WO2015002283A1 - 強化ガラス基板の製造方法及び強化ガラス基板 - Google Patents

強化ガラス基板の製造方法及び強化ガラス基板 Download PDF

Info

Publication number
WO2015002283A1
WO2015002283A1 PCT/JP2014/067865 JP2014067865W WO2015002283A1 WO 2015002283 A1 WO2015002283 A1 WO 2015002283A1 JP 2014067865 W JP2014067865 W JP 2014067865W WO 2015002283 A1 WO2015002283 A1 WO 2015002283A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
tempered glass
ion exchange
covering
less
Prior art date
Application number
PCT/JP2014/067865
Other languages
English (en)
French (fr)
Inventor
隆 村田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015002283A1 publication Critical patent/WO2015002283A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • the present invention relates to a method for producing a tempered glass substrate and a tempered glass substrate, and more specifically to a method for producing a tempered glass substrate suitable for a mobile phone, a digital camera, a PDA (mobile terminal), a touch panel display, and the like, and a tempered glass substrate.
  • Glass substrates used for these applications are required to have high mechanical strength, and to be thin and lightweight. From such circumstances, it is described that some devices use a glass substrate chemically strengthened by ion exchange processing or the like, that is, a tempered glass substrate (see Patent Document 1).
  • Patent Document 2 describes a cover glass for a flat panel display.
  • the cover glass described in Patent Document 2 includes a display portion that is positioned in front of the image display portion and extends in a planar shape, a bent portion that is bent from the display portion on both sides in the width direction of the display portion, and a rear side from the bent portion. And an extending skirt portion.
  • the manufacturing method of the cover glass for flat panel displays formed from plate glass has a plate strengthening process and the plate glass processing process which produces the plate glass put into the chemical strengthen step, and the said plate
  • a glassy glass processing step is composed of a heating step, a local heating step, and a bending step. In the heating step, the local heating step, and the bending step, the plate glass is placed on a mold, heated to a predetermined temperature, and bent.
  • the main object of the present invention is to provide a method for producing a tempered glass substrate having a curved portion with few surface defects at low cost.
  • the method for producing a tempered glass substrate of the present invention is a method for producing a tempered glass substrate having a concave surface and a curved surface portion having a convex surface facing the concave surface, and is a part of the flat unreinforced glass substrate having a flat shape. Forming a coating on the surface to obtain a coating forming surface; and subjecting the unreinforced glass substrate having the coating forming surface to an ion exchange treatment to deform the coating forming surface to form a curved surface portion. An ion exchange deformation step of obtaining a tempered glass substrate having
  • the coating forming surface is the concave surface.
  • the covering is preferably formed in a stripe shape.
  • the coating is an inorganic film.
  • the inorganic film is (1) an oxide of at least one metal selected from Si, Ti, Zr, Al, Nb, W, Mo and Ta, or (2) Si, Ti, Zr, Al, Nb, W, It is preferable to contain at least one metal nitride selected from Mo, Ta and Sn.
  • the inorganic film is (3) at least one metal selected from Si, Ti, Al, Nb, W, Mo, Sn, Cr, Pt and Au, or (4) at least selected from stainless steel, hastelloy, inconel and nichrome. It is preferable to contain a kind of alloy or (5) an oxide of Sn.
  • the tempered glass substrate of the present invention is preferably manufactured by the above manufacturing method.
  • the potassium content on the concave surface is less than the potassium content on the convex surface.
  • the curvature radius of the curved surface portion of the tempered glass substrate is preferably 1 cm to 2000 cm.
  • the tempered glass substrate of the present invention is a tempered glass substrate having a concave surface and a curved surface portion having a convex surface facing the concave surface, and the potassium content of the concave surface is more than the potassium content of the convex surface. It is also characterized by few.
  • the method for producing a tempered glass substrate of the present invention is a method for producing a tempered glass substrate having a concave surface and a curved surface portion having a convex surface facing the concave surface, and is a part of the flat unreinforced glass substrate having a flat shape.
  • the coating forming surface is the concave surface.
  • a method of forming the covering in a stripe shape For example, a method of sticking a striped covering to an unstrengthened glass substrate, a method of printing the covering, or the like can be employed.
  • a covering removal step of removing the covering after the ion exchange deformation step is preferable to have a covering removal step of removing the covering after the ion exchange deformation step.
  • the covering examples include an inorganic film, an organic film, a glass film, and a polymer film, and among them, an inorganic film is preferable. Since the inorganic film has high heat resistance and small thickness, diffusion of alkali ions to the glass substrate can be suppressed during ion exchange treatment, and a tempered glass substrate having a curved surface portion can be easily obtained.
  • the inorganic film is not limited to a single layer film, and may be a multilayer film. In this case, an inorganic film having functions such as a conductive film and an antireflection film is preferable.
  • the inorganic film is (1) an oxide of at least one metal selected from Si, Ti, Zr, Al, Nb, W, Mo and Ta, or (2) Si, Ti, Zr, Al, Nb, It is preferable to contain at least one metal nitride selected from W, Mo, Ta and Sn. Since these inorganic films are transparent, when the obtained tempered glass substrate is used as a cover glass for a portable terminal or a touch panel display, a display screen having high visibility is easily obtained.
  • the film thickness of the inorganic film is preferably 5 to 1000 nm, more preferably 10 to 800 nm, still more preferably 20 to 600 nm, and particularly preferably 30 to 400 nm. If the film thickness is too small, the difference between the compressive stress value of the compressive stress layer on the surface of the tempered glass substrate on which the inorganic film is formed and the compressive stress value of the compressive stress layer on the opposite surface becomes too small, and the tempered glass substrate is curved. It becomes difficult to form the part. On the other hand, if the film thickness is too large, it takes a long time to form the film and it is difficult to ensure the mechanical strength of the tempered glass substrate.
  • sputtering sputtering, CVD, dip coating, etc.
  • the sputtering method is preferable from the viewpoint of film thickness control.
  • the tempered glass substrate of the present invention is preferably manufactured by the above manufacturing method. Aesthetics such as a portable terminal or a touch panel display using the tempered glass substrate as a cover glass are likely to be improved. At this time, the radius of curvature of the curved surface portion of the tempered glass substrate is preferably 1 cm to 2000 cm.
  • the potassium content on the concave surface is less than the potassium content on the convex surface. Because the potassium content of the concave surface is less than the potassium content of the convex surface, the compressive stress value of the compressive stress layer of the concave surface is smaller than the compressive stress value of the compressive stress layer of the convex surface, Simultaneously with the ion exchange treatment, it is possible to obtain a tempered glass substrate having a curved surface portion with few surface defects.
  • the absolute value of the difference between the compressive stress value of the compressive stress layer on the concave surface and the compressive stress value of the compressive stress layer on the convex surface is preferably 10 MPa or more, more preferably 20 MPa or more, and 50 MPa or more. Is more preferable, and 100 MPa or more is particularly preferable.
  • the stress depth of the convex surface in the tempered glass substrate is preferably 5 to 50 ⁇ m, more preferably 10 to 45 ⁇ m, further preferably 15 to 35 ⁇ m, and particularly preferably 20 to 30 ⁇ m.
  • the lower limit is 3 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, particularly 20 ⁇ m or more
  • the upper limit is 70 ⁇ m or less, 60 ⁇ m or less, particularly 50 ⁇ m or less. If the stress depth is too small, the strength tends to decrease due to deep scratches during handling in the manufacturing process.
  • the compressive stress value of the compressive stress layer on the convex surface of the tempered glass substrate preferably has a lower limit of 100 MPa or more, 300 MPa or more, 400 MPa or more, 500 MPa or more, 600 MPa or more, 700 MPa or more, particularly 800 MPa or more, and an upper limit of 1500 MPa or less, 1300 MPa. Hereinafter, in particular, it is 1200 MPa or less.
  • the greater the compressive stress value the higher the mechanical strength of the tempered glass substrate.
  • the thickness of the tempered glass substrate is preferably 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 1.0 mm or less, 0.8 mm or less, 0.7 mm or less, 0.5 mm or less, 0.4 mm or less, particularly 0.3 mm or less.
  • the tempered glass substrate can be reduced in weight, and as a result, the device can be reduced in thickness and weight.
  • the thickness of the tempered glass substrate is too large, it becomes difficult to form a curved surface portion.
  • the tempered glass substrate has a glass composition of 50% by mass, SiO 2 50-80%, Al 2 O 3 5-30%, B 2 O 3 0-15%, Na 2 O 1-20%, K 2. It is preferable to contain 0 to 10% of O.
  • the reason for limiting the content range of each component as described above will be described below.
  • % display points out the mass%.
  • Al 2 O 3 is a component that improves ion exchange performance, and is a component that increases the strain point and Young's modulus.
  • the content of Al 2 O 3 is preferably 5 to 30%. If the content of Al 2 O 3 is too small, the thermal expansion coefficient becomes too high and the thermal shock resistance tends to be lowered, and in addition, there is a possibility that the ion exchange performance cannot be sufficiently exhibited. Therefore, the preferable lower limit range of Al 2 O 3 is 7% or more, 8% or more, 10% or more, 12% or more, 14% or more, 15% or more, 16% or more, particularly 18% or more.
  • the preferable upper limit range of Al 2 O 3 is 28% or less, 25% or less, 22% or less, particularly 20% or less.
  • B 2 O 3 is a component that reduces high temperature viscosity and density, stabilizes the glass, makes it difficult to precipitate crystals, and lowers the liquidus temperature. It is also a component that increases crack resistance. However, if the content of B 2 O 3 is too large, the ion exchange treatment may cause surface coloring called burns, water resistance may decrease, the compressive stress value of the compressive stress layer may decrease, The stress depth of the stress layer tends to decrease. Thus, the content of B 2 O 3 is preferably 0 to 15% 0.1 to 12% 1-10%, 1 super 1-8%, 1.5 ⁇ 6%, especially 2-5% .
  • Na 2 O is a major ion exchange component, and is a component that lowers the high-temperature viscosity and improves meltability and moldability. Na 2 O is also a component that improves devitrification resistance.
  • the content of Na 2 O is 1 to 20%. When Na 2 O content is too small, or reduced meltability, lowered coefficient of thermal expansion tends to decrease the ion exchange performance. Therefore, when Na 2 O is introduced, a preferable lower limit range of Na 2 O is 10% or more, 11% or more, and particularly 12% or more.
  • the content of Na 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it becomes difficult to match the thermal expansion coefficient of the surrounding materials.
  • the strain point may be excessively lowered or the component balance of the glass composition may be lost, and the devitrification resistance may be deteriorated. Therefore, a preferable upper limit range of Na 2 O is 17% or less, particularly 16% or less.
  • K 2 O is a component that promotes ion exchange, and is a component that has a large effect of increasing the stress depth of the compressive stress layer among alkali metal oxides. Moreover, it is a component which reduces high temperature viscosity and improves a meltability and a moldability. Furthermore, it is also a component that improves devitrification resistance.
  • the content of K 2 O is 0 to 10%. When the content of K 2 O is too large, the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it becomes difficult to match the thermal expansion coefficient of the surrounding materials. Moreover, there is a tendency that the strain point is excessively lowered, the component balance of the glass composition is lacking, and the devitrification resistance is lowered. Therefore, the preferable upper limit range of K 2 O is 8% or less, 6% or less, 4% or less, and particularly less than 2%.
  • Li 2 O is an ion exchange component and a component that lowers the high-temperature viscosity and improves the meltability and moldability. It is also a component that increases Young's modulus. Furthermore, the effect of increasing the compressive stress value is large among alkali metal oxides. However, when the content of Li 2 O is too large, and decreases the liquidus viscosity, it tends glass devitrified. In addition, the thermal expansion coefficient becomes too high, so that the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding material. Furthermore, if the low-temperature viscosity is too low and stress relaxation is likely to occur, the compressive stress value may be reduced. Therefore, the Li 2 O content is preferably 0 to 3.5%, 0 to 2%, 0 to 1%, 0 to 0.5%, particularly 0.01 to 0.2%.
  • the preferred content of Li 2 O + Na 2 O + K 2 O is 5-25%, 10-22%, 13-22%, 15-22%, especially 15-20%.
  • Li 2 O + Na 2 O + K content of 2 O is too small, the ion exchange performance and meltability is liable to decrease.
  • the content of Li 2 O + Na 2 O + K 2 O is too large, in addition to the glass tends to be devitrified, the thermal expansion coefficient becomes too high, or the thermal shock resistance decreases, the peripheral material heat It becomes difficult to match the expansion coefficient. In addition, the strain point may be excessively lowered, making it difficult to obtain a high compressive stress value.
  • Li 2 O + Na 2 O + K 2 O is the total amount of Li 2 O, Na 2 O and K 2 O.
  • MgO is a component that lowers the viscosity at high temperature, increases meltability and moldability, and increases the strain point and Young's modulus.
  • MgO is a component that has a large effect of improving ion exchange performance. is there.
  • the preferable upper limit range of MgO is 12% or less, 10% or less, 8% or less, 5% or less, and particularly 4% or less.
  • the suitable minimum range of MgO is 0.1% or more, 0.5% or more, 1% or more, especially 2% or more.
  • CaO compared with other components, has a great effect of lowering the high-temperature viscosity without increasing devitrification resistance, improving meltability and moldability, and increasing the strain point and Young's modulus.
  • the CaO content is preferably 0 to 10%.
  • the preferred content of CaO is 0-5%, 0-4%, 0-3%, 0-2%, 0-0.5%, especially 0-0.1%.
  • SrO is a component that lowers the high-temperature viscosity without increasing devitrification resistance, thereby improving meltability and moldability, and increasing the strain point and Young's modulus.
  • the preferred content range of SrO is 0-5%, 0-3%, 0-1%, especially 0-0.1%.
  • BaO is a component that lowers the high-temperature viscosity without increasing devitrification resistance, thereby increasing meltability and moldability, and increasing the strain point and Young's modulus.
  • a suitable content range of BaO is 0 to 5%, 0 to 3%, 0 to 1%, particularly 0 to less than 0.1%.
  • ZnO is a component that enhances the ion exchange performance, and is a component that is particularly effective in increasing the compressive stress value. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity.
  • the content of ZnO is preferably 0 to 6%, 0 to 5%, 0 to 1%, 0 to 0.5%, particularly preferably 0 to less than 0.1%.
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase the Young's modulus, and are components that can be decolored and control the color of the glass when a complementary color is added.
  • the cost of the raw material itself is high, and if it is introduced in a large amount, the devitrification resistance tends to decrease. Therefore, the rare earth oxide content is preferably 4% or less, 3% or less, 2% or less, 1% or less, particularly 0.5% or less.
  • substantially no As 2 O 3 , F, or PbO is contained in consideration of the environment.
  • substantially does not contain As 2 O 3 means that the glass component is not positively added with As 2 O 3 , but is allowed to be mixed at an impurity level. This means that the content of As 2 O 3 is less than 500 ppm.
  • substantially free of F means that F is not actively added as a glass component but is allowed to be mixed at an impurity level. Specifically, the content of F is less than 500 ppm. It points to something.
  • Substantially no PbO means that although PbO is not actively added as a glass component, it is allowed to be mixed at an impurity level. Specifically, the PbO content is less than 500 ppm. It points to something.
  • FIG. 1 is a schematic cross-sectional view of a tempered glass substrate according to the first embodiment.
  • the tempered glass substrate 10 shown in FIG. 1 is used for, for example, a mobile phone, a digital camera, a PDA (mobile terminal), a touch panel display, and the like.
  • the tempered glass substrate 10 has a compressive stress layer on the surface, since the potassium content of the concave surface 11 is less than the potassium content of the convex surface 12, the compressive stress value of the compressive stress layer of the concave surface 11 Is smaller than the compressive stress value of the convex surface 12. Therefore, the tempered glass substrate 10 has a concave surface 11 on the main surface 10a and a convex surface 12 on the main surface 10b opposite to the concave surface 11, and includes a curved surface portion 10A with few surface defects. As shown in FIG. 1, the tempered glass substrate 10 includes two curved surface portions 10A, a flat surface portion 10B located at the center portion, and a flat surface portion 10C located closer to the end surface than the curved surface portion 10A. A covering 20 is formed on the concave surface 11 of the tempered glass substrate 10.
  • substrate 10 forms the coating 20 in a part of main surface 30a of the unreinforced glass substrate 30 on a flat plate, and the coating formation process which obtains the coating formation surface 31, and coating formation
  • the covering 20 is formed on the surface of the unstrengthened glass substrate 30 in a plurality of stripes extending from one side to the opposite side of the unstrengthened glass substrate 30.
  • An object forming surface 31 is obtained.
  • the tempered glass substrate 10 includes a curved surface portion 10 ⁇ / b> A in which the covering forming surface 31 becomes the concave surface 11 and the surface facing the covering forming surface 31 becomes the convex surface 12.
  • the potassium content of the concave surface 11 is less than the potassium content of the convex surface 12.
  • the compressive stress value of the compressive stress layer on the concave surface 11 is smaller than the compressive stress value of the compressive stress layer on the convex surface 12.
  • FIG. 3 is a schematic cross-sectional view of a tempered glass substrate according to the second embodiment.
  • the tempered glass substrate according to the present embodiment is different from the tempered glass substrate 1 according to the first embodiment in the arrangement of the covering 20.
  • the striped coating 20 is formed on the entire tempered glass substrate 10, and the entire tempered glass substrate 1 is a curved surface portion.
  • FIG. 4 is a schematic cross-sectional view of a tempered glass substrate according to the third embodiment.
  • the tempered glass substrate 10 according to the present embodiment is the same as the tempered glass substrate 10 according to the first embodiment except that the covering 20 is not provided.
  • the tempered glass substrate manufactured by the manufacturing method of the present invention is suitable as a substrate for a mobile phone, a digital camera, a cover glass such as a PDA, or a touch panel display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Position Input By Displaying (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の強化ガラス基板の製造方法は、凹表面と前記凹表面に対向する凸表面を備えた曲面部を有する強化ガラス基板の製造方法であって、平板状の未強化ガラス基板の一部の表面に被覆物を形成し、被覆物形成面を得る被覆物形成工程と、前記被覆物形成面を有する前記未強化ガラス基板をイオン交換処理して、前記被覆物形成面を変形させ、曲面部を有する強化ガラス基板を得るイオン交換変形工程と、を備えることを特徴とする。

Description

強化ガラス基板の製造方法及び強化ガラス基板
 本発明は、強化ガラス基板の製造方法及び強化ガラス基板に関し、具体的には携帯電話、デジタルカメラ、PDA(携帯端末)、タッチパネルディスプレイ等に好適な強化ガラス基板の製造方法及び強化ガラス基板に関する。
 携帯電話、デジタルカメラ、PDA、タッチパネルディスプレイ等のデバイスは、益々普及する傾向がある。これらの用途に用いられるガラス基板は、高い機械的強度が要求されると共に、薄型で軽量であることも要求される。このような事情から、一部のデバイスには、イオン交換処理等で化学強化処理したガラス基板、つまり強化ガラス基板を用いることが記載されている(特許文献1参照)。
 特許文献2には、フラットパネルディスプレイ用カバーガラスが記載されている。特許文献2に記載のカバーガラスは、画像表示部の前面に位置し平面状に延びる表示部と、前記表示部の幅方向両側において前記表示部から屈曲する屈曲部と、前記屈曲部から後方に延びるスカート部と、を有している。また、板状ガラスから形成されるフラットパネルディスプレイ用カバーガラスの製造方法は、化学強化工程とその化学強化工程に投入される板状ガラスを作製する板状ガラス加工工程とを有し、当該板状ガラス加工工程が、加熱工程、局所加熱工程及び曲げ工程から構成される。加熱工程、局所加熱工程及び曲げ工程では、板状ガラスを金型上に設置し、所定の温度となる様に加熱し、折り曲げられる。
特開2006-83045号公報 特開2012-101975号公報
 しかしながら、特許文献2に記載の製造方法によりカバーガラスを製造した場合、カバーガラスの表面に傷や成形型の表面の転写痕などの欠陥が生じる場合があった。また、量産性を上げるためには、多くの金型が必要となり、生産コストが高くなる問題があった。さらに、板状ガラス加工工程の後に、化学強化工程を行わなければならず、このことも、生産コストを上げる要因となる。
 本発明の主な目的は、表面欠陥の少ない、曲面部を有する強化ガラス基板を低コストで製造する方法を提供することにある。
 本発明の強化ガラス基板の製造方法は、凹表面と前記凹表面に対向する凸表面を備えた曲面部を有する強化ガラス基板の製造方法であって、平板状の未強化ガラス基板の一部の表面に被覆物を形成し、被覆物形成面を得る被覆物形成工程と、前記被覆物形成面を有する前記未強化ガラス基板をイオン交換処理して、前記被覆物形成面を変形させ、曲面部を有する強化ガラス基板を得るイオン交換変形工程と、を備えることを特徴とする。
 前記イオン交換変形工程において、前記被覆物形成面が前記凹表面となることが好ましい。
 前記被覆物形成工程において、前記被覆物をストライプ状に形成することが好ましい。
 さらに、前記イオン交換変形工程後に、前記被覆物を除去する被覆物除去工程を有することが好ましい。
 前記被覆物が、無機膜であることが好ましい。
 前記無機膜が、(1)Si、Ti、Zr、Al、Nb、W、Mo及びTaから選ばれる少なくとも一種の金属の酸化物、又は(2)Si、Ti、Zr、Al、Nb、W、Mo、Ta及びSnから選ばれる少なくとも一種の金属の窒化物、を含有することが好ましい。
 前記無機膜が、(3)Si、Ti、Al、Nb、W、Mo、Sn、Cr、Pt及びAuから選ばれる少なくとも一種の金属、又は(4)ステンレス、ハステロイ、インコネル及びニクロムから選ばれる少なくとも一種の合金、又は(5)Snの酸化物、を含有することが好ましい。
 本発明の強化ガラス基板は、前記製造方法により製造されてなることが好ましい。
 前記凹表面のカリウム含有量が、前記凸表面のカリウム含有量よりも少ないことが好ましい。
 前記強化ガラス基板の曲面部の曲率半径が、1cm~2000cmであることが好ましい。
 ガラス組成として、質量%で、SiO2 50~80%、Al23 5~30%、B23 0~15%、Na2O 1~20%、K2O 0~10%を含有することが好ましい。
 本発明の強化ガラス基板は、凹表面と前記凹表面に対向する凸表面を備えた曲面部を有する強化ガラス基板であって、前記凹表面のカリウム含有量が、前記凸表面のカリウム含有量よりも少ないことを特徴とする。
 本発明によれば、表面欠陥の少ない、曲面部を有する強化ガラス基板を低コストで提供することが可能となる。
第1の実施形態に係る強化ガラス基板の概略断面図である。 第1の実施形態における強化ガラス基板の製造工程を説明するための模式的断面図である。 第1の実施形態における強化ガラス基板の製造工程を説明するための模式的平面図である。 第2の実施形態に係る強化ガラス基板の概略断面図である。 第3の実施形態に係る強化ガラス基板の概略断面図である。
 本発明の強化ガラス基板の製造方法は、凹表面と前記凹表面に対向する凸表面を備えた曲面部を有する強化ガラス基板の製造方法であって、平板状の未強化ガラス基板の一部の表面に被覆物を形成し、被覆物形成面を得る被覆物形成工程と、前記被覆物形成面を有する前記未強化ガラス基板をイオン交換処理して、前記被覆物形成面を変形させ、曲面部を有する強化ガラス基板を得るイオン交換変形工程と、を備えることを特徴とする。このような工程を備えることにより、ガラス表面が金型と接触することがなく、得られた強化ガラス基板は表面欠陥が少ない。また、金型が不要で、曲げ加工及びイオン交換処理を同時に行えるため、曲面部を有する強化ガラス基板を低コストで製造することが可能となる。さらに、前記イオン交換変形工程において、前記被覆物形成面が前記凹表面となることが好ましい。
 前記被覆物形成工程において、前記被覆物をストライプ状に形成することが好ましい。未強化ガラス基板の曲面部を形成したい箇所に被覆物をストライプ状に形成すると、得られた強化ガラス基板は、断面円弧状または断面楕円弧状を有する柱面を備えることが可能となる。被覆物が平行なストライプ配列を有することがより好ましい。前記被覆物の線幅は、1mm~100mmであることが好ましく、3mm~80mmであることがより好ましく、5mm~50mmであることが特に好ましい。また、前記隣接する被覆物間の間隔は0.3mm~500mmであることが好ましく、0.5mm~300mmであることがより好ましく、1mm~100mmであることが特に好ましい。
 被覆物をストライプ状に形成する方法として、種々の方法を採用することができる。例えば、ストライプ状の被覆物を未強化ガラス基板に貼り付ける方法、被覆物を印刷する方法等を採用することができる。
 さらに、前記イオン交換変形工程後に、前記被覆物を除去する被覆物除去工程を有することが好ましい。得られた強化ガラス基板を携帯端末やタッチパネルディスプレイ等のカバーガラスとして使用した場合、高い視認性が得られやすい。
 前記被覆物は、無機膜、有機膜、ガラスフィルム、高分子フィルム等が挙げられるが、その中でも無機膜であることが好ましい。無機膜は、耐熱性が高く、厚みが小さいため、イオン交換処理の際にガラス基板へのアルカリイオンの拡散を抑制することができ、曲面部を有する強化ガラス基板が得られやすくなる。また、無機膜は、単層膜に限られず、多層膜であってもよい。この場合、導電膜、反射防止膜等の機能を兼ね備えた無機膜であることが好ましい。
 さらに、前記無機膜が、(1)Si、Ti、Zr、Al、Nb、W、Mo及びTaから選ばれる少なくとも一種の金属の酸化物、又は(2)Si、Ti、Zr、Al、Nb、W、Mo、Ta及びSnから選ばれる少なくとも一種の金属の窒化物、を含有することが好ましい。これらの無機膜は透明であるため、得られた強化ガラス基板を携帯端末やタッチパネルディスプレイ等のカバーガラスとして使用した場合、高い視認性を有する表示画面が得られやすい。
 また、前記無機膜が、(3)Si、Ti、Al、Nb、W、Mo、Sn、Cr、Pt及びAuから選ばれる少なくとも一種の金属、又は、(4)ステンレス、ハステロイ、インコネル及びニクロムから選ばれる少なくとも一種の合金、又は(5)Snの酸化物、を含有することが好ましい。これらの無機膜は塩酸やヨウ素系のエッチング溶液に溶解しやすく、被覆物除去工程において除去されやすいため好ましい。
 さらに、無機膜の膜厚は、5~1000nmであることが好ましく、10~800nmであることがより好ましく、20~600nmであることがさらに好ましく、30~400nmであることが特に好ましい。膜厚が小さ過ぎると、強化ガラス基板の無機膜を形成した面の圧縮応力層の圧縮応力値と対向する面の圧縮応力層の圧縮応力値の差が小さくなりすぎて、強化ガラス基板が曲面部を形成しにくくなる。一方、膜厚が大き過ぎると、成膜に長時間を要すると共に、強化ガラス基板の機械的強度を担保し難くなる。
 前記無機膜の形成方法として、種々の方法を採用することができる。例えば、スパッタ法、CVD、ディップコート等を採用することができる。その中でも、膜厚制御の観点から、スパッタ法が好ましい。
 本発明の強化ガラス基板は、前記製造方法により製造されてなることが好ましい。前記強化ガラス基板をカバーガラスとして使用した携帯端末やタッチパネルディスプレイ等の美観性が向上しやすい。このとき、前記強化ガラス基板の曲面部の曲率半径が、1cm~2000cmであることが好ましい。
 前記凹表面のカリウム含有量が、前記凸表面のカリウム含有量よりも少ないことが好ましい。前記凹表面のカリウム含有量が、前記凸表面のカリウム含有量よりも少ないことにより、凹表面の圧縮応力層の圧縮応力値は、凸表面の圧縮応力層の圧縮応力値よりも小さくなるため、イオン交換処理と同時に、表面欠陥の少ない、曲面部を有する強化ガラス基板を得ることが可能となる。凹表面の圧縮応力層の圧縮応力値と凸表面の圧縮応力層の圧縮応力値の差の絶対値は、10MPa以上であることが好ましく、20MPa以上であることがより好ましく、50MPa以上であることがさらに好ましく、100MPa以上であることが特に好ましい。
 強化ガラス基板における凸表面の応力深さは、5~50μmであることが好ましく、10~45μmであることがより好ましく、15~35μmであることがさらに好ましく、20~30μmであることが特に好ましい。好ましくは下限が3μm以上、5μm以上、10μm以上、15μm以上、特に20μm以上であり、上限が70μm以下、60μm以下、特に50μm以下である。応力深さが小さすぎると、製造工程等での取り扱い時に深い傷によって強度が低下しやすくなる。
 強化ガラス基板における凸表面の圧縮応力層の圧縮応力値は、好ましくは下限が100MPa以上、300MPa以上、400MPa以上、500MPa以上、600MPa以上、700MPa以上、特に800MPa以上であり、上限が1500MPa以下、1300MPa以下、特に1200MPa以下である。圧縮応力値が大きい程、強化ガラス基板の機械的強度が高くなる。
 強化ガラス基板の厚みは、好ましくは1.5mm以下、1.3mm以下、1.1mm以下、1.0mm以下、0.8mm以下、0.7mm以下、0.5mm以下、0.4mm以下、特に0.3mm以下である。強化ガラス基板の厚みが小さい程、強化ガラス基板を軽量化することでき、結果として、デバイスの薄型化、軽量化を図ることができる。強化ガラス基板の厚みが大きすぎると、曲面部を形成しにくくなる。
 また、強化ガラス基板は、ガラス組成として、質量%で、SiO2 50~80%、Al23 5~30%、B23 0~15%、Na2O 1~20%、K2O 0~10%を含有することが好ましい。上記のように各成分の含有範囲を限定した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示は質量%を指す。
 SiO2は、ガラスのネットワークを形成する成分である。SiO2の含有量は、好ましくは50~80%、52~75%、55~72%、55~70%、特に55~67.5%である。SiO2の含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。一方、SiO2の含有量が多過ぎると、溶融性や成形性が低下し易くなる。
 Al23は、イオン交換性能を高める成分であり、また歪点やヤング率を高める成分である。Al23の含有量は5~30%が好ましい。Al23の含有量が少な過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなることに加えて、イオン交換性能を十分に発揮できない虞が生じる。よって、Al23の好適な下限範囲は7%以上、8%以上、10%以上、12%以上、14%以上、15%以上、16%以上、特に18%以上である。一方、Al23の含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラス板を成形し難くなる。また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなり、更には高温粘性が高くなり、溶融性が低下し易くなる。よって、Al23の好適な上限範囲は28%以下、25%以下、22%以下、特に20%以下である。
 B23は、高温粘度や密度を低下させると共に、ガラスを安定化させて結晶を析出させ難くし、液相温度を低下させる成分である。またクラックレジスタンスを高める成分である。しかし、B23の含有量が多過ぎると、イオン交換処理によって、ヤケと呼ばれる表面の着色が発生したり、耐水性が低下したり、圧縮応力層の圧縮応力値が低下したり、圧縮応力層の応力深さが小さくなる傾向がある。よって、B23の含有量は、好ましくは0~15%、0.1~12%、1~10%、1超~8%、1.5~6%、特に2~5%である。
 Na2Oは、主要なイオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、Na2Oは、耐失透性を改善する成分でもある。Na2Oの含有量は1~20%である。Na2Oの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下したり、イオン交換性能が低下し易くなる。よって、Na2Oを導入する場合、Na2Oの好適な下限範囲は10%以上、11%以上、特に12%以上である。一方、Na2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下しすぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する場合がある。よって、Na2Oの好適な上限範囲は17%以下、特に16%以下である。
 K2Oは、イオン交換を促進する成分であり、アルカリ金属酸化物の中では圧縮応力層の応力深さを増大させる効果が大きい成分である。また高温粘度を低下させて、溶融性や成形性を高める成分である。更には、耐失透性を改善する成分でもある。K2Oの含有量は0~10%である。K2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下しすぎたり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する傾向がある。よって、K2Oの好適な上限範囲は8%以下、6%以下、4%以下、特に2%未満である。
 上記成分以外にも、例えば以下の成分を導入してもよい。
 Li2Oは、イオン交換成分であると共に、高温粘度を低下させて、溶融性や成形性を高める成分である。またヤング率を高める成分である。更にアルカリ金属酸化物の中では圧縮応力値を増大させる効果が大きい。しかし、Li2Oの含有量が多過ぎると、液相粘度が低下して、ガラスが失透し易くなる。また、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。更に、低温粘性が低下し過ぎて、応力緩和が起こり易くなると、かえって圧縮応力値が小さくなる場合がある。従って、Li2Oの含有量は、好ましくは0~3.5%、0~2%、0~1%、0~0.5%、特に0.01~0.2%である。
 Li2O+Na2O+K2Oの好適な含有量は5~25%、10~22%、13~22%、15~22%、特に15~20%である。Li2O+Na2O+K2Oの含有量が少な過ぎると、イオン交換性能や溶融性が低下し易くなる。一方、Li2O+Na2O+K2Oの含有量が多過ぎると、ガラスが失透し易くなることに加えて、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎて、高い圧縮応力値が得られ難くなる場合がある。更に液相温度付近の粘性が低下して、高い液相粘度を確保し難くなる場合もある。なお、「Li2O+Na2O+K2O」は、Li2O、Na2O及びK2Oの合量である。
 MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。しかし、MgOの含有量が多過ぎると、密度や熱膨張係数が高くなり易く、またガラスが失透し易くなる。よって、MgOの好適な上限範囲は12%以下、10%以下、8%以下、5%以下、特に4%以下である。なお、ガラス組成中にMgOを導入する場合、MgOの好適な下限範囲は0.1%以上、0.5%以上、1%以上、特に2%以上である。
 CaOは、他の成分と比較して、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める効果が大きい。CaOの含有量は0~10%が好ましい。しかし、CaOの含有量が多過ぎると、密度や熱膨張係数が高くなり、またガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなったり、イオン交換性能が低下し易くなる。よって、CaOの好適な含有量は0~5%、0~4%、0~3%、0~2%、0~0.5%、特に0~0.1%である。
 SrOは、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、SrOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、イオン交換性能が低下したり、ガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなる。SrOの好適な含有範囲は0~5%、0~3%、0~1%、特に0~0.1%未満である。
 BaOは、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、BaOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、イオン交換性能が低下したり、ガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなる。BaOの好適な含有範囲は0~5%、0~3%、0~1%、特に0~0.1%未満である。
 ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を増大させる効果が大きい成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、圧縮応力層の応力深さが小さくなる傾向がある。よって、ZnOの含有量は0~6%、0~5%、0~1%、0~0.5%、特に0~0.1%未満が好ましい。
 ZrO2は、イオン交換性能を顕著に高める成分であると共に、液相粘度付近の粘性や歪点を高める成分であるが、その含有量が多過ぎると、耐失透性が著しく低下する虞があり、また密度が高くなり過ぎる虞がある。よって、ZrO2の好適な上限範囲は10%以下、8%以下、6%以下、特に5%以下である。なお、イオン交換性能を高めたい場合、ガラス組成中にZrO2を導入することが好ましく、その場合、ZrO2の好適な下限範囲は0.001%以上、0.01%以上、0.5%、特に1%以上である。
 P25は、イオン交換性能を高める成分であり、特に圧縮応力層の応力深さを大きくする成分である。しかし、P25の含有量が多過ぎると、ガラスが分相し易くなる。よって、P25の好適な上限範囲は10%以下、8%以下、6%以下、4%以下、2%以下、1%以下、特に0.1%未満である。
 清澄剤として、As23、Sb23、SnO2、F、Cl、SO3の群(好ましくはSnO2、Cl、SO3の群)から選択された一種又は二種以上を0~30000ppm(3%)導入してもよい。SnO2+SO3+Clの含有量は、清澄効果を的確に享受する観点から、好ましくは0~10000ppm、50~5000ppm、80~4000ppm、100~3000ppm、特に300~3000ppmである。ここで、「SnO2+SO3+Cl」は、SnO2、SO3及びClの合量を指す。
 SnO2の好適な含有範囲は0~10000ppm、0~7000ppm、50~6000ppm、50~5000ppm、100~4000ppmである特に500~3500ppmである。Clの好適な含有範囲は0~1500ppm、0~1200ppm、0~800ppm、0~500ppm、特に50~300ppmである。SO3の好適な含有範囲は0~1000ppm、0~800ppm、特に10~500ppmである。
 Nd23、La23等の希土類酸化物は、ヤング率を高める成分であり、また補色となる色を加えると、消色して、ガラスの色味をコントロールし得る成分である。しかし、原料自体のコストが高く、また多量に導入すると、耐失透性が低下し易くなる。よって、希土類酸化物の含有量は、好ましくは4%以下、3%以下、2%以下、1%以下、特に0.5%以下である。
 本発明では、環境面の配慮から、実質的にAs23、F、PbOを含有しないことが好ましい。ここで、「実質的にAs23を含有しない」とは、ガラス成分として積極的にAs23を添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、As23の含有量が500ppm未満であることを指す。「実質的にFを含有しない」とは、ガラス成分として積極的にFを添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、Fの含有量が500ppm未満であることを指す。「実質的にPbOを含有しない」とは、ガラス成分として積極的にPbOを添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、PbOの含有量が500ppm未満であることを指す。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1は、第1の実施形態に係る強化ガラス基板の概略断面図である。図1に示される強化ガラス基板10は、例えば、携帯電話、デジタルカメラ、PDA(携帯端末)、タッチパネルディスプレイ等に用いられる。
 強化ガラス基板10は、表面に圧縮応力層を有しているが、凹表面11のカリウム含有量が、凸表面12のカリウム含有量よりも少ないため、凹表面11の圧縮応力層の圧縮応力値が、凸表面12の圧縮応力値よりも小さい。そのため、強化ガラス基板10は、主面10a上の凹表面11と、凹表面11と対向する主面10b上の凸表面12を有し、表面欠陥の少ない曲面部10Aを備えている。強化ガラス基板10は、図1に示すように2ヶ所の曲面部10Aと、中央部に位置する平面部10Bと、曲面部10Aよりも端面側に位置する平面部10Cとからなる。強化ガラス基板10の凹表面11上に、被覆物20が形成されている。
 次に、強化ガラス基板10の製造方法の一例について説明する。上記の強化ガラス基板10の製造方法は、平板上の未強化ガラス基板30の主面30aの一部に被覆物20を形成し、被覆物形成面31を得る被覆物形成工程と、被覆物形成面31を有する未強化ガラス基板30をイオン交換処理して、被覆物形成面31を変形させ、曲面部を有する強化ガラス基板10を得るイオン交換変形工程と、を備える。
 まず、被覆物形成工程として、図2に示すように、未強化ガラス基板30の表面に、被覆物20を未強化ガラス基板30の一辺から対向する辺にわたる複数本のストライプ状に形成し、被覆物形成面31を得る。
 次に、イオン交換変形工程として、被覆物形成面31を有する未強化ガラス基板30をイオン交換処理して、ガラス基板の表面に圧縮応力層を形成する。このイオン交換処理により、未強化ガラス基板30における被覆物形成面31は変形し、曲面部を有する強化ガラス基板10が得られる。イオン交換処理は、ガラス基板の歪点以下の温度で、ガラス表面に大きなイオン半径のアルカリイオンを導入する方法である。イオン交換処理の条件は、特に限定されず、ガラス基板の粘度特性等を考慮して決定すればよい。特に、ガラス組成中のナトリウムイオンをKNO3溶融塩中のカリウムイオンでイオン交換すると、圧縮応力層を効率良く形成することができる。なお、イオン交換処理は、風冷強化法等の物理強化法と異なり、イオン交換処理後に強化ガラス基板を切断しても、強化ガラス基板が容易に破損しないという利点がある。
 特に、イオン交換処理の条件として、350~500℃のKNO3溶融塩中にガラス基板を2~24時間浸漬することが好ましい。このようにすれば、ガラス基板に圧縮応力層を効率良く形成することができる。
 このとき、被覆物形成面31では、被覆物20が、ガラス中のナトリウムイオン及びカリウムイオンの移動を妨げるため、他の表面に比べて、表面のカリウム含有量が少なくなる。したがって、被覆物形成面31では、他の表面に比べて、圧縮応力層の圧縮応力値が小さくなる。その結果、強化ガラス基板10は、被覆物形成面31が凹表面11となり、被覆物形成面31に対向する表面が凸表面12となるような曲面部10Aを備えている。
 つまり、得られた強化ガラス基板10においては、凹表面11のカリウム含有量が、凸表面12のカリウム含有量より少なくなる。また、凹表面11の圧縮応力層の圧縮応力値は、凸表面12の圧縮応力層の圧縮応力値よりも小さくなる。
 なお、図2に示すように、強化ガラス基板10の凹表面11に対応する平板状の未強化ガラス基板30の表面30aに複数の被覆物20を互いに平行であるストライプ状に形成すると、図1に示すように、断面が円弧状に変形した柱面(凹表面11又は凸表面12)を有する強化ガラス基板10を得ることができる。
 (第2の実施形態)
 図3は、第2の実施形態に係る強化ガラス基板の概略断面図である。
 本実施形態に係る強化ガラス基板は、被覆物20の配置において、第1の実施形態に係る強化ガラス基板1と異なる。
 本実施形態では、強化ガラス基板10の全体にストライプ状の被覆物20が形成されており、強化ガラス基板1の全体が曲面部となっている。
 (第3の実施形態)
 図4は、第3の実施形態に係る強化ガラス基板の概略断面図である。
 本実施形態に係る強化ガラス基板10は、被覆物20がないこと以外は、第1の実施形態に係る強化ガラス基板10と同じである。
 本実施形態に係る強化ガラス基板10は、第1の実施形態に係る強化ガラス基板10と同様の製造方法で曲面部を形成した後、被覆物除去工程として、被覆物20を除去したものである。この強化ガラス基板10は、被覆物20を除去した後も曲面部を有している。
 本発明の製造方法により製造された強化ガラス基板は、携帯電話、デジタルカメラ、PDA等のカバーガラス、或いはタッチパネルディスプレイ等の基板として好適である。
1…強化ガラス基板
10…強化ガラス基板
11…凹表面
12…凸表面
20…被覆物
30…未強化ガラス基板
31…被覆物形成面

Claims (12)

  1.  凹表面と前記凹表面に対向する凸表面を備えた曲面部を有する強化ガラス基板の製造方法であって、平板状の未強化ガラス基板の一部の表面に被覆物を形成し、被覆物形成面を得る被覆物形成工程と、前記被覆物形成面を有する前記未強化ガラス基板をイオン交換処理して、前記被覆物形成面を変形させ、曲面部を有する強化ガラス基板を得るイオン交換変形工程と、を備えることを特徴とする強化ガラス基板の製造方法。
  2.  前記イオン交換変形工程において、前記被覆物形成面が前記凹表面となることを特徴とする請求項1に記載の強化ガラス基板の製造方法。
  3.  前記被覆物形成工程において、前記被覆物をストライプ状に形成することを特徴とする請求項1または2に記載の強化ガラス基板の製造方法。
  4.  さらに、前記イオン交換変形工程後に、前記被覆物を除去する被覆物除去工程を有することを特徴とする請求項1~3のいずれかに記載の強化ガラス基板の製造方法。
  5.  前記被覆物が、無機膜であることを特徴とする請求項1~4のいずれかに記載の強化ガラス基板の製造方法。
  6.  前記無機膜が、(1)Si、Ti、Zr、Al、Nb、W、Mo及びTaから選ばれる少なくとも一種の金属の酸化物、又は(2)Si、Ti、Zr、Al、Nb、W、Mo、Ta及びSnから選ばれる少なくとも一種の金属の窒化物、を含有することを特徴とする請求項5に記載の強化ガラス基板の製造方法。
  7.  前記無機膜が、(3)Si、Ti、Al、Nb、W、Mo、Sn、Cr、Pt及びAuから選ばれる少なくとも一種の金属、又は(4)ステンレス、ハステロイ、インコネル及びニクロムから選ばれる少なくとも一種の合金、又は(5)Snの酸化物、を含有することを特徴とする請求項5に記載の強化ガラス基板の製造方法。
  8.  請求項1~7のいずれかに記載の方法により製造されてなることを特徴とする強化ガラス基板。
  9.  前記凹表面のカリウム含有量が、前記凸表面のカリウム含有量よりも少ないことを特徴とする請求項8に記載の強化ガラス基板。
  10.  前記強化ガラス基板の曲面部の曲率半径が、1cm~2000cmであることを特徴とする請求項8または9に記載の強化ガラス基板。
  11.  ガラス組成として、質量%で、SiO2 50~80%、Al23 5~30%、B23 0~15%、Na2O 1~20%、K2O 0~10%を含有することを特徴とする請求項8~10のいずれかに記載の強化ガラス基板。
  12.  凹表面と前記凹表面に対向する凸表面を備えた曲面部を有する強化ガラス基板であって、前記凹表面のカリウム含有量が、前記凸表面のカリウム含有量よりも少ないことを特徴とする強化ガラス基板。
PCT/JP2014/067865 2013-07-05 2014-07-04 強化ガラス基板の製造方法及び強化ガラス基板 WO2015002283A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-141385 2013-07-05
JP2013141385A JP2015013774A (ja) 2013-07-05 2013-07-05 強化ガラス基板の製造方法及び強化ガラス基板

Publications (1)

Publication Number Publication Date
WO2015002283A1 true WO2015002283A1 (ja) 2015-01-08

Family

ID=52143852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067865 WO2015002283A1 (ja) 2013-07-05 2014-07-04 強化ガラス基板の製造方法及び強化ガラス基板

Country Status (2)

Country Link
JP (1) JP2015013774A (ja)
WO (1) WO2015002283A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102380A (zh) * 2016-08-03 2016-11-09 南昌欧菲光学技术有限公司 玻璃外壳及具有该玻璃外壳的电子产品
CN107428586A (zh) * 2015-03-20 2017-12-01 肖特玻璃科技(苏州)有限公司 具有非均化离子交换表面层的薄玻璃制品和用于生产这种薄玻璃制品的方法
WO2017217388A1 (ja) * 2016-06-17 2017-12-21 日本電気硝子株式会社 強化ガラス板および強化ガラス板の製造方法
WO2018056329A1 (ja) * 2016-09-23 2018-03-29 日本電気硝子株式会社 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
CN110627377A (zh) * 2018-06-21 2019-12-31 正达国际光电股份有限公司 曲面强化玻璃及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169143A (ja) * 2015-03-10 2016-09-23 旭硝子株式会社 化学強化ガラス
JP6636037B2 (ja) * 2015-03-20 2020-01-29 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. 成形ガラス物品および該成形ガラス物品の製造方法
EP3279157A4 (en) * 2015-03-31 2018-11-21 AGC Inc. Glass plate
EP3322676B1 (en) * 2015-07-16 2023-05-03 AGC Glass Europe Method for chemically strengthening with controlled curvature
WO2018135548A1 (ja) * 2017-01-19 2018-07-26 Agc株式会社 ガラス板およびその成形方法
JP6935806B2 (ja) 2017-01-19 2021-09-15 Agc株式会社 ガラス板およびその成形方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293928A1 (en) * 2010-05-28 2011-12-01 Wintek Corporation Method for Strengthening Glass and Glass Using the Same
WO2013094479A1 (ja) * 2011-12-19 2013-06-27 旭硝子株式会社 化学強化用ガラス基板およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110293928A1 (en) * 2010-05-28 2011-12-01 Wintek Corporation Method for Strengthening Glass and Glass Using the Same
WO2013094479A1 (ja) * 2011-12-19 2013-06-27 旭硝子株式会社 化学強化用ガラス基板およびその製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107428586A (zh) * 2015-03-20 2017-12-01 肖特玻璃科技(苏州)有限公司 具有非均化离子交换表面层的薄玻璃制品和用于生产这种薄玻璃制品的方法
WO2017217388A1 (ja) * 2016-06-17 2017-12-21 日本電気硝子株式会社 強化ガラス板および強化ガラス板の製造方法
CN109071332A (zh) * 2016-06-17 2018-12-21 日本电气硝子株式会社 强化玻璃板以及强化玻璃板的制造方法
KR20190018625A (ko) * 2016-06-17 2019-02-25 니폰 덴키 가라스 가부시키가이샤 강화 유리판 및 강화 유리판의 제조 방법
JPWO2017217388A1 (ja) * 2016-06-17 2019-04-11 日本電気硝子株式会社 強化ガラス板および強化ガラス板の製造方法
TWI691469B (zh) * 2016-06-17 2020-04-21 日商日本電氣硝子股份有限公司 強化玻璃板及強化玻璃板的製造方法
KR102267238B1 (ko) * 2016-06-17 2021-06-21 니폰 덴키 가라스 가부시키가이샤 강화 유리판 및 강화 유리판의 제조 방법
US11104606B2 (en) 2016-06-17 2021-08-31 Nippon Electric Glass Co., Ltd. Tempered glass plate and production method for tempered glass plate
CN109071332B (zh) * 2016-06-17 2022-01-14 日本电气硝子株式会社 强化玻璃板以及强化玻璃板的制造方法
CN106102380A (zh) * 2016-08-03 2016-11-09 南昌欧菲光学技术有限公司 玻璃外壳及具有该玻璃外壳的电子产品
WO2018056329A1 (ja) * 2016-09-23 2018-03-29 日本電気硝子株式会社 強化ガラス板の製造方法、強化用ガラス板、および強化ガラス板
CN110627377A (zh) * 2018-06-21 2019-12-31 正达国际光电股份有限公司 曲面强化玻璃及其制备方法

Also Published As

Publication number Publication date
JP2015013774A (ja) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2015002283A1 (ja) 強化ガラス基板の製造方法及び強化ガラス基板
JP5920554B1 (ja) 強化ガラス基板の製造方法
JP5448064B2 (ja) 強化板ガラス及びその製造方法
TWI529150B (zh) 用於化學強化之玻璃(二)
JP6394110B2 (ja) 強化ガラスの製造方法
JP5924489B2 (ja) 強化ガラスの製造方法
JP6300177B2 (ja) 強化ガラスの製造方法
WO2013027675A1 (ja) 強化ガラス及びその製造方法
JP6136008B2 (ja) 強化ガラス及び強化ガラス板
JP6607378B2 (ja) 強化ガラス板の製造方法
WO2014185383A1 (ja) 強化ガラスの製造方法及び強化ガラス
JP2012072054A (ja) カバーガラスおよびその製造方法
JP2010116276A (ja) 強化ガラス基板及びその製造方法
KR20130135943A (ko) 강화 유리 기판 및 그 제조방법
US11479503B2 (en) Chemically strengthened glass and method for manufacturing chemically strengthened glass
WO2015012301A1 (ja) 強化ガラス及び強化用ガラス
JP2017014066A (ja) 強化用ガラス及び強化ガラス
WO2014025009A1 (ja) ガラス管及び強化ガラス管
WO2014185486A1 (ja) 強化用ガラス板、強化ガラス板及び強化ガラス板の製造方法
JP5704767B2 (ja) 強化ガラス及びその製造方法
JP2013245157A (ja) 強化ガラス板の製造方法、強化用ガラス板の製造方法及びタッチパネルの製造方法
JP2019156678A (ja) ガラス板
JP2016108190A (ja) 強化ガラス及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820511

Country of ref document: EP

Kind code of ref document: A1