WO2015000924A1 - Stromsensor-shunt mit bohrungen für press-fit-pins - Google Patents

Stromsensor-shunt mit bohrungen für press-fit-pins Download PDF

Info

Publication number
WO2015000924A1
WO2015000924A1 PCT/EP2014/063999 EP2014063999W WO2015000924A1 WO 2015000924 A1 WO2015000924 A1 WO 2015000924A1 EP 2014063999 W EP2014063999 W EP 2014063999W WO 2015000924 A1 WO2015000924 A1 WO 2015000924A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring resistor
current
electrical
recesses
evaluation circuit
Prior art date
Application number
PCT/EP2014/063999
Other languages
English (en)
French (fr)
Inventor
Henryk Frenzel
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to CN201490000867.0U priority Critical patent/CN205691625U/zh
Publication of WO2015000924A1 publication Critical patent/WO2015000924A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts

Definitions

  • the invention relates to a measuring resistor for a current sensor and the current sensor.
  • Electric currents in and out of a vehicle battery for example, in DE 10 2009 044 992 AI and in the
  • a measuring resistor for guiding an electric current to be measured comprises a current receiving point and a current delivery point, which are set up to receive and deliver the electric current, and a first tapping point and a second tapping point which are spaced apart between the current receiving point and the Electricity delivery point are arranged.
  • at least one recess are arranged at the first tap point and the second tap point, in each of which preferably an electrical contact element of an evaluation circuit can be used in a force-fitting manner. With this evaluation circuit can then be the electric current based on a voltage drop between the two
  • Tapping points are determined.
  • the specified measuring resistor is based on the consideration that the determination of the electric current based on the voltage drop between the two taps vorrauscopy that the electrical resistance between the two tapping points is known, because this is involved in the determination of the electric current. For this, the electrical resistance between the two tapping points must be used. However, this must be done with a high degree of precision so that one using the measuring resistor
  • Sensor circuit can be installed later with the same high precision in their environment.
  • the evaluation circuit could be formed with predefined spaced electrical contact points, which are then soldered directly to the measuring resistor at the tap locations. In power electronics applications, these electrical pads would move on the sensing resistor due to thermal expansion, which could cause electrical contact to break.
  • the evaluation circuit could be electrically connected to the measuring resistor via special electrical contact elements, which could first be welded or soldered onto the measuring resistor with high resistance to the measuring resistor.
  • PressFit elements in which it is radially to the off ⁇ recesses deformable contact pins which are inserted positively in the recesses at the taps.
  • These deformable contact pins may additionally comprise cutting elements which cut into walls of the recesses for improved electrical contact. These cutting elements are particularly favorable to penetrate thin corrosion onstiken, and thereby realize a secure connection.
  • the recesses could be formed as desired and introduced into the measuring resistor. One possibility would be to drill the recesses.
  • the recesses are passage openings.
  • Such passage openings can be introduced by punching already in the prototyping of the measuring resistor in this and would therefore almost cost-neutral on the measuring resistor implemented.
  • the recesses can also be coated with a layer, such as, for example, a tin-plating.
  • the specified measuring resistor comprises a positioning element for the positive reception of a positioning aid arranged on the evaluation circuit.
  • a positioning aid By means of this positioning aid, the evaluation circuit during intermediate steps in the production of the current sensor, such as the encapsulation of the current sensor with a housing material, can be positioned with high accuracy on the measuring resistor without the electrical connection must be made directly.
  • the positioning element is likewise a recess which can be constructed in the same way as the recess into which the electrical contact element can be inserted.
  • the specified measuring resistor comprises a further positioning element for the form- fitting reception of a positioning aid arranged on the evaluation circuit, a positioning aid being arranged in each case in the region of the recesses.
  • the evaluation can be aligned on the measuring ⁇ resistance in a particular direction, whereby the positioning is further improved. If the electrical contact elements are received positively in the recesses, it should be ensured that the contact elements are connected gas-tight to the measuring resistor. For this purpose the surface of the measured reflection ⁇ article should not be oxidized in the recesses during insertion of the electrical contact elements as possible. This can be realized at ⁇ game instance in that the electrical contact elements are used within a time period after formation of the recesses in the measuring resistor in this which is less than the Oxid istszeit of the basic materials from which the measurement resistor is urgeformt.
  • the stated measuring resistor could also have a coating at least in the recesses with which the surface in the recesses is sealed against oxidation. In this way, the contact element when inserting into the recess can also be contacted on an unoxidized surface.
  • a coating material is best suited tin.
  • a current sensor for measuring an electric current comprises one of the specified electrical measuring resistors, via which the electric current to be measured can be guided, and an evaluation circuit connected via electrical contact elements to the tapping points of the measuring resistor, which is set up, the electric current based on a voltage drop between the two taps.
  • the contact elements in this current sensor may comprise radially deformable contact pins which are frictionally engaged in the recesses on the recesses
  • Tapping points are used. Such contact elements are also known as PressFit pins.
  • spacers are formed on the contact pins, which define a predetermined distance between the measuring resistor and the evaluation circuit. These spacers can be used as depth stops which reduce the height tolerance of the evaluation circuit above the measuring resistor.
  • a vehicle includes the specified current sensor.
  • Fig. 1 shows a schematic diagram of a vehicle 2 with a vehicle battery 4, from which an electric current 6 is discharged.
  • Electric motor 10 which drives the front wheels 12 of the vehicle 2 via a drive shaft 14 with the electrical energy 8.
  • the rear wheels 16 of the vehicle 2 are therefore free ⁇ running wheels.
  • used electric motors 10 are designed as a rule ⁇ alternating current motors, while the electric current 6 from the vehicle battery 4 is a direct current. In this case, the electric current 6 must first be converted via a converter 18 into an alternating current.
  • Current sensor 20 installed, which measures the output from the vehicle battery 4 electric current 6. Based on the measured electric current 6, various functions can then be realized. These include, for example, protective functions, as known from DE 20 2010 015 132 U1, with which the vehicle battery 4 can be protected, for example, from a deep discharge.
  • the current sensor 20 comprises a sensor, which is preferably designed as a measuring resistor 28, also called shunt, and an evaluation circuit 30. In the context of the present embodiment, the measuring resistor 28 is passed through by the electric current 6.
  • the evaluation circuit 30 calculates the voltage drop 32 and the resistance value of the measuring resistor 28, the electric current 6, which flows through the measuring resistor 28.
  • Fig. 2 shows the current sensor 20 in a schematic representation according to a first embodiment.
  • the current sensor 20 has the measuring resistor 28 and the evaluation circuit 30, which measure the electric current 6 in the manner explained with reference to FIG.
  • the measuring resistor 28 is substantially in a range 38 to ⁇ line, divides a resistor region 40 and a drain region 42, wherein the lovedsbe ⁇ is rich 40 between the leading region 38 and the drain portion arranged.
  • the three regions can be welded together at ⁇ play as.
  • Zu effetsbe ⁇ rich 38 and the discharge region 42 each have a threaded bore 44 are formed on the opposite side of the resistance region 40, via which the measuring resistor 28 ent ⁇ screwed to the vehicle battery 4 and Kon ⁇ verter 18 can be screwed.
  • the evaluation circuit 30 includes a circuit substrate 46, which may be formed, for example, as a printed circuit board, called PCB. On this circuit substrate not further shown electrical interconnects are formed, which direct the detected electrical potentials 34, 36 to a signal processing chip 48. This is calculated based on the electrical potentials 34, 36, the voltage drop and the electrical resistance of the measuring resistor 28 between the two electrical potentials 34, 36, the electric current 6 in a known manner. The calculated electric current 6 can then be output via a data interface 50 to the Mo ⁇ gating 24th
  • Tapping points are formed in the measuring resistor 28 fürgangsboh- ments 56 through which the contact pins 52, 54 are guided.
  • the contact pins 52, 54 are formed in the context of the present embodiment as PressFit pins, which can be used non-positively in the through-holes ⁇ 56.
  • PressFit pins are known, for example, from DE 10 2005 005 926 A1. Details can be found in the cited document.
  • through-holes 56 may also be formed in the circuit substrate 46 of the off ⁇ evaluation circuit into which the contact pins 52, 54 can be used for contacting with the scarf ⁇ tung substrate.
  • the measuring resistor 28 is shown in Fig. 3 in a perspective view.
  • a plurality of passage openings 56 can be arranged at the individual tapping points, in order to enable the contacting with a plurality of contact pins 52, 54.
  • Positioning aids or positioning elements are used, which are provided in Fig. 3 for the sake of clarity with the reference ⁇ sign 58. In these positioning elements also not shown pins can be introduced, the However, the evaluation circuit 30 during manufacture hold in a predetermined position to the measuring resistor 28.
  • a contact pin 52, 54 is shown in a perspective view.
  • the contact pins 52, 54 are based on the contact pins disclosed in DE 10 2005 005 926 A1.
  • the contact pin 52, 54 comprises a body 60, at the ends of which 62 flexibly compressible heads 64 connect in the radial direction. Between the trunk 60 and the heads 64 shoulders 66 are formed.
  • the heads 64 are inserted into the through holes 56, for example, the measuring resistor 28. Thereafter, the through-holes 56 of the evaluation circuit 30 are placed on the remaining exposed heads 64 and the evaluation circuit 30 is pressed against the measuring resistor 28.
  • the shoulders 66 thereby provide as spacers for a predetermined distance 68 between the measuring resistor 28 and the evaluation circuit 30th

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Die Erfindung betrifft einen Messwiderstand (28) zum Führen eines zu messenden elektrischen Stromes (6) mit -einer Stromaufnahmestelle (38) sowie einer Stromabgabstelle (42), die entsprechend zur Aufnahme und Abgabe des elektrischen Stromes(6) eingerichtet sind, und -einer ersten Abgriffstelle (34) sowie einer zweiten Abgriffstelle (36), die beabstandet zueinander zwischen der Stromaufnahmestelle (38) und der Stromabgabestelle (42) angeordnet sind, -wobei an der ersten Abgriffstelle (34) und der zweiten Abgriffstelle (36) je wenigstens eine Ausnehmung (56) angeordnet sind, in die je ein elektrisches Kontaktelement (52, 54) einer Auswerteschaltung (30) einsetzbar ist, die eingerichtet ist, den elektrischen Strom(6) basierend auf einem Spannungsabfall (32) zwischen den beiden Abgriffstellen (34, 36) zu bestimmen.

Description

Stromsensor-Shunt mit Bohrungen für Press-Fit-Pins
Die Erfindung betrifft einen Messwiderstand für einen Stromsensor und den Stromsensor.
Elektrische Ströme in und aus einer Fahrzeugbatterie werden beispielsweise in der DE 10 2009 044 992 AI und in der
DE 10 2004 062 655 AI mit einem Stromsensor über einen Messwiderstand, auch Shunt genannt, gemessen. Dabei durchströmt der zu messende elektrische Strom den Messwiderstand und verursacht über diesen einen Spannungsabfall. Eine Auswerteschaltung erfasst den Spannungsabfall zwischen zwei Abgriffstellen und bestimmt basierend darauf den zu messenden elektrischen Strom. Es ist Aufgabe der vorliegenden Erfindung den bekannten
Stromsensor zu verbessern.
Die Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst. Bevorzugte Weiterbildungen sind Gegenstand der ab- hängigen Ansprüche.
Gemäß einem Aspekt der Erfindung umfasst ein Messwiderstand zum Führen eines zu messenden elektrischen Stromes eine Stromaufnahmestelle sowie eine Stromabgabstelle, die entsprechend zur Aufnahme und Abgabe des elektrischen Stromes eingerichtet sind, und eine erste Abgriffstelle sowie eine zweite Abgriffstelle, die beabstandet zueinander zwischen der Stromaufnahmestelle und der Stromabgabestelle angeordnet sind. Dabei sind an der ersten Abgriffstelle und die zweite Abgriffstelle je wenigstens eine Ausnehmung angeordnet, in die vorzugsweise kraftschlüssig je ein elektrisches Kontaktelement einer Auswerteschaltung einsetzbar ist. Mit dieser Auswerteschaltung kann dann der elektrische Strom basierend auf einem Spannungsabfall zwischen den beiden
Abgriffstellen bestimmt werden.
Dem angegebenen Messwiderstand liegt die Überlegung zugrunde, dass die Bestimmung des elektrische Strom basierend auf dem Spannungsabfall zwischen den beiden Abgriffstellen vorraussetzt , dass der elektrische Widerstand zwischen den beiden Abgriffstellen bekannt ist, denn dieser geht mit in die Bestimmung des elektrischen Stromes ein. Hierzu muss der elektrische Widerstand zwischen die beiden Abgriffstellen eingesetzt werden. Dies muss jedoch mit einer hohen Präzision erfolgen, damit eine den Messwiderstand verwendende
Sensorsschaltung später mit derselben hohen Präzision in ihrer Umgebung verbaut werden kann. Zwar könnte die Auswerteschaltung mit vordefiniert beabstandeten elektrischen Kontaktierungsstellen ausgebildet werden, die dann direkt auf den Messwiderstand an den Abgriffstellen gelötet werden. In leistungselektronischen Anwendungen, würden sich diese elektrischen Kontaktierungsstellen auf dem Messwiderstand aufgrund von Wärmeausdehnungen bewegen, wodurch sich die elektrische Kontaktierung lösen könnte. Alternativ könnte die Auswerteschaltung über spezielle elektrische Kontaktelemente an den Messwiderstand elektrisch angebunden werden, die zunächst auf den Messwiderstand mit hoher Festigkeit auf den Messwi- derstand aufgeschweißt oder aufgelötet werden könnten. Hier stellt sich jedoch das Problem, dass das Aufschweißen oder Auflöten dieser elektrischen Kontaktelemente auf den Messwiderstand nur bedingt mit niedrigen Toleranzen realisierbar wäre. Daher wird im Rahmen des angegebenen Messwidertandes ein anderer Weg eingeschlagen, im Rahmen dessen auf dem Messwiderstand an den Abgriffstellen Ausnehmungen angeordnet sind. In diesen Ausnehmungen können dann die zuvor genannten elektrischen Kontaktelemente hochgenau positioniert werden können. Die Anbindung der in den Ausnehmungen angeordneten elektrischen Kontaktelemente kann dann beliebig, also auch durch Schweißen oder Löten erfolgen. Vorzugsweise sollte die Anbindung aber kraftschlüssig erfolgen, weil dies herstellungstechnisch mit dem geringsten Produktionsaufwand darstellbar wäre. Daher eignen sich als elektrische Kontaktelemente vor allem sogenannte
PressFit-Elemente, bei denen es sich um radial zu den Aus¬ nehmungen verformbare Kontaktstifte handelt, die kraftschlüssig in den Ausnehmungen an den Abgriffstellen eingesetzt sind. Diese verformbaren Kontaktstifte können zusätzlich noch Schneidelemente umfassen, die sich für eine verbesserte elektrische Kontaktierung in Wandungen der Ausnehmungen hineinschneiden. Diese Schneidelemente sind besonders günstig, dünne Korrosi- onsschichten zu durchdringen, und dadurch eine sichere Verbindung zu realisieren.
Die Ausnehmungen könnten beliebig ausgebildet und in den Messwiderstand eingebracht werden. Eine Möglichkeit wäre dabei, die Ausnehmungen zu bohren.
In einer Weiterbildung des angegebenen Messwiderstandes sind die Ausnehmungen Durchgangsöffnungen. Derartigen Durchgangsöffnungen können durch Stanzen bereits beim Urformen des Mess- Widerstandes in diesen eingebracht werden und wären daher fast kostenneutral am Messwiderstand umsetzbar.
Zur Verbesserung der Kontaktierung können die Ausnehmungen ferner noch mit einer Schicht, wie beispielsweise einer Ver- zinnung beschichtet werden.
In einer anderen Ausbildung umfasst der angegebene Messwiderstand ein Positionierelement zur formschlüssigen Aufnahme einer an der Auswerteschaltung angeordneten Positionierhilfe. Mittels dieser Positionierhilfe kann die Auswerteschaltung während Zwischenschritten bei der Herstellung des Stromsensors, wie beispielsweise dem Umspritzen des Stromsensors mit einem Gehäusematerial, hochgenau auf dem Messwiderstand positioniert werden, ohne dass die elektrische Anbindung unmittelbar erfolgen muss.
Zweckmäßigerweise ist das Positionierelement dabei ebenfalls eine Ausnehmung, die genauso aufgebaut sein kann, wie die Ausnehmung, in die das elektrische Kontaktelement eingesetzt werden kann. Dies lässt sich herstellungstechnisch am mit den geringsten Zusatzaufwand umsetzen. In einer besonderen Weiterbildung umfasst der angegebene Messwiderstand ein weiteres Positionierelement zur form¬ schlüssigen Aufnahme einer an der Auswerteschaltung angeordneten Positionierhilfe, wobei im Bereich der Ausnehmungen je eine Positionierhilfe angeordnet ist. Durch das weitere
Positionierelement kann die Auswerteschaltung auf dem Mess¬ widerstand auch in eine bestimmte Richtung ausgerichtet werden, wodurch die Positionierung weiter verbessert wird. Wenn die elektrischen Kontaktelemente in den Ausnehmungen kraftschlüssig aufgenommen werden, sollte sichergestellt sein, dass die Kontaktelemente mit dem Messwiderstand gasdicht verbunden sind. Hierzu sollte die Oberfläche des Messwider¬ standes in den Ausnehmungen beim Einsetzen der elektrischen Kontaktelemente möglichst nicht oxidiert sein. Das kann bei¬ spielsweise dadurch realisiert werden, dass die elektrischen Kontaktelemente innerhalb einer Zeitspanne nach dem Herstellen der Ausnehmungen in dem Messwiderstand in diese eingesetzt werden, die kleiner ist, als die Oxidierungszeit des Grund- materials, aus dem der Messwiderstand urgeformt ist. Alternativ könnte der angegebene Messwiderstand jedoch auch eine Be- schichtung wenigstens in den Ausnehmungen aufweisen, mit dem die Oberfläche in den Ausnehmungen gegenüber Oxidation versiegelt wird. Auf diese Weise kann das Kontaktelement beim Einsetzen in die Ausnehmung ebenfalls auf eine unoxidierte Oberfläche kontaktiert werden. Als Beschichtungsmaterial eignet sich dabei am besten Zinn.
Gemäß einem weiteren Aspekt der Erfindung umfasst ein Stromsensor zum Messen eines elektrischen Stromes einen der angegebenen elektrischen Messwiderstände, über den der zu messende elektrische Strom führbar ist, und eine über elektrische Kontaktelemente mit den Abgriffstellen des Messwiderstandes verbundene Auswerteschaltung, die eingerichtet ist, den elektrischen Strom basierend auf einem Spannungsabfall zwischen den beiden Abgriffstellen zu bestimmen. Wie bereits ausgeführt können die Kontaktelemente in diesem Stromsensor radial zu den Ausnehmungen verformbare Kontaktstifte umfassen, die kraftschlüssig in den Ausnehmungen an den
Abgriffstellen eingesetzt sind. Derartige Kontaktelemente sind auch als PressFit-Pins bekannt.
In einer besonderen Weiterbildung des angegebenen Stromsensors sind an den Kontaktstiften Abstandshalter ausgebildet, die einen vorbestimmten Abstand zwischen dem Messwiderstand und der Auswerteschaltung definieren. Diese Abstandshalter können als Tiefenanschlag verwendet werden, die die Höhentoleranz der Auswerteschaltung über dem Messwiderstand reduzieren.
Ferner können die Kontaktstifte und die Ausnehmungen geometrisch so ausgebildet sein, dass sie nur in bestimmten Ausrichtungen ineinander einsetzbar sind, wodurch geringe Positionstoleranzen der Auswerteschaltung gegenüber dem Messwiderstand in der x-y-Ebene erreicht werden. Gemäß einem anderen Aspekt der Erfindung umfasst ein Fahrzeug den angegebenen Stromsensor.
Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich im Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden.
In den Figuren werden gleiche technische Elemente mit gleichen Bezugszeichen versehen und nur einmal beschrieben.
Es wird auf Fig. 1 Bezug genommen, die eine Prinzipdarstellung eines Fahrzeuges 2 mit einer Fahrzeugbatterie 4 zeigt, aus der ein elektrischer Strom 6 abgegeben wird.
Mit dem elektrischen Strom 6 werden in dem Fahrzeug 2 verschiedene elektrische Verbraucher mit elektrischer Energie 8 versorgt . Ein Beispiel für diese elektrischen Verbraucher ist ein
Elektromotor 10, der mit der elektrischen Energie 8 die Vorderräder 12 des Fahrzeuges 2 über eine Antriebswelle 14 an- treibt. Die Hinterräder 16 des Fahrzeuges 2 sind daher frei¬ laufende Räder. Derartige, zum Antrieb des Fahrzeuges 2 ver¬ wendete Elektromotoren 10 werden in der Regel als Wechsel¬ strommotoren ausgelegt, während der elektrische Strom 6 aus der Fahrzeugbatterie 4 ein Gleichstrom ist. In diesem Fall muss der elektrische Strom 6 zunächst über einen Konverter 18 in einen Wechselstrom gewandelt werden.
In Fahrzeugen, wie dem Fahrzeug 2 wird in der Regel ein
Stromsensor 20 verbaut, der den von der Fahrzeugbatterie 4 abgegebenen elektrischen Strom 6 misst. Basierend auf dem gemessenen elektrischen Strom 6 können dann verschiedene Funktionen realisiert werden. Zu diesen gehören beispielsweise Schutzfunktionen, wie aus der DE 20 2010 015 132 Ul bekannt, mit denen die Fahrzeugbatterie 4 beispielsweise vor einer Tie- fenentladung geschützt werden kann.
Entspricht der mit dem Stromsensor 2 gemessene Strom 6 nur dem elektrischen Strom, der dem Konverter 18 zugeführt wird, kann dieser auch zur Regelung der Antriebsleistung des Fahrzeuges 2 verwendet werden. Die Antriebsleistung wird in der Regel über vom Fahrer des Fahrzeuges 2 mit einem Fahrerwunsch 22 vorgegeben. Eine Motorsteuerung 24 vergleicht dann einen aus dem Fahrerwunsch resultierenden elektrischen Sollstrom mit dem gemessenen elektrischen Strom 6 und steuert den Konverter 18 mit Steu- ersignalen 26 derart an, dass der gemessene elektrische Strom 6 an den aus dem Fahrerwunsch resultierenden Sollstrom angeglichen wird. Derartige Regelungen sind bestens bekannt und sollen daher nicht weiter vertieft werden. Der Stromsensor 20 umfasst einen vorzugsweise als Messwiderstand 28, auch Shunt genannt, ausgebildeten Messaufnehmer und eine Auswerteschaltung 30. Der Messwiderstand 28 wird im Rahmen der vorliegenden Ausführung vom elektrischen Strom 6 durch- ^
strömt, was zu einem Spannungsabfall 32 an dem Messwiderstand 28 führt. Dieser Spannungsabfall 32 wird als Messspannung durch die Auswerteschaltung 30 über ein in Richtung des elektrischen Stromes 6 gesehenes, eingangsseitiges elektrisches Potential 34 am Messwiderstand 28 und ein ausgangsseitiges elektrisches Potential 36 am Messwiderstand 28 erfasst. Aus diesen beiden elektrischen Potentialen 34, 36 berechnet die Auswerteschal¬ tung 30 den Spannungsabfall 32 und über den Widerstandswert des Messwiderstandes 28 den elektrischen Strom 6, der durch den Messwiderstand 28 fließt.
Es wird auf Fig. 2 Bezug genommen, die den Stromsensor 20 in einer schematischen Darstellung gemäß einem ersten Ausführungsbeispiel zeigt.
Der Stromsensor 20 weist im Rahmen der vorliegenden Ausführung den Messwiderstand 28 und die Auswerteschaltung 30 auf, die in der im Rahmen der Fig. 1 erläuterten Weise den elektrischen Strom 6 messen.
Dabei ist der Messwiderstand 28 im Wesentlichen in einen Zu¬ leitungsbereich 38, einen Widerstandsbereich 40 und einen Ableitungsbereich 42 unterteilt, wobei der Widerstandsbe¬ reich 40 zwischen dem Zuleitungsbereich 38 und dem Ableitungsbereich angeordnet ist. Die drei Bereiche können bei¬ spielsweise miteinander verschweißt sein. Im Zuleitungsbe¬ reich 38 und im Ableitungsbereich 42 sind auf der dem Widerstandsbereich 40 gegenüberliegenden Seite je eine Schraubbohrung 44 ausgebildet, über die der Messwiderstand 28 ent¬ sprechend an der Fahrzeugbatterie 4 beziehungsweise am Kon¬ verter 18 verschraubt werden kann.
Die Auswerteschaltung 30 umfasst ein Schaltungssubstrat 46, das beispielsweise als printed circuit board, PCB genannt, aus- gebildet sein kann. Auf diesem Schaltungssubstrat sind nicht weiter dargestellte elektrische Leiterbahnen ausgebildet, die die erfassten elektrischen Potentiale 34, 36 zu einem Signalverarbeitungschip 48 leiten. Dieser berechnet basierend auf den elektrischen Potentialen 34, 36 den Spannungsabfall und über den elektrischen Widerstand des Messwiderstandes 28 zwischen den beiden elektrischen Potentialen 34, 36 den elektrischen Strom 6 in einer an sich bekannten Weise. Der berechnete elektrische Strom 6 kann dann über eine Datenschnittstelle 50 an die Mo¬ torsteuerung 24 ausgegeben werden.
Um die elektrischen Potentiale 34, 36 vom Messwiderstand 28 zur Auswerteschaltung 30 zu führen werden im Rahmen der vorliegenden Ausführung entsprechende als elektrische Kontaktelemente fungierende Kontaktpins 52, 54 verwendet, die an den
Abgriffstellen angeordnet sind, an denen die elektrischen Potentiale 34, 36 abgegriffen werden sollen. An diesen
Abgriffstellen sind in dem Messwiderstand 28 Durchgangsboh- rungen 56 ausgebildet, durch die die Kontaktpins 52, 54 geführt sind. Die Kontaktpins 52, 54 sind im Rahmen der vorliegenden Ausführung als PressFit-Pins ausgebildet, die in die Durch¬ gangsbohrungen 56 kraftschlüssig eingesetzt werden können. Derartige, PressFit-Pin genannte Kontaktstecker sind bei- spielsweise aus der DE 10 2005 005 926 AI bekannt. Details hierzu können der genannten Druckschrift entnommen werden.
Entsprechend können auch im Schaltungssubstrat 46 der Aus¬ werteschaltung 30 Durchgangsbohrungen 56 ausgebildet sein, in die die Kontaktpins 52, 54 zum Kontaktieren mit dem Schal¬ tungssubstrat eingesetzt werden können.
Der Messwiderstand 28 ist in Fig. 3 in einer perspektivischen Darstellung dargestellt.
Wie in Fig. 3 zu sehen, können an den einzelnen Abgriffstellen mehrere Durchgangsöffnungen 56 angeordnet sein, um die Kon- taktierung mit mehreren Kontaktpins 52, 54 zu ermöglichen. Daneben können auch einige der Durchgangsöffnungen als
Positionierhilfen oder Positionierelemente verwendet werden, die in Fig. 3 der Übersichtlichkeit halber mit dem Bezugs¬ zeichen 58 versehen sind. In diese Positionierelemente können ebenfalls nicht weiter gezeigte Stifte eingeführt werden, die jedoch die Auswerteschaltung 30 während der Fertigung in einer vorbestimmten Lage zum Messwiderstand 28 halten.
In Fig. 4 ist ein Kontaktpin 52, 54 in einer perspektivischen Darstellung gezeigt. Die Kontaktpins 52, 54 basieren auf den in der DE 10 2005 005 926 AI offenbarten Kontaktpins.
Der Kontaktpin 52, 54 umfasst einen Rumpf 60, an dessen Enden sich in radialer Richtung 62 flexibel komprimierbare Köpfe 64 anschließen. Zwischen dem Rumpf 60 und den Köpfen 64 sind Schultern 66 ausgebildet.
Zur Kontaktierung des Messwiderstandes 28 mit der Auswerte¬ schaltung 30 werden die Köpfe 64 in die Durchgangsbohrungen 56 beispielsweise des Messwiderstandes 28 eingesetzt. Danach werden die Durchgangsbohrungen 56 der Auswerteschaltung 30 auf die verbleibenden freiliegenden Köpfe 64 aufgesetzt und die Auswerteschaltung 30 gegen den Messwiderstand 28 gedrückt. Die Schultern 66 sorgenden dabei als Abstandshalter für einen vorbestimmten Abstand 68 zwischen dem Messwiderstand 28 und der Auswerteschaltung 30.

Claims

Patentansprüche
1. Messwiderstand (28) zum Führen eines zu messenden elektrischen Stromes (6) mit
- einer Stromaufnahmestelle (38) sowie einer
Stromabgabstelle (42) , die entsprechend zur Aufnahme und Abgabe des elektrischen Stromes (6) eingerichtet sind, und
einer ersten Abgriffstelle (34) sowie einer zweiten Abgriffstelle (36) , die beabstandet zueinander zwischen der Stromaufnahmestelle (38) und der Stromabgabestelle (42) an¬ geordnet sind,
wobei an der ersten Abgriffstelle (34) und der zweiten Abgriffstelle (36) je wenigstens eine Ausnehmung (56) ange¬ ordnet sind, in die je ein elektrisches Kontaktelement (52, 54) einer Auswerteschaltung (30) einsetzbar ist, die eingerichtet ist, den elektrischen Strom (6) basierend auf einem Spannungsabfall (32) zwischen den beiden Abgriffstellen (34, 36) zu bestimmen .
2. Messwiderstand (28) nach Anspruch 1, wobei die Ausneh¬ mungen (56) Durchgangsöffnungen sind.
3. Messwiderstand (28) nach Anspruch 1 oder 2, umfassend ein Positionierelement (58) zur formschlüssigen Aufnahme einer an der Auswerteschaltung (30) angeordneten Positionierhilfe.
4. Messwiderstand (28) nach Anspruch 3, wobei das
Positionierelement (58) eine weitere Ausnehmung ist.
5. Messwiderstand (28) nach Anspruch 3 oder 4, umfassend ein weiteres Positionierelement (58) zur formschlüssigen Aufnahme einer an der Auswerteschaltung (30) angeordneten
Positionierhilfe, wobei im Bereich der Ausnehmungen (56) je ein Positionierelement (58) angeordnet ist.
6. Messwiderstand (28) nach einem der vorstehenden Ansprüche, umfassend eine Beschichtung wenigstens in den Ausnehmungen (56) zum Versiegeln einer Oberfläche in den Ausnehmungen gegenüber Oxidation .
7. Messwiderstand (28) nach Anspruch 6, wobei die Be- Schichtung Zinn umfasst.
8. Stromsensor (20) zum Messen eines elektrischen Stromes (6), umfassend:
einen elektrischen Messwiderstand (28) nach einem der vorstehenden Ansprüche, über den der zu messende elektrische Strom (6) führbar ist, und
eine über elektrische Kontaktelemente (52, 54) mit den Abgriffstellen (34, 36) des Messwiderstandes (28) verbundene Auswerteschaltung (30), die eingerichtet ist, den elektrischen Strom (6) basierend auf dem Spannungsabfall (32) zwischen den beiden Abgriffstellen (34, 36) zu bestimmen.
9. Stromsensor (20) nach Anspruch 8, wobei die Kontaktele¬ mente (52, 54) radial zu den Ausnehmungen (56) verformbare Kontaktstifte umfassen, die kraftschlüssig in den Ausnehmungen an den Abgriffstellen (34, 36) eingesetzt sind.
10. Stromsensor (20) nach Anspruch 9, wobei an den Kontaktelementen (52, 54) Abstandshalter (66) ausgebildet sind, die einen vorbestimmten Abstand (68) zwischen dem Messwiderstand (28) und der Auswerteschaltung (30) definieren.
PCT/EP2014/063999 2013-07-03 2014-07-01 Stromsensor-shunt mit bohrungen für press-fit-pins WO2015000924A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201490000867.0U CN205691625U (zh) 2013-07-03 2014-07-01 测量电阻和电流传感器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102013212945.9 2013-07-03
DE102013212945 2013-07-03
DE102014207759.1 2014-04-24
DE201410207759 DE102014207759A1 (de) 2013-07-03 2014-04-24 Stromsensor-Shunt mit Bohrungen für Press-Fit-Pins

Publications (1)

Publication Number Publication Date
WO2015000924A1 true WO2015000924A1 (de) 2015-01-08

Family

ID=52106474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/063999 WO2015000924A1 (de) 2013-07-03 2014-07-01 Stromsensor-shunt mit bohrungen für press-fit-pins

Country Status (3)

Country Link
CN (1) CN205691625U (de)
DE (1) DE102014207759A1 (de)
WO (1) WO2015000924A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187529A1 (zh) * 2023-03-12 2024-09-19 深圳市开步电子有限公司 分流器、用电设备及其储能设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016205635A1 (de) 2016-04-05 2017-10-05 Continental Automotive Gmbh Verbindungselement
DE102017203535A1 (de) 2017-03-03 2018-09-06 Continental Automotive Gmbh Stromsensor mit optimierter Stromdichteverteilung, Verfahren zum Bestimmen eines Laststroms
DE102017003111A1 (de) 2017-03-30 2017-10-19 Daimler Ag Stromsensor mit Diagnose
FR3086793B1 (fr) * 2018-09-27 2020-09-11 Schneider Electric Ind Sas Transformateur de courant electrique et appareil de mesure de courant
JP7237596B2 (ja) * 2019-01-10 2023-03-13 サンコール株式会社 シャントセンサ
CN110676615B (zh) * 2019-09-23 2021-05-18 中航光电科技股份有限公司 一种平行板间连接器用接触件
DE102020003458A1 (de) * 2020-06-09 2021-12-09 Wieland-Werke Aktiengesellschaft Verfahren zur Herstellung einer Vorrichtung zur Messung von Stromstärken und Vorrichtung zur Messung von Stromstärken
DE102022214049A1 (de) 2022-12-20 2024-06-20 Continental Automotive Technologies GmbH Kontaktpin für eine Stromsensorbaugruppe und Stromsensorbaugruppe

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20318266U1 (de) * 2003-11-26 2004-02-19 Hella Kg Hueck & Co. Vorrichtung zur Strommessung
DE102004007851A1 (de) * 2004-02-17 2005-09-08 Kromberg & Schubert Gmbh & Co. Kg Intelligente Anschlussvorrichtung
FR2884615A1 (fr) * 2005-04-13 2006-10-20 Valeo Electronique Sys Liaison Dispositif de mesure du courant, notamment d'une batterie
US20070177318A1 (en) * 2006-01-27 2007-08-02 Oman Todd P Electronic shunt resistor assembly
US20070200720A1 (en) * 2004-11-03 2007-08-30 Leopold Kostal Gmbh & Co. Kg Battery current sensor for a motor vehicle
DE102006019895A1 (de) * 2006-04-28 2007-11-15 Siemens Ag Strommessvorrichtung mit speziell kontaktierter Leiterplatte und entsprechendes Herstellungsverfahren
FR2903498A1 (fr) * 2006-07-07 2008-01-11 Valeo Electronique Sys Liaison Capteur de surveillance de batterie resistant aux variations de temperatures.
US20080238431A1 (en) * 2005-11-30 2008-10-02 Ralf Schimmel Apparatus for Detecting an Electrical Variable of a Rechargeable Battery, and Method for Producing Said Apparatus
DE102007017530A1 (de) * 2007-04-13 2008-10-16 Continental Automotive Gmbh Kontaktierungssystem mit Vibrationsdämpfer für Strommessungsanordnungen
DE102007036837A1 (de) * 2007-08-02 2009-02-05 Siemens Ag Strommessverfahren in Niederspannungsleistungsschaltern mittels eines speziellen Messmoduls
EP2042879A1 (de) * 2007-09-28 2009-04-01 MAGNETI MARELLI SISTEMI ELETTRONICI S.p.A. Batteriestromsensor für ein Kraftfahrzeug
US20090224768A1 (en) * 2008-03-10 2009-09-10 Dollansky Matthias Shunt resistor with measurement circuit
US20100201369A1 (en) * 2007-07-13 2010-08-12 Auto Kabel Managementgesellschaft Mbh Coated Motor Vehicle Battery Sensor Element and Method for Producing a Motor Vehicle Battery Sensor Element
DE202010010152U1 (de) * 2010-07-13 2010-10-14 Isabellenhütte Heusler Gmbh & Co. Kg Strommessmodul
US20110062945A1 (en) * 2004-12-20 2011-03-17 Johnson Controls Technology Company Device for measuring a current flowing in a cable
US20120154104A1 (en) * 2009-07-01 2012-06-21 Ullrich Hetzler Electronic component and corresponding production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302545B2 (ja) 2004-02-10 2009-07-29 株式会社オートネットワーク技術研究所 プレスフィット端子
DE102004062655B4 (de) 2004-12-24 2014-12-31 Leopold Kostal Gmbh & Co. Kg Verfahren zum Korrigieren einer durch eine elektrische Spannungsmessung indirekt durchgeführten elektrischen Strommessung
DE102009044992A1 (de) 2009-09-24 2011-04-14 Robert Bosch Gmbh Verfahren zur Verbesserung der Messung mit einem Batteriesensor
US8552588B2 (en) 2009-11-05 2013-10-08 Tai-Her Yang Battery charging coaction and output system with current limit supply

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20318266U1 (de) * 2003-11-26 2004-02-19 Hella Kg Hueck & Co. Vorrichtung zur Strommessung
DE102004007851A1 (de) * 2004-02-17 2005-09-08 Kromberg & Schubert Gmbh & Co. Kg Intelligente Anschlussvorrichtung
US20070200720A1 (en) * 2004-11-03 2007-08-30 Leopold Kostal Gmbh & Co. Kg Battery current sensor for a motor vehicle
US20110062945A1 (en) * 2004-12-20 2011-03-17 Johnson Controls Technology Company Device for measuring a current flowing in a cable
FR2884615A1 (fr) * 2005-04-13 2006-10-20 Valeo Electronique Sys Liaison Dispositif de mesure du courant, notamment d'une batterie
US20080238431A1 (en) * 2005-11-30 2008-10-02 Ralf Schimmel Apparatus for Detecting an Electrical Variable of a Rechargeable Battery, and Method for Producing Said Apparatus
US20070177318A1 (en) * 2006-01-27 2007-08-02 Oman Todd P Electronic shunt resistor assembly
DE102006019895A1 (de) * 2006-04-28 2007-11-15 Siemens Ag Strommessvorrichtung mit speziell kontaktierter Leiterplatte und entsprechendes Herstellungsverfahren
FR2903498A1 (fr) * 2006-07-07 2008-01-11 Valeo Electronique Sys Liaison Capteur de surveillance de batterie resistant aux variations de temperatures.
DE102007017530A1 (de) * 2007-04-13 2008-10-16 Continental Automotive Gmbh Kontaktierungssystem mit Vibrationsdämpfer für Strommessungsanordnungen
US20100201369A1 (en) * 2007-07-13 2010-08-12 Auto Kabel Managementgesellschaft Mbh Coated Motor Vehicle Battery Sensor Element and Method for Producing a Motor Vehicle Battery Sensor Element
DE102007036837A1 (de) * 2007-08-02 2009-02-05 Siemens Ag Strommessverfahren in Niederspannungsleistungsschaltern mittels eines speziellen Messmoduls
EP2042879A1 (de) * 2007-09-28 2009-04-01 MAGNETI MARELLI SISTEMI ELETTRONICI S.p.A. Batteriestromsensor für ein Kraftfahrzeug
US20090224768A1 (en) * 2008-03-10 2009-09-10 Dollansky Matthias Shunt resistor with measurement circuit
US20120154104A1 (en) * 2009-07-01 2012-06-21 Ullrich Hetzler Electronic component and corresponding production method
DE202010010152U1 (de) * 2010-07-13 2010-10-14 Isabellenhütte Heusler Gmbh & Co. Kg Strommessmodul

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024187529A1 (zh) * 2023-03-12 2024-09-19 深圳市开步电子有限公司 分流器、用电设备及其储能设备

Also Published As

Publication number Publication date
CN205691625U (zh) 2016-11-16
DE102014207759A1 (de) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2015000924A1 (de) Stromsensor-shunt mit bohrungen für press-fit-pins
EP2274749B1 (de) Elektronisches bauelement und entsprechendes herstellungsverfahren
DE112013000968B4 (de) Anschlussverbindungsaufbau für einen Widerstand
WO2001044825A1 (de) Batteriesensorvorrichtung
DE102012013347B4 (de) Elektronische Leiterplatine und Verfahren zum Installieren eines Sensors an einem Heizblock für einen Durchlauferhitzer
EP2870662B1 (de) Verfahren für ein verbinden einer elektrischen komponente mit einem komponententräger nebst vorrichtung
DE20018538U1 (de) Sensormodul
DE10328870A1 (de) Widerstandsanordnung, Herstellungsverfahren und Messschaltung
DE102007009569B4 (de) Anschlusseinrichtung und Verfahren zu deren Herstellung
WO2013037552A1 (de) Messwiderstand für stromsensor und stromsensoreinheit
WO2014124746A1 (de) Adapter
DE202021105281U1 (de) Strommesswiderstand
EP2828672B1 (de) Elektronischer batteriesensor
WO2017162382A1 (de) Deckel für ein gehäuse, batteriesensor und verfahren zum herstellen eines batteriesensors
DE102013220091A1 (de) Drucksensor
DE19637607A1 (de) Druckschalteinrichtung, insbesondere für die Kraftfahrzeugtechnik
WO2014005571A2 (de) Elektrokomponententräger für ein kraftfahrzeug nebst herstellung
EP2609653A1 (de) Kontaktelement zur kontaktierung eines schaltungsträgers, sowie schaltungsträger mit einem kontaktelement
WO2013007834A1 (de) Vorrichtung zum führen eines elektrischen stromes
DE102007006050B4 (de) Anschlusseinrichtung
DE102020001617A1 (de) Formteil bzw. Leiterplatte mit integrierter Stromstärkemesseinrichtung
DE3324297A1 (de) Multikombinationselektrode mit zugeordnetem mehrfach-steckkopf
EP3640655A1 (de) Batteriesensor und verfahren zur herstellung eines batteriesensors
DE102015106168B4 (de) Stromsensorvorrichtungen und -verfahren
DE202006011953U1 (de) Anschlusseinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14736357

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14736357

Country of ref document: EP

Kind code of ref document: A1