux d&#39;origine vegetale riches en acides phenoliques pour la mise en oeuvre de reactions de chimie organique et le recyclage de catalyseurs
EP3164408B1 (fr) Nouveau procédé de fabrication du (e,z)-7,9 dodécandiényl-1-acétate
Peng et al. Alkoxide precoordination to rhodium enables stereodirected catalytic hydrogenation of a dihydrofuranol precursor of the C29-40 F/G sector of pectenotoxin-2
EP2726202B1 (fr) Procédé de préparation d&#39;un dimère de bromure de tri-tert-butylphosphine-palladium(i)
Schmid et al. Asymmetric cyclocarbonylation of 1, 6-enynes with cobalt catalysts
CN102320920B (zh) 一种脱除羟基的苄基类保护基的方法
JP6918577B2 (ja) 不均一系パラジウム触媒を用いたシクロアルカジエンまたはシクロアルケン構造を有する化合物の脱水素反応による芳香族化合物の製造方法
CN102206146A (zh) 一种香兰素的制备方法
OA17163A (fr) Utilisation de certaines plantes accumulatrices de manganèse pour la mise en oeuvre de réactions de chimie organique
CN116693389A (zh) 一种合成番茄潜叶蛾性信息素(3e,8z)-3,8-十四碳二烯乙酸酯的方法
KR20230027499A (ko) 무색, 무취의 고순도 1,2-헥산디올의 제조방법
Sommer Transformations of alkenylmetalloids: Hydroxyl-directed hydroboration of alkynes & oxidative methoxy carbonylation, oxidation and fluorination of alkenylstannanes & formal synthesis of tubelactomicin A and diverted total synthesis of 5, 6-dihydrocineromycin B
JP5371545B2 (ja) ナフタレン誘導体の製造方法
Ding et al. Reaction of 1, 4-bis (trimethylsilyl)-2-butene with aromatic aldehydes catalyzed by TiCl4: an approach to (1-vinylallyl) benzene type derivatives
CA2799356A1 (fr) Catalyseurs de metal de transition pour hydrogenolyse c-o et hydrodesoxygenation
WO2004087632A1 (fr) Methode servant a preparer un acide carboxylique possedant une activite optique
WO2006032780A1 (fr) Complexes chiraux macrocycliques utilisables comme catalyseurs

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048866.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14750569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014750569

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016526677

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14905119

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE