WO2015001644A1 - 遠心圧縮機 - Google Patents

遠心圧縮機 Download PDF

Info

Publication number
WO2015001644A1
WO2015001644A1 PCT/JP2013/068374 JP2013068374W WO2015001644A1 WO 2015001644 A1 WO2015001644 A1 WO 2015001644A1 JP 2013068374 W JP2013068374 W JP 2013068374W WO 2015001644 A1 WO2015001644 A1 WO 2015001644A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake
upstream
housing
impeller wheel
intake air
Prior art date
Application number
PCT/JP2013/068374
Other languages
English (en)
French (fr)
Inventor
秉一 安
鈴木 浩
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2014501359A priority Critical patent/JP5622965B1/ja
Priority to PCT/JP2013/068374 priority patent/WO2015001644A1/ja
Priority to CN201380077809.8A priority patent/CN105358837B/zh
Priority to EP13888592.6A priority patent/EP3018361B1/en
Priority to US14/902,139 priority patent/US10337522B2/en
Publication of WO2015001644A1 publication Critical patent/WO2015001644A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet

Definitions

  • the present invention relates to a centrifugal compressor provided with an impeller wheel rotated by a rotating shaft, and in particular to a centrifugal compressor incorporated in an exhaust turbocharger.
  • the maximum intake flow rate corresponding to the rotational speed of the impeller wheel has a limit, and is referred to as a choke phenomenon.
  • the graph of performance characteristics comparison chart with the intake flow rate on the horizontal axis and the pressure ratio on the vertical axis is as shown in the schematic diagram 10 .
  • the surge phenomenon a part of the intake air is taken out from the flow passage downstream of the impeller upstream edge of the impeller wheel, and the impeller wheel is bypassed and returned to the intake passage upstream of the impeller upstream edge
  • Patent document 1 is disclosed in order to solve such a demand.
  • the centrifugal compressor is provided with a guide vane for generating a swirling flow in intake air on the upstream side of the impeller wheel, and a swirling flow generating means for blowing a swirling flow of intake air on the impeller wheel or a housing of a centrifugal compressor.
  • a technique in which a recirculation flow path is provided for recirculating a part of the intake air drawn into the impeller wheel to the intake passage upstream of the swirl flow generation means.
  • the impeller wheel 101 of the centrifugal compressor 100 includes a plurality of rotatable vanes 104 within a housing 102, the housing 102 having an inner sidewall disposed proximate a radially outer edge 104a of the vanes 104.
  • the inlet of the centrifugal compressor 100 includes an outer annular wall 107 forming an intake port 108 and an inner annular wall 109 extending into the outer annular wall 107 to form an inducer portion 110.
  • a circulating gas flow passage 111 is formed between the outer annular wall 107 and the inner annular wall 109.
  • the downstream opening 113 establishes communication between the housing surface 105 through which the blades 104 pass and the circulating gas flow passage 111.
  • the upstream opening connects the circulation gas flow passage 111 and the inducer portion 110, that is, the intake port 108.
  • a guide wing 114 is provided inside the inducer portion 110 of the upstream opening.
  • the guide vanes 114 cause a leading swirl in the intake air passing through the inducer portion 110.
  • Patent Document 1 accommodates an intake guide vane device in an inner space portion of the inner annular wall 109.
  • the intake guide vane system comprises a plurality of guide vanes 114 extending radially between a central nose cone 115 and an inner annular wall 109.
  • the guide vanes 114 induce a leading swirl so that the intake flows in a direction promoting rotation with respect to the rotational direction of the impeller wheel 101, and the leading swirl improves the surge margin (surge limit) of the centrifugal compressor. ing. (Refer to recirculation path + guide wing in Figure 10)
  • a recirculation passage (cavity) extending in the flow passage direction of the intake passage is formed along the circumferential direction in the housing on the outer periphery of the intake passage.
  • the recirculation passage has an air intake port opened at the middle portion of the impeller wheel, and an intake air outlet opened at the intake passage on the upstream side of the impeller wheel and opened toward the rotational axis of the impeller wheel.
  • a plurality of inlet guide vanes are circumferentially spaced from each other in the housing between the impeller wheel front edge (long blade) of the intake passage and the intake outlet.
  • the inlet guide vanes are disposed radially outward from the outer peripheral end of the impeller wheel front edge, and are disposed inclined with respect to the rotation axis.
  • the inclination direction of the inlet guide vanes is arranged to give the intake air flowing through the intake passage a swirl in the direction opposite to the rotational direction of the impeller wheel.
  • JP 2004-332733 A Unexamined-Japanese-Patent No. 2010-270641
  • the nose cone 115 is located in the central space in the inner annular wall in front of the impeller wheel 101. It is clear that the nose cone 115 increases the intake resistance with respect to the intake flow and reduces the choke flow rate.
  • the manufacture of the nose cone 115 and the increase in the number of steps for attaching the guide vanes 114 to the nose cone 115 with high accuracy are accompanied. That is, in the guide wing 114 for generating the swirling flow, a cone-like member for guiding the intake air to the guide wing 114 is provided at the central portion, and the air resistance is increased, resulting in a problem of reduced choke flow rate. Further, if the inner annular wall 109 is extended upstream in order to lengthen the circulating gas flow passage 111, there is a problem that the air introduced into the guide vanes is disturbed by the interference with the inlet suction air.
  • Patent Document 2 in particular, FIG. 4
  • the intake flow outlet flowing out of the recirculation passage into the intake passage flows out toward the rotational axis of the compressor wheel. Therefore, since the air flows into the intake passage at an angle and collides with the intake air, the intake flow in the intake passage is disturbed and the flow resistance of the intake is increased.
  • the inclination direction of the inlet guide vanes is arranged to give the intake air flowing through the intake passage a swirl in the direction opposite to the rotational direction of the impeller wheel, the flow of intake air flowing into the impeller wheel is disturbed.
  • the loss of intake flow increases, resulting in a decrease in surging and choke flow, and a deterioration in compression efficiency.
  • the present invention is an invention made in view of the above-described problems, and reduces the flow resistance of intake air flowing through the intake passage to suppress a reduction in choke flow rate and improve a surge margin to operate a centrifugal compressor.
  • the aim is to expand the scope.
  • the present invention provides a housing having an inlet opening in the rotational axis direction of a centrifugal compressor and an intake passage connected to the inlet.
  • An impeller wheel rotatably disposed within the housing about the rotation axis and compressing intake air flowing from the air inlet;
  • Parallel flow generation means disposed between the intake and the impeller wheel, for rectifying the intake air flowing in from the intake parallel to the rotation axis direction;
  • a recirculation passage communicating the outer peripheral portion of the impeller wheel and the recirculation port opened to the intake passage on the upstream side of the impeller wheel.
  • the parallel flow generation means has a plurality of guide vanes arranged circumferentially along the inner peripheral wall of the housing, and the guide vanes rectify the intake air flowing in from the intake port in parallel to the rotation axis direction A parallel flow generation unit, A space surrounded by the parallel flow generation unit, and a central intake circulation unit opening in the rotation axis direction so that the intake air flowing in from the intake port flows through;
  • a centrifugal compressor characterized in that an intake and discharge direction from the recirculation port is directed to the parallel flow generation unit.
  • the parallel flow generation unit rectifies the intake air flowing in from the intake port and the intake air from the recirculation port in the direction of the rotation axis in the parallel flow generation unit, and recirculates the same to the impeller wheel.
  • the straightness of the intake flow can be enhanced, the intake flow resistance can be reduced, the amount of intake air flowing into the impeller wheel can be increased, and the compression efficiency of the centrifugal compressor can be improved. . Therefore, it is possible to improve the surge limit generated when the intake flow rate is low and to suppress the reduction in the choke limit.
  • the intake and outflow direction from the recirculation port is such that the intake is parallel to the rotational axis direction, and the upstream end edge of the guide vane in a direction perpendicular to the rotational axis direction And at least a part of them should intersect with each other.
  • the recirculated intake air is surely and in contact with the guide vanes of the parallel flow generating means, thereby improving the rectification efficiency of the recirculated intake air to reduce the flow resistance, thereby achieving the impeller wheel.
  • Inflow can be increased.
  • it prevents collision with the intake air flowing in the central portion of the intake passage to cause disturbance, and prevents an increase in the flow resistance of the intake air.
  • the recirculation port is provided at an intermediate portion between the guide vanes provided adjacent to each other with an interval in the circumferential direction of the intake passage in the circumferential direction.
  • the recirculation port is disposed in the middle portion between the guide vanes and the guide vanes in the circumferential direction, the jetted intake air does not strongly contact the guide surface of the guide vanes. Since it is easy to form a flow flowing parallel to the rotation axis, the flow resistance of the intake air in the guide vane portion can be reduced.
  • the central intake air flow portion may have an annular guide portion that circumferentially connects the inner peripheral end of the guide vane.
  • the central portion of the intake passage is an annular guide portion having a space in which no flow resistance for intake occurs, a large amount of intake can be guided to the central portion of the impeller wheel.
  • the annular guide section divides the intake air passing between the guide vanes on the outer peripheral side of the annular guide section and the flow of intake air passing through the annular guide section, and the intake air passing through the annular guide section Since there is no interference of the intake air passing between the guide vanes, the flow resistance of the intake air can be reduced and improved, the amount of intake air flowing into the impeller wheel is increased, and the surge is improved. Furthermore, since the guide vanes are supported on both sides between the annular guide portion and the housing inner circumferential surface (intake passage inner circumferential surface), the rigidity of the guide vanes is maintained.
  • the impeller wheel side end edge of the annular guide portion protrudes toward the impeller wheel side from the impeller wheel side end edge of the guide vane.
  • the impeller wheel side end edge of the annular guide portion is protruded from the impeller wheel side end edge of the guide vane toward the impeller wheel side to be longer, thereby reducing disturbance of the intake air flowing inside the annular guide portion.
  • the flow in the rotational axis direction can be stabilized.
  • the intake air flowing along the guide vanes is rectified by the guide vanes, but causes some disturbance at a portion immediately after passing through the guide vanes. Therefore, by causing the impeller wheel side edge of the annular guide portion to project to the impeller wheel side from the impeller wheel side edge of the guide vane, the intake air flowing inside the annular guide portion is interfered by the intake air flowing between the guide vanes Can be reduced.
  • the recirculation flow path is divided by a partition in the circumferential direction of the intake passage and along the rotation axis direction.
  • the intake air flowing into the recirculation flow path from the outer peripheral portion of the impeller wheel has an inertial force in the rotational direction of the impeller wheel. Therefore, the charge air is rectified into a flow parallel to the rotation axis by the partition in the recirculation flow passage and is made to flow out from the recirculation port into the intake passage, thereby intersecting the guide vanes in the intake passage in the circumferential direction. Reduce flow resistance by the guide vanes. Furthermore, the noise generated when the intake air is rectified can be suppressed by reducing the amount of intersection with the guide vanes.
  • the guide vanes are formed in a trapezoidal shape in which the length along the rotation axis direction becomes shorter as approaching the rotation axis side of the rotation shaft from the inner peripheral surface of the intake passage. Good to have.
  • the intake air flowing out from the recirculation port into the intake passage has less influence on the intake air flowing from the intake port as it approaches the rotation axis side from the inner circumferential surface of the intake passage. Therefore, the flow resistance of the intake can be reduced by shortening the length of the guide vanes in the rotational axis direction.
  • the rotation axis side end edge of the guide vane is located closer to the rotation axis than the outer periphery of the upstream side end edge of the impeller wheel.
  • the axial side edge of the guide vane is positioned on the center side of the intake passage from the outer periphery of the upstream side edge of the impeller wheel, the flow rectified in the rotational axis direction by the guide vane is the impeller wheel Can be efficiently led to the upstream side edge of the valve, and the flow resistance of the intake can be reduced.
  • the parallel flow generation means has the recirculation port and an annular casing that constitutes a part of the recirculation flow path, the annular guide portion, the guide vane, and one end.
  • the connection portion is connected to the upstream side of the recirculation port and the other end is integrally connected to the upstream end of the annular guide portion.
  • the rigidity improvement of the parallel flow generating member can be achieved. Furthermore, since the intake air flowing through the intake passage does not directly hit the recirculation port by the connecting member, the intake and outflow amount from the recirculation flow passage can be increased.
  • the annular casing, the annular guide portion, the guide vanes, and the connecting member it is possible to reduce the number of processing steps, the assembly accuracy and the cost of the centrifugal compressor.
  • the housing is divided into an upstream housing having the intake passage and a downstream housing for housing the impeller wheel,
  • the upstream housing defines an intake passage in a junction surface portion with the downstream housing, and an annular shape centering on the rotation shaft on the outer peripheral side and extending on the upstream side of the intake passage.
  • first partition forming a recessed groove; It extends downstream of the intake passage at a portion of the downstream housing facing the first recessed groove, A second concave groove annularly arranged around the rotation shaft having a communication hole communicating with the outer peripheral portion of the impeller wheel is separated from the intake passage and loosely fitted in the first concave groove, A second partition wall having an annular projecting portion arranged to provide a gap on the outer peripheral surface side and the inner peripheral surface side with respect to the first recessed groove; The guide vanes are provided in the gap between the first partition and the second partition, and the intake air flowing from the communication hole is the second groove, the first groove, and the outer periphery of the second partition.
  • the clearance from the side, and the clearance between the inner peripheral side of the second partition and the outer peripheral side of the first partition are sequentially passed, rectified by the guide vanes in parallel with the rotational axis direction, and directed to the impeller wheel side. It is good to let it flow out to the intake passage.
  • the guide vanes for rectifying the intake air from the recirculation flow path are accommodated in the housing main body, thereby increasing the flow path cross-sectional area of the central intake path portion and reducing the intake flow resistance.
  • the choke flow rate can be increased.
  • centrifugal compressor which reduces the flow resistance of intake air flowing through the intake passage to improve the surge margin and expand the working range of the centrifugal compressor while suppressing the reduction of the choke flow rate.
  • FIG. 2 shows a cross-sectional view taken along the line AA of FIG.
  • FIG. 2 shows a cross-sectional view taken along the line BB in FIG.
  • generation means in 1st Embodiment of this invention is shown.
  • the principal part sectional view of the rotation axis direction of the centrifugal compressor of a 2nd embodiment of the present invention is shown.
  • FIG. 6 is a cross-sectional view taken along line AA of FIG.
  • FIG. 9 is a cross-sectional view taken along the line AA of FIG. 8;
  • FIG. 1 shows a comparison of the general performance characteristics of a centrifugal compressor.
  • the cross-sectional explanatory drawing of the centrifugal compressor of a prior art is shown.
  • FIG. 1 shows a cross-sectional view of the main part in the rotational axis direction of a centrifugal compressor 19 in which the present invention is implemented.
  • a turbocharger 1 including the centrifugal compressor 19 includes a turbine housing 5 for housing a turbine rotor 3 driven by exhaust gas of the engine, a rotation shaft 9 for transmitting the rotational force of the turbine rotor 3 to an impeller wheel 7;
  • a bearing housing 13 rotatably supports the rotating shaft 9 via a bearing 11, an impeller wheel 7 for sucking and compressing air, and a compressor housing 15 which is a housing for accommodating the impeller wheel 7.
  • a scroll passage 17 formed in a spiral shape is formed on the outer periphery of the turbine housing 5 on the outer periphery of the turbine rotor 3, and exhaust gas from the engine flows from the outer periphery to the center of the rotating shaft 9, and then the rotating shaft It is discharged in the direction to rotate the turbine rotor 3.
  • the impeller wheel 7 is rotatably supported in the compressor housing 15 around the rotation axis line CL of the rotation shaft 9.
  • the intake air compressed by the impeller wheel 7 is guided by the intake passage 21 coaxially extending in the direction of the rotation axis CL.
  • an intake port 23 continuous with the intake passage 21 opens at an end portion on the upstream side of the intake passage 21.
  • the intake port 23 is tapered in diameter toward the end so that intake can be easily introduced.
  • a diffuser 25 extending in a direction perpendicular to the rotation axis CL is formed on the outer side of the impeller wheel 7.
  • a spiral air passage 27 is provided on the outer periphery of the diffuser 25. The spiral air passage 27 forms an outer peripheral portion of the compressor housing 15.
  • the impeller wheel 7 is provided with a plurality of impellers 31 which are rotationally driven together with a hub portion 29 which is rotationally driven about the rotation axis CL.
  • the hub portion 29 is attached to the rotating shaft 9, and a plurality of impellers 31 are provided on the radially outer surface.
  • the impeller 31 is rotationally driven to compress air taken in from the air inlet 23 and passed through the air intake passage 21.
  • the shape of the impeller 31 is not particularly limited.
  • the impeller 31 is provided with a front edge 31a which is an upstream edge, a rear edge 31b which is a downstream edge, and an outer peripheral edge (peripheral portion) 31c which is a radially outer edge.
  • the outer peripheral edge 31 c refers to the portion of the side edge covered by the shroud portion 33 of the compressor housing 15.
  • the outer peripheral edge 31 c is disposed to pass near the inner surface of the shroud portion 33.
  • the impeller wheel 7 of the compressor 19 is rotationally driven about the rotation axis CL by the rotational driving force of the turbine rotor 3. Due to the rotation of the impeller wheel 7, external air is drawn in from the intake port 23, flows between the plurality of impellers 31 of the impeller wheel 7, and after the dynamic pressure is mainly increased, a diffuser disposed radially outward Then, a portion of the dynamic pressure is converted into a static pressure to be increased in pressure, and flows through the spiral air passage 27 and is discharged.
  • the exhausted intake air (air charge) is supplied as the air charge of the engine.
  • the recirculation flow path 41 formed in the compressor housing 15 will be described.
  • the recirculation channel 41 opens in an annular downstream opening 43 opening in the compressor housing 15 facing the outer peripheral edge 31 c of the impeller 31 and in an inner peripheral wall of the compressor housing 15 upstream of the front edge 31 a of the impeller 31. It is provided to communicate with the upstream opening 45 which is a recirculation port. Then, a portion of intake air immediately after flowing into the impeller 31 or in the middle of overpressure is recirculated into the intake passage 21 on the upstream side of the impeller wheel 7 through the recirculation flow path 41. There is.
  • the recirculation flow path 41 is configured by a plurality of circulation holes 41 a and 41 b provided on the circumference of the cylindrical intake passage 21 on the circumference centering on the rotation axis CL.
  • the compressor housing 15 is divided into the upstream side housing 15a and the downstream side housing 15b at a position where the recirculation flow path 41 is divided halfway along the rotational axis CL, and is constituted by the upstream side housing 15a and the downstream side housing 15b There is.
  • the mating surfaces of the upstream side housing 15a and the downstream side housing 15b form a step-like mating surface, and radial alignment in the direction of the rotation axis CL and at a right angle thereto is achieved by inlay fitting. ing.
  • a mating surface of the upstream housing 15 a and the downstream housing 15 b is coupled by a clamp ring 49 with a seal ring 47 interposed.
  • the connection may be performed using fastening means such as bolts.
  • a plurality of circulation holes 41a and 41b constituting the recirculation flow path 41 on the circumference centered on the rotation axis line CL are provided. It extends along the direction.
  • the recirculation passage 41 formed in the upstream side housing 15a is closed at a midway position in the direction of the rotation axis CL of the upstream side housing 15a, and communicates with the intake passage 21 from the inner circumferential surface of the upstream side housing 15a. It is connected to the opening 45.
  • FIG. 2 shows the arrangement of the circulation hole 41a in the upstream housing 15a constituting the recirculation flow path 41 in a cross section (AA cross section in FIG. 1) perpendicular to the rotation axis CL of the circulation hole 41a.
  • a plurality of, for example, 13 substantially oval circular circulation holes 41a are located outside the intake passage 21 on the same circumference around the rotation axis CL, for example, with the longitudinal direction of the oval being positioned in the circumferential direction, etc. It is arranged at intervals.
  • the circulation holes 41a of the upstream side housing 15a form asperities in the inner peripheral wall of the upstream side housing 15a in the circumferential direction as many as the circulation holes 41a, and the inner peripheral surface of the asperities forms parallel flow generating means 51 described later.
  • the outer cylindrical member 53 is fitted and formed so as to be surrounded by the outer peripheral wall of the outer cylindrical member 53 and the uneven portion.
  • FIG. 3 shows the arrangement of the circulation hole 41b in the downstream side housing 15b of the recirculation flow channel 41 in a cross section (cross section BB in FIG. 1) perpendicular to the rotation axis CL.
  • a cross section cross section BB in FIG. 1
  • thirteen circular circulation holes 41b having the same interval and the same phase in the circumferential direction are formed on the same circumference as the circulation holes 41a formed in the upstream side housing 15a.
  • the recirculation channel 41 is divided into two parts, ie, the upstream housing 15a and the downstream housing 15b, the redistribution path of the upstream housing 15a and the separation surface of the downstream housing 15b are reopened, respectively.
  • the circulation holes 41a and 41b of the circulation channel 41 can be processed. Therefore, the formation of the recirculation channel 41 is facilitated, and the number of steps can be reduced.
  • the positions of the circulation hole 41b of the downstream side housing 15b and the circulation hole 41a of the upstream side housing 15a are formed so as to coincide with each other in the radial direction and the circumferential direction, and are integrated by connecting the respective housings. .
  • the recirculation channel 41 When the recirculation channel 41 is provided, the following operation is performed. In the diverted state where the intake amount passing through the compressor 19 is appropriate, intake from the intake port 23 flows from the upstream opening 45 toward the downstream opening 43 in the intake air passing through the recirculation channel 41, and the downstream opening It flows into the outer peripheral edge 31 c of the impeller 31 from the portion 43. On the other hand, when the flow rate at which the amount of intake air passing through the compressor 19 decreases and surging occurs, the intake air passing through the recirculation channel 41 is reversed, and is directed from the downstream opening 43 toward the upstream opening 45 It flows and is reintroduced into the intake passage 21.
  • the recirculation channel 41 By providing the recirculation channel 41 in this manner, the surge flow can be reduced, but the impeller wheel 7 generates noise of a frequency determined by the number of impellers 31 and the rotational speed.
  • the length 41 and the number of circulation holes 41 a and 41 b (13 in the present embodiment) are set to be in a frequency band that does not resonate with the frequency of noise from the impeller wheel 7.
  • the parallel flow generation means 51 will be described based on FIGS. 1 and 4. As shown in FIG. 1, the parallel flow generation means 51 is provided inside the intake passage 21 of the upstream housing 15 a, disposed between the upstream opening 45 and the impeller wheel 7, and from the upstream opening 45 The recirculated intake air flowing out to the intake passage 21 and the intake air flowing in from the intake port 23 are rectified in parallel to the rotation shaft 9.
  • the parallel flow generation unit 51 includes a parallel flow generation unit 52 and a central intake air flow passage 59.
  • the parallel flow generation unit 52 includes an outer cylindrical member 53 fitted to the inner peripheral wall of the upstream housing 15a, and a plurality of guide vanes 55 arranged at equal intervals in the circumferential direction along the inner peripheral wall of the outer cylindrical member 53. Is equipped.
  • the guide vane 55 is formed of a thin plate-like flat plate member, and the shape on the rotation axis line CL side is substantially trapezoidal.
  • the mounting attitude of the guide vane 55 is such that the long side 55 a side of the substantially trapezoidal shape is fixed to the inner peripheral wall surface of the outer cylinder member 53 and the short side 55 b side is the rotation axis CL side and the intake passage 21 It extends to the middle part.
  • the flat surface (guide surface) of the flat plate member is disposed parallel to the direction of the rotation axis CL.
  • the central intake air circulation portion 59 is a space portion formed in the central portion of the intake passage 21 which is formed by the short sides of the plurality of guide vanes 55 around the rotation axis CL.
  • the flow resistance of the intake air is small, and the effect of suppressing a decrease in the choke flow rate is large.
  • the plate thickness in the circumferential direction on the long side is increased and the plate thickness on the short side is reduced to improve strength. Good.
  • the guide vanes 55 are disposed on the inner peripheral wall of the outer cylindrical member 53 at equal intervals in the circumferential direction.
  • the upstream opening 45 disposed in the outer cylindrical member 53 is disposed at a position facing the intermediate position of the adjacent guide vanes 55.
  • the upstream opening 45 has a direction in which the outflow direction of the intake air flowing out from the upstream opening 45 into the intake passage 21 intersects the rotation axis, and at least one of the upstream edge 55 c of the guide vanes 55.
  • the parts are arranged to cross each other.
  • the recirculated intake air reduces the contact with the guide vanes 55 of the parallel flow generation means 51 as much as possible, thereby reducing the flow resistance of the intake air by the guide vanes 55 and flowing into the impeller wheel 7
  • the surge flow rate can be reduced by increasing the amount of intake air.
  • the position (height H) of the short side 55b from the inner peripheral wall of the outer cylindrical member 53 is closer to the rotation axis CL than the outer periphery of the front edge 31a of the impeller 31. It is located at the height. This is because the intake air flowing through the intake passage 21 has a flow resistance due to the wall surface of the intake passage, so that disturbance of the intake flow from the central portion of the intake passage 21 is likely to occur. Therefore, the height H of the guide vanes 55 needs to be located closer to the rotation axis line CL than the outer peripheral edge of the upstream end of the impeller 31.
  • the intake air flowing in the intake passage 21 is prevented from being disturbed by the intake air flowing into the intake passage 21 from the upstream opening 45, and the intake air introduced to the outer peripheral edge 31c of the impeller 31 is rectified ( Parallel to each other to increase the suction amount of the impeller 31.
  • the height H of the guide vanes 55 is smaller than the height W (see FIG. 1) of the front edge 31 a of the impeller 31. This is to make the intake flow cross-sectional area of the central intake flow portion 59 as large as possible. In this way, the intake air flowing out from the upstream opening 45 to the intake passage 21 is rectified by the guide vanes 55.
  • the intake flow cross-sectional area of the central intake circulation portion 59 is increased, and the intake air flowing through the central intake circulation portion 59 The flow resistance can be reduced to reduce the choke flow rate.
  • the parallel flow generation means 51 is formed separately from the upstream housing 15a, and the outer cylindrical member 53 is fitted and assembled to the inner peripheral wall of the upstream housing 15a by press fitting or the like.
  • the inner circumferential wall of the outer cylindrical member 53 is formed of the intake passage 21 formed in the downstream housing 15b and the inner circumferential wall surface of the intake passage 21 formed in the upstream housing 15a. Form the same plane. Therefore, by doing this, the intake passage 21 can be made to have a smooth wall surface.
  • the parallel flow generation means 51 is assembled to the inner peripheral portion of the upstream housing 15a
  • the outer peripheral wall of the outer cylindrical member 53 is a circulation formed in the upstream housing 15a.
  • the inner circumferential portion (see FIG. 2) of the hole 41a is formed.
  • the compressor housing 15 is manufactured by forming the upstream housing 15a, the downstream housing 15b, and the parallel flow generation unit 51 as separate members and assembling them. For this reason, since the internal processing of the compressor housing can be processed from the joint surface of the upstream side housing 15a and the downstream side housing 15b, the manufacturing becomes easy. In order to manufacture by assembling the compressor housing 15, it is possible to cope with changes in the cross-sectional shape and length of the circulation holes 41a and 41b constituting the recirculation flow path 41, and to change the number of guide vanes 55 and the height H. Correspondence is easy, and the operating range of the compressor 19 can be easily changed. Furthermore, since the parallel flow generation means 51 is at the intake side of the turbocharger 1, the temperature of the intake air contacting is low, so that it is possible to further reduce the cost by integrally molding it with an aluminum material or resin.
  • the parallel flow generation unit 52 rectifies the intake air from the recirculation flow path 41 and the intake air from the suction port 23 in the direction of the rotation axis CL and a space surrounded by the parallel flow generation unit
  • the straightness of the intake flow in the direction of the rotation axis CL is strengthened, and the disturbance of the intake flow immediately before the impeller wheel 7 is prevented. Therefore, the flow resistance of the intake air introduced into the impeller wheel 7 decreases, the intake amount increases, and the compression efficiency of the compressor (centrifugal compressor) 19 improves.
  • the recirculation intake flowing into the intake passage 21 from the recirculation flow path 41 and a portion of the intake air from the intake port 23 are guide vanes
  • the surge flow rate (minimum flow rate) is further reduced to improve the surge margin.
  • the straightness of the intake flow in the direction of the rotation axis CL can be enhanced by the central intake circulation portion 59 inside the guide vane 55, and the flow resistance to the intake can be reduced, it is possible to suppress a reduction in the choke flow rate. That is, the supercharging performance of the turbocharger 1 can be improved.
  • Second Embodiment A second embodiment will be described based on FIGS. 5 and 6.
  • the second embodiment is the same as the first embodiment except that an inner cylindrical member 65, which is an annular guide portion, is added to the central intake flow portion of the parallel flow generation means 61. Therefore, the same components are denoted by the same reference numerals and the description thereof is omitted.
  • the parallel flow generation means 61 of the compressor 20 is provided inside the intake passage 21 of the upstream housing 15a, disposed between the upstream opening 45 and the impeller wheel 7, and is upstream
  • the recirculation intake air flowing out from the opening 45 into the intake passage 21 and the intake air flowing in from the intake port 23 are rectified in parallel to the rotation axis CL.
  • the parallel flow generation means 61 is provided with a parallel flow generation unit 62 and a central intake circulation unit 63. Further, as shown by the cross section AA in FIG. 5 in FIG. 6, the parallel flow generation unit 62 is along the outer cylindrical member 53 fitted to the inner peripheral wall of the upstream housing 15 a and the inner peripheral wall of the outer cylindrical member 53.
  • an inner cylindrical member 65 which is an annular guide portion provided in a structure to be connected to each other.
  • the guide vane 55 is formed of a thin plate-like flat plate member, and has a substantially trapezoidal shape having a long side 55a (see FIG. 1) fixed to the inner peripheral wall of the outer cylinder member 53 and a short side 55b on the rotation axis CL side. ing.
  • the parallel flow generation unit 62 is configured by the guide vanes 55 and the inner cylindrical member 65.
  • the inner space of the inner cylindrical member 65 becomes a central intake circulation portion 63 so that the intake air flowing from the intake port 23 is directed in the direction of the rotation axis CL and is directed to the impeller wheel 7 that rotates around the rotation axis CL.
  • the height H of the guide vanes 55, the relative positional relationship between the guide vanes 55 and the upstream opening 45, and the attachment of the guide vanes 55 to the outer cylindrical member 53 are the same as in the first embodiment .
  • the length K in the direction of the rotational axis CL of the inner cylindrical member 65 is longer than the length M of the short side 55b of the guide vane 55, and both the upstream opening end edge 65a and the downstream opening end edge 65b It projects in the direction of the rotation axis CL from 55b.
  • the length K of the inner cylindrical member 65 is longer than the long side 55 a of the guide vane 55.
  • the downstream opening end edge 65 b of the inner cylindrical member 65 forms a space whose diameter is increased as the cross-sectional area of the central intake and flow portion 63 is directed to the impeller wheel 7.
  • the upstream open end edge 65a of the inner cylindrical member 65 protrudes upstream from the short side 55b, so the recirculation intake air flowing out from the upstream opening 45 is the central intake circulation portion 63 prevents disturbance of the flow of intake air flowing.
  • the downstream opening edge 65b is used as the amount N of protrusion of the short side 55b of the guide vane 55 on the downstream side of the edge of the impeller wheel 7 side, thereby suppressing disturbance of the intake flow flowing through the central intake flow passage 63.
  • good results were obtained with the protrusion amount NNM / 3.
  • the intake air that has flowed along the guide vanes is rectified by the guide vanes 55, but causes some disturbance at a portion immediately after passing through the guide vanes. Therefore, by causing the downstream side open end edge 65b of the inner cylindrical member 65 to protrude from the short side 55b of the guide vane 55 toward the impeller wheel 7, the intake air from the central intake circulation portion 63 flows between the guide vanes 55 Interference with intake can be suppressed.
  • the disturbance of the intake air can be suppressed to reduce and improve the intake flow resistance, the amount of intake air flowing into the impeller wheel can be increased, and the surge can be improved.
  • the guide vanes 55 can be supported at both ends between the outer cylindrical member 53 and the inner cylindrical member 65, and the rigidity of the guide vanes 55 is improved.
  • the intake vanes flowing from the recirculation flow path 41 into the intake passage 21 are rotated by the guide vanes 55.
  • the surge flow rate minimum flow rate
  • the intake flow resistance can be reduced by the central intake flow portion 63 inside the inner cylindrical member 65, it is possible to suppress a decrease in the choke flow rate. That is, the supercharging performance of the turbocharger 1 can be improved.
  • the parallel flow generation means 61 is at the intake side of the turbocharger 1, the temperature of the intake air contacting is low, so that it is possible to further reduce the cost by integrally molding it with an aluminum material or resin.
  • the third embodiment is the same as the second embodiment except that the parallel flow generation means 71 is different. Therefore, the same components are denoted by the same reference numerals and the description thereof is omitted.
  • the parallel flow generation means 71 of the compressor 70 is provided inside the intake passage 21 of the upstream housing 15a, disposed between the upstream opening 45 and the impeller wheel 7, and is upstream
  • the recirculation intake air flowing out from the opening 45 into the intake passage 21 and the intake air flowing in from the intake port 23 are rectified so as to flow parallel to the rotation axis CL.
  • the parallel flow generation means 71 includes a parallel flow generation unit 72 and a central intake air circulation unit 63.
  • the parallel flow generation unit 72 includes an outer cylindrical member 53 fitted to the inner peripheral wall of the upstream housing 15a, and a plurality of guide vanes 55 disposed at equal intervals in the circumferential direction along the inner peripheral wall of the outer cylindrical member 53.
  • An inner cylindrical member 65 which is an annular guide portion provided in a structure connecting the short side 55b (see FIG. 1) which is the inner peripheral end of the plurality of guide vanes 55 in the circumferential direction of the intake passage 21;
  • a connecting member 73 is provided which connects the upstream side of the upstream opening 45, which is a recirculation port of the cylindrical member 53, and the upstream end edge 75a of the inner cylindrical member 65.
  • a parallel flow generation unit 72 is configured by the guide vanes 55, the inner cylindrical member 65, and the connection member 73.
  • the inner space of the inner cylindrical member 65 has a central intake circulation portion 63 so that the intake air flowing in from the intake port 23 is directed in the direction of the rotation axis CL and flows toward the impeller wheel 7 rotating about the rotation axis CL. It has become.
  • the connection member 73 has a frusto-conical appearance, the upstream side of the intake passage 21 is formed with a large diameter, the downstream side is formed with a small diameter, both ends in the direction of the rotation axis CL are open, and the internal space 75 follows the external shape. It has become a frusto-conical space.
  • the frusto-conical internal space 75 of the connecting member 73 is smoothly connected to the central intake air flow passage 63 of the inner cylindrical member 65.
  • the connecting member 73 is provided with a through hole 73a opened in the direction of the rotation axis CL, as a connecting portion for connecting the large diameter and the small diameter.
  • the through holes 73a are arranged at equal intervals in the circumferential direction around the rotation axis CL, and the connecting portion 73b separating the through holes 73a and the through holes 73a is substantially the same as the guide vanes 55 in the circumferential direction. It is arranged in the phase. However, the width in the circumferential direction of the connection portion 73 b is larger than the thickness of the guide vanes 55.
  • the shapes and mounting relative positions of the outer cylindrical member 53, the guide vanes 55, and the inner cylindrical member 65 are the same as those in the second embodiment, and thus the description thereof is omitted.
  • the intake air flowing in from the intake port 23 of the upstream housing 15 a and the recirculated intake air from the upstream opening 45 pass through the through holes 73 a of the connecting member 73, and the guide vanes 55 It is rectified and flows to the wheel 7 side. Further, since the recirculated intake air from the upstream opening 45 is sucked by the intake air passing through the through hole 73a, the amount of recirculated intake air increases, and the surge margin can be improved by the recirculating flow path 41. On the other hand, since the amount of intake air flowing through the central intake air flow portion 63 of the inner cylindrical member 65 is maintained, it is possible to suppress a decrease in the choke flow rate.
  • the fourth embodiment is the same as the first embodiment except that the parallel flow generation means 81 is different. Therefore, the same components are denoted by the same reference numerals and the description thereof is omitted.
  • FIG. 8 shows a cross-sectional view of the main part in the rotational axis direction of a compressor (centrifugal compressor) 80 according to the present invention.
  • the impeller wheel 7 is rotatably supported in the compressor housing 85 around the rotation axis line CL of the rotation shaft 9.
  • the intake air compressed by the impeller wheel 7 is guided to the engine side by an air passage 27 coaxially extending in the direction of the rotation axis CL.
  • an intake port 23 continuous with the intake passage 21 opens at an end portion on the upstream side of the intake passage 21.
  • the intake port 23 is tapered in diameter toward the end so that intake can be easily introduced.
  • a diffuser 25 extending in a direction perpendicular to the rotation axis CL is formed on the outer side of the impeller wheel 7.
  • a spiral air passage 27 is provided on the outer periphery of the diffuser 25.
  • the spiral air passage 27 is formed by the outer peripheral portion of the compressor housing 85. Due to the rotation of the impeller wheel 7, external air is drawn in from the intake port 23, flows between the plurality of impellers 31 of the impeller wheel 7, and after the dynamic pressure is mainly increased, a diffuser disposed radially outward Then, a portion of the dynamic pressure is converted into a static pressure to be increased in pressure, and flows through the spiral air passage 27 and is discharged. The exhausted air is supplied as a charge of the engine.
  • the recirculation passage 82 formed in the compressor housing 85 will be described.
  • the compressor housing 85 is divided into the upstream housing 85a and the downstream housing 85b at a position where the recirculation flow path 82 is divided halfway along the rotational axis CL, and is constituted by the upstream housing 85a and the downstream housing 85b.
  • the recirculation flow path 82 is an annular downstream opening 43 which is a communication hole opened to the downstream housing 85 b facing the outer peripheral edge 31 c of the impeller 31, and an upstream compressor housing upstream of the front edge 31 a of the impeller 31. It is provided to communicate with the upstream opening 83 opened in the inner peripheral wall of the 85a.
  • the intake air immediately after flowing into the space between the impellers 31 or a part of the intake air in the middle of overpressure is recirculated into the intake air passage 21 on the upstream side of the impeller wheel 7 through the recirculation flow path 82. There is.
  • the upstream opening A circulation hole 82b which is a second concave groove, forms a flow path along the rotational axis CL direction.
  • the first recessed groove 82a which is formed in the upstream housing 85a and which constitutes the recirculation flow channel 82 extends from the joint surface with the downstream housing 85b in the direction of the intake port 23 along the rotation axis CL and is closed at a halfway position It is an annular groove formed.
  • An upstream partition wall 85 ap which is a first partition that divides the annular first recessed groove 82 a and the intake passage 21, extends to a position E on the upstream side of the junction surface with the downstream housing 85 b.
  • the recirculation flow path 82 formed in the downstream housing 85b communicates with the annular downstream opening 43 from the joint surface with the upstream housing 85a at a position facing the annular first recessed groove 82a.
  • a circulation hole 82b is provided which is a second recessed groove.
  • the circulation holes 82b are, as shown in FIG. 3 along the line B-B in FIG. 8, the circulation holes 82b having substantially the same oblong circular shape at equal intervals in the circumferential direction around the rotation axis CL. 13 pieces are formed.
  • an annular projecting portion 85bp loosely fitted in the annular first concave groove 82a of the upstream housing 85a. have.
  • a gap (flow cross-sectional area) sufficient for circulating recirculated intake air is formed on the outer peripheral surface and the inner peripheral surface of the annular projecting portion 85bp with respect to the wall surface forming the first recessed groove 82a.
  • the annular projecting portion 85bp is formed to be located at a radially intermediate portion of the annular first recessed groove 82a around the rotation axis line CL. Further, the annular projecting portion 85bp is expanded in a tapered manner from the upstream side of the front edge 31a of the impeller 31 toward the position E of the upstream partition wall portion 85ap, and further from the portion (position E) to the upstream side It is formed in an extended cylindrical shape. A gap F is provided between the upstream end of the protrusion 85 bp and the upstream end (closed portion) of the annular first recessed groove 82 a.
  • the annular projecting portion 85bp is loosely fitted in the annular first recessed groove 82a. Further, in the state where the upstream housing 85a and the downstream housing 85b are assembled, the flow cross-sectional area of the intake passage 21 is smoothly connected so as not to change. In that state, the space formed on the outer peripheral side of the annular projecting portion 85bp becomes the annular first recessed groove 82a, and the space formed on the inner peripheral side (the intake passage 21 side) of the annular projecting portion 85bp is The annular upstream opening 83 is formed. Further, the first recessed groove 82a is in communication with the circulation hole 82b of the downstream side housing 85b.
  • the recirculation flow path 82 includes an oval circular circulation hole 82b (see FIG. 3) disposed along the circumferential direction of the intake passage 21 of the downstream side housing 85b, and an recirculation passage 82 of the upstream side housing 85a. It comprises an annular first recessed groove 82a communicated with the circulation hole 82b and an annular upstream opening 83 communicated with the annular first recessed groove 82a along the circumferential direction.
  • a cross section in a direction perpendicular to the rotation axis CL of the first recessed groove 82a of the upstream housing 85a, and a cross section taken along the line AA in FIG. 8 are shown in FIG.
  • a central intake air flow passage 86 is formed in the central portion as an inner space of the annular upstream partition wall 85 ap.
  • An annular upstream opening 83 which is a gap formed by the outer peripheral surface of the upstream partition wall 85ap and the inner peripheral surface of the annular projecting portion 85bp, and the guide vane 56 in the upstream opening 83 centers the rotation axis CL.
  • a first recessed groove 82a is formed by the inner peripheral surface of the annular projecting portion 85bp and the first recessed groove forming wall surface of the upstream side housing 85a.
  • an intake introduction hole 89 communicating the upstream opening 83 and the intake port 23 is disposed in the upstream housing 85a at a position facing the upstream opening 83 at the outer peripheral portion of the intake passage 21.
  • the intake air introduction holes 89 are arranged at equal intervals in the circumferential direction around the rotation axis CL, and the partition wall 85 ac for partitioning between the adjacent air intake introduction holes 85 ab is substantially in the circumferential direction with the guide vanes 56. It is arranged in the same phase. However, the circumferential width of the partition wall 85ac is larger than the thickness of the guide vanes 56.
  • the parallel flow generation means 81 is provided with a parallel flow generation unit 87 and a central intake circulation unit 86.
  • the parallel flow generation unit 87 includes an inner circumferential side surface of the annular projecting portion 85bp, an outer circumferential side surface of the upstream partition wall 85ap, an annular upstream opening 83 formed by these, and the upstream opening 83.
  • the guide surface is formed by guide vanes 56 disposed in parallel with the direction of the rotation axis CL. Furthermore, the guide vanes 56 are integrally formed on either the inner peripheral side surface of the annular projecting portion 85bp or the outer peripheral side surface of the upstream partition wall 85ap.
  • the central intake air flow passage 86 is a cylindrical space portion formed by the inner peripheral surface of the upstream partition wall 85 ap, with the direction of the rotation axis CL open.
  • the intake recirculation intake
  • the intake is annularly connected to the upstream end of the circulation hole 82b, the annular first recessed groove 82a, and the projecting portion 85bp from the downstream opening 43
  • the air passes through the gap F between the first recessed groove 82 a and the upstream end, the guide vanes 56 disposed in the upstream opening 83, and flows out into the intake passage 21.
  • the intake air from the intake port 23 is introduced into the intake air introduction hole 85 ab, passes between the guide vanes 56 while flowing out the recirculation intake air from the upstream opening 83 and flows out into the intake passage 21.
  • the intake flow cross-sectional area of the annular first recessed groove 82a and the upstream opening 83 is increased, and the intake passage 21 is formed at the tapered expanded portion. While being easy to be taken in in the intake passage 21 by the intake air which flows through, the rectified intake air is prevented from being disturbed. Then, the intake air passing between the guide vanes 56 and rectified in parallel with the rotating shaft 9 is smoothed by the tapered spread portion toward the position E of the downstream side housing 85 b at the upstream side edge of the impeller 31. It is introduced to the outer periphery.
  • the surge flow rate (minimum flow rate) is further reduced and the surge margin is improved.
  • the guide vanes 56 are disposed in the recirculation flow path 82 (the gap between the upstream partition wall portion 85 ap and the projection portion 85 bp), the amount of projection to the intake passage 21 side can be reduced. A large intake flow cross section of 66 can be secured. Therefore, the intake flow rate flowing through the intake passage 21 increases, and the choke flow rate can be increased.
  • the recirculation flow path 41 is divided into two parts, ie, the upstream housing 85a and the downstream housing 85b, the division surface of the upstream housing 85a and the division surface of the downstream housing 85b are re-selected.
  • the circulation holes 82a, the circulation holes 82b, and the guide vanes 56 of the circulation flow passage 82 can be processed. Therefore, formation of the recirculation flow path 82 becomes easy, and a man-hour reduction is attained.
  • the positions of the circulation hole 82b of the downstream side housing 85b and the circulation hole 82a of the upstream side housing 85a are formed to coincide with each other in the radial direction and the circumferential direction, and they are integrated by connecting the respective housings. .
  • the present invention is applied to a centrifugal compressor provided with an impeller wheel rotated by a rotating shaft, and is particularly suitable for use in a centrifugal compressor provided with a centrifugal compressor incorporated into the turbocharger 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

【課題】吸気通路を流れる吸気の流通抵抗を軽減させて、チョーク流量の減少を抑制しつつ、サージマージンを改善させて遠心圧縮機の作動範囲を拡大することを目的とする。 【解決手段】コンプレッサハウジング15と、コンプレッサハウジング15の内部に吸気を圧縮するインペラホイール7と、吸気口23から流入する吸気を回転軸9と平行に整流する平行流生成手段51と、インペラホイール7の外周部の一部の吸気をインペラホイール7の上流側に戻す再循環流路41とを備え、平行流生成手段51は、ガイドベーン55による平行流生成部52と、平行流生成部52に囲まれる空間である中央吸気流通部59とを有し、上流側開口部45からの吸気流出方向は平行流生成部52に向かうことを特徴とする。

Description

遠心圧縮機
 本発明は、回転軸によって回転するインペラホイールを備えた遠心圧縮機にかかり、特に排気ターボ過給機に組込まれる遠心圧縮機に関する。
 自動車等に用いられるエンジンにおいて、エンジンの出力を向上させるために、エンジンの排ガスエネルギーでタービンを回転させ、回転軸を介してタービンと直結させた遠心圧縮機で吸気を圧縮してエンジンに供給する排気ターボ過給機が広く知られている。
 この場合、種々のインペラホイール回転速度に対して正常な昇圧が得られる流量には下限値があり、それ以下の流量ではインペラホイールのインペラ上流側端縁に吸気の振動が発生し、昇圧が得られなくなる。
 このような現象はサージと称されている。
 一方、インペラホイールの回転速度に対応した最高吸気流量にも限界があり、チョーク現象と称されている。
 この種の遠心圧縮機の作動特性の比較として、吸気流量を横軸、圧力比を縦軸とした性能特性比較表をグラフに表すと、概略図10に示すようになることが知られている。
 サージ現象に対しては、インペラホイールのインペラ上流側端縁より下流側の流路から吸気の一部を取出し、インペラホイールをバイパスさせて、インペラ上流側端縁より上流側の吸気通路へ還流させて、インペラ上流側端縁における見掛けの吸気流量を増大させることにより、サージ現象が発生する限界を改善させることができる。
 図10において、ノーマル圧縮機に対し、再循環流路を設けた場合、再循環流路+吸気流ガイドベーン(案内翼)を設けた場合における、夫々の最低流量側のサージライン及び、最高流量側のチョーキングラインに囲まれた正常作動範囲の比較図を示す。
 再循環流路+吸気流ガイドベーンの場合が最もサージ現象の改善効果が表れている。
 従って、遠心圧縮機においては、チョーク流量とサージ流量との間の安定的に運転できる流量範囲が広いことが求められている。
 かかる要求を解決するために、特許文献1が開示されている。
 特許文献1によると、遠心圧縮機は、インペラホイール上流側に、吸気に旋回流を発生させるガイドベーンを設け、インペラホイールに吸気の旋回流を吹き付ける旋回流発生手段や、遠心圧縮機のハウジングに、インペラホイールに吸引された吸気の一部を旋回流発生手段の上流側の吸気通路に再循環させる再循環流路を設けた技術が開示されている。
 かかる技術を図11に基づいて説明する。
 遠心圧縮機100のインペラホイール101は、ハウジング102内に回転可能な複数の羽根104を含み、ハウジング102は、羽根104の半径方向外側縁104aに近接配置された内側壁を有する。
 遠心圧縮機100の吸気口は、吸気吸込み口108を形成する外側環状壁107と、外側環状壁107内に延在してインデューサ部110を形成する内側環状壁109とを備えている。
 外側環状壁107と内側環状壁109の間には循環ガス流路111が形成されている。
 下流開口部113は、羽根104が近傍を通過するハウジング表面105と循環ガス流路111とを連通する。
 上流開口部は、循環ガス流路111とインデューサ部110即ち吸気吸込み口108との間をつなぐ。
 上流開口部のインデューサ部110の内側に案内翼114を設けている。
 案内翼114は、インデューサ部110を通過する吸気に先行渦巻を生起する。
 そして、かかる構成により圧縮機を通過する吸気の流量が小さい場合、前記循環ガス流路111を通過する吸気の方向が逆転して、吸気は、インペラホイール101から下流開口部113を通過して、上流方向の循環ガス流路111を通過して、吸気吸込み口108に再導入されて、圧縮機を再循環する。
 これは、圧縮機の性能を安定させ、圧縮機サージマージンとチョーク流量とを共に向上させる。
 さらに、特許文献1は、内側環状壁109の内側空間部には吸気案内翼装置を収容している。
 この吸気案内翼装置は、中央のノーズコーン115と内側環状壁109との間にラジアル方向に延在する複数の案内翼114を備えている。
 案内翼114は、インペラホイール101の回転方向に対して、吸気が回転を助長する方向に流れるように先行渦巻を誘発し、該先行渦巻は、遠心圧縮機のサージマージン(サージ限界)を向上させている。(図10の再循環路+案内翼参照)
 また、特許文献2(特に第4図)によると、吸気通路外周のハウジングに、周方向に沿うと共に、吸気通路の流路方向に延在した再循環路(キャビティ)が形成されている。
 再循環路は、インペラホイールの中間部に開口された空気吸込み口と、インペラホイールの上流側の吸気通路に開口して、インペラホイールの回転軸中心に向けて開口された吸気流出口とを有している。
 そして、吸気通路のインペラホイール前縁(長ブレード)と吸気流出口との間のハウジングには、複数の入口ガイドベーンが周方向に間隔を有して配設されている。
 入口ガイドベーンは、インペラホイール前縁の外周端より、ラジアル方向外方に配置されて、回転軸に対して傾斜して配設されている。
 入口ガイドベーンの傾斜方向は、吸気通路を流れてきた吸気をインペラホイールの回転方向と逆方向の旋回を与えるように配設されている。
 これは、インペラホイールの入口側の空気流量が少なくなった場合に、インペラ前端縁のインシデンス(相対流れ角と羽角度の差)が増大して、羽の前縁付近に空気流の剥離が発生して、遠心圧縮機はサージングに至る。
 従って、インペラの前端縁のハウジング周辺における吸気の流れに、インペラホイールの回転方向と逆方向の旋回を与えることにより、羽の前縁付近に空気流の剥離が発生するのを抑制して、サージマージンを向上させて遠心圧縮機の作動域を拡大させるとしている。
特開2004-332733号公報 特開2010-270641号公報
 しかし、特許文献1によると、インペラホイール101前面の内側環状壁内の中央空間にノーズコーン115が位置している。
 ノーズコーン115は吸気流に対し、吸気抵抗が増加して、チョーク流量が減少することは明らかである。
 また、ノーズコーン115の製作及び、ノーズコーン115に案内翼114を高精度に取付けるための工数等の増加が伴う。
 即ち、旋回流を発生させる案内翼114には、中央部に吸気を案内翼114に導くコーン状の部材が設けられ空気抵抗が増大して、チョーク流量が減少するという問題があった。 また、循環ガス流路111を長くするために、内側環状壁109を上流側に延長すると、入口吸込み空気との干渉により、案内翼に導入される空気を妨害する問題がある。
 また、特許文献2(特に図4)においては、再循環路から吸気通路に流出する吸気流出口がコンプレッサホイールの回転軸芯に向かって流出する構造になっている。
 従って、吸気通路を流れてきた吸気に対し角度を有して衝突するため、吸気通路の吸気流は流れが乱れ、吸気の流通抵抗が増加する。
 また、入口ガイドベーンの傾斜方向は、吸気通路を流れてきた吸気をインペラホイールの回転方向と逆方向の旋回を与えるように配設されているので、インペラホイールに流入する吸気の流れが乱され、吸気流れの損失が増大してサージング及びチョーク流量の減少、圧縮効率の悪化を招く。
 本発明は、上述した課題に鑑みてなされた発明であって、吸気通路を流れる吸気の流通抵抗を軽減させて、チョーク流量の減少を抑制しつつ、サージマージンを改善させて遠心圧縮機の作動範囲を拡大することを目的とする。
 本発明はかかる課題を解決するため、遠心圧縮機の回転軸方向に開口する吸気口と該吸気口につながる吸気通路とを有するハウジングと、
 前記ハウジングの内部に前記回転軸を中心に回転可能に配置され、前記吸気口から流入する吸気を圧縮するインペラホイールと、
 前記吸気口と前記インペラホイールとの間に配設され、前記吸気口から流入する吸気を前記回転軸方向と平行に整流する平行流生成手段と、
 前記インペラホイールの外周部と該インペラホイールの上流側の前記吸気通路に開口した再循環口とを連通させる再循環流路とを備え、
 前記平行流生成手段は、前記ハウジングの内周壁に沿って周状に配置される複数のガイドベーンを有し、該ガイドベーンによって前記吸気口から流入する吸気を前記回転軸方向と平行に整流する平行流生成部と、
 前記平行流生成部に囲まれる空間であって、前記吸気口から流入する吸気が流通するように前記回転軸方向に開口する中央吸気流通部と、を有し、
前記再循環口からの吸気流出方向は前記平行流生成部方向に向かうことを特徴とする遠心圧縮機を提供できる。
 かかる構成によれば、吸気口から流入する吸気及び再循環口からの吸気を平行流生成部で回転軸方向に整流し、インペラホイールに再循環させること、及び平行流生成部に囲まれた空間の中央吸気流通部を設けることで、吸気流の直進性を強めて、吸気流通抵抗を低減させて、インペラホイールへ流入する吸気量を増加させることができ、遠心圧縮機の圧縮効率が向上する。
 従って、吸気流量が少ない場合に発生するサージ限界を改善すると共に、チョーク限界の減少を抑制することができる。
 また、本発明において好ましくは、前記再循環口からの吸気流出方向は、前記吸気が前記回転軸方向と平行であると共に、前記回転軸方向と直角方向視において、前記ガイドベーンの上流側端縁と少なくとも一部が交差するように設けるとよい。
 かかる構成によれば、再循環された吸気が平行流生成手段のガイドベーンに確実に沿って、且つ接するようにして、再循環吸気の整流効率を向上させて流通抵抗低減を図り、インペラホイールへ流入する吸気量を増加させることができる。
 また、吸気通路の中央部を流れる吸気に衝突して乱れを生起させることを防止して、吸気の流通抵抗増大を防止する。
 また、本発明において好ましくは、前記再循環口は、周方向において前記吸気通路の周方向に間隔を有して隣設された前記ガイドベーン間の中間部に位置して設けられるとよい。
 かかる構成によれば、再循環口を周方向において、ガイドベーンとガイドベーンとの中間部分に位置して配設させたので、噴出する吸気は、ガイドベーンのガイド面に対し強く接触することなく、回転軸と平行に流れる流れを形成し易いので、ガイドベーン部における吸気の流通抵抗を低減することができる。
 また、本発明において好ましくは、前記中央吸気流通部は、前記ガイドベーンの内周端を周方向に連結する環状ガイド部を有しているとよい。
 かかる構成によれば、吸気通路の中央部を吸気の流通抵抗が発生しない空間を有した環状ガイド部としたので、インペラホイール中央部に多くの吸気を導くことができる。
 更に、環状ガイド部によって、該環状ガイド部の外周側のガイドベーン間を通過する吸気と、環状ガイド部の中を通過する吸気の流れとが区画され、環状ガイド部の中を通過する吸気がガイドベーン間を通過する吸気の干渉を受けないので、吸気の流通抵抗の低減向上が可能となり、インペラホイールへ流入する吸気量を増加し、サージが改善される。
 更に、ガイドベーンは環状ガイド部とハウジング内周面(吸気通路内周面)間に両側支持されるため、ガイドベーンの剛性が保持される。
 また、本発明において好ましくは、前記環状ガイド部の前記インペラホイール側端縁は、前記ガイドベーンの前記インペラホイール側端縁より、前記インペラホイール側に突出しているとよい。
 かかる構成によれば、環状ガイド部のインペラホイール側端縁をガイドベーンのインペラホイール側端縁よりインペラホイール側に突出させて長くすることにより、環状ガイド部の内側を流れる吸気の乱れを少なくして、回転軸方向の流れを安定化することができる。
 更に、ガイドベーンに沿って流れた吸気は、ガイドベーンによって整流されるが、ガイドベーンを通過した直後の部分で若干の乱れを生じる。
 そのため、環状ガイド部のインペラホイール側端縁をガイドベーンのインペラホイール側端縁より、インペラホイール側に突出させることで、環状ガイド部の内側を流れる吸気がガイドベーンの間を流れた吸気による干渉を減少させることができる。
 また、本発明において好ましくは、前記再循環流路は、前記吸気通路の周方向で且つ、前記回転軸方向に沿った隔壁によって区切られているとよい。
 かかる構成によれば、インペラホイールの外周部から再循環流路に流入した吸気は、インペラホイールの回転方向に慣性力を有している。
 従って、給気は、再循環流路内の隔壁によって回転軸と平行な流れに整流されて、再循環口から吸気通路内に流出させることで、吸気通路内におけるガイドベーンとの周方向において交差する量を抑制して、ガイドベーンによる流通抵抗を減少させる。
 更に、ガイドベーンと交差する量を減少させることで、吸気が整流される際に発生する騒音を抑制できる。
 また、本発明において好ましくは、前記ガイドベーンは、前記吸気通路の内周面から前記回転軸の回転軸線側に近づくにつれて、前記回転軸方向に沿った長さが短くなる台形状に形成されているとよい。
 かかる構成によれば、再循環口から吸気通路内に流出する吸気は、吸気通路内周面から回転軸線側に近づくにつれて、吸気口から流れてきた吸気に与える影響が小さくなる。
 従って、ガイドベーンの回転軸方向に沿った長さを短くすることで、吸気の流通抵抗を小さくすることができる。
 また、本発明において好ましくは、前記ガイドベーンの前記回転軸線側端縁は、前記インペラホイールの上流側端縁の外周より前記回転軸線側に位置されているとよい。
 かかる構成によれば、ガイドベーンの軸線側端縁をインペラホイールの上流側端縁の外周より吸気通路の中央側に位置させているので、ガイドベーンによって回転軸線方向に整流された流れをインペラホイールの上流側端縁に効率よく導くことができ、吸気の流通抵抗を低減することができる。
 また、本発明において好ましくは、前記平行流生成手段は、前記再循環口を有すると共に、前記再循環流路の一部を構成する環状ケーシングと、前記環状ガイド部と、前記ガイドベーンと、一端が前記再循環口の上流側に結合し、他端が前記環状ガイド部の上流端に連結した連結部と、を一体的に形成するとよい。
 かかる構成によれば、環状ケーシング、環状ガイド部、ガイドベーン及び、連結部材を一体化することにより、平行流生成手段構成部材の剛性向上が図れる。
 更に、連結部材によって、再循環口に吸気通路を流れる吸気が直接当たらないので、再循環流路からの吸気流出量を増加させることができる。
 環状ケーシング、環状ガイド部、ガイドベーン及び、連結部材を一体化することにより、遠心圧縮機の加工工数、組立精度及びコストの低減が可能となる。
 また、本発明において好ましくは、前記ハウジングは前記吸気通路を有する上流側ハウジングと、前記インペラホイールを収納する下流側ハウジングとに分割され、
 前記上流側ハウジングには、前記下流側ハウジングとの接合面部に、前記吸気通路とを区画すると共に、外周側に前記回転軸を中心にした環状で且つ前記吸気通路上流側に延在した第1凹溝を形成する第1隔壁を有し、
 前記下流側ハウジングの前記第1凹溝対向した部位で、前記吸気通路下流側に延在し、
前記インペラホイールの外周部と連通する連通孔を有した前記回転軸を中心にして環状に配置された第2凹溝を前記吸気通路と区画すると共に、前記第1凹溝に遊嵌し、前記第1凹溝に対し、外周面側および内周面側に隙間部を設けるように配置した環状の突出部を有した第2隔壁と、
前記第1隔壁と前記第2隔壁との前記隙間部に前記ガイドベーンとを有し、前記連通孔から流入した吸気は、前記第2凹溝、前記第1凹溝と前記第2隔壁の外周側との隙間、前記第2隔壁の内周側と前記第1隔壁の外周側との隙間を順次通過して、前記ガイドベーンによって回転軸方向と平行に整流されて、前記インペラホイール側に向けて吸気通路へ流出させるとよい。
 かかる構成によれば、ハウジング本体内に、再循環流路からの吸気を整流するガイドベーンを収納させる構造とすることで、中央吸気通路部の流路断面積を大きくなり、吸気流通抵抗の低減によりチョーク流量の増大を図ることができる。
 かかる発明によれば、吸気通路を流れる吸気の流通抵抗を軽減させて、チョーク流量の減少を抑制しつつ、サージマージンを改善させて遠心圧縮機の作動範囲を拡大する遠心圧縮機を提供することができる。
本発明の第1実施形態の遠心圧縮機の回転軸方向の要部断面図を示す。 図1のA-A断面図を示す。 図1のB-B断面図を示す。 本発明の第1実施形態における平行流生成手段の斜視図を示す。 本発明の第2実施形態の遠心圧縮機の回転軸方向の要部断面図を示す。 図5のA-A断面図を示す。 本発明の第3実施形態の遠心圧縮機の回転軸方向の要部断面図を示す。 本発明の第4実施形態の遠心圧縮機の回転軸方向の要部断面図を示す。 図8のA-A断面図を示す。 遠心圧縮機の一般的な性能特性の比較図を示す。 従来技術の遠心圧縮機の断面説明図を示す。
 以下、本発明に係る実施形態について図面を用いて詳細に説明する。
 但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
 また、以下では代表的な遠心圧縮機の例としてターボチャージャを用いて説明するが、タービンロータとインペラホイールの間に電動機を有するアシストターボ、タービンロータを有さない電動コンプレッサやベルト駆動スーパーチャージャ等の遠心圧縮機全般に適用できる。
(第1実施形態)
 図1は、本発明が実施された遠心圧縮機19の回転軸方向の要部断面図を示す。
 該遠心圧縮機19を備えるターボチャージャ1は、エンジンの排ガスによって駆動されるタービンロータ3を収納するタービンハウジング5と、該タービンロータ3の回転力をインペラホイール7に伝達する回転軸9と、該回転軸9を軸受11を介して回転自在に支持する軸受ハウジング13と、空気を吸引して圧縮するインペラホイール7と、該インペラホイール7を収納するハウジングであるコンプレッサハウジング15とを備えている。
 タービンハウジング5の外周部には、渦巻状に形成されたスクロール通路17がタービンロータ3の外周に形成され、エンジンからの排ガスが外周側から回転軸9の中心側に流れて、その後、回転軸方向に排出されてタービンロータ3を回転するようになっている。
 本発明に係るコンプレッサ(遠心圧縮機)19は、回転軸9の回転軸線CLを中心にしてインペラホイール7がコンプレッサハウジング15内に回転可能に支持される。
 インペラホイール7にて圧縮される吸気は、回転軸線CL方向に、且つ同軸状に延びている吸気通路21によって導かれる。
 そして、吸気通路21に連続する吸気口23が吸気通路21の上流側である端部に開口している。
 吸気口23は、吸気を導入し易いように、端部に向かってテーパ状に拡径している。
 インペラホイール7の外側には、回転軸線CLと直角方向に延びるディフューザ25が形成されている。
 該ディフューザ25の外周には渦巻状の空気通路27が設けられている。この渦巻状の空気通路27は、コンプレッサハウジング15の外周部を形成している。
 インペラホイール7には、回転軸線CLを中心に回転駆動されるハブ部29と共に、回転駆動される複数枚のインペラ31が設けられている。ハブ部29は、回転軸9に取付けられていると共に、径方向外側の面に複数のインペラ31が設けられている。
 インペラ31は、回転駆動されることによって、吸気口23から吸込み、吸気通路21を通過した吸気を圧縮するものであり、形状については特に限定するものではない。
 インペラ31には、上流側の縁部である前縁31aと、下流側の縁部である後縁31bと、径方向外側の縁部である外周縁(外周部)31cが設けられている。
 該外周縁31cは、コンプレッサハウジング15のシュラウド部33によって覆われた側縁の部分をいう。
 外周縁31cは、シュラウド部33の内表面の近傍を通過するように配置されている。
 コンプレッサ19のインペラホイール7は、タービンロータ3の回転駆動力によって、回転軸線CLを中心として回転駆動される。
 インペラホイール7の回転により、外部の空気が吸気口23から引き込まれて、インペラホイール7の複数のインペラ31間を流れて、主に動圧が上昇された後に、径方向外側に配置されたディフューザ25に流入して、動圧の一部が静圧に変換されて圧力が高められて、渦巻状の空気通路27を流れて排出される。
 排出された吸気(給気)は、エンジンの給気として供給される。
 コンプレッサハウジング15に形成される再循環流路41について説明する。
 再循環流路41は、インペラ31の外周縁31cに対向するコンプレッサハウジング15に開口する環状の下流側開口部43と、インペラ31の前縁31aより上流側のコンプレッサハウジング15の内周壁に開口する再循環口である上流側開口部45とを連通するように設けられている。
 そして、インペラ31間に流入した直後の吸気又は、過圧途中の吸気の一部を再循環流路41を通って、インペラホイール7の上流側の吸気通路21内に再循環させるようになっている。
 また、再循環流路41は、円筒状の吸気通路21の外側に回転軸線CLを中心とした円周上に設けられた複数の循環孔41a、41bによって構成されている。
 コンプレッサハウジング15は、再循環流路41を回転軸線CL方向途中で分断する位置で上流側ハウジング15aと下流側ハウジング15bとに分割されて、上流側ハウジング15aと下流側ハウジング15bとによって構成されている。
 この、上流側ハウジング15aと下流側ハウジング15bとの合せ面は、階段状の合せ面を形成して、インロー嵌合によって回転軸線CL方向及びそれに直角な径方向の位置合せがされるようになっている。
 そして、上流側ハウジング15aと下流側ハウジング15bとの合せ面は、シールリング47を介在させて、クランプリング49によって結合されている。
 尚、結合はボルト等の締結手段を用いてもよい。
 また、2分割された上流側ハウジング15a及び、下流側ハウジング15bには、回転軸線CLを中心とした円周上に再循環流路41を構成する複数個の循環孔41a、41bが回転軸線CL方向に沿って延設されている。
 上流側ハウジング15aに形成されている再循環流路41は、上流側ハウジング15aの回転軸線CL方向の中途位置で閉塞されて、上流側ハウジング15aの内周面から吸気通路21に連通する上流側開口部45につながっている。
 図2に、再循環流路41を構成する上流側ハウジング15aにおける循環孔41aの回転軸線CLに直角方向の断面(図1のA-A断面)における配置状態を示す。
 吸気通路21の外側に、回転軸線CLを中心とした同一円周上に複数個、例えば、13個の略長円状の循環孔41aが長円形状の長手方向を周方向に位置させて等間隔で配置されている。
 上流側ハウジング15aの循環孔41aは、上流側ハウジング15aの内周壁に周方向へ循環孔41aの数だけ凹凸部を形成し、その凹凸部の内周面に、後述する平行流生成手段51の外筒部材53が嵌合して、外筒部材53の外周壁と凹凸部とによって囲まれて形成される。
 一方、図3に、再循環流路41を構成する下流側ハウジング15bにおける循環孔41bの回転軸線CLに直角方向の断面(図1のB-B断面)における配置状態を示す。
 吸気通路21の外側に、上流側ハウジング15aに形成された循環孔41aと同一円周上に、周方向に同一間隔で且つ同位相の長円状の循環孔41bが13個形成されている。
 このように、再循環流路41を上流側ハウジング15aの部分と、下流側ハウジング15bの部分とに2分割されるため、上流側ハウジング15aの分割面、下流側ハウジング15bの分割面から夫々再循環流路41の循環孔41a、41bを加工することができる。
 従って、再循環流路41の形成が容易となり、工数低減が可能となる。
 そして、下流側ハウジング15bの循環孔41bと、上流側ハウジング15aの循環孔41aとの位置は、径方向及び周方向共に一致するように形成されて、夫々のハウジングを結合することで一体となる。
 再循環流路41を設けると、次のような作用をする。
 コンプレッサ19を通過する吸気量が適正な流用状態では、再循環流路41を通る吸気は、吸気口23からの吸気が上流側開口部45から下流側開口部43に向かって流れ、下流側開口部43からインペラ31の外周縁31cに流れ込む。
 一方、コンプレッサ19を通る吸気量が減少してサージングを生じるような低流量になると、再循環流路41を通る吸気は、逆になり、下流側開口部43から上流側開口部45に向かって流れて、吸気通路21に再導入される。
 これは、コンプレッサ中間部で吸気が圧縮されることにより、上流側開口部45の吸気圧より下流側開口部43の吸気圧が高くなるために逆流する。
これによって、見掛け上、インペラ31の前縁31aに流入する吸気の流入量が多くなり、サージングが発生するサージ流量を小流量化できる。
 このように再循環流路41を設けることによって、サージ流量を小流量化できるが、インペラホイール7は、インペラ31の枚数と、回転速度とによって決まる周波数の騒音を発生するため、再循環流路41の長さ、循環孔41a、41bの本数(本実施形態では13本)は、インペラホイール7による騒音の周波数と共振しない周波数帯域になるように設定される。
 平行流生成手段51を図1及び図4に基づいて説明する。
 図1に示すように、平行流生成手段51は、上流側ハウジング15aの吸気通路21の内部に設けられ、上流側開口部45とインペラホイール7との間に配置され、上流側開口部45から吸気通路21に流出する再循環吸気および、吸気口23から流入する吸気を回転軸9と平行に整流する。
 平行流生成手段51は、平行流生成部52と、中央吸気流通部59とを備えている。
 平行流生成部52は、上流側ハウジング15aの内周壁に嵌合する外筒部材53と、該外筒部材53の内周壁に沿って周方向に等間隔で配置された複数のガイドベーン55とを備えている。
 ガイドベーン55は、薄板状の平板部材からなり、回転軸線CL側の形状が略台形形状を成している。
 図4に示すように、ガイドベーン55の取付姿勢は、略台形形状の長辺55a側が外筒部材53の内周壁面に固定され、短辺55b側が回転軸線CL側で且つ、吸気通路21の中間部まで延在している。
 ガイドベーン55は、平板部材の平面(ガイド面)が回転軸線CL方向に対して平行に配設されている。
 中央吸気流通部59は、回転軸線CLを中心にした、複数のガイドベーン55の短辺側によって形成される、吸気通路21の中央部分に形成される空間部である。
 中央吸気流通部59は吸入される吸気がダイレクトにインペラホイール7に到達するため、吸気の流通抵抗が小さく、チョーク流量の減少を抑制する効果が大きい。
 また、ガイドベーン55は、外筒部材53に強固に固定するため、長辺側の周方向の板厚を厚くし、短辺側の板厚を薄くして、強度向上を図るようにしてもよい。
 また、図4に平行流生成手段51の斜視図を示すように、ガイドベーン55は、外筒部材53の内周壁に周方向に等間隔で配設されている。
 外筒部材53に配設された上流側開口部45は、隣接するガイドベーン55の中間位置と対向する位置に配設されている。
 更に、上流側開口部45は、該上流側開口部45から吸気通路21へ流出する吸気の流出方向が、回転軸と交差する方向であると共に、ガイドベーン55の上流側端縁55cと少なくとも一部が交差するように配設されている。
 このような構造にすることで、再循環された吸気が平行流生成手段51のガイドベーン55との接触を極力少なくして、ガイドベーン55による吸気の流通抵抗低減を図り、インペラホイール7へ流入する吸気量を増加させることで、サージ流量を小流量化することができる。
 また、ガイドベーン55の高さH(図1参照)は、外筒部材53の内周壁から短辺55bの位置(高さH)が、インペラ31の前縁31aの外周より回転軸線CL側に位置する高さとなっている。
 これは、吸気通路21を流れる吸気は、吸気通路壁面による流通抵抗があるため、吸気通路21の中央部よりの吸気流の乱れが発生し易い。
 そのため、ガイドベーン55の高さHは、インペラ31の上流側端縁の外周縁より回転軸線CL側に位置させる必要がある。
 従って、上流側開口部45から吸気通路21に流入してくる吸気によって、吸気通路21を流れる吸気が乱れるのを防止すると共に、インペラ31の外周縁31cに導入される吸気を整流(回転軸方向に平行)させて、インペラ31の吸込み量を増加させることができる。
 更に、ガイドベーン55の高さHは、インペラ31の前縁31aの高さW(図1参照)より小さくしてある。
 これは、中央吸気流通部59の吸気流通断面積をできるだけ大きくするためである。
 このようにすることで、上流側開口部45から吸気通路21へ流出する吸気は、ガイドベーン55によって整流される。
 また、ガイドベーン55の高さHをインペラ31の前縁31aの高さWより小さくすることで、中央吸気流通部59の吸気流通断面積を大きくして、中央吸気流通部59を流れる吸気の流通抵抗を小さくしてチョーク流量の減少を抑制する効果が図れる。
 平行流生成手段51は、上流側ハウジング15aとは別体に形成されて、上流側ハウジング15aの内周壁に外筒部材53を圧入等によって嵌合して組付けられている。
 図1のように、組付けられたときには、外筒部材53の内周壁は、下流側ハウジング15bに形成される吸気通路21、及び上流側ハウジング15aに形成される吸気通路21の内周壁面と同一面を形成する。
 従って、このようにすることで、吸気通路21は滑らかな壁面にすることができる。
 また、図1のように、平行流生成手段51が上流側ハウジング15aの内周部分に組付けられた場合には、外筒部材53の外周壁は、上流側ハウジング15a内に形成される循環孔41aの内周部(図2参照)を形成する。
 また、上流側ハウジング15aと、下流側ハウジング15bと、平行流生成手段51とは、それぞれ別部材として形成し、それぞれを組み立てることで、コンプレッサハウジング15が製造される。
 このため、コンプレッサハウジングの内部加工が、上流側ハウジング15aと下流側ハウジング15bとの接合面から加工できるので製造が容易となる。
 コンプレッサハウジング15を組み立てることで製造するため、再循環流路41を構成する循環孔41a、41bの断面形状および長さの変更への対応や、ガイドベーン55の枚数、高さHの変更への対応が容易であり、コンプレッサ19の作動レンジを容易に変化させることができる。
 更に、平行流生成手段51は、ターボチャージャ1の吸気側なので、接触する吸気温度が低いため、アルミ材又は、樹脂等で一体成型することにより、更なるコスト低減が可能となる。
 上述の実施形態によれば、再循環流路41からの吸気及び吸入口23からの吸気を平行流生成部52にて、回転軸線CL方向に整流すると共に、平行流生成部に囲まれた空間の中央吸気流通部59を設けることで、吸気流の回転軸線CL方向の直進性が強められ、インペラホイール7直前における吸気流の乱れが防止される。
 そのため、インペラホイール7に導入される吸気の流通抵抗が小さくなり、吸気量が多くなりコンプレッサ(遠心圧縮機)19の圧縮効率が向上する。
 従って、再循環流路41によるサージマージン(サージ発生限界)の改善に加えて、再循環流路41から吸気通路21に流入する再循環吸気と、吸気口23からの吸気の一部をガイドベーン55によって、回転軸9と平行に整流することで、サージ流量(最小流量)がさらに減少してサージマージンが改善される。
 さらに、ガイドベーン55の内側にある中央吸気流通部59によって、吸気流の回転軸線CL方向の直進性が強められ、吸気に対する流通抵抗を小さくできるので、チョーク流量の減少を抑制することができる。即ち、ターボチャージャ1の過給性能を向上することができる。
(第2実施形態)
 図5、及び図6に基づいて第2実施形態を説明する。
 第2実施形態は、第1実施形態に対し平行流生成手段61の中央吸気流通部に環状ガイド部である内筒部材65が追加になった以外は同じである。
 従って、同一部品には同一符号を付して、説明を省略する。
 図5に示すように、コンプレッサ20の平行流生成手段61は、上流側ハウジング15aの吸気通路21の内部に設けられ、上流側開口部45とインペラホイール7との間に配設され、上流側開口部45から吸気通路21に流出する再循環吸気及び、吸気口23から流入する吸気を回転軸線CLと平行に整流する。
 平行流生成手段61は、平行流生成部62と中央吸気流通部63とを備えている。
 また、図5のA-A断面を図6に示すように、平行流生成部62は、上流側ハウジング15aの内周壁に嵌合する外筒部材53と、外筒部材53の内周壁に沿って周方向に等間隔で配置された複数枚のガイドベーン55と、該複数枚のガイドベーン55の回転軸線CL側の端縁である短辺55b(図1参照)を吸気通路21の周方向に連結する構造に設けられた環状ガイド部である内筒部材65とを備えている。
 ガイドベーン55は、薄板状の平板部材で形成され、外筒部材53の内周壁に固着する長辺55a(図1参照)と回転軸線CL側の短辺55bとを有する略台形形状を成している。
 平行流生成部62は、ガイドベーン55と内筒部材65とによって構成されている。
 内筒部材65の内側空間は、吸気口23から流入する吸気が回転軸線CL方向に向かい、該回転軸線CLを中心軸にして回転するインペラホイール7に向かうように中央吸気流通部63となっている。
 尚、ガイドベーン55の高さH及び、ガイドベーン55と上流側開口部45との相対位置関係、ガイドベーン55の外筒部材53への取付等は第1実施形態と同じなので説明は省略する。
 内筒部材65の回転軸線CL方向の長さKは、ガイドベーン55の短辺55bの長さMより長く、上流側開口端縁65aおよび下流側開口端縁65b共に、ガイドベーン55の短辺55bより回転軸線CL方向に突出している。
 尚、本実施形態では、内筒部材65の長さKは、ガイドベーン55の長辺55aより長くしてある。
 そして、内筒部材65の下流側開口端縁65bは、中央吸気流通部63の断面積がインペラホイール7に向かうにしたがい、拡径された空間を形成している。
 このような構造にすることで、内筒部材65の上流側開口端縁65aは、短辺55bより上流側に突出しているので、上流側開口部45から流出する再循環吸気が中央吸気流通部63を流れる吸気の流れが乱れるのを抑制する。
 一方、下流側開口端縁65bを、ガイドベーン55の短辺55bのインペラホイール7側端縁より下流側への突出量Nとして、中央吸気流通部63を流れる吸気流の乱れを抑制する。
 本実施形態では突出量N≧M/3でよい結果が得られた。
 これは、ガイドベーンに沿って流れた吸気は、ガイドベーン55によって整流されるが、ガイドベーンを通過した直後の部分で若干の乱れを生じる。
 そのため、内筒部材65の下流側開口端縁65bをガイドベーン55の短辺55bよりインペラホイール7側に突出させることで、中央吸気流通部63から出た吸気がガイドベーン55の間を流れた吸気によって干渉されるのを抑制することができる。
 吸気の乱れを抑制して、吸気流通抵抗の低減向上が可能となり、インペラホイールへ流入する吸気量を増加し、サージが改善される。
 ガイドベーン55は、外筒部材53と、内筒部材65との間において両端支持とすることができ、ガイドベーン55の剛性が向上する。
 上述の第2実施形態によれば、再循環流路41によるサージマージン(サージ発生限界)の改善に加えて、再循環流路41から吸気通路21に流入する吸気をガイドベーン55によって、回転軸9と平行に整流することで、サージ流量(最小流量)がさらに減少してサージマージンが改善される。
 さらに、内筒部材65の内側にある中央吸気流通部63によって、吸気流通抵抗を小さくできるので、チョーク流量の減少を抑制することができる。
 即ち、ターボチャージャ1の過給性能を向上することができる。
 更に、平行流生成手段61は、ターボチャージャ1の吸気側なので、接触する吸気温度が低いので、アルミ材又は、樹脂等で一体成型することにより、更なるコスト低減が可能となる。
(第3実施形態)
 次に、図7に基づいて第3実施形態を説明する。
 第3実施形態は、第2実施形態に対し平行流生成手段71が異なる以外は同じである。
 従って、同一部品には同一符号を付して、説明を省略する。
 図7に示すように、コンプレッサ70の平行流生成手段71は、上流側ハウジング15aの吸気通路21の内部に設けられ、上流側開口部45とインペラホイール7との間に配設され、上流側開口部45から吸気通路21に流出する再循環吸気及び、吸気口23から流入する吸気を回転軸線CLと平行に流れるように整流する。
 平行流生成手段71は、平行流生成部72と中央吸気流通部63とを備えている。
 平行流生成部72は、上流側ハウジング15aの内周壁に嵌合する外筒部材53と、外筒部材53の内周壁に沿って周方向に等間隔で配置された複数枚のガイドベーン55と、該複数枚のガイドベーン55の内周端部である短辺55b(図1参照)を吸気通路21の周方向に連結する構造に設けられた環状ガイド部である内筒部材65と、外筒部材53の再循環口である上流側開口部45の上流側と内筒部材65の上流側端縁75aとを連結する連結部材73とを備えている。
 ガイドベーン55、内筒部材65及び連結部材73によって、平行流生成部72を構成されている。
 内筒部材65の内側空間は、吸気口23から流入する吸気が回転軸線CL方向に向かい、該回転軸線CLを中心軸にして回転するインペラホイール7に向かって流れるように中央吸気流通部63となっている。
 連結部材73は、外観が円錐台形状を成し、吸気通路21の上流側が大径、下流側が小径に形成され、回転軸線CL方向の両端が開口しており、内部空間75が外観形状に倣った円錐台形の空間になっている。
 そして、連結部材73の円錐台形の内部空間75は、内筒部材65の中央吸気流通部63に滑らかに連結している。
 更に、連結部材73は、大径と小径とを連結する連結部は、回転軸線CL方向に開通した貫通孔73aが設けられている。
 貫通孔73aは、回転軸線CLを中心にして、周方向へ等間隔に配設されており、且つ貫通孔73aと貫通孔73aとを仕切る連結部73bは、ガイドベーン55と周方向において略同位相に配設されている。
 但し、ガイドベーン55の板厚に対し、連結部73bの周方向の幅は大きくなっている。
 尚、外筒部材53、ガイドベーン55、および内筒部材65夫々の形状及び取付相対位置関係は、第2実施形態と同じなので、説明は省略する。
 このような構造にすることで、上流側ハウジング15aの吸気口23から流入する吸気及び、上流側開口部45からの再循環吸気は、連結部材73の貫通孔73aを通り、ガイドベーン55によってインペラホイール7側に整流されて流れる。
 また、上流側開口部45からの再循環吸気は、貫通孔73aを通る吸気によって吸出されるので、再循環吸気量が多くなり、再循環流路41によるサージマージンの改善が図れる。
 一方、内筒部材65の中央吸気流通部63を流れる吸気量は、維持されるのでチョーク流量の減少を抑制することができる。
(第4実施形態)
 図8に基づいて第4実施形態を説明する。
 第4実施形態は、第1実施形態に対し平行流生成手段81が異なる以外は同じである。
 従って、同一部品には同一符号を付して、説明を省略する。
 図8は、本発明が実施されたコンプレッサ(遠心圧縮機)80の回転軸方向の要部断面図を示す。
 本発明に係るコンプレッサ80は、回転軸9の回転軸線CLを中心にしてインペラホイール7がコンプレッサハウジング85内に回転可能に支持される。
 インペラホイール7にて圧縮される吸気は、回転軸線CL方向に、且つ同軸状に延びている空気通路27によってエンジン側に導かれる。
 そして、吸気通路21に連続する吸気口23が吸気通路21の上流側である端部に開口している。
 吸気口23は、吸気を導入し易いように、端部に向かってテーパ状に拡径している。
 インペラホイール7の外側には、回転軸線CLと直角方向に延びるディフューザ25が形成されている。
 該ディフューザ25の外周には渦巻状の空気通路27が設けられている。この渦巻状の空気通路27は、コンプレッサハウジング85の外周部によって形成している。
 インペラホイール7の回転により、外部の空気が吸気口23から引き込まれて、インペラホイール7の複数のインペラ31間を流れて、主に動圧が上昇された後に、径方向外側に配置されたディフューザ25に流入して、動圧の一部が静圧に変換されて圧力が高められて、渦巻状の空気通路27を流れて排出される。
 排出された空気は、エンジンの給気として供給される。
 コンプレッサハウジング85に形成される再循環流路82について説明する。
 コンプレッサハウジング85は、再循環流路82を回転軸線CL方向途中で分断する位置で上流側ハウジング85aと下流側ハウジング85bとに分割されて、上流側ハウジング85aと下流側ハウジング85bとによって構成されている。
 再循環流路82は、インペラ31の外周縁31cに対向する下流側ハウジング85bに開口する連通孔である環状の下流側開口部43と、インペラ31の前縁31aより上流側の上流側コンプレッサハウジング85aの内周壁に開口する上流側開口部83とを連通するように設けられている。
 そして、インペラ31間に流入した直後の吸気又は、過圧途中の吸気の一部は再循環流路82を通って、インペラホイール7の上流側の吸気通路21内に再循環させるようになっている。
 また、2分割された上流側ハウジング85a及び、下流側ハウジング85bには、回転軸線CLを中心とし、吸気通路21の外周に再循環流路82を構成する第1凹溝82a、上流側開口部83,第2凹溝である循環孔82bが回転軸線CL方向に沿って流路を形成している。
 上流側ハウジング85aに形成され再循環流路82を構成する第1凹溝82aは、下流側ハウジング85bとの接合面から吸気口23方向へ回転軸線CLに沿って延設され、中途位置で閉塞された環状に形成された凹溝である。
 環状の第1凹溝82aと吸気通路21とを区画する第1隔壁である上流側隔壁部85apは、下流側ハウジング85bとの接合面より上流側の位置Eまで延在している。
 一方、下流側ハウジング85bに形成されている再循環流路82は、環状の第1凹溝82aと対向した位置で、上流側ハウジング85aとの接合面から、環状の下流側開口部43に連通する第2凹溝である循環孔82bが設けられている。
 循環孔82bは、図8のB-B断面を図3に示すように、回転軸線CLを中心にして、吸気通路21の外周に周方向へ同一間隔で略同一の長円状の循環孔82bが13個形成されている。
 そして、長円状の循環孔82bと吸気通路21とを区画する第2隔壁である下流側隔壁部には、上流側ハウジング85aの環状の第1凹溝82aに遊嵌する環状の突出部85bpを有している。
 尚、遊嵌とは、第1凹溝82aを形成する壁面に対し、環状の突出部85bpの外周面及び内周面共に、再循環吸気が流通するのに十分な隙間(流通断面積)を有している。
 環状の突出部85bpは、回転軸線CLを中心にして、環状の第1凹溝82aの半径方向中間部に位置するように形成されている。
 更に、環状の突出部85bpは、インペラ31の前縁31aの上流側から上流側隔壁部85apの位置Eに向けてテーパ状に拡開して、当該部(位置E)からさらに、上流側へ延出した円筒状に形成されている。
 突出部85bpの上流側先端部と環状の第1凹溝82aの上流側先端部(閉塞された部分)間に隙間Fを有している。
 上流側ハウジング85aと下流側ハウジング85bとが組付けられると、環状の第1凹溝82aに環状の突出部85bpが遊嵌される。
 また、上流側ハウジング85aと下流側ハウジング85bとが組付けられた状態において、吸気通路21の流通断面積は、変化ないように滑らかに接続されている。
 その状態において、環状の突出部85bpの外周側に形成される空間部が環状の第1凹溝82aとなり、環状の突出部85bpの内周側(吸気通路21側)に形成される空間部が環状の上流側開口部83となる。
 さらに、第1凹溝82aは、下流側ハウジング85bの循環孔82bと連通している。
 従って、再循環流路82は、下流側ハウジング85bの吸気通路21の周方向に沿って配設された長円状の循環孔82b(図3参照)と、上流側ハウジング85aの吸気通路21の周方向に沿って、該循環孔82bに連通した環状の第1凹溝82aと、環状の第1凹溝82aに連通した環状の上流側開口部83とで構成される。
 上流側ハウジング85aの第1凹溝82aの回転軸線CLに対し直角方向の断面、図8のA-A断面を図9に示す。
 中心部に中央吸気流通部86が環状の上流側隔壁部85apの内側空間部として形成されている。
 上流側隔壁部85ap外周面と環状の突出部85bpの内周面とで形成された隙間である環状の上流側開口部83、該上流側開口部83内にガイドベーン56が回転軸線CLを中心にラジアル方向で、且つ周方向に等間隔に配置されている。
 環状の突出部85bpの内周面と上流側ハウジング85aの第1凹溝形成壁面とで形成された第1凹溝82aが形成されている。
 また、上流側ハウジング85aには、吸気通路21の外周部で、上流側開口部83と対向した位置に、上流側開口部83と吸気口23とを連通する吸気導入孔89が配設されている。
 吸気導入孔89は、回転軸線CLを中心にして、周方向へ等間隔に配設されており、且つ隣設する吸気導入孔85ab間を仕切る区画壁85acは、ガイドベーン56と周方向において略同位相に配設されている。
 但し、ガイドベーン56の板厚に対し、区画壁85acの周方向の幅は大きくなっている。
 平行流生成手段81は、平行流生成部87と中央吸気流通部86とを備えている。
 平行流生成部87は、環状の突出部85bpの内周側面と、上流側隔壁部85apの外周側面と、これらによって形成される環状の上流側開口部83と、該上流側開口部83内にガイド面を回転軸線CL方向と平行に配置したガイドベーン56によって形成される。
 更に、ガイドベーン56は、環状の突出部85bpの内周側面又は、上流側隔壁部85apの外周側面のいずれかに、一体的に形成されている。
 中央吸気流通部86は、上流側隔壁部85apの内周面によって形成される、回転軸線CL方向が開口され円筒状空間部である。
 従って、吸気流量が少ない(サージ流量)場合に、吸気(再循環吸気)は、下流側開口部43から循環孔82b、環状の第1凹溝82a、突出部85bpの上流側先端部と環状の第1凹溝82aの上流側先端部との隙間F、上流側開口部83に配設されたガイドベーン56間を通過して、吸気通路21内に流出する。
 一方、吸気口23からの吸気が吸気導入孔85abに導入され、上流側開口部83から再循環吸気を吸い出しながらガイドベーン56間を通過して、吸気通路21内に流出する。 
 突出部85bpのラジアル方向の板厚を薄くすることで、環状の第1凹溝82aおよび上流側開口部83の吸気流通断面積を大きくすると共に、テーパ状の拡開部にて、吸気通路21を流れる吸気によって吸気通路21内に吸出され易くすると共に、整流された吸気が乱れないようにしている。
 そして、ガイドベーン56間を通過して回転軸9と平行に整流された吸気は、下流側ハウジング85bの位置Eに向けたテーパ状の拡開部によって滑らかに、インペラ31の上流側端縁の外周部に導入される。
 また、上流側開口部83からの吸気は、吸気導入孔85abに導入された吸気によって吸出されるので、サージ流量(最小流量)がさらに減少してサージマージンが改善される。
 また、ガイドベーン56を再循環流路82内(上流側隔壁部85apと突出部85bpとの隙間)に配設したので、吸気通路21側への突出量を小さくでき、即ち、中央吸気流通部66の吸気流通断面積が大きく確保できる。
 従って、吸気通路21を流れる吸気流量が多くなり、チョーク流量の増大を図ることができる。
 このように、再循環流路41を上流側ハウジング85aの部分と、下流側ハウジング85bの部分とに2分割されるため、上流側ハウジング85aの分割面、下流側ハウジング85bの分割面から夫々再循環流路82の循環孔82a、循環孔82b、およびガイドベーン56を加工することができる。
 従って、再循環流路82の形成が容易となり、工数低減が可能となる。
 そして、下流側ハウジング85bの循環孔82bと、上流側ハウジング85aの循環孔82aとの位置は、径方向及び周方向共に一致するように形成されて、夫々のハウジングを結合することで一体となる。
 本発明によれば、回転軸によって回転するインペラホイールを備えた遠心圧縮機にかかり、特にターボチャージャ1に組込まれる遠心圧縮機を備えた遠心圧縮機への利用に適している。
   1           ターボチャージャ
   7           インペラホイール
   9           回転軸
   15,85       コンプレッサハウジング(ハウジング)
   15a、85a     上流側ハウジング
   15b、85b     下流側ハウジング
   19,20,70,80 コンプレッサ(遠心圧縮機)
   21          吸気通路
   23          吸気口
   31          インペラ
   33          シュラウド部
   41、82       再循環流路
   41a、82a     第1凹溝
   41b、82b     循環孔(第2凹溝)
   43          下流側開口部
   45,83       上流側開口部(再循環口)
   52,62,72,87 平行流生成部
   53          外筒部材
   55,56       ガイドベーン
   59,63,86    中央吸気流通部
   51、61,71,81 平行流生成手段
   65          内筒部材(環状ガイド部)
   73          連結部材
   73a         貫通孔
   73b         連結部
   85ab        吸気導入孔
   85ac        区画壁
   85ap        上流側隔壁部
   85bp        環状の突出部(第2隔壁)
   CL          回転軸線

Claims (10)

  1.  遠心圧縮機の回転軸方向に開口する吸気口と該吸気口につながる吸気通路とを有するハウジングと、
     前記ハウジングの内部に前記回転軸を中心に回転可能に配置され、前記吸気口から流入する吸気を圧縮するインペラホイールと、
     前記吸気口と前記インペラホイールとの間に配設され、前記吸気口から流入する吸気を前記回転軸方向と平行に整流する平行流生成手段と、
     前記インペラホイールの外周部と該インペラホイールの上流側の前記吸気通路に開口した再循環口とを連通させる再循環流路とを備え、
     前記平行流生成手段は、前記ハウジングの内周壁に沿って周状に配置される複数のガイドベーンを有し、該ガイドベーンによって前記吸気口から流入する吸気を前記回転軸方向と平行に整流する平行流生成部と、
     前記平行流生成部に囲まれる空間であって、前記吸気口から流入する吸気が流通するように前記回転軸方向に開口する中央吸気流通部と、を有し、
     前記再循環口からの吸気流出方向は前記平行流生成部方向に向かうことを特徴とする遠心圧縮機。
  2.  前記再循環口からの吸気流出方向は、前記吸気が前記回転軸と交差する方向であると共に、前記ガイドベーンの上流側端縁と少なくとも一部が交差するように設けたことを特徴とする請求項1記載の遠心圧縮機。
  3.  前記再循環口は、周方向において前記吸気通路の周方向に間隔を有して隣設された前記ガイドベーン間の中間部に位置して設けられたことを特徴とする請求項1又は2記載の遠心圧縮機。
  4.  前記中央吸気流通部は、前記ガイドベーンの内周端を周方向に連結する環状ガイド部を備えたことを特徴とする請求項1乃至3のいずれか1項に記載の遠心圧縮機。
  5.  前記環状ガイド部の前記インペラホイール側端縁は、前記ガイドベーンの前記インペラホイール側端縁より、前記インペラホイール側に突出していることを特徴とする請求項4記載の遠心圧縮機。
  6.  前記再循環流路は、前記吸気通路の周方向で且つ、前記回転軸方向に沿った隔壁によって区切られていることを特徴とする請求項1記載の遠心圧縮機。
  7.  前記ガイドベーンは、前記吸気通路の内周面から前記回転軸の回転軸線側に近づくにつれて、前記回転軸方向に沿った長さが短くなる台形状に形成されていることを特徴とする請求項1に記載の遠心圧縮機。
  8.  前記ガイドベーンの前記回転軸線側端縁は、前記インペラホイールの上流側端縁の外周より前記回転軸線側に位置されていることを特徴とする請求項1に記載の遠心圧縮機。
  9.  前記平行流生成手段は、前記再循環口を有すると共に、前記再循環流路の一部を構成する環状ケーシングと、前記環状ガイド部と、前記ガイドベーンと、
    一端が前記再循環口の上流側に結合し、他端が前記環状ガイド部の上流端に連結した連結部と、を一体的に形成したことを特徴とする請求項4に記載の遠心圧縮機。
  10.  前記ハウジングは前記吸気通路を有する上流側ハウジングと、前記インペラホイールを収納する下流側ハウジングとに分割され、
     前記上流側ハウジングには、前記下流側ハウジングとの接合面部に、前記吸気通路とを区画すると共に、外周側に前記回転軸を中心にした環状で且つ前記吸気通路上流側に延在した第1凹溝を形成する第1隔壁と、
     前記下流側ハウジングの前記第1凹溝に対向した部位で、前記吸気通路下流側に延在し、
    前記インペラホイールの外周部と連通する連通孔を有した前記回転軸を中心にして環状に配置された第2凹溝を前記吸気通路と区画すると共に、前記第1凹溝に遊嵌し、前記第1凹溝に対し、外周面側および内周面側に隙間部を設けるように配置した環状の突出部を有した第2隔壁と、
     前記第1隔壁と前記第2隔壁との前記隙間部に前記ガイドベーンとを備え、
     前記連通孔から流入した吸気は、前記第2凹溝、前記第1凹溝と前記第2隔壁の外周側との隙間、前記第2隔壁の内周側と前記第1隔壁の外周側との隙間を順次通過して、前記ガイドベーンによって回転軸方向と平行に整流されて、前記インペラホイール側に向けて吸気通路へ流出させることを特徴とする請求項1記載の遠心圧縮機。
PCT/JP2013/068374 2013-07-04 2013-07-04 遠心圧縮機 WO2015001644A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014501359A JP5622965B1 (ja) 2013-07-04 2013-07-04 遠心圧縮機
PCT/JP2013/068374 WO2015001644A1 (ja) 2013-07-04 2013-07-04 遠心圧縮機
CN201380077809.8A CN105358837B (zh) 2013-07-04 2013-07-04 离心压缩机
EP13888592.6A EP3018361B1 (en) 2013-07-04 2013-07-04 Centrifugal compressor
US14/902,139 US10337522B2 (en) 2013-07-04 2013-07-04 Centrifugal compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068374 WO2015001644A1 (ja) 2013-07-04 2013-07-04 遠心圧縮機

Publications (1)

Publication Number Publication Date
WO2015001644A1 true WO2015001644A1 (ja) 2015-01-08

Family

ID=52143263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068374 WO2015001644A1 (ja) 2013-07-04 2013-07-04 遠心圧縮機

Country Status (5)

Country Link
US (1) US10337522B2 (ja)
EP (1) EP3018361B1 (ja)
JP (1) JP5622965B1 (ja)
CN (1) CN105358837B (ja)
WO (1) WO2015001644A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051099A1 (de) * 2015-02-02 2016-08-03 Volkswagen Aktiengesellschaft Verdichter mit variabler anströmgeometrie
CN106989062A (zh) * 2017-04-24 2017-07-28 河北工程大学 一种离心压气机进气畸变调节装置
WO2018147128A1 (ja) * 2017-02-08 2018-08-16 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
CN108474391A (zh) * 2016-02-12 2018-08-31 株式会社Ihi 离心压缩机
JP2019127862A (ja) * 2018-01-23 2019-08-01 株式会社豊田自動織機 ターボチャージャ
WO2019172238A1 (ja) * 2018-03-05 2019-09-12 いすゞ自動車株式会社 ターボ式過給機、ターボ式過給システム及びターボ式過給システムの過給方法
EP3660278A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger
EP3660283A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger
EP3660326A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger
EP3660325A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger with inlet guide vanes
WO2022107519A1 (ja) * 2020-11-17 2022-05-27 株式会社Ihi 遠心圧縮機および過給機
JP2022537439A (ja) * 2019-06-20 2022-08-25 レーヴェンシュタイン メディカル テクノロジー エス.アー. 呼吸装置のためのファンユニット
EP4265915A1 (en) * 2022-04-18 2023-10-25 Toyota Jidosha Kabushiki Kaisha Intake structure of turbocharged internal combustion engine
JP7445004B2 (ja) 2020-09-07 2024-03-06 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサハウジングおよび遠心圧縮機

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497183B2 (ja) * 2014-07-16 2019-04-10 トヨタ自動車株式会社 遠心圧縮機
US9932885B2 (en) * 2015-02-04 2018-04-03 Bullseye Power, LLC Tunable turbocharger compressor cover
DE102015211270A1 (de) * 2015-06-18 2016-12-22 Bayerische Motoren Werke Aktiengesellschaft Turbolader für ein Kraftfahrzeug
CN108474390B (zh) 2016-02-15 2020-11-10 三菱重工发动机和增压器株式会社 离心压缩机及增压器
US10697358B2 (en) * 2016-10-11 2020-06-30 Mazda Motor Corporation Intake passage structure for turbocharger-equipped engine
WO2018161069A1 (en) 2017-03-03 2018-09-07 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
CN110520629A (zh) * 2017-04-25 2019-11-29 株式会社Ihi 离心压缩机
DE112018003376T5 (de) * 2017-06-28 2020-03-05 Ihi Corporation Zentrifugalverdichter
US11268523B2 (en) * 2017-10-10 2022-03-08 Daikin Industries, Ltd. Centrifugal compressor with recirculation structure
US10935035B2 (en) * 2017-10-26 2021-03-02 Hanwha Power Systems Co., Ltd Closed impeller with self-recirculation casing treatment
CN108194419B (zh) * 2018-01-11 2019-10-11 南京航空航天大学 离心压气机周向大间隔小开孔吹抽联合脉冲激励机匣
JP6883247B2 (ja) * 2018-01-23 2021-06-09 株式会社豊田自動織機 ターボチャージャ
US10502232B2 (en) * 2018-03-01 2019-12-10 Garrett Transportation I Inc. Turbocharger compressor having adjustable trim mechanism including swirl inducers
CN112041567A (zh) * 2018-05-14 2020-12-04 株式会社Ihi 离心压缩机
JP7189683B2 (ja) * 2018-05-25 2022-12-14 株式会社Subaru 内燃機関の吸気装置
US10774677B2 (en) * 2018-05-29 2020-09-15 Ford Global Technologies, Llc Systems and methods for a variable inlet compressor
US10774676B2 (en) * 2018-05-29 2020-09-15 Ford Global Technologies, Llc Systems and methods for a variable inlet compressor
DE102018209558A1 (de) * 2018-06-14 2019-12-19 BMTS Technology GmbH & Co. KG Radialverdichter
DE102018211119A1 (de) * 2018-07-05 2020-01-09 Audi Ag Antriebseinrichtung mit einem Abgasturbolader
WO2020039919A1 (ja) * 2018-08-23 2020-02-27 株式会社Ihi 遠心圧縮機
CN108868910B (zh) * 2018-09-18 2023-09-22 凤城市东宁动力有限公司 涡轮增压器防喘振进气导流罩结构
JP7220097B2 (ja) * 2019-02-27 2023-02-09 三菱重工業株式会社 遠心圧縮機及びターボチャージャ
CN110081026B (zh) * 2019-05-16 2020-05-22 西安交通大学 一种用于减弱离心压缩机叶顶泄漏流的进口导叶及调节方法
DE102019123692A1 (de) * 2019-09-04 2021-03-04 Bayerische Motoren Werke Aktiengesellschaft Luftführung für einen Abgasturbolader
JP7298703B2 (ja) * 2019-10-09 2023-06-27 株式会社Ihi 遠心圧縮機
CN111692131A (zh) * 2020-06-22 2020-09-22 北京稳力科技有限公司 压缩机及其进口导叶装置
CN217107202U (zh) * 2020-09-23 2022-08-02 博格华纳公司 压缩机组件和用于车辆的涡轮增压器
US11788460B2 (en) 2021-08-27 2023-10-17 Garrett Transportation I Inc. Active surge supression through dynamically controlled actuated turboshaft speed
CN116557331B (zh) * 2023-07-04 2023-09-22 康跃科技(山东)有限公司 一种压气机及增压器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106299A (ja) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd 流体機械
JP2004332733A (ja) 2003-04-30 2004-11-25 Holset Eng Co Ltd 圧縮機
JP2006002650A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp 入口ベーンとバイパス制御弁とを連動させた遠心圧縮機
JP2009209694A (ja) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2010270641A (ja) 2009-05-20 2010-12-02 Ihi Corp 遠心圧縮機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494118B2 (ja) * 2000-04-07 2004-02-03 石川島播磨重工業株式会社 遠心圧縮機の作動域拡大方法及び装置
GB2391265A (en) 2002-07-13 2004-02-04 Imra Europ S A Uk Res Ct Compressor inlet with swirl vanes, inner sleeve and shut-off valve
JP2007127108A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
DE102006007347A1 (de) * 2006-02-17 2007-08-30 Daimlerchrysler Ag Verdichter für eine Brennkraftmaschine
JP5720267B2 (ja) 2011-01-21 2015-05-20 株式会社Ihi 遠心圧縮機
JP5857421B2 (ja) 2011-03-08 2016-02-10 株式会社Ihi ターボ圧縮機
US9850913B2 (en) 2012-08-24 2017-12-26 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
JP5825317B2 (ja) 2013-10-03 2015-12-02 オンキヨー株式会社 音声処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003106299A (ja) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd 流体機械
JP2004332733A (ja) 2003-04-30 2004-11-25 Holset Eng Co Ltd 圧縮機
JP2006002650A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp 入口ベーンとバイパス制御弁とを連動させた遠心圧縮機
JP2009209694A (ja) * 2008-02-29 2009-09-17 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2010270641A (ja) 2009-05-20 2010-12-02 Ihi Corp 遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018361A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3051099A1 (de) * 2015-02-02 2016-08-03 Volkswagen Aktiengesellschaft Verdichter mit variabler anströmgeometrie
US10954960B2 (en) 2016-02-12 2021-03-23 Ihi Corporation Centrifugal compressor
CN108474391A (zh) * 2016-02-12 2018-08-31 株式会社Ihi 离心压缩机
CN108474391B (zh) * 2016-02-12 2020-01-31 株式会社Ihi 离心压缩机
WO2018147128A1 (ja) * 2017-02-08 2018-08-16 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
WO2018146753A1 (ja) * 2017-02-08 2018-08-16 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
JPWO2018147128A1 (ja) * 2017-02-08 2019-11-07 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
JP7082948B2 (ja) 2017-02-08 2022-06-09 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機、ターボチャージャ
US11168701B2 (en) 2017-02-08 2021-11-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
CN106989062A (zh) * 2017-04-24 2017-07-28 河北工程大学 一种离心压气机进气畸变调节装置
JP2019127862A (ja) * 2018-01-23 2019-08-01 株式会社豊田自動織機 ターボチャージャ
WO2019172238A1 (ja) * 2018-03-05 2019-09-12 いすゞ自動車株式会社 ターボ式過給機、ターボ式過給システム及びターボ式過給システムの過給方法
EP3660283A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger
EP3660325A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger with inlet guide vanes
US11002151B2 (en) 2018-11-29 2021-05-11 Toyota Jidosha Kabushiki Kaisha Turbocharger
US11060448B2 (en) 2018-11-29 2021-07-13 Toyota Jidosha Kabushiki Kaisha Turbocharger
EP3660326A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger
EP3660278A1 (en) 2018-11-29 2020-06-03 Toyota Jidosha Kabushiki Kaisha Turbocharger
JP2022537439A (ja) * 2019-06-20 2022-08-25 レーヴェンシュタイン メディカル テクノロジー エス.アー. 呼吸装置のためのファンユニット
JP7445004B2 (ja) 2020-09-07 2024-03-06 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサハウジングおよび遠心圧縮機
WO2022107519A1 (ja) * 2020-11-17 2022-05-27 株式会社Ihi 遠心圧縮機および過給機
EP4265915A1 (en) * 2022-04-18 2023-10-25 Toyota Jidosha Kabushiki Kaisha Intake structure of turbocharged internal combustion engine

Also Published As

Publication number Publication date
EP3018361A4 (en) 2017-02-22
JPWO2015001644A1 (ja) 2017-02-23
EP3018361B1 (en) 2020-09-23
CN105358837A (zh) 2016-02-24
JP5622965B1 (ja) 2014-11-12
US20160201693A1 (en) 2016-07-14
US10337522B2 (en) 2019-07-02
EP3018361A1 (en) 2016-05-11
CN105358837B (zh) 2018-03-20

Similar Documents

Publication Publication Date Title
WO2015001644A1 (ja) 遠心圧縮機
JP5649758B2 (ja) 遠心圧縮機
EP2960528B1 (en) Centrifugal compressor
CN107816440B (zh) 离心压缩机
US7575411B2 (en) Engine intake air compressor having multiple inlets and method
WO2011045975A1 (ja) 排気ターボ過給機のコンプレッサ
CN101868629B (zh) 压缩机
CN102221016A (zh) 压缩机气流偏转器以及结合该偏转器的压缩机
WO2018146753A1 (ja) 遠心圧縮機、ターボチャージャ
CN111133174B (zh) 用于涡轮机的涡轮的扩散器空间
CN105317540A (zh) 涡轮增压器
US11401951B2 (en) Compressor having adjustment mechanism
WO2021205689A1 (ja) 遠心圧縮機および過給機
WO2021210164A1 (ja) スクロールケーシングおよび遠心圧縮機
CN114746637B (zh) 涡轮机壳体及涡轮增压器
JP2000291593A (ja) 圧縮機
JP2017089392A (ja) 過給機および過給機の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077809.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014501359

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14902139

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013888592

Country of ref document: EP