WO2015007237A1 - 刻蚀产额的建模方法和刻蚀表面演化仿真方法 - Google Patents

刻蚀产额的建模方法和刻蚀表面演化仿真方法 Download PDF

Info

Publication number
WO2015007237A1
WO2015007237A1 PCT/CN2014/082517 CN2014082517W WO2015007237A1 WO 2015007237 A1 WO2015007237 A1 WO 2015007237A1 CN 2014082517 W CN2014082517 W CN 2014082517W WO 2015007237 A1 WO2015007237 A1 WO 2015007237A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
model
parameters
yield
etching rate
Prior art date
Application number
PCT/CN2014/082517
Other languages
English (en)
French (fr)
Inventor
宋亦旭
阮聪
高扬福
孙晓民
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US14/431,508 priority Critical patent/US20150227650A1/en
Publication of WO2015007237A1 publication Critical patent/WO2015007237A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the invention belongs to the technical field of etching process in microelectronic processing technology, and particularly relates to a modeling method of etching yield and a simulation method of etching surface evolution. Background technique
  • the nature of the plasma and the mechanism of action at the surface determine the quality of the etch.
  • the etching profile evolution method is proposed, and the process parameters and mechanism of the etching control are combined to find the cause of the special process results.
  • the cell-based etch profile evolution method divides the simulated region into several cells containing different materials, and then uses the Monte Carlo method to generate incident ions from the upper surface of the material according to the boundary ion distribution and the incident angle distribution, and then tracks The ions move until they reach the surface of the material or leave the simulated area. If the ions reaching the surface of the material satisfy the etching conditions, the number of etched atoms is calculated according to the etching yield model, and is subtracted from the cell to achieve etching; otherwise, the ions continue to be tracked twice. When the number of atoms in the cell reaches zero, the cell is transformed into an empty cell, thus achieving advancement of the etched surface. It can be seen that the cell-based etch profile evolution method relies on the etch yield model.
  • the ion yield is closely related to the incident energy and incident angle of the ions.
  • the ion yield of the ion is linear with the square of the incident energy of the ion; and at a certain energy, the relationship between the etching yield of the ion etching and the incident angle also satisfies a certain relationship.
  • An example of a parameter representation of a specific etch yield model for ions is shown in equation (1): The function /( in equation (1) is expressed as:
  • the etching yield model is derived from the model parameters of the etching yield ( , £ A , C). It is decided, therefore, that the model parameters of the etch yield ( , £ A , C) are very important for the cell-based etch profile evolution method.
  • the ion bombardment experiment mainly generates ions of specific velocity and angle through the instrument, bombards the surface, and then analyzes the etching result to obtain the average etch rate of ions.
  • the molecular dynamics method uses classical mechanics to simulate the effect of ions on the etched surface.
  • the above is a theoretical calculation method whose accuracy depends on the accuracy of the potential function. Since the physical and chemical reactions of the actual processing are extremely complicated, the etching yield often needs to reflect the interaction between various ions. In fact, neither method can simulate the actual processing environment, so the obtained etching yield is often qualitative.
  • the trending result when used in the simulation of the etched section evolution method of the cell, often has a large error with the processing result.
  • an optimization method and an etching profile evolution method are combined to obtain an ion etching yield model.
  • this method cannot simultaneously optimize the etching yield model of multiple ions, and the etching time is used to calculate the etching time.
  • the decomposition-based multi-objective evolutionary algorithm (MOEA/D) has been proposed in several years and has a wide range of applications in solving multi-objective problems. It selects the uniformly distributed weight vector, and then uses the decomposition-based method to transform the multi-objective optimization problem into a single-objective optimization problem, thus avoiding the problem of fitness value classification and maintenance diversity in the MOEA algorithm based on the distribution relationship. At the same time, in the selection of evolutionary operators, the differential evolution operator can obtain better offspring as the crossover operator in the evolution process of MOEA/D algorithm. Summary of the invention
  • the object of the present invention is to overcome the deficiencies of the prior art and to propose a modeling method for etching yield in plasma etching surface evolution simulation.
  • a modeling method for etching yield in plasma etching surface evolution simulation is proposed, characterized in that the method performs parameterized representation of an etching yield model, and then uses an optimization algorithm.
  • the mean square error of the simulated etch rate and the actual etch rate at selected locations of the trench at different times in the evolution process is optimized.
  • the optimized set of model parameters is calculated and substituted into the formula to obtain the etch yield model.
  • the method includes the following steps:
  • the initial model parameter set composed of the fi N ⁇ group model parameters, and the elite population and the initial vector of the optimization algorithm are generated:
  • step 4) specifically comprises:
  • the first set of trenches shall calculate the error of the simulated etch rate relative to the actual etch rate ⁇ according to formula (3), as follows:
  • Refers to the simulated etch rate at the first position of the first section of the first set of trenches, which indicates the effect of the mean square error of the simulated etch rate and the actual etch rate on the overall error at the first position of the first section of the first set of trenches.
  • a modeling method for an etching yield model used in plasma etching surface evolution simulation may include: (1) obtaining an actual etching rate sample set; (2) Determining the parameters of the etching yield model to determine the parameters to be determined in the etching yield model; (3) using a predetermined optimization algorithm to optimize the parameters to be determined of the etching yield model; wherein, the optimization algorithm
  • the optimization goal involves minimizing the difference between the actual etch rate and the corresponding simulated etch rate, which is obtained using a predetermined relationship between the etch yield model and the etch rate.
  • a plasma etching surface evolution simulation method may include: Step 1) initializing an etch profile evolution model, setting an initial mask sidewall tilt angle; and step 2) using a cell automatic The machine method simulates and runs a predetermined number of steps; Step 3) Use the formula to adjust the tilt angle of the mask sidewall according to the predetermined formula; Step 4) Determine whether the evolution reaches the termination condition, and terminate if it is reached, otherwise return to step 2) .
  • the method of the embodiment of the invention parametrically represents an etching yield model of a plurality of ions; using an optimization algorithm to obtain an optimization parameter in the etching yield model; in the optimization process, selecting some specific positions of the groove surface, By comparing the simulated etch rate and the actual etch rate of these points at different times in the evolution process, the merits and demerits of each set of model parameters (adaptive values) are calculated, which is used as the basis for optimizing the algorithm selection and generating the next model parameter set.
  • the model parameters are substituted into the formula of the model parameterization, that is, the model of the etching yield is obtained.
  • the invention can optimize the etching yield model parameters of a plurality of ions according to the etching processing data, and solve the problem that the ion bombardment experimental method and the molecular dynamics method are inaccurate in obtaining the etching yield parameter.
  • the "actual etch rate" in this paper refers to the etch rate calculated at different times based on the actual processing during the actual plasma etching process.
  • the actual etch rate may be an actual etch rate based on the distance divided by time based on the depth of each point at different points; however, in the case where the number of points sampled is not very dense, the etch profile at an intermediate time Not actually observed, at this point, the actual etch rate at each point of the etch profile can be obtained by simulating the intermediate process (for example) using an etch profile evolution algorithm.
  • FIG. 1 shows a general flow diagram of a modeling method 100 for a eroded yield model used in plasma etch surface evolution simulations in accordance with one embodiment of the present invention.
  • an actual etch rate sample set is obtained.
  • the actual etch rate sample is obtained as an actual etch rate of p sets of etched sections having different widths at different etch times and different cross-sectional positions, and each etched profile corresponds to a different set of etches.
  • the actual etch rate of the points at different cross-section positions, where p is an integer greater than or equal to 1, and the number of actual etch rates for different cross-sectional position points of each set of different etch times is greater than or equal to one.
  • the etch profile evolution results under various widths are selected as follows: In the actual etching process, if only one width of the etch evolution profile is selected, it is easy to be measured due to the error of the experiment itself.
  • the actual etch rate has a large error with the actual value, and the difference between the simulated etch rate and the actual etch rate also has a large error.
  • the preferred embodiment thus selects etch profile evolution results at various widths to reduce errors.
  • the etched profile picture at different times cannot be obtained by scanning electron microscopy at regular intervals. Because each time the scanning electron microscope scan is used, the silicon wafer needs to be processed accordingly, so that the next etching environment is different from the previous one.
  • obtaining a set of actual etch rate samples includes: selecting a plurality of silicon wafers of the same material and size, and performing the same pre-treatment before etching, and then in the same etching environment Different numbers of silicon wafers are etched for different times, and the etched profile results of the silicon wafers are regarded as etching results of the same silicon wafer at different times, and the etching results of the same silicon wafer at different times are analyzed.
  • the actual etch rate at each point of the etch profile is obtained.
  • (a), (b), (c), and (d) in FIG. 2 respectively show etching results after etching, for example, 1, 2, 3, and 4.5 minutes at four different times.
  • the external visual representation of the depth or etch distance will be the result of etching the same silicon wafer after 1, 2, 3, and 4.5 minutes.
  • a plurality of silicon wafers of the same material and size are selected, and the same pre-treatment is performed before etching, and then different numbered silicon wafers are etched for different time in the same etching environment. Since the etching environment is uniform, the etching morphology of a silicon wafer at different times can be approximately reproduced by this method. Therefore, the etched profile of the silicon wafers can be used as the etching result of the same silicon wafer at different times.
  • obtaining the actual etch rate further comprises: simulating the intermediate process using an etch profile evolution algorithm for a given process profile without actual etch data to obtain points for the given process profile Actual etch rate. For example, there are only etching results of 1, 2, 3, and 4.5 minutes, and interpolation can be used to obtain etching results of 1.5, 2.5, and 3.5 minutes.
  • the corresponding etched lines are extracted on the same picture by the image processing method and expressed as a cell model, as shown in FIG. 2, and the corresponding etched section is shown in FIG. Extracted etched lines.
  • the cell occupied by the etched line has its attribute set to "1" (black box in Figure 2); the cell not occupied by the etched line has its attribute set to "0" ( The white box in Figure 2).
  • An exemplary method of using the model to determine the etch rate of selected points on the etched line is described below.
  • the normal vector of point 0 and the point 0 along the direction of the normal vector and the next moment need to be known: the normal vector of point 0 and the point 0 along the direction of the normal vector and the next moment.
  • the normal vector can be obtained by fitting the occupied cells of the point O within a certain distance and then obtaining the expression according to the obtained expression.
  • the z-point is the desired point 0'; if the z-point is below the etched line, let ⁇ be z ⁇ , otherwise let r; Repeat the conditional decision process until the point O' is found. Since the etching rate itself is small, the O-point etch rate can be approximated by the following formula (1).
  • OO' refers to the distance from 0 to O'
  • zlt is the time interval between two etched lines.
  • step S110 after the actual etch rate sample set is obtained in step S110, the process proceeds to step S120.
  • step S120 the form of the etching yield model is selected to determine the parameters to be determined in the etching yield model.
  • the selected etch yield model is in the form shown in equation (2).
  • the error term can be a polynomial fitting of the independent variable using the trigonometric function of energy and angle (co ⁇ sii ⁇ , etc.) Etc.
  • step S120 the process proceeds to step S130.
  • a predetermined optimization algorithm is used to optimize a parameter to be determined of the etch yield model; wherein the optimization target of the optimization algorithm involves minimizing a difference between an actual etch rate and a corresponding simulated etch rate, wherein The corresponding simulated etch rate is obtained by using a predetermined relationship between the etch yield model and the etch rate.
  • a multi-objective evolutionary algorithm is used as the optimization algorithm, each of which involves each of the difference between the actual etch rate and the simulated etch rate of the p-group.
  • 3 ⁇ 4 W ⁇ w(z', j)(v riJ (X)- v siJ (x)f (5)
  • x refers to the etching yield model parameter
  • 3 represents the number of points selected for each etched evolution surface for optimization
  • !3 ⁇ 4 refers to the actual etch of the first selected position of the first section of the first width.
  • Rate; 13 ⁇ 4 refers to the simulated etch rate corresponding to w y ;
  • is the weighting factor, indicating the degree of influence of the deviation of 3 ⁇ 4 relative to v nj on the overall error.
  • the following formula (6) can be defined as optimized Objective function: Where ⁇ refers to the number of trenches with different widths of the etched evolution profile.
  • the goal of optimization is to minimize the function fix) and find the corresponding X so that the simulated etch rate and the actual etch rate are as large as possible. Close. Since / (X) is a function vector, you cannot optimize only one component of / (X). To equalize the different components in /(X), the problem of parameter optimization of the etch yield model can be transformed into a multi-objective optimization problem.
  • the sum of the accumulated errors of the etched profiles of different widths can be utilized 1 (and the etch profile at a single width)
  • the maximum error ma X ( e , ( ) is used as the optimization target to achieve the purpose of comprehensive evaluation of different e , (X).
  • formula (7) can be defined as a new optimization objective function, thereby reducing the target number to two.
  • the decomposition is optimized using a decomposition-based multi-objective evolutionary algorithm (MOEA/D)
  • MOEA/D decomposition-based multi-objective evolutionary algorithm
  • Figure 5 illustrates a flow diagram of a method 130 for optimizing a parameter to be determined for an etch yield model based on a decomposition-based multi-objective evolution algorithm, in accordance with one embodiment of the present invention.
  • step S131 an initial population is generated, and parameters to be optimized and elite populations are initialized.
  • step S132 an individual in the population is subjected to a crossover operation and/or a mutation operation to generate a new individual.
  • step S133 the corresponding simulated etching rate is calculated for each individual by using the relationship between the etching yield model and the etching rate in parallel, and the individual is calculated based on the difference between the actual etching rate and the simulated etching rate.
  • Fitness value For example, the first processing unit is used to calculate the fitness value of the first individual using the etching yield model, and the fitness value of the second individual is calculated by the second processing unit using the etching yield model, and so on.
  • step S134 the calculated individual is collected and the individual is selected.
  • step S1335 the elite population is updated with an elite retention strategy.
  • step S136 it is determined whether the termination condition is reached, and if so, the processing is terminated; otherwise, the process returns to step S132.
  • the experimental data related to the etch is transmitted to the corresponding computing node before the parallel algorithm is executed, so that each time the fitness value is calculated, only the corresponding data is transmitted.
  • Parameter data is OK.
  • using the predetermined relationship between the etch yield model and the etch rate to determine the simulated etch rate for the particular location may include: utilizing the etch of the particular location described below Amount from the i
  • the predetermined relationship between the etch rates of the sub-electrodes is obtained, and the etching rate of the i-th ions is obtained, which can be as shown in the following formula (8):
  • V x N / J ( 8)
  • represents the etch yield of the first incident ion at that particular location; represents the etch rate of the first incident ion at that particular location; N, represents the first species The material density of the incident ions; J+ represents the flow rate of the first incident ion; then the simulated etch rate at this particular location can be as shown in equation (9):
  • the above method of calculating the simulated etch rate is merely an example, and other methods of calculating the etch rate can be employed.
  • a more specific example of a modeling method of an etching yield model according to an embodiment of the present invention is described below.
  • CE th is the parameter to be optimized for establishing the model; the definition and range of values of each parameter can be: e [0.01,30] , £ A e [0, 50] are constants related to the etching environment; ⁇ e [20°, 50°] is the angle corresponding to the first change of the etching yield when the shape of the ion etching yield curve changes with the incident angle of 0° 90°; £ ⁇ is the property of the ion itself; £ + Is the energy of the incident ions; ⁇ is the incident angle of the incident ions;
  • the initial parameters of the optimization algorithm For example, select the decomposition-based multi-objective evolutionary algorithm (MOEA/D) as the optimization algorithm, where the cross-evolution operator selects the differential evolution operator; the model parameter set is expressed as the population.
  • Each set of model parameters is an individual in the population; the following initial parameters are set: Population size N ⁇ (The range of the population can be 100 ⁇ 500, the value of the population in this example is 300), used for MOEA/D algorithm evolution
  • the number of individual neighbors of the process (the range of the number of individual neighbors is 30 to 50, the value of the number of individual neighbors in this embodiment is 50), and the probability of selecting an individual as a parent from the neighbors of the individual (the value of the probability)
  • the range is 0.5 to 0.8, the value of the probability is 0.6 in this embodiment, and the crossover probability CR of the differential evolution operator (the value of the crossover probability CR is 0.05 to 0.2, and the value of the crossover probability CR in this embodiment is 0.1), the scale factor F of the differential evolution operator (
  • the scale factor F in this embodiment is 0.8
  • the mutation probability ⁇ ⁇ of the differential evolution operator (the probability of variation p m ranges from 0.05 to 0.2, and the mutation probability ⁇ ⁇ in this embodiment The value is 0.1)
  • N max the number of executions (execution count N max is the maximum range of 50 150, the present embodiment
  • the maximum execution number N max is 100) and the precision of the MOEA/D algorithm ⁇ (the precision of the MOEA/D algorithm ⁇ ranges from 0.000001 to 0.0001, and the precision of the MOEA/D algorithm in this embodiment is eps) Is 0.00001);
  • the initial parameters include: determining the number N of incident ions of the plurality of positions according to experimental data.ong, and the flow, angular distribution and energy distribution of each ion ;
  • step 2) According to the initial parameters of the optimization algorithm in step 2) and the range of values of the etching yield model parameters, generate an initial model parameter set (initial population) composed of fi N ⁇ group model parameters (individuals), and an elite of the optimization algorithm The population, the initial vector consisting of the initial weight vector, and the reference vector z:
  • E Y VN t /J + (11) where: £ represents the etching yield of the first incident ion; represents the etching rate of the first incident ion; N represents the material density of the first incident ion (within a unit volume) Atomic number); J+ represents the flow rate of the first incident ion.
  • ⁇ ,.iller is the number of species of incident ions
  • the first group of trenches calculates the error of the simulated etch rate relative to the actual etch rate ⁇ according to equation (13):
  • m represents the number of pre-selected positions of each section during the evolution of the first set of grooves, and refers to the first position of the first section of the first set of grooves
  • the actual etch rate refers to the simulated etch rate at the first position of the first section of the first set of trenches, indicating the water of the first group of trenches. The degree of influence of the mean square error of the simulated etch rate and the actual etch rate on the overall error at the first position of the profile;
  • the MOEA/D algorithm is used to search to form the next model parameter set (population), wherein the cross-evolution operator selects the differential evolution operator;
  • a plasma etching surface evolution simulation method may include: (1) dividing a simulated region into cells containing different materials; (2) according to boundary ion distribution and incident angle distribution, The upper surface of the material is simulated by Monte Carlo method to generate incident ions; (3) Simulate the tracking of ion motion until it reaches the surface of the material or leaves the simulated region; (4) Determine whether the ions reaching the surface of the material meet the etching conditions, if the etching is satisfied Conditions, according to the etching yield model to calculate the number of etched atoms, which is subtracted from the cell to achieve etching; (5) Otherwise the ions continue to be tracked twice.
  • the etching yield model is established by the following methods: (1) obtaining an actual etch rate sample set; (2) selecting a form of an etch yield model to determine the etch yield model to be Determining the parameters; (3) using a predetermined optimization algorithm to optimize the parameters to be determined of the etching yield model; wherein the optimization target of the optimization algorithm involves minimizing the difference between the actual etching rate and the corresponding simulated etching rate, The corresponding simulated etch rate is obtained by using a predetermined relationship between the etch yield model and the etch rate.
  • the plasma etch surface evolution simulation method employs a cell-based etch profile evolution method.
  • a modeling apparatus for an etching yield model used in plasma etching surface evolution simulation may include: an actual etching rate sample set obtaining component, and obtaining an actual etching rate sample.
  • the etch yield model form and the parameter determining component to be optimized are configured in the form of a selected etch yield model to determine parameters to be determined in the etch yield model; the parameter optimization component is configured to utilize the predetermined Optimizing an algorithm to optimize a parameter to be determined of the etching yield model; wherein the optimization target of the optimization algorithm involves minimizing a difference between an actual etching rate and a corresponding simulated etching rate, wherein the corresponding simulated etching rate is utilized
  • the predetermined relationship between the etch rate model and the etch rate is obtained.
  • Fig. 6 shows an initial state of an etched surface evolution model employed in a conventional cell automated simulation etching technique.
  • Fig. 7 show the etching experiment results and simulation results in contrast.
  • other etching process parameters related to the experimental conditions are modified, which has little effect on the simulation results.
  • the sidewall of the mask is always in the vertical state, the shape of the groove corresponding to the experimental results cannot be simulated.
  • the mask sidewalls are processed first to maintain a certain tilt angle.
  • incident ions when incident on the side walls, they can be sufficiently incident on both sides of the bottom of the trench by reflection.
  • the sidewall of the mask is continuously bombarded by ions, and the mask shrinkage phenomenon occurs, so that the tilt angle of the mask sidewall gradually becomes smaller.
  • a plasma etching surface evolution simulation method is provided in consideration of a mask sidewall tilt angle and its variation with time, and FIG. 8 illustrates the plasma etching surface evolution simulation method 200. Overall flow chart.
  • step S210 an etch profile evolution model is initialized to set an initial mask sidewall tilt angle.
  • step S220 the simulation is performed using the cellular automaton method, and a predetermined number of steps are operated.
  • step S230 the tilt angle of the mask sidewall is adjusted according to a predetermined formula.
  • step S240 it is judged whether or not the evolution reaches the termination condition, and if it is reached, it is terminated, otherwise it returns to step S220.
  • the mask tilt angle ⁇ is calculated according to the following formula (17): Where ⁇ is the initial tilt angle of the mask sidewall, t is the etching time, "is the parameter used to adjust the tilt angle.
  • the above plasma etching surface evolution simulation method considers the influence of the tilt angle of the mask sidewall on the surface evolution process, and adjusts the tilt angle of the mask with time, so that the actual etching process can be more accurately simulated.
  • each step of the above-mentioned components of the etching yield model modeling device and/or the etching yield model modeling method may be implemented by a software program, such as a CPU in a general-purpose computer, a combination of a RAM and a ROM, and the like. And the software code running in it is implemented.
  • the software program can be stored on a storage medium such as a flash memory, a floppy disk, a hard disk, an optical disk, etc., and loaded into a RAM such as a random access memory at runtime to be executed by the CPU.
  • a storage medium such as a flash memory, a floppy disk, a hard disk, an optical disk, etc.
  • a RAM such as a random access memory
  • the integrated circuit is implemented by, for example, at least one of an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), an ASIC (Application Specific Integrated Circuit), and the like.
  • the various steps of the various components of the etching yield model modeling device and the etching yield model modeling method can be implemented by special hardware, such as a specific field programmable gate array, an application specific integrated circuit, or the like.
  • each step of the components of the etching yield model modeling device and the steps of the etching yield model modeling method can also be implemented by a combination of software and hardware.
  • a non-transitory computer readable medium having stored thereon a set of instructions that, when executed by a processor, directs a processor to perform etching used in plasma etch surface evolution simulation
  • the modeling method of the yield model includes: (1) obtaining a sample set of actual etching rates; (2) selecting a form of the etching yield model to determine a parameter to be determined in the etching yield model; 3) using a predetermined optimization algorithm to optimize the parameters to be determined of the etching yield model; wherein the optimization target of the optimization algorithm involves minimizing the difference between the actual etching rate and the corresponding simulated etching rate, wherein the corresponding simulation engraving
  • the etch rate is obtained by using a predetermined relationship between the etch yield model and the etch rate.
  • etching yield model modeling apparatus and/or the etching yield model modeling method are not intended to limit the scope of the invention.
  • various components and/or steps may be combined into a single component and/or step to perform and implement the corresponding functions and operations, or the various components and/or steps may be further divided into smaller Units to implement their respective functions and operations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

一种等离子体刻蚀表面演化仿真中刻蚀产额的建模方法,属于微电子加工技术中对刻蚀表面过程模拟技术领域;该方法包括:将多种离子的刻蚀产额模型进行参数化表示;采用优化算法来得到刻蚀产额模型中的优化参数;在优化过程中,选取沟槽表面的一些特定位置,通过比较演化过程中不同时刻这些点的模拟刻蚀速率与实际刻蚀速率来计算每组模型参数的优劣(适应值),作为优化算法选择、生成下一步模型参数集的依据。将得到模型参数代入到模型参数化的公式中,即得到刻蚀产额的模型。根据刻蚀加工数据对多种离子的刻蚀产额模型参数进行优化,解决了离子轰击实验法和分子动力学方法求取刻蚀产额参数不准确的问题。

Description

刻蚀产额的建模方法和刻蚀表面演化仿真方法 技术领域
本发明属于微电子加工技术中对刻蚀过程模拟技术领域, 特别涉及刻蚀产额的建模方 法和刻蚀表面演化仿真方法。 背景技术
在等离子刻蚀工艺中, 等离子的本身特性和在表面的作用机理决定了刻蚀质量。 为了 深入理解刻蚀工艺过程机理, 人们提出刻蚀剖面演化方法, 并结合刻蚀控制工艺参数和机 制, 来寻求特殊工艺结果的成因。
当前, 最常用的刻蚀剖面演化方法是基于元胞的刻蚀剖面演化方法。 基于元胞的刻蚀 剖面演化方法是将模拟区域划分成若干个包含不同材料的元胞, 然后根据边界离子分布和 入射角度分布, 从材料的上表面用蒙特卡罗方法产生入射离子, 随后跟踪离子运动直到达 到材料表面或离开模拟区域。 达到材料表面的离子若满足刻蚀条件, 则按照刻蚀产额模型 计算刻蚀原子数, 将其从所在元胞中减掉, 实现刻蚀; 否则离子继续被二次跟踪。 当元胞 内原子数量达到零时, 元胞转变为空元胞, 这样实现刻蚀表面的向前推进。 可见, 基于元 胞的刻蚀剖面演化方法依赖于刻蚀产额模型。
根据已有文献结果, 离子的刻蚀产额又与离子的入射能量和入射角度密切相关。 在一 定入射角度下,离子的刻蚀产额与离子的入射能量的开平方成线性关系;而在一定能量下, 离子刻蚀的刻蚀产额与入射角度的关系也满足一定的关系。 离子的具体刻蚀产额模型的参 数表示的一个示例如公式 (1 ) 所示:
Figure imgf000003_0001
式(1) 中函数 /( 表示为:
1 θ≤θ
cos 6*
cos θ„ 其中: C, Eth , 是建立模型的待优化参数。 由公式 (1 ) 和 (2 ) 可知刻蚀产额模型又由刻蚀产额的模型参数 ( , £A , C)来决定, 因此刻蚀产额的模型参数 ( , £A , C)对基于元胞的刻蚀剖面演化方法是非常重要的。 传统构建刻蚀产额模型方法主要有两种: 离子轰击实验法和分子动力学方法。离子轰 击实验法主要通过仪器产生特定速度和角度的离子, 轰击表面, 然后分析刻蚀结果, 得到 离子平均刻蚀率; 分子动力学方法利用经典力学来模拟离子在刻蚀表面上的作用, 实际上 是一种理论计算的方法, 其精度取决于势函数的准确性。 由于实际加工过程的理化反应极 其复杂, 刻蚀产额往往需要体现多种离子之间的相互作用, 实际上两种方法都不能模拟实 际加工环境, 所以求得的刻蚀产额往往是定性的趋势性的结果, 用于元胞的刻蚀剖面演化 方法仿真时,往往和加工结果有较大的误差。在最近提出的一种离子刻蚀产额建模方法中, 采用优化方法与刻蚀剖面演化方法相结合, 来求取离子的刻蚀产额模型。 但是该方法不能 同时优化多种离子的刻蚀产额模型,而且利用到刻蚀剖面演化方法,计算所用的时间较长。
基于分解的多目标进化算法 (MOEA/D ) 在几年被提出, 在解决多目标问题上有着广 泛的应用。 它通过选取均匀分布的权重向量, 然后利用基于分解的方法把多目标优化问题 转化成单目标优化问题, 从而避开了基于分配关系的 MOEA算法中适应值分级和维护多样 性等问题。 同时在进化算子的选取上, 差分进化算子作为 MOEA/D算法演化过程中的交叉 算子也能够得到更优秀的子代。 发明内容
本发明的目的是为克服已有技术的不足之处,提出一种等离子体刻蚀表面演化仿真中 刻蚀产额的建模方法。
根据本发明的一个方面,提出了一种等离子体刻蚀表面演化仿真中刻蚀产额的建模方 法, 其特征在于, 该方法将刻蚀产额模型进行参数化表示, 然后利用优化算法, 以演化过 程中不同时刻沟槽选定位置的模拟刻蚀速率与实际刻蚀速率的均方差为优化目标, 计算出 优化后的一组模型参数, 代入公式即可得到刻蚀产额模型;
该方法包括以下步骤:
1 ) 设置刻蚀产额模型参数的取值范围, 设计不同时间不同参数的刻蚀加工工艺, 利 用扫描电镜分析剖面图片, 或者针对给定的加工剖面, 利用刻蚀剖面演化算法对中间过程 仿真, 获得宽度不同的 p组不同刻蚀时间不同剖面位置点的实际刻蚀速率 ^ ;
2 ) 选择刻蚀产额模型参数的优化算法及设置该优化算法的初始参数, 设置优化算法 的最大执行次数 Nmax及优化算法的精度¾«, 以及沟槽表面预先选定的位置入射离子的初 始参数;
3 ) 根据优化算法的要求和刻蚀产额模型参数的取值范围, 生成 fi N^组模型参数组 成的初始模型参数集, 以及优化算法的精英种群及初始向量:
4) 利用刻蚀产额与刻蚀速率的关系计算刻蚀产额模型参数集中每组模型参数的适应 值;
5 ) 根据每组模型参数的适应值, 利用优化算法搜索形成下一步模型参数集; 6) 重复执行步骤 4) -5),直到达到最大执行次数 Nmax或满足指定的精度 后的模型 参数集作为优化模型参数集;
7) 从优化模型参数集选出最优的模型参数并输出, 代入刻蚀产额模型参数化表示公 式中, 即得到刻蚀产额的模型。
2、 如权利要求 1所述方法, 其特征在于, 所述步骤 4) 具体包括:
4.1) 把模型参数集中每组参数和刻蚀沟槽表面特定位置入射离子的初始参数作为输 入, 利用刻蚀产额与刻蚀速率的关系, 计算得到这些特定位置入射离子的刻蚀速率
4.2)对于宽度不同的 p组沟槽, 第 组沟槽按照公式 (3)计算模拟刻蚀速率 相对 于实际刻蚀速率^ 的误差, 如下:
Ek=∑∑w(i )(Vnj-VSIJ)2 (3)
1
式中: 《表示第 组沟槽演化过程中不同的剖面数量, m表示第 组沟槽演化过程中每个 剖面预先选定位置的数量, „指的是第 A组沟槽第 个剖面第 个位置点实际刻蚀速率,
^ 指的是第 组沟槽第 个剖面第 个位置点模拟刻蚀速率, 表示第 A组沟槽第 个 剖面第 个位置点模拟刻蚀速率与实际刻蚀速率的均方差对整体误差的影响程度;
4.3) 利用 4· 2), 得到该组模型参数的适应值 = (1/£1,1/£2,...,1/£;);
4.4) 重复执行 4.1) -4.3), 计算模型参数集中每组参数的适应值。 根据本发明的另一方面,提供了一种等离子体刻蚀表面演化仿真中使用的刻蚀产额模 型的建模方法, 可以包括: (1)、 获得实际刻蚀速率样本集合; (2)、 选定刻蚀产额模型的 形式, 确定该刻蚀产额模型中待确定的参数; (3) 利用预定优化算法来优化该刻蚀产额模 型的待确定参数; 其中, 该优化算法的优化目标涉及最小化实际刻蚀速率和对应模拟刻蚀 速率之间的差异, 其中该对应模拟刻蚀速率是利用刻蚀产额模型与刻蚀速率之间的预定关 系而求得的。
根据本发明的再一方面,提供了一种等离子体刻蚀表面演化仿真方法,可以包括: 步 骤 1)初始化刻蚀剖面演化模型, 设置初始掩膜侧壁倾斜角度 ;步骤 2)利用元胞自动机 法进行仿真, 并运行预定数目的步数; 步骤 3) 根据预定公式利用公式调整掩膜侧壁倾斜 角度 ; 步骤 4) 判断演化是否达到终止条件, 如达到则终止, 否则返回到步骤 2)。 本发明实施例的特点及有益效果: 本发明实施例的方法将多种离子的刻蚀产额模型进行参数化表示; 采用优化算法来得 到刻蚀产额模型中的优化参数; 在优化过程中, 选取沟槽表面的一些特定位置, 通过比较 演化过程中不同时刻这些点的模拟刻蚀速率与实际刻蚀速率来计算每组模型参数的优劣 (适应值), 作为优化算法选择、 生成下一步模型参数集的依据。 将得到模型参数代入到 模型参数化的公式中, 即得到刻蚀产额的模型。
本发明能根据刻蚀加工数据对多种离子的刻蚀产额模型参数进行优化, 解决了离子轰 击实验法和分子动力学方法求取刻蚀产额参数不准确的问题。 具体实施方式
本发明提出的一种等离子体刻蚀表面演化仿真中刻蚀产额的建模方法, 下文将结合实 施例进行详细说明。
本文中的 "实际刻蚀速率"是指在实际等离子体刻蚀加工过程中, 基于实际加工得到 的不同时刻的刻蚀剖面, 计算得到的刻蚀速率。
例如,在实际刻蚀速率可以是基于各个点不同时刻的深度而基于距离除以时间而得到 的实际刻蚀速率; 不过, 在取样的点数不是很密集的情况下, 某中间时刻的刻蚀剖面没有 实际观察到, 此时, 可以通过利用刻蚀剖面演化算法对中间过程仿真 (例如) 来获得刻蚀 剖面各个点的实际刻蚀速率。
下面描述根据本发明的一个实施例的等离子体刻蚀表面演化仿真中使用的刻蚀产额 模型的建模方法示例。
图 1 示出了根据根据本发明的一个实施例的等离子体刻蚀表面演化仿真中使用的刻 蚀产额模型的建模方法 100的总体流程图。
在步骤 S110中, 获得实际刻蚀速率样本集合。 在一个示例中,所述获得实际刻蚀速率样本为宽度不同的刻蚀剖面的 p组不同刻蚀时 间不同剖面位置点的实际刻蚀速率 , 每种宽度的刻蚀剖面对应一组不同刻蚀时间不同剖 面位置点的实际刻蚀速率 , 其中 p为大于等于 1的整数, 以及每组的不同刻蚀时间不同 剖面位置点的实际刻蚀速率 的数目大于等于 1。 本实施例选择多种宽度下的刻蚀剖面演 化结果是出于如下考虑: 在实际刻蚀过程中,如果只选取一种宽度的刻蚀演化剖面,很容易 因为实验本身的误差导致测量得到的实际刻蚀速率与真实值有较大误差,进而使得模拟刻 蚀速率与实际刻蚀速率之差也有较大误差。 因此本优选实施例选择多种宽度下的刻蚀剖面 演化结果, 以减少误差。 为求取刻蚀表面点的刻蚀速率,可能需要获取刻蚀过程中不同时刻的刻蚀剖面。但是, 在实际等离子体刻蚀加工过程中, 对于同一个刻蚀硅片, 无法通过每隔一段时间就用扫描 电镜扫描的方式来获取不同时刻的刻蚀剖面图片。 因为在每次使用扫描电镜扫描之前, 都 需要对硅片进行相应的处理, 从而使得下一次的刻蚀环境与上一次不同。
为克服这个问题, 在一个示例中, 获得实际刻蚀速率样本集合包括: 选用多个相同材 质和尺寸的硅片, 并在刻蚀前对其进行相同的预处理, 然后在相同的刻蚀环境下对不同编 号的硅片刻蚀不同的时间, 将这些硅片的刻蚀剖面结果视为同一个硅片在不同时刻的刻蚀 结果, 并分析该同一个硅片在不同时刻的刻蚀结果来获得刻蚀剖面各个点的实际刻蚀速 率。 图 2中的 (a)、 (b)、 (c)、 (d)分别示出了四个硅片被刻蚀不同时间具体地 1、 2、 3、 4.5 分钟后的刻蚀结果 (刻蚀深度或刻蚀距离的外在可视表现), 将把这些刻蚀结果作为同一 个硅片在第 1、 2、 3、 4.5分钟后的刻蚀结果。 本实施例选用多个相同材质和尺寸的硅片, 并在刻蚀前对其进行相同的预处理, 然后在相同的刻蚀环境下对不同编号硅片刻蚀不同的 时间。 由于刻蚀环境一致, 通过此方法可以近似重现一个硅片在不同时刻的刻蚀形貌, 因 此综合这些硅片的刻蚀剖面结果可作为同一个硅片在不同时刻的刻蚀结果。
在另一个示例中, 获得实际刻蚀速率还包括: 对于不存在实际刻蚀数据的给定的加工 剖面, 利用刻蚀剖面演化算法对中间过程仿真来获得该给定的加工剖面的各个点的实际刻 蚀速率。 例如, 只存在第 1、 2、 3、 4.5分钟的刻蚀结果, 可以利用插值来获得第 1.5、 2.5、 3.5等分钟的刻蚀结果。 对于同一刻蚀宽度不同时刻的刻蚀剖面, 通过图像处理方法提取相应刻蚀线于同一个 图片上并表示成元胞模型, 如图 2所示, 图 2中示出了从相应刻蚀剖面提取的刻蚀线。 在 元胞模型中, 被刻蚀线占据的元胞, 其属性设成 " 1 " (图 2 中的黑色方框); 未被刻蚀线 占据的元胞, 其属性设成 "0" (图 2 中的白色方框)。 下面描述利用该模型求取刻蚀线上 选定点的刻蚀速率的示例性方法。 对于如图 4所示的元胞化刻蚀模型, 为求取刻蚀表面选定点 O的刻蚀速率, 需要知道 两个信息: 点 0的法向量和点 0沿法向量方向与下一时刻刻蚀线的交点 O'。 法向量的求 取可通过拟合点 O一定距离范围内的被占据元胞, 然后根据得到的表达式来获得。 而对于 交点 O', 由于刻蚀线上点的分布并没有特定规律, 因此直接求取其位置。 传统的解决方法 是让点 o沿着法向量以一定步长前进, 直到与下一时刻刻蚀线相交, 该交点即为 O'点。 当元胞模型较大时, 该方法效率较低。 下面介绍一种二分法用于快速求取 O'点位置。 首先, 在沿着法向量方向足够长的位置寻找位于刻蚀线下方的一点; Γ, 并设点 X为点 O。 然后取; r和; r的中点 z, 判断 z点是否位于刻蚀线上。 如果是, 则 z点即为所求的点 0'; 如果 z点位于刻蚀线的下方, 令 γ为 z ά, 否则令; r为 ζ点。 重复条件判断过程, 直到找到点 O'。 由于刻蚀速率本身很小, 因此可以采用以下公式 (1 ) 来近似求取 O点刻蚀速率。
其中 OO'指的是 0点到 O'的距离, zlt是两个刻蚀线的时间间隔。 另外, 在选取刻蚀表面的选定点以求取该点的刻蚀速率方面上, 如果在刻蚀线上均匀 选取点作为选定点,很难反映整个刻蚀线上刻蚀速率的分布情况,尤其是在沟槽底部两端, 通过不同分布选取点所求得的刻蚀速率相差很大。 因此, 为能精确表征刻蚀速率情况, 我 们重点选取刻蚀线上刻蚀速率变化较大的位置。 在一个示例中, 对于所述实际刻蚀速率样 本集合, 沟槽底部的采样密度大于沟槽侧面的采样密度。
返回图 1, 在步骤 S110中获得实际刻蚀速率样本集合后, 前进到步骤 S120。
在步骤 S120中, 选定刻蚀产额模型的形式, 确定该刻蚀产额模型中待确定的参数。 在一个示例中, 选定的刻蚀产额模型的形式如公式 (2)所示。
ΕΥ+, Θ) = C(^E+~ - ^)f(0) (2) 其中: e和 £Λ是指刻蚀过程与刻蚀工艺相关的参数; ^是指入射离子的角度 是指刻蚀 过程与入射角度相关的函数; £+是指入射离子的能量; 式(2)中函数 /( 如公式(3)所示: COS ^
θ > θ
cos θα 其中: C, Eth , 是建立刻蚀产额模型的待优化参数。 在另一个示例中, 刻蚀产额模型的形式还可以考虑误差项, 如下面的公式 (4)所示。
Er+ , θ) = - )/(Θ) + e{E+ , θ) (4) 误差项可以采用能量与角度的三角函数 (co^sii^等)为自变量的多项式拟合 等形式。
回到图 1, 在步骤 S120之后, 前进到步骤 S130。
在步骤 S130中, 利用预定优化算法来优化该刻蚀产额模型的待确定参数; 其中, 该 优化算法的优化目标涉及最小化实际刻蚀速率和对应模拟刻蚀速率之间的差异, 其中该对 应模拟刻蚀速率是利用刻蚀产额模型与刻蚀速率之间的预定关系而求得的。
在一个示例中, 以多目标进化算法作为优化算法, 该多目标的每个涉及 p组实际刻蚀 速率和模拟刻蚀速率之间的差别的每个。
例如, 对第/种宽度的剖面演化结果, 可以定义公式 (5)作为误差函数:
¾ W =∑∑ w(z', j)(vriJ (X)― vsiJ (x)f (5) 其中: x指的是刻蚀产额模型参数;《表示第 A种宽度下刻蚀剖面演化过程用于优化的剖面 数; 《3表示每个刻蚀演化表面选取用于优化的点的数量; !¾指的是第 种宽度下第 个剖 面第 个选定位置点的实际刻蚀速率; 1¾指的是与 wy相对应的模拟刻蚀速率; Μ , 是权 重因子,表示 ¾相对于 vnj的偏差对整体误差的影响程度。 可以例如定义下面的公式 (6)作为优化的目标函数:
Figure imgf000009_0001
其中 ρ指的是刻蚀演化剖面不同宽度的沟槽数量. 在这样的情况下优化的目标是要最小化函数 fix), 并求出对应的 X,使得模拟刻蚀速率 与实际刻蚀速率尽量接近。 由于/ (X)是一个函数向量, 因此不能只优化/ (X)的一个分量, 需 要均衡 /(X)中的不同分量, 因此, 刻蚀产额模型参数优化的问题可以转化成了多目标优化 问题。 在另一个示例中, 为了考察全体刻蚀剖面误差情况, 也重点研究单个刻蚀剖面误差对 全局的影响, 可以利用不同宽度刻蚀剖面的累加误差总和1 ,( 以及单个宽度下刻蚀剖面 的最大误差 maX(e, ( )作为优化目标来达到综合评价不同 e,(X)的目的。 基于此, 可以定义公 式 (7)作为新的优化目标函数, 从而把目标数量降低到 2个。 f{x) = {Yj el {x), m^{el {x))) (7) 在一个示例中, 利用基于分解的多目标进化算法 (MOEA/D)来优化该刻蚀产额模型的 待确定参数。有关多目标进化算法 (MOEA/D)的介绍, 可参见 Zhang a Li H 等于 2007年发 表在 IEEE T. Evolut. Comput. 11 712上的标题为 " MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition " 的文章。
图 5 示出了根据本发明一个实施例的基于分解的多目标进化算法来优化该刻蚀产额 模型的待确定参数的方法 130的流程图。
如图 5所示, 在步骤 S131中, 生成初始种群, 初始化待优化参数以及精英种群。 在步骤 S132中, 对种群中的个体进行交叉操作和 /或变异操作, 以生成新个体。 在步骤 S133中, 并行地对于各个个体利用刻蚀产额模型与刻蚀速率之间的关系计算 得到对应的模拟刻蚀速率, 基于实际刻蚀速率和模拟刻蚀速率之间的差异计算该个体的适 应度值。 例如, 利用第一个处理单元使用刻蚀产额模型计算第一个个体的适应度值, 通过 第二个处理单元利用刻蚀产额模型计算第二个个体的适应度值, 等等。
在步骤 S134中, 收集计算得来的个体, 并对个体进行选择操作。
在步骤 S135中, 用精英保留策略更新精英种群。
在步骤 S136中,确定是否达到终止条件,如达到,则终止处理;否则返回到步骤 S132。 在一个示例中, 为减少并行过程的数据传送, 在并行算法执行之前, 先将与刻蚀相关的实 验数据传送到相应的计算节点, 这样使得在每次计算适应度值时只需传输相应的参数数据 即可。
在一个示例中, 对于特定位置点, 利用刻蚀产额模型与刻蚀速率之间的预定关系求得 该特定位置点的模拟刻蚀速率可以包括: 利用下述该特定位置点的刻蚀产额 与第 i种离 子的刻蚀速率 ^之间的预定关系, 求得第 i种离子的刻蚀速率 , 该预定关系可以如下面 的公式 (8)所示:
Εγ = V x N / J ( 8) 其中: ^代表第 种入射离子在该特定位置点的刻蚀产额; 代表第 种入射离子对该特 定位置点的刻蚀速率; N,代表第 种入射离子的材料密度; J+代表第 种入射离子的流量; 则该特定位置点的模拟刻蚀速率可以如公式 (9)所示:
w,„
=∑VSi (9)
1
其中: ^,„为入射离子的种类数。
上述计算模拟刻蚀速率的方法仅为示例, 可以采用其它的计算模拟刻蚀速率的方法。 下面描述根据本发明一个实施例的刻蚀产额模型的建模方法的更具体的示例。
根据本发明一个实施例的刻蚀产额模型的建模方法可以包括以下步骤:
1 ) 设置刻蚀产额模型参数的取值范围, 以及例如通过设计不同时间不同参数的刻蚀 加工工艺, 利用扫描电镜分析剖面图片, 或者针对给定的加工剖面, 利用刻蚀剖面演化算 法对中间过程仿真, 来获得宽度不同的 P组不同刻蚀时间不同剖面位置点的实际刻蚀速率 , 其中 p指的是刻蚀演化剖面不同宽度的沟槽数量 为正整数, 取值范围为 2-5, 在 一个例子中 p的取值为 2); 在一 形式如下式所示:
Figure imgf000011_0001
其中函数 /( 中表示为:
Figure imgf000011_0002
其中 C Eth , 是建立模型的待优化参数; 各参数的定义及取值范围可以分别为: e [0.01,30] , £A e [0, 50]是与刻蚀环境相关的常数; ^ e [20°,50°] 是离子刻蚀产额曲线 形状随着入射角度 0° 90°变化时, 刻蚀产额首次发生变化时所对应的角度; £ ^是离子 本身具有的属性; £+是入射离子所具有的能量; ^是入射离子的入射角度;
2 ) 选择刻蚀产额模型参数的优化算法及设置该优化算法的初始参数, 设置优化算法 的最大执行次数 Nmax及优化算法的精度¾«, 以及沟槽表面预先选定的位置入射离子的初 始参数; 具体例如包括:
2. 1 ) 设置优化算法的初始参数: 例如选择基于分解的多目标进化算法 (MOEA/D ) 作为优化算法, 其中的交叉进化算子选择的是差分进化算子; 模型参数集表示为种群, 每 组模型参数是种群中一个个体; 设置以下初始参数: 种群大小 N^ (种群的取值范围可以 为 100〜500,本实施例中种群的取值为 300)、用于 MOEA/D算法演化过程的个体邻居数 Γ (个体邻居数的取值范围为 30〜50, 本实施例中个体邻居数的取值为 50)、 从个体的邻 居中选取个体作为父代的概率 (概率 的取值范围为 0.5〜0.8, 本实施例中概率 的取 值为 0.6)、 差分进化算子的交叉概率 CR (交叉概率 CR的取值范围为 0.05〜0.2, 本实施 例中交叉概率 CR的取值为 0.1)、 差分进化算子的比例因子 F (比例因子 F的取值范围为
0.5-1.0, 本实施例中比例因子 F的取值为 0.8)、 差分进化算子的变异概率 ρΜ (变异概率 pm的取值范围为 0.05〜0.2, 本实施例中变异概率 ρΜ的取值为 0.1)、
2. 2 ) , 设置优化算法的最大执行次数 Nmax及优化算法的精度 设置基于分解的多 目标进化算法最大执行次数 Nmax (最大执行次数 Nmax的取值范围为 50 150, 本实施例中 最大执行次数 Nmax的取值为 100)以及 MOEA/D算法的精度^ (MOEA/D算法的精度^ 的取值范围是 0.000001〜0.0001,本实施例中 MOEA/D算法的精度 eps的取值为 0.00001);
2. 3 ) 设置沟槽表面预先选定的多个位置入射离子的初始参数: 该初始参数包括: 根 据实验的数据, 确定所述多个位置入射离子的种类数 N,。„, 以及每种离子的流量、 角度分 布 和能量分布 ;
3 )根据步骤 2 )中优化算法的初始参数和刻蚀产额模型参数的取值范围, 生成 fi N^ 组模型参数 (个体) 组成的初始模型参数集 (初始种群), 以及优化算法的精英种群、 由初 始权重向量、 和参考向量 z组成的初始向量:
3. 1 )随机生成一个初始种群, 该初始种群共有^ 个个体(其中第 个个体用 x'来表 示),每个个体对应于一组模型参数,每一组模型参数都是由 N,。„组参数 ( , £A ,C)构成(总 共有 ^ = 3>< ^^个参数, N^。指的是每组模型参数中参数的个数), 每一组模型参数中 的各个参数的值均在取值范围内随机生成;
3. 2 )生成^^个均匀分布的初始权重向量(第 个向量用 表示,对应于第 个个体, 权重向量用于把多目标问题转化成单目标问题): 假设第 个向量 把 表示 成 ψ ^ρ进制数 « , ..., ^ , 则 A'可用公式 ( 10)表示:
Figure imgf000013_0001
3.3)初始化精英种群为空, 该精英种群用于存放该优化算法执行过程中的非支配解;
3.4) 对 = 1,...,N , 找出 Γ个与权重向量 欧氏距离最近的邻居权重向量, 令集合
B(i) = {ix,...,iT }为权重向量 对应的 T个邻居权重向量的编号;
3.5) 根据问题的先验知识, 设置优化算法的初始参考向量 2 = (^...,^;^, z的每个 分量均用于保存不同的刻蚀演化剖面宽度在演化过程中的最优适应值;
4)利用刻蚀产额与刻蚀速率的关系计算刻蚀产额模型参数集 (种群)中每组模型参数 (个体) 的适应值, 具体包括:
4.1) 把刻蚀产额模型参数集 (种群) 中每组模型参数 (个体) 和沟槽表面预先选定 的位置点入射离子的初始参数作为输入, 利用刻蚀产额模型公式求取刻蚀产额 , 然后再 利用刻蚀产额与刻蚀速率的关系公式 (11), 计算得到每种离子对该点的模拟刻蚀速率 :
EY = V Nt/J+ (11) 其中: £ 代表第 种入射离子的刻蚀产额; 代表第 种入射离子的刻蚀速率; N,代表第 种入射离子的材料密度 (单位体积内的原子数); J+代表第 种入射离子的流量。
则该位置总的模拟刻蚀速率如公式 (12): =∑ , (12)
/二 1 其中: ^,。„为入射离子的种类数;
4.2) 对于宽度不同的 ρ组沟槽, 第 组沟槽按照公式(13)计算模拟刻蚀速率 相对 于实际刻蚀速率^ 的误差:
Ek=∑∑w(i,j)(VriJ-VslJ)2 (13)
,=1
式中: 《表示第 组沟槽演化过程中不同的剖面数量, m表示第 组沟槽演化过程中每个 剖面预先选定位置的数量, 指的是第 组沟槽第 个剖面第 个位置点实际刻蚀速率, 指的是第 组沟槽第 个剖面第 个位置点模拟刻蚀速率, 表示第 A组沟槽第 水 剖面第 '个位置点模拟刻蚀速率与实际刻蚀速率的均方差对整体误差的影响程度;
4.3) 利用 4.2), 得到该组模型参数的适应值 F = (1/ ,1/ ,...,1/ );;
4.4) 计算得到模型参数集 (种群) 中每组模型参数的适应值;
5)根据每组模型参数(个体) 的适应值, 利用 MOEA/D算法搜索形成下一步模型参 数集 (种群), 其中交叉进化算子选择差分进化算子;
5.1)生成一个 [0, 1]之间随机数 作为参数值,若该随机数 小于等于从邻居选取个 体作为父代的概率 ^, 则把集合 P设置成集合 (0, 否则集合设置为 {1,2,...,N^} ;
5.2)利用差分进化算子实现交叉操作:令 =/,随机地从集合 P中选取两个数 ^和^, 利用差分进化算子生成新的个体 ^= ^,^,...,^^ ), 其中每一个分量 ^的计算公式如公 式 (14)所示:
Figure imgf000014_0001
其中: 为[0,1]之间的随机数;
5.3)采用随机变异算子实现变异操作, 通过公式(15)得到变异后的个体 y = (yl,y2,...yNp ,用来维护种群的多样性, 防止得到局部最优解: yk
Figure imgf000014_0002
其中: ={ (¾ 5-1 R4≤0'5, 和 分别是第 个参数的下界和上界, 和¾
[l-(2-2xR4)0'05 R4 > 0.5
为 [0,1]之间的随机数;
5.4)如果得到的个体 = ( ^2,..., ^。)中至少有一个分量 ^e{l,2, 的值不 在取值范围之内, 就把 _y,设置成取值范围内的任何一个随机值;
5.5) 更新参考向量 z的值: 对于_/ = 1,2,..., , 如果 < 0), 令 = );
5.6) 更新种群中个体 x'的所有邻居 的信息: 对于 'ε (), 如果新的个体 y = ( ,Α, )与邻居
Figure imgf000014_0003
)满足公式 (is): max{ /1 \fi{y)-zi\}< max{ Λ/ I fI(xJ)-zi 1} (16) ,则令 ^ = _y :
6 ) 用步骤 5 ) 得到的新种群,重复执行步骤 4) -5), 直到达到最大执行次数^, 或 当前代的最优值与上一代的最优值相比小于指定的精度 的模型参数集作为优化模型 参数集;
7 ) 从优化模型参数集选出最优的模型参数 (个体)并输出, 代入刻蚀产额模型参数化 表示公式 (1)、 (2), 即得到等离子体刻蚀工艺中刻蚀产额的模型。
根据本发明实施例, 提出了一种等离子体刻蚀表面演化仿真方法, 可以包括: (1)将 模拟区域划分成包含不同材料的元胞; (2 ) 根据边界离子分布和入射角度分布, 从材料的 上表面用蒙特卡罗方法模拟产生入射离子; (3 ) 模拟地跟踪离子运动直到达到材料表面或 离开模拟区域; (4) 判断达到材料表面的离子是否满足刻蚀条件, 如果满足刻蚀条件, 按 照刻蚀产额模型计算刻蚀原子数, 将其从所在元胞中减掉, 实现刻蚀; (5 ) 否则离子继续 被二次跟踪。
所述刻蚀产额模型是通过下述方法建立的: (1 )、 获得实际刻蚀速率样本集合; (2)、 选定刻蚀产额模型的形式, 确定该刻蚀产额模型中待确定的参数; (3 ) 利用预定优化算法 来优化该刻蚀产额模型的待确定参数; 其中, 该优化算法的优化目标涉及最小化实际刻蚀 速率和对应模拟刻蚀速率之间的差异, 其中该对应模拟刻蚀速率是利用刻蚀产额模型与刻 蚀速率之间的预定关系而求得的。
在一个示例中, 该等离子体刻蚀表面演化仿真方法采用基于元胞的刻蚀剖面演化方 法。
根据本发明的一个实施例, 提供了一种等离子体刻蚀表面演化仿真中使用的刻蚀产额 模型的建模装置, 可以包括: 实际刻蚀速率样本集合获得部件, 获得实际刻蚀速率样本集 合; 刻蚀产额模型形式和待优化参数确定部件, 被配置为选定刻蚀产额模型的形式, 确定 该刻蚀产额模型中待确定的参数; 参数优化部件, 被配置为利用预定优化算法来优化该刻 蚀产额模型的待确定参数; 其中, 该优化算法的优化目标涉及最小化实际刻蚀速率和对应 模拟刻蚀速率之间的差异, 其中该对应模拟刻蚀速率是利用刻蚀产额模型与刻蚀速率之间 的预定关系而求得的。 在传统的利用元胞自动法模拟刻蚀过程时错误! 未找到引用源。, 为减少计算复杂度, 所 使用的掩膜侧壁形状为竖直, 不考虑掩膜形状对刻蚀表面演化的影响。 图 6示出了传统的 元胞自动法模拟刻蚀技术中采用的刻蚀表面演化模型的初始状态。 然而, 随着刻蚀硅片的宽度增大, 刻蚀实验结果和仿真结果差距越来越大。 图 7中的 (a)和 (b)对比地示出了刻蚀实验结果和仿真结果。而且在整个演化过程保持掩膜侧壁竖直的 条件下, 其它与实验条件相关的刻蚀工艺参数被修改时, 对仿真结果影响不大。 因此, 在 模拟宽度较大的刻蚀剖面演化过程中, 如果掩膜侧壁始终保持竖直状态时, 就无法模拟出 与实验结果相符的沟槽形状。 在实际刻蚀过程之前, 掩膜侧壁会被先加工, 使之保持一定的倾斜角。 这样当入射离 子入射到侧壁时, 能够通过反射充分地入射到沟槽底部两侧。 同时在刻蚀过程中, 随着刻 蚀深度的加大, 掩膜侧壁受到离子的不断轰击, 会出现掩膜退缩现象, 使得掩膜侧壁倾斜 角会逐渐变小。
根据本发明一个实施例,考虑到掩膜侧壁倾斜角以及其随时间变化情况提供了一种等 离子体刻蚀表面演化仿真方法, 图 8示出了该等离子体刻蚀表面演化仿真方法 200的总体 流程图。
如图 8所示, 在步骤 S210中, 初始化刻蚀剖面演化模型, 设置初始掩膜侧壁倾斜角 度 。
在步骤 S220中, 利用元胞自动机法进行仿真, 并运行预定数目的步数。
在步骤 S230章, 根据预定公式调整掩膜侧壁倾斜角度 。 在步骤 S240中, 判断演化是否达到终止条件, 如达到则终止, 否则返回到步骤 S220。 在一个示例中, 其中根据下面的公式 (17)来计算掩膜倾斜角 φ :
Figure imgf000016_0001
其中 ^是掩膜侧壁初始倾斜角, t是刻蚀时间, 《是用于调整倾斜角的参数。 上述等离子体刻蚀表面演化仿真方法考虑掩膜侧壁倾斜角度对表面演化过程的影响, 并随时间进行来调整掩膜倾斜角度, 从而能够更准确地模拟实际刻蚀过程。 需要说明的是, 上述刻蚀产额模型建模装置的各个部件和 /或刻蚀产额模型建模方法 的各个步骤可以用软件程序来实现,例如通过通用计算机中的 CPU结合 RAM和 ROM等以 及其中运行的软件代码来实现。 软件程序可以存储在诸如闪存、 软盘、 硬盘、 光盘等存储 介质上, 在运行时加载到诸如随机访问存储器 RAM上来由 CPU执行。 另外, 除了通用计 算机上, 还可以通过专用集成电路和软件之间的合作来实现。 所述集成电路包括通过例如 MPU (微处理单元)、 DSP (数字信号处理器)、 FPGA (现场可编程门阵列)、 ASIC (专用集 成电路) 等中的至少一个来实现。 另外, 刻蚀产额模型建模装置的各个部件和刻蚀产额模 型建模方法的各个步骤可以用专门的硬件来实现, 例如特定的现场可编程门阵列、 专用集 成电路等。 另外, 刻蚀产额模型建模装置的各个部件和刻蚀产额模型建模方法的各个步骤 也可以利用软件和硬件的结合来实现。
根据本发明一个实施例, 提供了一种非瞬时计算机可读介质, 其上存储有指令集合, 该指令集合当被处理器执行时引导处理器执行等离子体刻蚀表面演化仿真中使用的刻蚀 产额模型的建模方法, 包括: (1 )、 获得实际刻蚀速率样本集合; (2)、 选定刻蚀产额模型 的形式, 确定该刻蚀产额模型中待确定的参数; (3) 利用预定优化算法来优化该刻蚀产额 模型的待确定参数; 其中, 该优化算法的优化目标涉及最小化实际刻蚀速率和对应模拟刻 蚀速率之间的差异, 其中该对应模拟刻蚀速率是利用刻蚀产额模型与刻蚀速率之间的预定 关系而求得的。
上述刻蚀产额模型建模装置的各个部件和 /或刻蚀产额模型建模方法的各个步骤的结 构和数量不对本发明的范围构成限制。根据本发明的一个实施例,各个部件和 /或各个步骤 可以合并为一个独立的部件和 /或步骤来执行和实现相应的功能和操作, 或者各个部件和 / 或各个步骤进一步拆分为更小的单元来实现他们各自的功能和操作。
以上已经描述了本发明的各实施例, 上述说明是示例性的, 并非穷尽性的, 并且也不 限于所披露的各实施例。 在不偏离所说明的各实施例的范围和精神的情况下, 对于本技术 领域的普通技术人员来说许多修改和变更都是显而易见的。 因此, 本发明的保护范围应该 以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种等离子体刻蚀表面演化仿真中刻蚀产额的建模方法, 其特征在于, 该方法包 括以下步骤:
1) 设置刻蚀产额模型参数的取值范围, 设计不同时间不同参数的刻蚀加工工艺, 利 用扫描电镜分析剖面图片, 或者针对给定的加工剖面, 利用刻蚀剖面演化算法对中间过程 仿真, 来获得宽度不同的 P组不同刻蚀时间不同剖面位置点的实际刻蚀速率
2) 选择刻蚀产额模型参数的优化算法及设置该优化算法的初始参数, 设置优化算法 的最大执行次数 Nmax及优化算法的精度 , 以及沟槽表面预先选定的位置入射离子的初 始参数;
3) 根据优化算法的要求和刻蚀产额模型参数的取值范围, 生成由^ 组模型参数组 成的初始模型参数集, 以及优化算法的精英种群及初始向量:
4) 利用刻蚀产额与刻蚀速率的关系计算刻蚀产额模型参数集中每组模型参数的适应 值;
5) 根据每组模型参数的适应值, 利用优化算法搜索形成下一步模型参数集;
6) 重复执行步骤 4) -5),直到达到最大执行次数 Nmax或满足指定的精度 后的模型 参数集作为优化模型参数集;
7) 从优化模型参数集选出最优的模型参数并输出, 代入刻蚀产额模型参数化表示公 式中, 即得到刻蚀产额的模型。
2、 如权利要求 1所述方法, 其特征在于, 所述步骤 4) 具体包括:
4.1) 把模型参数集中每组参数和刻蚀沟槽表面特定位置入射离子的初始参数作为输 入, 利用刻蚀产额与刻蚀速率的关系, 计算得到这些特定位置入射离子的刻蚀速率 Vs ;
4.2)对于宽度不同的;?组沟槽, 第 组沟槽按照公式 (1)计算模拟刻蚀速率 Vs相对 于实际刻蚀速率 的误差, 如下:
Ek=∑∑ )(Vnj-VSIjf (1) 式中: 表示第 组沟槽演化过鍾 不同的剖面数量, m表示第 组沟槽演化过程中 每个剖面预先选定位置的数量, 指的是第 组沟槽第 个剖面第 j'个位置点实际刻蚀速 率, Vsy.指的是第 组沟槽第 个剖面第 j'个位置点模拟刻蚀速率, vv0', )表示第 组沟槽第 Z '个剖面第 J'个位置点模拟刻蚀速率与实际刻蚀速率的均方差对整体误差的影响程度;
4.3) 利用 4.2), 得到该组模型参数的适应值 ^^/ /^,… /^);
4.4) 重复执行 4.1) -4.3), 计算模型参数集中每组参数的适应值。 3、 一种等离子体刻蚀表面演化仿真中使用的刻蚀产额模型的建模方法, 包括:
( 1 )、 获得实际刻蚀速率样本集合;
( 2 )、 选定刻蚀产额模型的形式, 确定该刻蚀产额模型中待确定的参数;
( 3 ) 利用预定优化算法来优化该刻蚀产额模型的待确定参数;
其中,该优化算法的优化目标涉及最小化实际刻蚀速率和对应模拟刻蚀速率之间的差 异, 其中该对应模拟刻蚀速率是利用刻蚀产额模型与刻蚀速率之间的预定关系而求得的。
4、 根据权利要求 3的建模方法, 所述获得实际刻蚀速率样本为宽度不同的刻蚀剖面 的 p组不同刻蚀时间不同剖面位置点的实际刻蚀速率 ^, 每种宽度的刻蚀剖面对应一组不 同刻蚀时间不同剖面位置点的实际刻蚀速率 ^, 其中 p为大于等于 1的整数, 以及每组的 不同刻蚀时间不同剖面位置点的实际刻蚀速率 ^的数目大于等于 1。
5、 根据权利要求 3的建模方法, 其中利用基于分解的多目标进化算法来优化该刻蚀 产额模型的待确定参数, 包括:
步骤 1 ) 生成初始种群, 初始化待优化参数以及精英种群;
步骤 2 ) 对种群中的个体进行交叉操作和 /或变异操作, 以生成新个体;
步骤 3 ) 并行地对于各个个体利用刻蚀产额模型与刻蚀速率之间的关系计算得到对应 的模拟刻蚀速率, 基于实际刻蚀速率和模拟刻蚀速率之间的差异计算该个体的适应度值; 步骤 4) 收集计算得来的个体, 并对个体进行选择操作, 用精英保留策略更新精英种 群;
步骤 5 ) 确定是否达到终止条件, 如达到, 则终止处理; 否则返回到步骤 2)。
6、 根据权利要求 3的建模方法, 其中, 获得实际刻蚀速率样本集合包括: 选用多个 相同材质和尺寸的硅片, 并在刻蚀前对其进行相同的预处理, 然后在相同的刻蚀环境下对 不同编号的硅片刻蚀不同的时间, 将这些硅片的刻蚀剖面结果视为同一个硅片在不同时刻 的刻蚀结果, 并分析该同一个硅片在不同时刻的刻蚀结果来获得刻蚀剖面各个点的实际刻 蚀速率。
7、 根据权利要求 6的建模方法, 获得实际刻蚀速率还包括:
对于不存在实际刻蚀数据的给定的加工剖面,利用刻蚀剖面演化算法对中间过程仿真 来获得该给定的加工剖面的各个点的实际刻蚀速率。
8、 根据权利要求 3的建模方法, 其中, 对于所述实际刻蚀速率样本集合, 沟槽底部 的采样密度大于沟槽侧面的采样密度。
9、 根据权利要求 3的建模方法, 选定的刻蚀产额模型的形式为公式 (2) :
Figure imgf000020_0001
其中: ^和£,¾是指刻蚀过程与刻蚀工艺相关的参数; ^是指入射离子的角度 是指刻蚀 过程与入射角度相关的函数; E+是指入射离子的能量; 式(2)中函数 fifi)如公式(3)所示:
θ > θ
Figure imgf000020_0002
其中: C, Elh, 是建立刻蚀产额模型的待优化参数。
10、 根据权利要求 3的建模方法, 对于特定位置点, 利用刻蚀产额模型与刻蚀速率之 间的预定关系求得该特定位置点的模拟刻蚀速率包括:
利用下述该特定位置点的刻蚀产额 与第 i种离子的刻蚀速率 之间的预定关系, 求得第 i种离子的刻蚀速率 , 该预定关系如下面的公式 (4)所示:
EYi = Vs Nt I J+ (4) 其中: Ey代表第 种入射离子在该特定位置点的刻蚀产额; 代表第 种入射离子对该特 定位置点的刻蚀速率; N,代表第 种入射离子的材料密度; +代表第 种入射离子的流量; 则该特定位置点的模拟刻蚀速率如公式 (5)所示:
Vs =∑VSi (5)
1 其中: N,。„ 人射离子的种类数。
11、根据权利要求 3的建模方法, 所述优化算法的优化目标涉及最小化利用不同宽度 刻蚀剖面的累加误差总和以及最小化单个宽度下刻蚀剖面的最大误差。
12、 一种等离子体刻蚀表面演化仿真方法, 包括:
步骤 1 ) 初始化刻蚀剖面演化模型, 设置初始掩膜侧壁倾斜角度 ^
步骤 2 ) 利用元胞自动机法进行仿真, 并运行预定数目的步数;
步骤 3 ) 根据预定公式利用公式调整掩膜侧壁倾斜角度 ^;
步骤 4 ) 判断演化是否达到终止条件, 如达到则终止, 否则返回到步骤 2)。
13、 根据权利要求 12 的等离子体刻蚀表面演化仿真方法, 其中根据下面的公式 (5)来 计算掩膜倾斜角 ^
Figure imgf000021_0001
其中 是掩膜侧壁初始倾斜角, 是刻蚀时间, 《是用于调整倾斜角的参数。
PCT/CN2014/082517 2013-07-19 2014-07-18 刻蚀产额的建模方法和刻蚀表面演化仿真方法 WO2015007237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/431,508 US20150227650A1 (en) 2013-07-19 2014-07-18 Method for modeling etching yield and etching surface evolution simulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310306649.1A CN103440361B (zh) 2013-07-19 2013-07-19 一种等离子体刻蚀工艺中刻蚀产额的建模方法
CN201310306649.1 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015007237A1 true WO2015007237A1 (zh) 2015-01-22

Family

ID=49694054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082517 WO2015007237A1 (zh) 2013-07-19 2014-07-18 刻蚀产额的建模方法和刻蚀表面演化仿真方法

Country Status (3)

Country Link
US (1) US20150227650A1 (zh)
CN (1) CN103440361B (zh)
WO (1) WO2015007237A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113191001A (zh) * 2021-04-30 2021-07-30 中南大学 一种基于分子动力学模拟油酸钠在一水硬铝石表面吸附性能的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440361B (zh) * 2013-07-19 2016-02-24 清华大学 一种等离子体刻蚀工艺中刻蚀产额的建模方法
US10534874B2 (en) * 2014-11-13 2020-01-14 Tsinghua University Particle etching or depositing evolutionary simulation method and device and computer readable medium
WO2016179023A1 (en) * 2015-05-01 2016-11-10 Adarza Biosystems, Inc. Methods and devices for the high-volume production of silicon chips with uniform anti-reflective coatings
WO2017067765A1 (en) * 2015-10-19 2017-04-27 Asml Netherlands B.V. Method and apparatus to correct for patterning process error
CN105772689B (zh) * 2016-03-03 2017-11-10 大连理工大学 基于分子动力学的铸造高铬合金的建模方法
CN105808867B (zh) * 2016-03-16 2018-11-23 徐州工程学院 一种基于模拟退火算法的建筑高度优化设计的方法
CN105808885B (zh) * 2016-03-30 2018-12-21 徐州工程学院 一种基于遗传算法的日照约束下建筑容积率计算方法
CN106495089B (zh) * 2016-10-31 2018-09-21 东南大学 湿法刻蚀石英晶体少量晶面获取全晶面刻蚀速率的方法
WO2020020759A1 (en) 2018-07-26 2020-01-30 Asml Netherlands B.V. Method for determining an etch profile of a layer of a wafer for a simulation system
CN111159921B (zh) * 2020-01-17 2023-06-16 安徽瑞迪微电子有限公司 一种igbt的设计方法
CN111540420B (zh) * 2020-05-09 2020-12-22 新磊半导体科技(苏州)有限公司 一种外延材料结构的结构参数确定方法及计算机程序产品
CN111773722B (zh) * 2020-06-18 2022-08-02 西北工业大学 一种模拟环境中的战斗机规避机动策略集生成方法
CN112270040B (zh) * 2020-10-23 2023-09-19 杭州世宝汽车方向机有限公司 一种基于主动容错的c-eps控制策略硬件在环仿真开发平台
CN115688489B (zh) * 2022-12-30 2023-06-16 全芯智造技术有限公司 沟槽蚀刻工艺的仿真方法及装置、存储介质、终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102194031A (zh) * 2011-05-24 2011-09-21 清华大学 一种等离子干法三维刻蚀模拟方法
CN103020349A (zh) * 2012-12-08 2013-04-03 清华大学 一种等离子体刻蚀工艺中刻蚀产额的建模方法
US8435418B2 (en) * 2008-07-10 2013-05-07 The Florida State University Research Foundation, Inc. Ion etching of growing InP nanocrystals using microwave
CN103440361A (zh) * 2013-07-19 2013-12-11 清华大学 一种等离子体刻蚀工艺中刻蚀产额的建模方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676958B2 (ja) * 1999-12-28 2005-07-27 株式会社日立製作所 半導体集積回路装置の製造方法
TWI240326B (en) * 2002-10-31 2005-09-21 Tokyo Electron Ltd Method and apparatus for determining an etch property using an endpoint signal
JP5112624B2 (ja) * 2004-09-01 2013-01-09 ラム リサーチ コーポレーション プロセスチャンバ及びプラズマチャンバを操作する方法
US7829465B2 (en) * 2006-08-09 2010-11-09 Shouliang Lai Method for plasma etching of positively sloped structures
US20100216263A1 (en) * 2007-02-02 2010-08-26 Lexas Research, Ltd. Method and Apparatus for Measuring Process Parameters of a Plasma Etch Process
EP2090675B1 (en) * 2008-01-31 2015-05-20 Imec Defect etching of germanium
US20090296073A1 (en) * 2008-05-28 2009-12-03 Lam Research Corporation Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope
US20100269084A1 (en) * 2008-11-24 2010-10-21 Yuri Granik Visibility and Transport Kernels for Variable Etch Bias Modeling of Optical Lithography
JP5440021B2 (ja) * 2009-08-24 2014-03-12 ソニー株式会社 形状シミュレーション装置、形状シミュレーションプログラム、半導体製造装置及び半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435418B2 (en) * 2008-07-10 2013-05-07 The Florida State University Research Foundation, Inc. Ion etching of growing InP nanocrystals using microwave
CN102194031A (zh) * 2011-05-24 2011-09-21 清华大学 一种等离子干法三维刻蚀模拟方法
CN103020349A (zh) * 2012-12-08 2013-04-03 清华大学 一种等离子体刻蚀工艺中刻蚀产额的建模方法
CN103440361A (zh) * 2013-07-19 2013-12-11 清华大学 一种等离子体刻蚀工艺中刻蚀产额的建模方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, YANGFU ET AL.: "An Optimization Method for Ion Etching Yield Modeling Based On Etching Velocity Matching", ACTA PHYSICA SINICA, vol. 63, no. 4, 23 February 2014 (2014-02-23), pages 1 - 8 *
ZHENG, SHULIN ET AL.: "A Three-Dimensional Surface Evolution Algorithm Base On Cellular Model For Etching Process", ACTA PHYSICA SINICA, vol. 62, no. 10, 23 May 2013 (2013-05-23), pages 1 - 8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113191001A (zh) * 2021-04-30 2021-07-30 中南大学 一种基于分子动力学模拟油酸钠在一水硬铝石表面吸附性能的方法

Also Published As

Publication number Publication date
CN103440361B (zh) 2016-02-24
CN103440361A (zh) 2013-12-11
US20150227650A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2015007237A1 (zh) 刻蚀产额的建模方法和刻蚀表面演化仿真方法
Qin et al. Evolutionary pattern design for copolymer directed self-assembly
Hupkens et al. Faster exact algorithms for computing expected hypervolume improvement
US9965577B2 (en) System and method for performing directed self-assembly in a 3-D virtual fabrication environment
Zuluaga et al. " Smart" design space sampling to predict Pareto-optimal solutions
KR20040019370A (ko) 최적 피팅 파라미터를 결정하는 장치 및 방법, 및 최적피팅 파라미터 결정 프로그램
WO2016074202A1 (zh) 粒子刻蚀或沉积演化仿真方法、装置和计算机可读介质
Luo et al. Kriging model based many-objective optimization with efficient calculation of expected hypervolume improvement
Bullmann et al. Fast kernel density estimation using Gaussian filter approximation
CN114186518A (zh) 一种集成电路良率估算方法及存储器
CN111260062A (zh) 基于自适应遗传算法的矩形件优化排样方法
Polzehl et al. Local likelihood modeling by adaptive weights smoothing
CN114117917B (zh) 一种多目标优化的舰船磁偶极子阵列建模方法
JP6233432B2 (ja) 混合モデルの選択方法及び装置
Hall et al. Bandwidth choice for local polynomial estimation of smooth boundaries
Xie Time series prediction based on recurrent LS-SVM with mixed kernel
JP2018190251A (ja) Lle計算装置、lle計算方法及びlle計算プログラム
CN113343492A (zh) 一种理论光谱数据的优化方法、系统及光学测量方法
Li et al. Particle swarm optimization of model parameters: Simulation of deep reactive ion etching by the continuous cellular automaton
KR20210117550A (ko) 3차원 형상의 임계 차원을 측정하기 위한 방법 및 이를 위한 장치
Aloui et al. Maximizing the Domain of attraction of nonlinear systems: A PSO optimization approach
JP2008242927A (ja) 遺伝的アルゴリズム実行装置および遺伝的アルゴリズム実行方法
Deng et al. A novel two stage algorithm for construction of rbf neural models based on a-optimality criterion
Benala et al. Software effort estimation using functional link neural networks optimized by improved particle swarm optimization
Bogoclu et al. Reliability analysis of non-linear and multimodal limit state functions using adaptive Kriging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14431508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825873

Country of ref document: EP

Kind code of ref document: A1