WO2015002072A1 - 光拡散部材及び表示装置 - Google Patents

光拡散部材及び表示装置 Download PDF

Info

Publication number
WO2015002072A1
WO2015002072A1 PCT/JP2014/067068 JP2014067068W WO2015002072A1 WO 2015002072 A1 WO2015002072 A1 WO 2015002072A1 JP 2014067068 W JP2014067068 W JP 2014067068W WO 2015002072 A1 WO2015002072 A1 WO 2015002072A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
base material
wavelength control
liquid crystal
film
Prior art date
Application number
PCT/JP2014/067068
Other languages
English (en)
French (fr)
Inventor
恵美 山本
前田 強
康 浅岡
昇平 勝田
英臣 由井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/902,380 priority Critical patent/US20160370512A1/en
Publication of WO2015002072A1 publication Critical patent/WO2015002072A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side

Definitions

  • the present invention relates to a light diffusing member and a display device.
  • This application claims priority on July 4, 2013 based on Japanese Patent Application No. 2013-141142 for which it applied to Japan, and uses the content here.
  • Liquid crystal display devices are widely used as displays for portable electronic devices such as cellular phones, televisions, personal computers, and the like.
  • a liquid crystal display device is excellent in visibility from the front, but has a narrow viewing angle. Therefore, various devices have been made to widen the viewing angle.
  • a configuration has been proposed in which a member for controlling the diffusion angle of light emitted from a display body such as a liquid crystal panel (hereinafter referred to as a light diffusion member) is provided on the viewing side of the display body.
  • Patent Document 1 discloses a light diffusion sheet in which a groove having a V-shaped cross section is provided in the light diffusion layer, and a light absorption layer is provided in a part of the groove.
  • a transparent sheet made of polyethylene terephthalate (PET) or the like is disposed on the light incident side and light emission side of the light diffusion layer. A part of the light incident perpendicular to the light diffusion layer is totally reflected on the wall surface of the groove and then emitted. Thereby, the light emitted from the light diffusion sheet is diffused.
  • PET polyethylene terephthalate
  • a transparent sheet such as PET used for the light diffusing sheet as described above has an in-plane retardation of 1000 nm to 4000 nm due to a stretching process during production. Therefore, when this type of light diffusing sheet is disposed on the light exit side of the liquid crystal display device, the light incident on the light diffusing sheet causes a phase difference due to the birefringent transparent sheet, and is split into P-polarized light and S-polarized light. To do. As a result, P-polarized light and S-polarized light have different reflectivities at the interface between the transparent sheet and the air, so the ratio of the colored light in the light emitted from the light diffusion sheet changes depending on the viewing angle, and it looks like a rainbow. Unevenness is visible. Hereinafter, this unevenness is referred to as “rainbow unevenness”. This rainbow unevenness has a problem that visibility is lowered.
  • One aspect of the present invention is made in view of the above-described problems of the prior art, and includes a light diffusing member that suppresses the occurrence of rainbow unevenness and has excellent viewing angle characteristics, and such a light diffusing member.
  • An object is to provide a display device provided.
  • a light diffusing member includes a base material having optical transparency and birefringence, a wavelength control layer formed on one surface of the base material, A light diffusing portion formed in a region other than the region where the wavelength control layer is formed in the one surface of the substrate, and a light scattering portion, and the light diffusing portion is a light emitting end surface in contact with the substrate.
  • a light incident end surface facing the light emitting end surface and having an area larger than the area of the light emitting end surface, and a height from the light incident end surface to the light emitting end surface is a layer thickness of the wavelength control layer Bigger than.
  • the “light diffusing portion formed in a region other than the wavelength control layer formation region on one surface of the substrate” generally includes a light diffusion portion formed in a region other than the wavelength control layer formation region. It is a waste.
  • the “light diffusion portion formed in a region other than the region where the wavelength control layer is formed” means that a light diffusion portion formed so as to partially overlap the wavelength control layer is included.
  • the in-plane retardation of the base material may be 1000 nm to 4000 nm.
  • the light scattering portion may be provided on the other surface side opposite to the one surface of the base material.
  • the light scattering portion may also serve as an antiglare treatment layer.
  • the display device is provided on the viewing side of the display body and the display body, and emits light in a state where the angular distribution of light incident from the display body is wider than before incidence.
  • a viewing angle enlarging member wherein the viewing angle enlarging member includes a base material having optical transparency and birefringence, a wavelength control layer formed on one surface of the base material, and the one of the base materials.
  • a light diffusing portion formed in a region other than the region where the wavelength control layer is formed, and a light scattering portion, wherein the light diffusing portion is in contact with the base material, and the light emitting end surface.
  • a light incident end surface having an area larger than the area of the light emitting end surface, and a height from the light incident end surface to the light emitting end surface is larger than a layer thickness of the wavelength control layer
  • the light scattering portion is lighter than the display body. It is located either elevation side.
  • a light diffusing member that suppresses the generation of rainbow unevenness and has excellent viewing angle characteristics, and a display device including such a light diffusing member.
  • FIG. 1A is a perspective view illustrating a liquid crystal display device according to a first embodiment
  • FIG. 1B is a cross-sectional view illustrating the liquid crystal display device according to the first embodiment.
  • It is sectional drawing which shows the liquid crystal panel in a liquid crystal display device equally.
  • It is a schematic diagram for demonstrating the effect
  • It is sectional drawing which shows the light-diffusion film in a liquid crystal display device equally.
  • (A), (B) It is explanatory drawing explaining the relationship between the emitted light from a backlight, and the side surface of a light-diffusion part.
  • (A) to (C) are graphs showing simulation results of the intensity of light emitted from a birefringent substrate.
  • FIGS. 1A and 1B are schematic views showing a liquid crystal display device of this embodiment.
  • FIG. 1A is a perspective view of the liquid crystal display device 1 of the present embodiment as viewed obliquely from below (back side).
  • FIG. 1B is a cross-sectional view of the liquid crystal display device 1 of the present embodiment.
  • the liquid crystal display device 1 (display device) of the present embodiment includes a backlight 2 (light source), a first polarizing plate 3, and a liquid crystal panel 4 (light modulation element).
  • the liquid crystal display body 6 (display body) which has the 2nd polarizing plate 5 and the light-diffusion film 7 (light-diffusion member) are comprised.
  • the liquid crystal panel 4 is schematically illustrated as a single plate, and the detailed structure thereof will be described later.
  • An observer views the display from the upper side of the liquid crystal display device 1 in FIG. 1B where the light diffusion film 7 is disposed. Therefore, in the following description, the side on which the light diffusion film 7 is disposed is referred to as a viewing side, and the side on which the backlight 2 is disposed is referred to as a back side.
  • the light emitted from the backlight 2 is modulated by the liquid crystal panel 4, and a predetermined image, character, or the like is displayed by the modulated light.
  • the angle distribution of the emitted light becomes wider than before entering the light diffusing film 7, and the light is emitted from the light diffusing film 7. .
  • the observer can visually recognize the display with a wide viewing angle. That is, the light diffusion film 7 functions as a viewing angle widening member.
  • liquid crystal panel 4 an active matrix transmissive liquid crystal panel will be described as an example.
  • a liquid crystal panel applicable to the present invention is not limited to an active matrix transmissive liquid crystal panel.
  • the liquid crystal panel applicable to the present invention may be, for example, a transflective (transmissive / reflective) liquid crystal panel or a reflective liquid crystal panel.
  • each pixel is a switching thin film transistor (Thin Film Transistor, hereinafter). It may be a simple matrix type liquid crystal panel not provided with (abbreviated as TFT).
  • FIG. 2 is a longitudinal sectional view of the liquid crystal panel 4.
  • the liquid crystal panel 4 includes a TFT substrate 9 as a switching element substrate, a color filter substrate 10 disposed so as to face the TFT substrate 9, and the TFT substrate 9 and the color filter substrate 10. And a sandwiched liquid crystal layer 11.
  • the liquid crystal layer 11 is surrounded by a TFT substrate 9, a color filter substrate 10, and a frame-shaped seal member (not shown) that bonds the TFT substrate 9 and the color filter substrate 10 at a predetermined interval. It is enclosed in the space.
  • the liquid crystal panel 4 performs display in, for example, a VA (Vertical Alignment) mode, and a vertical alignment liquid crystal having a negative dielectric anisotropy is used for the liquid crystal layer 11. Between the TFT substrate 9 and the color filter substrate 10, columnar spacers 12 are arranged to keep the distance between these substrates constant.
  • the display mode is not limited to the VA mode described above, and a TN (Twisted Nematic) mode, an STN (Super Twisted Nematic) mode, an IPS (In-Plane Switching) mode, or the like can be used.
  • the TFT substrate 9 has a plurality of pixels (not shown) as a minimum unit area for display arranged in a matrix.
  • a plurality of source bus lines (not shown) are formed on the TFT substrate 9 so as to extend in parallel with each other, and a plurality of gate bus lines (not shown) extend in parallel with each other, And it is formed so as to be orthogonal to a plurality of source bus lines.
  • a plurality of source bus lines and a plurality of gate bus lines are formed in a lattice shape, and a rectangular region partitioned by adjacent source bus lines and adjacent gate bus lines is one pixel. It becomes.
  • the source bus line is connected to the source electrode of the TFT described later, and the gate bus line is connected to the gate electrode of the TFT.
  • a TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18 and the like is formed on the surface of the transparent substrate 14 constituting the TFT substrate 9 on the liquid crystal layer 11 side.
  • a transparent substrate 14 for example, a glass substrate can be used.
  • a semiconductor material such as CGS (Continuous Grain Silicon), LPS (Low-temperature Poly-Silicon), ⁇ -Si (Amorphous Silicon) is used.
  • a semiconductor layer 15 made of is formed.
  • a gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
  • a material of the gate insulating film 20 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof can be used.
  • a gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15.
  • a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), or the like is used.
  • a first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16.
  • a material of the first interlayer insulating film 21 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof can be used.
  • a source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21.
  • the source electrode 17 is connected to the source region of the semiconductor layer 15 through a contact hole 22 that penetrates the first interlayer insulating film 21 and the gate insulating film 20.
  • the drain electrode 18 is connected to the drain region of the semiconductor layer 15 through a contact hole 23 that penetrates the first interlayer insulating film 21 and the gate insulating film 20.
  • a second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18.
  • the material of the second interlayer insulating film 24 the same material as the first interlayer insulating film 21 described above or an organic insulating material can be used.
  • a pixel electrode 25 is formed on the second interlayer insulating film 24.
  • the pixel electrode 25 is connected to the drain electrode 18 through a contact hole 26 that penetrates the second interlayer insulating film 24. Therefore, the pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
  • a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) can be used.
  • An alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25.
  • This alignment film 27 has an alignment regulating force for vertically aligning liquid crystal molecules constituting the liquid crystal layer 11.
  • the form of the TFT may be the top gate type TFT shown in FIG. 2 or the bottom gate type TFT.
  • a black matrix 30, a color filter 31, a planarizing layer 32, a counter electrode 33, and an alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 10 on the liquid crystal layer 11 side.
  • the black matrix 30 has a function of blocking light transmission in the inter-pixel region.
  • the black matrix 30 is formed of, for example, a metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a photoresist in which carbon particles are dispersed in a photosensitive resin.
  • the color filter 31 contains pigments of red (R), green (G), and blue (B) colors.
  • One pixel electrode 25 on the TFT substrate 9 is provided with any one of R, G, and B color filters 31 facing each other. Note that the color filter 31 may have a multicolor configuration of three or more colors of R, G, and B.
  • the planarization layer 32 is composed of an insulating film that covers the black matrix 30 and the color filter 31.
  • the planarizing layer 32 has a function of smoothing and leveling a step formed by the black matrix 30 and the color filter 31.
  • a counter electrode 33 is formed on the planarization layer 32.
  • As the material of the counter electrode 33 a transparent conductive material similar to that of the pixel electrode 25 is used.
  • An alignment film 34 having a vertical alignment regulating force is formed on the entire surface of the counter electrode 33.
  • the backlight 2 includes a light source 36 such as a light emitting diode and a cold cathode tube, and a light guide that is emitted toward the liquid crystal panel 4 using internal reflection of light emitted from the light source 36. 37.
  • the backlight 2 may be an edge light type in which the light source 36 is disposed on the end face of the light guide 37, or may be a direct type in which the light source is disposed directly under the light guide.
  • the directional backlight can be realized by optimizing the shape and arrangement of the reflection pattern formed in the light guide 37.
  • directivity may be realized by arranging a louver on the backlight 2.
  • a first polarizing plate 3 that functions as a polarizer is provided between the backlight 2 and the liquid crystal panel 4.
  • a second polarizing plate 5 that functions as a polarizer is provided between the liquid crystal panel 4 and the light diffusion film 7.
  • FIG. 3A is a cross-sectional view of the light diffusion film 7.
  • the light diffusion film 7 includes a base 39 and a plurality of bases 39 formed on one surface (the surface opposite to the viewing side).
  • the light diffusing film 7 is a second polarized light in such a posture that the side where the light diffusing portion 40 is provided faces the second polarizing plate 5 and the base 39 side faces the viewing side. It is arranged on the plate 5.
  • the base material 39 resins such as a thermoplastic polymer, a thermosetting resin, and a photopolymerizable resin are generally used.
  • the base material 39 has light transmittance and birefringence.
  • the base material 39 is made of various transparent resins made of acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicon polymer, imide polymer, etc.
  • a substrate can be used.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • COP cycloolefin polymer
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PI polyimide
  • the base material 39 becomes a base when a material for the wavelength control layer 41 and the light diffusion portion 40 is applied later in a manufacturing process described later. From this viewpoint, the base material 39 needs to have heat resistance, mechanical strength, chemical resistance, and the like in a heat treatment step during the manufacturing process.
  • a PET film is more preferably used because of its low cost.
  • a PET film having a thickness of 100 ⁇ m is used as an example.
  • the light diffusing unit 40 is made of an organic material having light transmissivity and photosensitivity such as acrylic resin, epoxy resin, or silicon resin.
  • a mixture made of a transparent resin in which a polymerization initiator, a coupling agent, a monomer, an organic solvent and the like are mixed with these resins can be used.
  • the polymerization initiator may contain various additional components such as a stabilizer, an inhibitor, a plasticizer, a fluorescent brightening agent, a mold release agent, a chain transfer agent, and other photopolymerizable monomers. Good.
  • materials described in Japanese Patent No. 4129991 can be used.
  • the total light transmittance of the light diffusing unit 40 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • the horizontal cross section when the light diffusion portion 40 is cut along a plane (xy plane) parallel to one surface of the substrate 39 is circular.
  • the diameter of the light diffusion part 40 is, for example, about 20 ⁇ m.
  • the plurality of light diffusing portions 40 all have the same diameter.
  • the light diffusing portion 40 has a small area of the horizontal cross section on the base material 39 side that becomes the light emission end face 40 a, and the area of the horizontal cross section gradually increases as the distance from the base material 39 increases. That is, when viewed from the base material 39 side, the light diffusing portion 40 has a so-called reverse tapered frustoconical shape.
  • the light diffusion part 40 contributes to the transmission of light in the light diffusion film 7. That is, the light incident on the light diffusing unit 40 is guided and emitted while being totally confined inside the light diffusing unit 40 while being totally reflected by the tapered side surface 40 c of the light diffusing unit 40.
  • the plurality of light diffusion portions 40 are scattered on the base material 39.
  • the plurality of light diffusing portions 40 are scattered on the base material 39, and the wavelength control layer 41 is continuously formed on the base material 39.
  • the plurality of light diffusion portions 40 are arranged randomly (non-periodically) when viewed from the normal direction of the main surface of the base material 39. Therefore, the pitch between the adjacent light diffusion portions 40 is not constant.
  • the average pitch obtained by averaging the pitches between the adjacent light diffusion portions 40 is set to 25 ⁇ m, for example.
  • the wavelength control layer 41 includes a plurality of light diffusion portions 40 among the surfaces of the base material 39 on which the light diffusion portions 40 are formed. It is formed in a region other than the formation region.
  • the wavelength control layer 41 is made of an organic material having light absorption and photosensitivity such as a black resist.
  • the wavelength control layer 41 is used for a metal film such as Cr (chromium) or Cr / Cr oxide, a metal oxide, or a multilayer film of a metal element and a metal oxide, or a black ink.
  • a material having a light-shielding property such as a pigment / dye, a black resin, a mixture of multicolor inks to obtain a black ink, and an ink containing an ultraviolet absorber in these inks may be used.
  • the layer thickness of the wavelength control layer 41 is set to be smaller than the height from the light incident end surface 40b of the light diffusing unit 40 to the light emitting end surface 40a.
  • the layer thickness of the wavelength control layer 41 is about 150 nm as an example.
  • the height from the light incident end surface 40b to the light emitting end surface 40a of the light diffusion portion 40 is about 20 ⁇ m.
  • the wavelength control layer 41 exists in a portion in contact with one surface of the base material 39, and air exists in other portions.
  • the refractive index of the base material 39 and the refractive index of the light diffusion portion 40 are substantially equal.
  • the reason is that, for example, if the refractive index of the base material 39 and the refractive index of the light diffusing unit 40 are greatly different from each other, This is because unnecessary light refraction or reflection occurs at the interface with the base material 39, and there is a risk that a desired light diffusion angle cannot be obtained or the amount of emitted light is reduced.
  • the light diffusing film 7 is arranged so that the base material 39 faces the viewing side, so that the area of the two opposing surfaces of the frustoconical light diffusing portion 40 is The smaller surface is the light emitting end surface 40a, and the larger surface is the light incident end surface 40b.
  • the inclination angle of the side surface 40c of the light diffusion portion 40 (the angle formed by the light emitting end surface 40a and the side surface 40c) is about 82 °.
  • the inclination angle of the side surface 40c of the light diffusion portion 40 is not particularly limited as long as it is an angle capable of sufficiently diffusing incident light when emitted from the light diffusion film 7.
  • the side surface 40c of the light diffusion portion 40 becomes an interface between the acrylic resin and air. Even if the periphery of the light diffusing unit 40 is filled with another low refractive index material, the difference in the refractive index between the inside and the outside of the light diffusing unit 40 is larger than when any low refractive index material exists outside. The maximum is when air is present. Therefore, from Snell's law, in the configuration of the present embodiment, the critical angle is the smallest, and the incident angle range in which light is totally reflected by the side surface 40c of the light diffusing unit 40 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
  • the liquid crystal display device 1 it is preferable to use a backlight that emits light at an angle that does not enter the side surface 40 c of the light diffusing section 40 at a critical angle or less, that is, a so-called directional backlight.
  • FIG. 6A and 6B are explanatory diagrams for explaining the relationship between the light emitted from the backlight and the side surface 40c of the light diffusing unit 40.
  • FIG. 6A ⁇ 1 is defined as an emission angle from the backlight, and ⁇ 2 is defined as a taper angle of the light diffusing unit 40.
  • the light La incident on the light diffusing unit 40 undergoes total reflection at the side surface 40 c and is emitted from the surface of the base material 39 to the viewing side. At this time, the light Lb having a large incident angle may be transmitted without being totally reflected by the side surface 40c, and a loss of incident light may occur.
  • FIG. 6B shows the relationship between the emission angle ⁇ 1 from the backlight and the taper angle ⁇ 2 that is the critical angle.
  • the taper angle of the light diffusion portion 40 is desirably 60 ° or more and less than 90 °.
  • Taper angle theta 2 of the side surface 40c of the light diffusing portion 40 is 80 ° ⁇ 5 ° about an example. In the present embodiment, the taper angle ⁇ 2 of the light diffusion portion 40 is 82 °. In the present embodiment, the taper angle theta 2 of the side surface 40c of the light diffusing portion 40 is constant.
  • the taper angle theta 2 of the side surface 40c of the light diffusing portion 40 is not limited to the above range, when the incident light is emitted from the light diffusion film 7 at an angle capable of sufficiently diffuse incident light any That's fine. Taper angle theta 2 is toward the light incident end face 40b to the light-emitting end face 40a, it may be continuously varied.
  • the light scattering layer 50 is fixed to the other surface (surface on the viewing side) of the base material 39 via the adhesive layer 51 as shown in FIG.
  • the light scattering layer 50 is a film-like member in which a large number of light scattering bodies 52 such as acrylic beads are dispersed in a binder resin such as a photosensitive acrylic resin.
  • the thickness of the light scattering layer 50 is about 20 ⁇ m as an example.
  • the spherical diameter of the spherical light scatterer 52 is, for example, about 0.5 to 20 ⁇ m.
  • the thickness of the adhesion layer 51 is about 25 micrometers as an example.
  • the light scattering layer 50 has a function of scattering forward the light diffused by the light diffusing unit 40 and further spreading it to the wide angle side.
  • the light scattering layer 50 has an effect of suppressing the rainbow unevenness from being visually recognized. This effect will be described later.
  • the haze value of the light scattering layer 50 is set to 30 as an example.
  • the adhesive layer 51 may not be interposed between the light scattering layer 50 and the substrate 39. That is, the light scattering layer 50 may be directly formed on the other surface of the substrate 39.
  • the light scatterer 52 is not limited to the above, but is an acrylic polymer, olefin polymer, vinyl polymer, cellulose polymer, amide polymer, fluorine polymer, urethane polymer, silicon polymer, imide polymer. It may be made of an appropriate transparent substance such as a resin piece made of a glass bead or the like. In addition to these transparent materials, scatterers and reflectors that do not absorb light can be used. Or it is good also as the bubble which diffused the light-scattering body 52 in the light-diffusion part 40. FIG.
  • each light scatterer 52 can be formed in various shapes such as a spherical shape, an elliptical spherical shape, a flat plate shape, and a polygonal cube.
  • the size of the light scatterer 52 may be formed so as to be uniform or non-uniform.
  • a light scattering layer 50 is disposed on the outermost surface of the light diffusion film 7.
  • the light L incident perpendicularly to the light incident end face 40 b of the light diffusing unit 40 is further scattered forward by the light scattering layer 50 after the diffusion angle is controlled by the light diffusing unit 40. For this reason, light of various angles is emitted from the light scattering layer 50.
  • the light L incident perpendicularly to the light incident end surface 40Xb of the light diffusion portion 40X is specified.
  • the injection is concentrated on the diffusion angle. As a result, light cannot be uniformly diffused over a wide angle range, and a bright display can be obtained only with a specific viewing angle.
  • the light scattering layer 50 is disposed on the outermost surface of the light diffusion film 7, the light diffusion angle can be prevented from being concentrated to one.
  • the light diffusing characteristic of the light diffusing film 7 can be made smoother, and a bright display can be obtained with a wide viewing angle.
  • the light diffusing film 7 is incident from the surface 50f opposite to the light diffusing portion 40 of the light scattering layer 50, and is reflected or scattered by the interface between the base material such as a binder resin and the light scatterer 52.
  • Light that has been refracted by the body 52 and whose traveling direction has been changed is configured to be scattered forward.
  • Such scattering conditions can be satisfied, for example, by appropriately changing the particle size of the light scatterer 52 included in the light scattering layer 50.
  • FIG. 4 is a cross-sectional view of the light diffusion film of this embodiment.
  • the light scattering layer 50 is incident on the upper surface 50 f of the light scattering layer 50 from the upper surface 50 f and travels by the light scatterer 52.
  • the modified light is configured to scatter Mie. For this reason, so-called back scattering does not occur. Therefore, it is possible to suppress a reduction in display quality and contrast due to surface reflection.
  • the light scattering layer 50 also serves as an antiglare treatment layer (antiglare layer).
  • antiglare layer since the light scattering layer 50 including the plurality of light scattering bodies 52 is formed on the surface on the viewing side of the base material 39, the light scattering layer 50 prevents the user from viewing the liquid crystal display device. Also functions as a glare treatment layer. According to this configuration, since it is not necessary to newly provide an antiglare treatment layer, the liquid crystal display device can be simplified and thinned.
  • the light scattering layer 50 has a structure including the light scatterer 52 described above, for example, by subjecting the surface of the base material 39 to sand blasting or embossing and forming fine irregularities on the surface of the base material 39. It may be produced.
  • FIG. 1 The outline of the manufacturing process of the liquid crystal display 6 will be described first.
  • the TFT substrate 9 and the color filter substrate 10 are respectively produced.
  • the surface of the TFT substrate 9 on which the TFT 19 is formed and the surface of the color filter substrate 10 on which the color filter 31 is formed are arranged to face each other, and the TFT substrate 9 and the color filter substrate 10 are sealed.
  • liquid crystal is injected into a space surrounded by the TFT substrate 9, the color filter substrate 10, and the seal member.
  • the 1st polarizing plate 3 and the 2nd polarizing plate 5 are each bonded together on both surfaces of the liquid crystal panel 4 produced in this way using an optical adhesive agent.
  • the liquid crystal display body 6 is completed.
  • a conventionally well-known method is used for the manufacturing method of the TFT substrate 9 and the color filter substrate 10, description is abbreviate
  • a polyethylene terephthalate base material 39 having a 10 cm square and a thickness of 100 ⁇ m is prepared, and carbon is used as a wavelength control layer material on one surface of the base material 39 by spin coating.
  • a black negative resist containing is applied to form a coating film 44 having a thickness of 150 nm.
  • the base material 39 on which the coating film 44 is formed is placed on a hot plate, and the coating film is pre-baked at a temperature of 90 ° C. Thereby, the solvent in the black negative resist is volatilized.
  • the coating film 44 is irradiated with light E through a photomask 45 provided with a plurality of light shielding patterns 46 to perform exposure.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure dose is 100 mJ / cm 2 .
  • the transparent negative resist is exposed using the wavelength control layer 41 as a mask in the next step to form the light diffusing portion 40, so that the position of the light shielding pattern 46 of the photomask 45 is the formation position of the light diffusing portion 40
  • the plurality of light shielding patterns 46 are all circular patterns having a diameter of 20 ⁇ m and are randomly arranged. Therefore, although the interval (pitch) between the adjacent light shielding patterns 46 is not constant, the average interval obtained by averaging the intervals between the plurality of light shielding patterns 46 is 25 ⁇ m.
  • the average interval between the light shielding patterns 46 is smaller than the interval (pitch) between the pixels of the liquid crystal panel 4.
  • at least one light diffusing portion 40 is formed in the pixel, so that a wide viewing angle can be achieved when combined with a liquid crystal panel having a small pixel pitch used for mobile devices, for example.
  • the coating film 44 made of a black negative resist is developed using a dedicated developer, dried at 100 ° C., and as shown in FIG.
  • a wavelength control layer 41 having a plurality of circular openings is formed on one surface of the substrate 39. The circular opening corresponds to the formation region of the light diffusion portion 40 in the next process.
  • the wavelength control layer 41 is formed by a photolithography method using a black negative resist.
  • a photomask in which the light shielding pattern 46 and the light transmission portion of the present embodiment are reversed is used. If used, a positive resist can also be used. Or you may form directly the wavelength control layer 41 patterned using the vapor deposition method, the printing method, the inkjet method, etc. FIG.
  • a transparent negative resist made of an acrylic resin is applied to the upper surface of the wavelength control layer 41 as a light diffusion portion material, and a coating film 48 having a film thickness of 25 ⁇ m is formed.
  • the base material 39 on which the coating film 48 is formed is placed on a hot plate, and the coating film 48 is pre-baked at a temperature of 95 ° C. Thereby, the solvent in the transparent negative resist is volatilized.
  • the coating film 48 is irradiated with diffused light F from the base material 39 side using the wavelength control layer 41 as a mask to perform exposure.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure amount is 600 mJ / cm 2 .
  • parallel light or diffused light is used.
  • a diffusion plate having a haze of about 50 may be disposed on the optical path of the light emitted from the exposure apparatus.
  • the coating film 48 is exposed radially from the openings between the wavelength control layers 41, and the reverse tapered side surface of the light diffusion unit 40 is formed. Thereafter, the substrate 39 on which the coating film 48 is formed is placed on a hot plate, and post-exposure baking (PEB) of the coating film 48 is performed at a temperature of 95 ° C.
  • PEB post-exposure baking
  • the coating film 48 made of a transparent negative resist is developed using a dedicated developer, post-baked at 100 ° C., and as shown in FIG. Form on one side.
  • a light scattering layer 50 in which a large number of light scattering bodies 52 such as acrylic beads are dispersed inside a binder resin such as an acrylic resin is interposed through an adhesive layer 51. Affixed to the other surface of the substrate 39.
  • the liquid resist is applied when forming the wavelength control layer 41 and the light diffusing portion 40.
  • a film resist is applied to one surface of the base material 39. May be.
  • the reason why rainbow unevenness occurs when the substrate 39 has birefringence will be described.
  • the intensity of light emitted from the polarizing plate on the emission side varies depending on the wavelength of incident light.
  • the light that is linearly polarized light that vibrates in a specific direction by the first (incident side) polarizing plate is split into an ordinary ray and an extraordinary ray by the birefringent substrate.
  • the ordinary light and the extraordinary light have different traveling speeds inside the substrate, and a phase difference is generated.
  • the vibration direction of the light incident on the second polarizing plate changes.
  • the ratio of the light component that passes through the second polarizing plate differs for each wavelength.
  • the color of the emitted light varies depending on the observation angle, and rainbow unevenness occurs.
  • the intensity of the emitted light does not change because the birefringent substrate is not sandwiched between the polarizing plates, It seems that rainbow spots do not occur.
  • the exit end face of the birefringent substrate functions in the same way as a polarizing plate, and rainbow unevenness occurs. Details will be described below.
  • FIG. 7A and 7 (B) are explanatory diagrams for explaining a mechanism in which rainbow unevenness occurs.
  • FIG. 7A is a diagram illustrating a case where the birefringent substrate 300 is viewed from the front
  • FIG. 7B is a diagram illustrating a case where the birefringent substrate 300 is viewed from an oblique direction.
  • FIGS. 7A and 7B show a state in which the observer O visually recognizes the light split into the P-polarized light Lp and the S-polarized light Ls by the birefringent substrate 300.
  • 7A and 7B show the case where the intensity of the P-polarized light Lp and the intensity of the S-polarized light Ls are the same.
  • the light emitted in the direction perpendicular to the emission end face 300a is incident on the eyes of the observer O. That is, the P-polarized light Lp and the S-polarized light Ls that have traveled in the birefringent substrate 300 in the direction perpendicular to the exit end face 300a are emitted from the exit end face 300a.
  • the P-polarized light Lp and the S-polarized light Ls incident perpendicularly to the exit end face 300a have the same reflectance at the exit end face 300a.
  • the intensity of the P-polarized light Lp entering the eye of the observer O is the same as the intensity of the S-polarized light Ls. Accordingly, the rainbow unevenness does not occur in the light emitted from the birefringent substrate 300 on the exit end face 300a.
  • the reflectance is different between P-polarized light and S-polarized light depending on the angle of incidence on the boundary surface. More specifically, the reflectance of S-polarized light is larger than the reflectance of P-polarized light. Therefore, the intensity of the reflected light reflected by the exit end face 300a differs between the P-polarized light Lp and the S-polarized light Ls. For example, as shown in FIG. 7B, the intensity of the reflected light Lsr of S-polarized light Ls is greater than the intensity of the reflected light Lpr of P-polarized light Lp.
  • the intensity of the P-polarized light Lp is larger between the P-polarized light Lp and the S-polarized light Ls that are refracted at the exit end face 300a and enter the eyes of the observer O.
  • the exit end face 300a has a function as a polarizing layer.
  • rainbow nonuniformity arises.
  • Rainbow unevenness is likely to occur when the in-plane retardation of the substrate is in the range of 500 nm to 10000 nm, and is particularly visible when the in-plane retardation of the substrate is in the range of 1000 nm to 4000 nm.
  • the inventors of the present invention performed a simulation of the intensity of the emitted light when the light transmitted through the second polarizing plate of the liquid crystal panel transmitted through the birefringent base material (PET film).
  • the degree of polarization of the second polarizing plate is 100%
  • the in-plane retardation ( ⁇ nd) of the substrate is 1.00 ⁇ m
  • the degree of polarization of the substrate is 50%
  • the wavelength dispersion (450 nm / 590 nm) of the substrate 1.10.
  • the absorption axis of the second polarizing plate and the slow axis of the substrate were parallel to each other.
  • FIGS. 8A to 8C are graphs showing simulation results of the intensity of light emitted from the birefringent substrate.
  • FIG. 8A shows the intensity of light emitted in a direction with an azimuth angle of 45 ° and a polar angle of 0 °.
  • FIG. 8B shows the intensity of light emitted in the directions of azimuth angle 45 ° and polar angle 60 °.
  • FIG. 8C shows the intensity of light emitted in the directions of azimuth angle 45 ° and polar angle 80 °.
  • the intensity of light emitted in the direction of the polar angle ⁇ ° corresponds to the intensity of light when the observer views the liquid crystal display device from the direction of the polar angle ⁇ °.
  • the horizontal axis indicates the wavelength (nm) of light
  • the vertical axes of FIGS. 8A to 8C indicate the relative intensity (%) of transmitted light. .
  • the intensity of light when the light incident on the second polarizing plate was transmitted through the air was 100%.
  • FIG. 8 (A) when the observer views the liquid crystal display device from the front direction (polar angle 0 ° direction), at the interface between the birefringent substrate and air with S-polarized light and P-polarized light. Therefore, there is no change in the light intensity at each wavelength.
  • FIGS. 8B and 8C when the observer views the liquid crystal display device from an oblique direction (polar angles of 60 ° and 80 °), S-polarized light and P-polarized light Since there is a difference in the reflectance at the interface between the birefringent substrate and air, a peak (peak) and a valley (valley) are generated in the light intensity curve depending on the wavelength.
  • the base material 39 of the light diffusing film 7 has birefringence
  • simply disposing the light diffusing film 7 can provide an effect of spreading the light diffusion angle distribution to the wide angle side, while rainbow unevenness is caused.
  • rainbow unevenness is caused.
  • the liquid crystal display device 1 of the present embodiment the light transmitted through the light diffusion film 7 is scattered by the light scattering layer 50, and as a result, light of different colors is mixed.
  • the rainbow unevenness can be suppressed by the color mixture of light.
  • FIGS. 9A and 9B are schematic views showing a liquid crystal display device 101 according to the second embodiment.
  • FIG. 9A is a perspective view of the liquid crystal display device 101 of the second embodiment.
  • FIG. 9B is a cross-sectional view of the liquid crystal display device 101 of the second embodiment.
  • FIGS. 10 (A) to (E) are perspective views showing the light diffusion film in the order of the manufacturing process. 9 (A), (B), and FIGS. 10 (A) to (E), the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. .
  • the light diffusion film 107 of the second embodiment has a plurality of wavelength control layers 141 formed on one surface of the base material 39 and a region other than the formation region of the wavelength control layer 141 on one surface of the base material 39. And a formed light diffusion part 140.
  • the plurality of wavelength control layers 141 are arranged in a scattered manner when viewed from the normal direction of one surface of the base material 39.
  • the light diffusion part 140 is continuously formed in a region other than the region where the wavelength control layer 141 is formed.
  • the plurality of wavelength control layers 141 are scattered on the base material 39 and randomly (non-periodically) arranged. Accordingly, a plurality of hollow portions 143 formed at the same position as the plurality of wavelength control layers 141 are also randomly arranged on the base material 39.
  • each wavelength control layer 141 when viewed from the normal direction of the base material 39 is a circle.
  • the diameter of each wavelength control layer 141 is, for example, 10 ⁇ m.
  • the plurality of wavelength control layers 141 all have the same diameter. Since the plurality of wavelength control layers 141 are scattered on the base material 39, the light diffusion portion 140 of this embodiment is continuously formed on the base material 39 in a wall shape.
  • the cross-sectional area when cut along a plane parallel to one surface of the substrate 39 is large on the wavelength control layer 141 side, and gradually decreases as the distance from the wavelength control layer 141 increases.
  • a hollow portion 143 having a shape is formed.
  • the hollow portion 143 has a so-called forward tapered substantially truncated cone shape when viewed from the base material 39 side. Air exists in the hollow portion 143.
  • the portion of the light diffusion film 107 other than the hollow portion 143, that is, the portion where the light diffusion portion 140 is continuously present is a portion contributing to light transmission.
  • the light incident on the light diffusing unit 140 is totally reflected at the interface between the light diffusing unit 140 and the hollow portion 143, and is guided in a state of being substantially confined inside the light diffusing unit 140, via the base material 39 Is emitted to the outside.
  • the side surface 140c of the light diffusion portion 140 becomes an interface between the transparent resin and air.
  • the refractive index difference between the inside and the outside of the light diffusing unit 140 is such that the periphery of the light diffusing unit 140 is made of another general low refractive index material when the hollow portion 143 is filled with air. Greater than being filled. Therefore, according to Snell's law, the incident angle range in which light is totally reflected by the side surface 140c of the light diffusing unit 140 is wide. As a result, light loss is further suppressed, and high luminance can be obtained.
  • the hollow portion 143 may be filled with an inert gas such as nitrogen instead of air.
  • the inside of the hollow portion 143 may be in a vacuum state.
  • the light scattering layer 50 is formed on the surface of the substrate 39 opposite to the surface on which the light diffusion portion 140 is formed.
  • FIG. 1 a method for manufacturing the liquid crystal display device 101 having the above configuration will be described with reference to FIGS. Below, it demonstrates centering on the manufacturing process of the light-diffusion film 107.
  • FIG. 1 a method for manufacturing the liquid crystal display device 101 having the above configuration will be described with reference to FIGS. Below, it demonstrates centering on the manufacturing process of the light-diffusion film 107.
  • a PET film base material 39 having a 10 cm square and a thickness of 100 ⁇ m is prepared, and carbon is used as a wavelength control layer material on one surface of the base material 39 by spin coating.
  • a black negative resist containing is applied to form a coating film 44 having a thickness of 150 nm.
  • the base material 39 on which the coating film 44 is formed is placed on a hot plate, and the coating film is pre-baked at a temperature of 90 ° C. Thereby, the solvent in the black negative resist is volatilized.
  • exposure is performed by irradiating the coating film 44 with light L through a photomask 145 in which a plurality of opening patterns 146 having a circular planar shape is formed using an exposure apparatus.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure dose is 100 mJ / cm 2 .
  • the photomask 145 used when forming the wavelength control layer 141 has a plurality of circular opening patterns 146 arranged at random.
  • the opening patterns 146 are regularly arranged at a constant pitch, and then, for example, the center points of the opening patterns 146, for example, the center points of the opening patterns 146 are used using a random function.
  • a photomask 145 having a plurality of opening patterns 146 arranged at random can be manufactured.
  • the coating film 44 made of a black negative resist is developed using a dedicated developer and dried at 100 ° C.
  • a plurality of wavelength control layers 141 having a circular planar shape are formed on one surface of the base material 39.
  • the transparent negative resist is exposed using the wavelength control layer 141 made of a black negative resist as a mask to form the hollow portion 143. Therefore, the position of the opening pattern 146 of the photomask 145 corresponds to the position where the hollow portion 143 is formed.
  • the circular wavelength control layer 141 corresponds to a non-formation region (hollow portion 143) of the light diffusion portion 140 in the next step.
  • the plurality of opening patterns 146 are all circular patterns having a diameter of 10 ⁇ m.
  • the wavelength control layer 141 is formed by a photolithography method using a black negative resist, but instead of this configuration, if a photomask in which the opening pattern 146 and the light shielding pattern of the present embodiment are reversed is used, A positive resist having light absorption can also be used.
  • the patterned wavelength control layer 141 may be directly formed using a vapor deposition method, a printing method, or the like.
  • a transparent negative resist made of an acrylic resin is applied to the upper surface of the wavelength control layer 141 as a light transmission part material, and a coating film 48 having a film thickness of 25 ⁇ m is formed.
  • the base material 39 on which the coating film 48 is formed is placed on a hot plate, and the coating film 48 is pre-baked at a temperature of 95 ° C. Thereby, the solvent in the transparent negative resist is volatilized.
  • the coating film 48 is irradiated with diffused light F from the base material 39 side using the wavelength control layer 141 as a mask to perform exposure.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure amount is 600 mJ / cm 2 .
  • diffused light is used.
  • a diffusion plate having a haze of about 50 is disposed on the optical path of the light emitted from the exposure apparatus.
  • the coating film 48 is exposed radially so as to go from the edge of the wavelength control layer 141 toward the inside of the wavelength control layer 141. As a result, a forward tapered hollow portion 143 is formed, and an inversely tapered side surface is formed on the portion of the light diffusion portion 140 facing the hollow portion 143. Thereafter, the substrate 39 on which the coating film 48 is formed is placed on a hot plate, and post-exposure baking (PEB) of the coating film 48 is performed at a temperature of 95 ° C.
  • PEB post-exposure baking
  • the coating film 48 made of a transparent negative resist is developed using a dedicated developer, post-baked at 100 ° C., and the light diffusion unit 140 having a plurality of hollow portions 143 as shown in FIG. Is formed on one surface of the substrate 39.
  • a light scattering layer 50 in which a large number of light scattering bodies 52 such as acrylic beads are dispersed inside a binder resin such as an acrylic resin is interposed through an adhesive layer 51. Affixed to the other surface of the substrate 39.
  • the total light transmittance of the light diffusion film 107 is preferably 90% or more. When the total light transmittance is 90% or more, sufficient transparency is obtained, and the optical performance required for the light diffusion film 107 can be sufficiently exhibited.
  • the total light transmittance is as defined in JIS K7361-1.
  • a liquid resist is applied at the time of forming the wavelength control layer 141 and the light diffusing portion 140, but instead of this configuration, a film resist is applied to one surface of the substrate 39. May be.
  • the completed optical diffusion film 107 is placed with the base material 39 facing the viewing side and the optical diffusion agent 140 facing the second polarizing plate 5. It sticks to the liquid crystal display body 6 using etc.
  • the liquid crystal display device 101 of this embodiment is completed through the above steps.
  • FIG. 11 is a diagram showing an arrangement relationship between the pixels 100 of the liquid crystal panel 4 and the wavelength control layer 141.
  • the pixel 100 and the wavelength control layer 141 of the liquid crystal panel 4 are viewed in plan, at least one part of the wavelength control layer 141 is present in a portion corresponding to one dot of the liquid crystal panel 4. It is desirable to have two positions.
  • one pixel 100 of the liquid crystal panel 4 includes three dots 100R, 100G, and 100B of red (R), green (G), and blue (B).
  • R red
  • G green
  • B blue
  • FIG. 12 is a schematic configuration diagram illustrating an example of a manufacturing apparatus that manufactures the light diffusion film 107.
  • the manufacturing apparatus 500 shown in FIG. 12 conveys the long base material 39 by roll-to-roll, and performs various processes consistently during that time.
  • the manufacturing apparatus 500 forms the wavelength control layer 141 by using a printing method instead of the photolithography method using the photomask 145 described above.
  • the manufacturing apparatus 500 is provided with a feeding roller 508 that feeds the base material 39 at one end, and a winding roller 509 that winds the base material 39 at the other end.
  • the base material 39 is wound from the feeding roller 508 side. It is the structure conveyed toward the 509 side.
  • the printing device 501 On the delivery roller 508 side to the take-up roller 509 side (along the conveying direction of the substrate 39), the printing device 501, the first drying device 502, the coating device 503, the developing device 504, The 2nd drying apparatus 505 is arrange
  • an exposure device 506 is disposed below the base material 39 in a region between the coating device 503 and the developing device 504.
  • the printing apparatus 501 is for printing the wavelength control layer 141 on the substrate 39.
  • the first drying device 502 is for drying the wavelength control layer 141 formed by printing.
  • the coating device 503 is for coating a transparent negative resist on the wavelength control layer 141 to form a coating film 148.
  • the developing device 504 is for developing the transparent negative resist after exposure with a developer to form the hollow portion 143.
  • the second drying device 505 is for drying the base material 39 on which the light diffusion portion 140 made of a transparent resist after development is formed. Thereafter, the base material 39 on which the light diffusion portion 140 is formed may be bonded to the second polarizing plate 5 and integrated.
  • the exposure apparatus 506 is for exposing the transparent negative resist coating film 148 from the base material 39 side.
  • FIGS. 13A and 13B are views showing only the part of the exposure apparatus 506 out of the manufacturing apparatus 500.
  • FIG. 13A and 13B are views showing only the part of the exposure apparatus 506 out of the manufacturing apparatus 500.
  • the exposure apparatus 506 includes a plurality of light sources 507. As the base material 39 is transported, the intensity of the light F may change such that the intensity of the light F from each light source 507 gradually decreases. Alternatively, as illustrated in FIG. 13B, the exposure apparatus 506 may gradually change the emission angle of the exposure light F from each light source 507 as the base material 39 is transported. In FIG. 13B, the light beam axis of the exposure light F that is diffused light (the central axis of the light beam of diffused light) gradually tilts in the transport direction of the base material 39 along the transport direction of the base material 39. Further, the emission angle of the exposure light F is changed. By using the exposure apparatus 506, the inclination angle of the side surface 140c of the light diffusing unit 140 can be controlled to a desired angle. Further, the diffused light may be generated by combining the exposure light that is parallel light and the diffusion plate.
  • the production device 500 When the production device 500 is used to attach the light diffusion portion 140 formed on the base material 39 (raw material) to the liquid crystal panel 4, the light diffusion is performed by appropriately cutting the raw material into the size of the liquid crystal panel 4.
  • the film 107 is manufactured.
  • the original fabric is cut, since the wavelength control layer 141 is randomly formed in the original fabric, the original fabric is cut with high probability (practically almost certainly) overlapping with the wavelength control layer 141. . Therefore, in the light diffusion film obtained by cutting the raw fabric, the hollow portion 143 that overlaps the wavelength control layer 141 is formed in contact with the peripheral portion of the base material 39.
  • the light transmitted through the light diffusing film 107 is scattered by the light scattering layer 50 and light of different colors is mixed, so that rainbow unevenness can be suppressed. The same effect can be obtained.
  • the plurality of hollow portions 143 provided in the light diffusion film 107 are isolated, and the portion to be the light diffusion portion 140 has a continuous shape in the plane.
  • the adhesive force between the light diffusing unit 140 and the base material 39 is strong. Therefore, defects of the light diffusing unit 140 due to external force or the like are hardly generated, and a desired light diffusing function can be achieved.
  • the transparent resin layer is irradiated with the light F from the back side of the base material 39, so that the light diffusing unit 140 is self-aligned (self-aligned) with the non-formation region of the wavelength control layer 141. It is formed.
  • the light diffusing unit 140 and the wavelength control layer 141 do not overlap each other, and the light transmittance can be reliably maintained.
  • precise alignment work is unnecessary, the time required for manufacturing can be shortened.
  • each hollow portion 143 since the volume of each hollow portion 143 is the same, the volume of the resin removed when developing the transparent resin layer is constant. For this reason, the development speed of each hollow part 143 becomes constant in the process of forming each hollow part 143, and a desired tapered shape can be formed. As a result, the uniformity of the fine shape of the light diffusing film 107 is increased, and the yield is improved.
  • FIG. 14 is a perspective view of the light diffusion film of the third embodiment. 14, the same code
  • the light diffusion film 167 of the third embodiment includes a base material 39, a plurality of wavelength control layers 171, a light diffusion portion 170, and a light scattering layer 50.
  • the plurality of wavelength control layers 171 are formed on one surface of the base material 39 (the surface opposite to the viewing side).
  • the light diffusion portion 170 is formed in a region other than the formation region of the wavelength control layer 171 on one surface of the base material 39.
  • the light scattering layer 50 is formed on the viewing side surface of the base material 39.
  • the plurality of wavelength control layers 171 are provided on one surface of the base material 39 in a dotted manner.
  • the planar shape of the wavelength control layer 171 viewed from the normal direction of the substrate 39 is an elongated ellipse.
  • the wavelength control layer 171 has a major axis and a minor axis.
  • the ratio of the length in the minor axis direction to the length in the major axis direction is approximately equal in each wavelength control layer 171.
  • the dimensions of the plurality of wavelength control layers 171 are different, as an example of the dimensions of the wavelength control layer 171, for example, the length in the major axis direction is 20 ⁇ m and the length in the minor axis direction is 10 ⁇ m.
  • the portion corresponding to the lower portion of the wavelength control layer 171 is an elliptic frustum-shaped hollow portion 173.
  • the light diffusion film 167 has a plurality of hollow portions 173.
  • the light diffusing portion 170 is integrally formed in a wall shape at portions other than the plurality of hollow portions 173.
  • the major axis direction of the ellipse forming the planar shape of each wavelength control layer 171 is substantially aligned with the X-axis direction.
  • the minor axis direction of the ellipse forming the planar shape of each wavelength control layer 171 is substantially aligned with the Y axis direction. From this, when considering the direction of the side surface 170c of the light diffusing unit 170, the ratio of the side surface 170c along the X-axis direction of the side surface 170c of the light diffusing unit 170 is larger than the ratio of the side surface 170c along the Y-axis direction. Many.
  • the light that is reflected by the side surface 170c along the X-axis direction and diffused in the Y-axis direction is larger than the light that is reflected by the side surface 170c along the Y-axis direction and diffused in the X-axis direction. Therefore, the azimuthal direction in which the light diffusion film 167 has a strong diffusivity is the Y-axis direction that is the short axis direction of the wavelength control layer 171.
  • the planar shape of the wavelength control layer 171 may include a shape such as a circle, a polygon, and a semicircle. A part of the wavelength control layer 171 may be overlapped, a part of the wavelength control layer 171 may be missing, or the contour of the wavelength control layer 171 may be uneven. All of the wavelength control layers 171 may have the same dimensions and the same shape, or some of the wavelength control layers 171 may have different dimensions and shapes.
  • the light transmitted through the light diffusing film 167 is scattered by the light scattering layer 50 and mixed with light of different colors, so that rainbow unevenness can be suppressed as in the first embodiment. The effect is obtained.
  • the light diffusibility of the light diffusion film 167 has anisotropy in the plane.
  • the light diffusibility in the Y-axis direction is stronger than the light diffusivity in the X-axis direction. Therefore, by combining the light diffusion anisotropy of the light diffusion film 167 with the viewing angle characteristics in the azimuth direction of each liquid crystal panel, a liquid crystal display device having excellent display quality can be provided.
  • FIG. 15 is a cross-sectional view of the liquid crystal display device of the fourth embodiment.
  • the same reference numerals are given to the same components as those used in the first embodiment, and the detailed description thereof will be omitted.
  • the light scatterer 52 is included in the base material 39 having birefringence. Therefore, the base material 39 has birefringence and also has a function of scattering incident light.
  • Other configurations are the same as those of the first embodiment.
  • the light transmitted through the light diffusion film 182 is scattered by the light scatterer 52 included in the base material 39, and the light of different colors is mixed, thereby suppressing rainbow unevenness.
  • the same effect as the first embodiment can be obtained.
  • the light diffusion film 182 can be made thinner than in the first embodiment.
  • FIG. 16 is a cross-sectional view of the liquid crystal display device of the fifth embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light scatterer 52 is included in the light diffusing section 40 as shown in FIG.
  • the light diffusing unit 40 has a function of reflecting incident light on its side surface 40c and scattering light traveling inside.
  • the light transmitted through the light diffusion film 192 is scattered by the light scatterer 52 included in the light diffusing section 40, and light of different colors is mixed, resulting in rainbow unevenness.
  • the effect similar to 1st Embodiment that it can suppress can be acquired.
  • FIG. 17 is a cross-sectional view of the liquid crystal display device of the sixth embodiment.
  • the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light scattering layer 50 including the light scatterer 52 is provided between the base material 39 having birefringence and the light diffusing unit 40, and the base. It is formed between the material 39 and the wavelength control layer 41.
  • the light scattering layer 50 is formed over the entire surface of the base 39 on the side where the light diffusion portion 40 and the wavelength control layer 41 are formed.
  • the light transmitted through the light diffusing unit 40 is scattered by the light scattering layer 50 and mixed with light of different colors, so that rainbow unevenness can be suppressed. The same effect can be obtained.
  • FIG. 18 is a cross-sectional view of the liquid crystal display device of the seventh embodiment. 18, the same code
  • the light scatterer 52 is contained inside an adhesive layer 213 that joins the light diffusion film 212 and the liquid crystal display body 6.
  • liquid crystal display device 211 of the seventh embodiment light is scattered by the light scatterer 52 included in the pressure-sensitive adhesive layer 213 at the time before entering the light diffusing film 212, and rainbow unevenness can be suppressed. The same effect as the embodiment can be obtained.
  • the eighth embodiment of the present invention will be described below with reference to FIG.
  • the basic configuration of the liquid crystal display device of the eighth embodiment is the same as that of the first embodiment, and is different from the first embodiment in that a touch panel is provided. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the configuration of the touch panel will be described.
  • FIG. 19 the same components as those used in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the configuration from the backlight 2 to the light diffusion film 7 is the same as that of the first embodiment.
  • a touch panel 91 is disposed on the viewing side of the base material 39 constituting the light diffusion film 7.
  • the base material 39 constituting the light diffusion film 7 is referred to as a “light diffusion film base material”.
  • the touch panel 91 is affixed on the light diffusion film substrate 39 by an adhesive 92 such as a double-sided tape at the peripheral edge of the light diffusion film substrate 39.
  • a gap corresponding to the thickness of the adhesive 92 is formed between the touch panel 91 and the light diffusion film substrate 39. That is, the air layer 93 exists between the touch panel 91 and the light diffusion film base material 39.
  • the touch panel 91 has a base 94 and a position detection electrode 95.
  • the base material 94 constituting the touch panel 91 is referred to as a “touch panel base material”.
  • a position detecting electrode 95 made of a transparent conductive material such as ITO or ATO (Antimony-doped Tin Tin Oxide) is formed on one surface of a touch panel base 94 made of a glass substrate or the like.
  • the position detection electrode 95 is formed by sputtering of ITO, ATO or the like, and has a uniform sheet resistance of about several hundred to 2 k ⁇ / ⁇ .
  • the light scattering layer 50 is provided on the surface on the viewing side of the base material 94 for the touch panel. Even in the case where the light diffusing film substrate 39 has birefringence, the light scattering layer 50 may not necessarily be in contact with the light diffusing film substrate 39 having birefringence. As long as it is located on the visual recognition side with respect to the plate 5, it may be in a remote place.
  • a capacitive touch panel 91 is used.
  • minute voltages are applied to four corners of the position detection electrode 95 when the touch panel 91 is viewed in plan.
  • the point touched by the finger is grounded via the capacitance of the human body.
  • the position detection circuit measures this voltage change as a current change, and detects the ground point, that is, the position touched by the finger from the measured value.
  • the touch panel applicable to this embodiment is not restricted to a capacitive system, Arbitrary touch panels, such as a resistive film system, an ultrasonic system, an optical system, are applicable.
  • the liquid crystal display device 90 of this embodiment since the light scattering layer 50 is provided on the viewing side of the light diffusion film 7, the occurrence of rainbow unevenness is suppressed, and a liquid crystal display device having an information input function is realized. can do. For example, when the user touches the touch panel 91 with a finger or a pen while viewing an image with a wide viewing angle, information can be input to the information processing apparatus or the like in an interactive manner.
  • the light diffusing film may be formed with a light diffusing part or a wavelength control layer on the entire surface of the base material having birefringence, or at least a part of the peripheral part on the base material. There may be a region where no layer is formed.
  • the light scattering layer is formed with the same area as the formation region of the light diffusion portion and the wavelength control layer, or is formed with an area larger than the formation region of the light diffusion portion and the wavelength control layer. Take this form.
  • the light diffusion film is bonded to the liquid crystal panel so that the edge of the light diffusion portion and the wavelength control layer forming region is located outside the edge of the display region of the liquid crystal panel.
  • specific illustrations of the arrangement, material, shape, dimensions, number, and the like of each component constituting the light diffusion film and the display device can be appropriately changed.
  • the present invention is applicable to various display devices such as liquid crystal display devices, organic electroluminescence display devices, and plasma displays.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の光拡散フィルム(光拡散部材)は、光透過性及び複屈折性を有する基材と、基材の一方面に形成された波長制御層と、基材の一方面のうち、波長制御層の形成領域以外の領域に形成された光拡散部と、光散乱層と、を備え、光拡散部は、基材に接する光射出端面と、光射出端面に対向し、光射出端面の面積よりも大きい面積を有する光入射端面と、を有するとともに光入射端面から光射出端面までの高さが波長制御層の層厚よりも大きい。

Description

光拡散部材及び表示装置
 本発明は、光拡散部材及び表示装置に関する。
 本願は、2013年7月4日に、日本に出願された特願2013-141142号に基づき優先権を主張し、その内容をここに援用する。
 携帯電話機等をはじめとする携帯型電子機器、テレビジョン、パーソナルコンピューター等のディスプレイとして、液晶表示装置が広く用いられている。一般に、液晶表示装置は、正面からの視認性に優れる反面、視野角が狭い。そのため、視野角を広げるための様々な工夫がなされている。その一つとして、液晶パネル等の表示体から射出される光の拡散角度を制御するための部材(以下、光拡散部材と称する)を表示体の視認側に備える構成が提案されている。
 例えば、下記の特許文献1には、光拡散層に断面がV字状の溝が設けられ、溝の一部に光吸収層が設けられた光拡散シートが開示されている。光拡散シートにおいて、光拡散層の光入射側および光射出側にはポリエチレンテレフタレート(PET:PolyEthylene Terephthalate)等からなる透明なシートが配置されている。光拡散層に対して垂直に入射した光の一部は、溝の壁面で全反射した後、射出される。これにより、光拡散シートから射出される光は拡散される。
特開2000-352608号公報
 一般に、上記のような光拡散シートに用いられるPET等の透明シートは、生産時の延伸処理により、面内で1000nm~4000nmの位相差を有している。そのため、この種の光拡散シートを液晶表示装置の光射出側に配置した場合、光拡散シートに入射した光は、複屈折を有する透明シートにより位相差を生じ、P偏光とS偏光とに分光する。その結果、P偏光とS偏光では、透明シートと空気との界面での反射率が異なるため、見る角度によって光拡散シートから射出される光の中の色光の割合が変化し、虹のようなムラが見える。以下、このムラを「虹ムラ」と称する。この虹ムラにより視認性が低下する、という問題があった。
 本発明の一つの態様は、上記の従来技術の問題点に鑑みて成されたものであり、虹ムラの発生を抑制し、視認角特性に優れた光拡散部材及びそのような光拡散部材を備えた表示装置を提供することを目的の一つとする。
 上記の目的を達成するために、本発明の一つの態様の光拡散部材は、光透過性及び複屈折性を有する基材と、前記基材の一方面に形成された波長制御層と、前記基材の前記一方面のうち前記波長制御層の形成領域以外の領域に形成された光拡散部と、光散乱部と、を備え、前記光拡散部は、前記基材に接する光射出端面と、前記光射出端面に対向し、前記光射出端面の面積よりも大きい面積を有する光入射端面と、を有するとともに前記光入射端面から前記光射出端面までの高さが前記波長制御層の層厚よりも大きい。なお、「基材の一方面のうち前記波長制御層の形成領域以外の領域に形成される光拡散部」とは、概ね波長制御層の形成領域以外の領域に形成された光拡散部を含むものである。「概ね波長制御層の形成領域以外の領域に形成された光拡散部」とは、一部が波長制御層に重なった状態に形成された光拡散部を含むことを意味する。
 本発明の一つの態様の光拡散部材において、前記基材の面内位相差は、1000nm~4000nmであってもよい。
 本発明の一つの態様の光拡散部材において、前記光散乱部が、前記基材の前記一方面と反対の他方面側に設けられていてもよい。
 本発明の一つの態様の光拡散部材において、前記光散乱部が、防眩処理層を兼ねていてもよい。
 本発明の一つの態様の表示装置は、表示体と、前記表示体の視認側に設けられ、前記表示体から入射される光の角度分布を入射前よりも広げた状態にして光を射出させる視野角拡大部材と、を含み、前記視野角拡大部材が、光透過性及び複屈折性を有する基材と、前記基材の一方面に形成された波長制御層と、前記基材の前記一方面のうち前記波長制御層の形成領域以外の領域に形成された光拡散部と、光散乱部と、を備え、前記光拡散部は、前記基材に接する光射出端面と、前記光射出端面に対向し、前記光射出端面の面積よりも大きい面積を有する光入射端面と、を有するとともに前記光入射端面から前記光射出端面までの高さが前記波長制御層の層厚よりも大きい光拡散部材で構成されており、前記光散乱部は、前記表示体よりも光出射面側のいずれかに位置している。
 本発明の一つの態様によれば、虹ムラの発生を抑制し、視認角特性に優れた光拡散部材及びそのような光拡散部材を備えた表示装置を提供することができる。
(A)第1実施形態の液晶表示装置を示す斜視図、(B)第1実施形態の液晶表示装置を示す断面図である。 同、液晶表示装置における液晶パネルを示す断面図である。 同、光拡散フィルムの作用を説明するための模式図である。 同、液晶表示装置における光拡散フィルムを示す断面図である。 同、液晶表示装置の光拡散フィルムを、製造工程順を追って示す斜視図である。 (A),(B)バックライトからの射出光と光拡散部の側面との関係を説明する説明図である。 (A),(B)虹ムラが発生する仕組みを説明する説明図である。 (A)~(C)複屈折基材からの射出光強度のシミュレーション結果を示すグラフである。 (A)第2実施形態の液晶表示装置を示す斜視図、(B)第1実施形態の液晶表示装置を示す断面図である。 同、液晶表示装置の光拡散フィルムを、製造工程順を追って示す斜視図である。 液晶パネルの画素と波長制御層のパターンとの配置関係を示す図である。 光制御部材の製造装置の一例を示す斜視図である。 光制御部材の製造装置の要部を示す斜視図である。 第3実施形態の光拡散フィルムの斜視図である。 第4実施形態の液晶表示装置を示す断面図である。 第5実施形態の液晶表示装置を示す断面図である。 第6実施形態の液晶表示装置を示す断面図である。 第7実施形態の液晶表示装置を示す断面図である。 第8実施形態の液晶表示装置を示す断面図である。
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図5を用いて説明する。
 本実施形態では、表示体として透過型の液晶パネルを備えた液晶表示装置の例を挙げて説明する。
 なお、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
 図1(A),(B)は、本実施形態の液晶表示装置を示す模式図である。図1(A)は、本実施形態の液晶表示装置1を斜め下方(背面側)から見た斜視図である。図1(B)は、本実施形態の液晶表示装置1の断面図である。
 本実施形態の液晶表示装置1(表示装置)は、図1(A)、(B)に示すように、バックライト2(光源)と第1偏光板3と液晶パネル4(光変調素子)と第2偏光板5とを有する液晶表示体6(表示体)と、光拡散フィルム7(光拡散部材)と、から構成されている。
 図1(B)では液晶パネル4を模式的に1枚の板状に図示しているが、その詳細な構造については後述する。観察者は、光拡散フィルム7が配置された図1(B)における液晶表示装置1の上側から表示を見ることになる。よって、以下の説明では、光拡散フィルム7が配置された側を視認側と称し、バックライト2が配置された側を背面側と称する。
 本実施形態の液晶表示装置1においては、バックライト2から射出された光を液晶パネル4で変調し、変調した光によって所定の画像や文字等を表示する。液晶パネル4から射出された光が光拡散フィルム7を透過すると、射出光の角度分布が光拡散フィルム7に入射する前よりも広がった状態となって、光が光拡散フィルム7から射出される。これにより、観察者は広い視野角を持って表示を視認できる。すなわち、光拡散フィルム7は、視野角拡大部材として機能する。
 以下、液晶パネル4の具体的な構成について説明する。
 ここでは、アクティブマトリクス方式の透過型液晶パネルを一例に挙げて説明する。ただし、本発明に適用可能な液晶パネルはアクティブマトリクス方式の透過型液晶パネルに限るものではない。本発明に適用可能な液晶パネルは、例えば半透過型(透過・反射兼用型)液晶パネルや反射型液晶パネルであっても良く、更には、各画素がスイッチング用薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)を備えていない単純マトリクス方式の液晶パネルであっても良い。
 図2は、液晶パネル4の縦断面図である。
 液晶パネル4は、図2に示すように、スイッチング素子基板としてのTFT基板9と、TFT基板9に対向して配置されたカラーフィルター基板10と、TFT基板9とカラーフィルター基板10との間に挟持された液晶層11と、を有する。液晶層11は、TFT基板9と、カラーフィルター基板10と、TFT基板9とカラーフィルター基板10とを所定の間隔をおいて貼り合わせる枠状のシール部材(図示せず)と、によって囲まれた空間内に封入されている。
 液晶パネル4は、例えばVA(Vertical Alignment, 垂直配向)モードで表示を行うものであり、液晶層11には誘電率異方性が負の垂直配向液晶が用いられる。
 TFT基板9とカラーフィルター基板10との間には、これら基板間の間隔を一定に保持するための柱状のスペーサー12が配置されている。なお、表示モードについては、上記のVAモードに限らず、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モード、IPS(In-Plane Switching)モード等を用いることができる。
 TFT基板9には、表示の最小単位領域である画素(図示せず)がマトリクス状に複数配置されている。TFT基板9には、複数のソースバスライン(図示せず)が、互いに平行に延在するように形成されるとともに、複数のゲートバスライン(図示せず)が、互いに平行に延在し、かつ、複数のソースバスラインと直交するように形成されている。TFT基板9上には、複数のソースバスラインと複数のゲートバスラインとが格子状に形成され、隣接するソースバスラインと隣接するゲートバスラインとによって区画された矩形状の領域が一つの画素となる。ソースバスラインは、後述するTFTのソース電極に接続され、ゲートバスラインは、TFTのゲート電極に接続されている。
 TFT基板9を構成する透明基板14の液晶層11側の面には、半導体層15、ゲート電極16、ソース電極17、ドレイン電極18等を有するTFT19が形成されている。透明基板14としては、例えばガラス基板を用いることができる。透明基板14上には、例えばCGS(Continuous Grain Silicon:連続粒界シリコン)、LPS(Low-temperature Poly-Silicon:低温多結晶シリコン)、α-Si(Amorphous Silicon:非結晶シリコン)等の半導体材料からなる半導体層15が形成されている。
 透明基板14上には、半導体層15を覆うようにゲート絶縁膜20が形成されている。ゲート絶縁膜20の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等を用いることができる。ゲート絶縁膜20上には、半導体層15と対向するようにゲート電極16が形成されている。ゲート電極16の材料としては、例えばW(タングステン)/TaN(窒化タンタル)の積層膜、Mo(モリブデン)、Ti(チタン)、Al(アルミニウム)等が用いられる。
 ゲート絶縁膜20上には、ゲート電極16を覆うように第1層間絶縁膜21が形成されている。第1層間絶縁膜21の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等を用いることができる。
 第1層間絶縁膜21上には、ソース電極17およびドレイン電極18が形成されている。ソース電極17は、第1層間絶縁膜21とゲート絶縁膜20とを貫通するコンタクトホール22を介して半導体層15のソース領域に接続されている。同様に、ドレイン電極18は、第1層間絶縁膜21とゲート絶縁膜20とを貫通するコンタクトホール23を介して半導体層15のドレイン領域に接続されている。ソース電極17およびドレイン電極18の材料としては、上述のゲート電極16と同様の導電性材料を用いることができる。第1層間絶縁膜21上に、ソース電極17およびドレイン電極18を覆うように第2層間絶縁膜24が形成されている。第2層間絶縁膜24の材料としては、上述の第1層間絶縁膜21と同様の材料、もしくは有機絶縁性材料を用いることができる。
 第2層間絶縁膜24上には、画素電極25が形成されている。画素電極25は、第2層間絶縁膜24を貫通するコンタクトホール26を介してドレイン電極18に接続されている。よって、画素電極25は、ドレイン電極18を中継用電極として半導体層15のドレイン領域に接続されている。画素電極25の材料としては、例えばITO(Indium Tin Oxide、インジウム錫酸化物)、IZO(Indium Zinc Oxide、インジウム亜鉛酸化物)等の透明導電性材料を用いることができる。この構成により、ゲートバスラインを通じて走査信号が供給され、TFT19がオン状態となったときに、ソースバスラインを通じてソース電極17に供給された画像信号が、半導体層15、ドレイン電極18を経て画素電極25に供給される。また、画素電極25を覆うように第2層間絶縁膜24上の全面に配向膜27が形成されている。この配向膜27は、液晶層11を構成する液晶分子を垂直配向させる配向規制力を有している。なお、TFTの形態としては、図2に示したトップゲート型TFTであっても良いし、ボトムゲート型TFTであっても良い。
 カラーフィルター基板10を構成する透明基板29の液晶層11側の面には、ブラックマトリクス30、カラーフィルター31、平坦化層32、対向電極33、配向膜34が順次形成されている。ブラックマトリクス30は、画素間領域において光の透過を遮断する機能を有している。ブラックマトリクス30は、例えばCr(クロム)やCr/酸化Crの多層膜等の金属、もしくはカーボン粒子を感光性樹脂に分散させたフォトレジストで形成されている。
 カラーフィルター31には、赤色(R)、緑色(G)、青色(B)の各色の色素が含まれている。TFT基板9上の一つの画素電極25には、R,G,Bのいずれか一つのカラーフィルター31が対向して配置されている。なお、カラーフィルター31は、R、G、Bの3色以上の多色構成としても良い。
 平坦化層32は、ブラックマトリクス30およびカラーフィルター31を覆う絶縁膜で構成されている。平坦化層32は、ブラックマトリクス30およびカラーフィルター31によってできる段差を緩和して平坦化する機能を有している。平坦化層32上には対向電極33が形成されている。対向電極33の材料としては、画素電極25と同様の透明導電性材料が用いられる。対向電極33上の全面には、垂直配向規制力を有する配向膜34が形成されている。
 図1(B)に戻り、バックライト2は、発光ダイオード、冷陰極管等の光源36と、光源36から射出された光の内部反射を利用して液晶パネル4に向けて射出させる導光体37と、を有する。バックライト2は、光源36が導光体37の端面に配置されたエッジライト型でも良く、光源が導光体の直下に配置された直下型でも良い。本実施形態で用いるバックライト2としては、光の射出方向を制御して指向性を持たせたバックライト、いわゆる指向性バックライトを用いることが望ましい。後述する光拡散フィルム7の光拡散部にコリメートまたは略コリメートした光を入射させる指向性バックライトを用いることでボヤケを少なくし、光の利用効率を高めることができる。上記の指向性バックライトは、導光体37内に形成する反射パターンの形状や配置を最適化することで実現できる。または、バックライト2上にルーバーを配置することで指向性を実現しても良い。バックライト2と液晶パネル4との間には、偏光子として機能する第1偏光板3が設けられている。液晶パネル4と光拡散フィルム7との間には、偏光子として機能する第2偏光板5が設けられている。
 以下、光拡散フィルム7について詳細に説明する。
 図3(A)は、光拡散フィルム7の断面図である。
 図1(A)、(B)および図3(A)に示すように、光拡散フィルム7は、基材39と、基材39の一面(視認側と反対側の面)に形成された複数の光拡散部40と、基材39の一面に形成された波長制御層41と、基材39の他面(視認側の面)に粘着層51を介して固定された光散乱層50と、から構成されている。光拡散フィルム7は、図1(B)に示すように、光拡散部40が設けられた側を第2偏光板5に向け、基材39の側を視認側に向けた姿勢で第2偏光板5上に配置されている。
 基材39としては、一般に、熱可塑性ポリマーや熱硬化性樹脂、光重合性樹脂などの樹脂類などが用いられる。基材39は、光透過性と複屈折性とを有する。基材39には、アクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコン系ポリマー、イミド系ポリマー等などからなる各種の透明樹脂製基材を用いることができる。例えばトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)フィルム、シクロオレフィンポリマー(COP)フィルム、ポリカーボネート(PC)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリエーテルサルホン(PES)フィルム、ポリイミド(PI)フィルム等の透明樹脂製基材が好ましく用いられる。
 基材39は、後述する製造プロセスにおいて、後で波長制御層41や光拡散部40の材料を塗布する際の下地となる。その観点から、基材39は、製造プロセス中の熱処理工程における耐熱性、機械的強度、耐薬品性等を備える必要がある。基材39としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどを用いることが好ましく、コストが低いことからPETフィルムを用いることがより好ましい。本実施形態では、一例として厚さが100μmのPETフィルムを用いる。
 光拡散部40は、例えばアクリル樹脂やエポキシ樹脂、シリコン樹脂等の光透過性および感光性を有する有機材料で構成されている。これら樹脂に重合開始剤、カップリング剤、モノマー、有機溶媒などを混合した透明樹脂製の混合物を用いることができる。さらに、重合開始剤は、安定剤、禁止剤、可塑剤、蛍光増白剤、離型剤、連鎖移動剤、他の光重合性単量体等のような各種の追加成分を含んでいてもよい。その他、特許第4129991号記載の材料を用いることができる。光拡散部40の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。
 光拡散部40を基材39の一面と平行な面(xy平面)で切断したときの水平断面は円形である。光拡散部40の直径は、例えば20μm程度である。複数の光拡散部40は全て同一の直径となっている。光拡散部40は、光射出端面40aとなる基材39側の水平断面の面積が小さく、基材39から離れるにつれて水平断面の面積が徐々に大きくなっている。すなわち、光拡散部40は、基材39側から見たとき、いわゆる逆テーパ状の円錐台状の形状を有する。
 光拡散部40は、光拡散フィルム7において光の透過に寄与する。すなわち、光拡散部40に入射した光は、光拡散部40のテーパ状の側面40cで全反射しつつ、光拡散部40の内部に略閉じこめられた状態で導光し、射出される。
 図1(A)に示すように、複数の光拡散部40は、基材39上に点在して配置されている。複数の光拡散部40は基材39上に点在して形成され、波長制御層41は基材39上に連続して一体に形成される。
 複数の光拡散部40は、基材39の主面の法線方向から見てランダムに(非周期的に)配置されている。したがって、隣接する光拡散部40間のピッチは一定ではない。隣接する光拡散部40間のピッチを平均した平均ピッチは、例えば25μmに設定されている。
 図1(A)、(B)および図3(A)に示すように、波長制御層41は、基材39の光拡散部40が形成された側の面のうち、複数の光拡散部40の形成領域以外の領域に形成されている。波長制御層41は、一例として、ブラックレジスト等の光吸収性および感光性を有する有機材料で構成されている。波長制御層41としては、この他、Cr(クロム)やCr/酸化Crなど金属単体、金属酸化物、もしくは金属単体と金属酸化物との多層膜等の金属膜、黒色インクに用いられるような顔料・染料、黒色樹脂、多色のインクを混合して黒色インクとしたもの、さらにこれらのインクに紫外線吸収剤を含むもの等、遮光性を有する材料を用いればよい。
 波長制御層41の層厚は、光拡散部40の光入射端面40bから光射出端面40aまでの高さよりも小さく設定されている。本実施形態の場合、波長制御層41の層厚は、一例として150nm程度である。光拡散部40の光入射端面40bから光射出端面40aまでの高さは、一例として20μm程度である。複数の光拡散部40間の間隙は、基材39の一面に接する部分に波長制御層41が存在し、それ以外の部分には空気が存在している。
 基材39の屈折率と光拡散部40の屈折率とは略同等であることが望ましい。その理由は、例えば基材39の屈折率と光拡散部40の屈折率とが大きく異なっていると、光入射端面40bから入射した光が光拡散部40から射出する際に光拡散部40と基材39との界面で不要な光の屈折や反射が生じ、所望の光拡散角度が得られない、射出光の光量が減少する、等の不具合が生じる虞があるからである。
 光拡散フィルム7は、図1(B)に示したように、基材39が視認側に向くように配置されるため、円錐台状の光拡散部40の2つの対向面のうち、面積の小さい方の面が光射出端面40aとなり、面積の大きい方の面が光入射端面40bとなる。光拡散部40の側面40cの傾斜角(光射出端面40aと側面40cとのなす角)は、一例として82°程度である。ただし、光拡散部40の側面40cの傾斜角度は、光拡散フィルム7から射出する際に入射光を十分に拡散することが可能な角度であれば、特に限定されない。
 隣接する光拡散部40間には空気が介在しているため、光拡散部40を例えばアクリル樹脂で形成したとすると、光拡散部40の側面40cはアクリル樹脂と空気との界面となる。仮に光拡散部40の周囲を他の低屈折率材料で充填したとしても、光拡散部40の内部と外部との界面の屈折率差は、外部にいかなる低屈折率材料が存在する場合よりも空気が存在する場合が最大となる。したがって、Snellの法則より、本実施形態の構成においては臨界角が最も小さくなり、光拡散部40の側面40cで光が全反射する入射角範囲が最も広くなる。その結果、光の損失がより抑えられ、高い輝度を得ることができる。
 ただし、光拡散部40の光入射端面40bに対して90度から大きくずれた角度で入射する光は、光拡散部40の側面40cに対して臨界角以下の角度で入射し、全反射することなく光拡散部40の側面40cを透過する。それでも、光拡散部40の形成領域以外の領域に波長制御層41が設けられているため、光拡散部40の側面40cを透過した光は波長制御層41で吸収される。そのため、表示のボヤケが生じたり、コントラストが低下したりすることはない。しかしながら、光拡散部40の側面40cを透過する光が増えると、光量のロスが生じ、輝度の高い画像が得られない。そこで、液晶表示装置1においては、光拡散部40の側面40cに臨界角以下で入射しないような角度で光を射出するバックライト、いわゆる指向性を有するバックライトを用いることが好ましい。
 図6(A),(B)は、バックライトから射出される光と光拡散部40の側面40cとの関係を説明する説明図である。図6(A)に示すように、θ:バックライトからの射出角度、θ:光拡散部40のテーパ角度、と定義する。光拡散部40に入射した光Laは、側面40cで全反射を生じ、基材39の表面から視認側へ射出される。このとき、入射角度の大きい光Lbは、側面40cで全反射せずに透過し、入射光の損失が発生する場合がある。
 図6(B)に、バックライトからの射出角度θと臨界角となるテーパ角度θとの関係を示す。例えば、バックライトからの射出角度θが30°の光は、光拡散部40の形成材料である透明樹脂の屈折率がn=1.5であり、光拡散部40のテーパ角度θが60°未満である場合、側面40cで全反射せずに透過し、光の損失が発生する。射出角度θが±30°以内の光を損失無く、側面40cで全反射させるためには、光拡散部40のテーパ角度は60°以上、90°未満が望ましい。
 光拡散部40の側面40cのテーパ角度θは、一例として80°±5°程度である。本実施形態においては、光拡散部40のテーパ角度θは、82°とする。本実施形態において、光拡散部40の側面40cのテーパ角度θは一定になっている。
 なお、光拡散部40の側面40cのテーパ角度θは、上記範囲に限定されず、入射光が光拡散フィルム7から射出する際に、入射光を十分に拡散することが可能な角度であればよい。テーパ角度θは、光入射端面40bから光射出端面40aに向かうに従って、連続的に変化していてもよい。
 光散乱層50は、図1(B)に示したように、基材39の他面(視認側の面)に粘着層51を介して固定されている。光散乱層50は、例えば感光性アクリル樹脂等のバインダー樹脂の内部に多数のアクリルビーズ等の光散乱体52が分散されたフィルム状部材である。光散乱層50の厚みは、一例として20μm程度である。球状の光散乱体52の球径は、一例として0.5~20μm程度である。粘着層51の厚みは、一例として25μm程度である。光散乱層50は、光拡散部40で拡散された光を前方散乱し、さらに広角側に広げる機能を有する。
 複屈折性を有するPETフィルムを基材39として用いた場合、複屈折の影響によって位相差が生じ、観察者が広角側から見た場合に虹ムラが発生し、視認性が著しく低下する。近年の液晶表示装置の高輝度化および高色純度化に伴い、この種の虹ムラが特に視認されやすくなっている。そこで、光散乱層50は、虹ムラが視認されるのを抑制する作用を奏する。この作用については後述する。
 本実施形態では、光散乱層50のヘイズ値は、一例として30に設定されている。なお、光散乱層50と基材39との間に、粘着層51が介在していなくてもよい。すなわち、光散乱層50は、基材39の他面に直接形成されていてもよい。
 なお、光散乱体52は、上記のものに限らず、アクリル系ポリマー、オレフィン系ポリマー、ビニル系ポリマー、セルロース系ポリマー、アミド系ポリマー、フッ素系ポリマー、ウレタン系ポリマー、シリコン系ポリマー、イミド系ポリマーなどからなる樹脂片、ガラスビーズ等の適宜な透明の物質で構成されていてもよい。また、これら透明物質以外でも、光の吸収の無い散乱体、反射体を用いることができる。あるいは、光散乱体52を光拡散部40内に拡散させた気泡としてもよい。個々の光散乱体52の形状は、例えば、球形、楕円球形、平板形、多角形立方体など、各種形状に形成することができる。光散乱体52のサイズも均一あるいは不均一になるように形成されていればよい。
 本実施形態の場合、図3(A)に示すように、光拡散フィルム7の最表面には光散乱層50が配置されている。これにより、光拡散部40の光入射端面40bに対して垂直に入射する光Lは、光拡散部40で拡散角度が制御された後、光散乱層50でさらに前方散乱する。このため、光散乱層50からは様々な角度の光が射出される。
 これに対して、図3(B)に示すように、光散乱層が配置されていない光拡散フィルム7Xの場合、光拡散部40Xの光入射端面40Xbに対して垂直に入射する光Lが特定の拡散角度に集中して射出される。その結果、広い角度範囲に均一に光を拡散させることができず、特定の視野角のみでしか明るい表示が得られない。
 このように、本実施形態の場合、光拡散フィルム7の最表面に光散乱層50が配置されているため、光の拡散角度を1つに集中させないようにできる。その結果、光拡散フィルム7の光拡散特性をよりなだらかにすることができ、広い視野角で明るい表示が得られる。
 本実施形態において、光拡散フィルム7は、光散乱層50の光拡散部40と反対側の面50fから入射し、バインダー樹脂などの基材と光散乱体52との界面で反射、もしくは光散乱体52で屈折して進行方向が変更された光が、前方散乱するように構成されている。このような散乱条件は、例えば光散乱層50に含まれる光散乱体52の粒径を適宜変更することにより、満足させることができる。
 図4は本実施形態の光拡散フィルムの断面図である。
 図4に示すように、本実施形態の場合、光拡散フィルム7は、光散乱層50が、当該光散乱層50の上面50fにおいて、上面50fから内部に入射し、光散乱体52により進行方向が変更された光がMie散乱するように構成されている。そのため、いわゆる後方散乱(バックスキャッタ)が生じない。よって、表面反射による表示品位やコントラストの低下を抑制することが可能となる。
 すなわち、光散乱層50は、防眩処理層(アンチグレア層)を兼ねている。本実施形態の場合、基材39の視認側の面に複数の光散乱体52を含む光散乱層50を形成しているため、光散乱層50は使用者が液晶表示装置を見る際の防眩処理層としても機能する。この構成によれば、新たに防眩処理層を設ける必要がないため、液晶表示装置の簡素化、薄型化が図れる。
 なお、光散乱層50は、上記の光散乱体52を含む構成の他、例えば基材39の表面にサンドブラスト処理やエンボス処理等を施し、基材39の表面に微細な凹凸を形成することによって作製してもよい。
 次に、上記構成の液晶表示装置1の製造方法について、図5を用いて説明する。
 以下では、光拡散フィルム7の製造工程を中心に説明する。
 液晶表示体6の製造工程の概略を先に説明すると、最初に、TFT基板9とカラーフィルター基板10をそれぞれ作製する。その後、TFT基板9のTFT19が形成された側の面とカラーフィルター基板10のカラーフィルター31が形成された側の面とを対向させて配置し、TFT基板9とカラーフィルター基板10とをシール部材を介して貼り合わせる。その後、TFT基板9とカラーフィルター基板10とシール部材とによって囲まれた空間内に液晶を注入する。そして、このようにしてできた液晶パネル4の両面に、光学接着剤等を用いて第1偏光板3、第2偏光板5をそれぞれ貼り合わせる。以上の工程を経て、液晶表示体6が完成する。
 なお、TFT基板9やカラーフィルター基板10の製造方法には従来から公知の方法が用いられるため、説明を省略する。
 最初に、図5(A)に示すように、10cm角で厚さが100μmのポリエチレンテレフタレートの基材39を準備し、スピンコート法を用いて、基材39の一面に波長制御層材料としてカーボンを含有したブラックネガレジストを塗布し、膜厚150nmの塗膜44を形成する。
 次いで、上記の塗膜44を形成した基材39をホットプレート上に載置し、温度90℃で塗膜のプリベークを行う。これにより、ブラックネガレジスト中の溶媒が揮発する。
 次いで、露光装置を用い、図5(B)に示すように、複数の遮光パターン46が設けられたフォトマスク45を介して塗膜44に光Eを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。露光量は100mJ/cmとする。本実施形態の場合、次工程で波長制御層41をマスクとして透明ネガレジストの露光を行い、光拡散部40を形成するため、フォトマスク45の遮光パターン46の位置が光拡散部40の形成位置に対応する。複数の遮光パターン46は全て直径20μmの円形パターンであり、ランダムに配置されている。そのため、隣接する遮光パターン46間の間隔(ピッチ)は一定でないが、複数の遮光パターン46間の間隔を平均した平均間隔は25μmである。
 遮光パターン46の平均間隔は液晶パネル4の画素の間隔(ピッチ)よりも小さいことが望ましい。これにより、画素内に少なくとも1つの光拡散部40が形成されるので、例えばモバイル機器等に用いる画素ピッチが小さい液晶パネルと組み合わせたときに広視野角化を図ることができる。
 上記のフォトマスク45を用いて露光を行った後、専用の現像液を用いてブラックネガレジストからなる塗膜44の現像を行い、100℃で乾燥し、図5(C)に示すように、複数の円形の開口部を有する波長制御層41を基材39の一面に形成する。円形の開口部は次工程の光拡散部40の形成領域に対応する。
 なお、本実施形態では、ブラックネガレジストを用いたフォトリソグラフィー法によって波長制御層41を形成したが、この構成に代えて、本実施形態の遮光パターン46と光透過部とが反転したフォトマスクを用いれば、ポジレジストを用いることもできる。もしくは、蒸着法や印刷法、インクジェット法等を用いてパターニングした波長制御層41を直接形成しても良い。
 次いで、図5(D)に示すように、スピンコート法を用いて、波長制御層41の上面に光拡散部材料としてアクリル樹脂からなる透明ネガレジストを塗布し、膜厚25μmの塗膜48を形成する。次いで、上記の塗膜48を形成した基材39をホットプレート上に載置し、温度95℃で塗膜48のプリベークを行う。これにより、透明ネガレジスト中の溶媒が揮発する。
 次いで、基材39側から波長制御層41をマスクとして塗膜48に拡散光Fを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。露光量は600mJ/cmとする。露光工程では、平行光または拡散光を用いる。露光装置から射出された平行光を拡散光Fとして基材39に照射する手段としては、露光装置から射出された光の光路上にヘイズ50程度の拡散板を配置すれば良い。拡散光Fで露光を行うことにより、塗膜48は、波長制御層41間の開口部から放射状に露光され、光拡散部40の逆テーパ状の側面が形成される。
 その後、上記の塗膜48を形成した基材39をホットプレート上に載置し、温度95℃で塗膜48のポストエクスポージャーベイク(PEB)を行う。
 次いで、専用の現像液を用いて透明ネガレジストからなる塗膜48の現像を行い、100℃でポストベークし、図5(E)に示すように、複数の光拡散部40を基材39の一面に形成する。
 次いで、図5(F)に示すように、多数のアクリルビーズ等の光散乱体52がアクリル樹脂等のバインダー樹脂の内部に分散されて構成された光散乱層50を、粘着層51を介して基材39の他面に貼付する。
 以上の工程を経て、本実施形態の光拡散フィルム7が完成する。
 なお、上記の例では波長制御層41や光拡散部40の形成時に液状のレジストを塗布することとしたが、この構成に代えて、フィルム状のレジストを基材39の一面に貼付するようにしてもよい。
 最後に、完成した光拡散フィルム7を、図1(A)、(B)に示すように、基材39を視認側に向け、光拡散部40を第2偏光板5に対向させた状態で、光学接着剤等を用いて液晶表示体6に貼付する。
 以上の工程により、本実施形態の液晶表示装置1が完成する。
 ここで、基材39が複屈折性を有する場合に虹ムラが発生する理由について説明する。一般に、2枚の偏光板同士の間に複屈折性を有する基材を配置すると、射出側の偏光板から射出される光の強度は、入射光の波長に応じて異なる。1枚目(入射側)の偏光板により特定の方向に振動する直線偏光となった光は、複屈折基材により常光線と異常光線とに分光される。ここで、常光線と異常光線とは基材内部における進行速度が異なり、位相差が生じる。波長に対する位相差に応じて、2枚目の偏光板に入射する光の振動方向は変化する。その結果、2枚目の偏光板を透過する光の成分の割合が波長毎に異なる。これにより、射出光の色が観察角度によって異なり、虹ムラが生じる。
 上記の虹ムラが発生する原理からすれば、複屈折基材から射出された光を観察する場合には、複屈折基材が偏光板に挟まれていないため射出光の強度は変化せず、虹ムラは発生しないように思われる。ところが、複屈折基材を見る角度によって、複屈折基材の射出端面が偏光板と同等の働きをするため、虹ムラが生じる。以下、詳細に説明する。
 図7(A),(B)は、虹ムラが発生する仕組みを説明する説明図である。図7(A)は、複屈折基材300を正面から見た場合を示した図であり、図7(B)は、複屈折基材300を斜めから見た場合を示した図である。図7(A),(B)では、複屈折基材300によって、P偏光LpとS偏光Lsとに分光された光が観察者Oに視認される様子を示している。なお、図7(A),(B)では、P偏光Lpの強度とS偏光Lsの強度とが同じ場合を示している。
 図7(A)に示すように、観察者Oが複屈折基材300を正面から見た場合、観察者Oの眼には、射出端面300aから垂直な方向に射出された光が入射する。すなわち、複屈折基材300内を射出端面300aに対して垂直な方向に進んだP偏光Lp及びS偏光Lsが、射出端面300aから射出される。射出端面300aに対して垂直に入射するP偏光Lp及びS偏光Lsは、射出端面300aでの反射率は同じである。そのため、観察者Oの眼に入るP偏光Lpの強度とS偏光Lsの強度とは、同じである。したがって、複屈折基材300から射出される光は、射出端面300aにおいて虹ムラが生じない。
 これに対して、図7(B)に示すように、観察者Oが複屈折基材300を斜めから見た場合では、観察者Oの眼には、射出端面300aから斜めに射出された光が入射する。複屈折基材300内を斜めに進行するP偏光Lp及びS偏光Lsは、共に射出端面300aにおいて反射・屈折する。
 ここで一般に、P偏光とS偏光とでは、境界面に入射する角度に依存して、反射率がそれぞれ異なることが知られている。より詳細には、S偏光の反射率の方が、P偏光の反射率よりも大きい。そのため、P偏光LpとS偏光Lsとでは、射出端面300aで反射する反射光の強度が異なる。例えば、図7(B)に示すように、S偏光Lsの反射光Lsrの強度は、P偏光Lpの反射光Lprの強度よりも大きい。したがって、射出端面300aで屈折し、観察者Oの眼に入射されるP偏光LpとS偏光Lsとでは、P偏光Lpの強度の方が大きくなる。言い換えると、複屈折基材300を斜めから見た場合においては、結果として、射出端面300aが偏光層としての機能を有することとなる。これにより、虹ムラが生じる。虹ムラは、基材の面内位相差が500nm~10000nmの範囲で生じやすく、特に基材の面内位相差が1000nm~4000nmの範囲で目視される。
 本発明者らは、液晶パネルの第2偏光板を透過した光が、複屈折性を有する基材(PETフィルム)を透過したときの射出光の強度のシミュレーションを行った。
 シミュレーション条件として、第2偏光板の偏光度を100%、基材の面内位相差(Δnd)を1.00μm、基材の偏光度を50%、基材の波長分散(450nm/590nm)を1.10、とした。第2偏光板の吸収軸と基材の遅相軸は互いに平行とした。
 図8(A)~(C)は、複屈折基材からの射出光強度のシミュレーション結果を示すグラフである。図8(A)は、方位角45°、極角0°の方向に射出する光の強度を示す。図8(B)は、方位角45°、極角60°の方向に射出する光の強度を示す。図8(C)は、方位角45°、極角80°の方向に射出する光の強度を示す。極角θ°の方向に射出した光の強度は、観察者が極角θ°の方向から液晶表示装置を見たときの光の強度に対応する。図8(A)~(C)の横軸は光の波長(nm)を示しており、図8(A)~(C)の縦軸は透過する光の相対強度(%)を示している。第2偏光板に入射する光が空気を透過した時の光の強度を100%とした。
 図8(A)に示すように、観察者が正面方向(極角0°の方向)から液晶表示装置を見た場合、S偏光とP偏光とで、複屈折基材と空気との界面での反射率に違いがないため、各波長における光の強度に変化がない。これに対して、図8(B)、(C)に示すように、観察者が斜め方向(極角60°,80°の方向)から液晶表示装置を見た場合、S偏光とP偏光とで複屈折基材と空気との界面での反射率に差があるため、波長によって光強度曲線に山(ピーク)と谷(バレイ)とが生じる。
 図8(B)に示すように、極角60°の場合、緑色領域(波長490nm付近)と赤色領域(波長700nm付近)にピークがあるため、黄色の光が視認される。図8(C)に示すように、極角80°の場合、青色領域(波長420nm付近)と緑色領域(波長540nm付近)にピークがあるため、青緑色の光が視認される。このように、観察者は見る角度によって異なる色の光を視認するため、虹ムラが見える。
 このように、光拡散フィルム7の基材39が複屈折性を有する場合、単に光拡散フィルム7を配置しただけでは、光の拡散角度分布が広角側に広がる効果が得られる反面、虹ムラが視認されるという不具合があった。これに対して、本実施形態の液晶表示装置1によれば、光拡散フィルム7を透過した光が光散乱層50により散乱される結果、異なる色の光が混合される。このように、光の混色が生じることにより虹ムラを抑制することができる。
[第2実施形態]
 以下、本発明の第2実施形態について、図9~図13を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光拡散フィルムの光拡散部および波長制御層の構成が第1実施形態と異なるのみである。したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、光拡散フィルムについてのみ説明する。
 図9(A)、(B)は、第2実施形態の液晶表示装置101を示す模式図である。図9(A)は、第2実施形態の液晶表示装置101の斜視図である。図9(B)は、第2実施形態の液晶表示装置101の断面図である。図10(A)~(E)は、光拡散フィルムを、製造工程順を追って示す斜視図である。
 図9(A)、(B)、図10(A)~(E)において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 第1実施形態では、基材39の一面に形成された複数の光拡散部40と、基材39の一面において光拡散部40の形成領域以外の領域に形成された波長制御層41と、を備え、複数の光拡散部40が基材39の一面の法線方向から見て点在して配置され、波長制御層41が光拡散部40の形成領域以外の領域に連続して形成されていた。これに対して、第2実施形態の光拡散フィルム107は、基材39の一面に形成された複数の波長制御層141と、基材39の一面において波長制御層141の形成領域以外の領域に形成された光拡散部140と、を備えている。複数の波長制御層141は基材39の一面の法線方向から見て点在して配置されている。光拡散部140は、波長制御層141の形成領域以外の領域に連続して形成されている。
 複数の波長制御層141は、基材39上に点在してランダムに(非周期的に)配置されている。それに伴い、複数の波長制御層141と同一の位置に形成される複数の中空部143も基材39上にランダムに配置されている。
 本実施形態では、各波長制御層141を基材39の法線方向から見たときの平面形状は円形である。各波長制御層141の直径は、例えば10μmである。複数の波長制御層141は、全て同一の直径となっている。複数の波長制御層141が基材39上に点在して形成されたことにより、本実施形態の光拡散部140は基材39上に連続して壁状に形成されている。
 光拡散フィルム107における波長制御層141の形成領域には、基材39の一面に平行な平面で切断したときの断面積が波長制御層141側で大きく、波長制御層141から離れるにつれて漸次小さくなる形状の中空部143が形成されている。中空部143は、基材39側から見たとき、いわゆる順テーパ状の略円錐台状の形状を有している。中空部143の内部には空気が存在している。光拡散フィルム107の中空部143以外の部分、すなわち光拡散部140が連続して存在する部分は光の透過に寄与する部分である。光拡散部140に入射した光は、当該光拡散部140と中空部143との界面で全反射しつつ、光拡散部140の内部に略閉じこめられた状態で導光し、基材39を介して外部に出射される。
 本実施形態の場合、中空部143には空気が存在しているため、光拡散部140を例えば透明樹脂で形成したとすると、光拡散部140の側面140cは透明樹脂と空気との界面となる。ここで、光拡散部140の内部と外部との界面の屈折率差は、中空部143が空気で充填されている方が、光拡散部140の周囲が他の一般的な低屈折率材料で充填されているよりも大きい。したがって、Snellの法則より、光拡散部140の側面140cで光が全反射する入射角範囲が広い。その結果、光の損失がより抑えられ、高い輝度を得ることができる。
 中空部143には、空気に代えて、窒素等の不活性ガスが充填されていてもよい。もしくは、中空部143の内部が真空状態であってもよい。
 第1実施形態と同様、光散乱層50は、基材39の光拡散部140が形成された面と反対側の面に形成されている。
 次に、上記構成の液晶表示装置101の製造方法について、図10(A)~(E)を用いて説明する。
 以下では、光拡散フィルム107の製造工程を中心に説明する。
 最初に、図10(A)に示すように、10cm角で厚さが100μmのPETフィルムの基材39を準備し、スピンコート法を用いて、基材39の一面に波長制御層材料としてカーボンを含有したブラックネガレジストを塗布し、膜厚150nmの塗膜44を形成する。
 次いで、上記の塗膜44を形成した基材39をホットプレート上に載置し、温度90℃で塗膜のプリベークを行う。これにより、ブラックネガレジスト中の溶媒が揮発する。
 次いで、露光装置を用い、平面形状が円形の複数の開口パターン146が形成されたフォトマスク145を介して塗膜44に光Lを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。露光量は100mJ/cmとする。
 図10(A)に示すように、波長制御層141の形成時に用いるフォトマスク145は、ランダムに配置された複数の円形の開口パターン146を有している。このフォトマスク145を設計する際には、最初に開口パターン146を一定のピッチで規則的に配置しておき、次にランダム関数を用いて例えば開口パターン146の中心点等、各開口パターン146の基準位置データに揺らぎを持たせ、開口パターン146の位置をばらつかせることにより、ランダムに配置された複数の開口パターン146を有するフォトマスク145を製作することができる。
 上記のフォトマスク145を用いて露光を行った後、専用の現像液を用いてブラックネガレジストからなる塗膜44の現像を行い、100℃で乾燥する。これにより、図10(B)に示すように、平面形状が円形の複数の波長制御層141を基材39の一面に形成する。本実施形態の場合、次工程でブラックネガレジストからなる波長制御層141をマスクとして透明ネガレジストの露光を行い、中空部143を形成する。そのため、フォトマスク145の開口パターン146の位置が中空部143の形成位置に対応する。円形の波長制御層141は次工程の光拡散部140の非形成領域(中空部143)に対応する。複数の開口パターン146は、全て直径10μmの円形のパターンである。
 本実施形態では、ブラックネガレジストを用いたフォトリソグラフィー法により波長制御層141を形成したが、この構成に代えて、本実施形態の開口パターン146と遮光パターンとが反転したフォトマスクを用いれば、光吸収性を有するポジレジストを用いることもできる。もしくは、蒸着法や印刷法等を用いて、パターニングした波長制御層141を直接形成してもよい。
 次いで、図10(C)に示すように、スピンコート法を用いて、波長制御層141の上面に光透過部材料としてアクリル樹脂からなる透明ネガレジストを塗布し、膜厚25μmの塗膜48を形成する。次いで、上記の塗膜48を形成した基材39をホットプレート上に載置し、温度95℃で塗膜48のプリベークを行う。これにより、透明ネガレジスト中の溶媒が揮発する。
 次いで、基材39側から波長制御層141をマスクとして塗膜48に拡散光Fを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。露光量は600mJ/cmとする。露光工程では、拡散光を用いる。露光装置から射出された平行光を拡散光Fとして基材39に照射する手段として、露光装置から射出された光の光路上にヘイズ50程度の拡散板を配置する。拡散光Fで露光を行うことにより、塗膜48は、波長制御層141の縁から波長制御層141の内側に向かうように放射状に露光される。これにより、順テーパ状の中空部143が形成され、光拡散部140の中空部143と面する部分には逆テーパ状の側面が形成される。
 その後、上記の塗膜48を形成した基材39をホットプレート上に載置し、温度95℃で塗膜48のポストエクスポージャーベイク(PEB)を行う。
 次いで、専用の現像液を用いて透明ネガレジストからなる塗膜48の現像を行い、100℃でポストベークし、図10(D)に示すように、複数の中空部143を有する光拡散部140を基材39の一面に形成する。
 次いで、図10(E)に示すように、多数のアクリルビーズ等の光散乱体52がアクリル樹脂等のバインダー樹脂の内部に分散されて構成された光散乱層50を、粘着層51を介して基材39の他面に貼付する。
 以上の工程を経て、本実施形態の光拡散フィルム107が完成する。
 光拡散フィルム107の全光線透過率は、90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られ、光拡散フィルム107に求められる光学性能を十分に発揮できる。全光線透過率は、JIS K7361-1の規定によるものである。
 なお、上記の例では波長制御層141や光拡散部140の形成時に液状のレジストを塗布することとしたが、この構成に代えて、フィルム状のレジストを基材39の一面に貼付するようにしてもよい。
 最後に、完成した光拡散フィルム107を、図9(B)に示すように、基材39を視認側に向け、光拡散部140を第2偏光板5に対向させた状態で、光学接着剤等を用いて液晶表示体6に貼付する。
 以上の工程により、本実施形態の液晶表示装置101が完成する。
 図11は、液晶パネル4の画素100と波長制御層141との配置関係を示す図である。図11に示すように、液晶パネル4の画素100と波長制御層141とを平面的に見た場合、液晶パネル4の1つのドットに対応する部分に、波長制御層141の一部が少なくとも一つ位置するようにすることが望ましい。このとき、液晶パネル4の1つの画素100は、赤(R)緑(G)青(B)の3つのドット100R、100G、100Bからなる。これにより、1つの画素100内に少なくとも1つの波長制御層141が形成されるため、1つのドット100R、100G、100Bの情報を確実に広げた状態で視認者側に射出させることができる。
 図12は、光拡散フィルム107を製造する製造装置の一例を示す概略構成図である。
 図12に示す製造装置500は、長尺の基材39をロール・トゥー・ロールで搬送し、その間に各種の処理を一貫して行うものである。製造装置500は、上述のフォトマスク145を用いたフォトリソグラフィー法に代えて、印刷法を用いて波長制御層141を形成する。
 製造装置500は、一端に基材39を送り出す送出ローラー508が設けられ、他端に基材39を巻き取る巻取ローラー509が設けられており、基材39が送出ローラー508側から巻取ローラー509側に向けて搬送される構成である。
 基材39の上方には、送出ローラー508側から巻取ローラー509側に向けて(基材39の搬送方向に沿って)印刷装置501、第1乾燥装置502、塗布装置503、現像装置504、第2乾燥装置505が、順次配置されている。
 また、塗布装置503と現像装置504との間の領域には、基材39の下方に、露光装置506が配置されている。
 印刷装置501は、基材39上に波長制御層141を印刷するためのものである。第1乾燥装置502は、印刷により形成した波長制御層141を乾燥させるためのものである。塗布装置503は、波長制御層141上に透明ネガレジストを塗布して塗膜148を形成するためのものである。現像装置504は、露光後の透明ネガレジストを現像液によって現像し、中空部143を形成するためのものである。第2乾燥装置505は、現像後の透明レジストからなる光拡散部140が形成された基材39を乾燥させるためのものである。この後さらに、光拡散部140が形成された基材39を第2偏光板5と貼り合わせて一体化させてもよい。
 露光装置506は、基材39側から透明ネガレジストの塗膜148の露光を行うためのものである。図13(A),(B)は、製造装置500のうち、露光装置506の部分だけを取り出して示す図である。
 図13(A)に示すように、露光装置506は、複数の光源507を備える。基材39の搬送に伴って、各光源507からの光Fの強度が徐々に弱くなるなど、光Fの強度が変化してもよい。あるいは、露光装置506は、図13(B)に示すように、基材39の搬送に伴って、各光源507からの露光光Fの射出角度が徐々に変化してもよい。図13(B)では、基材39の搬送方向に沿って、拡散光である露光光Fの光線軸(拡散光の光線束の中心軸)が、徐々に基材39の搬送方向に傾くように、露光光Fの射出角度が変化している。露光装置506を用いることにより、光拡散部140の側面140cの傾斜角度を所望の角度に制御することができる。さらに、平行光である露光光と拡散板とを組み合わせて拡散光を生成しても良い。
 製造装置500を用いて基材39上に光拡散部140を形成したもの(原反)を液晶パネル4に貼付する際には、原反を液晶パネル4のサイズに適宜裁断することで光拡散フィルム107を製造する。原反を裁断する際、原反では波長制御層141がランダムに形成されているため、高確率で(実用的にはほぼ確実に)波長制御層141と重なって原反を裁断することとなる。したがって、原反を裁断して得られる光拡散フィルムでは、波長制御層141と重なる中空部143が基材39の周縁部に接して形成される。
 第2実施形態の液晶表示装置101においても、光拡散フィルム107を透過した光が光散乱層50により散乱され、異なる色の光が混合される結果、虹ムラを抑制できる、といった第1実施形態と同様の効果が得られる。
 特に第2実施形態の構成によれば、光拡散フィルム107に設けられた複数の中空部143が孤立しており、光拡散部140となる部分は面内で連続した形状となっている。これにより、例えば光の拡散の度合いを高めるために中空部143の密度を高めて光拡散部140の体積を小さくしても、光拡散部140と基材39との接触面積が十分に確保できるため、光拡散部140と基材39との密着力が強い。そのため、外力等による光拡散部140の欠陥が生じ難く、所望の光拡散機能を果たすことができる。
 波長制御層141をマスクとして基材39の背面側から透明樹脂層に光Fを照射しているため、光拡散部140が波長制御層141の非形成領域に自己整合(セルフアライン)した状態で形成される。その結果、光拡散部140と波長制御層141とが重なることがなく、光透過率を確実に維持することができる。また、精密なアライメント作業が不要なため、製造に要する時間を短縮できる。
 この構成によれば、各中空部143の体積が同一であるため、透明樹脂層を現像する際に除去される樹脂の体積が一定となる。このため、各中空部143が形成される工程で各中空部143の現像スピードが一定となり、所望のテーパ形状を形成できる。その結果、光拡散フィルム107の微細形状の均一性が高くなり、歩留まりが向上する。
[第3実施形態]
 以下、本発明の第3実施形態について、図14を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光制御フィルムの構成が第1実施形態と異なる。
 したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御フィルムについて説明する。
 図14は、第3実施形態の光拡散フィルムの斜視図である。
 図14において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 第3実施形態の光拡散フィルム167は、図14に示すように、基材39と、複数の波長制御層171と、光拡散部170と、光散乱層50と、を備えている。複数の波長制御層171は、基材39の一面(視認側と反対側の面)に形成されている。光拡散部170は、基材39の一面のうち、波長制御層171の形成領域以外の領域に形成されている。光散乱層50は、基材39の視認側の面に形成されている。
 第3実施形態の光拡散フィルム167において、複数の波長制御層171は、基材39の一面に点在して設けられている。基材39の法線方向から見た波長制御層171の平面形状は細長い楕円形である。波長制御層171は、長軸と短軸とを有している。本実施形態の光拡散フィルム167では、それぞれの波長制御層171において、長軸方向の長さに対する短軸方向の長さの比が概ね等しい。複数の波長制御層171の寸法は異なるが、波長制御層171の寸法の一例として、例えば長軸方向の長さが20μmであり、短軸方向の長さが10μmである。
 波長制御層171の下方に相当する部分は、楕円錐台状の中空部173である。光拡散フィルム167は、複数の中空部173を有している。複数の中空部173以外の部分には、光拡散部170が一体となって壁状に設けられている。
 第3実施形態の光拡散フィルム167では、それぞれの波長制御層171の平面形状をなす楕円の長軸方向は概ねX軸方向に揃っている。それぞれの波長制御層171の平面形状をなす楕円の短軸方向は概ねY軸方向に揃っている。このことから、光拡散部170の側面170cの向きを考えると、光拡散部170の側面170cのうち、X軸方向に沿った側面170cの割合はY軸方向に沿った側面170cの割合よりも多い。そのため、X軸方向に沿った側面170cで反射してY軸方向に拡散する光は、Y軸方向に沿った側面170cで反射してX軸方向に拡散する光よりも多くなる。したがって、光拡散フィルム167の拡散性が強い方位角方向は、波長制御層171の短軸方向であるY軸方向となる。
 波長制御層171の平面形状は、円形、多角形、半円等の形状が含まれていてもよい。波長制御層171の一部が重なって形成されていてもよいし、波長制御層171の一部が欠けていてもよいし、波長制御層171の輪郭に凹凸があってもよい。波長制御層171は、全てが同じ寸法、同じ形状でもよいし、一部の波長制御層171の寸法や形状が異なっていてもよい。
 第3実施形態の液晶表示装置においても、光拡散フィルム167を透過した光が光散乱層50により散乱され、異なる色の光が混合される結果、虹ムラを抑制できるといった第1実施形態と同様の効果が得られる。
 特に第3実施形態の構成によれば、光拡散フィルム167の光拡散性が面内で異方性を有している。上記の例で言えば、Y軸方向への光拡散性はX軸方向への光拡散性に比べて強い。したがって、光拡散フィルム167の光拡散性の異方性を、個々の液晶パネルの方位角方向における視角特性と合わせ込むことにより、表示品位に優れた液晶表示装置を提供することができる。
[第4実施形態]
 以下、本発明の第4実施形態について、図15を用いて説明する。
 第4実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光散乱体の位置が第1実施形態と異なる。
 したがって、第4実施形態では、液晶表示装置の基本構成の説明は省略する。
 図15は、第4実施形態の液晶表示装置の断面図である。
 図15において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 第4実施形態の液晶表示装置181においては、図15に示すように、光散乱体52は、複屈折性を有する基材39の内部に含まれている。したがって、基材39は、複屈折性を有するとともに、入射光を散乱させる機能も有する。その他の構成は、第1実施形態と同様である。
 第4実施形態の液晶表示装置181においても、光拡散フィルム182を透過した光が基材39中に含まれる光散乱体52により散乱され、異なる色の光が混合される結果、虹ムラを抑制できる、といった第1実施形態と同様の効果が得られる。また、第1実施形態よりも光拡散フィルム182を薄くすることができる。
[第5実施形態]
 以下、本発明の第5実施形態について、図16を用いて説明する。
 第5実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光散乱体の位置が第1実施形態と異なる。
 したがって、第5実施形態では、液晶表示装置の基本構成の説明は省略する。
 図16は、第5実施形態の液晶表示装置の断面図である。
 図16において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 第5実施形態の液晶表示装置191においては、図16に示すように、光散乱体52は、光拡散部40の内部に含まれている。光拡散部40は、自身の側面40cで入射光を反射するとともに、内部を進行する光を散乱させる機能を有する。
 第5実施形態の液晶表示装置191においても、光拡散フィルム192を透過する光が光拡散部40中に含まれる光散乱体52により散乱され、異なる色の光が混合される結果、虹ムラを抑制できる、といった第1実施形態と同様の効果が得られる。
[第6実施形態]
 以下、本発明の第6実施形態について、図17を用いて説明する。
 第6実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光散乱体の位置が第1実施形態と異なる。
 したがって、第6実施形態では、液晶表示装置の基本構成の説明は省略する。
 図17は、第6実施形態の液晶表示装置の断面図である。
 図17において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 第6実施形態の液晶表示装置201においては、図17に示すように、光散乱体52を含む光散乱層50は、複屈折性を有する基材39と光拡散部40との間、および基材39と波長制御層41との間に形成されている。言い換えると、光拡散フィルム202において、光散乱層50は、基材39の光拡散部40および波長制御層41が形成される側の面の全域に形成されている。
 第6実施形態の液晶表示装置201においても、光拡散部40を透過した光が光散乱層50により散乱され、異なる色の光が混合される結果、虹ムラを抑制できる、といった第1実施形態と同様の効果が得られる。
[第7実施形態]
 以下、本発明の第7実施形態について、図18を用いて説明する。
 第7実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光散乱体の位置が第1実施形態と異なる。
 したがって、第7実施形態では、液晶表示装置の基本構成の説明は省略する。
 図18は、第7実施形態の液晶表示装置の断面図である。
 図18において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 第7実施形態の液晶表示装置211において、図18に示すように、光散乱体52は、光拡散フィルム212と液晶表示体6とを接合する粘着剤層213の内部に含有されている。
 第7実施形態の液晶表示装置211においては、光拡散フィルム212に入射する前の時点で粘着剤層213中に含まれる光散乱体52により光が散乱され、虹ムラを抑制できる、といった第1実施形態と同様の効果が得られる。
[第8実施形態]
 以下、本発明の第8実施形態について、図19を用いて説明する。
 第8実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、タッチパネルを備えた点が第1実施形態と異なる。したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、タッチパネルの構成について説明する。
 図19において、第1実施形態で用いた図面と共通の構成要素には同一の符号を付し、その詳細な説明は省略する。
 第8実施形態の液晶表示装置90においては、図19に示すように、バックライト2から光拡散フィルム7までの構成は第1実施形態と同一である。光拡散フィルム7を構成する基材39の視認側にタッチパネル91が配置されている。以下の説明では、光拡散フィルム7を構成する基材39のことを「光拡散フィルム用基材」と称する。タッチパネル91は、光拡散フィルム用基材39の周縁部において、両面テープ等の接着材92によって光拡散フィルム用基材39上に貼付されている。タッチパネル91と光拡散フィルム用基材39との間には接着材92の厚さ分の間隙が形成されている。すなわち、タッチパネル91と光拡散フィルム用基材39との間には空気層93が存在している。
 タッチパネル91は、基材94と、位置検出用電極95と、を有している。以下の説明では、タッチパネル91を構成する基材94を「タッチパネル用基材」と称する。ガラス基板などからなるタッチパネル用基材94の一面に、ITO、ATO(Antimony-doped Tin Oxide:アンチモンがドープされた錫酸化物)等の透明導電材料からなる位置検出用電極95が形成されている。位置検出用電極95は、ITO、ATO等のスパッタリングにより形成されたものであり、数百~2kΩ/□程度の一様なシート抵抗を有している。
 光散乱層50は、タッチパネル用基材94の視認側の面に設けられている。光拡散フィルム用基材39が複屈折性を有する場合であっても、光散乱層50は、複屈折性を有する光拡散フィルム用基材39と必ずしも接触していなくてもよく、第2偏光板5よりも視認側に位置していれば離れた場所にあってもよい。
 本実施形態では、静電容量方式のタッチパネル91が用いられている。静電容量方式のタッチパネル91では、例えばタッチパネル91を平面視したときの位置検出用電極95の4つの角部に微小な電圧が印加されている。位置検出用電極95上方の任意の位置に指を触れると、指を触れた点が人体の静電容量を介して接地される。これにより、接地点と4つの角部との間の抵抗値に応じて各角部での電圧が変化する。位置検出回路がこの電圧変化を電流変化として計測し、その計測値から接地点、すなわち指が触れた位置を検出する。
 なお、本実施形態に適用可能なタッチパネルは静電容量方式に限ることはなく、抵抗膜方式、超音波方式、光学方式等、任意のタッチパネルが適用可能である。
 本実施形態の液晶表示装置90によれば、光拡散フィルム7の視認側に光散乱層50を備えているので、虹ムラの発生が抑えられ、さらに情報入力機能を備えた液晶表示装置を実現することができる。例えば使用者が広視野角の画像を見ながら指やペンでタッチパネル91に触れることによって、情報処理装置等に対話形式で情報を入力することが可能になる。
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、光拡散フィルムは、複屈折性を有する基材上の全面に光拡散部や波長制御層が形成されてもよいし、基材上の少なくとも周縁部の一部に光拡散部や波長制御層が形成されていない領域があってもよい。この場合、光散乱層は、光拡散部および波長制御層の形成領域と同じ面積で形成されるか、もしくは光拡散部および波長制御層の形成領域よりも大きい面積で形成されるか、のいずれかの形態を採る。光拡散フィルムは、光拡散部および波長制御層の形成領域の縁が液晶パネルの表示領域の縁よりも外側に位置するように液晶パネルに貼合される。
 その他、光拡散フィルムおよび表示装置を構成する各構成要素の配置、材料、形状、寸法、数等の具体的な例示については、適宜変更が可能である。
 本発明は、液晶表示装置、有機エレクトロルミネッセンス表示装置、プラズマディスプレイ等の各種表示装置に利用可能である。
 1,90,101,181,191,201,211  液晶表示装置(表示装置)
 6  液晶表示体(表示体)
 7,107,167,182,192,202,212  光拡散フィルム(光拡散部材)
 39  基材
 40,140,170  光拡散部
 40a  光射出端面
 40b  光入射端面
 41,141,171  波長制御層
 50  光散乱層(光散乱部)

Claims (5)

  1.  光透過性及び複屈折性を有する基材と、前記基材の一方面に形成された波長制御層と、前記基材の前記一方面のうち前記波長制御層の形成領域以外の領域に形成された光拡散部と、光散乱部と、を備え、
     前記光拡散部は、前記基材に接する光射出端面と、前記光射出端面に対向し、前記光射出端面の面積よりも大きい面積を有する光入射端面と、を有するとともに前記光入射端面から前記光射出端面までの高さが前記波長制御層の層厚よりも大きい光拡散部材。
  2.  前記基材の面内位相差は、1000nm~4000nmである請求項1に記載の光拡散部材。
  3.  前記光散乱部が、前記基材の前記一方面と反対の他方面側に設けられている請求項1又は2に記載の光拡散部材。
  4.  前記光散乱部が、防眩処理層を兼ねる請求項3に記載の光拡散部材。
  5.  表示体と、前記表示体の視認側に設けられ、前記表示体から入射される光の角度分布を入射前よりも広げた状態にして光を射出させる視野角拡大部材と、を含み、
     前記視野角拡大部材が、光透過性及び複屈折性を有する基材と、前記基材の一方面に形成された波長制御層と、前記基材の前記一方面のうち前記波長制御層の形成領域以外の領域に形成された光拡散部と、光散乱部と、を備え、前記光拡散部は、前記基材に接する光射出端面と、前記光射出端面に対向し、前記光射出端面の面積よりも大きい面積を有する光入射端面と、を有するとともに前記光入射端面から前記光射出端面までの高さが前記波長制御層の層厚よりも大きい光拡散部材で構成されており、
     前記光散乱部は、前記表示体よりも光射出面側のいずれかに位置している表示装置。
PCT/JP2014/067068 2013-07-04 2014-06-26 光拡散部材及び表示装置 WO2015002072A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/902,380 US20160370512A1 (en) 2013-07-04 2014-06-26 Light diffusing member and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013141142A JP2015014692A (ja) 2013-07-04 2013-07-04 光拡散部材及び表示装置
JP2013-141142 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015002072A1 true WO2015002072A1 (ja) 2015-01-08

Family

ID=52143650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067068 WO2015002072A1 (ja) 2013-07-04 2014-06-26 光拡散部材及び表示装置

Country Status (3)

Country Link
US (1) US20160370512A1 (ja)
JP (1) JP2015014692A (ja)
WO (1) WO2015002072A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242204B1 (en) 2020-10-30 2022-02-08 Asgco Manufacturing, Inc. Manually-adjustable lifter apparatus for conveyor belts

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178321A1 (ja) * 2014-05-21 2015-11-26 シャープ株式会社 液晶表示装置、光制御部材および光制御部材作製用母材
CN104699309B (zh) * 2015-03-31 2017-06-13 合肥京东方光电科技有限公司 一种触摸屏、其制作方法及显示装置
KR101809259B1 (ko) 2015-11-16 2017-12-14 연세대학교 산학협력단 디스플레이 패널 및 그 장치
CN109377871B (zh) * 2018-11-07 2021-01-22 合肥京东方光电科技有限公司 一种背光模组、其制作方法及显示装置
KR20200053319A (ko) * 2018-11-08 2020-05-18 삼성전자주식회사 백라이트 유닛 및 이를 포함하는 홀로그래픽 디스플레이 장치
JP2021086021A (ja) * 2019-11-28 2021-06-03 日東電工株式会社 光学積層体および画像表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199176A (ja) * 2011-03-23 2012-10-18 Dainippon Printing Co Ltd 光学シート及び面光源装置
JP2012212119A (ja) * 2011-03-18 2012-11-01 Sumitomo Chemical Co Ltd 偏光子保護フィルム
JP2013073055A (ja) * 2011-09-28 2013-04-22 Dainippon Printing Co Ltd 光学シート、面光源装置および表示装置
WO2013061964A1 (ja) * 2011-10-28 2013-05-02 シャープ株式会社 表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636355B2 (en) * 2000-12-27 2003-10-21 3M Innovative Properties Company Microstructured rear projection screen
KR101240091B1 (ko) * 2004-12-28 2013-03-06 이시하라 산교 가부시끼가이샤 흑색 산질화 티타늄
US8114488B2 (en) * 2007-11-16 2012-02-14 Guardian Industries Corp. Window for preventing bird collisions
KR101751996B1 (ko) * 2010-04-06 2017-06-28 엘지전자 주식회사 디스플레이 장치
TWI523607B (zh) * 2010-04-15 2016-03-01 陶氏農業科學公司 使用含有聚二氯乙烯(pvdc)蒸氣障壁之多層薄膜的農用薰蒸技術
JP6275935B2 (ja) * 2010-09-17 2018-02-07 日東電工株式会社 光拡散素子、光拡散素子付偏光板、およびこれらを用いた液晶表示装置
US9638840B2 (en) * 2011-05-13 2017-05-02 Sharp Kabushiki Kaisha Light diffusion member, method for producing same, and display device
JP6078904B2 (ja) * 2013-02-22 2017-02-15 シャープ株式会社 光拡散部材、光拡散部材の製造方法、及び表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212119A (ja) * 2011-03-18 2012-11-01 Sumitomo Chemical Co Ltd 偏光子保護フィルム
JP2012199176A (ja) * 2011-03-23 2012-10-18 Dainippon Printing Co Ltd 光学シート及び面光源装置
JP2013073055A (ja) * 2011-09-28 2013-04-22 Dainippon Printing Co Ltd 光学シート、面光源装置および表示装置
WO2013061964A1 (ja) * 2011-10-28 2013-05-02 シャープ株式会社 表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11242204B1 (en) 2020-10-30 2022-02-08 Asgco Manufacturing, Inc. Manually-adjustable lifter apparatus for conveyor belts

Also Published As

Publication number Publication date
US20160370512A1 (en) 2016-12-22
JP2015014692A (ja) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6249420B2 (ja) 光拡散部材およびその製造方法、表示装置およびその製造方法
US8926157B2 (en) Light diffusing member and method of manufacturing the same, and display device
WO2015002072A1 (ja) 光拡散部材及び表示装置
WO2012118137A1 (ja) 光拡散部材およびその製造方法、表示装置
JP5916245B2 (ja) 液晶表示装置、光制御フィルム、表示装置
WO2013146353A1 (ja) 光制御フィルム、表示装置、および光制御フィルムの製造方法
WO2012157517A1 (ja) 光拡散部材およびその製造方法、表示装置
WO2012053501A1 (ja) 光拡散部材およびその製造方法、表示装置
JP6078904B2 (ja) 光拡散部材、光拡散部材の製造方法、及び表示装置
WO2014024815A1 (ja) 光拡散タッチパネルおよびその製造方法、表示装置
JP6167429B2 (ja) 液晶表示装置及び液晶表示装置の製造方法
JP6212825B2 (ja) 偏光板付き光拡散部材、偏光板付き光拡散部材の製造方法、及び表示装置
JP6103377B2 (ja) 表示装置及びその製造方法
JP5860142B2 (ja) 光制御部材およびその製造方法、表示装置
WO2014092017A1 (ja) 光拡散部材及び表示装置
JP2014013315A (ja) 光制御部材およびその製造方法、表示装置
JP2013222157A (ja) 光拡散部材および表示装置
JP2014092662A (ja) 表示装置および表示装置の製造方法
WO2015005284A1 (ja) 光拡散部材及び表示装置
JP2013225008A (ja) 光制御フィルム、表示装置、および光制御フィルムの製造方法
JP6101981B2 (ja) 偏光板付き光拡散部材および表示装置
JP2014032324A (ja) 光拡散部材、光拡散部材の製造方法、及び表示装置
JP2015094776A (ja) 光拡散部材および表示装置
JP2013228528A (ja) 光制御フィルム、表示装置、および光制御フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14902380

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819374

Country of ref document: EP

Kind code of ref document: A1