WO2015007239A1 - 制冷系统及控制该制冷系统的方法 - Google Patents

制冷系统及控制该制冷系统的方法 Download PDF

Info

Publication number
WO2015007239A1
WO2015007239A1 PCT/CN2014/082535 CN2014082535W WO2015007239A1 WO 2015007239 A1 WO2015007239 A1 WO 2015007239A1 CN 2014082535 W CN2014082535 W CN 2014082535W WO 2015007239 A1 WO2015007239 A1 WO 2015007239A1
Authority
WO
WIPO (PCT)
Prior art keywords
steps
expansion valve
compressor
electronic expansion
exhaust gas
Prior art date
Application number
PCT/CN2014/082535
Other languages
English (en)
French (fr)
Inventor
杨继坤
肖传晶
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2015007239A1 publication Critical patent/WO2015007239A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigeration system and a method of controlling the same. Background technique
  • an electronic expansion valve is usually installed in the refrigeration system to regulate the amount of refrigerant injected into the compressor, thereby controlling the exhaust temperature of the compressor so that the exhaust temperature is in a safe condition. Optimize performance.
  • the previous control logic for controlling the electronic expansion valve is generally divided into the following two parts: Each time the refrigeration system is turned on, the controller will drive the electronic expansion valve to a fixed initial number of steps; After that, the controller adjusts the number of steps (opening) of the electronic expansion valve according to the PID algorithm.
  • a refrigeration system comprising: a compressor having an intake passage, an exhaust passage, and a compression mechanism for compressing and discharging a refrigerant having a fluid compression chamber; a condenser disposed downstream of the exhaust passage; an electronic expansion valve disposed at a passage between the condenser and the fluid compression chamber And controlling the amount of refrigerant entering the compressor; the control device receiving the signal of the compressor and outputting a control signal to the electronic expansion valve, the control device for controlling whether the control device is powered for the first time The initial number of steps in the electronic expansion valve.
  • a method of controlling a refrigeration system of the foregoing aspect comprising the steps of: determining whether the control device is powered on for the first time when the power-on signal of the compressor is detected; When the control device is energized for the first time, the initial step of the electronic expansion valve is adjusted to a fixed number of steps; if the control device is not energized for the first time, the initial number of steps of the electronic expansion valve is adjusted to be before the compressor with the electronic expansion valve The number of steps associated with the number of steps at shutdown.
  • FIG. 1 is a schematic view of a refrigeration system in accordance with an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of controlling a refrigeration system in accordance with an embodiment of the present invention. detailed description
  • a refrigeration system 1 basically includes a compressor 10, a condenser 20, an electronic expansion valve 30, and a control device 40 having an intake passage and an exhaust passage.
  • the compressor 10 is for compressing and discharging the refrigerant
  • the compression mechanism has a fluid compression chamber
  • the condenser 20 is disposed downstream of the exhaust passage
  • the electronic expansion valve 30 is disposed at the condenser 20
  • the control device 40 receives the signal of the compressor 10 and outputs a control signal to the electronic expansion valve 30 for Whether the control device 40 is energized for the first time to control the initial number of steps of the electronic expansion valve 30.
  • the first energization of the control device 40 refers to the state when the control device 40 is first connected to the power source, and the state between the first power-on of the control device 40 and the disconnection of the control device 40 from the power source is a non-first power-on of the control device 40.
  • the fluid compression chamber suction pressure chamber, the intermediate pressure chamber, and the exhaust pressure chamber, the electronic expansion valve 30 is disposed in a passage between the downstream of the condenser 20 and the intermediate pressure chamber.
  • the refrigeration system 1 may further comprise a temperature sensor 50 for detecting the temperature in the exhaust passage of the compressor 10, the temperature sensor 50 being coupled to the control unit 40 for providing a temperature signal to the control unit 40.
  • the system 1 may further include an evaporator 70 for evaporating the refrigerant located at the downstream side of the condenser 20.
  • the refrigeration system 1 may further include a throttling device, such as a throttle valve 60, for regulating the pressure of the refrigerant at the downstream side of the condenser 20.
  • a throttling device such as a throttle valve 60
  • the refrigeration system 1 may further include a filter 80 for filtering foreign matter in the refrigerant at the downstream side of the condenser 20.
  • control device 40 of the refrigeration system will be described below with reference to Figs. 1 and 2.
  • the control device 40 is configured to: determine whether the control device 40 is energized for the first time when detecting the power-on signal of the compressor 10, and if the control device 40 is energized for the first time, the electronic expansion valve 30 is The initial number of steps is adjusted to a fixed number of steps; if the control device 40 is not energized for the first time, the initial number of steps of the electronic expansion valve 30 is adjusted to the number of steps associated with the number of steps of the electronic expansion valve 30 at the previous stop of the compressor 10. .
  • the fixed number of steps is in the range of about 50% to about 70% of the total number of steps of the electronic expansion valve 30.
  • the fixed number of steps is 60% of the total number of steps of the electronic expansion valve 30.
  • the number of fixed steps is 300 steps.
  • the total number of steps of the electronic expansion valve 30 is 500 steps, but the electronic expansion valve 30 may have other total steps.
  • Adjusting the initial number of steps of the electronic expansion valve 30 to the number of steps associated with the number of steps of the electronic expansion valve 30 at the previous shutdown of the compressor 10 includes determining whether the duration t of the previous operation of the compressor 10 is less than the set.
  • the duration and the exhaust temperature before the previous shutdown of the compressor 10 are less than or equal to the exhaust temperature set value, if the duration t of the previous operation of the compressor 10 is less than the set time and the exhaust temperature before the compressor 10 is stopped before the previous stop Equal to the exhaust gas temperature setting value, the number of steps of the electronic expansion valve 30 when the compressor 10 is turned on at the time of starting is adjusted to the number of steps X from the electronic expansion valve 30 when the compressor 10 was last stopped; otherwise The number of steps of the electronic expansion valve 30 at the time of the compressor 10 being turned on is adjusted to the number of steps of the electronic expansion valve 30 when the compressor 10 is stopped for the previous time plus the number of steps X.
  • the above setting time is less than 180 seconds, preferably 20 seconds.
  • the above exhaust gas temperature setting value is less than 110 "C, preferably.
  • the number of steps X is in the range of steps between about 3% and about 10% of the total number of steps of the electronic expansion valve 30, preferably 4% of the total number of steps of the electronic expansion valve 30, for example, The number X is 20 steps.
  • the control device 40 is configured to: after the initial step number setting is completed, determine whether the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust gas temperature safety value and whether the exhaust gas temperature is at An upward trend, if the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust temperature safe value and the exhaust temperature is in an upward trend, maintaining the current number of steps of the electronic expansion valve 30; otherwise, utilizing
  • the predetermined algorithm calculates the number of steps of the electronic expansion valve 30, which is, for example, a PID algorithm, but the predetermined algorithm is not limited to the PID algorithm.
  • the above-described exhaust gas temperature safety value is in the range of from about 85 Torr to about 105 "C, preferably 95 Torr.
  • the method includes the following steps: when the power-on signal of the compressor 10 is detected (step S10), it is determined whether the control device 40 is powered on for the first time (step S20), and if the control device 40 is powered for the first time, the electronic expansion valve is The initial number of steps of 30 is adjusted to a fixed number of steps (step S30); if the control device 40 is not energized for the first time, the initial number of steps of the electronic expansion valve 30 is adjusted to be the same as when the electronic expansion valve 30 was previously stopped by the compressor 10. The number of steps associated with the number of steps.
  • Adjusting the initial number of steps of the electronic expansion valve 30 to the number of steps associated with the number of steps of the electronic expansion valve 30 at the previous stop of the compressor 10 includes determining whether the length t of the previous operation of the compressor 10 is less than the setting. The duration and the exhaust temperature before the previous shutdown of the compressor 10 are less than or equal to the exhaust temperature set value (step S40), if the duration t of the previous operation of the compressor 10 is less than the set time and the compressor 10 before the previous stop If the exhaust temperature is less than or equal to the exhaust temperature set value, the electronic expansion valve will be used.
  • step S50 the number of steps when the compressor 10 is turned on at the time of starting is adjusted to the number of steps X from the electronic expansion valve 30 when the compressor 10 was last stopped (step S50); otherwise, the electronic expansion valve 30 is at the compressor
  • the number of steps at the time of the power-on is adjusted to the number of steps of the electronic expansion valve 30 at the time of the previous stop of the compressor 10 plus the number of steps X (step S60).
  • the method further includes the following steps: after the initial step number setting is completed, determining whether the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust gas temperature safety value and whether the exhaust gas temperature is In an ascending trend (step S70), if the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust temperature safe value and the exhaust temperature is in an upward trend, maintaining the current step of the electronic expansion valve 30
  • the number step S80
  • the number of steps of the electronic expansion valve 30 is calculated using a predetermined algorithm (step S90), which is, for example, a PID algorithm, but the predetermined algorithm is not limited to the PID algorithm.
  • the initial number of steps of the electronic expansion valve is not always a fixed number of steps, but is controlled according to Whether the device is energized for the first time to control the number of steps of the electronic expansion valve, thereby avoiding the effect of excessive refrigerant injection before the electronic expansion valve is adjusted to a suitable number of steps.
  • the fluid compression chamber has an inspiratory pressure chamber, an intermediate pressure chamber, and an exhaust pressure chamber, the electronic expansion valve being disposed in a passage between the downstream of the condenser and the intermediate pressure chamber.
  • the control device is configured to: determine whether the control device is energized for the first time when the power-on signal of the compressor is detected, and adjust the initial step number of the electronic expansion valve if the control device is powered for the first time To a fixed number of steps; if the control device is not energized for the first time, adjust the initial number of steps of the electronic expansion valve to the number of steps associated with the number of steps of the electronic expansion valve at the previous stop of the compressor. Therefore, the control device can dynamically adjust the injection amount of the refrigerant to the compressor in conjunction with the state of the compressor during the previous operation, thereby enabling the refrigeration system to reach a steady state more quickly, and reducing the influence of the adjustment of the electronic expansion valve on the refrigeration system.
  • control device is configured to: after the initial step number setting is completed, determine whether the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust temperature safety value and Whether the exhaust gas temperature is in an upward trend, if the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust gas temperature safe value and the exhaust gas temperature is in an upward trend, maintaining the current number of steps of the electronic expansion valve; Otherwise, the number of steps of the electronic expansion valve is calculated using a predetermined algorithm. From However, it is possible to avoid frequent adjustment of the electronic expansion valve and ensure a more stable operation state of the system while ensuring that the compressor discharge temperature is safe.
  • the refrigeration system according to an embodiment of the present invention does not require additional hardware support, ie, no cost increase.
  • control device is configured to: adjust the initial number of steps of the electronic expansion valve to a number of steps associated with the number of steps of the electronic expansion valve at the previous stop of the compressor including: Whether the running time is less than the set time and whether the exhaust temperature before the previous stop of the compressor is less than or equal to the exhaust temperature set value, if the previous running time of the compressor is less than the set time and the row before the compressor stops before If the gas temperature is less than or equal to the set value of the exhaust gas temperature, the number of steps of the electronic expansion valve at the time of starting the compressor is adjusted to the number of steps X from the step of the electronic expansion valve in the previous stop of the compressor; otherwise, The number of steps of the electronic expansion valve at the time of starting the compressor is adjusted to the number of steps of the electronic expansion valve when the compressor is stopped for the previous time plus the number of steps X.
  • the system can be brought to a steady state more quickly, and the influence of the adjustment of the electronic expansion valve on the system can be reduced.
  • the fixed number of steps is in the range of about 50% to about 70% of the total number of steps of the electronic expansion valve 30, preferably 60% of the total number of steps of the electronic expansion valve,
  • the number of fixed steps is 300 steps.
  • the set duration is less than 180 seconds, preferably 20 seconds.
  • the exhaust gas temperature set point is less than 110, preferably 80 ⁇ .
  • the number of steps X is between about 3% and about 10% of the total number of steps of the electronic expansion valve 30, preferably the total number of steps of the electronic expansion valve. 4%, for example, the number of steps X is 20 steps.
  • a method of controlling a refrigeration system in the foregoing aspect includes the steps of: determining whether the control device is energized for the first time, and adjusting the initial number of steps of the electronic expansion valve to a fixed state if the control device is energized for the first time Number of steps; If the control device is not energized for the first time, the initial number of steps of the electronic expansion valve is adjusted to the number of steps associated with the number of steps of the electronic expansion valve at the previous stop of the compressor.
  • control device can dynamically adjust the injection amount of the refrigerant to the compressor in conjunction with the state of the compressor during the previous operation, thereby enabling the refrigeration system to reach a steady state more quickly, and reducing the influence of the adjustment of the electronic expansion valve on the refrigeration system.
  • the above method further includes the following steps: after the initial step number setting is completed, determining whether the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust temperature safety value And whether the exhaust gas temperature is in an upward trend, if the detected or estimated exhaust gas temperature in the exhaust passage is less than the exhaust gas temperature safe value and the exhaust gas temperature is in an upward trend, maintaining the current step of the electronic expansion valve Number; otherwise, the step of calculating the electronic expansion valve using a predetermined algorithm Number. Therefore, it is possible to avoid frequent adjustment of the electronic expansion valve and ensure a more stable operation state of the system while ensuring that the exhaust temperature of the compressor is safe.
  • the refrigeration system according to an embodiment of the present invention does not require additional hardware support, ie, no cost increase.
  • the above method further includes the steps of: adjusting the initial number of steps of the electronic expansion to the number of steps associated with the number of steps of the electronic expansion valve at the previous shutdown of the compressor includes: Whether the length of the previous operation is less than the set time and whether the exhaust temperature before the previous stop of the compressor is less than or equal to the exhaust temperature set value.
  • the number of steps of the electronic expansion valve at the time of the compressor's current start-up is adjusted to the number of steps X from the electronic expansion valve at the time of the compressor's previous shutdown; Otherwise, the number of steps of the electronic expansion valve at the time of the compressor's current start-up is adjusted to the number of steps of the electronic expansion valve when the compressor is stopped for the previous time plus the number of steps X.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

提供了一种制冷系统(1)及其控制方法。该制冷系统(1)包括:压缩机(10),该压缩机(10)具有吸气通路、排气通路和压缩机构,该压缩机用于压缩和排出制冷剂,该压缩机构具有流体压缩腔;冷凝器(20),该冷凝器(20)设置在该排气通路的下游;电子膨胀阀(30),该电子膨胀阀(30)设置在该冷凝器(20)的下游与该流体压缩腔之间的通路中,用于对进入压缩机(10)的制冷剂的量进行控制;控制装置(40),该控制装置(40)接收压缩机(10)的信号以及向电子膨胀阀(30)输出控制信号,该控制装置(40)用于根据控制装置(40)是否为首次通电来控制电子膨胀阀(30)的初始步数。

Description

制冷系统及控制该制冷系统的方法
相关申请的交叉引用
本申请要求 2013 年 7 月 19 日提交的中国专利申请 No. 201310305839.1的优先权。 技术领域
[01]本发明涉及制冷系统及控制该制冷系统的方法。 背景技术
[02]本部分的内容仅提供了与本发明相关的背景信息, 其可能并不构成 现有技术。
[03]在需要喷液或喷气来控制排气温度的制冷系统中, 喷射量过低会导 致压缩机的排气温度过高, 造成压缩机的部件损坏; 喷液量过多会导致 压缩机的排气温度过低,润滑油稀释,从而影响压缩机的性能及可靠性。
[04]为了消除这些影响, 通常会在制冷系统中加装电子膨胀阀以调节喷 射到压缩机中的制冷剂的量, 从而控制压缩机的排气温度, 使得在排气 温度处于安全的条件下使性能最优化。
[05]控制电子膨胀阀的以前控制逻辑通常分为以下两个部分: 在制冷系 统每次开启时, 控制器会将电子膨胀阀驱动到一个固定的初始步数; 在 初始步数设定完成后,控制器会根据 PID算法来调节电子膨胀阀的步数 (开度)。
[06]然而, 在制冷系统每次刚开启的时候, 由于喷射到压缩机的制冷剂 可能不是液体状态, 排气温度会急剧上升, 从而会使电子膨胀阀开度过 大, 而一旦喷射的制冷剂变成了全液状态, 排气温度会急剧下降, 这导 致电子膨胀阀需要较长的一段时间才能调节到合适的步数,在调节的这 段时间内会有大量的液体喷射到压缩机,从而影响压缩机及油分离器的 正常工作, 进而使得系统稳定所需的时间更长。 发明内容
[07]才艮据本发明的一个方面, 提供了一种制冷系统, 该制冷系统包括: 压 缩机, 该压缩机具有吸气通路、 排气通路和压缩机构, 该压缩机用于压缩 和排出制冷剂, 该压缩机构具有流体压缩腔; 冷凝器, 该冷凝器设置在该 排气通路的下游; 电子膨胀阀, 该电子膨胀阀设置在该冷凝器的下游与该 流体压缩腔之间的通路中, 用于对进入压缩机的制冷剂的量进行控制; 控 制装置, 该控制装置接收压缩机的信号以及向电子膨胀阀输出控制信号, 该控制装置用于根据控制装置是否为首次通电来控制电子膨胀阀的初始 步数。
[08]根据本发明的另一方面,提供了一种控制前述方面的制冷系统的方法, 该方法包括如下步骤: 在检测到压缩机的开机信号时, 判断控制装置是否 为首次通电, 如果所述控制装置为首次通电, 则将电子膨胀阀的初始步数 调整到固定步数; 如果控制装置为非首次通电, 则将电子膨胀阀的初始步 数调整到与电子膨胀阀在压缩机前次停机时的步数相关的步数。
[09]通过本文提供的说明, 其他的应用领域将变得明显。 应该理解, 本 部分中描述的特定示例和实施方式仅出于说明目的而不是试图限制本 发明的范围。 附图说明
[10]这里所描述的附图仅是出于说明目的而并非意图以任何方式限制 本发明的范围。 在附图中:
[11]图 1是根据本发明的实施方式的制冷系统的示意图。
[12]图 2是根据本发明的实施方式的控制制冷系统的方法的流程图。 具体实施方式
[13]下文的描述本质上仅是示例性的而并非意图限制本发明、应用及用途。 应当理解, 在所有这些附图中, 相应的附图标记指示相似的或相应的零件 及特征。
[14]下面将参照图 1 描述根据本发明的实施方式的制冷系统的基本构 成。 [15]如图 1所示, 根据本发明的实施方式的制冷系统 1基本上包括压缩机 10、冷凝器 20、电子膨胀阀 30以及控制装置 40,压缩机 10具有吸气通路、 排气通路和压缩机构 (图中未示出), 压缩机 10用于压缩和排出制冷剂, 压缩机构具有流体压缩腔,冷凝器 20设置在该排气通路的下游, 电子膨胀 阀 30设置在冷凝器 20的下游与该流体压缩腔之间的通路中, 用于对进入 压缩机 10的制冷剂的量进行控制,控制装置 40接收压缩机 10的信号以及 向电子膨胀阀 30输出控制信号, 用于根据控制装置 40是否为首次通电来 控制电子膨胀阀 30的初始步数。控制装置 40的首次通电是指控制装置 40 首次连接于电源时的状态, 在控制装置 40首次通电和控制装置 40与电源 断开连接之间的状态均为控制装置 40的非首次通电。
[16]进一步地, 该流体压缩腔吸气压力腔、 中间压力腔和排气压力腔, 电 子膨胀阀 30设置在冷凝器 20的下游与该中间压力腔之间的通路中。
[17]优选地, 制冷系统 1还可以包括温度传感器 50, 用于检测压缩机 10 的排气通路中的温度, 温度传感器 50连接于控制装置 40, 用于向控制装 置 40提供温度信号。
[18]优选地, 系统 1还可以包括蒸发器 70, 用于蒸发位于冷凝器 20下游 侧处的制冷剂。
[19]优选地, 制冷系统 1还可以包括节流装置, 例如节流阀 60, 用于调节 冷凝器 20下游侧处的制冷剂的压力。
[20]优选地, 制冷系统 1还可以包括过滤器 80, 用于滤除冷凝器 20下游 侧处的制冷剂中的异物。
[21]下面将参照图 1和图 2描述根据本发明的实施方式的制冷系统的控 制装置 40的构成。
[22]如图 1所示,控制装置 40构造成: 在检测到压缩机 10的开机信号时, 判断控制装置 40是否为首次通电, 如果控制装置 40为首次通电, 则将电 子膨胀阀 30的初始步数调整到固定步数;如果控制装置 40为非首次通电, 则将电子膨胀阀 30的初始步数调整到与电子膨胀阀 30在压缩机 10前次停 机时的步数相关的步数。
[23]上述固定步数介于电子膨胀阀 30的总步数的约 50%至约 70%的步数 范围内, 优选地, 上述固定步数为电子膨胀阀 30的总步数的 60%, 例如, 固定步数为 300步, 在本实施方式中, 电子膨胀阀 30的总步数为 500步, 但是电子膨胀阀 30也可以具有其它的总步数。 [24]将电子膨胀阀 30的初始步数调整到与电子膨胀阀 30在压缩机 10前次 停机时的步数相关的步数包括:判断压缩机 10前次运行的时长 t是否小于 设定时长以及压缩机 10前次停机前的排气温度是否小于等于排气温度设 定值, 如果压缩机 10前次运行的时长 t小于设定时长且压缩机 10前次停 机前的排气温度小于等于排气温度设定值, 则将电子膨胀阀 30在压缩机 10当次开机时的步数调整到从电子膨胀阀 30在压缩机 10前次停机时的步 数减去步数 X; 否则, 将电子膨胀阀 30在压缩机 10当次开机时的步数调 整到电子膨胀阀 30在压缩机 10前次停机时的步数加上步数 X。
[25]上述设定时长小于 180秒, 优选为 20秒。
[26]上述排气温度设定值小于 110"C, 优选为 。
[27]上述步数 X介于电子膨胀阀 30的总步数的约 3%至约 10%之间的步 数范围内,优选为电子膨胀阀 30的总步数的 4%, 例如, 步数 X为 20步。
[28]控制装置 40构造成: 在初始步数设定完成后,判断所检测到的或估算 出的排气通路中的排气温度是否小于排气温度安全值以及所述排气温度 是否处于上升趋势, 如果所检测到的或估算出的排气通路中的排气温度小 于排气温度安全值且所述排气温度处于上升趋势, 则保持电子膨胀阀 30 的当前步数; 否则, 利用预定算法计算电子膨胀阀 30的步数, 该预定算法 例如为 PID算法, 但该预定算法不限于 PID算法。
[29]上述排气温度安全值介于约 85Ό至约 105"C的温度范围内, 优选为 95Ό。
[30]将参照图 1和图 2描述控制根据本发明的实施方式的制冷系统的方 法。
[31]该方法包括如下步骤: 在检测到压缩机 10的开机信号时(步骤 S10 ), 判断控制装置 40是否为首次通电(步骤 S20 ), 如果控制装置 40为首次通 电, 则将电子膨胀阀 30的初始步数调整到固定步数(步骤 S30 ); 如果控 制装置 40为非首次通电, 则将电子膨胀阀 30的初始步数调整到与电子膨 胀阀 30在压缩机 10前次停机时的步数相关的步数。
[32]将电子膨胀阀 30的初始步数调整到与电子膨胀阀 30在压缩机 10前次 停机时的步数相关的步数包括:判断压缩机 10前次运行的时长 t是否小于 设定时长以及压缩机 10前次停机前的排气温度是否小于等于排气温度设 定值 (步骤 S40 ), 如果压缩机 10前次运行的时长 t小于设定时长且压缩 机 10前次停机前的排气温度小于等于排气温度设定值, 则将电子膨胀阀 30在压缩机 10当次开机时的步数调整到从电子膨胀阀 30在压缩机 10前 次停机时的步数减去步数 X (步骤 S50 ); 否则, 将电子膨胀阀 30在压缩 机 10当次开机时的步数调整到电子膨胀阀 30在压缩机 10前次停机时的步 数加上步数 X (步骤 S60 )。
[33]该方法还包括如下步骤: 在初始步数设定完成后, 判断所检测到的或 估算出的排气通路中的排气温度是否小于排气温度安全值以及所述排气 温度是否处于上升趋势(步骤 S70 ), 如果所检测到的或估算出的排气通路 中的排气温度小于排气温度安全值且所述排气温度处于上升趋势, 则保持 电子膨胀阀 30的当前步数(步骤 S80 ); 否则, 利用预定算法计算电子膨 胀阀 30的步数(步骤 S90 ), 该预定算法例如为 PID算法, 但该预定算法 不限于 PID算法。
[34]如上所述, 在根据本发明的实施方式的制冷系统中, 一方面, 在压缩 机每次开机时, 电子膨胀阀的初始步数并不是始终为固定的步数, 而是根 据控制装置是否为首次通电来控制电子膨胀阀的步数, 从而避免在电子膨 胀阀在调整到合适的步数之前制冷剂喷射过多造成的影响。
[35]尽管上文描述了本发明的多种实施方式和多个方面, 但是本领域技术 人员应该理解, 可以对本发明的一些方面做出进一步的变型和 /或改型。
[36]例如, 在一些方面中, 流体压缩腔具有吸气压力腔、 中间压力腔和排 气压力腔, 电子膨胀阀设置在冷凝器的下游与该中间压力腔之间的通路 中。
[37]例如, 在一些方面中, 控制装置构造成: 在检测到压缩机的开机信号 时, 判断控制装置是否为首次通电, 如果控制装置为首次通电, 则将电子 膨胀阀的初始步数调整到固定步数; 如果控制装置为非首次通电, 则将电 子膨胀阀的初始步数调整到与电子膨胀阀在压缩机前次停机时的步数相 关的步数。 因此, 控制装置能够结合压缩机前次运行时的状态, 动态地调 整制冷剂到压缩机的喷射量, 从而使制冷系统更快达到稳定状态, 减小电 子膨胀阀的调节对制冷系统的影响。
[38]例如, 在一些方面中, 控制装置构造成: 在初始步数设定完成后, 判 断所检测到的或估算出的排气通路中的排气温度是否小于排气温度安全 值以及所述排气温度是否处于上升趋势, 如果所检测到的或估算出的排气 通路中的排气温度小于排气温度安全值且排气温度处于上升趋势, 则保持 电子膨胀阀的当前步数; 否则, 利用预定算法计算电子膨胀阀的步数。 从 而, 可以在保证压缩机排气温度安全的情况下, 避免电子膨胀阀的频繁调 节, 使系统运行状态更加稳定。 另外, 根据本发明的实施方式的制冷系统 无需额外的硬件支持, 即无成本增加。
[39]例如, 在一些方面中, 控制装置构造成: 将电子膨胀阀的初始步数调 整到与电子膨胀阀在压缩机前次停机时的步数相关的步数包括: 判断压缩 机前次运行的时长是否小于设定时长以及压缩机前次停机前的排气温度 是否小于等于排气温度设定值, 如果压缩机前次运行的时长小于设定时长 且压缩机前次停机前的排气温度小于等于排气温度设定值, 则将电子膨胀 阀在压缩机当次开机时的步数调整到从电子膨胀阀在压缩机前次停机时 的步数减去步数 X; 否则, 将电子膨胀阀在压缩机当次开机时的步数调整 到电子膨胀阀在压缩机前次停机时的步数加上步数 X。 从而, 可以使系统 更快达到稳定状态, 减小电子膨胀阀的调节对系统的影响。
[40]例如, 在一些方面中, 上述固定步数为电子膨胀阀 30 的总步数的约 50%至约 70%的步数范围内, 优选为电子膨胀阀的总步数的 60%, 例如, 固定步数为 300步。
[41]例如, 在一些方面中, 上述设定时长小于 180秒, 优选为 20秒。
[42]例如, 在一些方面中, 上述排气温度设定值小于 110 , 优选为 80Ό。
[43]例如, 在一些方面中, 上述步数 X介于电子膨胀阀 30的总步数的约 3 %至约 10 %之间的步数范围内,优选为电子膨胀阀的总步数的 4 %,例如, 步数 X为 20步。
[44]例如, 在一些方面中, 控制前述方面中的制冷系统的方法包括如下步 骤: 判断控制装置是否为首次通电, 如果控制装置为首次通电, 则将电子 膨胀阀的初始步数调整到固定步数; 如果控制装置为非首次通电, 则将电 子膨胀阀的初始步数调整到与电子膨胀阀在压缩机前次停机时的步数相 关的步数。 因此, 控制装置能够结合压缩机前次运行时的状态, 动态地调 整制冷剂到压缩机的喷射量, 从而使制冷系统更快达到稳定状态, 减小电 子膨胀阀的调节对制冷系统的影响。
[45]例如, 在一些方面中, 上述方法还包括如下步骤: 在初始步数设定完 成后, 判断所检测到的或估算出的排气通路中的排气温度是否小于排气温 度安全值以及所述排气温度是否处于上升趋势, 如果所检测到的或估算出 的排气通路中的排气温度小于排气温度安全值且排气温度处于上升趋势, 则保持电子膨胀阀的当前步数; 否则, 利用预定算法计算电子膨胀阀的步 数。 从而, 可以在保证压缩机排气温度安全的情况下, 避免电子膨胀阀的 频繁调节, 使系统运行状态更加稳定。 另外, 根据本发明的实施方式的制 冷系统无需额外的硬件支持, 即无成本增加。
[46]例如, 在一些方面中, 上述方法还包括如下步骤: 将电子膨胀岡的初 始步数调整到与电子膨胀阀在压缩机前次停机时的步数相关的步数包括: 判断压缩机前次运行的时长是否小于设定时长以及压缩机前次停机前的 排气温度是否小于等于排气温度设定值, 如果压缩机前次运行的时长小于 设定时长且压缩机前次停机前的排气温度小于等于排气温度设定值, 则将 电子膨胀阀在压缩机当次开机时的步数调整到从电子膨胀阀在压缩机前 次停机时的步数减去步数 X; 否则, 将电子膨胀阀在压缩机当次开机时的 步数调整到电子膨胀阀在压缩机前次停机时的步数加上步数 X。 从而, 可 以使系统更快达到稳定状态, 减小电子膨胀阀的调节对系统的影响。
[47]尽管在此已详细描述了本发明的各种实施方式, 但是应该理解, 本发 明并不局限于这里详细描述和示出的具体实施方式, 在不偏离本发明的实 质精神和范围的情况下可由本领域的技术人员实现其它的变型和改型。 所 有这些变型和改型均落入本发明的范围内。

Claims

权 利 要 求 书
1、 一种制冷系统(1), 所述制冷系统(1) 包括:
压缩机( 10 ),所述压缩机( 10 )具有吸气通路、排气通路和压缩机构, 所述压缩机( 10 )用于压缩和排出制冷剂, 所述压缩机构具有流体压缩腔; 冷凝器(20), 所述冷凝器(20)设置在所述排气通路的下游; 电子膨胀阀(30), 所述电子膨胀阀(30)设置在所述冷凝器(20)的 下游与所述流体压缩腔之间的通路中, 用于对进入所述压缩机(10) 的制 冷剂的量进行控制; 以及
控制装置( 40 ), 所述控制装置( 40 )接收所述压缩机( 10 )的信号以 及向所述电子膨胀阀 (30)输出控制信号, 所述控制装置(40)用于根据 所述控制装置(40)是否为首次通电来控制所述电子膨胀阀 (30) 的初始 步数。
1、根据权利要求 1所述的制冷系统, 其中, 所述流体压缩腔具有吸气 压力腔、 中间压力腔和排气压力腔, 所述电子膨胀阀 (30)设置在所述冷 凝器(20) 的下游与所述中间压力腔之间的通路中。
3、 根据权利要求 1或 2所述的制冷系统, 其中, 所述控制装置(40) 构造成:
在检测到所述压缩机(10)的开机信号时, 判断所述控制装置(40) 是否为首次通电,
如果所述控制装置(40)为首次通电, 则将所述电子膨胀阀 (30)的 初始步数调整到固定步数;
如果所述控制装置(40)为非首次通电, 则将所述电子膨胀阀 (30) 的初始步数调整到与所述电子膨胀阀 (30)在所述压缩机 (10)前次停机 时的步数相关的步数。
4、如权利要求 3所述的制冷系统,其中,所述控制装置(40)构造成: 在所述初始步数设定完成后, 判断所检测到的或估算出的所述排气通 路中的排气温度是否小于排气温度安全值以及所述排气温度是否处于上 升趋势, 如果所检测到的或估算出的所述排气通路中的排气温度小于排气 温度安全值且所述排气温度处于上升趋势, 则保持所述电子膨胀阀 (30) 的当前步数; 否则, 利用预定算法计算所述电子膨胀阀 (30) 的步数。
5、 如权利要求 3所述的制冷系统, 其中, 将所述电子膨胀阀 (30) 的初始步数调整到与所述电子膨胀阀 (30)在所述压缩机 (10)前次停机 时的步数相关的步数包括: 判断所述压缩机 (10)前次运行的时长是否小 于设定时长以及所述压缩机(10)前次停机前的排气温度是否小于等于排 气温度设定值, 如果所述压缩机(10)前次运行的时长小于设定时长且所 述压缩机(10)前次停机前的排气温度小于等于排气温度设定值, 则将所 述电子膨胀阀 (30)在所述压缩机(10) 当次开机时的步数调整到从所述 电子膨胀阀 (30)在所述压缩机 (10)前次停机时的步数减去步数 X; 否 则, 将所述电子膨胀阀 (30)在所述压缩机(10) 当次开机时的步数调整 到所述电子膨胀阀 (30)在所述压缩机 (10)前次停机时的步数加上所述 步数 X。
6、 如权利要求 4所述的制冷系统, 其中, 将所述电子膨胀阀 (30) 的初始步数调整到与所述电子膨胀阀 (30)在所述压缩机 (10)前次停机 时的步数相关的步数包括: 判断所述压缩机 (10)前次运行的时长是否小 于设定时长以及所述压缩机(10)前次停机前的排气温度是否小于等于排 气温度设定值, 如果所述压缩机(10)前次运行的时长小于设定时长且所 述压缩机(10)前次停机前的排气温度小于等于排气温度设定值, 则将所 述电子膨胀阀 (30)在所述压缩机(10) 当次开机时的步数调整到从所述 电子膨胀阀 (30)在所述压缩机 (10)前次停机时的步数减去步数 X; 否 则, 将所述电子膨胀阀 (30)在所述压缩机(10) 当次开机时的步数调整 到所述电子膨胀阀 (30)。
7、如权利要求 3所述的制冷系统, 其中, 所述固定步数介于所述电子 膨胀阀 (30)的总步数的约 50%至约 70%的步数范围内。
8、如权利要求 7所述的制冷系统, 其中, 所述固定步数为所述电子 胀阀 (30 ) 的总步数的 60%,
9、如权利要求 4所述的制冷系统, 其中, 所述排气温度安全值介于约 85Ό至约 105 的温度范围内。
10、如权利要求 9所述的制冷系统,其中,所述排气温度安全值为 95 。
11、如权利要求 5所述的制冷系统, 其中, 所述设定时长小于 180秒。
12、 如权利要求 11所述的制冷系统, 其中, 所述设定时长为 20秒。
13、 如权利要求 5所述的制冷系统, 其中, 所述排气温度设定值小于 no r;。
14、 如权利要求 13 所述的制冷系统, 其中, 所述排气温度设定值为
15、 如权利要求 5所述的制冷系统, 其中, 所述步数 X介于所述电子 膨胀阀 (30 )的总步数的约 3%至约 10%之间的步数范围内。
16、 如权利要求 15所述的制冷系统, 其中, 所述步数 X为所述电子 膨胀阀 (30 )的总步数的 4%。
17、一种控制如权利要求 1-16中任一项所述的制冷系统的方法, 所述 方法包括如下步骤:
在检测到所述压缩机(10 )的开机信号时, 判断所述控制装置(40 ) 是否为首次通电,
如果所述控制装置(40 )为首次通电, 则将所述电子膨胀阀 (30 )的 初始步数调整到固定步数;
如果所述控制装置(40)为非首次通电, 则将所述电子膨胀阀 (30) 的初始步数调整到与所述电子膨胀阀 (30)在所述压缩机 (10)前次停机 时的步数相关的步数。
18、 如权利要求 17所述的方法, 其中, 所述方法还包括如下步骤: 在所述初始步数设定完成后, 判断所检测到的或估算出的所述排气通 路中的排气温度是否小于排气温度安全值以及所述排气温度是否处于上 升趋势, 如果所检测到的或估算出的所述排气通路中的排气温度小于排气 温度安全值且所述排气温度处于上升趋势, 则保持所述电子膨胀阀 (30) 的当前步数; 否则, 利用预定算法计算所述电子膨胀阀 (30) 的步数。
19、 如权利要求 17或 18所述的方法, 其中, 将所述电子膨胀阀(30) 的初始步数调整到与所述电子膨胀阀 (30)在所述压缩机 (10)前次停机 时的步数相关的步数包括: 判断所述压缩机 (10)前次运行的时长是否小 于设定时长以及所述压缩机(10)前次停机前的排气温度是否小于等于排 气温度设定值, 如果所述压缩机(10)前次运行的时长小于设定时长且所 述压缩机(10)前次停机前的排气温度小于等于排气温度设定值, 则将所 述电子膨胀阀 (30)在所述压缩机(10) 当次开机时的步数调整到从所述 电子膨胀阀 (30)在所述压缩机 (10)前次停机时的步数减去步数 X; 否 则, 将所述电子膨胀阀 (30)在所述压缩机(10) 当次开机时的步数调整 到所述电子膨胀阀 (30)在所述压缩机 (10)前次停机时的步数加上所述 步数 X。
PCT/CN2014/082535 2013-07-19 2014-07-18 制冷系统及控制该制冷系统的方法 WO2015007239A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310305839.1A CN104296435B (zh) 2013-07-19 2013-07-19 制冷系统及控制该制冷系统的方法
CN201310305839.1 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015007239A1 true WO2015007239A1 (zh) 2015-01-22

Family

ID=52316273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082535 WO2015007239A1 (zh) 2013-07-19 2014-07-18 制冷系统及控制该制冷系统的方法

Country Status (2)

Country Link
CN (1) CN104296435B (zh)
WO (1) WO2015007239A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107091517A (zh) * 2017-06-30 2017-08-25 珠海格力电器股份有限公司 空调机组的保护控制方法、装置以及空调机组
CN107477916A (zh) * 2017-08-02 2017-12-15 珠海格力电器股份有限公司 热泵系统及其控制方法
CN111023609A (zh) * 2019-11-25 2020-04-17 珠海格力节能环保制冷技术研究中心有限公司 一种空调系统和控制方法
CN115164462A (zh) * 2022-06-01 2022-10-11 广东芬尼科技股份有限公司 电子膨胀阀的控制方法、装置、可读存储介质及热泵系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104930773B (zh) * 2015-07-06 2017-06-06 珠海格力电器股份有限公司 电子膨胀阀的控制方法及装置和空调器
CN105783136B (zh) * 2016-04-14 2019-04-02 海信(山东)空调有限公司 一种室外空调机及空调系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677016A (zh) * 2004-03-30 2005-10-05 株式会社日立空调系统 制冷系统
US20100223938A1 (en) * 2006-03-27 2010-09-09 Bush James W Refrigerating system with parallel staged economizer circuits using multistage compression
CN102575886A (zh) * 2009-10-23 2012-07-11 开利公司 制冷剂蒸气压缩系统的运行
CN102648383A (zh) * 2009-10-13 2012-08-22 丹佛斯商业压缩机公司 制冷系统和包括该系统的热泵单元
WO2013016404A1 (en) * 2011-07-26 2013-01-31 Carrier Corporation Startup logic for refrigeration system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234363A (ja) * 2005-02-28 2006-09-07 Kobe Steel Ltd スクリュ冷凍装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677016A (zh) * 2004-03-30 2005-10-05 株式会社日立空调系统 制冷系统
US20100223938A1 (en) * 2006-03-27 2010-09-09 Bush James W Refrigerating system with parallel staged economizer circuits using multistage compression
CN102648383A (zh) * 2009-10-13 2012-08-22 丹佛斯商业压缩机公司 制冷系统和包括该系统的热泵单元
CN102575886A (zh) * 2009-10-23 2012-07-11 开利公司 制冷剂蒸气压缩系统的运行
WO2013016404A1 (en) * 2011-07-26 2013-01-31 Carrier Corporation Startup logic for refrigeration system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107091517A (zh) * 2017-06-30 2017-08-25 珠海格力电器股份有限公司 空调机组的保护控制方法、装置以及空调机组
CN107091517B (zh) * 2017-06-30 2023-09-12 珠海格力电器股份有限公司 空调机组的保护控制方法、装置以及空调机组
CN107477916A (zh) * 2017-08-02 2017-12-15 珠海格力电器股份有限公司 热泵系统及其控制方法
CN111023609A (zh) * 2019-11-25 2020-04-17 珠海格力节能环保制冷技术研究中心有限公司 一种空调系统和控制方法
CN111023609B (zh) * 2019-11-25 2023-12-12 珠海格力节能环保制冷技术研究中心有限公司 一种空调系统和控制方法
CN115164462A (zh) * 2022-06-01 2022-10-11 广东芬尼科技股份有限公司 电子膨胀阀的控制方法、装置、可读存储介质及热泵系统
CN115164462B (zh) * 2022-06-01 2024-02-06 广东芬尼科技股份有限公司 电子膨胀阀的控制方法、装置、可读存储介质及热泵系统

Also Published As

Publication number Publication date
CN104296435B (zh) 2016-08-24
CN104296435A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2015007239A1 (zh) 制冷系统及控制该制冷系统的方法
JP2754079B2 (ja) コンプレッサシステムの制御方法及び制御装置
JP6767568B2 (ja) 気体圧縮機
JP2007509268A (ja) 遠心圧縮機内の安定性を制御するシステム及び方法
WO2020103407A1 (zh) 多联机空调系统及其启动控制方法
JP2014508274A5 (zh)
US20170021700A1 (en) Method of preventing damage to a compressor in a vehicle
US10254025B2 (en) Refrigerating system and method for controlling the same
CN110779146B (zh) 空调器及其电子膨胀阀控制方法、存储介质及计算机设备
US20150027149A1 (en) Electric expansion valve control for a refrigeration system
WO2021051699A1 (zh) 一种零负荷输出不停机的控制方法、装置及机组
US10352607B2 (en) Selecting control strategy for an expansion valve
US20190010939A1 (en) Method for detecting a blocked valve of a coolant compressor and a control system for a coolant compressor
RU2015132574A (ru) Способ и система предотвращения помпажа компрессора (варианты)
JP6069789B2 (ja) 給排気設備
US11384710B2 (en) Control device for fuel injection system
JP5672551B2 (ja) 圧縮機台数制御システム
US12018693B2 (en) Method and system for compressor operating range extension via active valve control
KR20240055279A (ko) 전동 압축기의 제어 시스템 및 방법
JP2004317034A (ja) 冷凍装置
CN109114852B (zh) 一种电子膨胀阀的调节方法、采用该方法的设备
JP2003019908A (ja) 車両用冷房装置
JP5915932B2 (ja) 圧縮機台数制御システム
US8104300B2 (en) Method for adjusting a natural refrigeration cycle rate of an air conditioner
KR100568517B1 (ko) 냉장고의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826870

Country of ref document: EP

Kind code of ref document: A1