WO2015005582A1 - Hull propulsion method using guide-shaped steel - Google Patents

Hull propulsion method using guide-shaped steel Download PDF

Info

Publication number
WO2015005582A1
WO2015005582A1 PCT/KR2014/004741 KR2014004741W WO2015005582A1 WO 2015005582 A1 WO2015005582 A1 WO 2015005582A1 KR 2014004741 W KR2014004741 W KR 2014004741W WO 2015005582 A1 WO2015005582 A1 WO 2015005582A1
Authority
WO
WIPO (PCT)
Prior art keywords
enclosure
steel
steel pipe
guide
propulsion
Prior art date
Application number
PCT/KR2014/004741
Other languages
French (fr)
Korean (ko)
Inventor
김동우
김동수
Original Assignee
Kim Dong Woo
Kim Dong Su
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Dong Woo, Kim Dong Su filed Critical Kim Dong Woo
Priority to CN201480038943.1A priority Critical patent/CN105358796B/en
Publication of WO2015005582A1 publication Critical patent/WO2015005582A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/005Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by forcing prefabricated elements through the ground, e.g. by pushing lining from an access pit
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them

Definitions

  • the present invention relates to a method for constructing an underground tunnel, and more specifically, to press the protective steel pipe to reinforce the ground and then to push the concrete enclosure, the underground tunnel is precisely formed by using a guide beam formed in the steel pipe and joined to the enclosure.
  • the present invention relates to a hull propulsion method using guide section steel, which can be constructed and can minimize the influence on the upper ground.
  • One of the preferred methods when constructing underground tunnels maintains toffee without digging the ground where roads are located to reduce the impact on roads and rivers located above the underground tunnel. It is one of the non-opening methods for constructing underground tunnels.In order to build a work base before and after the tunnel section, construct a pipe loop on the outside of the tunnel section, excavate the inside of the pipe loop, and then proceed with the prefabricated enclosure. Underground tunnels will be built.
  • the front jacking method pre-fabricates the concrete enclosure, it is easy to control the quality of the enclosure, and since the concrete forming the enclosure has already reached a predetermined strength as a whole, it is possible to secure the safety of the structure and the worker during the tunnel construction.
  • the R & C method is an improvement of the above-mentioned front jacking method, and the cross section of the enclosure is made to match the cross section of the pipe loop to be constructed for protection. Can be used and pipe loops can be reused.
  • the front jacking method and the R & C method may affect the upper ground as the soil is pushed in the direction in which the housing is propelled by the frictional force acting between the outer surface and the ground during the propulsion of the enclosure and requires a very large traction force. And, there is a problem that the end of the enclosure may be damaged by the concentrated load acting on the end of the enclosure during towing.
  • the applicant has filed a 'method of construction of underground structures by the towing of the enclosure and the structure of the enclosure used therein' of the application number 10-2013-0036228 (unpublished).
  • the present invention as shown in Figure 1, to form a rectangular tube composite 60 having a space portion 61 of the same shape as the cross-section of the enclosure 100 in the work zone where the underground structure will be located and After installing the roller in the space 61 to check the exact position while pushing the pre-fabricated enclosure 100, and then to remove the soil inside the lower plate and the housing 100 of the square tube complex 60 to construct the underground structure
  • the inside of the rectangular tube composite 60 is empty and the outer surface and the ground of the housing 100 are separated by the rectangular tube composite 60 so that the propulsion of the housing 100 is compared with the conventional front jacking method and the R & C method. Very little frictional force is acting and thus the propulsion of the enclosure 100 can be minimized even with a small propulsion force and the influence on the upper ground can be minimized.
  • the present invention is possible only when the cross section of the enclosure 100 has a single closed space.
  • the inner wall may pass through the towing of the enclosure.
  • Excavation of the position corresponding to the inner wall should be preceded so that the advantages of the present invention cannot be maximized.
  • the size of the prefabricated enclosure is large, there is a limit to maintaining the exact position of the enclosure only by the roller in the rectangular tube composite.
  • the present invention is to solve the problems of the prior art as described above, even when the concrete enclosure has a complex cross-section so that a small friction force can act to promote the enclosure with a minimum propulsion force, precise construction is possible to have a high quality underground
  • the purpose is to provide a hull propulsion method using guide beams to build tunnels.
  • the hull propulsion method for constructing an underground tunnel a) constructing a propulsion base in front of the section in which the underground tunnel is to be constructed, the construction of the reaching base behind ; b) forming a steel pipe composite by forming a plurality of steel pipes in accordance with the position where the outer wall of the enclosure and the upper slab will be constructed, and removing the earth and sand inside the steel pipe; c) inserting the guide section steel into the steel pipe composite after installing a roller in the steel pipe composite according to the position where the guide section steel is to be inserted; d) fabricating the enclosure at the propulsion base, such that the end of the guide section is joined to the enclosure; e) pushing the enclosure while removing portions of the steel pipe that interfere with the enclosure and soil in front of the enclosure; f) disengaging the enclosure and the guide section steel ends; g) filling the mortar between the outer surface of the housing and the inner surface of the steel pipe is provided, characterized in
  • the steel pipe cross section is provided with a hull propulsion method using a guide-shaped steel, characterized in that the rectangular or circular.
  • step c) the end of the guide section steel is inserted into the steel pipe composite so as to protrude toward the propulsion base side, and the coalescence is manufactured so that the end of the guide section steel protruding in step d) is embedded in the enclosure.
  • a hull propulsion method using a guide section steel is provided.
  • the enclosure is made so that the connecting hardware is embedded in the end, characterized in that joined to the guide-shaped steel by the connecting hardware, the propulsion method using the guide-shaped steel is Is provided.
  • a housing propulsion method using a guide steel characterized in that the roller is attached to the lower surface or the upper and lower surfaces of the guide-shaped steel.
  • the process of forming the borehole or at least any one of the square tube or the circular steel tube according to the position of the lower slab of the enclosure there is provided a housing propulsion method using a guide section steel, characterized in that the progress.
  • a roller propulsion method using a guide-shaped steel is provided at a lower portion of the lower slab of the enclosure at a lower portion of the pit hole, the square tube, and the circular steel tube.
  • the propulsion method using the guide-shaped steel characterized in that further comprising the step of installing the support pile to the front of the housing is removed soil.
  • the enclosure in the step d), is manufactured so that the connecting hardware is embedded in the end, characterized in that the end reinforcing member is further installed by the connecting hardware, the propulsion of the enclosure using the guide beam A method is provided.
  • the guide beam is provided with a propulsion method using a guide beam, characterized in that bonded to the enclosure through the end reinforcing member.
  • the present invention can easily propel the enclosure to a desired position by the guide-shaped steel formed in the same direction as the direction in which the enclosure is propelled in the protective steel pipe when propelling the enclosure to construct the underground tunnel.
  • roller when the roller is further installed in the steel pipe, it is possible to reduce the friction force generated between the outer surface of the housing and the inner surface of the steel pipe by the roller can reduce the driving force required to propel the enclosure.
  • the guide beam acts like a beam to ensure the safety of workers and the stability of the underground tunnel under construction. It can be secured.
  • a roller may be installed at the lower part of the pit, such as the propulsion work of the enclosure.
  • An end reinforcement member may be further installed at the end of the enclosure to prevent the enclosure from being destroyed by the impact that may occur during the concentrated load during propulsion and removal work such as earth and sand.
  • FIG. 1 is an explanatory diagram illustrating a construction method of an underground tunnel according to the prior art.
  • Figure 2 is an explanatory diagram showing the propulsion method of the enclosure according to the present invention in order.
  • FIG 3 is a perspective view of a steel pipe used in the housing propulsion method according to the present invention.
  • FIG. 4 is a perspective view when the steel pipe is formed in a bundle.
  • FIG. 5 is a cross-sectional view of a steel pipe composite used in the propulsion method of the enclosure according to the present invention.
  • FIG. 6 is a cross-sectional view of the enclosure used in the enclosure propulsion method according to the present invention.
  • FIG. 7 is a first embodiment of the method for joining the enclosure and the guide-shaped steel in the enclosure propulsion method according to the present invention.
  • FIG. 8 is a second embodiment of the method for joining the enclosure and the guide-shaped steel in the enclosure propulsion method according to the present invention.
  • 9 and 10 are cross-sectional views when the end reinforcing material is further provided at the end of the housing used in the housing propulsion method according to the present invention.
  • FIG. 11 is a cross-sectional view of a masonry hole or the like used in the housing propulsion method according to the present invention.
  • the propulsion method according to the present invention is to build an underground tunnel, comprising the steps of: a) constructing a propulsion base in front of a section in which the underground tunnel is to be constructed and a reaching base behind; b) forming a steel pipe composite by forming a plurality of steel pipes in accordance with the position where the outer wall of the enclosure and the upper slab will be constructed, and removing the earth and sand inside the steel pipe; c) inserting the guide section steel into the steel pipe composite after installing a roller in the steel pipe composite according to the position where the guide section steel is to be inserted; d) fabricating the enclosure at the propulsion base, such that the end of the guide section is joined to the enclosure; e) pushing the enclosure while removing portions of the steel pipe that interfere with the enclosure and soil in front of the enclosure; f) disengaging the enclosure and the guide section steel ends; g) filling the mortar between the outer surface of the enclosure and the inner surface of the steel pipe.
  • Figure 2 shows the enclosure propulsion method according to the present invention in order.
  • the propulsion method comprises the steps of: a) constructing a propulsion base (P) in front of the section in which the underground tunnel is to be constructed, and a reaching base (A) behind; b) forming a plurality of steel pipes 310 in accordance with the position where the outer wall 230 and the upper slab 210 of the enclosure 200 will be constructed, and remove the soil inside the steel pipe 310 to form a steel pipe composite 300 step; c) inserting a guide section steel (400) into the steel pipe composite (300); d) manufacturing a housing 200 in the propulsion base (P), wherein the end of the guide section steel (400) is bonded to the housing (200); e) pushing the enclosure 200 while removing portions of the portions forming the steel pipe 310 and interfering with the enclosure 200 and soil in front of the enclosure; f) releasing the junction between the enclosure 200 and the guide section steel 400; g) filling the mortar between the outer surface of the housing 200 and the inner surface of the steel pipe 310.
  • step by step the propulsion method of the enclosure
  • the working space is formed before and after the section where the underground tunnel is to be constructed.
  • the working space in front of the underground tunnel is called the propulsion base (P) and the working space behind is called the reaching base (A).
  • the names of the propulsion base (P) and the reach base (A) is named based on when the enclosure 200 is manufactured in the work space in front of the underground tunnel, when the present invention will be described below the propulsion base (P).
  • the enclosure 200 is manufactured and pushed toward the reach base A will be described as a basic example, but the contents of the present invention are not limited by the terms 'promotion' and 'reach', and the enclosure 200 is provided. May be manufactured at the arrival base (A) or at both the propulsion base (P) and the reaching base (A).
  • the size of the propulsion base (P) is to the extent that the manufacturing operation of the enclosure 200 made in step d) can be easily made
  • the size of the reach base (A) is the propulsion of the enclosure 200 made in step e) To the extent that work can be done easily.
  • the propulsion base (P) and the reaching base (A) are generally constructed by excavating the ground vertically, so that the earth wall (W) for supporting the earth pressure to prevent the ground from collapsing during the formation of each base and the construction of the underground tunnel Provide construction.
  • a steel pipe composite 300 is formed to reinforce the ground of the section in which the underground tunnel is constructed and to facilitate the operation of the enclosure 200 in the step e).
  • Steel pipe 310 constituting the steel pipe composite 300 is formed in a square or circular cross section.
  • the reference steel pipe 310A shown in FIG. 3A is a steel pipe 310 which is first typed to form a steel pipe composite 300. As shown in FIG. It has a straight rib (R) and a plurality of side plates 313 are formed without gaps in the longitudinal direction of the steel pipe (310). And the connection steel pipe 310B shown in (b) of FIG.
  • FIG. 3 is a steel pipe that serves to expand the steel pipe composite 300 by being typed to the left and right of the reference steel pipe 310A after the reference steel pipe 310A is typed.
  • one side of the lip is straight and the side plate 313 coupled thereto is formed tightly, while the other side of the lip is formed with a hook (H) and the side plate 313 having a small width is formed at intervals.
  • the connecting steel pipe 310B When the connecting steel pipe 310B is typed, the side plate 313 of the reference steel pipe 310A located on the side facing the connecting steel pipe 310B is removed one by one, and the reference steel pipe 310 is connected to the hook of the connecting steel pipe 310B. Since a straight lip of 310A is inserted, it is possible to type so that the connecting steel pipe 310B is connected at the same angle as the reference steel pipe 310A.
  • the reference steel pipe 310A and the connecting steel pipe 310B may be formed as one tube and may be typed one by one. However, as shown in FIG. It is formed in the form of a tube bundle can be reduced by the effort to type the steel pipe 310 by the type of steel pipe 310 of the tube bundle type.
  • Steel pipe composite 300 is formed by forming a plurality of steel pipe 310 is formed in accordance with the cross-sectional shape of the underground tunnel, that is, the cross-sectional shape of the enclosure 200, the outer wall 230 and the upper slab 210 of the enclosure 200 ) Is formed to pass through.
  • FIGS. 5A and 5B illustrate a case in which an outer end surface of the enclosure 200 is a quadrangle.
  • 5 (a) is a case where the steel pipe composite 300 is made of a steel pipe 310 having a rectangular cross section
  • FIG. 5 (b) is a case where the steel pipe composite 300 is made of a steel pipe 310 having a circular cross section.
  • FIG. 5C is a steel pipe composite 300 in the case where the outer surface of the enclosure 200 is semi-circular, and when forming the steel pipe composite 300 as shown in FIG. 5C, an inverted trapezoidal cross section is shown. It may be desirable to use a steel pipe 310 or a circular steel pipe having a shape.
  • the guide section steel 400 is bonded to the enclosure 200 produced in step d) serves to hold the direction during the propulsion of the enclosure 200, the enclosure 200 has the same direction as the direction to be propelled Since the formed steel pipe 310 is formed long in the same direction as the longitudinal direction of the steel pipe 310, the housing 200 is prevented from protruding obliquely.
  • the guide beam 400 may be inserted only in a portion of the underground tunnel or may be inserted through the underground tunnel, depending on the length of the section of the underground tunnel.
  • the guide section steel 400 When the section length of the underground tunnel is short and the guide section steel 400 penetrates the underground tunnel and its front end is formed up to the end portion of the reaching base A side of the steel pipe composite 300, the guide section steel visually from the reaching base A ( Since it is possible to observe 400, it is easy to check whether the enclosure 200 is being pushed straight, and even if the propulsion angle of the enclosure 200 is misaligned, it can be corrected immediately.
  • the propulsion of the enclosure 200 using the guide section steel 400 in this way not only exerts an effect that the underground tunnel can be precisely constructed, thereby completing a structure having excellent performance, and the enclosure 200 is a steel pipe. Since the straight line within the composite 300 does not generate friction with the inner surface of the steel pipe composite 300 is also effective to propel the enclosure 200 with a small propulsion force.
  • the roller 314 may be additionally installed inside the steel pipe composite 300 in accordance with the position to be inserted into the guide member steel 400.
  • the roller 314 is installed to be in contact with the upper surface of the upper flange and the lower surface of the lower flange of the guide member steel 400, to facilitate the insertion operation of the guide member steel 400 and the pushing operation of the housing 200.
  • Such a roller may be installed in the steel pipe composite 300 before the guide member steel 400 is inserted as described above.
  • the roller may be attached to a lower surface or an upper / lower surface of the guide member steel 400 to guide the guide member. Insertion of the shaped steel 400 may be made easy.
  • the roller is attached to the guide section steel (400) in this way, since the attachment work of the roller can be made when manufacturing the guide section steel (400), shortening the air by not occupying the roller attachment step separately in the propulsion method according to the present invention. It is possible.
  • the guide section steel 400 is formed so as not to protrude or protrude toward the propulsion base (P) according to the bonding method with the enclosure 200, which will be described in detail in step d).
  • the enclosure 200 to be the main structure of the underground tunnel is manufactured.
  • the enclosure 200 may be formed in various forms as long as the outer wall 230 and the upper slab 210 of the enclosure 200 may be inserted into the steel pipe composite 300 formed in step b). That is, the upper and lower slabs 210 and 220 and the outer wall 230 may be formed to have only one closed space. As shown in FIG. It may be formed to have a space.
  • the guide section steel 400 is joined as mentioned above.
  • FIG. 7 is a first embodiment of the method of joining the enclosure 200 and the guide section steel 400, when inserting the guide section 400 in the preceding step c) so that the rear end is not completely inserted into the guide section steel
  • the rear end of the (400) is to protrude to the propulsion base (P) side.
  • the end of the guide section steel 400 is embedded in the enclosure 200 to form a stud (S) to anchor the function can be made to be more firmly bonded to the guide section steel 400 and the enclosure 200.
  • the front end portion of the guide section steel 400 is inserted to protrude toward the reaching base A side, and the front end portion of the guide section steel 400 is manufactured while manufacturing the enclosure 200 at the reaching base A. 200).
  • FIG 8 is a second embodiment of the method of joining the enclosure 200 and the guide section steel 400, when manufacturing the enclosure 200 buried the connecting hardware 250, such as anchor bolts in the front end of the enclosure 200 And join the guide section steel 400 and the housing 200 through the connecting hardware (250).
  • the junction of the enclosure 200 and the guide section steel 400 may be made in a different manner than in the first and second embodiments. It will be described in the section related to the end reinforcing member 600.
  • the housing 200 on the outer surface of the housing 200 facing the roller 314 It is preferable to form the rail 260 in the longitudinal direction of.
  • the rail may be formed in any form, such as a, I, H-shaped steel, if the surface in contact with the roller 314 forms a part of the outer surface of the enclosure 200, as shown in Figure 6, using C-shaped steel.
  • the outer surface of the web is in contact with the roller 314 and both flanges are preferably embedded in the enclosure 200 to enable the anchoring function.
  • the end of the enclosure 200 made of concrete may be destroyed by a concentrated load occurring at the end of the enclosure 200 or an impact generated when the soil removal in front of the enclosure 200 occurs.
  • the end reinforcing member 600 may be further formed.
  • the end reinforcement member 600 is manufactured by embedding the connection hardware 250 at the end of the enclosure 200 and then installed in the enclosure 200 through the connection hardware 250.
  • the end reinforcement member 600 When the end reinforcement member 600 is further installed at the end of the enclosure 200, the guide section steel 400 is joined to the enclosure 200 through the end reinforcement member 600, as shown in FIG. 9. As shown in FIG. 10, the end reinforcement member 600 may be formed so as not to overlap with the position of the guide section steel 400 so as to be joined to the enclosure 200 without interference with the end reinforcement member 600.
  • the end reinforcing member 600 may be formed in any form as long as it serves to protect the end of the concrete made of concrete, but the end surface of the enclosure 200 to disperse the concentrated load acting on the enclosure 200 It is preferable that it is made of I-shaped steel or H-shaped steel which is in contact with the whole and has a large strength.
  • the vessel 200 Propelled by the base (P) the vessel 200 to be propelled to the location of the underground tunnel.
  • roller 314 When the roller 314 is further installed in the steel pipe composite 300, the roller is in contact with the lower flange of the guide-shaped steel 400 and is then pushed. Soil may be removed to support the load of the enclosure 200 by placing concrete on the bottom of the space to be removed.
  • the upper plate 311 of the steel pipe 310 and the guide member steel 400 joined to the enclosure 200 may support the earth pressure. Safety and structural stability can be secured.
  • the guide section steel 400 is formed in the long direction in which the enclosure 200 is propelled as described above, and contributes to the precise operation of the enclosure 200.
  • the non-removed portion of the steel pipe 310 separates the space inside the steel pipe 310 and the surrounding ground outside the steel pipe 310 to minimize the influence of frictional force generated when the enclosure 200 is pushed on the surrounding ground. It allows to propel the enclosure 200 with a small propulsion force.
  • the roller 314 When the roller 314 is installed in the steel pipe composite 300, the roller 314 reduces the friction force between the guide section steel 400 and the steel pipe 310, the housing 200 and the steel pipe 310, this effect is It gets bigger.
  • the lower slab 220 of the enclosure 200 The process of forming at least one or more of the square tube 500B or the circular steel tube 500C may be performed.
  • Shaft hole (500A), square tube (500B) and circular steel pipe (500C) has a large weight by making a base concrete floor to be in contact with the lower surface of the lower slab 220, the enclosure 200 To be propelled without being settled and serve as a guide for the enclosure 200 to be propelled, as well as to form a ground first parallel to the underground tunnel as seen in a general pilot tunnel, and to cut the periphery It is easy to remove the work.
  • Rollers 510 may be installed on the concrete floor to reduce frictional forces generated when pushing the enclosure 200.
  • the ground on which the underground tunnel is constructed is made of soft ground, etc., the load of the enclosure 200 and the load generated when the enclosure 200 is propelled cannot be tolerated.
  • the process of reinforcing the ground may be further included by constructing a support pile in front of it.
  • Propulsion for the propulsion of the enclosure 200 may be generated by the propulsion jack or may be generated by the towing jack, may be generated by both the propulsion jack and the towing jack.
  • the sheath tube 270 is buried in the longitudinal direction within the enclosure 200 so that the tension member can be disposed, and the reaction force B is reached at the base A. ) So that the end of the tension member can settle.
  • the enclosure 200 is pushed to the planned position to remove the unnecessary guide beams 400 from the enclosure 200.
  • the guide section steel 400 When the guide section steel 400 is joined to the enclosure 200 by its end portion embedded in the enclosure 200, the guide section steel 400 is cut and removed except for the portion embedded in the enclosure 200, and embedded at the end of the enclosure 200. In the case of being joined to the enclosure 200 by the connection hardware 250, the connection with the connection hardware 250 is released to release the connection.
  • the guide section steel 400 joined to the enclosure 200 by the connecting hardware 250 can be recycled after releasing the joining.
  • the end reinforcement member 600 When the end reinforcement member 600 is further installed at the front and rear ends of the enclosure 200, the end reinforcement member 600 is also removed.
  • the present invention relates to an enclosure propulsion method using a guide section steel capable of precisely constructing an underground tunnel and minimizing the influence on the upper ground, and may be referred to as an industrially applicable invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

The present invention relates to a hull propulsion method using guide-shaped steel, which reinforces the ground by inserting a protective steel pipe, enables precise construction for an underground tunnel using the guide steel formed within a steel pipe and connected with a hull when a concrete hull is propelled, and can minimize an influence on the upper ground. The hull propulsion method comprises the steps of: a) constructing a propulsion base and an arrival base; b) forming a steel pipe composite according to construction locations of an outer wall and an upper slab in the hull; c) inserting the guide-shaped steel into the steel pipe composite; d) connecting an end of the guide-shaped steel to the hull when the hull is manufactured in the propulsion base; e) propelling the hull; f) releasing the hull and the end of the guide-shaped steel from each other; and g) filling mortar between an outer surface of the hull and an inner surface of the steel pipe.

Description

가이드 형강을 이용한 함체 추진공법Ship propulsion method using guide section steel
본 발명은 지하 터널의 구축방법에 관한 것으로서, 보다 상세하게는 방호용 강관을 압입하여 지반을 보강한 후 콘크리트 함체를 추진할 때에 강관 내에 형성되고 함체와 접합되는 가이드 형강을 이용하여 지하 터널을 정밀하게 시공하는 것이 가능하고 상부 지반에의 영향을 최소화할 수 있는, 가이드 형강을 이용한 함체 추진공법에 관한 것이다.The present invention relates to a method for constructing an underground tunnel, and more specifically, to press the protective steel pipe to reinforce the ground and then to push the concrete enclosure, the underground tunnel is precisely formed by using a guide beam formed in the steel pipe and joined to the enclosure. The present invention relates to a hull propulsion method using guide section steel, which can be constructed and can minimize the influence on the upper ground.
지하 터널을 구축할 때에 선호되는 방법 중 하나인 프론트잭킹공법(Front Jacking Method)은, 지하 터널 상부에 위치하는 도로나 하천 등에 대한 영향을 줄이기 위하여 도로 등이 위치하는 지표면을 굴착하지 않고 토피를 유지한 채 지하 터널을 구축하는 비개착공법 중 하나로서, 터널 구간의 전후에 작업기지를 구축하고 터널 단면의 외측에 파이프 루프를 시공한 후 파이프 루프 내측을 굴착하면서 미리 제작한 함체를 추진하는 순서로 지하 터널을 구축하게 된다.One of the preferred methods when constructing underground tunnels, the Front Jacking Method, maintains toffee without digging the ground where roads are located to reduce the impact on roads and rivers located above the underground tunnel. It is one of the non-opening methods for constructing underground tunnels.In order to build a work base before and after the tunnel section, construct a pipe loop on the outside of the tunnel section, excavate the inside of the pipe loop, and then proceed with the prefabricated enclosure. Underground tunnels will be built.
이러한 프론트잭킹공법은 콘크리트 함체를 미리 제작하므로 함체의 품질관리가 용이하고, 함체를 이루는 콘크리트가 전체적으로 이미 소정의 강도에 도달되어 있으므로 터널 구축 중에 구조체 및 작업자의 안전성을 확보할 수 있다.Since the front jacking method pre-fabricates the concrete enclosure, it is easy to control the quality of the enclosure, and since the concrete forming the enclosure has already reached a predetermined strength as a whole, it is possible to secure the safety of the structure and the worker during the tunnel construction.
R&C 공법은 상기의 프론트잭킹공법을 개량한 공법으로서, 함체의 단면을 방호용으로 시공되는 파이프 루프의 단면과 일치하게 제작하고 함체의 추진시 상기 파이프 루프까지 밀어내므로 함체 상부의 토피를 얇게 형성시킬 수 있고 파이프 루프를 재사용 할 수 있다.The R & C method is an improvement of the above-mentioned front jacking method, and the cross section of the enclosure is made to match the cross section of the pipe loop to be constructed for protection. Can be used and pipe loops can be reused.
그러나 상기 프론트잭킹공법 및 R&C 공법은 함체의 추진시에 함체의 외면과 지반 사이에 작용하는 마찰력에 의해 함체가 추진되는 방향으로 흙이 밀려나가면서 상부 지반에 영향을 줄 수 있고 매우 큰 견인력을 필요로 하며, 견인시 함체의 단부에 작용하는 집중하중에 의해 함체의 단부가 파손될 수 있다는 문제점이 있다.However, the front jacking method and the R & C method may affect the upper ground as the soil is pushed in the direction in which the housing is propelled by the frictional force acting between the outer surface and the ground during the propulsion of the enclosure and requires a very large traction force. And, there is a problem that the end of the enclosure may be damaged by the concentrated load acting on the end of the enclosure during towing.
이러한 문제점을 해결하기 위하여 본 출원인은, 출원번호 10-2013-0036228(미공개)의 '함체 견인에 의한 지하구조물의 시공방법 및 이에 사용되는 함체의 구조'를 출원한 바 있다. 상기 출원발명은, 도 1에 도시되어 있는 바와 같이, 지하구조물이 위치하게 될 작업구간에 함체(100)의 단면과 같은 형상의 공간부(61)를 갖는 사각형관 복합체(60)를 형성하고 상기 공간부(61) 내에 롤러를 설치하여 정위치를 확인하면서 미리 제작된 함체(100)를 추진한 후 사각형관 복합체(60)의 하판 및 함체(100) 내부의 토사를 제거하여 지하구조물을 시공하는 방법으로서, 사각형관 복합체(60)의 내부가 비어있고 사각형관 복합체(60)에 의해 함체(100)의 외면과 지반이 분리되어 함체(100)의 추진시 종래의 프론트잭킹공법 및 R&C 공법에 비해 아주 적은 마찰력이 작용하게 되고 이에 따라 작은 추진력으로도 함체(100)의 추진이 가능할 뿐만 아니라 상부 지반에의 영향을 최소화 할 수 있다.In order to solve this problem, the applicant has filed a 'method of construction of underground structures by the towing of the enclosure and the structure of the enclosure used therein' of the application number 10-2013-0036228 (unpublished). The present invention, as shown in Figure 1, to form a rectangular tube composite 60 having a space portion 61 of the same shape as the cross-section of the enclosure 100 in the work zone where the underground structure will be located and After installing the roller in the space 61 to check the exact position while pushing the pre-fabricated enclosure 100, and then to remove the soil inside the lower plate and the housing 100 of the square tube complex 60 to construct the underground structure As a method, the inside of the rectangular tube composite 60 is empty and the outer surface and the ground of the housing 100 are separated by the rectangular tube composite 60 so that the propulsion of the housing 100 is compared with the conventional front jacking method and the R & C method. Very little frictional force is acting and thus the propulsion of the enclosure 100 can be minimized even with a small propulsion force and the influence on the upper ground can be minimized.
그러나 상기 출원발명은 함체(100)의 단면이 하나의 폐쇄된 공간을 갖는 경우에만 가능한 방법으로서, 함체가 내벽에 의해 구획되어 여러 개의 폐쇄된 공간을 갖는 경우에는 함체의 견인시 내벽이 통과할 수 있도록 내벽과 대응되는 위치에 대한 굴착이 선행되어야 하므로 상기 출원발명의 장점을 최대한 활용할 수 없다. 또한, 미리 제작되는 함체의 규모가 큰 경우에는 사각형관 복합체 내의 롤러만으로 함체의 정위치를 유지하는 것에 한계가 있다.However, the present invention is possible only when the cross section of the enclosure 100 has a single closed space. When the enclosure is divided by an inner wall and has a plurality of closed spaces, the inner wall may pass through the towing of the enclosure. Excavation of the position corresponding to the inner wall should be preceded so that the advantages of the present invention cannot be maximized. In addition, when the size of the prefabricated enclosure is large, there is a limit to maintaining the exact position of the enclosure only by the roller in the rectangular tube composite.
본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위한 것으로서, 콘크리트 함체가 복잡한 단면을 갖는 경우에도 작은 마찰력이 작용하도록 하여 최소한의 추진력으로 함체를 추진할 수 있고, 정밀한 시공이 가능하여 고품질을 갖는 지하 터널을 구축할 수 있는, 가이드 형강을 이용한 함체 추진공법을 제공하는 데에 그 목적이 있다.The present invention is to solve the problems of the prior art as described above, even when the concrete enclosure has a complex cross-section so that a small friction force can act to promote the enclosure with a minimum propulsion force, precise construction is possible to have a high quality underground The purpose is to provide a hull propulsion method using guide beams to build tunnels.
상기와 같은 과제를 해결하기 위한 본 발명의 바람직한 실시예에 의하면, 지하 터널을 구축하기 위한 함체 추진공법에 있어서, a) 지하 터널이 시공될 구간의 앞에는 추진기지를, 뒤에는 도달기지를 시공하는 단계; b) 함체의 외벽 및 상부슬래브가 시공될 위치에 맞추어 강관 다수 개를 타입하고 강관 내부의 토사를 제거하여 강관복합체를 형성시키는 단계; c) 가이드 형강이 삽입될 위치에 맞추어 강관복합체의 내부에 롤러를 설치한 후, 상기 강관복합체 내에 가이드 형강을 삽입하는 단계; d) 추진기지에서 함체를 제작하되, 상기 가이드 형강의 단부가 함체에 접합되도록 하는 단계; e) 강관을 이루는 부분 중 함체와 간섭하는 부분 및 함체 전방의 토사를 제거하면서 함체를 추진하는 단계; f) 상기 함체와 가이드 형강 단부의 접합을 해제하는 단계; g) 상기 함체의 외면과 강관 내면 사이에 몰탈을 충진하는 단계;를 포함하여 이루어지는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to a preferred embodiment of the present invention for solving the above problems, in the hull propulsion method for constructing an underground tunnel, a) constructing a propulsion base in front of the section in which the underground tunnel is to be constructed, the construction of the reaching base behind ; b) forming a steel pipe composite by forming a plurality of steel pipes in accordance with the position where the outer wall of the enclosure and the upper slab will be constructed, and removing the earth and sand inside the steel pipe; c) inserting the guide section steel into the steel pipe composite after installing a roller in the steel pipe composite according to the position where the guide section steel is to be inserted; d) fabricating the enclosure at the propulsion base, such that the end of the guide section is joined to the enclosure; e) pushing the enclosure while removing portions of the steel pipe that interfere with the enclosure and soil in front of the enclosure; f) disengaging the enclosure and the guide section steel ends; g) filling the mortar between the outer surface of the housing and the inner surface of the steel pipe is provided, characterized in that it comprises a guide propulsion method using a guide-shaped steel.
본 발명의 또 다른 실시예에 의하면, 상기 강관의 단면은 사각형이거나 원형인 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to another embodiment of the present invention, the steel pipe cross section is provided with a hull propulsion method using a guide-shaped steel, characterized in that the rectangular or circular.
본 발명의 또 다른 실시예에 의하면, 상기 c)단계에서 가이드 형강의 단부는 추진기지 측으로 돌출되도록 강관복합체 내에 삽입되고, 상기 d)단계에서 돌출된 가이드 형강의 단부가 함체 내에 매립되도록 합체가 제작되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to another embodiment of the present invention, in step c), the end of the guide section steel is inserted into the steel pipe composite so as to protrude toward the propulsion base side, and the coalescence is manufactured so that the end of the guide section steel protruding in step d) is embedded in the enclosure. Provided is a hull propulsion method using a guide section steel.
본 발명의 또 다른 실시예에 의하면, 상기 d)단계에서, 함체는 단부에 연결철물이 매립되도록 제작되고, 연결철물에 의해 가이드 형강과 접합되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to another embodiment of the present invention, in the step d), the enclosure is made so that the connecting hardware is embedded in the end, characterized in that joined to the guide-shaped steel by the connecting hardware, the propulsion method using the guide-shaped steel is Is provided.
본 발명의 또 다른 실시예에 의하면, 상기 가이드 형강의 하면 또는 상·하면에는 롤러가 부착되어 있는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to another embodiment of the present invention, there is provided a housing propulsion method using a guide steel, characterized in that the roller is attached to the lower surface or the upper and lower surfaces of the guide-shaped steel.
본 발명의 또 다른 실시예에 의하면, 상기 c)단계 내지 d)단계의 진행과 동시에, 함체의 하부슬래브 위치에 맞추어 도갱공을 형성시키거나 사각각관 또는 원형강관 중 적어도 어느 하나 이상을 타입하는 과정이 진행되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to another embodiment of the present invention, at the same time as the steps of c) to d), the process of forming the borehole or at least any one of the square tube or the circular steel tube according to the position of the lower slab of the enclosure There is provided a housing propulsion method using a guide section steel, characterized in that the progress.
본 발명의 또 다른 실시예에 의하면, 상기 도갱공, 사각각관 및 원형강관의 하부에는 함체의 하부슬래브 하면 위치에 맞추어 롤러가 더 설치되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to still another embodiment of the present invention, a roller propulsion method using a guide-shaped steel is provided at a lower portion of the lower slab of the enclosure at a lower portion of the pit hole, the square tube, and the circular steel tube. .
본 발명의 또 다른 실시예에 의하면, 상기 e)단계에서, 토사가 제거된 함체의 전방으로는 지지말뚝이 설치되는 과정이 더 포함되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to another embodiment of the present invention, in the step e), the propulsion method using the guide-shaped steel, characterized in that further comprising the step of installing the support pile to the front of the housing is removed soil.
본 발명의 또 다른 실시예에 의하면, 상기 d)단계에서, 함체는 단부에 연결철물이 매립되도록 제작되고, 연결철물에 의해 단부보강부재가 더 설치되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to another embodiment of the present invention, in the step d), the enclosure is manufactured so that the connecting hardware is embedded in the end, characterized in that the end reinforcing member is further installed by the connecting hardware, the propulsion of the enclosure using the guide beam A method is provided.
본 발명의 또 다른 실시예에 의하면, 상기 가이드 형강은 단부보강부재를 통하여 함체에 접합되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법이 제공된다.According to still another embodiment of the present invention, the guide beam is provided with a propulsion method using a guide beam, characterized in that bonded to the enclosure through the end reinforcing member.
본 발명은 지하 터널을 시공하기 위하여 함체를 추진할 때에, 방호용 강관 내에 함체가 추진되는 방향과 같은 방향으로 형성되어 있는 가이드 형강에 의해 함체를 원하는 위치로 용이하게 추진할 수 있다.The present invention can easily propel the enclosure to a desired position by the guide-shaped steel formed in the same direction as the direction in which the enclosure is propelled in the protective steel pipe when propelling the enclosure to construct the underground tunnel.
그리고 상기 강관 내에 롤러가 더 설치된 경우, 롤러에 의해 함체 외면과 강관 내면 사이에 발생하는 마찰력을 줄일 수 있어 함체를 추진하는 데에 필요한 추진력을 절감할 수 있다.And when the roller is further installed in the steel pipe, it is possible to reduce the friction force generated between the outer surface of the housing and the inner surface of the steel pipe by the roller can reduce the driving force required to propel the enclosure.
함체의 추진시 강관의 일부와 함체 전면의 토사가 제거되기 때문에 함체가 내벽에 의해 폐쇄된 다수 개의 공간을 갖는 경우에도 용이하게 추진하는 것이 가능하다. 강관 일부와 함체 전면의 토사의 제거 작업시, 그리고 함체 전면이 토사를 제거하여 형성되는 공간에 의해 지반이 불안정해지더라도 가이드 형강이 보와 같은 역할을 하여 작업자의 안전 및 시공중인 지하 터널의 안정성을 확보할 수 있다.Since part of the steel pipe and the soil of the front surface of the enclosure are removed during propulsion of the enclosure, it is possible to easily propel even when the enclosure has a plurality of spaces closed by the inner wall. When the soil is unstable due to the part of steel pipes and the soils removed from the front of the enclosure, and the ground formed by removing the soil, the guide beam acts like a beam to ensure the safety of workers and the stability of the underground tunnel under construction. It can be secured.
또한, 도갱공 등을 시공함으로써 함체 전면의 토사 제거 작업을 용이하게 할 수 있으며, 지하 터널이 시공되는 부분이 연약 지반인 경우 지지말뚝을 사용하여 지반이 붕괴되는 것을 방지할 수 있다. 도갱공 등의 하부에는 롤러를 시공하여 함체의 추진 작업이 더욱 용이하게 이루어지도록 할 수 있다.In addition, it is possible to facilitate the earth and sand removal work on the front of the enclosure by constructing the pit, etc., and when the part of the underground tunnel is a soft ground can be used to prevent the ground collapse. A roller may be installed at the lower part of the pit, such as the propulsion work of the enclosure.
함체의 단부에는 단부보강재를 더 설치하여 추진시의 집중하중 및 토사 등의 제거 작업시에 발생할 수 있는 충격에 의해 함체가 파괴되는 것을 방지할 수 있다.An end reinforcement member may be further installed at the end of the enclosure to prevent the enclosure from being destroyed by the impact that may occur during the concentrated load during propulsion and removal work such as earth and sand.
도 1은 종래기술에 의한 지하 터널의 시공방법을 설명하는 설명도이다.1 is an explanatory diagram illustrating a construction method of an underground tunnel according to the prior art.
도 2는 본 발명에 의한 함체 추진공법을 순서대로 도시한 설명도이다.Figure 2 is an explanatory diagram showing the propulsion method of the enclosure according to the present invention in order.
도 3은 본 발명에 의한 함체 추진공법에 사용되는 강관의 사시도이다.3 is a perspective view of a steel pipe used in the housing propulsion method according to the present invention.
도 4는 상기 강관이 다발로 형성되는 경우의 사시도이다.4 is a perspective view when the steel pipe is formed in a bundle.
도 5는 본 발명에 의한 함체 추진공법에 사용되는 강관복합체의 단면도이다.5 is a cross-sectional view of a steel pipe composite used in the propulsion method of the enclosure according to the present invention.
도 6은 본 발명에 의한 함체 추진공법에 사용되는 함체의 단면도이다.6 is a cross-sectional view of the enclosure used in the enclosure propulsion method according to the present invention.
도 7은 본 발명에 의한 함체 추진공법에 있어서 함체와 가이드 형강의 접합방법에 관한 제1실시예이다.7 is a first embodiment of the method for joining the enclosure and the guide-shaped steel in the enclosure propulsion method according to the present invention.
도 8은 본 발명에 의한 함체 추진공법에 있어서 함체와 가이드 형강의 접합방법에 관한 제2실시예이다.8 is a second embodiment of the method for joining the enclosure and the guide-shaped steel in the enclosure propulsion method according to the present invention.
도 9 및 도 10은 본 발명에 의한 함체 추진공법에 사용되는 함체의 단부에 단부보강재가 더 설치되어 있는 경우의 단면도이다.9 and 10 are cross-sectional views when the end reinforcing material is further provided at the end of the housing used in the housing propulsion method according to the present invention.
도 11은 본 발명에 의한 함체 추진공법에 사용되는 도갱공 등의 단면도이다.11 is a cross-sectional view of a masonry hole or the like used in the housing propulsion method according to the present invention.
본 발명에 의한 함체 추진공법은, 지하 터널을 구축하기 위한 것으로서, a) 지하 터널이 시공될 구간의 앞에는 추진기지를, 뒤에는 도달기지를 시공하는 단계; b) 함체의 외벽 및 상부슬래브가 시공될 위치에 맞추어 강관 다수 개를 타입하고 강관 내부의 토사를 제거하여 강관복합체를 형성시키는 단계; c) 가이드 형강이 삽입될 위치에 맞추어 강관복합체의 내부에 롤러를 설치한 후, 상기 강관복합체 내에 가이드 형강을 삽입하는 단계; d) 추진기지에서 함체를 제작하되, 상기 가이드 형강의 단부가 함체에 접합되도록 하는 단계; e) 강관을 이루는 부분 중 함체와 간섭하는 부분 및 함체 전방의 토사를 제거하면서 함체를 추진하는 단계; f) 상기 함체와 가이드 형강 단부의 접합을 해제하는 단계; g) 상기 함체의 외면과 강관 내면 사이에 몰탈을 충진하는 단계;를 포함하여 이루어지는 것을 특징으로 한다.The propulsion method according to the present invention is to build an underground tunnel, comprising the steps of: a) constructing a propulsion base in front of a section in which the underground tunnel is to be constructed and a reaching base behind; b) forming a steel pipe composite by forming a plurality of steel pipes in accordance with the position where the outer wall of the enclosure and the upper slab will be constructed, and removing the earth and sand inside the steel pipe; c) inserting the guide section steel into the steel pipe composite after installing a roller in the steel pipe composite according to the position where the guide section steel is to be inserted; d) fabricating the enclosure at the propulsion base, such that the end of the guide section is joined to the enclosure; e) pushing the enclosure while removing portions of the steel pipe that interfere with the enclosure and soil in front of the enclosure; f) disengaging the enclosure and the guide section steel ends; g) filling the mortar between the outer surface of the enclosure and the inner surface of the steel pipe.
이하에서는 본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 그러나 본 발명을 설명함에 있어 공지의 구성을 구체적으로 설명함으로 인하여 본 발명의 기술적 사상을 흐리게 하거나 불명료하게 하는 경우에는 위 공지의 구성에 관하여는 그 설명을 생략하기로 한다.Hereinafter, with reference to the accompanying drawings an embodiment of the present invention will be described in detail. However, in describing the present invention, when the technical concept of the present invention is obscured or obscured by describing the known configuration in detail, the description of the known configuration will be omitted.
도 2에는 본 발명에 의한 함체 추진공법이 순서대로 도시되어 있다.Figure 2 shows the enclosure propulsion method according to the present invention in order.
본 발명에 의한 함체 추진공법은, a) 지하 터널이 시공될 구간의 앞에는 추진기지(P)를, 뒤에는 도달기지(A)를 시공하는 단계; b) 함체(200)의 외벽(230) 및 상부슬래브(210)가 시공될 위치에 맞추어 강관(310) 다수 개를 타입하고 강관(310) 내부의 토사를 제거하여 강관복합체(300)를 형성시키는 단계; c) 상기 강관복합체(300) 내에 가이드 형강(400)을 삽입하는 단계; d) 추진기지(P)에서 함체(200)를 제작하되, 상기 가이드 형강(400)의 단부가 함체(200)에 접합되도록 하는 단계; e) 강관(310)을 이루는 부분 중 함체(200)와 간섭하는 부분 및 함체 전방의 토사를 제거하면서 함체(200)를 추진하는 단계; f) 상기 함체(200)와 가이드 형강(400) 단부의 접합을 해제하는 단계; g) 상기 함체(200)의 외면과 강관(310) 내면 사이에 몰탈을 충진하는 단계;를 포함하여 이루어진다.The propulsion method according to the present invention comprises the steps of: a) constructing a propulsion base (P) in front of the section in which the underground tunnel is to be constructed, and a reaching base (A) behind; b) forming a plurality of steel pipes 310 in accordance with the position where the outer wall 230 and the upper slab 210 of the enclosure 200 will be constructed, and remove the soil inside the steel pipe 310 to form a steel pipe composite 300 step; c) inserting a guide section steel (400) into the steel pipe composite (300); d) manufacturing a housing 200 in the propulsion base (P), wherein the end of the guide section steel (400) is bonded to the housing (200); e) pushing the enclosure 200 while removing portions of the portions forming the steel pipe 310 and interfering with the enclosure 200 and soil in front of the enclosure; f) releasing the junction between the enclosure 200 and the guide section steel 400; g) filling the mortar between the outer surface of the housing 200 and the inner surface of the steel pipe 310.
아래에서는 상기의 함체 추진공법을 단계별로 상세하게 설명한다.Below will be described in detail step by step the propulsion method of the enclosure.
a) 지하 터널이 시공될 구간의 앞에는 추진기지(P)를, 뒤에는 도달기지(A)를 시공하는 단계; (도 2의 (a))a) constructing a propulsion base (P) in front of the section in which the underground tunnel will be constructed and a reaching base (A) behind; (FIG. 2A)
지하 터널의 시공에 들어가기에 앞서 먼저 작업 공간을 확보한다. 작업 공간은 지하 터널이 시공될 구간의 앞뒤로 형성되는데, 지하 터널 앞의 작업 공간을 추진기지(P), 뒤의 작업 공간을 도달기지(A)라고 한다.Before entering the construction of an underground tunnel, first secure a working space. The working space is formed before and after the section where the underground tunnel is to be constructed. The working space in front of the underground tunnel is called the propulsion base (P) and the working space behind is called the reaching base (A).
상기 추진기지(P) 및 도달기지(A)의 명칭은 함체(200)가 지하 터널 앞의 작업공간에서 제작될 때를 기준으로 하여 명명한 것으로, 이하에서 본 발명을 설명할 때에는 추진기지(P)에서 함체(200)가 제작되고 도달기지(A) 쪽으로 추진되는 경우를 기본적 예로 들어 설명할 것이지만, '추진' 및 '도달'이라는 용어에 의해 본 발명의 내용이 한정되지는 않으며 함체(200)가 도달기지(A)에서 제작될 수도 있고 추진기지(P) 및 도달기지(A) 모두에서 제작될 수도 있다.The names of the propulsion base (P) and the reach base (A) is named based on when the enclosure 200 is manufactured in the work space in front of the underground tunnel, when the present invention will be described below the propulsion base (P). In the following description, a case in which the enclosure 200 is manufactured and pushed toward the reach base A will be described as a basic example, but the contents of the present invention are not limited by the terms 'promotion' and 'reach', and the enclosure 200 is provided. May be manufactured at the arrival base (A) or at both the propulsion base (P) and the reaching base (A).
추진기지(P)의 크기는 아래의 d)단계에서 이루어지는 함체(200)의 제작 작업이 용이하게 이루어질 수 있는 정도로 하며, 도달기지(A)의 크기는 e)단계에서 이루어지는 함체(200)의 추진 작업이 용이하게 이루어질 수 있는 정도로 한다.The size of the propulsion base (P) is to the extent that the manufacturing operation of the enclosure 200 made in step d) can be easily made, the size of the reach base (A) is the propulsion of the enclosure 200 made in step e) To the extent that work can be done easily.
추진기지(P) 및 도달기지(A)는 지반을 수직으로 굴착하여 시공되는 것이 일반적이므로 각 기지의 형성시 및 지하 터널의 시공시 지반이 붕괴되는 것을 방지하기 위하여 토압지지를 위한 토류벽(W)을 시공해준다.The propulsion base (P) and the reaching base (A) are generally constructed by excavating the ground vertically, so that the earth wall (W) for supporting the earth pressure to prevent the ground from collapsing during the formation of each base and the construction of the underground tunnel Provide construction.
b) 함체(200)의 외벽(230) 및 상부슬래브(210)가 시공될 위치에 맞추어 강관(310) 다수 개를 타입하고 강관(310) 내부의 토사를 제거하여 강관복합체(300)를 형성시키는 단계; (도 2의 (b))b) forming a plurality of steel pipes 310 in accordance with the position where the outer wall 230 and the upper slab 210 of the enclosure 200 will be constructed, and remove the soil inside the steel pipe 310 to form a steel pipe composite 300 step; (FIG. 2B)
지하 터널이 시공되는 구간의 지반을 보강하고 e)단계에서의 함체(200) 추진 작업을 용이하게 할 수 있도록 강관복합체(300)를 형성시킨다.A steel pipe composite 300 is formed to reinforce the ground of the section in which the underground tunnel is constructed and to facilitate the operation of the enclosure 200 in the step e).
강관복합체(300)를 이루는 강관(310)은 그 단면이 사각형 또는 원형으로 형성된다. Steel pipe 310 constituting the steel pipe composite 300 is formed in a square or circular cross section.
강관(310)의 단면이 사각형인 경우, 상기 강관(310)은 폭방향 양단부에 립(R)을 갖는 상·하판(311, 312)과, 상·하판(311, 312)의 같은 측 립에 상단과 하단이 각각 결합되는 측판(313)으로 이루어진다. 도 3에는 이러한 강관(310)의 구체적인 형태가 도시되어 있는데, 도 3의 (a)에 도시되어 있는 기준 강관(310A)은 강관복합체(300)를 형성하기 위하여 첫번째로 타입되는 강관(310)으로서 일자형의 립(R)을 가지며 다수 개의 측판(313)이 강관(310)의 길이방향으로 빈틈없이 형성된다. 그리고 도 3의 (b)에 도시되어 있는 연결 강관(310B)은 상기 기준 강관(310A)이 타입된 후 기준 강관(310A)의 좌우로 타입되어 강관복합체(300)를 확장해 나가는 역할을 하는 강관(310)으로서 일측의 립은 일자이고 그에 결합되는 측판(313)은 빈틈없이 형성되는 반면 타측의 립에는 후크(H)가 형성되어 있고 작은 폭을 갖는 측판(313)이 간격을 두고 형성된다.When the cross section of the steel pipe 310 is a quadrangle, the steel pipe 310 is formed on the same side lip of the upper and lower plates 311 and 312 and the upper and lower plates 311 and 312 having the ribs R at both ends in the width direction. The upper and lower ends are respectively composed of side plates 313 are coupled. 3 illustrates a specific form of such a steel pipe 310. The reference steel pipe 310A shown in FIG. 3A is a steel pipe 310 which is first typed to form a steel pipe composite 300. As shown in FIG. It has a straight rib (R) and a plurality of side plates 313 are formed without gaps in the longitudinal direction of the steel pipe (310). And the connection steel pipe 310B shown in (b) of FIG. 3 is a steel pipe that serves to expand the steel pipe composite 300 by being typed to the left and right of the reference steel pipe 310A after the reference steel pipe 310A is typed. As 310, one side of the lip is straight and the side plate 313 coupled thereto is formed tightly, while the other side of the lip is formed with a hook (H) and the side plate 313 having a small width is formed at intervals.
상기 연결 강관(310B)을 타입할 때에는, 연결 강관(310B)과 면하는 측에 위치한 기준 강관(310A)의 측판(313)을 하나씩 제거하면서 타입하는데, 연결 강관(310B)의 후크에 기준 강관(310A)의 일자 립이 삽입되므로 연결 강관(310B)이 기준 강관(310A)과 같은 각도로 연접되도록 타입하는 것이 가능하다.When the connecting steel pipe 310B is typed, the side plate 313 of the reference steel pipe 310A located on the side facing the connecting steel pipe 310B is removed one by one, and the reference steel pipe 310 is connected to the hook of the connecting steel pipe 310B. Since a straight lip of 310A is inserted, it is possible to type so that the connecting steel pipe 310B is connected at the same angle as the reference steel pipe 310A.
기준 강관(310A) 및 연결 강관(310B)은, 도 3에 도시되어 있는 바와 같이, 하나의 관으로 형성되어 하나씩 타입될 수도 있으나, 도 4에 도시되어 있는 바와 같이, 여러 개의 관이 미리 결합된 관다발 형태로 형성되어 이 관다발 형태의 강관(310)이 타입됨으로써 강관(310)을 타입하는데 드는 노력을 줄일 수 있다.As shown in FIG. 3, the reference steel pipe 310A and the connecting steel pipe 310B may be formed as one tube and may be typed one by one. However, as shown in FIG. It is formed in the form of a tube bundle can be reduced by the effort to type the steel pipe 310 by the type of steel pipe 310 of the tube bundle type.
다수 개의 강관(310)이 타입되어 형성되는 강관복합체(300)는 지하 터널의 단면 형태, 즉 함체(200)의 단면 형태에 맞추어 형성되는데, 함체(200)의 외벽(230) 및 상부슬래브(210)가 통과할 수 있도록 형성된다. Steel pipe composite 300 is formed by forming a plurality of steel pipe 310 is formed in accordance with the cross-sectional shape of the underground tunnel, that is, the cross-sectional shape of the enclosure 200, the outer wall 230 and the upper slab 210 of the enclosure 200 ) Is formed to pass through.
도 5에는 함체(200)의 단면 형태에 따른 강관복합체(300)의 세 가지 실시예가 도시되어 있는데, 도 5의 (a) 및 (b)는 함체(200)의 외단면이 사각형인 경우로서 도 5의 (a)는 강관복합체(300)가 사각형 단면을 갖는 강관(310)으로 이루어진 경우이고, 도 5의 (b)는 강관복합체(300)가 원형 단면을 갖는 강관(310)으로 이루어진 경우이다. 그리고 도 5의 (c)는 함체(200)의 외단면이 반원형인 경우에 있어서의 강관복합체(300)로서, 도 5의 (c)와 같은 강관복합체(300)를 형성할 때에는 역사다리꼴의 단면 형상을 갖는 강관(310) 또는 원형 강관을 사용하는 것이 바람직할 것이다.5 illustrates three embodiments of the steel pipe composite 300 according to the cross-sectional shape of the enclosure 200. FIGS. 5A and 5B illustrate a case in which an outer end surface of the enclosure 200 is a quadrangle. 5 (a) is a case where the steel pipe composite 300 is made of a steel pipe 310 having a rectangular cross section, and FIG. 5 (b) is a case where the steel pipe composite 300 is made of a steel pipe 310 having a circular cross section. . FIG. 5C is a steel pipe composite 300 in the case where the outer surface of the enclosure 200 is semi-circular, and when forming the steel pipe composite 300 as shown in FIG. 5C, an inverted trapezoidal cross section is shown. It may be desirable to use a steel pipe 310 or a circular steel pipe having a shape.
c) 상기 강관복합체(300) 내에 가이드 형강(400)을 삽입하는 단계; (도 2의 (c))c) inserting a guide section steel (400) into the steel pipe composite (300); ((C) of FIG. 2)
상기 강관복합체(300)에 의해 형성되는 빈 공간 내, 즉 함체(200)의 외벽(230) 및 상부슬래브(210)의 단면상 위치와 일치하는 부분에 강관(310)의 방향과 같은 방향으로 가이드 형강(400)을 삽입한다.Guide-shaped steel in the same direction as the direction of the steel pipe 310 in the empty space formed by the steel pipe composite 300, that is, the portion corresponding to the cross-sectional position of the outer wall 230 and the upper slab 210 of the housing 200. Insert 400.
상기 가이드 형강(400)은 d)단계에서 제작되는 함체(200)에 접합되어 함체(200)의 추진시 방향을 잡아주는 역할을 하는 것으로서, 함체(200)가 추진되어야할 방향과 같은 방향을 가지고 형성된 강관(310) 내에 강관(310)의 길이방향과 같은 방향으로 길게 형성되기 때문에 함체(200)가 비스듬하게 추진되지 않도록 해준다. The guide section steel 400 is bonded to the enclosure 200 produced in step d) serves to hold the direction during the propulsion of the enclosure 200, the enclosure 200 has the same direction as the direction to be propelled Since the formed steel pipe 310 is formed long in the same direction as the longitudinal direction of the steel pipe 310, the housing 200 is prevented from protruding obliquely.
가이드 형강(400)은 지하 터널의 구간 길이에 따라, 지하 터널의 일부 구간에만 삽입될 수도 있고 지하 터널을 관통하여 삽입될 수도 있다. 지하 터널의 구간 길이가 짧아 가이드 형강(400)이 지하 터널을 관통하여 그 전단이 강관복합체(300)의 도달기지(A) 측 단부에까지 형성되는 경우에는 도달기지(A)에서 육안으로 가이드 형강(400)을 관찰할 수 있기 때문에 함체(200)가 똑바로 추진되고 있는지 쉽게 확인할 수 있고, 함체(200)의 추진 각도가 틀어지더라도 곧바로 수정할 수 있다.The guide beam 400 may be inserted only in a portion of the underground tunnel or may be inserted through the underground tunnel, depending on the length of the section of the underground tunnel. When the section length of the underground tunnel is short and the guide section steel 400 penetrates the underground tunnel and its front end is formed up to the end portion of the reaching base A side of the steel pipe composite 300, the guide section steel visually from the reaching base A ( Since it is possible to observe 400, it is easy to check whether the enclosure 200 is being pushed straight, and even if the propulsion angle of the enclosure 200 is misaligned, it can be corrected immediately.
이렇게 가이드 형강(400)을 이용하여 함체(200)를 똑바로 추진하는 것은, 지하 터널을 정밀하게 시공할 수 있어 우수한 성능을 갖는 구조체를 완성할 수 있다는 효과를 발휘할 뿐만 아니라, 함체(200)가 강관복합체(300) 내에서 직진함으로 인해 강관복합체(300) 내면과 마찰이 발생하지 않아 작은 추진력으로도 함체(200)를 추진할 수 있다는 효과 또한 발휘하게 된다.The propulsion of the enclosure 200 using the guide section steel 400 in this way not only exerts an effect that the underground tunnel can be precisely constructed, thereby completing a structure having excellent performance, and the enclosure 200 is a steel pipe. Since the straight line within the composite 300 does not generate friction with the inner surface of the steel pipe composite 300 is also effective to propel the enclosure 200 with a small propulsion force.
한편, 가이드 형강(400)을 강관복합체(300) 내에 삽입시키기 전에, 가이드 형강(400)이 삽입될 위치에 맞추어 강관복합체(300)의 내부에 롤러(314)를 추가적으로 설치시킬 수 있다.On the other hand, before inserting the guide member steel 400 in the steel pipe composite 300, the roller 314 may be additionally installed inside the steel pipe composite 300 in accordance with the position to be inserted into the guide member steel 400.
상기 롤러(314)는 가이드 형강(400)의 상부플랜지 상면 및 하부플랜지 하면과 접하도록 설치되어, 가이드 형강(400)의 삽입 작업 및 함체(200)의 추진 작업이 용이하게 이루어질 수 있도록 해준다.The roller 314 is installed to be in contact with the upper surface of the upper flange and the lower surface of the lower flange of the guide member steel 400, to facilitate the insertion operation of the guide member steel 400 and the pushing operation of the housing 200.
이러한 롤러는 상기와 같이 가이드 형강(400) 삽입 작업이 이루어지기 전에 강관복합체(300) 내에 설치될 수도 있으나 이와 달리 가이드 형강(400)의 하면 또는 상·하면에 롤러(미도시)를 부착하여 가이드 형강(400)의 삽입 작업이 용이하게 이루어지도록 할 수도 있다. 이렇게 롤러가 가이드 형강(400)에 부착되는 경우에는 롤러의 부착 작업이 가이드 형강(400)을 제작할 때에 이루어질 수 있으므로 본 발명에 의한 함체 추진공법에서 롤러 부착단계를 별도로 차지하지 않아 공기를 단축하는 것이 가능하다.Such a roller may be installed in the steel pipe composite 300 before the guide member steel 400 is inserted as described above. Alternatively, the roller may be attached to a lower surface or an upper / lower surface of the guide member steel 400 to guide the guide member. Insertion of the shaped steel 400 may be made easy. When the roller is attached to the guide section steel (400) in this way, since the attachment work of the roller can be made when manufacturing the guide section steel (400), shortening the air by not occupying the roller attachment step separately in the propulsion method according to the present invention. It is possible.
가이드 형강(400)은 함체(200)와의 접합방법에 따라 후단부가 추진기지(P) 쪽으로 돌출되거나 또는 돌출되지 않도록 형성되는데, 이에 대해서는 d)단계에서 상세하게 설명하기로 한다.The guide section steel 400 is formed so as not to protrude or protrude toward the propulsion base (P) according to the bonding method with the enclosure 200, which will be described in detail in step d).
d) 추진기지(P)에서 함체(200)를 제작하되, 상기 가이드 형강(400)의 단부가 함체(200)에 접합되도록 하는 단계; (도 2의 (d))d) manufacturing a housing 200 in the propulsion base (P), wherein the end of the guide section steel (400) is bonded to the housing (200); ((D) of FIG. 2)
지하 터널의 본 구조체가 되는 함체(200)를 제작한다.The enclosure 200 to be the main structure of the underground tunnel is manufactured.
상기 함체(200)는 b)단계에서 형성된 강관복합체(300) 내에 함체(200)의 외벽(230) 및 상부슬래브(210)가 삽입될 수 있는 한에서 다양한 형태로 형성될 수 있다. 즉, 상·하부슬래브(210, 220) 및 외벽(230) 만으로 이루어져 하나의 폐쇄된 공간만을 가지도록 형성될 수도 있고, 도 6에 도시되어 있는 바와 같이, 내벽(240)이 존재하여 여러 개의 폐쇄된 공간을 갖도록 형성될 수도 있다.The enclosure 200 may be formed in various forms as long as the outer wall 230 and the upper slab 210 of the enclosure 200 may be inserted into the steel pipe composite 300 formed in step b). That is, the upper and lower slabs 210 and 220 and the outer wall 230 may be formed to have only one closed space. As shown in FIG. It may be formed to have a space.
함체(200)의 전단부로는 위에서 언급했던 바와 같이 가이드 형강(400)이 접합된다.As the front end of the enclosure 200, the guide section steel 400 is joined as mentioned above.
도 7은 함체(200)와 가이드 형강(400)의 접합방법에 관한 제1실시예로서, 선행 단계인 c)단계에서 가이드 형강(400)을 삽입할 때 그 후단부가 완전히 삽입되지 않도록 하여 가이드 형강(400)의 후단부가 추진기지(P) 측으로 돌출되도록 한다. 그리고 함체(200)의 제작시에 추진기지(P) 측으로 돌출된 가이드 형강(400)의 단부가 콘크리트로 이루어지는 함체(200) 내에 매립되도록 한다. 이에 따라 가이드 형강(400)과 함체(200)는 매우 견고하게 접합된다. 함체(200) 내에 매립되는 가이드 형강(400)의 단부에는 스터드(S)를 형성시켜 앵커링 기능을 하게 함으로써 가이드 형강(400)과 함체(200)의 접합이 더욱 견고하게 이루어지도록 할 수 있다.7 is a first embodiment of the method of joining the enclosure 200 and the guide section steel 400, when inserting the guide section 400 in the preceding step c) so that the rear end is not completely inserted into the guide section steel The rear end of the (400) is to protrude to the propulsion base (P) side. And the end of the guide section steel 400 protruding toward the propulsion base (P) side at the time of manufacturing the enclosure 200 to be embedded in the enclosure 200 made of concrete. Accordingly, the guide section steel 400 and the enclosure 200 are very firmly bonded. The end of the guide section steel 400 is embedded in the enclosure 200 to form a stud (S) to anchor the function can be made to be more firmly bonded to the guide section steel 400 and the enclosure 200.
지하 터널의 구간 길이가 짧은 경우에는 가이드 형강(400)의 전단부를 도달기지(A) 측으로 돌출되도록 삽입하고 도달기지(A)에서 함체(200)를 제작하면서 가이드 형강(400)의 전단부가 함체(200) 내에 매립되도록 할 수 있다. 이 경우, 가이드 형강(400)의 삽입 작업과 함체(200) 제작 준비 작업이 동시에 이루어질 수 있으므로 공사 기간을 단축하는 것이 가능하다.When the section length of the underground tunnel is short, the front end portion of the guide section steel 400 is inserted to protrude toward the reaching base A side, and the front end portion of the guide section steel 400 is manufactured while manufacturing the enclosure 200 at the reaching base A. 200). In this case, it is possible to shorten the construction period because the insertion work of the guide member steel 400 and the preparation preparation work for the enclosure 200 can be performed at the same time.
도 8은 함체(200)와 가이드 형강(400)의 접합방법에 관한 제2실시예로서, 함체(200)의 제작시 함체(200)의 전단부에 앵커볼트와 같은 연결철물(250)을 매립하고 상기 연결철물(250)을 통해 가이드 형강(400)과 함체(200)를 접합한다.8 is a second embodiment of the method of joining the enclosure 200 and the guide section steel 400, when manufacturing the enclosure 200 buried the connecting hardware 250, such as anchor bolts in the front end of the enclosure 200 And join the guide section steel 400 and the housing 200 through the connecting hardware (250).
연결철물(250)을 통하여 함체(200)와 가이드 형강(400)을 접합하는 경우, 함체(200)의 추진 작업이 완료된 후에 이루어지는 가이드 형강(400)의 제거 작업이 용이하게 이루어질 수 있다.When joining the enclosure 200 and the guide section steel 400 through the connecting hardware 250, the removal of the guide section steel 400 made after the propulsion of the enclosure 200 is completed can be easily made.
함체(200)의 단부에 단부보강부재(600)가 더 설치되는 경우에는 함체(200)와 가이드 형강(400)의 접합이 상기의 제1·2실시예에서와 다른 방법으로 이루어질 수 있는데, 이에 대하여는 단부보강부재(600)와 관련된 부분에서 설명하도록 하겠다.When the end reinforcement member 600 is further installed at the end of the enclosure 200, the junction of the enclosure 200 and the guide section steel 400 may be made in a different manner than in the first and second embodiments. It will be described in the section related to the end reinforcing member 600.
상기 b)단계와 c)단계 사이에, 강관복합체(300) 내부에 롤러(314)가 설치되는 단계가 더 포함되는 경우에는 롤러(314)와 면하게 되는 함체(200)의 외면에 함체(200)의 길이방향으로 레일(260)을 형성시키는 것이 바람직하다. 상기 레일은 롤러(314)와 접하는 면이 함체(200) 외면의 일부를 이루도록 형성된다면 ㄱ, I, H 형강 등 어떤 형태로 형성되어도 무방하지만, 도 6에 도시되어 있는 바와 같이, C형강을 사용하여 웨브의 외면은 롤러(314)와 접하도록 하고 양 플랜지는 함체(200) 내에 매립되어 앵커링 기능을 할 수 있도록 하는 것이 바람직하다.Between step b) and step c), when the roller 314 is further provided inside the steel pipe composite 300, the housing 200 on the outer surface of the housing 200 facing the roller 314 It is preferable to form the rail 260 in the longitudinal direction of. The rail may be formed in any form, such as a, I, H-shaped steel, if the surface in contact with the roller 314 forms a part of the outer surface of the enclosure 200, as shown in Figure 6, using C-shaped steel Thus, the outer surface of the web is in contact with the roller 314 and both flanges are preferably embedded in the enclosure 200 to enable the anchoring function.
함체(200)의 추진시 함체(200) 단부에 발생하는 집중하중 또는 함체(200) 전방의 토사 제거 작업시 발생하는 충격 등에 의해 콘크리트로 이루어진 함체(200) 단부가 파괴될 수 있는데, 이를 방지하기 위하여 함체(200)의 단부에는 단부보강부재(600)가 더 형성되어 있을 수 있다.When pushing the enclosure 200, the end of the enclosure 200 made of concrete may be destroyed by a concentrated load occurring at the end of the enclosure 200 or an impact generated when the soil removal in front of the enclosure 200 occurs. In order to the end of the housing 200, the end reinforcing member 600 may be further formed.
상기 단부보강부재(600)는, 함체(200)의 단부에 연결철물(250)을 매립하여 제작한 후 상기 연결철물(250)을 통하여 함체(200)에 설치된다.The end reinforcement member 600 is manufactured by embedding the connection hardware 250 at the end of the enclosure 200 and then installed in the enclosure 200 through the connection hardware 250.
이렇게 함체(200)의 단부에 단부보강부재(600)가 더 설치되는 경우, 상기 가이드 형강(400)은, 도 9에 도시된 바와 같이, 단부보강부재(600)를 통하여 함체(200)와 접합될 수도 있고, 도 10에 도시된 바와 같이, 단부보강부재(600)를 가이드 형강(400)의 위치와 겹치지 않도록 형성하여 단부보강부재(600)와 간섭 없이 함체(200)와 접합될 수도 있다.When the end reinforcement member 600 is further installed at the end of the enclosure 200, the guide section steel 400 is joined to the enclosure 200 through the end reinforcement member 600, as shown in FIG. 9. As shown in FIG. 10, the end reinforcement member 600 may be formed so as not to overlap with the position of the guide section steel 400 so as to be joined to the enclosure 200 without interference with the end reinforcement member 600.
단부보강부재(600)는 콘크리트로 이루어지는 콘크리트의 단부를 보호할 수 있는 역할을 하는 것이라면 어떤 형태로 형성되어도 무방하지만, 함체(200)에 작용하는 집중하중을 분산시키기 위하여 함체(200)의 말단면과 전체적으로 접할 수 있으면서도 큰 강도를 갖는 I형강 또는 H형강으로 이루어지는 것이 바람직하다.The end reinforcing member 600 may be formed in any form as long as it serves to protect the end of the concrete made of concrete, but the end surface of the enclosure 200 to disperse the concentrated load acting on the enclosure 200 It is preferable that it is made of I-shaped steel or H-shaped steel which is in contact with the whole and has a large strength.
e) 강관(310)을 이루는 부분 중 함체(200)와 간섭하는 부분 및 함체(200) 전방의 토사를 제거하면서 함체(200)를 추진하는 단계; (도 2의 (e))e) propelling the enclosure 200 while removing portions of the portions constituting the steel pipe 310 and interfering with the enclosure 200 and soil in front of the enclosure 200; ((E) of FIG. 2)
추진기지(P)에서 기 제작한 함체(200)를 지하 터널의 위치로 추진한다.Propelled by the base (P) the vessel 200 to be propelled to the location of the underground tunnel.
이때 함체(200)의 단면과 간섭하게 되는 강관(310)의 일부, 그리고 함체(200) 전방의 토사를 조금씩 제거하면서 추진한다. At this time, a part of the steel pipe 310 that interferes with the cross section of the enclosure 200, and promotes while removing the soil in front of the enclosure 200 little by little.
강관(310)의 단면이 도 3에 도시되어 있는 것과 같은 사각형 단면을 갖는 경우에는 하판(312) 및 측판(313)을 조금씩 제거하면서 추진한다.When the cross section of the steel pipe 310 has a rectangular cross section as shown in FIG. 3, the lower plate 312 and the side plate 313 are propelled little by little.
강관복합체(300) 내에 롤러(314)를 더 설치한 경우에는 가이드 형강(400)의 하부플랜지와 접하는 롤러 또한 제거하면서 추진한다. 토사가 제거되어 만들어지는 공간의 바닥에는 콘크리트를 타설함으로써 함체(200)의 하중을 지지하도록 할 수도 있다.When the roller 314 is further installed in the steel pipe composite 300, the roller is in contact with the lower flange of the guide-shaped steel 400 and is then pushed. Soil may be removed to support the load of the enclosure 200 by placing concrete on the bottom of the space to be removed.
함체(200)의 추진이 이루어지기 전에 함체(200) 전방에 위치한 토사 등이 제거되므로 함체(200)가 그 내부에 다수 개의 공간을 갖는 복잡한 구조라도 용이하게 추진하는 것이 가능하다. Before the propulsion of the enclosure 200 is carried out, so that the earth and sand located in front of the enclosure 200 is removed, it is possible to easily propel the complex 200 even in a complex structure having a plurality of spaces therein.
함체(200) 전방에 위치한 강관(310)의 일부 및 토사는 제거되더라도 강관(310)의 상판(311) 및 함체(200)와 접합되어 있는 가이드 형강(400)이 토압을 지지해줄 수 있으므로 작업의 안전성과 구조적 안정성을 확보할 수 있다.Even if a part of the steel pipe 310 located in front of the enclosure 200 and the earth and sand are removed, the upper plate 311 of the steel pipe 310 and the guide member steel 400 joined to the enclosure 200 may support the earth pressure. Safety and structural stability can be secured.
가이드 형강(400)은 이 외에도 상기했던 바와 같이 함체(200)가 추진되는 방향으로 길게 형성되어 있어 함체(200)의 추진작업이 정밀하게 이루어지는 데에 기여한다.The guide section steel 400 is formed in the long direction in which the enclosure 200 is propelled as described above, and contributes to the precise operation of the enclosure 200.
그리고 강관(310)의 제거되지 않은 부분은 강관(310) 내측의 공간과 강관(310) 외측의 주변 지반을 분리하여 함체(200) 추진시 발생하는 마찰력이 주변 지반에 미칠 수 있는 영향을 최소화시켜 주고 작은 추진력으로도 함체(200)를 추진할 수 있도록 해준다. 강관복합체(300) 내에 롤러(314)가 설치되어 있는 경우에는 롤러(314)가 가이드 형강(400)과 강관(310), 함체(200)와 강관(310) 사이의 마찰력을 줄여줌으로써 이러한 효과가 더 커지게 된다.The non-removed portion of the steel pipe 310 separates the space inside the steel pipe 310 and the surrounding ground outside the steel pipe 310 to minimize the influence of frictional force generated when the enclosure 200 is pushed on the surrounding ground. It allows to propel the enclosure 200 with a small propulsion force. When the roller 314 is installed in the steel pipe composite 300, the roller 314 reduces the friction force between the guide section steel 400 and the steel pipe 310, the housing 200 and the steel pipe 310, this effect is It gets bigger.
상기 c)단계 내지 d)단계의 진행과 동시에, 더 정확하게는 강관복합체(300)를 형성시킨 후부터 함체(200) 전방의 토사를 제거하기 전까지는, 함체(200)의 하부슬래브(220) 위치에 맞추어 도갱공(500A)을 형성시키거나 사각각관(500B) 또는 원형강관(500C) 중 적어도 어느 하나 이상을 타입하는 과정이 진행될 수 있다.At the same time as the steps c) to d), more precisely after the steel pipe composite 300 is formed until the soil in front of the enclosure 200 is removed, the lower slab 220 of the enclosure 200 The process of forming at least one or more of the square tube 500B or the circular steel tube 500C may be performed.
도갱공(500A), 사각각관(500B) 및 원형강관(500C)은 그 하부에 함체(200) 하부슬래브(220)의 하면과 접할 수 있도록 기초콘크리트 바닥을 만듦으로써 큰 중량을 갖는 함체(200)가 부동침하되지 않고 추진될 수 있도록 해주고, 함체(200)가 추진되기 위한 가이드 역할을 해줄 뿐만 아니라, 일반적인 도갱(pilot tunnel)과 같이 본 지하 터널과 평행하게 먼저 형성되어 그 주변을 깎아 넓힘으로써 토사의 제거 작업이 용이하게 이루어지도록 해준다.Shaft hole (500A), square tube (500B) and circular steel pipe (500C) has a large weight by making a base concrete floor to be in contact with the lower surface of the lower slab 220, the enclosure 200 To be propelled without being settled and serve as a guide for the enclosure 200 to be propelled, as well as to form a ground first parallel to the underground tunnel as seen in a general pilot tunnel, and to cut the periphery It is easy to remove the work.
상기 콘크리트 바닥에는 롤러(510)를 설치하여 함체(200) 추진시 발생하는 마찰력을 감소시켜 줄 수 있다. Rollers 510 may be installed on the concrete floor to reduce frictional forces generated when pushing the enclosure 200.
도 11에는 이러한 도갱공 등이 형성되어 있는 모습이 도시되어 있다.11 shows a state in which such a burrow hole and the like are formed.
만약 지하 터널이 시공되는 지반이 연약지반으로 이루어졌다는 등의 이유로 함체(200)의 하중 및 함체(200) 추진시에 발생하는 하중을 견딜 수 없다면, 본 단계에서 토사가 제거된 함체(200)의 전방에 지지말뚝을 시공하여 지반을 보강하는 과정이 더 포함될 수 있다.If the ground on which the underground tunnel is constructed is made of soft ground, etc., the load of the enclosure 200 and the load generated when the enclosure 200 is propelled cannot be tolerated. The process of reinforcing the ground may be further included by constructing a support pile in front of it.
함체(200)의 추진을 위한 추진력은 추진잭에 의해서 발생할 수도 있고 견인잭에 의해서 발생할 수도 있으며, 추진잭과 견인잭 모두에 의해서 발생할 수도 있다.Propulsion for the propulsion of the enclosure 200 may be generated by the propulsion jack or may be generated by the towing jack, may be generated by both the propulsion jack and the towing jack.
추진력이 견인잭으로 긴장재를 긴장시킴으로써 발생되는 경우라면, 함체(200) 내에 그 길이방향으로 쉬스관(270)을 미리 매립하여 긴장재를 배치할 수 있도록 하고, 도달기지(A)에 반력대(B)를 세워 긴장재의 단부가 정착될 수 있도록 한다.If the propulsion force is generated by tensioning the tension member with the towing jack, the sheath tube 270 is buried in the longitudinal direction within the enclosure 200 so that the tension member can be disposed, and the reaction force B is reached at the base A. ) So that the end of the tension member can settle.
f) 상기 함체(200)와 가이드 형강(400) 단부의 접합을 해제하는 단계; (도 2의 (f))f) releasing the junction between the enclosure 200 and the guide section steel 400; ((F) of FIG. 2)
함체(200)가 계획된 위치에까지 추진되어 불필요해진 가이드 형강(400)을 함체(200)로부터 제거한다.The enclosure 200 is pushed to the planned position to remove the unnecessary guide beams 400 from the enclosure 200.
가이드 형강(400)이 그 단부가 함체(200) 내에 매립됨으로써 함체(200)와 접합되어 있었던 경우에는 함체(200) 내에 매립된 부분을 제외한 부분을 절단하여 제거하고, 함체(200) 단부에 매립된 연결철물(250)에 의해 함체(200)와 접합되어 있었던 경우에는 연결철물(250)과의 연결을 풀어 접합을 해제한다. 연결철물(250)에 의해 함체(200)에 접합되어 있던 가이드 형강(400)은 접합을 해제한 후에 재활용하는 것이 가능하다.When the guide section steel 400 is joined to the enclosure 200 by its end portion embedded in the enclosure 200, the guide section steel 400 is cut and removed except for the portion embedded in the enclosure 200, and embedded at the end of the enclosure 200. In the case of being joined to the enclosure 200 by the connection hardware 250, the connection with the connection hardware 250 is released to release the connection. The guide section steel 400 joined to the enclosure 200 by the connecting hardware 250 can be recycled after releasing the joining.
함체(200)의 전후단에 단부보강부재(600)가 더 설치된 경우에는 단부보강부재(600)도 함께 제거한다.When the end reinforcement member 600 is further installed at the front and rear ends of the enclosure 200, the end reinforcement member 600 is also removed.
g) 상기 함체(200)의 외면과 강관(310) 내면 사이에 몰탈을 충진하는 단계; (도 2의 (f))g) filling mortar between the outer surface of the housing 200 and the inner surface of the steel pipe 310; ((F) of FIG. 2)
함체(200)의 외면과 강관(310) 내면 사이의 틈에 몰탈을 충진하여 함체(200) 주변에서 발생하는 하중을 균등하게 받을 수 있도록 하고 진동에 대한 강성을 높여준다.Filling the mortar in the gap between the outer surface of the enclosure 200 and the inner surface of the steel pipe 310 to equally receive the load generated around the enclosure 200 and increases the rigidity for vibration.
그리고 함체(200) 내면 마감 등의 마무리 작업을 함으로써 지하 터널의 구축을 완료한다.And the finishing work of the inner surface of the enclosure 200 is completed by completing the construction of the underground tunnel.
이상에서 본 발명의 구체적인 실시예에 대하여 도면을 참조하여 상세히 설명하였으나, 상기 실시예는 본 발명을 이해하기 쉽도록 하게 하기 위한 예시에 불과한 것이므로, 이 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상의 범위 내에서 이를 다양하게 변형하여 실시할 수 있을 것임은 자명한 것이다. 따라서 그러한 변형 예들은 청구범위에 기재된 바에 의해 본 발명의 권리범위에 속한다고 할 것이다.Although specific embodiments of the present invention have been described in detail with reference to the accompanying drawings, the embodiments are merely examples for making the present invention easy to understand, and those skilled in the art will appreciate It is obvious that various modifications can be made within the scope of the technical idea. Therefore, such modifications will be described within the scope of the present invention as described in the claims.
본 발명은 지하 터널을 정밀하게 시공하는 것이 가능하고 상부 지반에의 영향을 최소화할 수 있는 가이드 형강을 이용한 함체 추진공법에 관한 것으로서 산업상 이용가능성이 있는 발명이라 할 수 있다.The present invention relates to an enclosure propulsion method using a guide section steel capable of precisely constructing an underground tunnel and minimizing the influence on the upper ground, and may be referred to as an industrially applicable invention.

Claims (10)

  1. 지하 터널을 구축하기 위한 함체 추진공법에 있어서,In a ship propulsion method for building an underground tunnel,
    a) 지하 터널이 시공될 구간의 앞에는 추진기지(P)를, 뒤에는 도달기지(A)를 시공하는 단계;a) constructing a propulsion base (P) in front of the section in which the underground tunnel will be constructed and a reaching base (A) behind;
    b) 함체(200)의 외벽(230) 및 상부슬래브(210)가 시공될 위치에 맞추어 강관(310) 다수 개를 타입하고 강관(310) 내부의 토사를 제거하여 강관복합체(300)를 형성시키는 단계;b) forming a plurality of steel pipes 310 in accordance with the position where the outer wall 230 and the upper slab 210 of the enclosure 200 will be constructed, and remove the soil inside the steel pipe 310 to form a steel pipe composite 300 step;
    c) 가이드 형강(400)이 삽입될 위치에 맞추어 강관복합체(300)의 내부에 롤러(314)를 설치한 후, 상기 강관복합체(300) 내에 가이드 형강(400)을 삽입하는 단계;c) inserting the guide member steel 400 into the steel pipe composite 300 after installing the roller 314 inside the steel pipe composite 300 according to the position where the guide member steel 400 is to be inserted;
    d) 추진기지(P)에서 함체(200)를 제작하되, 상기 가이드 형강(400)의 단부가 함체(200)에 접합되도록 하는 단계;d) manufacturing a housing 200 in the propulsion base (P), wherein the end of the guide section steel (400) is bonded to the housing (200);
    e) 강관(310)을 이루는 부분 중 함체(200)와 간섭하는 부분 및 함체 전방의 토사를 제거하면서 함체(200)를 추진하는 단계;e) pushing the enclosure 200 while removing portions of the portions forming the steel pipe 310 and interfering with the enclosure 200 and soil in front of the enclosure;
    f) 상기 함체(200)와 가이드 형강(400) 단부의 접합을 해제하는 단계;f) releasing the junction between the enclosure 200 and the guide section steel 400;
    g) 상기 함체(200)의 외면과 강관(310) 내면 사이에 몰탈을 충진하는 단계;를 포함하여 이루어지는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.g) filling the mortar between the outer surface of the housing 200 and the inner surface of the steel pipe 310; characterized in that it comprises a, the propulsion method using the guide-shaped steel.
  2. 제1항에 있어서,The method of claim 1,
    상기 강관(310)의 단면은 사각형이거나 원형인 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.Cross section of the steel pipe 310 is characterized in that the rectangular or circular, the propulsion method of the hull using a guide-shaped steel.
  3. 제1항에 있어서,The method of claim 1,
    상기 c)단계에서 가이드 형강(400)의 단부는 추진기지(P) 측으로 돌출되도록 강관복합체(300) 내에 삽입되고, 상기 d)단계에서 돌출된 가이드 형강(400)의 단부가 함체(200) 내에 매립되도록 함체(200)가 제작되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.In the step c), the end of the guide section steel 400 is inserted into the steel pipe composite 300 so as to protrude toward the propulsion base (P) side, and the end of the guide section steel 400 protruding in the step d) is in the housing 200. The hull propulsion method using a guide-shaped steel, characterized in that the enclosure 200 is made to be embedded.
  4. 제1항에 있어서,The method of claim 1,
    상기 d)단계에서, 함체(200)는 단부에 연결철물(250)이 매립되도록 제작되고, 연결철물(250)에 의해 가이드 형강(400)과 접합되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.In the step d), the enclosure 200 is manufactured so that the connection hardware 250 is embedded at the end, and is bonded to the guide section steel 400 by the connection hardware 250, the propulsion of the enclosure using the guide section steel Method.
  5. 제1항에 있어서,The method of claim 1,
    상기 가이드 형강(400)의 하면 또는 상·하면에는 롤러가 부착되어 있는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.The lower surface or the upper and lower surfaces of the guide section steel 400, the roller is attached, characterized in that the propulsion method using the guide section steel.
  6. 제1항에 있어서,The method of claim 1,
    상기 c)단계 내지 d)단계의 진행과 동시에, 함체(200)의 하부슬래브(220) 위치에 맞추어 도갱공(500A)을 형성시키거나 사각각관(500B) 또는 원형강관(500C) 중 적어도 어느 하나 이상을 타입하는 과정이 진행되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.At the same time as the steps of c) to d), to form a hollow hole 500A in accordance with the position of the lower slab 220 of the enclosure 200 or at least one of the square tube (500B) or the round steel pipe (500C) The propulsion method of the hull using a guide section steel, characterized in that the process of typing the above progress.
  7. 제6항에 있어서,The method of claim 6,
    상기 도갱공(500A), 사각각관(500B) 및 원형강관(500C)의 하부에는 함체(200)의 하부슬래브(220) 하면 위치에 맞추어 롤러(510)가 더 설치되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.Guide beam, characterized in that the roller 510 is further installed in the lower position of the lower slab 220 of the housing 200 in the lower portion of the hollow hole 500A, square tube (500B) and circular steel pipe (500C). Ship propulsion method using.
  8. 제1항에 있어서,The method of claim 1,
    상기 e)단계에서, 토사가 제거된 함체(200)의 전방으로는 지지말뚝이 설치되는 과정이 더 포함되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.In the step e), the front of the housing 200 from which the earth and sand is removed, characterized in that the support pile is further installed, the propulsion method using the guide section steel.
  9. 제1항에 있어서,The method of claim 1,
    상기 d)단계에서, 함체(200)는 단부에 연결철물(250)이 매립되도록 제작되고, 연결철물(250)에 의해 단부보강부재(600)가 더 설치되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.In the step d), the enclosure 200 is made so that the connection hardware 250 is embedded at the end, characterized in that the end reinforcement member 600 is further installed by the connection hardware 250, using a guide beam Ship propulsion method.
  10. 제9항에 있어서,The method of claim 9,
    상기 가이드 형강(400)은 단부보강부재(600)를 통하여 함체(200)에 접합되는 것을 특징으로 하는, 가이드 형강을 이용한 함체 추진공법.The guide section steel 400 is characterized in that joined to the housing 200 through the end reinforcing member 600, the housing propulsion method using the guide section steel.
PCT/KR2014/004741 2013-07-11 2014-05-27 Hull propulsion method using guide-shaped steel WO2015005582A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480038943.1A CN105358796B (en) 2013-07-11 2014-05-27 Hull propulsion method using guide-shaped steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130081543A KR101324173B1 (en) 2013-07-11 2013-07-11 Construction method for underground tunnel using guiding shape steel
KR10-2013-0081543 2013-07-11

Publications (1)

Publication Number Publication Date
WO2015005582A1 true WO2015005582A1 (en) 2015-01-15

Family

ID=49856476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004741 WO2015005582A1 (en) 2013-07-11 2014-05-27 Hull propulsion method using guide-shaped steel

Country Status (3)

Country Link
KR (1) KR101324173B1 (en)
CN (1) CN105358796B (en)
WO (1) WO2015005582A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388521B1 (en) 2014-01-28 2014-04-23 김동수 Construction method of underground structure under the pier with supporting piles
KR101408667B1 (en) * 2014-02-26 2014-06-17 김동수 Method of constructing new tunnel using pre-existing tunnel structure
KR101468613B1 (en) * 2014-08-06 2014-12-03 김동세 Underground structure construction method using the moveable temporary supporting frame
KR101594818B1 (en) * 2015-09-25 2016-02-17 주식회사 마성건설 Construction method of the underground structure to proceed while removing the supports
KR101690561B1 (en) 2016-06-07 2016-12-28 우경기술주식회사 Trenchless construction method of underground structures
CN107747494B (en) * 2017-10-19 2019-07-19 中国建筑工程(香港)有限公司 Box culvert with mobile mechanism relays pushing tow system
CN107740694B (en) * 2017-10-19 2019-07-19 中国建筑工程(香港)有限公司 Box culvert relays pushing tow system and its application method
CN107701192B (en) * 2017-10-19 2019-07-19 中国建筑工程(香港)有限公司 Box culvert with pushing frame component relays pushing tow system
CN107762526B (en) * 2017-10-19 2019-07-19 中国建筑工程(香港)有限公司 Box culvert with thrustor and box culvert pushing block connection structure relays pushing tow system
JP6737851B2 (en) * 2018-08-30 2020-08-12 植村 誠 Removal method of existing tunnel structure by box roof method
JP6982603B2 (en) * 2019-09-20 2021-12-17 誠 植村 Box-shaped roof construction method
KR102573293B1 (en) * 2022-05-16 2023-08-31 김동세 Ground improvement parallel concrete box construction method for tunnel constructing
KR102655046B1 (en) * 2023-03-22 2024-04-04 양은진 Non-excavation construction method for constructing a precast structure by minimizing face collapse and non-excavation construction structure constructed thereby

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013136A (en) * 2001-08-07 2003-02-14 주식회사 바우 컨설탄트 Apparatus for reducing of friction
KR20040099586A (en) * 2003-05-19 2004-12-02 주식회사 특수건설 Method for constructing a tunnel using front jacking construction method
JP2011202402A (en) * 2010-03-25 2011-10-13 Taisei Corp Method of construction of underground structure
KR101179778B1 (en) * 2010-05-31 2012-09-10 주식회사동일기술공사 Method for constructing underground structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425801C (en) * 2005-06-17 2008-10-15 上海市隧道工程轨道交通设计研究院 Counter pulling device used in underground pipe culvert linear dark digging
CN1800514A (en) * 2005-12-13 2006-07-12 上海市第二市政工程有限公司 Big section pipe roof- box culvert jacking construction method
KR101255517B1 (en) * 2010-07-14 2013-04-23 (주)고려씨엔씨 The tunel execution method and the using fabric
KR101161332B1 (en) * 2012-03-09 2012-07-03 김동수 Construction method of the underground tunnel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013136A (en) * 2001-08-07 2003-02-14 주식회사 바우 컨설탄트 Apparatus for reducing of friction
KR20040099586A (en) * 2003-05-19 2004-12-02 주식회사 특수건설 Method for constructing a tunnel using front jacking construction method
JP2011202402A (en) * 2010-03-25 2011-10-13 Taisei Corp Method of construction of underground structure
KR101179778B1 (en) * 2010-05-31 2012-09-10 주식회사동일기술공사 Method for constructing underground structure

Also Published As

Publication number Publication date
CN105358796A (en) 2016-02-24
KR101324173B1 (en) 2013-11-06
CN105358796B (en) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2015005582A1 (en) Hull propulsion method using guide-shaped steel
WO2017090975A1 (en) Tunnel construction method using pre-support and post-support and apparatus suitable for same
WO2019054703A1 (en) Cip wall forming apparatus and construction method using same
WO2016093432A1 (en) Facing member for reinforced-soil retaining-wall, reinforced-soil retaining-wall structure using facing member, and construction method for band type fiber reinforcing material for reinforced-soil retaining-wall
JP7095997B2 (en) How to join concrete members
WO2017047984A1 (en) Steel tube girder having adjustable length, dual installation system for steel tunnel support using rigidity-reinforced cft steel tube girders filled therein, dual construction method for steel tunnel support using system, and steel tube girder structure for dual installation
WO2018070634A1 (en) Pc wall panel for reinforcing earthquake resistance of reinforced concrete frame, structure for reinforcing earthquake resistance of reinforced concrete frame by using pc wall panel, and method for constructing same
WO2020138860A1 (en) Method for constructing annular foundation using variable cross-section rectangular pipes, and foundation thereof
WO2013133546A1 (en) Method for constructing underground tunnel
JP2006322222A (en) Construction method of large-sectional tunnel
WO2015142017A1 (en) Tunnel having steel rib having concrete filled steel tube structure and method for constructing same
JP3249789B2 (en) Reinforcement method for columnar structures
WO2016021854A1 (en) Method for constructing underground structure using movable temporary support
KR101415694B1 (en) Method of constructing new tunnel under the pre-existing structure with anchor for bearing buoyancy
JP2001214699A (en) Construction method of large cross sectional tunnel
KR101292717B1 (en) Construction method of underground structues using the enclosure traction, and the structure of the enclosure
WO2013069838A1 (en) Tunnel reinforcement struture and tunnel construction method capable of controlling ground displacement using pressurization
WO2019076055A1 (en) Interjack station-based box culvert jacking system having jacking frame assembly
JPS62153499A (en) Formwork assembling and overhauling device
JP3382183B2 (en) Construction method for underground structure and roof cylinder used therefor
JP2001003677A (en) Workstation type tunnel widening device and method
WO2015009125A1 (en) Structure for coupling earth retaining wall with wales
WO2013022194A1 (en) Underground wall construction method
WO2013073891A1 (en) Strut and construction method using the strut
WO2013005944A2 (en) Protective structure for the mouth of an unfinished tunnel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038943.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822379

Country of ref document: EP

Kind code of ref document: A1