CN107816440B - 离心压缩机 - Google Patents

离心压缩机 Download PDF

Info

Publication number
CN107816440B
CN107816440B CN201711068872.1A CN201711068872A CN107816440B CN 107816440 B CN107816440 B CN 107816440B CN 201711068872 A CN201711068872 A CN 201711068872A CN 107816440 B CN107816440 B CN 107816440B
Authority
CN
China
Prior art keywords
guide vane
impeller
casing
air
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711068872.1A
Other languages
English (en)
Other versions
CN107816440A (zh
Inventor
安秉一
铃木浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Engine and Turbocharger Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to CN201711068872.1A priority Critical patent/CN107816440B/zh
Publication of CN107816440A publication Critical patent/CN107816440A/zh
Application granted granted Critical
Publication of CN107816440B publication Critical patent/CN107816440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • F02B37/225Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits air passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/04Mechanical drives; Variable-gear-ratio drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

一种离心压缩机,本发明的目的在于使生成回旋流的导向翼位于叶轮前面的壳体内周侧,改善喘振界限并抑制节流流量下降,并能够使导向翼的倾斜角度变化。本发明的特征在于,具备:压缩器(19)的压缩器壳体(15);对从吸气口(23)流入的吸气气体进行压缩的叶轮(7);导向翼(63),在吸气口(23)与叶轮(7)之间的吸气通路(21)的内周壁上沿着周向配置多个,并且对吸气气体赋予绕旋转轴的回旋流;中央吸气流通路(71),形成在多个导向翼(63)的内侧,使来自吸气口(23)的吸气气体不通过导向翼(63)而向叶轮流通;及导向翼可动机构(73),使多个导向翼(63)的倾斜角度连动地变化。

Description

离心压缩机
本申请为2015年1月8日提交的、申请号为201280074578.0的、发明名称为“离心压缩机”的申请的分案申请。
技术领域
本发明涉及具备借助旋转轴而旋转的叶轮的离心压缩机,尤其是涉及向排气涡轮增压机装入的离心压缩机。
背景技术
在汽车等所使用的发动机中,为了提高发动机的输出,广为周知有排气涡轮增压机,所述排气涡轮增压机利用发动机的废气的能量使涡轮旋转,并利用经由旋转轴而与涡轮直接连结的离心压缩机对吸入空气进行压缩来向发动机供给。
上述排气涡轮增压机的压缩器中,如图10的设压力比为纵轴且设流量为横轴的性能特性比较表的常规压缩器所示那样,由于系统整体的脉动即喘振产生的喘振流量(图上左侧的线)而产生滞塞,在不再增加这以上的流量的节流流量(图上右侧的线)为止的流量范围内稳定地运转。
然而,在向叶轮直接吸入吸气而构成的常规压缩器类型的离心压缩机中,节流流量与喘振流量之间的能够稳定运转的流量范围少,因此在紧急加速时的过渡性的变化中,存在为了避免发生喘振而必须在远离喘振流量的效率的低的工作点进行运转这样的课题。
为了解决上述课题,在专利文献1中公开了如下的技术:将在所述离心压缩机的叶轮上游侧使吸入空气产生回旋流的导向翼设置在叶轮的上游,来扩大排气涡轮增压机的运转范围的技术,在增压机的壳体设置使叶轮吸引的吸气气体的一部分再循环的再循环流路的技术。
基于图9,对上述技术进行简单说明。
离心压缩机200的叶轮201在壳体202内包含能够旋转的多个叶片204,壳体202具有与叶片204的半径方向外侧缘204a接近配置的内侧壁。
离心压缩机200的吸气口具备:形成气体吸入口208的外侧环状壁207;在外侧环状壁207内延伸而形成进口段部210的内侧环状壁209。在环状壁209、207之间形成有环状气体流路211。
下游开口部213将叶片204附近通过的壳体表面205与环状流路211连通。
上游开口部将环状流路211与进口段部210即吸气口吸入部之间连结。在上游开口部的下游的进口段部210的内侧设置吸气口导向翼214,使通过进口段部210的气流产生先导涡旋。并且,由于上述结构而通过压缩机的空气的流量小时,通过所述环状流路211的空气流的方向发生反转,空气从叶轮通过开口213,通过上游方向的环状流路211,被再导入到气体吸入口208,使压缩机再循环。
这会使压缩机的性能稳定化,能同时改善压缩机喘振界限和节流流(参照图10的RCC(再循环压缩器))。
而且,专利文献1中,内侧环状壁209和外侧环状壁207向上游方向延伸,并收容吸气口导向翼装置。该吸气口导向翼装置具备在中央头锥215与内侧环状壁209之间延伸的多个吸气口导向翼214。
所述吸气口导向翼214相对于叶轮201的旋转方向,向前方进行扫描,使到达叶轮201的空气流产生先导涡旋,该先导涡流改善压缩机的喘振界限(喘振极限)。即,先导涡流减少压缩机产生喘振的流动。(参照图10的RCC+导向翼)
【在先技术文献】
【专利文献】
【专利文献1】日本特开2004-332733号公报(参照摘要及图1)
发明内容
【发明要解决的课题】
然而,在所述图9所示的现有技术中,中央头锥215位于叶轮前面的内侧环状壁内的中央空间的情况明确可知,利用该中央头锥215部对吸气流增加吸气阻力,在图10中虽然未可视但是节流流减少,且中央头锥215的制造及向导向翼的中心轴上安装中央头锥的情况比较困难。
即,在以往的产生回旋流的导向翼的中央部设置将吸入空气向导向翼引导的锥状的构件,存在空气阻力增大且节流流量减少的问题。
而且,在图9所示的现有技术中,设置吸气口导向翼214而使通过进口段部210的气流产生先导涡旋,但是吸气口导向翼214的翼角度被固定为一定,因此回旋流的回旋方向也只能始终一定。
尤其是吸气口导向翼214的翼角度一定,因此对于吸气流始终产生一定的空气阻力,因此存在节流流量减少的问题。
本发明鉴于上述技术课题,其目的在于不设置中央头锥,而直接使导向翼位于叶轮前面的壳体内周侧,由此不会出现像现有技术那样节流流减少的情况,而改善喘振界限。
而且,本发明的目的在于能够使产生回旋流的导向翼的倾斜角度变化,控制成与压缩器的运转状态相适的倾斜角度,减少空气阻力而抑制节流流量的减少,并且实现喘振流量的小流量化而扩大压缩器的工作范围。
【用于解决课题的方案】
本发明为了实现上述目的,其特征在于,具备:
壳体,具有沿离心压缩机的旋转轴方向开口的吸气口和与该吸气口相连的吸气通路;
叶轮,以所述旋转轴为中心能够旋转地配置在所述壳体的内部,对从所述吸气口流入的吸气气体进行压缩;
导向翼,沿着所述吸气口与叶轮之间的所述壳体的内周壁在周向上配置多个,并且对从所述吸气口流入的吸气气体绕着旋转轴赋予回旋流;
中央吸气流通路,形成在所述多个导向翼的内周侧,使从所述吸气口流入的吸气气体不通过所述导向翼而向所述叶轮流通;及
导向翼可动机构,使所述多个导向翼的相对于所述旋转轴方向的倾斜角度连动地变化。
根据上述发明,通过对从吸气口流入的吸气气体赋予回旋流而喘振流量(最小流量)减少,喘振界限得到改善,而且,中央吸气流通路的吸气气体流通阻力小,因此能够抑制节流流量(最大流量)的减少,能够扩大工作范围。
另外,通过使导向翼的倾斜角度可变,能够进一步扩大喘振流量(最小流量)的减少和节流流量(最大流量)的减少抑制。即,根据内燃机的运转状态,即,根据通过压缩器的流量,能够变更导向翼的翼倾斜角度,例如,在小流量运转时,增大翼倾斜角度,利用回旋流而使压缩器的喘振的产生流量为更小流量,而且,在大流量运转时,能够减小翼倾斜角度而抑制节流流量的减少。
另外,在本发明中,优选的是,其特征在于,所述导向翼具有导向翼主轴,所述导向翼以所述导向翼主轴为中心转动,并且该导向翼主轴朝向吸气通路的中心延伸配置,该导向翼主轴的外端部贯通吸气通路的周壁而位于所述壳体的外侧,且与所述导向翼可动机构连结。
根据上述发明,使沿吸气通路的周向配置多个的导向翼的导向翼主轴分别从壳体的外侧转动,因此不会对在吸气通路中流动的吸气气体的流动造成影响而能够控制导向翼的倾斜角度。因此,能够不会伴随着吸气阻力的增加而使导向翼的可变。
另外,在本发明中,优选的是,其特征在于,所述导向翼可动机构具备:以包围所述壳体的外侧的方式设置且能够沿着所述壳体的外周转动的环形状的驱动环;将该驱动环与所述导向翼主轴的外端部连结的杆构件;以及使所述驱动环转动的促动器。
根据上述发明,导向翼可动机构主要由沿着壳体的外周能够转动的环形状的驱动环构成,因此沿着壳体的周围安装,因此相对于壳体不会较大地突出而大型化,能够紧凑地构成导向翼可变机构。而且,能够使多个导向翼连动地以同一倾斜角度高精度地转动。
另外,在本发明中,优选的是,其特征在于,在所述导向翼主轴与所述壳体之间设置有复位弹簧,作用有使所述导向翼的相对于所述旋转轴方向的倾斜角度始终返回零的作用力。
这样,由于利用复位弹簧作用有使导向翼的倾斜角度返回零的状态作用力,因此能够避免导向翼在转动中途发生固定而难以转动的情况。
另外,在本发明中,优选的是,其特征在于,所述导向翼由板状构件形成,吸气通路的中心侧呈尖细的梯形形状,配置成板状构件的面沿着吸气通路的流通方向,该导向翼的高度形成为与所述叶轮的叶片的前缘的高度大致相同的高度。
这样,导向翼将板状构件形成为尖细的梯形形状,使板面沿着吸气气流配置,因此相对于吸气流不会造成大的损失而能够配置在吸气通路内。由于尖细,因此通过导向翼的外周侧的单臂支承能够保持强度地支承。
另外,由于导向翼的高度与叶轮的叶片的前缘的高度为大致相同的高度,因此能够将由导向翼生成的回旋流高效率地向叶轮的叶片引导。
另外,在本发明中,优选的是,其特征在于,在所述壳体中,将所述叶轮的叶片的外周部与该叶轮上游侧的所述吸气通路连通的再循环流路设置在所述吸气通路的外侧。
根据上述发明,如前述那样,通过导向翼,使向叶轮导入的吸气流回旋,由此得到喘振界限,但是除了该改善之外,还使叶轮吸引的吸气气体的一部分经由将叶轮的叶片的外周部与该叶轮上游侧的所述吸气通路连通的再循环流路循环,由此能够减少喘振流量,因此能够进一步改善喘振界限。
另外,在本发明中,优选的是,其特征在于,所述再循环流路的上游侧的开口端部位于所述导向翼上游的位置。
这样,再循环流路的上游侧的开口端部位于导向翼上游的位置,因此循环的吸气气体通过导向翼,由此能够赋予更多的回旋,因此会进一步改善喘振界限。
另外,在本发明中,优选的是,其特征在于,所述壳体在将所述再循环流路分割的位置处被分割成上游侧和下游侧两部分。
这样,将压缩器壳体在分割再循环流路的位置处,分割成上游侧壳体和下游侧壳体这2部分,因此由该壳体的分割面能够加工出再循环流路的循环孔,因此再循环流路的形成变得容易。
【发明效果】
根据本发明,通过对从吸气口流入的吸气气体赋予回旋流而喘振流量(最小流量)减少,喘振界限得到改善,而且,中央吸气流通路的吸气气流通阻力小,因此能够抑制节流流量(最大流量)的减少,能够扩大工作范围。
此外,通过使导向翼的斜角度可变,能够根据通过压缩器的流量来变更导向翼的翼倾斜角度。
例如,在小流量运转时,增大翼倾斜角度,利用回旋流而使压缩器的喘振的产生流量实现更小流量,而且,在大流量运转时,能够减小翼倾斜角度而抑制节流流量的减少。
另外,在本发明中,优选的是,其特征在于,所述吸气通路的内径具有所述叶轮的叶片的前缘部分的直径和比该前缘部分的直径大的在流入侧形成的大径。
而且,也可以是,所述吸气通路的大径的部分设定为至少扩大与由于所述多个导向翼遮挡流路而减少的流路面积相当的流路面积。
根据上述发明,能够扩张由于导向翼减少的流路面积,由此能够消除导向翼对流通阻力的影响而实现效率提高并抑制节流流量(最大流量)的减少。
附图说明
图1是本发明的第一实施方式的离心压缩机的旋转轴方向的主要部分剖视图。
图2是图1的主要部分放大图。
图3是图1的A方向观察的局部剖视图。
图4是图3的C方向观察的说明图。
图5是图1的B-B线的主要部分剖视图。
图6表示第二实施方式,是对应于图1的主要部分剖视图。
图7表示第三实施方式,是对应于图1的主要部分剖视图。
图8是表示基于导向翼的倾斜角度的喘振线的变化倾向的特性图。
图9是表示现有技术的离心压缩机的剖视说明图。
图10是离心压缩机的一般的性能特性的比较图。
具体实施方式
以下,使用附图,详细说明本发明的实施方式。需要说明的是,以下的实施方式中记载的构成零件的尺寸、材质、形状、其相对配置等只要没有特别特定的记载,就不是将本发明的范围限定于此,只不过是说明例。
(第一实施方式)
图1示出内燃机的排气涡轮增压机1的旋转轴方向的主要部分剖视图。该排气涡轮增压机1将涡轮壳体5、轴承壳体13、压缩器壳体15结合而构成,该涡轮壳体5收纳由内燃机的废气来驱动的涡轮转子3,该轴承壳体13经由轴承11将旋转轴9支承为旋转自如,该旋转轴9将该涡轮转子3的旋转力向叶轮7传递,该压缩器壳体15收纳叶轮7,该叶轮7吸引空气作为吸气气体并进行压缩。
在涡轮壳体5的外周部,形成为涡旋状的涡旋通路17形成在涡轮转子3的外周,来自内燃机的废气从外周侧流向轴中心侧,然后,沿轴方向排出而使涡轮转子3旋转。
本发明的压缩器(离心压缩机)19将叶轮7在压缩器壳体15内支承为以旋转轴9的旋转轴线M为中心能够旋转,并且,将压缩前的吸气气体例如空气向叶轮7引导的吸气通路21沿着旋转轴线M方向且呈同轴状地圆柱形状地延伸。并且,与该吸气通路21相连的吸气口23在吸气通路21的端部开口。吸气口23为了容易导入空气而朝向端部扩径成锥状。
在叶轮7的外侧形成有沿与旋转轴线M垂直的方向延伸的扩散器25,在该扩散器25的外周设有涡旋状的空气通路27。该涡旋状的空气通路27形成压缩器壳体15的外周部分。
需要说明的是,在叶轮7设有以旋转轴线M为中心被旋转驱动的轮毂部29,且设有被旋转驱动的多个叶片31。轮毂部29安装于旋转轴9,并且在其径向外侧的面上设有多个叶片31。
叶片31被旋转驱动,由此压缩从吸气口23吸入且通过了吸气通路21的空气,关于形状没有特别限定。在叶片31上设有作为上游侧的缘部的前缘31a、作为下游侧的缘部的后缘31b、作为径向外侧的缘部的外周缘(外周部)31c。该外周缘31c是指由压缩器壳体15的护罩部33覆盖的侧缘的部分。并且,外周缘31c配置成通过护罩部33的内表面的附近。
压缩器19的叶轮7借助涡轮转子3的旋转驱动力,以旋转轴线M为中心被驱动而旋转。并且,从吸气口23引入外部的空气,在叶轮7的多个叶片31之间流动,主要在动压上升之后,流入配置在径向外侧的扩散器25,动压的一部分被转换成静压而压力升高,通过涡旋状的空气通路27被排出。并且,作为内燃机的吸气被供给。
(再循环流路)
接着,说明形成于压缩器壳体15的再循环流路41。
再循环流路41以将下游侧开口端部43与上游侧开口端部45连通的方式设置,该下游侧开口端部43向与所述叶片31的外周缘31c相对的压缩器壳体15的内周壁开口且为环状,该上游侧开口端部45向叶片31的前缘31a的上游侧的压缩器壳体15的内周壁开口。
并且,使向多个叶片31之间刚流入之后的空气或加压中途的空气的一部分通过再循环流路41,向叶片31的上游侧的吸气通路21内再循环。
另外,再循环流路41在圆筒状的吸气通路21的外侧,由在以旋转轴线M为中心的圆周上排列多个的循环孔51构成。
另外,压缩器壳体15通过分割成三部分而构成,包括在中途将再循环流路41分割的位置处被分割成上游侧壳体15a和下游侧壳体15b这两部分、以及在下游侧壳体15b的更下游侧具有涡旋状的空气通路27的护罩侧壳体15c这一部分。
该上游侧壳体15a与下游侧壳体15b的对合面形成台阶状的对合面,通过凹陷嵌合而进行旋转轴线M方向及与其垂直的径向的位置对合。并且,上游侧壳体15a与下游侧壳体15b通过螺栓47而结合。而且,下游侧壳体15b与护罩侧壳体15c通过销49进行位置对合而焊接接合。
而且,在上游侧壳体15a及下游侧壳体15b,构成再循环流路41的多个循环孔51沿旋转轴线M方向延伸而形成在以旋转轴线M为中心的圆周上。
图5示出下游侧壳体15b的B-B线的主要部分剖视图。根据图5,在吸气通路21的外侧,在本实施方式中,多个例如13个大致长圆状的循环孔51以使长圆形状的长度方向位于周向的方式等间隔配置在同一圆周上。
在上游侧壳体15a与下游侧壳体15b的分割面上形成有环状的弯曲凹槽53,该弯曲凹槽53形成上游侧开口端部45。通过该凹槽的弯曲形状,使回流空气的放出方向以朝向叶轮7的方式进行指向。
这样,能够从上游侧壳体15a的分割面、下游侧壳体15b的分割面分别加工出再循环流路41的循环孔51、上游侧开口端部45的凹槽53,因此再循环流路41的形成变得容易。
当设置再循环流路41时,如下那样发挥作用。
在通过压缩器19的空气量为适当的流量的状态下,通过再循环流路41的空气中,来自吸气口23的空气从上游侧开口端部45朝向下游侧开口端部43流动,并从下游侧开口端部43流入叶片31的外周缘31c。
另一方面,当通过压缩器19的空气量减少而成为产生喘振那样的低流量时,通过再循环流路41的空气变为反向,从下游侧开口端部43朝向上游侧开口端部45流动,被再次导入吸气通路21,而被再次导入叶轮7。由此,在外观上,向叶片31的前缘31a流入的流量增多,能够使喘振产生的喘振流量实现小流量化。
另外,通过设置再循环流路41,虽然能够使喘振流量实现小流量化,但是叶轮7产生由叶片31的个数和旋转速度决定的规定的频率的噪音,因此再循环流路41的旋转轴线M方向的长度、循环孔51的截面形状、及循环孔51的个数需要设定为使循环孔51的频率带域成为与由叶轮7产生的频率不发生共振的频率带域。
如本实施方式那样,压缩器壳体15由上游侧壳体15a、下游侧壳体15b、护罩侧壳体15c这三部分构成,因此作为噪音对策而设定的对于再循环流路41的旋转轴线M方向的长度、循环孔51的个数的变更的应对仅利用上游侧壳体15a和下游侧壳体15b的变更就能够实现,从而应对变得容易。
(回旋流生成单元)
接着,对回旋流生成单元61进行说明。
如图1~3所示,回旋流生成单元61设置在下游侧壳体15b的吸气通路21内部,配置在吸气口23与叶轮7之间,对于从吸气口23流入的空气赋予绕旋转轴线M的回旋流,具体而言,通过在下游侧壳体15b的吸气通路21的内周壁沿着周向配置的多个导向翼63来构成。
如图1所示,导向翼63具有导向翼主轴65,安装在导向翼主轴65的前端部,以该导向翼主轴65为中心而转动。而且,导向翼主轴65的中心线N如图3所示以从吸气通路21的中心点P呈放射状地扩展的方式配置。
另外,导向翼63由薄板状的板构件构成,旋转轴线M方向的形状呈前端比根部变得窄幅的大致梯形形状的四边形。是板厚均匀的平板状。而且,也可以使板厚在根部厚且朝向前端变薄,而且,也可以是根部和前端薄且中央部厚的板形状。
导向翼63的高度H形成为与叶轮7的叶片31的前缘31a的高度WH大致相同的高度。由此,导向翼63产生的回旋流有效地作用于叶轮7的叶片31。
另外,导向翼63以能够变更相对于旋转轴线M方向的倾斜角度θ的方式安装。通过该倾斜角度θ,能够使向旋转轴线M方向流入的空气沿与叶轮7的旋转方向相同的方向回旋,生成回旋流。通过该回旋流,使向叶片31流入的吸入空气流回旋,因此能够进一步扩大前述的再循环流路41产生的喘振流量的小流量化。
需要说明的是,在设旋转轴线M方向为0(零)度且相对于旋转轴线M而翼面朝向直角方向的情况为90度时,倾斜角度θ优选为超过0度且为60度以下(0°<θ≤60°)。当超过60度时,流动损失增大,喘振延伸,但是会较大地影响压力损失引起的效率下降。
如图2所示,导向翼主轴65贯通下游侧壳体15b而向壳体的外侧突出。导向翼主轴65经由支承套筒68而能够转动地支承在贯通孔内。进而,在与导向翼主轴65之间夹设有密封构件67、复位弹簧69。并且,由于设有复位弹簧69,因此导向翼63的倾斜角度θ始终返回零的作用力发挥作用。由此,会避免导向翼63在倾斜状态下固定的状态。
在所述多个导向翼63的内周侧形成有使从吸气口23流入的空气不通过导向翼63而向叶轮7流通的中央吸气流通路71。该中央吸气流通路71由于吸气空气的流通阻力小,因此抑制节流流量(最大流量)的减少的效果大。
需要说明的是,在本实施方式中,将导向翼63的内周端部形成为敞开状态,但也可以由圆筒形状构件进行支承。当这样通过圆筒构件进行支承时,导向翼63的支承刚性提高,导向翼63的稳定支承及倾斜角度的控制精度提高。
(导向翼可动机构)
接着,说明导向翼可动机构73。
导向翼可动机构73主要具备:以包围下游侧壳体15b的外侧的方式设置并沿着下游侧壳体15b的外周能够转动的环形状的驱动环75;将该驱动环75与导向翼主轴65的外端部连结的杆构件77;使驱动环75转动的促动器79。
在下游侧壳体15b的外周面沿周向形成有截面凹状的槽,环形状的驱动环75经由滚子轴承81而转动自如地嵌合在该槽内。
在驱动环75设有:经由滚子轴承81而嵌合于凹槽的转动部83;及与该转动部83一体形成而沿着旋转轴线M方向延伸的臂部85。凹形状的切口87以在图1中右方向具有切口的开口且沿周向排列地形成于臂部85。
另一方面,与导向翼主轴65的外端部连结的杆构件77将该杆构件77的一端部固定在导向翼主轴65,在另一端部利用螺栓89旋转自如地安装有辊91,该辊91游嵌在所述臂部85的凹形状的切口87的内部。
因此,当利用促动器79使驱动环75转动时,驱动环75的臂部85沿周向移动(向图4的箭头S方向移动),伴随于此,杆构件77绕着导向翼主轴65的中心线N转动。其结果是,导向翼63伴随着驱动环75的转动而转动。
导向翼63的转动范围通过设置在驱动环75上的突起部93与设置在压缩器壳体15的护罩侧壳体15c上的限动件95抵接而受到限制。而且,限动件95的限制范围能够利用调整螺钉97进行调整。
因此,利用限动件95,将导向翼63的倾斜角度θ设定为例如0°≤θ≤60°的范围,并利用复位弹簧69以始终成为0°的方式施力,由此能够避免导向翼63在倾斜状态下固定那样的状态。而且,与导向翼的倾斜角度被固定为一定的情况相比,根据需要而使倾斜角度可变,由此能抑制导向翼造成的节流流量的下降。
图8示出设导向翼63的倾斜角度θ变化为0°、20°、40°、60°时的喘振线的变化,可知当增大导向翼63的倾斜角度θ时,回旋流的生成效果增大,能够使喘振流量实现小流量化。
因此,根据内燃机的运转状态,即,根据通过压缩器19的流量来变更导向翼63的翼倾斜角度θ,由此例如在低旋转或低负载时那样的小流量运转时,增大翼倾斜角度θ,以避免在工作点发生喘振,由此向小流量侧进行控制,而且,在高旋转或高负载运转时那样的大流量侧存在工作点时,减小翼倾斜角度θ,与喘振的发生相比考虑节流流量的界限,能够进行大流量侧的控制。
如以上那样,根据第一实施方式,除了再循环流路41产生的喘振界限(喘振发生极限)的改善之外,通过利用导向翼63向从吸气口23流入的吸入空气赋予回旋流,能够进一步减少喘振流量(最小流量)而改善喘振界限。
进而,通过在导向翼63的内周侧形成的中央吸气流通路71,能够减小对吸入空气的流通阻力,因此能够抑制节流流量(最大流量)的减少。这样,能够扩大压缩器19的工作范围。
即,与仅设有再循环通路的压缩器、在专利文献1中说明的那样的虽然设有导向翼但是在吸气通路的中央部设有锥构件的结构相比,能够扩大工作范围。
另外,根据第一实施方式,由于能够使导向翼63的倾斜角度可变,因此根据内燃机的运转状态,能够设定与喘振流量(最小流量)和节流流量(最大流量)的改善相适合的最适的角度。
另外,由于采用的是使沿周向配置多个的导向翼63向压缩器壳体15的外侧突出而使各个导向翼主轴65从压缩器壳体15的外侧进行转动的结构,因此不会对吸气通路21内的空气的流动造成影响而能够高精度地控制导向翼63的倾斜角度。
而且,使导向翼63的倾斜角度可变的导向翼可动机构73构成为主要具备:以包围下游侧壳体15b的外侧的方式设置而沿着下游侧壳体15b的外周能够转动的环形状的驱动环75;与该驱动环75扣合的杆构件77;使驱动环75转动的促动器79,由此不会大型化而能够紧凑地构成,进而,能够使多个导向翼63以同一倾斜角度高精度地连动。
(第二实施方式)
接着,参照图6,说明第二实施方式。
第二实施方式未设置第一实施方式的再循环流路41,其他的结构与第一实施方式相同。
如图6那样,使压缩器壳体100由上游侧壳体100a、下游侧壳体100b、包含涡旋状的空气通路27的护罩侧壳体15c这3部分构成。在上游侧壳体100a和下游侧壳体100b未设置再循环流路41。
另外,各个构件的嵌合面成为凹陷结构而进行旋转轴线M方向及径向的定位。
另外,关于导向翼63及导向翼可动机构73,是与第一实施方式同样的机构。
根据上述第二实施方式,如图6那样,在上游侧壳体100a及下游侧壳体100b未形成第一实施方式那样的再循环流路41,因此上游侧及下游侧的壳体结构变得简单。
其结果是,上游侧壳体100a及下游侧壳体100b的加工变得容易并且组装作业也变得容易。
另外,上游侧壳体100a、下游侧壳体100b形成作为不同构件,是嵌合而组装的结构,因此向与叶轮7的叶片31的大小对应的适当的大小的导向翼的变更能够容易实现。
即,导向翼63及使导向翼63的倾斜角度可变的导向翼可动机构73设于下游侧壳体100b,利用螺栓47而安装于上游侧壳体100a,因此对导向翼63的翼形状的变更的应对不需要对压缩器壳体整体进行变更,只要变更对下游侧壳体100b的安装即可,因此利用下游侧壳体100b的变更能够应对。
进而,回旋流生成单元61产生的作用效果与第一实施方式同样,能够实现喘振流量(最小流量)的减少引起的喘振界限的改善,并抑制节流流量(最大流量)的减少,通过简单的结构能够实现压缩器的工作范围的扩大。而且,通过导向翼63的倾斜角度的可变而能够调整成与运转状态对应的最适的角度。
(第三实施方式)
接着,参照图7,说明第三实施方式。
第三实施方式中,所述第一实施方式的吸气流路21的内周壁的形状不是圆筒形状而具有内径沿着旋转轴线M方向变化的形状。其他的结构与第一实施方式相同。
上游侧壳体115a的内周壁为大径J,下游侧壳体115b的内周壁以从大径J向小径K变化的方式形成。小径K成为与叶轮7的叶片31的前缘31a部分的直径大致相同。
该从小径K向大径J的扩大变化设定为至少扩大与通过多个导向翼63遮挡流路而减少的流路面积相当的面积。
即,由于大径J的部分,吸气通路121内的流路面积不会因导向翼63的设置而减少。可以不仅考虑导向翼63,也考虑对导向翼63进行支承的支承套筒68的下端部引起的流路面积的减少而进一步扩大。
使吸气通路121以扩大的方式扩张,由此能够弥补导向翼63的设置引起的吸气通路121的流路面积的减少,因此能够消除流通阻力的影响而提高效率并抑制节流流量(最大流量)的减少。
【工业实用性】
根据本发明,通过对从吸气口流入的吸气气体赋予回旋流而喘振流量(最小流量)减少,喘振界限得到改善,进而,中央吸气流通路的吸气气体流通阻力小,因此能够抑制节流流量(最大流量)的减少,能够扩大工作范围,并且还能够通过使导向翼的斜角度可变,根据通过压缩器的流量来变更导向翼的翼倾斜角度,因此作为向内燃机的排气涡轮增压机的适用技术而有用。
【标号说明】
1 排气涡轮增压机
7 叶轮
9 旋转轴
15、100 压缩器壳体(壳体)
15a、100a、115a 上游侧壳体
15b、100b、115b 下游侧壳体
15c 护罩侧壳体
19 离心压缩机
21、121 吸气通路
23 吸气口
25 扩散器
27 涡旋状的空气通路
29 轮毂
31 叶片
31a 叶片的前缘
31b 叶片的后缘
31c 叶片的外周缘(外周部)
41 再循环流路
43 下游侧开口端部
45 上游侧开口端部
51 循环孔
61 回旋流生成单元
63 导向翼
65 导向翼主轴
69 复位弹簧
71 中央吸气流通路
73 导向翼可动机构
75 驱动环
77 杆构件
79 促动器
69 复位弹簧
91 辊
M 旋转轴线
θ 导向翼的倾斜角度

Claims (6)

1.一种离心压缩机,其特征在于,具备:
壳体,具有沿离心压缩机的旋转轴方向开口的吸气口和与该吸气口相连的吸气通路;
叶轮,以所述旋转轴为中心能够旋转地配置在所述壳体的内部,对从所述吸气口流入的吸气气体进行压缩;
导向翼,沿着所述吸气口与叶轮之间的所述壳体的内周壁在周向上配置多个,并且对从所述吸气口流入的吸气气体绕着旋转轴赋予回旋流;
中央吸气流通路,形成在所述多个导向翼的内周侧,使从所述吸气口流入的吸气气体不通过所述导向翼而向所述叶轮流通;及
导向翼可动机构,使所述多个导向翼的相对于所述旋转轴方向的倾斜角度连动地变化,
所述导向翼具有导向翼主轴,所述导向翼以所述导向翼主轴为中心转动,并且该导向翼主轴朝向所述吸气通路的中心延伸配置,该导向翼主轴的外端部贯通所述吸气通路的周壁而位于所述壳体的外侧,且与所述导向翼可动机构连结,
在所述壳体中,将所述叶轮的叶片的外周部与该叶轮上游侧的所述吸气通路连通的再循环流路设置在所述吸气通路的外侧,
所述壳体通过分割成三部分而构成,所述三部分包括在中途将所述再循环流路分割的位置处被分割成上游侧壳体和下游侧壳体的两部分、以及在所述下游侧壳体的更下游侧具有涡旋状的空气通路的护罩侧壳体的部分,
在所述上游侧壳体与所述下游侧壳体的分割面形成有环状的弯曲凹槽,所述环状的弯曲凹槽形成所述再循环流路的上游侧开口端部,通过所述弯曲凹槽的弯曲形状以使回流空气的放出方向朝向所述叶轮方向的方式进行指向,
所述导向翼可动机构具备:以包围所述下游侧壳体的外侧的方式设置且能够沿着下游侧壳体的外周转动的环形状的驱动环;将该驱动环与所述导向翼主轴的外端部连结的杆构件;以及使所述驱动环转动的促动器。
2.根据权利要求1所述的离心压缩机,其特征在于,
在所述导向翼主轴与所述壳体之间设置有复位弹簧,作用有使所述导向翼的相对于所述旋转轴方向的倾斜角度始终返回零的作用力。
3.根据权利要求1所述的离心压缩机,其特征在于,
所述导向翼由板状构件形成,吸气通路的中心侧呈尖细的梯形形状,配置成板状构件的面沿着吸气通路的流通方向,该导向翼的高度形成为与所述叶轮的叶片的前缘的高度大致相同的高度。
4.根据权利要求1所述的离心压缩机,其特征在于,
所述再循环流路的上游侧的开口端部位于所述导向翼上游的位置。
5.根据权利要求1所述的离心压缩机,其特征在于,
所述吸气通路的内径形成为具有所述叶轮的叶片的前缘部分的直径和比该前缘部分的直径大的流入侧的大径。
6.根据权利要求5所述的离心压缩机,其特征在于,
所述吸气通路的大径的部分设定为至少扩大与由于所述多个导向翼遮挡流路而减少的流路面积相当的流路面积。
CN201711068872.1A 2012-08-30 2012-08-30 离心压缩机 Active CN107816440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711068872.1A CN107816440B (zh) 2012-08-30 2012-08-30 离心压缩机

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201280074578.0A CN104428509B (zh) 2012-08-30 2012-08-30 离心压缩机
PCT/JP2012/072038 WO2014033878A1 (ja) 2012-08-30 2012-08-30 遠心圧縮機
CN201711068872.1A CN107816440B (zh) 2012-08-30 2012-08-30 离心压缩机

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280074578.0A Division CN104428509B (zh) 2012-08-30 2012-08-30 离心压缩机

Publications (2)

Publication Number Publication Date
CN107816440A CN107816440A (zh) 2018-03-20
CN107816440B true CN107816440B (zh) 2020-03-06

Family

ID=50182727

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201711068872.1A Active CN107816440B (zh) 2012-08-30 2012-08-30 离心压缩机
CN201280074578.0A Active CN104428509B (zh) 2012-08-30 2012-08-30 离心压缩机

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201280074578.0A Active CN104428509B (zh) 2012-08-30 2012-08-30 离心压缩机

Country Status (5)

Country Link
US (1) US9732756B2 (zh)
EP (1) EP2863032B1 (zh)
JP (1) JP5599528B2 (zh)
CN (2) CN107816440B (zh)
WO (1) WO2014033878A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960528B1 (en) 2013-02-22 2018-12-12 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
JP5807037B2 (ja) * 2013-05-16 2015-11-10 株式会社豊田自動織機 可変ノズルターボチャージャ
JP6497183B2 (ja) 2014-07-16 2019-04-10 トヨタ自動車株式会社 遠心圧縮機
JP6594019B2 (ja) * 2015-04-14 2019-10-23 三菱重工サーマルシステムズ株式会社 入口案内羽根及び遠心圧縮機
DE102015215246B4 (de) * 2015-08-11 2022-05-12 Bayerische Motoren Werke Aktiengesellschaft Verdichter eines Turboladers mit einem Schubumluftventil sowie Turbolader und Kraftfahrzeug mit einem solchen Verdichter
DE102015220333A1 (de) * 2015-10-19 2017-04-20 Rolls-Royce Deutschland Ltd & Co Kg Vorrichtung zur Einstellung eines Spaltes zwischen dem Gehäuse eines Laufrades und dem Laufrad in einem Radialverdichter und eine Turbomaschine
TWI544151B (zh) 2015-11-12 2016-08-01 財團法人工業技術研究院 結合進氣導葉的內流道氣體旁通裝置
CN105332929A (zh) * 2015-12-11 2016-02-17 中国北方发动机研究所(天津) 带反向导叶的旁通再循环离心压气机
US9932991B2 (en) * 2016-04-04 2018-04-03 Ford Global Technologies, Llc Active swirl device for turbocharger compressor
WO2017194079A1 (en) * 2016-05-09 2017-11-16 Volvo Truck Corporation An inlet system for an internal combustion engine
DE102016114253A1 (de) * 2016-08-02 2018-02-08 Man Diesel & Turbo Se Axialturbine eines Turboladers und Turbolader
KR102215296B1 (ko) * 2017-03-24 2021-02-16 현대자동차주식회사 컴프레서
EP3688312A1 (en) * 2017-09-25 2020-08-05 Johnson Controls Technology Company Compact variable geometry diffuser mechanism
US11680582B2 (en) * 2017-09-25 2023-06-20 Johnson Controls Tyco IP Holdings LLP Two piece split scroll for centrifugal compressor
US11396888B1 (en) 2017-11-09 2022-07-26 Williams International Co., L.L.C. System and method for guiding compressible gas flowing through a duct
US10578048B2 (en) * 2018-01-15 2020-03-03 Ford Global Technologies, Llc Wide range active compressor for HP-EGR engine systems
RU2716940C1 (ru) * 2018-02-09 2020-03-17 Кэрриер Корпорейшн Центробежный компрессор с рециркуляционным каналом
JP6939989B2 (ja) 2018-05-14 2021-09-22 株式会社Ihi 遠心圧縮機
DE102018209558A1 (de) * 2018-06-14 2019-12-19 BMTS Technology GmbH & Co. KG Radialverdichter
CN209510457U (zh) * 2018-06-14 2019-10-18 博格华纳公司 用于具有可变调节机构的压缩机的装置以及增压装置
DE102018211094A1 (de) * 2018-07-05 2020-01-09 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine, Brennkraftmaschine und Kraftfahrzeug
DE102018211091A1 (de) * 2018-07-05 2020-01-09 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
CN109737069B (zh) * 2019-01-31 2023-10-20 浙江理工大学 用于研究多级离心泵导叶时序效应的可调节实验装置
JP7351902B2 (ja) * 2019-03-19 2023-09-27 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びターボチャージャ
CN113574281B (zh) * 2019-03-19 2023-08-15 三菱重工发动机和增压器株式会社 离心压缩机以及涡轮增压器
CN113728167A (zh) * 2019-04-26 2021-11-30 株式会社Ihi 离心压缩机和增压器
WO2021070499A1 (ja) * 2019-10-09 2021-04-15 株式会社Ihi 遠心圧縮機
FR3105290B1 (fr) * 2019-12-18 2021-11-26 Safran Aircraft Engines Ensemble pour turbomachine
US11555502B1 (en) * 2021-08-13 2023-01-17 Carrier Corporation Compressor including inlet guide vanes
US11655825B2 (en) * 2021-08-20 2023-05-23 Carrier Corporation Compressor including aerodynamic swirl between inlet guide vanes and impeller blades
CN114278611A (zh) * 2022-01-06 2022-04-05 重庆江增船舶重工有限公司 一种涡轮增压器压气机可调导叶结构及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969798A (en) * 1988-02-26 1990-11-13 Hitachi, Ltd. Diffuser for a centrifugal compressor
JPH1026027A (ja) * 1996-07-10 1998-01-27 Toyota Central Res & Dev Lab Inc エンジンの過給装置
JP2006002650A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp 入口ベーンとバイパス制御弁とを連動させた遠心圧縮機
JP2007127109A (ja) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
CN1987119A (zh) * 2005-12-23 2007-06-27 财团法人工业技术研究院 压缩机喷流道结构
CN101952601A (zh) * 2008-02-20 2011-01-19 特灵国际有限公司 离心式压缩机组件和方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362624A (en) * 1966-09-06 1968-01-09 Carrier Corp Centrifugal gas compressor
JPS5422011B2 (zh) 1971-10-29 1979-08-03
US3733960A (en) 1971-11-23 1973-05-22 Gen Electric Article handling system
JPS5422011A (en) * 1977-07-20 1979-02-19 Tech Res & Dev Inst Of Japan Def Agency Controller for exhaust gas turbo-supercharger
US4219305A (en) * 1978-12-26 1980-08-26 Carrier Corporation Diffuser control
US4363596A (en) * 1979-06-18 1982-12-14 Mcquay-Perfex, Inc. Method and apparatus for surge detection and control in centrifugal gas compressors
US4844690A (en) * 1985-01-24 1989-07-04 Carrier Corporation Diffuser vane seal for a centrifugal compressor
DE58903001D1 (de) * 1988-06-29 1993-01-28 Asea Brown Boveri Einrichtung zur kennfelderweiterung eines radialverdichters.
EP0381399B1 (en) 1989-02-02 1994-07-13 Hitachi, Ltd. Vane controller
US5116197A (en) * 1990-10-31 1992-05-26 York International Corporation Variable geometry diffuser
US5669756A (en) * 1996-06-07 1997-09-23 Carrier Corporation Recirculating diffuser
JPH10339152A (ja) * 1997-06-05 1998-12-22 Toyota Central Res & Dev Lab Inc ターボチャージャ用遠心圧縮機
JP2000064848A (ja) 1998-08-21 2000-02-29 Ishikawajima Harima Heavy Ind Co Ltd ターボチャージャ
US6039534A (en) * 1998-09-21 2000-03-21 Northern Research And Engineering Corp Inlet guide vane assembly
JP2004027931A (ja) 2002-06-25 2004-01-29 Mitsubishi Heavy Ind Ltd 遠心圧縮機
DE602004001908T2 (de) 2003-04-30 2007-04-26 Holset Engineering Co. Ltd., Huddersfield Kompressor
JP5351401B2 (ja) 2007-09-28 2013-11-27 三菱重工業株式会社 圧縮機
JP5221985B2 (ja) 2008-02-29 2013-06-26 三菱重工業株式会社 遠心圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4969798A (en) * 1988-02-26 1990-11-13 Hitachi, Ltd. Diffuser for a centrifugal compressor
JPH1026027A (ja) * 1996-07-10 1998-01-27 Toyota Central Res & Dev Lab Inc エンジンの過給装置
JP2006002650A (ja) * 2004-06-17 2006-01-05 Toyota Motor Corp 入口ベーンとバイパス制御弁とを連動させた遠心圧縮機
JP2007127109A (ja) * 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
CN1987119A (zh) * 2005-12-23 2007-06-27 财团法人工业技术研究院 压缩机喷流道结构
CN101952601A (zh) * 2008-02-20 2011-01-19 特灵国际有限公司 离心式压缩机组件和方法

Also Published As

Publication number Publication date
US20150192133A1 (en) 2015-07-09
CN104428509B (zh) 2018-05-08
JP5599528B2 (ja) 2014-10-01
CN107816440A (zh) 2018-03-20
EP2863032A1 (en) 2015-04-22
EP2863032A4 (en) 2015-05-06
CN104428509A (zh) 2015-03-18
JPWO2014033878A1 (ja) 2016-08-08
WO2014033878A1 (ja) 2014-03-06
EP2863032B1 (en) 2017-11-01
US9732756B2 (en) 2017-08-15

Similar Documents

Publication Publication Date Title
CN107816440B (zh) 离心压缩机
JP5649758B2 (ja) 遠心圧縮機
JP6067095B2 (ja) 遠心圧縮機
US10570905B2 (en) Centrifugal compressor for a turbocharger, having synergistic ported shroud and inlet-adjustment mechanism
US9683484B2 (en) Adjustable-trim centrifugal compressor, and turbocharger having same
JP5622965B1 (ja) 遠心圧縮機
EP3392483A1 (en) Turbocharger with adjustable-trim centrifugal compressor
EP3372803B1 (en) Adjustable-trim centrifugal compressor for a turbocharger
JP6426191B2 (ja) 膨張タービン及びターボチャージャ
JP2005023792A (ja) 可変ベーン付遠心圧縮機
US20170342997A1 (en) Compressor and turbocharger
WO2018116394A1 (ja) ターボチャージャ及びターボチャージャのノズルベーン並びにタービン
JP6959992B2 (ja) タービン及びターボチャージャ
US10851797B2 (en) Turbocharger, nozzle vane for turbocharger, and turbine
US20230272738A1 (en) Turbine and turbocharger
US11835057B2 (en) Impeller of centrifugal compressor, centrifugal compressor, and turbocharger
US20240076996A1 (en) Variable geometry turbine and turbocharger
WO2020188763A1 (ja) 遠心圧縮機及びターボチャージャ
JP2008163761A (ja) ラジアルタービン

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180626

Address after: Kanagawa

Applicant after: MITSUBISHI heavy industries, engines and supercharger Corporation

Address before: Tokyo, Japan, Japan

Applicant before: Mit-subishi Heavy Industries Ltd.

GR01 Patent grant
GR01 Patent grant