WO2015004734A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2015004734A1
WO2015004734A1 PCT/JP2013/068765 JP2013068765W WO2015004734A1 WO 2015004734 A1 WO2015004734 A1 WO 2015004734A1 JP 2013068765 W JP2013068765 W JP 2013068765W WO 2015004734 A1 WO2015004734 A1 WO 2015004734A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
target
amount
torque
Prior art date
Application number
PCT/JP2013/068765
Other languages
English (en)
French (fr)
Inventor
聡 吉嵜
田中 聡
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2015526047A priority Critical patent/JP5983882B2/ja
Priority to DE112013007227.0T priority patent/DE112013007227B4/de
Priority to US14/903,385 priority patent/US20160153373A1/en
Priority to PCT/JP2013/068765 priority patent/WO2015004734A1/ja
Priority to CN201380078119.4A priority patent/CN105378249A/zh
Publication of WO2015004734A1 publication Critical patent/WO2015004734A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1504Digital data processing using one central computing unit with particular means during a transient phase, e.g. acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device that integrally controls an air amount, a fuel supply amount, an ignition timing, and an EGR rate of an internal combustion engine configured such that an air-fuel ratio used for operation can be switched between at least two air-fuel ratios.
  • Japanese Laid-Open Patent Publication No. 2002-339778 discloses a combustion system switching control in an internal combustion engine capable of switching the combustion system of an internal combustion engine from stoichiometric combustion using a stoichiometric air-fuel ratio to lean combustion using a lean air-fuel ratio or from lean combustion to stoichiometric combustion.
  • Related arts hereinafter, prior art are disclosed.
  • the combustion mode is switched from stoichiometric combustion to lean combustion
  • the EGR rate at that time is switched from a value corresponding to stoichiometric combustion to a value corresponding to lean combustion.
  • the target value of the EGR rate corresponds to the stoichiometric air-fuel ratio prior to air-fuel ratio switching. It is conceivable to switch from the obtained value to a value corresponding to the lean air-fuel ratio.
  • the EGR rate can be switched to the target value corresponding to the lean air-fuel ratio before the air-fuel ratio becomes the lean air-fuel ratio, so that there is a certain effect in improving the response delay of the EGR rate. .
  • the present invention has been made in view of the above problems, and in an internal combustion engine configured to be able to switch the air-fuel ratio used for operation between at least two air-fuel ratios, the torque is changed in an increasing direction in response to a driver's request.
  • An object is to switch the air-fuel ratio with good response while suppressing the EGR rate from becoming excessive.
  • the present invention can be applied to the configuration of a control device for an internal combustion engine.
  • the outline of the control apparatus for an internal combustion engine according to the present invention will be described below.
  • the present invention can be applied to the procedure of the control method of the internal combustion engine, and can also be applied to an algorithm of a program executed by the control device. .
  • the control device includes an EGR valve that adjusts an EGR rate, and performs a first operation with a first air-fuel ratio near the stoichiometric air-fuel ratio and a second operation with a second air-fuel ratio that is leaner than the first air-fuel ratio.
  • the intake air amount is controlled by using the target first air amount calculated using the first air-fuel ratio as the target air amount, and in the second operation, the second air-fuel ratio is set.
  • An internal combustion engine in which the intake air amount is controlled using the target second air amount calculated by using the target second air amount as a target air amount is set as a control target.
  • the control device controls the opening degree of the EGR valve to the first opening degree during the first operation, controls the opening degree of the EGR valve to the second opening degree larger than the first opening degree during the second operation, The period from the first operation to the second operation, which is the period from when the target air amount becomes the target second air amount to when the actual air amount becomes the target second intake air amount, The fuel ratio is controlled, the ignition timing is retarded, and the opening of the EGR valve is controlled to a third opening that is larger than the first opening and smaller than the second opening.
  • a fresh air rate that is a ratio of unburned air contained in the exhaust gas.
  • control device increases the ratio of the fresh air rate when the internal combustion engine is operated at the second air-fuel ratio to the fresh air rate when the internal combustion engine is operated at the first air-fuel ratio. Control is performed so that the difference between the opening and the third opening is increased.
  • the supercharging characteristic variable for changing the supercharging characteristic of the supercharger.
  • An actuator specifically, a variable nozzle and a waste gate valve are included in the first actuator.
  • the second actuator is an injector that injects fuel, and includes a port injector that injects fuel into the intake port and an in-cylinder injector that directly injects fuel into the cylinder.
  • the third actuator is an ignition device.
  • the fourth actuator is an EGR valve.
  • the control device according to the present invention integrally controls the air amount, fuel supply amount, ignition timing, and EGR rate of the internal combustion engine by cooperative operation of these four types of actuators.
  • the control device can be embodied by a computer. More specifically, the control device according to the present invention is configured by a computer including a memory storing a program describing processing for realizing various functions and a processor that reads and executes the program from the memory. Can do.
  • the functions of the control device according to the present invention include a required torque reception function, a target air-fuel ratio switching function as functions for determining a target air amount, a target air-fuel ratio, and a target EGR rate used for cooperative operation of the four types of actuators.
  • a function, a target air amount calculation function, a virtual air-fuel ratio change function, and a target EGR rate calculation function are included.
  • the required torque reception function receives the required torque for the internal combustion engine.
  • the required torque is calculated based on a signal responsive to the accelerator pedal opening operated by the driver.
  • a required torque that decreases according to the speed at which the driver closes the accelerator pedal is obtained.
  • a required torque that increases according to the speed at which the driver opens the accelerator pedal is obtained.
  • the air-fuel ratio used for calculating the target air amount becomes the first air-fuel ratio before the target air-fuel ratio is switched from the first air-fuel ratio to the second air-fuel ratio.
  • the air / fuel ratio is switched to the second air / fuel ratio.
  • a condition for switching the air-fuel ratio for example, there is an acceleration time from idle operation. If the value of the required torque is the same, the target air amount decreases as the virtual air-fuel ratio becomes rich, and the target air amount increases as the virtual air-fuel ratio becomes lean.
  • the reference value for the torque may be a fixed value, but is preferably changed as appropriate according to the rotational speed of the internal combustion engine or other conditions.
  • the control device cooperatively operates four types of actuators based on the target air amount, target air-fuel ratio, and target EGR rate determined by the above processing.
  • the functions of the control device according to the present invention include a first actuator control function, a second actuator control function, and a third actuator control as functions for cooperative operation based on the target air amount, the target air-fuel ratio, and the target EGR rate. Functions and fourth actuator control functions are included.
  • the operation amount of the first actuator is determined based on the target air amount. Then, the first actuator is operated according to the determined operation amount. The actual air amount changes so as to follow the target air amount by operating the first actuator.
  • the fuel supply amount is determined based on the target air-fuel ratio. Then, the second actuator is operated according to the determined fuel supply amount.
  • the ignition timing for achieving the required torque is determined based on the torque estimated from the operation amount of the first actuator and the target air-fuel ratio and the required torque. Then, the third actuator is operated according to the determined ignition timing.
  • the actual air amount can be estimated from the operation amount of the first actuator, and the torque can be estimated from the estimated air amount and the target air-fuel ratio.
  • the operation of the third actuator is performed so that the excess of the estimated torque with respect to the required torque is corrected by the ignition timing.
  • the operation amount of the fourth actuator is determined based on the virtual air-fuel ratio and the target air-fuel ratio. Then, the fourth actuator is operated according to the determined operation amount. The actual EGR rate changes so as to follow the target EGR rate by operating the fourth actuator.
  • the fourth actuator control function included in the control device according to the present invention preferably includes a target EGR rate calculation function for calculating a target EGR rate that is a target value of the EGR rate.
  • the virtual air-fuel ratio used for the target air amount calculation function is used to calculate the target EGR rate.
  • the virtual air-fuel ratio is variable and is changed by the virtual air-fuel ratio changing function.
  • the virtual air-fuel ratio changing function the virtual air-fuel ratio is switched from a value corresponding to the first air-fuel ratio to a value corresponding to the second air-fuel ratio in response to an increase of the required torque to a reference value or more.
  • the fourth actuator control function provided in the control device according to the present invention has a parameter value for calculating a parameter value corresponding to a fresh air rate that is a ratio of unburned air (oxygen) contained in the exhaust gas.
  • a calculation function is preferably included.
  • the parameter value calculation function for example, the surplus air ratio defined as the ratio of the fresh air rate of combustion at the virtual air-fuel ratio to the fresh air rate of combustion at the target air-fuel ratio is calculated as the parameter value.
  • the operation correction amount of the fourth actuator for changing the EGR ratio in the direction of decreasing the EGR ratio as the surplus air ratio is large is used as the first correction amount. Calculated.
  • the operation amount of the fourth actuator for achieving the target EGR rate under the virtual air-fuel ratio is calculated as the first base operation amount. Then, the first base operation amount is corrected using the first correction amount, and the corrected value is determined as the operation amount of the fourth actuator.
  • the parameter corresponding to the fresh air rate can be a value of the target air-fuel ratio.
  • the operation correction amount of the fourth actuator for changing the EGR rate to increase as the target air-fuel ratio value becomes leaner is calculated as the second correction amount.
  • the second base operation amount is corrected using the second correction amount, and the corrected value is determined as the operation amount of the fourth actuator.
  • the EGR rate is changed so as to decrease as the excess air ratio increases using the excess air ratio that is the value of the parameter calculated by the parameter calculation function.
  • the correction amount of the target EGR rate of the fourth actuator is calculated as the third correction amount.
  • the target EGR rate is corrected using the third correction amount, and the operation amount of the fourth actuator for achieving the corrected target EGR rate under the virtual air-fuel ratio is calculated. Is determined as the amount of operation.
  • the target EGR rate is set under the target air-fuel ratio.
  • the operation amount of the fourth actuator to be achieved is calculated, and this value is determined as the final operation amount.
  • the arithmetic unit 402 calculates a reference value for torque.
  • the reference value is the torque at the boundary between the stoichiometric mode in the extremely low load range and the lean mode in the low load range, and the optimum value is adapted to each engine speed from the viewpoint of fuel efficiency, exhaust gas performance, and drivability. ing.
  • the arithmetic unit 402 calculates a reference value suitable for the engine speed with reference to a map prepared in advance. In the figure, the reference value is written as “Ref”.
  • the arithmetic unit 404 While the requested first torque is smaller than the reference value, the arithmetic unit 404 sets the virtual air-fuel ratio to the first air-fuel ratio in response to the requested first torque being smaller than the reference value.
  • the arithmetic unit 404 responds to the increase of the requested first torque to the reference value or more in response to the virtual air-fuel ratio. Is switched from the first air-fuel ratio to the second air-fuel ratio.
  • the arithmetic unit 404 sets the virtual air-fuel ratio to the second air-fuel ratio in response to the requested first torque being greater than the reference value.
  • the arithmetic unit 406 corresponds to the target air-fuel ratio switching means in the present invention.
  • the first air-fuel ratio used in the stoichiometric mode and the second air-fuel ratio used in the lean mode are set in advance as predetermined values for the target air-fuel ratio.
  • the arithmetic unit 406 receives the virtual air-fuel ratio determined by the arithmetic unit 404, the previous step value of the target air amount calculated by the arithmetic unit 162, and the previous step value of the estimated air amount calculated by the arithmetic unit 174. Has been.
  • FIG. 3 is a block diagram showing the logic of the arithmetic unit 192.
  • functions related to the calculation of the EGR opening are represented by blocks.
  • An arithmetic unit is assigned to each of these blocks.
  • Programs corresponding to the respective blocks are prepared in the ECU, and the functions of the respective arithmetic units are realized in the ECU by being executed by the processor.
  • the arithmetic units 502, 504, and 506 constituting the arithmetic unit 192 can be distributed and assigned to a plurality of cores.
  • the arithmetic unit 502 is further composed of two arithmetic units 508 and 510.
  • a virtual air-fuel ratio is input to the arithmetic unit 502.
  • the arithmetic unit 508 corresponds to a target EGR rate calculation means in the present invention, and calculates a target EGR rate for optimizing exhaust emission, fuel consumption, etc. under a virtual air-fuel ratio.
  • the EGR rate is the ratio of EGR gas in the air sucked into the cylinder from the intake valve
  • the EGR amount indicating the amount of EGR gas sucked into the cylinder from the intake valve is the value in the present invention. It is within an equal range of the EGR rate.
  • the arithmetic unit 502 may be configured to directly calculate the first base opening using the EGR opening map.
  • the EGR opening degree map is a map in which the EGR opening degree is associated with the engine state quantity including the engine speed, the air amount, and the air-fuel ratio as keys.
  • the virtual air-fuel ratio is used for map search. According to such a configuration, the EGR opening required under the virtual air-fuel ratio is calculated as the first base opening without calculating the target EGR rate.
  • the arithmetic unit 506 corrects the EGR ratio to be further lowered as the surplus fresh air ratio is larger. Is output as the first opening correction amount.
  • the arithmetic unit 506 corresponds to the first correction amount calculation means in the present invention.
  • the first opening correction amount calculated by the arithmetic unit 506 is added to the first base opening calculated by the arithmetic unit 510 to calculate the final EGR opening. While the surplus fresh air ratio is 1 or less, the arithmetic unit 506 may output a value of 0 instead of an invalid value as the first opening correction amount.
  • the calculated EGR opening is converted into a signal for driving the EGR valve 12 and transmitted to the EGR valve 12 via the interface 116 of the ECU.
  • the operation amount of the EGR valve 12 may be the duty ratio of a solenoid that drives the EGR valve 12 instead of the EGR valve opening degree.
  • the control result by the comparative example for the logic adopted in the present embodiment is obtained when the EGR opening degree for achieving the target EGR rate under the virtual air-fuel ratio is calculated.
  • the EGR opening degree calculation logic in the comparative example outputs the first base opening degree as the final EGR opening degree without performing the correction using the first opening degree correction amount in the arithmetic unit 192 of the present embodiment. It adopts the configuration to do. Since the present invention eliminates the concern that the comparative example has, by clarifying in advance the control result of the comparative example and the concern that exists there, the advantage of the logic employed in this embodiment is more It seems to be clear.
  • FIG. 4 is a time chart showing an image of the control result during acceleration according to the comparative example.
  • the first chart in FIG. 4 shows the time change of the required torque and the actual torque.
  • the second chart shows the time variation of the target air amount and the actual air amount.
  • the third chart shows the change over time in the ignition timing.
  • the fourth chart shows the change over time of the target air-fuel ratio and the virtual air-fuel ratio that is a parameter for calculating the target air amount.
  • the virtual air-fuel ratio is a parameter that gives the conversion efficiency of the air amount into torque, and the air amount necessary to achieve the required torque under the virtual air-fuel ratio is the target air amount.
  • the target EGR rate is the first period from when the virtual air fuel ratio is switched from the first air fuel ratio to the second air fuel ratio until the target air fuel ratio is switched from the first air fuel ratio to the second air fuel ratio.
  • the actual air-fuel ratio is controlled to the stoichiometric air-fuel ratio, which is the first air-fuel ratio, although the EGR rate is controlled to correspond to the lean air-fuel ratio, which is the second air-fuel ratio.
  • the fresh air rate of the EGR gas recirculated during this time becomes a value smaller than the value assumed when calculating the target EGR rate, that is, the value under the lean air-fuel ratio.
  • the actual EGR rate exceeds the target EGR rate and overshoots, there is a concern about torque fluctuation due to deterioration of combustion.
  • the fourth chart in FIG. 5 shows the change over time in the indicated ignition timing efficiency. As described above, “ ⁇ i” is the indicated ignition timing efficiency.
  • the fifth chart in FIG. 5 shows the time change of the ignition timing. As described above, “SA” is the ignition timing.
  • the eighth chart in FIG. 5 shows the time change of the fresh air rate of the EGR gas.
  • the fresh air rate of EGR gas here has shown the ratio of the unburned air in EGR gas.
  • the fresh air rate is not measured by actual engine control.
  • the new air rate line drawn on the chart is an image line supported by the test results.
  • the 9th chart in FIG. 5 shows the time change of the EGR opening. As described above, “EGRvb1” is the base opening, and “EGRv” is the EGR opening.
  • the indicated ignition timing efficiency is 1, so the ignition timing is maintained at the optimal ignition timing.
  • the ignition timing changes according to the decrease in the required first torque. This is a change corresponding to the fact that the optimal ignition timing changes according to the engine speed and the air amount.
  • the virtual air-fuel ratio is switched from the first air-fuel ratio to the second air-fuel ratio. That is, the target air-fuel ratio is maintained at the stoichiometric air-fuel ratio, while the virtual air-fuel ratio is made lean in a stepwise manner.
  • the operation with the second air-fuel ratio that is a lean air-fuel ratio requires a larger amount of air than the amount of air required for the operation with the first air-fuel ratio that is the stoichiometric air-fuel ratio.
  • the surplus fresh air ratio is greater than 1 after the requested first torque exceeds the reference value and the target air-fuel ratio deviates from the virtual air-fuel ratio until the target air-fuel ratio and the virtual air-fuel ratio coincide again.
  • the first opening correction amount is set to a value (negative value) corresponding to the surplus fresh air ratio.
  • the EGR opening during this period is a value obtained by adding the first opening correction amount (negative value) to the value of the first base opening.
  • the EGR valve which is an actuator, operates based on the EGR opening.
  • the actual EGR rate does not increase stepwise but increases with a delay from the target EGR rate.
  • the actual EGR rate gradually converges to the target EGR rate, and eventually follows the target EGR rate.
  • the first opening correction amount is an effective value
  • the EGR opening is corrected in a direction to decrease the actual EGR rate corresponding to the excess fresh air ratio. This effectively suppresses the situation where the actual EGR rate overshoots in the increasing direction and the combustion deteriorates.
  • the air-fuel ratio is changed from the first air-fuel ratio which is the stoichiometric air-fuel ratio to the stoichiometric air-fuel ratio while achieving a smooth increase in torque commensurate with the driver's acceleration request. It is possible to switch to the second air-fuel ratio that is a leaner air-fuel ratio with good response. Further, according to the logic employed in the present embodiment, the EGR rate is excessive when the air-fuel ratio is switched from the first air-fuel ratio, which is the stoichiometric air-fuel ratio, to the second air-fuel ratio, which is an air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. Can be effectively suppressed.
  • the logic of the arithmetic unit 192 is different between the second embodiment and the first embodiment.
  • the overall logic of the ECU is the same as that of the first embodiment, and the logic of the ECU according to the present embodiment can also be represented in FIG.
  • FIG. 6 is a block diagram showing the logic of the arithmetic unit 192 according to the present embodiment.
  • the arithmetic unit 192 according to the present embodiment includes arithmetic units 520 and 522.
  • the arithmetic unit 524 calculates the second base opening that is the base of the EGR valve opening for achieving the target EGR rate.
  • mathematical formulas and maps obtained by modeling the response of the EGR rate to the operation of the EGR valve based on fluid dynamics or the like can be used. Since the EGR rate is affected by the engine speed, the air amount, and the air-fuel ratio, these are used as parameters in the calculation of the second base opening.
  • the air-fuel ratio the stoichiometric air-fuel ratio is used for calculating the second base opening. That is, the arithmetic unit 524 calculates the EGR opening degree for achieving the target EGR rate under the theoretical air-fuel ratio as the second base opening degree.
  • the second base opening is indicated as “EGRvb2”.
  • the arithmetic unit 524 corresponds to the target second base operation amount calculation means in the present invention.
  • the target air-fuel ratio is the second air-fuel ratio (lean air-fuel ratio)
  • the arithmetic unit 522 corresponds to the second correction amount calculation means in the present invention.
  • the second opening degree correction amount calculated by the arithmetic unit 522 is added to the second base opening degree calculated by the arithmetic unit 520 to calculate the final EGR opening degree.
  • the EGR opening is an opening reflecting the fresh air rate in the EGR gas.
  • FIG. 7 is a time chart showing an image of a control result during acceleration by the ECU according to the present embodiment.
  • the time chart of FIG. 7 is composed of a plurality of charts, but the contents shown in each chart are the same as those of the time chart of FIG. 5 except for the time change of the 9th stage EGR opening. .
  • the ninth chart in FIG. 7 shows the time change of the EGR opening.
  • EGRvb2 is the second base opening
  • EGRv is the EGR opening.
  • the target air-fuel ratio and the virtual air-fuel ratio are both maintained at the first air-fuel ratio that is the theoretical air-fuel ratio. Therefore, the second base opening during this time is calculated using the theoretical air-fuel ratio. Further, the second opening degree correction amount during this period is set to an invalid value in response to the target air-fuel ratio being the stoichiometric air-fuel ratio. As a result, the EGR opening during this period is maintained at the value of the second base opening.
  • the virtual air-fuel ratio used for calculating the target EGR rate is switched to the second air-fuel ratio stepwise, and the target EGR rate also increases stepwise at the time of the switching. become.
  • the target EGR rate increases stepwise
  • the second base opening degree also increases stepwise at the time of increase.
  • the stoichiometric air-fuel ratio is always used as a parameter relating to the air-fuel ratio.
  • the second opening degree correction amount is such that the target air-fuel ratio is the stoichiometric air-fuel ratio until the requested first torque exceeds the reference value and the target air-fuel ratio is switched from the first air-fuel ratio to the second air-fuel ratio. In response, it becomes an invalid value. As a result, the EGR opening during this period is maintained at the value of the second base opening.
  • the target air-fuel ratio becomes equal to the lean air-fuel ratio after the target air-fuel ratio and the virtual air-fuel ratio coincide again. It becomes a value (positive value) for correcting the EGR rate to be further increased in response to the fuel ratio. As a result, the EGR opening during this period is maintained at a value obtained by adding the value (positive value) of the second opening correction amount to the value of the second base opening.
  • the operation with the second air-fuel ratio that is the lean air-fuel ratio has a higher fresh air rate in the exhaust gas than the operation with the first air-fuel ratio that is the stoichiometric air-fuel ratio.
  • the EGR opening degree for achieving the target EGR rate under the stoichiometric air-fuel ratio is calculated to avoid excessive actual EGR rate.
  • the stoichiometric air-fuel ratio is always assumed when calculating the EGR opening, the EGR rate will be insufficient during operation with a lean air-fuel ratio.
  • the EGR opening is corrected in the direction of increasing the EGR rate. As a result, it is effectively prevented that the EGR opening increases stepwise at the time of switching the target air-fuel ratio and the actual EGR rate is insufficient.
  • the air-fuel ratio is changed from the first air-fuel ratio which is the stoichiometric air-fuel ratio to the stoichiometric air-fuel ratio while achieving a smooth increase in torque commensurate with the driver's acceleration request. It is possible to switch to the second air-fuel ratio that is a leaner air-fuel ratio with good response. Further, according to the logic employed in the present embodiment, the EGR rate is excessive when the air-fuel ratio is switched from the first air-fuel ratio, which is the stoichiometric air-fuel ratio, to the second air-fuel ratio, which is an air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. Can be effectively suppressed.
  • the overall logic of the ECU is the same as that of the first embodiment, and the logic of the ECU according to the present embodiment can also be represented in FIG.
  • FIG. 8 is a block diagram showing the logic of the arithmetic unit 192 according to the present embodiment.
  • the arithmetic unit 192 according to the present embodiment includes arithmetic units 504, 530, and 532.
  • the arithmetic unit 504 is common to that of the arithmetic unit according to the first embodiment, and thus detailed description thereof is omitted.
  • the arithmetic units 530 and 532 which are different from the first embodiment will be described.
  • the arithmetic unit 530 is provided in place of the arithmetic unit 502 according to the first embodiment.
  • the arithmetic unit 530 is further composed of two arithmetic units 534 and 536.
  • the arithmetic units 534 and 536 are provided in place of the arithmetic units 508 and 510 according to the first embodiment.
  • the arithmetic unit 534 calculates the target base EGR rate using the EGR rate map.
  • the EGR rate map is a map in which the EGR rate is associated with the engine state quantity including the engine speed, the air amount, and the air-fuel ratio as keys. This map is determined by adaptation for each air amount, engine speed, and air-fuel ratio. For the search of the EGR rate map, the actual value or target value of the engine state quantity is used. As for the air-fuel ratio, the virtual air-fuel ratio is used for map search. Therefore, the arithmetic unit 534 calculates the EGR rate required under the virtual air-fuel ratio as the target base EGR rate. In the figure, the target base EGR rate is expressed as “EGRtb”. The arithmetic unit 534 corresponds to the target EGR rate calculation means in the present invention.
  • the arithmetic unit 536 calculates the EGR opening degree for achieving the target EGR rate.
  • a mathematical formula or a map obtained by modeling the response of the EGR rate to the operation of the EGR valve based on fluid dynamics or the like can be used. Since the EGR rate is affected by the engine speed, the air amount, and the air-fuel ratio, these are used as parameters in the calculation of the EGR opening.
  • the air-fuel ratio the virtual air-fuel ratio is used for calculating the EGR opening.
  • the EGR opening is indicated as “EGRv”.
  • the arithmetic unit 536 corresponds to the first operation amount calculation means in the present invention.
  • the arithmetic unit 532 calculates an EGR rate correction amount that is a correction amount of the target base EGR rate using the surplus fresh air ratio.
  • the EGR correction amount is expressed as “EGRtc”.
  • a correction amount map is used.
  • the correction amount map is a map in which the excess fresh air ratio and the EGR rate correction amount are associated with various engine state amounts including the engine speed and the air amount as keys.
  • the calculation unit 532 invalidates the EGR correction amount.
  • the value is output.
  • the arithmetic unit 532 decreases the EGR rate as the surplus fresh air ratio increases.
  • a value for correction is output as an EGR rate correction amount.
  • the arithmetic unit 532 corresponds to the third correction amount calculating means in the present invention.
  • the EGR rate correction amount calculated by the arithmetic unit 532 is added to the target base EGR rate calculated by the arithmetic unit 534 to calculate the final target EGR rate. While the surplus fresh air ratio is 1 or less, the arithmetic unit 532 may output a value of 0 instead of an invalid value as the EGR rate correction amount.
  • FIG. 9 is a time chart showing an image of a control result during acceleration by the ECU according to the present embodiment.
  • the time chart of FIG. 9 is composed of a plurality of charts, but the contents shown in each chart are the figures except for the time change of the EGR rate of the seventh stage and the time change of the EGR opening of the ninth stage. This is the same as the case of time chart 5.
  • the seventh chart in FIG. 9 shows the time change of the EGR rate.
  • “EGRtb” is the target base EGR rate
  • EGRt is the target EGR rate.
  • the ninth chart in FIG. 9 shows the time change of the EGR opening.
  • EGRv is the EGR opening degree.
  • the target air-fuel ratio and the virtual air-fuel ratio are both maintained at the first air-fuel ratio that is the theoretical air-fuel ratio. Therefore, the target base EGR rate during this period is calculated using the theoretical air-fuel ratio which is a virtual air-fuel ratio. Further, the surplus fresh air ratio during this period is set to 1 in response to the target air-fuel ratio and the virtual air-fuel ratio being in agreement. If the surplus fresh air ratio is 1, the EGR rate correction amount is maintained at an invalid value. As a result, the target EGR rate during this period is maintained at the target base EGR rate corresponding to the theoretical air-fuel ratio.
  • the virtual air-fuel ratio used for calculating the target base EGR rate is switched stepwise to the second air-fuel ratio that is a lean air-fuel ratio, so that the target base EGR rate at the time of switching Also, the value increases stepwise to a value corresponding to the second air-fuel ratio which is a lean air-fuel ratio.
  • the surplus fresh air ratio during this period is set to a value larger than 1 in response to the difference between the target air-fuel ratio and the virtual air-fuel ratio.
  • the EGR rate correction amount is set to a value (negative value) corresponding to the value of the surplus fresh air ratio.
  • the target EGR rate during this period is a value obtained by adding the EGR rate correction amount (negative value) to the value of the target base EGR rate corresponding to the lean air-fuel ratio.
  • the surplus fresh air ratio becomes the target air-fuel ratio and the virtual air-fuel ratio. Is again set to 1 in response to a match. If the surplus fresh air ratio is 1, the EGR rate correction amount is maintained at the invalid value again. As a result, the target EGR rate during this period is maintained at the value of the target base EGR rate corresponding to the lean air-fuel ratio.
  • the EGR valve which is an actuator, operates based on the EGR opening.
  • the actual EGR rate does not increase stepwise but increases with a delay from the target EGR rate.
  • the actual EGR rate gradually converges to the target EGR rate, and eventually follows the target EGR rate.
  • the target base EGR rate is corrected in a direction to decrease the actual EGR rate corresponding to the surplus fresh air rate. This effectively suppresses the situation where the actual EGR rate overshoots in the increasing direction and the combustion deteriorates.
  • the air-fuel ratio is changed from the first air-fuel ratio which is the stoichiometric air-fuel ratio to the stoichiometric air-fuel ratio while achieving a smooth increase in torque commensurate with the driver's acceleration request. It is possible to switch to the second air-fuel ratio that is a leaner air-fuel ratio with good response. Further, according to the logic employed in the present embodiment, the EGR rate is excessive when the air-fuel ratio is switched from the first air-fuel ratio, which is the stoichiometric air-fuel ratio, to the second air-fuel ratio, which is an air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. Can be effectively suppressed.
  • FIG. 10 is a block diagram showing the logic of the arithmetic unit 192 according to the present embodiment.
  • the arithmetic unit 192 according to the present embodiment includes an arithmetic unit 540.
  • the arithmetic unit 540 is provided in place of the arithmetic unit 502 according to the first embodiment.
  • the arithmetic unit 540 is further composed of two arithmetic units 508 and 542. Of these, the arithmetic unit 508 is the same as that of the arithmetic unit according to the first embodiment, and a detailed description thereof will be omitted.
  • the arithmetic unit 542 which is a difference from the first embodiment will be described.
  • the arithmetic unit 542 is provided in place of the arithmetic unit 510 according to the first embodiment.
  • the arithmetic unit 542 calculates an EGR opening degree for achieving the target EGR rate.
  • a mathematical formula or a map obtained by modeling the response of the EGR rate to the operation of the EGR valve based on fluid dynamics or the like can be used. Since the EGR rate is affected by the engine speed, the air amount, and the air-fuel ratio, these are used as parameters in the calculation of the EGR opening. Regarding the air-fuel ratio, the target air-fuel ratio is used for calculating the EGR opening.
  • the arithmetic unit 542 calculates the EGR opening required to achieve the target EGR rate under the target air-fuel ratio.
  • the EGR opening is indicated as “EGRv”.
  • the arithmetic unit 542 corresponds to the second operation amount calculation means in the present invention.
  • FIG. 11 is a time chart showing an image of a control result during acceleration by the ECU according to the present embodiment.
  • the time chart of FIG. 11 is composed of a plurality of charts, but the contents shown in each chart are the same as those of the time chart of FIG. 5 except for the time change of the EGR opening degree of the ninth stage. .
  • the ninth chart in FIG. 11 shows the time change of the EGR opening.
  • EGRv is the EGR opening degree.
  • the virtual air-fuel ratio used for calculating the target EGR rate is switched to the second air-fuel ratio stepwise, so that the target EGR rate is also the lean air-fuel ratio at the time of the switching. It increases stepwise to a value corresponding to two air-fuel ratios.
  • the target EGR rate increases stepwise, the EGR opening also increases stepwise at the time of increase.
  • the theoretical air fuel ratio which is the value of the target air fuel ratio during this period is used for calculation of the EGR opening during this time. That is, the EGR opening during this period is maintained at a value for achieving the target EGR rate corresponding to the lean air-fuel ratio under the theoretical air-fuel ratio.
  • the target EGR rate continues to be the value of the virtual air-fuel ratio during this time.
  • a value corresponding to a certain lean air-fuel ratio is maintained.
  • the EGR opening during this period is calculated as a value corresponding to the lean air-fuel ratio in response to the target air-fuel ratio being switched from the stoichiometric air-fuel ratio to the lean air-fuel ratio. That is, the EGR opening during this period is maintained at a value for achieving the target EGR rate corresponding to the lean air-fuel ratio under the lean air-fuel ratio.
  • the EGR valve which is an actuator, operates based on the EGR opening.
  • the target EGR rate is calculated using the virtual air-fuel ratio, and the response delay of the actual EGR rate is suppressed.
  • the operation with the second air-fuel ratio that is the lean air-fuel ratio has a higher fresh air rate in the exhaust gas than the operation with the first air-fuel ratio that is the stoichiometric air-fuel ratio.
  • the virtual air-fuel ratio is used as a parameter when calculating the EGR opening
  • the actual EGR rate is reduced while the virtual air-fuel ratio is the lean air-fuel ratio even though the target air-fuel ratio is the theoretical air-fuel ratio. It will increase beyond the target EGR rate.
  • the target air-fuel ratio is used as an air-fuel ratio parameter when calculating the EGR opening, it is possible to achieve the target EGR rate under the actual air-fuel ratio.
  • the EGR opening is calculated. As a result, a situation in which the actual EGR rate is excessive can be effectively prevented.
  • the air-fuel ratio is changed from the first air-fuel ratio which is the stoichiometric air-fuel ratio to the stoichiometric air-fuel ratio while achieving a smooth increase in torque commensurate with the driver's acceleration request. It is possible to switch to the second air-fuel ratio that is a leaner air-fuel ratio with good response. Further, according to the logic employed in the present embodiment, the EGR rate is excessive when the air-fuel ratio is switched from the first air-fuel ratio, which is the stoichiometric air-fuel ratio, to the second air-fuel ratio, which is an air-fuel ratio that is leaner than the stoichiometric air-fuel ratio. Can be effectively suppressed.
  • the engine to be controlled in this embodiment is a spark ignition type four-cycle reciprocating engine and a supercharged lean burn engine equipped with a turbocharger.
  • the actuator operated by the ECU that controls the operation of the engine includes a throttle gate, a VVT, an ignition device, an injector, and an EGR valve, as well as a waste gate valve (hereinafter referred to as WGV) provided in the turbocharger. It is.
  • the WGV is a supercharging characteristic variable actuator that changes the supercharging characteristic of the turbocharger. Since the supercharging characteristic of the turbocharger changes the amount of air, WGV is included in the first actuator that changes the amount of air, like the throttle and VVT.
  • FIG. 12 is a block diagram showing the logic of the ECU according to the present embodiment.
  • the ECU includes an engine controller 100 and a powertrain manager 200.
  • various functions included in the powertrain manager 200 are represented by blocks.
  • the block which shows the function which is common with the thing of ECU which concerns on Embodiment 1 is attached
  • the block indicating the engine controller 100 among various functions provided in the engine controller 100, functions related to the cooperative operation of the actuator are represented by blocks.
  • it demonstrates centering on the block which shows the difference from Embodiment 1, ie, the function peculiar to control of a supercharged lean burn engine.
  • the powertrain manager 200 includes an arithmetic unit 210 in addition to the arithmetic units 202, 204, 206, and 208 common to the first embodiment.
  • the arithmetic unit 210 calculates the requested third torque and transmits it to the engine controller 100.
  • the required third torque is described as “TQ3r”.
  • the third torque is a torque required for the engine constantly or over a long period of time.
  • the relationship between the third torque and the first torque is similar to the relationship between the first torque and the second torque. In other words, when viewed from the side of the first torque, the first torque is realized with a kind of torque that has higher urgency or priority than the third torque and requires high responsiveness of the engine, that is, earlier.
  • the requested third torque is a requested value of the third torque that the powertrain manager 200 requests from the engine. If the three types of required torques calculated by the powertrain manager 200 are arranged in the order of urgency or priority, that is, in order of the responsiveness required for the engine, the required second torque, the required first torque, and the required third Torque order.
  • the arithmetic unit 210 calculates the requested third torque based on a signal that responds to the opening of the accelerator pedal.
  • the required third torque corresponds to the required torque in the present invention together with the required first torque.
  • a request torque that is obtained by removing a pulse component in a temporary torque-down direction from the request first torque may be used as the request third torque.
  • the engine controller 100 includes three large arithmetic units 120, 140, and 160, as in the first embodiment.
  • the large arithmetic unit 120 includes an arithmetic unit 130 in addition to the arithmetic units 122, 124, 126, and 128 common to the first embodiment.
  • the arithmetic unit 130 is classified as a third torque among the torques required to maintain the current engine operating state or to realize a predetermined operating state as a control parameter for the engine. Calculate the torque.
  • the torque calculated by the arithmetic unit 130 is referred to as other third torque.
  • the other third torque is indicated as “TQ3etc”.
  • the arithmetic unit 130 outputs a valid value only when such torque is actually needed, and calculates an invalid value while such torque is not needed.
  • the invalid value is set to a value larger than the maximum indicated torque that the engine can output.
  • the large arithmetic unit 140 includes an arithmetic unit 148 in addition to the arithmetic units 142, 144, and 146 common to the first embodiment.
  • the arithmetic unit 148 is configured to adjust the third torque.
  • the requested third torque and the other third torque are input to the arithmetic unit 148.
  • the arithmetic unit 148 arbitrates them and outputs the arbitrated torque as the finally determined target third torque.
  • the finally determined target third torque is described as “TQ3t”.
  • As an arbitration method in the arithmetic unit 148 minimum value selection is used. Therefore, when a valid value is not output from the arithmetic unit 130, the requested third torque given from the powertrain manager 200 is calculated as the target third torque.
  • the large arithmetic unit 160 treats all of the target first torque, target second torque, and target third torque input from the large arithmetic unit 140 as target values of torque for the engine. Therefore, the large arithmetic unit 160 according to the present embodiment includes an arithmetic unit 182 instead of the arithmetic unit 162 according to the first embodiment, and includes an arithmetic unit 184 instead of the arithmetic unit 164 according to the first embodiment. .
  • the calculation unit 182 receives the target first torque and the target third torque, and further inputs the target efficiency and the virtual air-fuel ratio.
  • the arithmetic unit 182 corresponds to the target air amount calculation means in the present invention.
  • the arithmetic unit 182 uses the same method as the arithmetic unit 162 according to the first embodiment to use the target efficiency and the virtual air-fuel ratio to achieve the target air amount (hereinafter referred to as target first air) for achieving the target first torque. Quantity) from the target first torque.
  • the target first air amount is described as “KL1t”.
  • the target first air amount is used for calculation of the target valve timing by the arithmetic unit 178.
  • the calculation unit 182 uses the target efficiency and the virtual air-fuel ratio to achieve the target air amount (hereinafter, the target third air amount) for achieving the target third torque. ) Is calculated backward from the target third torque.
  • the target third air amount is described as “KL3t”.
  • the target efficiency and the virtual air-fuel ratio are used as parameters that give the conversion efficiency of the air amount into torque. If the value of the virtual air-fuel ratio is changed as in Embodiment 1 in the calculation of the target first air amount, the value of the virtual air-fuel ratio is similarly changed in the calculation of the target third air amount.
  • the arithmetic unit 184 performs a reverse calculation of the target intake pipe pressure from the target first air amount by a method common to the arithmetic unit 164 according to the first embodiment.
  • the target intake pipe pressure is indicated as “Pmt”.
  • the target intake pipe pressure is used for calculation of the target throttle opening by the arithmetic unit 166.
  • the arithmetic unit 184 calculates the target boost pressure from the target third air amount.
  • the target boost pressure is indicated as “Pct”.
  • the target third air amount is converted into the intake pipe pressure by the same method as that for calculating the target intake pipe pressure.
  • the reserve pressure is added to the intake pipe pressure obtained by converting the target third air amount, and the total value is calculated as the target supercharging pressure.
  • the reserve pressure is a minimum margin of the supercharging pressure with respect to the intake pipe pressure.
  • the reserve pressure may be a fixed value, but may be changed in conjunction with the intake pipe pressure, for example.
  • the large arithmetic unit 160 further includes an arithmetic unit 186.
  • the arithmetic unit 186 calculates a target wastegate valve opening that is a target value of the wastegate valve opening based on the target boost pressure.
  • the target wastegate valve opening is indicated as “WGV”.
  • WGV the target wastegate valve opening
  • a map or model that associates the boost pressure with the wastegate valve opening is used.
  • the target wastegate valve opening calculated by the arithmetic unit 186 is converted into a signal for driving the WGV 10 and transmitted to the WGV 10 via the interface 115 of the ECU.
  • the arithmetic unit 186 also corresponds to the first actuator control means in the present invention. Note that the operation amount of the WGV 10 may be the duty ratio of the solenoid that drives the WGV 10 instead of the waste gate valve opening.
  • ⁇ A parameter corresponding to the ignition timing can also be used as a parameter used for calculating the target air amount. Since the torque generated at the same air amount decreases as the ignition timing is retarded from the optimal ignition timing, the parameter corresponding to the ignition timing corresponds to a parameter that gives the conversion efficiency of the air amount into torque.
  • a torque-air amount conversion map used for calculating the target air amount may be prepared for each ignition timing, and the ignition timing value used for searching the map may be changed in response to switching of the operation mode. Specifically, at the time of deceleration when the required first torque is decreasing, while the required first torque is larger than the reference value, the ignition timing used for searching the map is set to the optimum ignition timing, and the required torque is reduced to the reference value or less. In response to this, the ignition timing used for searching the map is retarded from the optimal ignition timing. In this case, the air-fuel ratio used for searching the map is the target air-fuel ratio.
  • variable lift mechanism that makes the lift amount of the intake valve variable can also be used.
  • the variable lift mechanism can be used in combination with other first actuators such as a throttle and VVT.
  • a variable nozzle can also be used as the first actuator that changes the supercharging characteristics of the turbocharger. Further, if the turbocharger is assisted by an electric motor, the electric motor can be used as the third actuator.
  • the injector as the second actuator is not limited to the port injector.
  • An in-cylinder injector that directly injects fuel into the combustion chamber may be used, or both a port injector and an in-cylinder injector may be used in combination.
  • the first air / fuel ratio is not limited to the stoichiometric air / fuel ratio. It is also possible to set the air-fuel ratio leaner than the stoichiometric air-fuel ratio to the first air-fuel ratio and set the air-fuel ratio leaner than the first air-fuel ratio to the second air-fuel ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 要求トルクの基準値以上への増大に応答して、要求トルクを達成するための目標空気量の計算に使用する仮想空燃比の値を第1空燃比から第1空燃比よりもリーンな第2空燃比へ変更する。目標空気量は仮想空燃比を用いて要求トルクから逆算される。そして、仮想空燃比の値が第1空燃比から第2空燃比へ変更された後、目標空燃比を第1空燃比から第2空燃比へ切り替える。第4アクチュエータの操作量は、排気中の新気率に対応するパラメータと仮想空燃比を用いて決定される。好ましくは、仮想空燃比による燃焼のもとで目標EGR率を達成するための第1ベース操作量と、余剰新気割合が大きいほどEGR率を下げる方向へ変化させるための第1補正量が算出され、第1ベース操作量に第1補正量を反映させた値が第4アクチュエータの操作量として決定される。

Description

内燃機関の制御装置
 本発明は、運転に用いる空燃比を少なくとも2つの空燃比の間で切り替え可能に構成された内燃機関の空気量、燃料供給量、点火時期、及びEGR率を統合制御する制御装置に関する。
 日本特開2002-339778号公報には、内燃機関の燃焼方式を理論空燃比によるストイキ燃焼からリーン空燃比によるリーン燃焼へ、或いはリーン燃焼からストイキ燃焼へ切り替え可能な内燃機関における燃焼方式の切替制御に関する技術(以下、先行技術)が開示されている。この先行技術の内燃機関では、ストイキ燃焼からリーン燃焼へ燃焼形態が切り替えられると、その時点でEGR率がストイキ燃焼に対応した値からリーン燃焼に対応した値へと切り替えられる。
 内燃機関の燃焼方式がストイキ燃焼からリーン燃焼へ切り替えられる運転条件の例としては、アイドル運転等の極低負荷のストイキ燃焼領域から低負荷のリーン燃焼領域に向かって加速する場合が挙げられる。このような空燃比の切替条件に上記先行技術を適用した場合、空燃比が理論空燃比からリーン空燃比へ切り替えられた時点で、EGR率はストイキ燃焼に対応した値からリーン燃焼に対応した値へ切り替えられる。しかしながら、空燃比の切り替えを受けてEGR率が切り替えられた場合であっても、実際のEGR率は直ぐには変化しない。EGR率を調整するアクチュエータであるEGRバルブの応答遅れやEGRバルブからスロットルまでのEGR経路の容積分の応答遅れが発生するからである。その結果、上記先行技術では加速時の空燃比の切り替え直後に実際のEGR率が不足してしまい燃焼悪化を招くという問題が生じうる。
 この問題の解決策として、例えば空燃比の切り替えに先立ってEGR率を切り替えることが考えられる。具体的には、加速時に空燃比をストイキ燃焼が行われる理論空燃比からリーン燃焼が行われるリーン空燃比に切り替える場合に、空燃比の切り替えに先立ってEGR率の目標値を理論空燃比に対応した値からリーン空燃比に対応した値に切り替えることが考えられる。この解決策によるEGR制御によれば、空燃比がリーン空燃比になるのに先立ってEGR率をリーン空燃比に対応した目標値に切り替えられるので、EGR率の応答遅れ改善に一定の効果がある。
 しかしながら、上記解決策によるEGR制御では、EGR率の目標値がリーン空燃比に対応した値であるにもかかわらずストイキ燃焼が行われている期間が存在する。ストイキ燃焼はリーン燃焼に比して排気中の新気の割合(新気率)が低い。このため、リーン空燃比に対応したEGR率を新気率を考慮した上で算出している場合には、上記期間においてEGR率が過多となり燃焼悪化によるトルク変動が懸念される。
日本特開2002-339778号公報
 本発明は、上述の問題に鑑みなされたもので、運転に用いる空燃比を少なくとも2つの空燃比の間で切り替え可能に構成された内燃機関において、ドライバの要求に応じてトルクを増大方向に変化させながら空燃比を応答良く切り替えると共に、EGR率が過多となることを抑制することを課題とする。
 本発明は内燃機関の制御装置の構成に適用することができる。以下、本発明に係る内燃機関の制御装置の概要について説明する。ただし、以下に説明する本発明の内容から明らかであるように、本発明は内燃機関の制御方法の手順に適用することができるし、制御装置で実行されるプログラムのアルゴリズムに適用することもできる。
 本発明に係る制御装置は、EGR率を調整するEGRバルブを有し、理論空燃比近傍の第1空燃比による第1運転と、第1空燃比よりもリーンな第2空燃比による第2運転とを選択可能に構成され、第1運転時は第1空燃比を用いて算出された目標第1空気量を目標空気量として吸入空気量が制御され、第2運転時は第2空燃比を用いて算出された目標第2空気量を目標空気量として吸入空気量が制御される内燃機関を制御対象とする。制御装置は、第1運転時はEGRバルブの開度を第1開度に制御し、第2運転時はEGRバルブの開度を第1開度よりも大きい第2開度に制御し、第1運転から第2運転への切り替え期間であって、目標空気量が目標第2空気量となってから実空気量が目標第2吸入空気量となるまでの期間は、空燃比を第1空燃比に制御し、点火時期を遅角し、そしてEGRバルブの開度を第1開度よりも大きく且つ第2開度よりも小さい第3開度に制御する。なお、本発明に係る制御装置が行うEGRバルブの開度制御では、排気に含まれる未燃の空気の割合である新気率を考慮することが好ましい。具体的には、制御装置は、内燃機関が第1空燃比で運転されたときの新気率に対する内燃機関が第2空燃比で運転されたときの新気率の割合が大きいほど、第2開度と第3開度との差が大きくなるように制御する。
 本発明に係る制御装置の構成及びその機能について更に詳しく説明する。本発明に係る制御装置は、4種類のアクチュエータを有し、第1空燃比による運転と第1空燃比よりもリーンな第2空燃比による運転とを選択可能に構成された内燃機関を制御対象とする。4種類のアクチュエータとは、空気量を変化させる第1アクチュエータ、筒内に燃料を供給する第2アクチュエータ、筒内の混合気に点火する第3アクチュエータ、そしてEGR率を調整する第4アクチュエータである。第1アクチュエータには、スロットル、吸気バルブのバルブタイミングを変化させる可変バルブタイミング機構が含まれ、さらに内燃機関が過給エンジンであるならば、過給器の過給特性を変化させる過給特性可変アクチュエータ、具体的には、可変ノズルやウエストゲートバルブが第1アクチュエータに含まれる。第2アクチュエータは具体的には燃料を噴射するインジェクタであり、吸気ポートに燃料を噴射するポートインジェクタとシリンダ内に燃料を直接噴射する筒内インジェクタとが含まれる。第3アクチュエータは具体的には点火装置である。第4アクチュエータは具体的にはEGRバルブである。本発明に係る制御装置は、これら4種類のアクチュエータの協調操作によって内燃機関の空気量、燃料供給量、点火時期、及びEGR率を統合制御する。
 本発明に係る制御装置はコンピュータによって具現化することができる。より詳しくは、種々の機能を実現するための処理を記述したプログラムを記憶したメモリと、同メモリからプログラムを読みだして実行するプロセッサとを備えたコンピュータによって本発明に係る制御装置を構成することができる。本発明に係る制御装置が備える機能には、上記4種類のアクチュエータの協調操作に用いる目標空気量、目標空燃比及び目標EGR率を決定するための機能として、要求トルク受信機能、目標空燃比切替機能、目標空気量算出機能、仮想空燃比変更機能、及び目標EGR率算出機能が含まれている。
 要求トルク受信機能によれば、内燃機関に対する要求トルクが受信される。要求トルクはドライバによって操作されるアクセルペダルの開度に応答する信号に基づいて計算される。ドライバが内燃機関に対して減速を要求する場合には、ドライバがアクセルペダルを閉じる速度に応じて減少する要求トルクが得られる。ドライバが内燃機関に対して加速を要求する場合には、ドライバがアクセルペダルを開く速度に応じて増大する要求トルクが得られる。
 目標空気量算出機能によれば、要求トルクを達成するための目標空気量が要求トルクから逆算される。目標空気量の計算には、空気量のトルクへの変換効率を与えるパラメータとして、空燃比に対応する値である仮想空燃比が用いられる。仮想空燃比は可変であり、仮想空燃比変更機能によって変更される。仮想空燃比変更機能によれば、要求トルクの基準値以上への増大に応答して空燃比に対応する値である仮想空燃比が第1空燃比から第1空燃比よりもリーンな第2空燃比へ切り替えられる。つまり、要求トルクが基準値以上に増大した場合には、目標空燃比が第1空燃比から第2空燃比に切り替えられるのに先行して、目標空気量の計算に用いられる空燃比が第1空燃比から第2空燃比へ切り替えられる。このような空燃比の切り替えが行われる条件としては、例えば、アイドル運転からの加速時が挙げられる。要求トルクの値が同じであるならば、仮想空燃比がリッチであるほど目標空気量は小さくなり、仮想空燃比がリーンであるほど目標空気量は大きくなる。なお、トルクに対する基準値は固定値でもよいが内燃機関の回転数或いはその他の条件に応じて適宜変更することが好ましい。
 目標空燃比切替機能によれば、要求トルクが増大している過渡期では、要求トルクが基準値以上に増大したことを受けて仮想空燃比が第1空燃比から第1空燃比よりもリーンな第2空燃比へ変更された後、目標空燃比は第1空燃比から第1空燃比よりもリーンな第2空燃比へ切り替えられる。目標空燃比を第1空燃比から第2空燃比へ切り替える具体的なタイミングは、目標空気量と推定空気量との差が閾値以下になった時点であることが好ましい。また、パラメータの値が変更されてから一定時間が経過した時点で目標空燃比を第1空燃比から第2空燃比へ切り替えてもよい。
 本発明に係る制御装置は、上記処理によって決定された目標空気量と目標空燃比と目標EGR率に基づいて4種類のアクチュエータを協調操作する。本発明に係る制御装置が備える機能には、目標空気量と目標空燃比と目標EGR率に基づいた協調操作のための機能として、第1アクチュエータ制御機能、第2アクチュエータ制御機能、第3アクチュエータ制御機能、及び第4アクチュエータ制御機能が含まれる。
 第1アクチュエータ制御機能によれば、目標空気量に基づいて第1アクチュエータの操作量が決定される。そして、決定された操作量に従って第1アクチュエータの操作が行われる。第1アクチュエータの操作によって実際の空気量は目標空気量に追従するように変化する。
 第2アクチュエータ制御機能によれば、目標空燃比に基づいて燃料供給量が決定される。そして、決定された燃料供給量に従って第2アクチュエータの操作が行われる。
 第3アクチュエータ制御機能によれば、第1アクチュエータの操作量と目標空燃比とから推定されるトルクと要求トルクとに基づいて要求トルクを達成するための点火時期が決定される。そして、決定された点火時期に従って第3アクチュエータの操作が行われる。第1アクチュエータの操作量からは実際の空気量を推定することができ、推定空気量と目標空燃比とからトルクを推定することができる。第3アクチュエータの操作は、推定トルクの要求トルクに対する過剰分を点火時期によって補正するように行われる。
 第4アクチュエータ制御機能によれば、仮想空燃比と目標空燃比とに基づいて第4アクチュエータの操作量が決定される。そして決定された操作量に従って第4アクチュエータの操作が行われる。第4アクチュエータの操作によって実際のEGR率は目標EGR率に追従するように変化する。
 本発明に係る制御装置が備える第4アクチュエータ制御機能には、EGR率の目標値である目標EGR率を算出する目標EGR率算出機能が含まれていることが好ましい。目標EGR率算出機能によれば、目標空気量算出機能に用いられた仮想空燃比が目標EGR率の算出に用いられる。上述したとおり、仮想空燃比は可変であり、仮想空燃比変更機能によって変更される。仮想空燃比変更機能によれば、要求トルクの基準値以上への増大に応答して仮想空燃比は第1空燃比に対応する値から第2空燃比に対応する値へ切り替えられる。つまり、要求トルクが基準値以上に増大した場合には、目標空燃比が第1空燃比から第2空燃比に切り替えられるのに先行して、目標EGR率が第1空燃比を用いて算出された値から第2空燃比を用いて算出された値に切り替えられる。
 また、本発明に係る制御装置が備える第4アクチュエータ制御機能には、排気中に含まれる未燃の空気(酸素)の割合である新気率に対応するパラメータの値を算出するためのパラメータ値算出機能が含まれていることが好ましい。パラメータ値算出機能によれば、例えば目標空燃比での燃焼の新気率に対する仮想空燃比での燃焼の新気率の割合として定義される余剰空気割合がパラメータ値として算出される。余剰空気割合をパラメータの値として用いた場合、第4アクチュエータ制御機能によれば、余剰空気割合が大きいほどEGR率を下げる方向へ変化させるための第4アクチュエータの操作補正量が第1補正量として算出される。また、仮想空燃比のもとで目標EGR率を達成するための第4アクチュエータの操作量が第1ベース操作量として算出される。そして、第1補正量を用いて第1ベース操作量が補正され、補正後の値が第4アクチュエータの操作量として決定される。
 また、第4アクチュエータ制御機能に含まれる他の機能によれば、新気率に対応するパラメータは目標空燃比の値とすることもできる。この場合、目標空燃比の値がリーンであるほどEGR率を上げる方向へ変化させるための第4アクチュエータの操作補正量が第2補正量として算出される。そして、第2補正量を用いて第2ベース操作量が補正され、補正後の値が第4アクチュエータの操作量として決定される。
 また、第4アクチュエータ制御機能に含まれる他の機能によれば、パラメータ算出機能によって算出されたパラメータの値である余剰空気割合を用いて余剰空気割合が大きいほどEGR率を下げる方向へ変化させるための第4アクチュエータの目標EGR率の補正量が第3補正量として算出される。そして、第3補正量を用いて目標EGR率が補正され、仮想空燃比のもとで補正後の目標EGR率を達成するための第4のアクチュエータの操作量が算出され、この値が最終的な操作量として決定される。
 更に、第4アクチュエータ制御機能に含まれる他の機能によれば、前述のように新気率に対応するパラメータを目標空燃比の値とした場合に、目標空燃比のもとで目標EGR率を達成するための第4のアクチュエータの操作量が算出され、この値が最終的な操作量として決定される。
 本発明に係る制御装置によれば、以上述べた機能を備えることにより、ドライバから与えられる要求トルクが増大している過渡期において、ドライバの要求に応じてトルクを滑らかに変化させながら空燃比を応答良く切り替えると共に、EGR率が過多となることを抑制することができる。
本発明の実施の形態1に係る制御装置のロジックを示すブロック図である。 本発明の実施の形態1に係る制御装置の運転モードの切り替えのロジックを示すブロック図である。 本発明の実施の形態1に係る制御装置のEGR開度算出のロジックを示すブロック図である。 比較例による加速時の制御結果のイメージを示すタイムチャートである。 本発明の実施の形態1に係る制御装置による加速時の制御結果のイメージを示すタイムチャートである。 本発明の実施の形態2に係る制御装置のEGR開度算出のロジックを示すブロック図である。 本発明の実施の形態2に係る制御装置による加速時の制御結果のイメージを示すタイムチャートである。 本発明の実施の形態3に係る制御装置のEGR開度算出のロジックを示すブロック図である。 本発明の実施の形態3に係る制御装置による加速時の制御結果のイメージを示すタイムチャートである。 本発明の実施の形態4に係る制御装置のEGR開度算出のロジックを示すブロック図である。 本発明の実施の形態4に係る制御装置による加速時の制御結果のイメージを示すタイムチャートである。 本発明の実施の形態5に係る制御装置のロジックを示すブロック図である。 本発明の実施の形態5に係る制御装置で採られている運転領域の設定を示す図である。
[実施の形態1]
 以下、本発明の実施の形態1について図を参照して説明する。
 本実施の形態において制御対象とされる内燃機関(以下、エンジン)は、火花点火式の4サイクルレシプロエンジンである。また、このエンジンはいわゆるリーンバーンエンジンであり、エンジンの運転モードとして、理論空燃比による第1運転を行うストイキモード(第1運転モード)と、理論空燃比よりもリーンな空燃比による第2運転を行うリーンモード(第2運転モード)とを選択可能に構成されている。
 車両に搭載されているECU(Electrical control Unit)は、エンジンに備えられる各種のアクチュエータを操作することでエンジンの運転を制御する。ECUにより操作されるアクチュエータには、空気量を変化させる第1アクチュエータであるスロットルと可変バルブタイミング機構(以下、VVT)、筒内に燃料を供給する第2アクチュエータであるインジェクタ、筒内の混合気に点火する第3アクチュエータである点火装置、EGR率を調整する第4アクチュエータであるEGRバルブが含まれる。VVTは吸気バルブに対して設けられ、インジェクタは吸気ポートに設けられている。ECUはこれらのアクチュエータを操作してエンジンの運転を制御する。ECUによるエンジンの制御には、ストイキモードからリーンモードへ、或いは、リーンモードからストイキモードへの運転モードの切り替えが含まれている。
 図1には、本実施の形態に係るECUのロジックがブロック図で示されている。ECUはエンジンコントローラ100とパワートレインマネージャ200を含む。エンジンコントローラ100はエンジンを直接制御する制御装置であって、本発明に係る制御装置に相当する。パワートレインマネージャ200は、エンジンや電子制御式自動変速機、さらにはVSCやTRC等の車両制御デバイスを含む駆動系全体を統合制御する制御装置である。エンジンコントローラ100は、パワートレインマネージャ200から受け取った信号に基づいてエンジンの運転を制御するように構成されている。エンジンコントローラ100とパワートレインマネージャ200は、いずれもソフトウェアによって実現される。詳しくは、メモリに記憶されたプログラムを読み出し、それをプロセッサによって実行することによって、エンジンコントローラ100とパワートレインマネージャ200のそれぞれの機能がECUにおいて実現される。なお、ECUがマルチコアプロセッサを備える場合には、エンジンコントローラ100とパワートレインマネージャ200のそれぞれを異なるコア或いはコアグループに割り当てることができる。
 図1におけるパワートレインマネージャ200を示すブロック内には、パワートレインマネージャ200が備える種々の機能のうち、エンジンの制御に関係する機能の一部がブロックで表されている。これらブロックのそれぞれに演算ユニットが割り当てられている。ECUには各ブロックに対応するプログラムが用意され、それらがプロセッサによって実行されることで各演算ユニットの機能がECUにおいて実現される。なお、ECUがマルチコアプロセッサを備える場合には、パワートレインマネージャ200を構成する演算ユニットを複数のコアに分散させて割り当てることができる。
 演算ユニット202は要求第1トルクを計算してエンジンコントローラ100に送信する。図中では、要求第1トルクは“TQ1r”と表記されている。第1トルクは、エンジンに求められる応答性が高くなく、今直ぐでなくとも近い将来に実現されればよい種類のトルクである。要求第1トルクは、パワートレインマネージャ200がエンジンに対して要求する第1トルクの要求値であって、本発明における要求トルクに相当する。演算ユニット202には、図示しないアクセルポジションセンサから、アクセルペダルの開度に応答して出力される信号が入力されている。要求第1トルクはその信号に基づいて計算される。なお、要求第1トルクは軸トルクである。
 演算ユニット204は要求第2トルクを計算してエンジンコントローラ100に送信する。図中では、要求第2トルクは“TQ2r”と表記されている。第2トルクは、第1トルクよりも緊急性或いは優先度が高くエンジンに高い応答性が求められる種類のトルク、すなわち、今直ぐに実現することが求められる種類のトルクである。ここで言う応答性とはトルクを一時的に低下させるときの応答性を意味する。要求第2トルクは、パワートレインマネージャ200がエンジンに対して要求する第2トルクの要求値である。演算ユニット204で算出される要求第2トルクには、電子制御式自動変速機の変速制御のために要求されるトルク、トラクション制御のために要求されるトルク、横滑り防止制御のために要求されるトルク等、車両制御システムから要求されるトルクが含まれている。第1トルクが定常的に或いは長期間にわたってエンジンに求められるトルクであるのに対し、第2トルクはエンジンに対して突発的に或いは短期間の間に求められるトルクであるという側面を持つ。このため、演算ユニット204は、実際にそのようなトルクが必要となるイベントが発生した場合のみ、実現したいトルクの大きさに応じた有効値を出力し、そのようなイベントが発生していない間は無効値を出力する。無効値はエンジンが出力しうる最大軸トルクよりも大きい値に設定されている。
 演算ユニット206は自動変速機の変速比を算出し、図示しない変速機コントローラに変速比を指示する信号を送信する。変速機コントローラはパワートレインマネージャ200やエンジンコントローラ100と同様にECUの1つの機能として実現されている。演算ユニット206には、エンジンコントローラ100からフラグ信号が入力される。図中では、フラグ信号は“FLG”と表記されている。フラグ信号は運転モードの切り替え中であることを示す信号である。フラグ信号がオンの間、演算ユニット206は自動変速機の変速比を固定する。つまり、運転モードの切り替えを行なっている間は、エンジンの運転状態が大きく変化しないように自動変速機による変速比の変更を禁止することが行われる。
 演算ユニット208は、所定の条件が満たされたことに応答して、運転モードの切り替えの中止を指示する中止信号をエンジンコントローラ100に送信する。図中では、中止信号は“Stop”と表記されている。所定の条件とは、エンジンの運転状態を大きく変化させる要求がパワートレインマネージャ200から出されることである。例えば、自動変速機の変速比を変更する場合や、触媒の暖機のためにエンジンに対して点火時期や燃料噴射量に関する特別な要求が出される場合には、演算ユニット208から中止信号が出力される。
 次に、エンジンコントローラ100の構成について説明する。エンジンコントローラ100とパワートレインマネージャ200との間にはインタフェース101、102、103、104が設定されている。インタフェース101は本発明における要求トルク受信手段に相当し、インタフェース101では要求第1トルクの受け渡しが行われる。インタフェース102では中止信号の受け渡しが行われる。インタフェース103ではフラグ信号の受け渡しが行われる。そして、インタフェース104では要求第2トルクの受け渡しが行われる。
 図1におけるエンジンコントローラ100を示すブロック内には、エンジンコントローラ100が備える種々の機能のうち、4種のアクチュエータ、すなわち、第1アクチュエータであるスロットル2及びVVT8、第2アクチュエータであるインジェクタ4、第3アクチュエータである点火装置6、及び第4アクチュエータであるEGRバルブ12の協調操作に関係する機能がブロックで表されている。これらブロックのそれぞれに演算ユニットが割り当てられている。ECUには各ブロックに対応するプログラムが用意され、それらがプロセッサによって実行されることで各演算ユニットの機能がECUにおいて実現される。なお、ECUがマルチコアプロセッサを備える場合には、エンジンコントローラ100を構成する演算ユニットを複数のコアに分散させて割り当てることができる。
 エンジンコントローラ100は、大きく分けて3つの大演算ユニット120、140、160から構成されている。大演算ユニット120はエンジンに対する種々の制御用パラメータの値を計算する。制御用パラメータにはエンジンに対する各種制御量の目標値が含まれる。さらに、目標値には、パワートレインマネージャ200から送信された要求値に基づいて計算されるものと、エンジンの運転状態に関する情報に基づいて大演算ユニット120の内部で計算されるものとが含まれる。なお、要求値はエンジンの状態を考慮することなくパワートレインマネージャ200から一方的に要求される制御量の値であるのに対し、目標値はエンジンの状態によって決まる実現可能な範囲に基づいて設定される制御量の値である。大演算ユニット120は、より具体的には、4つの演算ユニット122、124、126、128から構成されている。
 演算ユニット122は、エンジンに対する制御用パラメータとして、目標空燃比、仮想空燃比、切替用目標効率、及び切替用目標第2トルクを計算する。図中では、目標空燃比は“Aft”と表記され、仮想空燃比は“AFh”と表記され、切替用目標効率は“ηtc”と表記され、切替用目標第2トルクは“TQ2c”と表記されている。目標空燃比は、エンジンに実現される空燃比の目標値であって、燃料噴射量の計算に使用される。一方、仮想空燃比は、トルクの空気量への変換効率を与えるパラメータであって、目標空気量の計算に使用される。切替用目標効率は、運転モードの切り替えのための点火時期効率の目標値であって、目標空気量の計算に使用される。点火時期効率とは、点火時期が最適点火時期であるときに出力しうるトルクに対する実際に出力されるトルクの割合を意味し、点火時期が最適点火時期のときに最大値である1になる。なお、最適点火時期とは、基本的にはMBT(Minimum Advance for Best Torque)を意味し、トレースノック点火時期が設定されている場合には、MBTとトレースノック点火時期のうちより遅角側にある点火時期を意味する。切替用目標第2トルクは、運転モードの切り替えのための第2トルクの目標値であって、運転モードの切り替え時において点火時期効率の計算の切り替えに用いられる。演算ユニット122で計算されるこれら制御用パラメータの値の組み合わせによって、運転モードの切り替えが実行される。演算ユニット122で行われる処理の内容と運転モードの切り替えとの関係については後で詳しく説明する。
 演算ユニット122には、パワートレインマネージャ200から与えられた要求第1トルク、要求第2トルク、中止信号の他、エンジン回転数等のエンジンの運転状態に関する様々な情報が入力されている。このうち運転モードの切り替えのタイミングの判断に用いられる情報は要求第1トルクである。要求第2トルクと中止信号は運転モードの切り替えが許可されているのか禁止されているのかを判断するための情報として用いられる。中止信号が入力されているとき、及び、有効な値の要求第2トルクが入力されているときには、演算ユニット122は運転モードの切り替えに関わる処理は実行しない。また、演算ユニット122は、運転モードの切り替え中、つまり、運転モードの切り替えのための計算処理を実行している間は、前述のフラグ信号をパワートレインマネージャ200に送信する。
 演算ユニット124は、エンジンに対する制御用パラメータとして、現在のエンジンの運転状態を維持するか或いは予定されている所定の運転状態を実現させるために必要とされるトルクのうち、第1トルクに分類されるトルクを計算する。ここでは、演算ユニット124で計算されるトルクをその他第1トルクと呼ぶ。図中では、その他第1トルクは“TQ1etc”と表記されている。その他第1トルクには、エンジンがアイドル状態にある場合において所定のアイドル回転数を維持するために必要なトルクのうち、空気量の制御のみによって達成可能な変動の範囲にあるトルクが含まれる。演算ユニット124は、実際にそのようなトルクが必要になった場合のみ有効値を出力し、そのようなトルクが必要のない間は無効値を算出する。無効値はエンジンが出力しうる最大図示トルクよりも大きい値に設定されている。
 演算ユニット126は、エンジンに対する制御用パラメータとして、現在のエンジンの運転状態を維持するか或いは予定されている所定の運転状態を実現させるために必要とされるトルクのうち、第2トルクに分類されるトルクを計算する。ここでは、演算ユニット126で計算されるトルクをその他第2トルクと呼ぶ。図中では、その他第2トルクは“TQ2etc”と表記されている。その他第2トルクには、エンジンがアイドル状態にある場合において所定のアイドル回転数を維持するために必要なトルクのうち、その達成のためには点火時期の制御が必要となるトルクが含まれる。演算ユニット126は、実際にそのようなトルクが必要になった場合のみ有効値を出力し、そのようなトルクが必要のない間は無効値を算出する。無効値はエンジンが出力しうる最大図示トルクよりも大きい値に設定されている。
 演算ユニット128は、エンジンに対する制御用パラメータとして、現在のエンジンの運転状態を維持するか或いは予定されている所定の運転状態を実現させるために必要とされる点火時期効率を計算する。ここでは、演算ユニット128で計算される点火時期効率をその他効率と呼ぶ。図中では、その他効率は“ηetc”と表記されている。その他効率には、エンジンの始動時において排気浄化用触媒を暖機するために必要な点火時期効率が含まれる。点火時期効率を低くするほど、燃料の燃焼によって発生したエネルギのうちトルクに変換されるエネルギは少なくなり、その分多くのエネルギが排気ガスとともに排気通路に排出されて排気浄化用触媒の暖機に用いられることになる。なお、そのような効率の実現が必要のない間は、演算ユニット128から出力される効率の値は最大値である1に保持される。
 以上のように構成される大演算ユニット120からは、要求第1トルク、その他第1トルク、目標空燃比、仮想空燃比、切替用目標効率、その他効率、要求第2トルク、切替用目標第2トルク、その他第2トルクが出力される。これらの制御用パラメータは大演算ユニット140に入力される。なお、パワートレインマネージャ200から与えられる要求第1トルクと要求第2トルクは軸トルクであるが、大演算ユニット120ではこれらを図示トルクに補正することが行われている。要求トルクの図示トルクへの補正はフリクショントルク、補機駆動トルク及びポンプロスを要求トルクに対して加算或いは減算することによって行われる。なお、大演算ユニット120の内部で計算される切替用目標第2トルク等のトルクについては、いずれも図示トルクとして計算されている。
 次に、大演算ユニット140について説明する。上述のように、大演算ユニット120からは様々なエンジン制御用パラメータが送られてくる。このうち、要求第1トルクとその他第1トルクとは同じカテゴリに属する制御量に対する要求であり、同時には成立し得ない。同様に、要求第2トルクとその他第2トルクと切替用目標第2トルクとは同じカテゴリに属する制御量に対する要求であり、同時には成立し得ない。同様に、切替用目標効率とその他効率とは同じカテゴリに属する制御量に対する要求であり、同時には成立し得ない。このため、制御量のカテゴリ毎に調停という処理が必要となる。ここでいう調停とは、例えば最大値選択、最小値選択、平均、或いは重ね合わせ等、複数の数値から1つの数値を得るための計算処理であり、複数種類の計算処理を適宜に組み合わせたものとすることもできる。このような調停を制御量のカテゴリごとに実施するため、大演算ユニット140には3つの演算ユニット142、144、146が用意されている。
 演算ユニット142は第1トルクを調停するように構成されている。演算ユニット142には要求第1トルクとその他第1トルクとが入力される。演算ユニット142はそれらを調停し、調停されたトルクを最終的に決定された目標第1トルクとして出力する。図中では、最終的に決定された目標第1トルクは“TQ1t”と表記されている。演算ユニット142における調停方法としては最小値選択が用いられる。したがって、演算ユニット124から有効値が出力されていない場合は、パワートレインマネージャ200から与えられた要求第1トルクが目標第1トルクとして算出される。
 演算ユニット144は点火時期効率を調停するように構成されている。演算ユニット144には切替用目標効率とその他効率とが入力される。演算ユニット144はそれらを調停し、調停された効率を最終的に決定された目標効率として出力する。図中では、最終的に決定された目標効率は“ηt”と表記されている。演算ユニット144における調停方法としては最小値選択が用いられる。燃費性能の観点からは、点火時期効率は最大値である1になっていることが好ましい。このため、特別なイベントのない限り、演算ユニット122で計算される切替用目標効率も演算ユニット128で計算されるその他効率も最大値である1に保持されている。したがって、演算ユニット144から出される目標効率の値は基本的には1であり、何らかのイベントが発生した場合のみ1よりも小さい値が選択される。
 演算ユニット146は第2トルクを調停するように構成されている。演算ユニット146には要求第2トルクとその他第2トルクと切替用目標第2トルクとが入力される。演算ユニット146はそれらを調停し、調停されたトルクを最終的に決定された目標第2トルクとして出力する。図中では、最終的に決定された目標第2トルクは“TQ2t”と表記されている。演算ユニット146における調停方法としては最小値選択が用いられる。第2トルクは切替用目標第2トルクも含めて基本的には無効値であり、特定のイベントが発生した場合のみ実現したいトルクの大きさを示す有効値に切り替えられる。したがって、演算ユニット146から出力される目標第2トルクも基本的には無効値であり、何らかのイベントが発生した場合のみ有効値が選択される。
 以上のように構成される大演算ユニット140からは、目標第1トルク、目標効率、仮想空燃比、目標空燃比、及び目標第2トルクが出力される。これらの制御用パラメータは大演算ユニット160に入力される。
 大演算ユニット160はエンジンの逆モデルに相当し、マップや関数で表された複数のモデルで構成されている。協調操作のための各アクチュエータ2、4、6、8、12の操作量は大演算ユニット160で算出される。大演算ユニット140から入力される制御用パラメータのうち、目標第1トルクと目標第2トルクとは何れもエンジンに対するトルクの目標値として扱われる。ただし、目標第2トルクは目標第1トルクに優先する。大演算ユニット160では、目標第2トルクが有効値である場合には目標第2トルクを達成するように、目標第2トルクが無効値である場合には目標第1トルクを達成するように、各アクチュエータ2、4、6、8、12の操作量の計算が行われる。操作量の計算は、目標トルクと同時に目標空燃比、目標効率及び目標EGR率も達成されるように行われる。つまり、本実施の形態に係る制御装置では、エンジンの制御量としてトルク、効率、空燃比及びEGR率が用いられ、これら4種類の制御量の目標値に基づいて空気量制御、点火時期制御、燃料噴射量制御、及びEGR制御が実施される。
 大演算ユニット160は複数の演算ユニット162、164、166、168、170、172、174、176、178、192から構成される。これらの演算ユニットのうち空気量制御に関係するものは演算ユニット162、164、166、178であり、点火時期制御に関係するものは演算ユニット168、170、172であり、燃料噴射量制御に関係するものは演算ユニット174、176であり、EGR制御に関係するものは演算ユニット192である。以下、空気量制御に関係する演算ユニットから順に、各演算ユニットの機能について説明する。
 演算ユニット162には目標第1トルクと目標効率と仮想空燃比とが入力される。演算ユニット162は本発明における目標空気量算出手段に相当し、目標効率と仮想空燃比とを用いて、目標第1トルクを達成するための目標空気量を目標第1トルクから逆算する。この計算では、目標効率及び仮想空燃比は空気量のトルクへの変換効率を与えるパラメータとして用いられる。なお、本発明においては空気量とは筒内に吸入される空気の量であり、それを無次元化した充填効率或いは負荷率は本発明における空気量の均等の範囲内にある。
 演算ユニット162は、まず、目標第1トルクを目標効率で除算することによって空気量制御用目標トルクを算出する。目標効率が1よりも小さい場合には、空気量制御用目標トルクは目標第1トルクよりも大きくなる。これは目標第1トルクよりも大きなトルクを潜在的に出力可能にしておくことがアクチュエータ2、8による空気量制御に求められていることを意味する。一方、目標効率が1である場合には、目標第1トルクがそのまま空気量制御用目標トルクとして算出される。
 演算ユニット162は、次に、トルク-空気量変換マップを用いて空気量制御用目標トルクを目標空気量に変換する。トルク-空気量変換マップは、点火時期が最適点火時期であることを前提にして、トルクと空気量とがエンジン回転数及び空燃比を含む種々のエンジン状態量をキーにして関連付けられたマップである。このマップはエンジンを試験して得られたデータに基づいて作成されている。トルク-空気量変換マップの検索にはエンジン状態量の実際値や目標値が用いられる。空燃比に関しては仮想空燃比がマップ検索に用いられる。したがって、演算ユニット162では、仮想空燃比のもとで空気量制御用目標トルクの実現に必要な空気量が目標空気量として算出される。図中では、目標空気量は“KLt”と表記されている。
 演算ユニット164は目標空気量から吸気管圧の目標値である目標吸気管圧を逆算する。目標吸気管圧の計算では、吸気バルブを通って筒内に取り込まれる空気量と吸気管圧との関係を記述したマップが用いられる。空気量と吸気管圧との関係はバルブタイミングによって変化するため、目標吸気管圧の計算では現在のバルブタイミングから上記マップのパラメータ値が決定される。図中では、目標吸気管圧は“Pmt”と表記されている。
 演算ユニット166は目標吸気管圧に基づいてスロットル開度の目標値である目標スロットル開度を算出する。目標スロットル開度の計算では、エアモデルの逆モデルが用いられる。エアモデルはスロットル2の動作に対する吸気管圧の応答特性をモデル化した物理モデルであるので、その逆モデルを用いることで目標吸気管圧を達成するための目標スロットル開度を目標吸気管圧から逆算することができる。図中では、目標スロットル開度は“TA”と表記されている。演算ユニット166で計算された目標スロットル開度はスロットル2を駆動する信号に変換されてECUのインタフェース111を介してスロットル2へ送信される。演算ユニット164、166は本発明における第1アクチュエータ制御手段に相当する。
 演算ユニット178は目標空気量に基づいてバルブタイミングの目標値である目標バルブタイミングを算出する。目標バルブタイミングの計算には、空気量とバルブタイミングとをエンジン回転数を引数にして関連付けられたマップが用いられる。目標バルブタイミングは、現在のエンジン回転数のもと目標空気量を達成するのに最適なVVT8の変位角であり、その具体的な値は空気量ごと及びエンジン回転数ごとの適合によって決定されている。ただし、目標空気量が速い速度で大きく増大する加速時には、実空気量を最大の速度で増大させて目標空気量に追従させるべく、マップから決定されるバルブタイミングよりも進角側に目標バルブタイミングを補正することが行われる。図中では、目標バルブタイミングは“VT”と表記されている。演算ユニット178で計算された目標バルブタイミングはVVT8を駆動する信号に変換されてECUのインタフェース112を介してVVT8へ送信される。演算ユニット178もまた本発明における第1アクチュエータ制御手段に相当する。
 次に、点火時期制御に関係する演算ユニットの機能について説明する。演算ユニット168は、上述の空気量制御によって実現される実際のスロットル開度及びバルブタイミングに基づいて推定トルクを算出する。本明細書における推定トルクとは、現在のスロットル開度及びバルブタイミングと目標空燃比とのもとで点火時期を最適点火時期にセットした場合に出力できるトルクを意味する。演算ユニット168は、まず、前述のエアモデルの順モデルを用いてスロットル開度の計測値とバルブタイミングの計測値とから推定空気量を算出する。推定空気量は現在のスロットル開度とバルブタイミングとによって実際に実現されている空気量の推定値である。次に、トルク-空気量変換マップを用いて推定空気量を推定トルクに変換する。トルク-空気量変換マップの検索では目標空燃比が検索キーとして用いられる。図中では、推定トルクは“TQe”と表記されている。
 演算ユニット170には目標第2トルクと推定トルクとが入力される。演算ユニット170は、目標第2トルクと推定トルクとに基づいて点火時期効率の指示値である指示点火時期効率を算出する。指示点火時期効率は、推定トルクに対する目標第2トルクの比率として表される。ただし、指示点火時期効率には上限が定められており、推定トルクに対する目標第2トルクの比率が1を超える場合には指示点火時期効率の値は1にされる。図中では、指示点火時期効率は“ηi”と表記されている。
 演算ユニット172は指示点火時期効率から点火時期を算出する。詳しくは、エンジン回転数、要求トルク、空燃比等のエンジン状態量に基づいて最適点火時期を算出するとともに、指示点火時期効率から最適点火時期に対する遅角量を算出する。指示点火時期効率が1であれば遅角量をゼロとし、指示点火時期効率が1よりも小さいほど遅角量を大きくする。そして、最適点火時期に遅角量を足しあわせたものを最終的な点火時期として算出する。最適点火時期の計算には、最適点火時期と各種のエンジン状態量とを関連付けるマップを用いることができる。遅角量の計算には、遅角量と点火時期効率及び各種のエンジン状態量とを関連付けるマップを用いることができる。それらマップの検索では目標空燃比が検索キーとして用いられる。図中では、点火時期は“SA”と表記されている。演算ユニット172で計算された点火時期は点火装置6を駆動する信号に変換されてECUのインタフェース113を介して点火装置6へ送信される。演算ユニット168、170、172は本発明における第3アクチュエータ制御手段に相当する。
 次に、燃料噴射量制御に関係する演算ユニットの機能について説明する。演算ユニット174は、前述のエアモデルの順モデルを用いてスロットル開度の計測値とバルブタイミングの計測値とから推定空気量を算出する。演算ユニット174で算出される推定空気量は、好ましくは、吸気バルブが閉じるタイミングで予測される空気量である。将来における空気量は、例えば、目標スロットル開度の計算から出力までにディレイ時間を設定することによって、目標スロットル開度から予測することができる。図中では、推定空気量は“KLe”と表記されている。
 演算ユニット174は目標空燃比と推定空気量とから目標空燃比の達成に必要な燃料噴射量、すなわち、燃料供給量を計算する。燃料噴射量の計算は各気筒において燃料噴射量の算出タイミングが到来したときに実行される。図中では、燃料噴射量は“TAU”と表記されている。演算ユニット174で計算された燃料噴射量はインジェクタ4を駆動する信号に変換されてECUのインタフェース114を介してインジェクタ4へ送信される。演算ユニット174、176は本発明における第2アクチュエータ制御手段に相当する。
 次に、EGR制御に関係する演算ユニットの機能について説明する。演算ユニット192は、仮想空燃比及び目標空燃比に基づいてEGRバルブ12の開度であるEGR開度を算出する。図中では、EGR開度は“EGRv”と表記されている。演算ユニット192で計算されたEGR開度はEGRバルブ12を駆動する信号に変換されてECUのインタフェース116を介してEGRバルブ12へ送信される。演算ユニット192は本発明における第4アクチュエータ制御手段に相当する。なお、EGRバルブ12の操作量としては、EGR開度ではなく、EGRバルブ12を駆動するソレノイドのデューティ比であってもよい。演算ユニット192で行われる処理の内容については後で詳しく説明する。
 以上が本実施の形態に係るECUのロジックの概要である。次に、本実施の形態に係るECUの要部である演算ユニット122について詳細に説明する。
 図2には、演算ユニット122のロジックがブロック図で示されている。図2における演算ユニット122を示すブロック内には、演算ユニット122が備える種々の機能のうち、運転モードの切り替えに関係する機能がブロックで表されている。これらブロックのそれぞれに演算ユニットが割り当てられている。ECUには各ブロックに対応するプログラムが用意され、それらがプロセッサによって実行されることで各演算ユニットの機能がECUにおいて実現される。なお、ECUがマルチコアプロセッサを備える場合には、演算ユニット122を構成する演算ユニット402、404、406、408を複数のコアに分散させて割り当てることができる。
 まず、演算ユニット402について説明する。演算ユニット402はトルクに対する基準値を算出する。基準値は極低負荷領域のストイキモードと低負荷領域のリーンモードとの境目となるトルクであり、燃費性能や排気ガス性能さらにはドライバビリティの観点から最適な値がエンジン回転数ごとに適合されている。演算ユニット402は予め用意されたマップを参照してエンジン回転数に適した基準値を算出する。図中では基準値は“Ref”と表記されている。
 次に、演算ユニット404について説明する。演算ユニット404には要求第1トルクが入力されている。さらに、演算ユニット402で算出された基準値が演算ユニット404に対して設定されている。演算ユニット404は、入力される要求第1トルクと基準値との関係に基づいて目標空気量の計算に用いられる仮想空燃比の値を変更する。より詳しくは、演算ユニット404は、第1空燃比から第2空燃比へ或いは第2空燃比から第1空燃比へ仮想空燃比を切り替える。第1空燃比は理論空燃比(例えば、14.5)である。図中では第1空燃比は“AF1”と表記されている。第2空燃比は第1空燃比よりもリーンな空燃比であり、ある一定値(例えば、22.0)に設定されている。図中では第2空燃比は“AF2”と表記されている。演算ユニット404は本発明における仮想空燃比変更手段に相当する。
 要求第1トルクが基準値より小さい間は、演算ユニット404は、要求第1トルクが基準値より小さいことに応答して仮想空燃比を第1空燃比に設定する。ドライバの加速要求に応じて要求第1トルクが増大し、やがて要求第1トルクが基準値を上回ると、演算ユニット404は、要求第1トルクの基準値以上への増大に応答して仮想空燃比を第1空燃比から第2空燃比へ切り替える。一方、要求第1トルクが基準値より大きい間は、演算ユニット404は、要求第1トルクが基準値より大きいことに応答して仮想空燃比を第2空燃比に設定する。ドライバの減速要求に応じて要求第1トルクが減少し、やがて要求第1トルクが基準値を下回ると、演算ユニット404は、要求第1トルクの基準値以下への増大に応答して仮想空燃比を第2空燃比から第1空燃比へ切り替える。
 次に、演算ユニット406について説明する。演算ユニット406は本発明における目標空燃比切替手段に相当する。演算ユニット406には、目標空燃比の既定値として、ストイキモードにおいて用いる第1空燃比とリーンモードにおいて用いる第2空燃比とが予め設定されている。演算ユニット406には演算ユニット404で決定された仮想空燃比と、演算ユニット162で算出された目標空気量の前回ステップ値と、演算ユニット174で算出された推定空気量の前回ステップ値とが入力されている。
 まず、ドライバの加速要求に応じて要求第1トルクが増大している状況での目標空燃比の切り替えについて説明する。演算ユニット406は、演算ユニット404から入力される仮想空燃比が第1空燃比から第2空燃比へ切り替えられたことを検知すると、目標空気量と推定空気量との差を計算する。そして、目標空気量に推定空気量が十分近づいたら、具体的には、目標空気量と推定空気量との差が所定の閾値以下になったら、目標空燃比を第1空燃比から第2空燃比へ切り替える。つまり、要求第1トルクが増大している加速時には、仮想空燃比の第1空燃比から第2空燃比への切り替えの後、目標空燃比の第1空燃比から第2空燃比への切り替えが行われる。目標空燃比の切り替えにより、運転モードはストイキモードからリーンモードへ切り替わる。
 ドライバの減速要求に応じて要求第1トルクが減少している状況での目標空燃比の切り替えについて説明する。演算ユニット406は、演算ユニット404から入力される仮想空燃比が第2空燃比から第1空燃比へ切り替えられたことを検知すると、それに応答して目標空燃比を第2空燃比から第1空燃比へ切り替える。つまり、要求第1トルクが減少している減速時には、仮想空燃比の第2空燃比から第1空燃比への切り替えと同時に、目標空燃比の第2空燃比から第1空燃比への切り替えが行われる。目標空燃比の切り替えにより、運転モードはリーンモードからストイキモードへ切り替わる。
 最後に、演算ユニット408について説明する。演算ユニット408は切替用目標第2トルクを計算する。前述のように、切替用目標第2トルクは要求第2トルクやその他第2トルクとともに演算ユニット146に入力され、その中の最小値が演算ユニット146で選択される。要求第2トルクやその他第2トルクは通常は無効値であり、特定のイベントが発生した場合のみ有効値に切り替えられる。切替用目標第2トルクについても同様であり、演算ユニット430は通常は切替用目標第2トルクの出力値を無効値にしている。
 演算ユニット408には要求第1トルク、目標空燃比、及び仮想空燃比が入力されている。演算ユニット404、406のロジックによれば、目標空燃比と仮想空燃比とは運転モードの切り替え前は一致し、切り替え処理の完了後も一致する。しかし、運転モードの切り替え処理の途中では、目標空燃比と仮想空燃比との間には乖離が生じる。演算ユニット408は、目標空燃比と仮想空燃比との間に乖離が生じている間に限り、有効値を持つ切替用目標第2トルクを算出する。ここで、切替用目標第2トルクの有効値として用いられるのが要求第1トルクである。つまり、目標空燃比と仮想空燃比との間に乖離が生じている間は、演算ユニット408からは切替用目標第2トルクとして要求第1トルクが出力される。
 以上が演算ユニット122のロジック、すなわち、本実施の形態で採用されている運転モードの切り替えのロジックの詳細である。次に、本実施の形態に係るECUの要部である演算ユニット192について詳細に説明する。
 図3には、演算ユニット192のロジックがブロック図で示されている。図3における演算ユニット192を示すブロック内には、演算ユニット192が備える種々の機能のうち、EGR開度の算出に関係する機能がブロックで表されている。これらブロックのそれぞれに演算ユニットが割り当てられている。ECUには各ブロックに対応するプログラムが用意され、それらがプロセッサによって実行されることで各演算ユニットの機能がECUにおいて実現される。なお、ECUがマルチコアプロセッサを備える場合には、演算ユニット192を構成する演算ユニット502、504、506を複数のコアに分散させて割り当てることができる。
 まず、演算ユニット502について説明する。演算ユニット502はさらに2つの演算ユニット508、510から構成されている。演算ユニット502には仮想空燃比が入力される。演算ユニット508は本発明における目標EGR率算出手段に相当し、仮想空燃比のもとで排気エミッションや燃費等を最適化するための目標EGR率を計算する。なお、本発明においてはEGR率とは吸気バルブから筒内へ吸入される空気に占めるEGRガスの割合であり、吸気バルブから筒内へ吸入されるEGRガスの量を示すEGR量は本発明におけるEGR率の均等の範囲内にある。
 演算ユニット508は、EGR率マップを用いて目標EGR率を計算する。EGR率マップは、EGR率がエンジン回転数、空気量及び空燃比を含むエンジン状態量をキーにして関連付けられたマップである。このマップは空気量、エンジン回転数及び空燃比ごとの適合によって決定されている。EGR率マップの検索にはエンジン状態量の実際値や目標値が用いられる。空燃比に関しては仮想空燃比がマップ検索に用いられる。したがって、演算ユニット508では、仮想空燃比のもとで必要とされるEGR率が目標EGR率として算出される。図中では、目標EGR率は“EGRt”と表記されている。
 演算ユニット510は目標EGR率を達成するためのEGRバルブ開度のベースとなる第1ベース開度を算出する。第1ベース開度の計算では、EGRバルブの動作に対するEGR率の応答を流体力学等に基づいてモデル化した数式やマップを用いることができる。なお、EGR率はエンジン回転数や空気量、更には空燃比の影響を受けるので、第1ベース開度の計算ではそれらをパラメータとして使用する。空燃比に関しては仮想空燃比が第1ベース開度の計算に用いられる。図中では、第1ベース開度は“EGRvb1”と表記されている。演算ユニット510は本発明における第1ベース操作量算出手段に相当する。
 なお、演算ユニット502はEGR開度マップを用いて第1ベース開度を直接計算するように構成されていてもよい。EGR開度マップは、EGR開度がエンジン回転数、空気量及び空燃比を含むエンジン状態量をキーにして関連付けられたマップである。空燃比に関しては仮想空燃比がマップ検索に用いられる。このような構成によれば、目標EGR率を算出することなく、仮想空燃比のもとで必要とされるEGR開度が第1ベース開度として算出される。
 演算ユニット504は、排気中に含まれる未燃の空気の割合である新気率に対応するパラメータである余剰新気割合を計算する。図中では余剰新気割合は“Ratio”と表記されている。余剰新気割合は、仮想空燃比の値を目標空燃比の値で除算することで算出される値であり、目標空燃比と仮想空燃比とが同値の場合には1となる。演算ユニット504は、演算ユニット122から入力される仮想空燃比と目標空燃比を用いて余剰新気割合を計算し、演算ユニット506へ出力する。演算ユニット504は本発明におけるパラメータ値算出手段に相当する。
 演算ユニット506は余剰新気割合を用いて第1ベース開度の補正量である第1開度補正量を計算する。図中では第1開度補正量は“EGRvc1”と表記されている。第1開度補正量の計算では補正量マップが使用される。補正量マップは余剰新気割合と第1開度補正量とがエンジン回転数及び空気量を含む種々のエンジン状態量をキーにして関連付けられたマップである。具体的には、このマップによれば、余剰新気割合が1以下である間、つまり仮想空燃比が目標空燃比よりも小さい或いは同値である間は、演算ユニット506からは第1開度補正量として無効値が出力される。また、余剰新気割合が1より大きい間、つまり仮想空燃比が目標空燃比よりも大きい間は、演算ユニット506からは余剰新気割合が大きな値であるほどEGR率をより下げる方向へ補正するための値が第1開度補正量として出力される。演算ユニット506は本発明における第1補正量算出手段に相当する。演算ユニット506で計算された第1開度補正量は演算ユニット510で計算された第1ベース開度に加算されて最終的なEGR開度が算出される。なお、余剰新気割合が1以下である間は、演算ユニット506からは第1開度補正量として無効値ではなく0の値が出力されていてもよい。算出されたEGR開度はEGRバルブ12を駆動する信号に変換されてECUのインタフェース116を介してEGRバルブ12へ送信される。なお、EGRバルブ12の操作量としては、EGRバルブ開度ではなく、EGRバルブ12を駆動するソレノイドのデューティ比であってもよい。次に、上述のロジックにしたがってエンジン制御を実行した場合の制御結果について、そのイメージを示すタイムチャートに基づいて説明する。
 まず、本実施の形態で採用されたロジックに対する比較例による制御結果から説明する。比較例による制御結果は、仮想空燃比のもとで目標EGR率を達成するためのEGR開度を計算した場合のものである。つまり、比較例におけるEGR開度算出のロジックは、本実施の形態の演算ユニット192において第1開度補正量を用いた補正を行わずに第1ベース開度を最終的なEGR開度として出力する構成を採用したものである。本発明は比較例が有する懸念を解消したものであるから、比較例による制御結果とそこに存在する懸念について予め明らかにしておくことで、本実施の形態で採用されたロジックが有する利点はより明確になるものと思われる。
 図4は、比較例による加速時の制御結果のイメージを示すタイムチャートである。図4の1段目のチャートは要求トルクと実トルクの時間変化を示している。2段目のチャートは目標空気量と実空気量の時間変化を示している。3段目のチャートは点火時期の時間変化を示している。4段目のチャートは目標空燃比と目標空気量計算用のパラメータである仮想空燃比の時間変化を示している。仮想空燃比は空気量のトルクへの変換効率を与えるパラメータであり、仮想空燃比のもとで要求トルクを達成するのに必要な空気量が目標空気量となっている。比較例では目標空燃比と仮想空燃比はともに第1空燃比(理論空燃比)と第2空燃比(リーン空燃比)との間でステップ的に切り替えられる。また、このチャートにはこれらの空燃比とともに実空燃比の時間変化が示されている。5段目のチャートは目標EGR率と実EGR率の時間変化を示している。6段目のチャートはEGRガス中に含まれる未燃の空気の割合である新気率の時間変化を示している。そして、7段目のチャートはEGR開度の時間変化を示している。
 図4に示す制御結果について考察する。比較例によれば、加速時には目標空燃比の第1空燃比から第2空燃比への切り替えに先立って仮想空燃比が第1空燃比から第2空燃比へ切り替えられる。この切り替えによって目標空気量は第2空燃比に応じた空気量までステップ的に増大し、実空気量も目標空気量に追従するように大きく増大する。
 また、比較例によれば、仮想空燃比が第1空燃比から第2空燃比へ切り替えられることによって目標EGR率が第2空燃比に応じたEGR率までステップ的に増大する。そして、目標EGR率の増大を受けてEGR開度は開側にステップ的に変化する。しかし、EGR率が変化するまでには応答遅れがあるため、実際のEGR率はステップ的には増大せず、目標EGR率に遅れて増大していく。比較例によれば、目標空燃比の切り替えに先立って目標EGR率が増大されるのでEGR率の応答遅れが改善される。
 ところが、比較例では、仮想空燃比が第1空燃比から第2空燃比へ切り替えられてから目標空燃比が第1空燃比から第2空燃比へ切り替えられるまでの間は、目標EGR率は第2空燃比であるリーン空燃比に対応したEGR率に制御されているにもかかわらず、実際の空燃比は第1空燃比である理論空燃比に制御されている。このため、この間に還流されるEGRガスの新気率は目標EGR率を計算する際に前提としていた値、すなわちリーン空燃比のもとでの値よりも小さい値になってしまう。その結果、実EGR率が目標EGR率を超えてオーバーシュートすることで、燃焼悪化によるトルク変動が懸念される。
 図4に示す比較例における上記の懸念は、本実施の形態で採用されたロジックによれば次のように解決される。
 図5は、本実施の形態に係るECUによる加速時の制御結果のイメージを示すタイムチャートである。図5において、1段目のチャートはトルクの時間変化を示している。前述のように“TQ1r”は要求第1トルクであり、“TQ2c”は切替用目標第2トルクであり、“TQe”は推定トルクである。なお、ここでは要求第1トルクが最終的な目標第1トルクになっており、切替用目標第2トルクが最終的な目標第2トルクになっているものとする。また、これらのトルクとは別に、チャートには実トルクが点線で表されている。ただし、実トルクは実際のエンジン制御では計測されない。チャートに描かれている実トルクの線は試験結果に裏付けされたイメージ線である。
 図5における2段目のチャートは空気量の時間変化を示している。前述のように“KLt”は目標空気量であり、“KLe”は推定空気量である。チャートにはこれらの空気量とともに実空気量が点線で表されている。ただし、実空気量は実際のエンジン制御では計測されない。チャートに描かれている実空気量の線は試験結果に裏付けされたイメージ線である。
 図5における3段目のチャートは切替用目標効率の時間変化を示している。前述のように“ηtc”は切替用目標効率である。なお、ここでは切替用目標効率が最終的な目標効率になっているものとする。
 図5における4段目のチャートは指示点火時期効率の時間変化を示している。前述のように“ηi”は指示点火時期効率である。
 図5における5段目のチャートは点火時期の時間変化を示している。前述のように“SA”は点火時期である。
 図5における6段目のチャートは空燃比の時間変化を示している。前述のように“Aft”は目標空燃比であり、“AFh”は仮想空燃比である。また、チャートにはこれらの空燃比とともに実空燃比の時間変化が点線で表されている。
 図5における7段目のチャートは、EGR率の時間変化を示している。前述のように“EGRt”は目標EGR率である。チャートにはこの目標EGR率とともに実EGR率が実線で表されている。ただし、実EGR率は実際のエンジン制御では計測されない。チャートに描かれている実EGR率の線は試験結果に裏付けされたイメージ線である。
 図5における8段目のチャートは、EGRガスの新気率の時間変化を示している。なお、ここでいうEGRガスの新気率はEGRガス中の未燃の空気の割合を示している。ただし、新気率は実際のエンジン制御では計測されない。チャートに描かれている新気率の線は試験結果に裏付けされたイメージ線である。
 図5における9段目のチャートは、EGR開度の時間変化を示している。前述のように“EGRvb1”はベース開度であり、“EGRv”はEGR開度である。
 図5に基づいて加速時の制御結果を説明する。加速時、要求第1トルクが“Ref”で表記される基準値のレベルまで増大するまでは、目標空燃比と仮想空燃比とはともに理論空燃比である第1空燃比に維持される。よって、要求第1トルクと仮想空燃比とから算出されるこの間の目標空気量、すなわち、第1空燃比を用いて算出される目標空気量(目標第1空気量)は、要求第1トルクの増大に連動して増大していく。この間の切替用目標第2トルクは、目標空燃比と仮想空燃比とが一致していることに応答して無効値とされる。切替用目標第2トルクが無効値であるならば指示点火時期効率は1になるため、点火時期は最適点火時期に維持される。なお、チャートでは点火時期が要求第1トルクの減少に応じて変化しているが、これは最適点火時期がエンジン回転数や空気量によって変化することに対応した変化である。
 要求第1トルクが基準値まで増大するまでは、第1ベース開度は仮想空燃比である第1空燃比を用いて算出される。また、この間の第1開度補正量は、目標空燃比が第1空燃比であることに応答して無効値とされる。その結果、この間のEGR開度は第1ベース開度の値に維持される。
 前述のとおり、要求第1トルクが基準値のレベルまで増大するまでの間は、目標空燃比と仮想空燃比とはともに理論空燃比である第1空燃比に維持される。よって、この間の第1ベース開度は仮想空燃比である理論空燃比を用いて算出される。また、この間の余剰新気割合は、目標空燃比と仮想空燃比とが一致していることに応答して1とされる。余剰新気割合が1であるならば、第1開度補正量は無効値に維持される。その結果、この間のEGR開度は第1ベース開度の値に維持される。
 要求第1トルクが基準値を上回ると、仮想空燃比のみが第1空燃比から第2空燃比へ切り替えられる。つまり、目標空燃比は理論空燃比に維持される一方で、仮想空燃比はステップ的にリーン化される。リーンな空燃比である第2空燃比による運転は、理論空燃比である第1空燃比による運転で必要な空気量よりも多くの空気量を必要とする。このため、目標空気量の計算に用いる仮想空燃比がステップ的に第2空燃比に切り替えられることで、その切り替えの時点において目標空気量も目標第1空気量から第2空燃比に対応する目標空気量(第2目標空気量)までステップ的に増大することになる。しかし、アクチュエータが動作して空気量が変化するまでには応答遅れがあるため、実際の空気量及びその推定値である推定空気量はステップ的には増大せず、目標空気量に遅れて増大していく。実空気量及び推定空気量は目標空気量にしだいに収束していき、やがて、目標空気量と推定空気量との差は閾値以下になる。この時点において目標空燃比は第1空燃比から第2空燃比に切り替えられる。
 要求第1トルクが基準値を上回り目標空燃比と仮想空燃比とが乖離してから目標空燃比と仮想空燃比とが再び一致するまでの間、切替用目標第2トルクは有効値である要求第1トルクと同値とされる。一方、仮想空燃比を前提とする推定トルクは、目標空気量の計算に使用される仮想空燃比が目標空燃比よりもリーン化されたことにともない、目標空燃比を前提とする要求第1トルクよりも大きな値になる。その結果、推定トルクに対する切替用目標第2トルクの比率である指示点火時期効率は1よりも小さい値になる。そして、指示点火時期効率が1よりも小さくなることに応答して、点火時期は最適点火時期よりも遅角される。その結果、空気量の過剰によるトルクの増加は点火時期の遅角によるトルクの減少によって相殺され、実トルクの要求第1トルクからの乖離は防がれる。
 また、要求第1トルクが基準値を上回ると、目標EGR率の計算に用いる仮想空燃比がステップ的に第2空燃比に切り替えられることで、その切り替えの時点において目標EGR率もステップ的に増大することになる。目標EGR率がステップ的に増大すると、その増大時点において第1ベース開度もステップ的に増大する。
 具体的には、要求第1トルクが基準値を上回り目標空燃比と仮想空燃比とが乖離してから目標空燃比と仮想空燃比とが再び一致するまでの間、余剰新気割合は1より大きい値とされる。そして、余剰新気割合が1よりも大きくなることに応答して、第1開度補正量は余剰新気割合の値に対応した値(負値)とされる。その結果、この間のEGR開度は、第1ベース開度の値に第1開度補正量(負値)を加算した値とされる。
 要求第1トルクが基準値を上回り目標空燃比と仮想空燃比とが乖離してから目標空燃比と仮想空燃比とが再び一致した後は、余剰新気割合は目標空燃比と仮想空燃比とが一致していることに応答して再び1とされる。余剰新気割合が1であるならば、第1開度補正量は再び無効値に維持される。その結果、この間のEGR開度は第1ベース開度の値に維持される。
 アクチュエータであるEGRバルブはEGR開度に基づいて動作する。しかし、EGR率が変化するまでには応答遅れがあるため、実際のEGR率はステップ的には増大せず、目標EGR率に遅れて増大していく。実EGR率は目標EGR率にしだいに収束していき、やがては目標EGR率に追従する。この際、第1開度補正量が有効値である間は、余剰新気割合に対応してEGR開度が実EGR率を減少させる方向に補正される。これにより、実EGR率が増大方向にオーバーシュートして燃焼が悪化する事態が有効に抑制される。
 以上のように、本実施の形態で採用されたロジックによれば、ドライバの加速要求に見合ったトルクの滑らかな増大を達成しつつ空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ応答良く切り替えることができる。また、本実施の形態で採用されたロジックによれば、空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ切り替える場合のEGR率の過多を有効に抑制することができる。
[実施の形態2]
 次に、本発明の実施の形態2について図を参照して説明する。
 実施の形態2と実施の形態1とは演算ユニット192のロジックに違いがある。ECUの全体のロジックは実施の形態1と共通であり、本実施の形態に係るECUのロジックも図1にて表すことができる。
 図6には、本実施の形態に係る演算ユニット192のロジックがブロック図で示されている。本実施の形態に係る演算ユニット192は、演算ユニット520、522を含んでいる。
 まず、演算ユニット520について説明する。演算ユニット520は実施の形態1に係る演算ユニット502に代えて設けられている。演算ユニット520はさらに2つの演算ユニット508、524から構成されている。このうち演算ユニット508は実施の形態1に係る演算ユニットのものと共通であるので、その詳細な説明は省略する。
 演算ユニット524は目標EGR率を達成するためのEGRバルブ開度のベースとなる第2ベース開度を算出する。第2ベース開度の計算では、EGRバルブの動作に対するEGR率の応答を流体力学等に基づいてモデル化した数式やマップを用いることができる。なお、EGR率はエンジン回転数や空気量、更には空燃比の影響を受けるので、第2ベース開度の計算ではそれらをパラメータとして使用する。空燃比に関しては理論空燃比が第2ベース開度の計算に用いられる。つまり、演算ユニット524からは理論空燃比のもとで目標EGR率を達成するためのEGR開度が第2ベース開度として算出される。図中では、第2ベース開度は“EGRvb2”と表記されている。演算ユニット524は本発明における目標第2ベース操作量算出手段に相当する。
 演算ユニット522は目標空燃比を用いて第2ベース開度の補正量である第2開度補正量を計算する。図中では第2開度補正量は“EGRvc2”と表記されている。第2開度補正量の計算では補正量マップが使用される。補正量マップは目標空燃比と第2開度補正量とがエンジン回転数及び空気量を含む種々のエンジン状態量をキーにして関連付けられたマップである。具体的には、このマップによれば、目標空燃比が第1空燃比(理論空燃比)である間は、演算ユニット522からは第2開度補正量として無効値が出力される。また、目標空燃比が第2空燃比(リーン空燃比)である間は、演算ユニット522からは目標空燃比の値がリーンであるほどEGR率をより上げる方向へ補正するための値が第2開度補正量として出力される。演算ユニット522は本発明における第2補正量算出手段に相当する。演算ユニット522で計算された第2開度補正量は演算ユニット520で計算された第2ベース開度に加算されて最終的なEGR開度が算出される。これにより、EGR開度はEGRガス中の新気率が反映された開度となる。なお、目標空燃比が第1空燃比である間は、演算ユニット522からは第2開度補正量として無効値ではなく0の値が出力されていてもよい。算出されたEGR開度はEGRバルブ12を駆動する信号に変換されてECUのインタフェース116を介してEGRバルブ12へ送信される。なお、EGRバルブ12の操作量としては、EGRバルブ開度ではなく、EGRバルブ12を駆動するソレノイドのデューティ比であってもよい。
 次に、上述のロジックにしたがってエンジン制御を実行した場合の制御結果について、そのイメージを示すタイムチャートに基づいて説明する。
 図7は、本実施の形態に係るECUによる加速時の制御結果のイメージを示すタイムチャートである。図7のタイムチャートは複数段のチャートから構成されているが、各チャートに示されている内容は9段目のEGR開度の時間変化を除いて図5のタイムチャートの場合と共通である。図7における9段目のチャートは、EGR開度の時間変化を示している。前述のように“EGRvb2”は第2ベース開度であり、“EGRv”はEGR開度である。
 要求第1トルクが基準値のレベルまで増大するまでの間は、目標空燃比と仮想空燃比とはともに理論空燃比である第1空燃比に維持される。よって、この間の第2ベース開度は理論空燃比を用いて算出される。また、この間の第2開度補正量は、目標空燃比が理論空燃比であることに応答して無効値とされる。その結果、この間のEGR開度は第2ベース開度の値に維持される。
 要求第1トルクが基準値を上回ると、目標EGR率の計算に用いる仮想空燃比がステップ的に第2空燃比に切り替えられることで、その切り替えの時点において目標EGR率もステップ的に増大することになる。目標EGR率がステップ的に増大すると、その増大時点において第2ベース開度もステップ的に増大する。ただし、第2ベース開度の計算では空燃比に関するパラメータとして常に理論空燃比が用いられる。
 また、要求第1トルクが基準値を上回り目標空燃比が第1空燃比から第2空燃比に切り替えられるまでの間は、第2開度補正量は目標空燃比が理論空燃比であることに応答して無効値とされる。その結果、この間のEGR開度は第2ベース開度の値に維持される。
 要求第1トルクが基準値を上回り目標空燃比と仮想空燃比とが乖離してから目標空燃比と仮想空燃比とが再び一致した後は、第2開度補正量は目標空燃比がリーン空燃比であることに応答してEGR率をより上げる方向へ補正するための値(正値)となる。その結果、この間のEGR開度は第2ベース開度の値に第2開度補正量の値(正値)を加算した値に維持される。
 リーン空燃比である第2空燃比による運転は理論空燃比である第1空燃比による運転に比して排気中の新気率が高い。このため、本実施の形態で採用されたロジックによれば、理論空燃比のもとで目標EGR率を達成するためのEGR開度を算出し実EGR率の過多を回避することとしている。しかし、EGR開度を算出する際に常に理論空燃比を前提とするのでは、リーン空燃比による運転時にEGR率が不足することになる。そこで、本実施の形態で採用されたロジックによれば、目標空燃比が理論空燃比からリーン空燃比に切り替えられると、EGR開度がEGR率を上げる方向に補正される。これにより、目標空燃比の切り替えの時点においてEGR開度がステップ的に増大し、それに伴って実EGR率が不足することは有効に防がれる。
 以上のように、本実施の形態で採用されたロジックによれば、ドライバの加速要求に見合ったトルクの滑らかな増大を達成しつつ空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ応答良く切り替えることができる。また、本実施の形態で採用されたロジックによれば、空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ切り替える場合のEGR率の過多を有効に抑制することができる。
[実施の形態3]
 次に、本発明の実施の形態3について図を参照して説明する。
 実施の形態3と実施の形態1とは演算ユニット192のロジックに違いがある。ECUの全体のロジックは実施の形態1と共通であり、本実施の形態に係るECUのロジックも図1にて表すことができる。
 図8には、本実施の形態に係る演算ユニット192のロジックがブロック図で示されている。本実施の形態に係る演算ユニット192は、演算ユニット504、530、532を含んでいる。このうち演算ユニット504は実施の形態1に係る演算ユニットのものと共通であるので、その詳細な説明は省略する。以下では、実施の形態1との相違点である演算ユニット530、532について説明する。
 まず、演算ユニット530について説明する。演算ユニット530は実施の形態1に係る演算ユニット502に代えて設けられている。演算ユニット530はさらに2つの演算ユニット534、536から構成されている。演算ユニット534、536は実施の形態1に係る演算ユニット508、510に代えて設けられている。
 演算ユニット534は、EGR率マップを用いて目標ベースEGR率を計算する。EGR率マップは、EGR率がエンジン回転数、空気量及び空燃比を含むエンジン状態量をキーにして関連付けられたマップである。このマップは空気量、エンジン回転数及び空燃比ごとの適合によって決定されている。EGR率マップの検索にはエンジン状態量の実際値や目標値が用いられる。空燃比に関しては仮想空燃比がマップ検索に用いられる。したがって、演算ユニット534は、仮想空燃比のもとで必要とされるEGR率が目標ベースEGR率として算出される。図中では、目標ベースEGR率は“EGRtb”と表記されている。演算ユニット534は本発明における目標EGR率算出手段に相当する。
 演算ユニット536は目標EGR率を達成するためのEGR開度を算出する。EGR開度の計算では、EGRバルブの動作に対するEGR率の応答を流体力学等に基づいてモデル化した数式やマップを用いることができる。なお、EGR率はエンジン回転数や空気量、更には空燃比の影響を受けるので、EGR開度の計算ではそれらをパラメータとして使用する。空燃比に関しては仮想空燃比がEGR開度の計算に用いられる。図中では、EGR開度は“EGRv”と表記されている。演算ユニット536は本発明における第1操作量算出手段に相当する。
 次に、演算ユニット532について説明する。演算ユニット532は実施の形態1に係る演算ユニット506に代えて設けられている。演算ユニット532は余剰新気割合を用いて目標ベースEGR率の補正量であるEGR率補正量を計算する。図中ではEGR補正量は“EGRtc”と表記されている。EGR率補正量の計算では補正量マップが使用される。補正量マップは余剰新気割合とEGR率補正量とがエンジン回転数及び空気量を含む種々のエンジン状態量をキーにして関連付けられたマップである。具体的には、このマップによれば、余剰新気割合が1以下である間、つまり仮想空燃比が目標空燃比よりも小さい或いは同値である間は、演算ユニット532からはEGR補正量として無効値が出力される。また、余剰新気割合が1より大きい間、つまり仮想空燃比が目標空燃比よりも大きい間は、演算ユニット532からは余剰新気割合の値が大きな値であるほどEGR率をより下げる方向へ補正するための値がEGR率補正量として出力される。演算ユニット532は本発明における第3補正量算出手段に相当する。演算ユニット532で計算されたEGR率補正量は演算ユニット534で計算された目標ベースEGR率に加算されて最終的な目標EGR率が算出される。なお、余剰新気割合が1以下である間は、演算ユニット532からはEGR率補正量として無効値ではなく0の値が出力されていてもよい。次に、上述のロジックにしたがってエンジン制御を実行した場合の制御結果について、そのイメージを示すタイムチャートに基づいて説明する。
 図9は、本実施の形態に係るECUによる加速時の制御結果のイメージを示すタイムチャートである。図9のタイムチャートは複数段のチャートから構成されているが、各チャートに示されている内容は7段目のEGR率の時間変化と9段目のEGR開度の時間変化を除いて図5のタイムチャートの場合と共通である。図9における7段目のチャートは、EGR率の時間変化を示している。前述のように“EGRtb”は目標ベースEGR率であり、“EGRt”は目標EGR率である。また、図9における9段目のチャートは、EGR開度の時間変化を示している。前述のように“EGRv”はEGR開度である。
 要求第1トルクが基準値のレベルまで増大するまでの間は、目標空燃比と仮想空燃比とはともに理論空燃比である第1空燃比に維持される。よって、この間の目標ベースEGR率は仮想空燃比である理論空燃比を用いて算出される。また、この間の余剰新気割合は、目標空燃比と仮想空燃比とが一致していることに応答して1とされる。余剰新気割合が1であるならば、EGR率補正量は無効値に維持される。その結果、この間の目標EGR率は理論空燃比に対応した目標ベースEGR率の値に維持される。
 要求第1トルクが基準値を上回ると、目標ベースEGR率の計算に用いる仮想空燃比がステップ的にリーン空燃比である第2空燃比に切り替えられることで、その切り替えの時点において目標ベースEGR率もステップ的にリーン空燃比である第2空燃比に対応した値に増大することになる。また、この間の余剰新気割合は目標空燃比と仮想空燃比とが乖離していることに応答して1より大きい値とされる。そして、余剰新気割合が1よりも大きくなることに応答して、EGR率補正量は余剰新気割合の値に対応した値(負値)とされる。その結果、この間の目標EGR率は、リーン空燃比に対応した目標ベースEGR率の値にEGR率補正量(負値)を加算した値とされる。
 要求第1トルクが基準値を上回り目標空燃比と仮想空燃比とが乖離してから目標空燃比と仮想空燃比とが再び一致した後は、余剰新気割合は目標空燃比と仮想空燃比とが一致していることに応答して再び1とされる。余剰新気割合が1であるならば、EGR率補正量は再び無効値に維持される。その結果、この間の目標EGR率はリーン空燃比に対応した目標ベースEGR率の値に維持される。
 アクチュエータであるEGRバルブはEGR開度に基づいて動作する。しかし、EGR率が変化するまでには応答遅れがあるため、実際のEGR率はステップ的には増大せず、目標EGR率に遅れて増大していく。実EGR率は目標EGR率にしだいに収束していき、やがては目標EGR率に追従する。この際、EGR率補正量が有効値である間は、余剰新気割合に対応して目標ベースEGR率が実EGR率を減少させる方向に補正される。これにより、実EGR率が増大方向にオーバーシュートして燃焼が悪化する事態が有効に抑制される。
 以上のように、本実施の形態で採用されたロジックによれば、ドライバの加速要求に見合ったトルクの滑らかな増大を達成しつつ空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ応答良く切り替えることができる。また、本実施の形態で採用されたロジックによれば、空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ切り替える場合のEGR率の過多を有効に抑制することができる。
[実施の形態4]
 次に、本発明の実施の形態4について図を参照して説明する。
 実施の形態4と実施の形態1とは演算ユニット192のロジックに違いがある。ECUの全体のロジックは実施の形態1と共通であり、本実施の形態に係るECUのロジックも図1にて表すことができる。
 図10には、本実施の形態に係る演算ユニット192のロジックがブロック図で示されている。本実施の形態に係る演算ユニット192は、演算ユニット540を含んでいる。演算ユニット540は実施の形態1に係る演算ユニット502に代えて設けられている。演算ユニット540はさらに2つの演算ユニット508、542から構成されている。このうち演算ユニット508は実施の形態1に係る演算ユニットのものと共通であるので、その詳細な説明は省略する。以下では、実施の形態1との相違点である演算ユニット542について説明する。
 演算ユニット542は実施の形態1に係る演算ユニット510に代えて設けられている。演算ユニット542は目標EGR率を達成するためのEGR開度を算出する。EGR開度の計算では、EGRバルブの動作に対するEGR率の応答を流体力学等に基づいてモデル化した数式やマップを用いることができる。なお、EGR率はエンジン回転数や空気量、更には空燃比の影響を受けるので、EGR開度の計算ではそれらをパラメータとして使用する。空燃比に関しては目標空燃比がEGR開度の計算に用いられる。したがって、演算ユニット542は、目標空燃比のもとで目標EGR率を達成するために必要とされるEGR開度が算出される。図中では、EGR開度は“EGRv”と表記されている。演算ユニット542は本発明における第2操作量算出手段に相当する。次に、上述のロジックにしたがってエンジン制御を実行した場合の制御結果について、そのイメージを示すタイムチャートに基づいて説明する。
 図11は、本実施の形態に係るECUによる加速時の制御結果のイメージを示すタイムチャートである。図11のタイムチャートは複数段のチャートから構成されているが、各チャートに示されている内容は9段目のEGR開度の時間変化を除いて図5のタイムチャートの場合と共通である。図11における9段目のチャートは、EGR開度の時間変化を示している。前述のように“EGRv”はEGR開度である。
 要求第1トルクが基準値のレベルまで増大するまでの間は、目標空燃比と仮想空燃比とはともに理論空燃比である第1空燃比に維持される。よって、この間の目標EGR率は仮想空燃比の値である理論空燃比に対応した値に維持され、EGR開度は目標空燃比の値である理論空燃比に対応した値に維持される。つまり、この間のEGR開度は、理論空燃比のもとで目標EGR率を達成するための値に維持される。
 要求第1トルクが基準値を上回ると、目標EGR率の計算に用いる仮想空燃比がステップ的に第2空燃比に切り替えられることで、その切り替えの時点において目標EGR率もリーン空燃比である第2空燃比に対応した値にステップ的に増大することになる。目標EGR率がステップ的に増大すると、その増大時点においてEGR開度もステップ的に増大する。ただし、この間のEGR開度の算出には、この間の目標空燃比の値である理論空燃比が用いられる。つまり、この間のEGR開度は、理論空燃比のもとでリーン空燃比に対応した目標EGR率を達成するための値に維持される。
 要求第1トルクが基準値を上回り目標空燃比と仮想空燃比とが乖離してから目標空燃比と仮想空燃比とが再び一致した後も、目標EGR率は引き続きこの間の仮想空燃比の値であるリーン空燃比に対応した値に維持される。一方、この間のEGR開度は、目標空燃比が理論空燃比からリーン空燃比に切り替えられたことに応答して、リーン空燃比に対応した値が算出される。つまり、この間のEGR開度は、リーン空燃比のもとでリーン空燃比に対応した目標EGR率を達成するための値に維持される。
 アクチュエータであるEGRバルブはEGR開度に基づいて動作する。しかし、目標EGR率が変化してから実際のEGR率が変化するまでには応答遅れがある。このため、本実施の形態で採用されたロジックによれば、仮想空燃比を用いて目標EGR率を算出し実EGR率の応答遅れを抑制することとしている。しかし、リーン空燃比である第2空燃比による運転は理論空燃比である第1空燃比による運転に比して排気中の新気率が高い。このため、EGR開度を算出する際に仮想空燃比をパラメータとして用いると、目標空燃比が理論空燃比であるにもかかわらず仮想空燃比がリーン空燃比である間において、実際のEGR率が目標EGR率よりも増大してしまう。本実施の形態で採用されたロジックによれば、EGR開度を算出する際に目標空燃比が空燃比のパラメータとして用いられるので、実際の空燃比のもとで目標EGR率を達成するためのEGR開度が算出される。これにより、実EGR率が過多となる事態は有効に防がれる。
 以上のように、本実施の形態で採用されたロジックによれば、ドライバの加速要求に見合ったトルクの滑らかな増大を達成しつつ空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ応答良く切り替えることができる。また、本実施の形態で採用されたロジックによれば、空燃比を理論空燃比である第1空燃比から理論空燃比よりリーンな空燃比である第2空燃比へ切り替える場合のEGR率の過多を有効に抑制することができる。
[実施の形態5]
 次に、本発明の実施の形態5について図を参照して説明する。
 本実施の形態において制御対象とされるエンジンは、火花点火式の4サイクルレシプロエンジンであり、且つ、ターボ過給器を備えた過給リーンバーンエンジンである。このエンジンの運転を制御するECUにより操作されるアクチュエータには、スロットル、VVT、点火装置、インジェクタ、及びEGRバルブに加えて、ターボ過給器に設けられたウエストゲートバルブ(以下、WGV)が含まれる。WGVは、ターボ過給器の過給特性を変化させる過給特性可変アクチュエータである。ターボ過給器の過給特性は空気量を変化させることから、WGVは、スロットルやVVTと同じく、空気量を変化させる第1アクチュエータに含まれる。
 図12には、本実施の形態に係るECUのロジックがブロック図で示されている。ECUはエンジンコントローラ100とパワートレインマネージャ200を含む。パワートレインマネージャ200を示すブロック内には、パワートレインマネージャ200が備える種々の機能がブロックで表されている。このうち実施の形態1に係るECUのものと共通する機能を示すブロックには、共通の符号が付されている。また、エンジンコントローラ100を示すブロック内には、エンジンコントローラ100が備える種々の機能のうち、アクチュエータの協調操作に関係する機能がブロックで表されている。このうち実施の形態1に係るECUのものと共通する機能を示すブロックには、共通の符号が付されている。以下では、実施の形態1との相違点、すなわち、過給リーンバーンエンジンの制御に特有の機能を示すブロックを中心に説明する。
 本実施の形態に係るパワートレインマネージャ200は、実施の形態1と共通する演算ユニット202、204、206、208に加えて演算ユニット210を備える。演算ユニット210は要求第3トルクを計算してエンジンコントローラ100に送信する。図中では、要求第3トルクは“TQ3r”と表記されている。第3トルクは第1トルクと同じように定常的に或いは長期間にわたってエンジンに求められるトルクである。第3トルクと第1トルクとの関係は、第1トルクと第2トルクとの関係に類似する。つまり、第1トルクの側から見た場合、第1トルクは、第3トルクよりも緊急性或いは優先度が高くエンジンに高い応答性が求められる種類のトルク、すなわち、より早い時期に実現することが求められる種類のトルクである。要求第3トルクは、パワートレインマネージャ200がエンジンに対して要求する第3トルクの要求値である。パワートレインマネージャ200で計算される3種類の要求トルクを緊急性或いは優先度が高い順、つまり、エンジンに求められる応答性が高い順に並べると、要求第2トルク、要求第1トルク、要求第3トルクの順になる。演算ユニット210は、アクセルペダルの開度に応答する信号に基づいて要求第3トルクを計算する。本実施の形態では、要求第3トルクは要求第1トルクとともに本発明における要求トルクに相当する。要求第1トルクから一時的なトルクダウン方向のパルス成分を除去したものを要求第3トルクとすることもできる。
 本実施の形態に係るエンジンコントローラ100は、実施の形態1と同様に3つの大演算ユニット120、140、160から構成されている。大演算ユニット120は、実施の形態1と共通する演算ユニット122、124、126、128に加えて演算ユニット130を備える。演算ユニット130は、エンジンに対する制御用パラメータとして、現在のエンジンの運転状態を維持するか或いは予定されている所定の運転状態を実現させるために必要とされるトルクのうち、第3トルクに分類されるトルクを計算する。ここでは、演算ユニット130で計算されるトルクをその他第3トルクと呼ぶ。図中では、その他第3トルクは“TQ3etc”と表記されている。演算ユニット130は、実際にそのようなトルクが必要になった場合のみ有効値を出力し、そのようなトルクが必要のない間は無効値を算出する。無効値はエンジンが出力しうる最大図示トルクよりも大きい値に設定されている。
 本実施の形態に係る大演算ユニット140は、実施の形態1と共通する演算ユニット142、144、146に加えて演算ユニット148を備える。演算ユニット148は第3トルクを調停するように構成されている。演算ユニット148には要求第3トルクとその他第3トルクとが入力される。演算ユニット148はそれらを調停し、調停されたトルクを最終的に決定された目標第3トルクとして出力する。図中では、最終的に決定された目標第3トルクは“TQ3t”と表記されている。演算ユニット148における調停方法としては最小値選択が用いられる。したがって、演算ユニット130から有効値が出力されていない場合は、パワートレインマネージャ200から与えられた要求第3トルクが目標第3トルクとして算出される。
 本実施の形態に係る大演算ユニット160は、大演算ユニット140から入力される目標第1トルク、目標第2トルク、及び目標第3トルクの何れもエンジンに対するトルクの目標値として扱う。このため、本実施の形態に係る大演算ユニット160は、実施の形態1に係る演算ユニット162に代えて演算ユニット182を備え、実施の形態1に係る演算ユニット164に代えて演算ユニット184を備える。
 演算ユニット182には目標第1トルクと目標第3トルクとが入力され、さらに目標効率と仮想空燃比とが入力される。演算ユニット182は本発明における目標空気量算出手段に相当する。演算ユニット182は、実施の形態1に係る演算ユニット162と共通の方法により、目標効率と仮想空燃比とを用いて、目標第1トルクを達成するための目標空気量(以下、目標第1空気量)を目標第1トルクから逆算する。図中では、目標第1空気量は“KL1t”と表記されている。本実施の形態では、演算ユニット178による目標バルブタイミングの計算には、目標第1空気量が用いられる。
 また、目標第1空気量の計算と並行して、演算ユニット182は、目標効率と仮想空燃比とを用いて、目標第3トルクを達成するための目標空気量(以下、目標第3空気量)を目標第3トルクから逆算する。図中では、目標第3空気量は“KL3t”と表記されている。目標第3空気量の計算でも、目標効率及び仮想空燃比は空気量のトルクへの変換効率を与えるパラメータとして用いられる。目標第1空気量の計算において仮想空燃比の値が実施の形態1のように変更されるのであれば、目標第3空気量の計算においても仮想空燃比の値は同様に変更される。
 演算ユニット184は、実施の形態1に係る演算ユニット164と共通の方法により、目標第1空気量から目標吸気管圧を逆算する。図中では、目標吸気管圧は“Pmt”と表記されている。目標吸気管圧は演算ユニット166による目標スロットル開度の計算に用いられる。
 また、目標吸気管圧の計算と並行して、演算ユニット184は、目標第3空気量から目標過給圧を逆算する。図中では、目標過給圧は“Pct”と表記されている。目標過給圧の計算では、まず、目標吸気管圧を計算する場合と共通の方法にて、目標第3空気量が吸気管圧に変換される。そして、目標第3空気量を変換して得られた吸気管圧にリザーブ圧が加算され、その合計値が目標過給圧として算出される。リザーブ圧は吸気管圧に対する過給圧の最低限のマージンである。なお、リザーブ圧は固定値でもよいが、例えば吸気管圧に連動させて変化させることもできる。
 本実施の形態に係る大演算ユニット160は演算ユニット186をさらに備える。演算ユニット186は目標過給圧に基づいてウエストゲートバルブ開度の目標値である目標ウエストゲートバルブ開度を算出する。図中では、目標ウエストゲートバルブ開度は“WGV”と表記されている。目標ウエストゲートバルブ開度の計算では、過給圧とウエストゲートバルブ開度とを関連付けるマップ或いはモデルが用いられる。演算ユニット186で計算された目標ウエストゲートバルブ開度はWGV10を駆動する信号に変換されてECUのインタフェース115を介してWGV10へ送信される。演算ユニット186もまた本発明における第1アクチュエータ制御手段に相当する。なお、WGV10の操作量としては、ウエストゲートバルブ開度ではなく、WGV10を駆動するソレノイドのデューティ比であってもよい。
 以上のように構成されるECUによれば、WGV10を含む複数のアクチュエータ2、4、6、8、10、12を協調操作することにより、ドライバの要求に応じてトルクを滑らかに変化させながら空燃比を応答良く切り替えると共に、実EGR率が過多となるという課題を過給リーンバーンエンジンにおいても達成することができる。なお、図13には本実施の形態における運転領域の設定が示されている。運転領域は吸気管圧とエンジン回転数とで特定される。この図によれば、低中回転・低中負荷域にリーンモードが選択されるリーンモード領域が設定されている。この図からは、アイドル運転等の極低回転・極低負荷域からの加速時にはリーンモードからストイキモードへ運転モードが切り替えられることが分かる。ECUには、この図に示すような運転領域の設定がマップにされて記憶されている。ECUは、そのマップに従って運転モードの切り替えを実行している。
[その他]
 本発明は上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、以下のような変形例を採用してもよい。
 実施の形態1において目標空気量の計算に用いている空燃比(仮想空燃比)は当量比に代えることができる。当量比も、空気量のトルクへの変換効率を与えるパラメータであり、且つ、空燃比に対応するパラメータに該当する。同様に空気過剰率を空気量のトルクへの変換効率を与えるパラメータとして用いることができる。
 目標空気量の計算に用いるパラメータとして、点火時期に対応するパラメータを用いることもできる。点火時期が最適点火時期よりも遅角されるほど同一空気量で発生するトルクは低下することから、点火時期に対応するパラメータは空気量のトルクへの変換効率を与えるパラメータに該当する。例えば、目標空気量の計算に使用するトルク-空気量変換マップを点火時期毎に用意しておき、マップの検索に用いる点火時期の値を運転モードの切り替えに応答して変更すればよい。具体的には、要求第1トルクが減少している減速時には、要求第1トルクが基準値より大きい間はマップの検索に用いる点火時期は最適点火時期とし、要求トルクの基準値以下への減少に応答してマップの検索に用いる点火時期を最適点火時期よりも遅角する。この場合、マップの検索に用いる空燃比は目標空燃比とする。
 筒内に吸入される空気の量を変化させる第1アクチュエータとしては、吸気バルブのリフト量を可変にする可変リフト量機構を用いることもできる。可変リフト量機構はスロットルやVVT等の他の第1アクチュエータと併用することができる。
 ターボ過給器の過給特性を変化させる第1アクチュエータとしては、可変ノズルを用いることもできる。また、電動モータによるアシストのあるターボ過給器ならば、その電動モータを第3アクチュエータとして用いることもできる。
 本発明の実施においては、第2アクチュエータとしてのインジェクタはポートインジェクタには限定されない。燃焼室内に直接燃料を噴射する筒内インジェクタを用いることもできるし、ポートインジェクタと筒内インジェクタの両方が併用されていてもよい。
 第1空燃比は理論空燃比には限定されない。理論空燃比よりもリーンな空燃比を第1空燃比に設定し、第1空燃比よりもさらにリーンな空燃比を第2空燃比に設定することもできる。
2 スロットル
4 インジェクタ
6 点火装置
8 可変バルブタイミング機構
10 ウエストゲートバルブ
12 EGRバルブ
100 エンジンコントローラ
105 要求トルク受信手段としてのインタフェース
200 パワートレインマネージャ
162;182 目標空気量算出手段としての演算ユニット
164、166;178 第1アクチュエータ制御手段としての演算ユニット
174、176 第2アクチュエータ制御手段としての演算ユニット
168、170、172 第3アクチュエータ制御手段としての演算ユニット
192 第4アクチュエータ制御手段としての演算ユニット
404 仮想空燃比変更手段としての演算ユニット
406 目標空燃比切替手段としての演算ユニット
504 パラメータ値算出手段としての演算ユニット
506 第1補正量算出手段としての演算ユニット
508;534 目標EGR率算出手段としての演算ユニット
510 第1ベース操作量算出手段としての演算ユニット
522 第2補正量算出手段としての演算ユニット
524 第2ベース操作量算出手段としての演算ユニット
532 第3補正量算出手段としての演算ユニット
536 第1操作量算出手段としての演算ユニット
542 第2操作量算出手段としての演算ユニット

Claims (7)

  1.  EGR率を調整するEGRバルブを有し、理論空燃比近傍の第1空燃比による第1運転と、前記第1空燃比よりもリーンな第2空燃比による第2運転とを選択可能に構成され、前記第1運転時は前記第1空燃比を用いて算出された目標第1空気量を目標空気量として吸入空気量が制御され、前記第2運転時は前記第2空燃比を用いて算出された目標第2空気量を目標空気量として吸入空気量が制御される内燃機関の制御装置において、
     前記第1運転時は、前記EGRバルブの開度を第1開度に制御し、
     前記第2運転時は、前記EGRバルブの開度を前記第1開度よりも大きい第2開度に制御し、
     前記第1運転から前記第2運転への切り替え期間であって、目標空気量が前記目標第2空気量となってから実空気量が前記目標第2空気量となるまでの期間は、空燃比を前記第1空燃比に制御し、点火時期を遅角し、そして前記EGRバルブの開度を前記第1開度よりも大きく且つ前記第2開度よりも小さい第3開度に制御する内燃機関の制御装置。
  2.  排気に含まれる未燃の空気の割合を新気率とし、
     前記内燃機関が前記第1空燃比で運転されたときの前記新気率に対する前記内燃機関が前記第2空燃比で運転されたときの前記新気率の割合が大きいほど、前記第2開度と前記第3開度との差が大きくなるように制御する請求項1に記載の内燃機関の制御装置。
  3.  筒内に吸入される空気の量を変化させる第1アクチュエータと、筒内に燃料を供給する第2アクチュエータと、筒内の混合気に点火する第3アクチュエータと、EGR率を調整する第4アクチュエータとを有し、第1空燃比による運転と前記第1空燃比よりもリーンな第2空燃比による運転とを選択可能に構成された内燃機関の制御装置において、
     要求トルクを受信する要求トルク受信手段と、
     空気量のトルクへの変換効率を与えるパラメータである仮想空燃比を用いて前記要求トルクを達成するための目標空気量を前記要求トルクから逆算する目標空気量算出手段と、
     前記要求トルクの基準値以上への増大に応答して前記仮想空燃比を前記第1空燃比から前記第2空燃比へ切り替える仮想空燃比変更手段と、
     前記仮想空燃比が前記第1空燃比から前記第2空燃比へ変更された後、目標空燃比を前記第1空燃比から前記第2空燃比へ切り替える目標空燃比切替手段と、
     前記目標空気量に基づいて前記第1アクチュエータの操作量を決定し、前記操作量に従って前記第1アクチュエータを操作する第1アクチュエータ制御手段と、
     前記目標空燃比に基づいて燃料供給量を決定し、前記燃料供給量に従って前記第2アクチュエータを操作する第2アクチュエータ制御手段と、
     前記第1アクチュエータの操作量と前記目標空燃比とから推定されるトルクと前記要求トルクとに基づいて前記要求トルクを達成するための点火時期を決定し、前記点火時期に従って前記第3アクチュエータを操作する第3アクチュエータ制御手段と、
     前記仮想空燃比と前記目標空燃比とに基づいて前記第4アクチュエータの操作量を決定し、前記操作量に従って前記第4アクチュエータを操作する第4アクチュエータ制御手段と、を備え、
     前記第4アクチュエータ制御手段は、
     前記仮想空燃比を用いて目標EGR率を算出する目標EGR率算出手段と、
     排気中に含まれる未燃の空気の割合である新気率に対応するパラメータの値を用いて、前記目標EGR率を達成するための前記第4アクチュエータの操作量を決定する手段と、
     を含むことを特徴とする内燃機関の制御装置。
  4.  前記第4アクチュエータ制御手段は、
     前記目標空燃比の排気中の新気率に対する前記仮想空燃比の排気中の新気率の割合である余剰新気割合を前記新気率に対応するパラメータの値として算出するパラメータ値算出手段と、
     前記仮想空燃比による燃焼のもとで前記目標EGR率を達成するための前記第4アクチュエータの操作量を第1ベース操作量として算出する第1ベース操作量算出手段と、
     前記余剰新気割合が大きいほどEGR率を下げる方向へ変化させるための前記第4アクチュエータの操作補正量を第1補正量として算出する第1補正量算出手段と、
     前記第1ベース操作量に前記第1補正量を反映させた値を前記第4アクチュエータの操作量として決定する手段と、
     を含むことを特徴とする請求項3記載の内燃機関の制御装置。
  5.  前記新気率に対応するパラメータの値は前記目標空燃比の値を含み、
     前記第4アクチュエータ制御手段は、
     理論空燃比による燃焼のもとで前記目標EGR率を達成するための前記第4アクチュエータの操作量を第2ベース操作量として算出する第2ベース操作量算出手段と、
     前記目標空燃比がリーンであるほどEGR率を上げる方向へ変化させるための前記第4アクチュエータの操作補正量を第2補正量として算出する第2補正量算出手段と、
     前記第2ベース操作量に前記第2補正量を反映させた値を前記第4アクチュエータの操作量として決定する手段と、
     を含むことを特徴とする請求項3記載の内燃機関の制御装置。
  6.  前記第4アクチュエータ制御手段は、
     前記目標空燃比の排気中の新気率に対する前記仮想空燃比の排気中の新気率の割合である余剰新気割合を前記新気率に対応するパラメータの値として算出するパラメータ値算出手段と、
     前記余剰新気割合が大きいほどEGR率を下げる方向へ変化させるための前記目標EGR率の補正量を第3補正量として算出する第3補正量算出手段と、
     前記第3補正量を用いて前記目標EGR率を補正し、前記仮想空燃比のもとで補正後の前記目標EGR率を達成するための前記第4アクチュエータの操作量を算出する第1操作量算出手段と、
     を含むことを特徴とする請求項3記載の内燃機関の制御装置。
  7.  前記新気率に対応するパラメータの値は前記目標空燃比の値を含み、
     前記第4アクチュエータ制御手段は、
     前記目標空燃比のもとで前記目標EGR率を達成するための前記第4アクチュエータの操作量を算出する第2操作量算出手段と、
     を含むことを特徴とする請求項3記載の内燃機関の制御装置。
PCT/JP2013/068765 2013-07-09 2013-07-09 内燃機関の制御装置 WO2015004734A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015526047A JP5983882B2 (ja) 2013-07-09 2013-07-09 内燃機関の制御装置
DE112013007227.0T DE112013007227B4 (de) 2013-07-09 2013-07-09 Steuerungsverfahren für eine Verbrennungskraftmaschine
US14/903,385 US20160153373A1 (en) 2013-07-09 2013-07-09 Controlling device for internal combustion engine
PCT/JP2013/068765 WO2015004734A1 (ja) 2013-07-09 2013-07-09 内燃機関の制御装置
CN201380078119.4A CN105378249A (zh) 2013-07-09 2013-07-09 内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068765 WO2015004734A1 (ja) 2013-07-09 2013-07-09 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2015004734A1 true WO2015004734A1 (ja) 2015-01-15

Family

ID=52279461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068765 WO2015004734A1 (ja) 2013-07-09 2013-07-09 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US20160153373A1 (ja)
JP (1) JP5983882B2 (ja)
CN (1) CN105378249A (ja)
DE (1) DE112013007227B4 (ja)
WO (1) WO2015004734A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167848A (ja) * 2018-03-22 2019-10-03 株式会社豊田中央研究所 内燃機関システム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879624B2 (en) * 2013-05-14 2018-01-30 Toyota Jidosha Kabushiki Kaisha Controlling device for internal combustion engine
US9650979B2 (en) * 2013-05-14 2017-05-16 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US20160123250A1 (en) * 2013-05-24 2016-05-05 Toyota Jidosha Kabushiki Kaisha Device for controlling internal combustion engine
US10094307B2 (en) * 2013-06-06 2018-10-09 Toyota Jidosha Kabushiki Kaisha Controlling device for internal combustion engine equipped with turbocharger
BR102016012054B1 (pt) * 2015-05-27 2022-10-25 Toyota Jidosha Kabushiki Kaisha Sistema de controle para motor
JP6647160B2 (ja) * 2016-07-05 2020-02-14 本田技研工業株式会社 車両の制御装置
JP6923005B2 (ja) * 2018-01-23 2021-08-18 日産自動車株式会社 内燃機関の制御方法及び内燃機関の制御装置
JP6935775B2 (ja) * 2018-03-15 2021-09-15 トヨタ自動車株式会社 プラント制御装置
DE102018122963A1 (de) * 2018-09-19 2020-03-19 Keyou GmbH Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Gasmotors
GB2584427B (en) * 2019-05-29 2021-11-10 Jaguar Land Rover Ltd Controller for a vehicle internal combustion engine
WO2021154531A1 (en) * 2020-01-31 2021-08-05 Cummins Inc. Apparatuses, methods, systems, and techniques for improving the accuracy of internal combustion engine torque determinations
CN113074071B (zh) * 2021-05-07 2022-08-23 潍柴动力股份有限公司 一种气体发动机的点火控制方法、气体发动机及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062639A (ja) * 1992-06-16 1994-01-11 Mazda Motor Corp エンジンの制御装置
JP2000154747A (ja) * 1998-11-19 2000-06-06 Fuji Heavy Ind Ltd エンジン制御装置
JP2002097976A (ja) * 2000-09-22 2002-04-05 Mazda Motor Corp エンジンの排気浄化装置
JP2002339778A (ja) * 2001-03-12 2002-11-27 Denso Corp 内燃機関の制御装置
JP2008144689A (ja) * 2006-12-12 2008-06-26 Denso Corp エンジントルク制御装置及びその調整方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416611A1 (de) * 1994-05-11 1995-11-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
US6009851A (en) * 1995-05-16 2000-01-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Idle speed control apparatus for an internal combustion engine
JP3175535B2 (ja) * 1995-05-16 2001-06-11 三菱自動車工業株式会社 内燃エンジンのアイドル回転数制御装置
JP3605221B2 (ja) * 1996-03-19 2004-12-22 株式会社日立製作所 内燃機関の制御装置
JP3533927B2 (ja) 1998-02-20 2004-06-07 マツダ株式会社 エンジンの制御装置
US6497212B2 (en) * 2000-02-10 2002-12-24 Denso Corporation Control apparatus for a cylinder injection type internal combustion engine capable of suppressing undesirable torque shock
US6644275B2 (en) * 2001-03-12 2003-11-11 Denso Corporation Apparatus for controlling engine
US6990968B2 (en) * 2003-07-24 2006-01-31 Nissan Motor Co., Ltd. Engine fuel injection amount control device
CN100470028C (zh) * 2007-07-06 2009-03-18 清华大学 一种双模式直喷汽油机的全工况空燃比控制方法
US7512479B1 (en) * 2007-11-19 2009-03-31 Southwest Research Institute Air fraction estimation for internal combustion engines with dual-loop EGR systems
DE112010006093B4 (de) * 2010-12-27 2014-10-02 Toyota Jidosha Kabushiki Kaisha Steuerungsvorrichtung für eine Verbrennungskraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062639A (ja) * 1992-06-16 1994-01-11 Mazda Motor Corp エンジンの制御装置
JP2000154747A (ja) * 1998-11-19 2000-06-06 Fuji Heavy Ind Ltd エンジン制御装置
JP2002097976A (ja) * 2000-09-22 2002-04-05 Mazda Motor Corp エンジンの排気浄化装置
JP2002339778A (ja) * 2001-03-12 2002-11-27 Denso Corp 内燃機関の制御装置
JP2008144689A (ja) * 2006-12-12 2008-06-26 Denso Corp エンジントルク制御装置及びその調整方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167848A (ja) * 2018-03-22 2019-10-03 株式会社豊田中央研究所 内燃機関システム
JP7061905B2 (ja) 2018-03-22 2022-05-02 株式会社豊田中央研究所 内燃機関システム

Also Published As

Publication number Publication date
DE112013007227B4 (de) 2018-08-16
US20160153373A1 (en) 2016-06-02
JP5983882B2 (ja) 2016-09-06
JPWO2015004734A1 (ja) 2017-02-23
DE112013007227T5 (de) 2016-04-28
CN105378249A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
JP6041049B2 (ja) 内燃機関の制御装置
JP5983882B2 (ja) 内燃機関の制御装置
JP6041050B2 (ja) 内燃機関の制御装置
JP6041052B2 (ja) 過給器付き内燃機関の制御装置
JP6041051B2 (ja) 内燃機関の制御装置
JP6070838B2 (ja) 内燃機関の制御装置
JP6136947B2 (ja) 内燃機関の制御装置
JP6075450B2 (ja) ターボチャージャ付き内燃機関の制御装置
WO2014188601A1 (ja) 内燃機関の制御装置
JP2015132237A (ja) 内燃機関の制御装置
JP2014234776A (ja) 内燃機関の制御装置
JP2015117604A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526047

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903385

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013007227

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889148

Country of ref document: EP

Kind code of ref document: A1