WO2014208259A1 - 情報記録媒体用ガラス基板および磁気ディスク装置 - Google Patents

情報記録媒体用ガラス基板および磁気ディスク装置 Download PDF

Info

Publication number
WO2014208259A1
WO2014208259A1 PCT/JP2014/064217 JP2014064217W WO2014208259A1 WO 2014208259 A1 WO2014208259 A1 WO 2014208259A1 JP 2014064217 W JP2014064217 W JP 2014064217W WO 2014208259 A1 WO2014208259 A1 WO 2014208259A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
information recording
recording medium
back side
front side
Prior art date
Application number
PCT/JP2014/064217
Other languages
English (en)
French (fr)
Inventor
直之 福本
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201480030072.9A priority Critical patent/CN105247615B/zh
Priority to SG11201510551VA priority patent/SG11201510551VA/en
Priority to JP2015523933A priority patent/JP5898381B2/ja
Publication of WO2014208259A1 publication Critical patent/WO2014208259A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers

Definitions

  • the present invention relates to a glass substrate for information recording medium and a magnetic disk device.
  • an aluminum substrate or a glass substrate is used as an information recording medium (magnetic disk recording medium) used in a computer or the like.
  • a magnetic thin film layer is formed on these substrates, and information is recorded on the magnetic thin film layer by magnetizing the magnetic thin film layer with a magnetic head.
  • one 2.5 inch recording medium has a recording capacity of 500 GB (single-sided 250 GB) and a surface recording density of 630 Gbit / in 2 or more. Have been developed with a recording density of.
  • the gap (flying height) between the information recording medium and the magnetic head that reads / writes data while floating on the information recording medium is narrowed.
  • the magnetic head and the information recording medium are likely to come into contact with each other (also referred to as head crush) due to fine irregularities formed on the main surface of the glass substrate.
  • head crush also referred to as head crush
  • Patent Document 1 JP 2008-234823 A
  • the glass substrate for an information recording medium disclosed in Patent Document 1 is separated from the reference plane by rising or sinking from a reference plane based on a flat surface other than the peripheral part in the main surface at the peripheral portion in the main surface.
  • size (deviation amount) which the said deviation part deviates from the said reference plane is formed substantially uniformly over the perimeter of the glass substrate in the one side of the main surface.
  • DFH Dynamic Flying Height
  • the flying height can be narrowed to 3 nm or less.
  • the peripheral speed increases particularly at the outer peripheral end of the information recording medium.
  • the head is likely to float under the influence of (wind force).
  • the magnetic head When the flying height is 3 nm or less, the magnetic head tends to be significantly affected by wind force in the vicinity of the outer peripheral edge, and the flying characteristics of the magnetic head tend to become unstable.
  • the magnetic head is disposed not only on one side of the information recording medium but also on both sides. In such a case, the wind force generated on the front side and the back side varies due to the difference in the surface shape on both sides of the information recording medium, and the flying characteristics of the magnetic head tend to become more unstable.
  • the flying characteristics of the magnetic head when the magnetic thin film layer is formed on the main surface on both sides of the glass substrate and the magnetic head is arranged on both sides of the glass substrate are sufficient. Not taken into account.
  • An object of the present invention is to suppress a disturbance of the air flow due to the shape of the area near the outer peripheral edge of the information recording medium, and to stabilize the flying characteristics of the magnetic head, and a glass substrate for the information recording medium It is an object of the present invention to provide a magnetic disk device including
  • a glass substrate for an information recording medium according to the present invention is used for an information recording medium on which a magnetic recording layer having a recording density of 630 Gbit / in 2 or more is formed, and has a center of rotation.
  • the main surface located in each of the front side and back side of a glass substrate, and the outer peripheral end surface located in the outer peripheral end part of the said glass substrate for information recording media are provided.
  • the radius of the glass substrate for information recording medium from the rotation center to the outer peripheral end surface is R, and a point on the main surface that is 0.71R away from the rotation center along the radial direction on both the front side and the back side.
  • a point on the main surface that is 0.83R away from the center of rotation along the radial direction is a second reference point, and a straight line connecting the first reference point and the second reference point is a reference.
  • a point on the reference line that is 0.99 R away from the rotation center as a reference position, and the main surface overlaps with the reference position when viewed along the extending direction of the rotation axis passing through the rotation center.
  • the average value of the distribution in the circumferential direction of the deviation amount is 150 nm or less on both the front side and the back side.
  • the thickness of the glass substrate for information recording medium is preferably 0.65 mm or less.
  • the magnetic disk device according to the present invention is mounted with a plurality of glass substrates for information recording media so that the rotation axes are the same.
  • the magnetic disk device according to the present invention rotates one or more glass substrates for information recording medium at a rotational speed of 7200 rpm or more.
  • a glass substrate for an information recording medium capable of suppressing the disturbance of the air flow caused by the shape of the area near the outer peripheral edge of the information recording medium and stabilizing the flying characteristics of the magnetic head, and the same.
  • a magnetic disk device can be provided.
  • FIG. 1 is a schematic perspective view showing a magnetic disk device on which a glass substrate for an information recording medium according to an embodiment of the present invention is mounted.
  • FIG. 6 is a cross-sectional view showing a modification of the magnetic disk device shown in FIG. 1.
  • It is the schematic which shows an information recording medium provided with the glass substrate for information recording media which concerns on embodiment of this invention.
  • FIG. 5 is a sectional view taken along line VV shown in FIG. 4. It is a figure which shows distribution of the circumferential direction of the deviation
  • FIG. 10 is a cross-sectional view taken along the line XX shown in FIG. 9. It is sectional drawing which shows a mode that the double-side polish apparatus shown in FIG. 9 is grinding
  • FIG. 1 It is sectional drawing which shows a mode that the double-side polish apparatus is performing precision grinding
  • FIG. 1 is a schematic perspective view showing a magnetic disk device on which a glass substrate for information recording medium according to the present embodiment is mounted.
  • a magnetic disk device 100 on which an information recording medium glass substrate 1G according to the present embodiment is mounted will be described.
  • the magnetic disk device 100 includes an information recording medium 10, an actuator 20, a housing 30, a clamp member 27, and a fixing screw 28.
  • the actuator 20 includes a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, and a voice coil motor 26.
  • a spindle motor (not shown) is installed on the upper surface of the housing 30.
  • An information recording medium 10 such as a magnetic disk formed by applying a magnetic material to a glass substrate 1G for information recording medium (hereinafter also referred to as a glass substrate 1G) is attached to the spindle motor by a clamp member 27 and a fixing screw 28. It is fixed so that it can rotate.
  • the information recording medium 10 is manufactured by forming a magnetic thin film layer (magnetic recording layer) on the glass substrate 1G.
  • the information recording medium 10 is rotationally driven in the DR1 direction by the above spindle motor at a rotational speed of several thousand rpm, for example, around a rotational axis L1 passing through the rotational center CP (see FIG. 4) of the glass substrate 1G.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in the shape of a leaf spring (cantilever) is attached to the tip of the arm 23.
  • a head slider 21 having a magnetic head (not shown) is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is sandwiched between magnets (not shown) provided on the housing 30.
  • a voice coil motor 26 is constituted by the voice coil 25 and this magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
  • the flying height at which the magnetic head provided on the head slider 21 floats with respect to the surface of the information recording medium 10 is called flying height.
  • the flying height is 3 nm or less. That is, the distance between the information recording medium 10 and the magnetic head in the thickness direction of the information recording medium 10 when the information recording medium 10 is rotated is 3 nm or less.
  • FIG. 2 is a sectional view showing a modification of the magnetic disk device shown in FIG. A magnetic disk device 100A as a modification of the magnetic disk device 100 shown in FIG. 1 will be described with reference to FIG.
  • the magnetic disk device 100A is different from the magnetic disk device 100 in that two information recording media 10 can be rotated.
  • the magnetic disk device 100A is magnetic.
  • two information recording media 10 are rotatably fixed to a spindle motor 29 by two clamp members 27.
  • the two information recording media 10 are mounted such that the rotation axes L1 passing through the rotation center CP (see FIG. 4) are the same.
  • Each of the two information recording media 10 is disposed so as to be sandwiched between the two head sliders 21.
  • FIG. 3 is a schematic view showing an information recording medium provided with the glass substrate for information recording medium according to the embodiment of the present invention. With reference to FIG. 3, an information recording medium provided with the glass substrate for information recording medium 1G according to the present embodiment will be described.
  • the information recording medium 10 includes a glass substrate 1G having a disc shape with a central hole 11 formed thereon, and a magnetic thin film layer 16 formed on the main surface 14 on the front side of the glass substrate 1G. (Magnetic recording layer) and a magnetic thin film layer 17 (magnetic recording layer) formed on the main surface 15 on the back side of the glass substrate 1G.
  • the magnetic thin film layers 16 and 17 are formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the front main surface 14 and the back main surface 15 of the glass substrate 1G (spin coating method). .
  • the magnetic thin film layers 16 and 17 may be formed using a sputtering method or an electroless plating method.
  • the film thicknesses of the magnetic thin film layers 16 and 17 are about 0.3 ⁇ m to about 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to about 0.08 ⁇ m for the sputtering method, and about about 0.04 ⁇ m to about 0.08 ⁇ m for the sputtering method. 0.05 ⁇ m to about 0.1 ⁇ m.
  • the magnetic material used for forming the magnetic thin film layers 16 and 17 it is preferable to use Co having a high crystal anisotropy and a Co-based alloy with Ni or Cr added for the purpose of adjusting the residual magnetic flux density.
  • An FePt-based material may be used as a magnetic material suitable for heat-assisted recording.
  • the surface of the magnetic thin film layers 16 and 17 may be coated with a thin lubricant.
  • the lubricant include those obtained by diluting perfluoropolyether (PFPE) with a freon-based solvent. You may provide a base layer and a protective layer as needed.
  • the underlayer is selected according to the type of magnetic film.
  • the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer may have a single-layer structure or a multi-layer structure in which the same or different layers are stacked. Examples of the multilayer structure include Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, and NiAl / CrV.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic thin film layers 16 and 17 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus, such as an underlayer and a magnetic film. These protective layers may have a single layer structure, or may have a multilayer structure in which the same or different layers are stacked.
  • Another protective layer may be formed on the protective layer or instead of the protective layer.
  • tetraalkoxysilane is diluted with an alcohol solvent
  • colloidal silica fine particles are dispersed and applied onto the Cr layer, and further baked to form a silicon oxide (SiO 2 ) layer. You may form on it.
  • FIG. 4 is a schematic view showing a glass substrate for an information recording medium according to an embodiment of the present invention.
  • FIG. 5 is a sectional view taken along line VV shown in FIG. With reference to FIG. 4 and FIG. 5, the glass substrate 1G for information recording media which concerns on this Embodiment is demonstrated.
  • the glass substrate 1G includes main surfaces 14 and 15 positioned on the front side and the back side, an inner peripheral end face 13 that defines the center hole 11, and an outer peripheral end of the glass substrate 1G. And an outer peripheral end face 12 located in the section.
  • the main surfaces 14 and 15 are flat portions 14a and 15a extending in the radial direction and the circumferential direction from the inner peripheral end surface 13 side, and the peripheral edge (near the outer peripheral end portion) of the main surface that is outside the flat portions 14a and 15a.
  • Inclined portions 14b and 15b that are positioned and inclined so as to approach the center 12c of the outer peripheral end face 12 as going outward.
  • chamfered portions 14 c and 15 c are provided between the inclined portions 14 b and 15 b and the outer peripheral end surface 12.
  • the glass substrate 1G has a size of 0.8 inch, 1 inch, 1.8 inch, 2.5 inch or 3.5 inch, for example.
  • the glass substrate 1G has thicknesses of, for example, 0.3 mm, 0.65 mm, 0.8 mm, 1 mm, 2 mm, and 2.2 mm.
  • the thickness of the glass substrate 1G is a value calculated by averaging the values measured at a plurality of arbitrary points that are point-symmetric on the glass substrate 1G.
  • the glass composition of the glass substrate 1G is not particularly limited as long as it can be chemically strengthened by ion exchange.
  • soda lime glass containing SiO 2 , Na 2 O and CaO as main components
  • Li 2 O—SiO 2 glass, Li 2 O—Al 2 O 3 —SiO 2 glass, R′O—Al 2 O 3 —SiO 2 glass (R ′ Mg, Ca, Sr, Ba), etc.
  • the radius of the glass substrate 1G from the rotation center CP of the glass substrate 1G to the outer peripheral end face 12 is R. It is defined as follows. On both the front side and the back side, a point R1 on the main surfaces 14 and 15 that is 0.71R away from the center of rotation along the radial direction is taken as a first reference point. A point R2 on the main surfaces 14 and 15 that is 0.83R away from the center of rotation along the radial direction is taken as a second reference point. A straight line BL connecting the first reference point and the second reference point is taken as a reference line. A point R3 on the reference line that is 0.99R away from the rotation center CP along the radial direction is set as a reference position.
  • the distance L is the amount of deviation.
  • the above-described inclined portions 14b and 15b are mainly formed in a second polishing step to be described later, and have a minute uneven shape in the circumferential direction.
  • the amount of deviation in the inclined portions 14b and 15b has a slight distribution in the circumferential direction.
  • the present invention is not limited to this, and the ski jump is raised above the reference line. It may be a shape. Also in this case, the reference position, the point R4, the shift amount, etc. can be defined in the same manner as described above.
  • the amount of deviation means the depth that sinks from the reference line or the height that rises from the reference line.
  • FIG. 6 is a diagram showing the distribution in the circumferential direction of the deviation amount on the back side of the glass substrate for information recording medium shown in FIG.
  • FIG. 7 is a diagram showing the distribution in the circumferential direction of the deviation amount on the front side and the back side for the information recording medium shown in FIG. With reference to FIG. 6 and FIG. 7, the deviation
  • the distribution 42 in the circumferential direction of the deviation amount at the radial position separated by 0.99R along the radial direction from the rotation center CP on the back side of the glass substrate 1G is the point P2 indicating the maximum value and the minimum value. And a point V2 indicating.
  • the position where the shift amount is maximum corresponds to the position farthest from the reference line, and the position where the shift amount is minimum corresponds to the position closest to the reference line.
  • the difference between the maximum value and the minimum value is defined as the PV value.
  • an average value 42a of the circumferential distribution 42 of the deviation amount is indicated by a broken line.
  • the air flow generated in the vicinity of the outer peripheral end of the information recording medium 10 is not only the shape of the main surface on one side (front side). It is also influenced by the shape of the main surface on the other side (back side). For this reason, it is preferable that the front and back main surfaces are as identical as possible.
  • the difference in the shape of the main surface on the front side and the back side can be confirmed by using the difference between the average values on the front side and the back side as an index.
  • the average value 41a of the distribution 41 in the circumferential direction of the deviation amount at the radial position (position of 0.99R) on the front side of the glass substrate 1G, and the back side of the glass substrate 1G is used as an index.
  • the glass substrate 1G according to the present embodiment has a PV value (difference between the maximum value and the minimum value) on the front side and the back side of 40 nm or less at the radial position, and The difference between the average value 41a of the circumferential distribution 41 of the deviation amount on the front side and the average value 42a of the circumferential distribution 42 of the deviation amount on the back side is 10 nm or less.
  • the magnetic head when the magnetic head is disposed on the front side and the back side of the information recording medium 10 and the information recording medium 10 is rotated at a high speed, the magnetic head
  • the distance from the main surface including the inclined portion can be made substantially uniform in the circumferential direction.
  • variation in air flow (wind force) generated on the front side and the back side of the information recording medium can be suppressed, and the flying characteristics of the magnetic head can be stabilized.
  • the durability against fluttering and other disturbances (vibration, sound) in which the information recording medium 10 vibrates in the direction perpendicular to the rotation direction by high-speed rotation is improved, and this also stabilizes the flying characteristics of the magnetic head. it can.
  • the difference between the average value of the circumferential distribution of the deviation amount on the front side and the average value of the circumferential distribution of the deviation amount on the back side is 5 nm or less. In this case, the variation in the air flow can be further suppressed, and the flying characteristics can be further stabilized.
  • the average value of the deviation amounts on the front side and the back side is 150 nm or less.
  • the flying characteristics can be further stabilized by reducing the deviation amount itself.
  • the glass substrate 1G has a thickness of, for example, 0.3 mm, 0.65 mm, 0.8 mm, 1 mm, 2 mm, and 2.2 mm is exemplified. It is preferable to have a thickness of When the thickness of the glass substrate is reduced and the fluttering amount of the glass substrate itself is increased (the fluttering amount when the thickness is 0.635 mm, for example, is twice the fluttering amount when the thickness is 0.8 mm).
  • the above-described durability can be remarkably improved, and the flying characteristics of the magnetic head can be more reliably stabilized.
  • FIG. 8 is a flowchart showing a method for manufacturing the glass substrate for information recording medium shown in FIG. With reference to FIG. 8, the manufacturing method of the glass substrate 1G which concerns on this Embodiment is demonstrated.
  • the manufacturing method includes steps S10 to S19.
  • the glass melting step S10 the glass material is melted.
  • the molding step S11 the molten glass material is press-molded using the upper mold and the lower mold.
  • a glass substrate is obtained by molding.
  • the glass substrate may be cut out from the plate glass.
  • the composition of the glass substrate is, for example, aluminosilicate glass.
  • the first lapping step S12 lapping is performed on both the front and back main surfaces of the glass substrate using a double-sided lapping device having a planetary gear mechanism.
  • the lap platen is pressed from above and below against the glass substrate, and the glass substrate and the lap platen are relatively moved while supplying abrasive grains and grinding liquid onto both main surfaces of the glass substrate.
  • abrasive alumina or the like is used.
  • a central hole is formed in the central portion of the glass substrate using a cylindrical diamond drill.
  • a diamond grindstone chamfering is performed on the inner peripheral end surface and the outer peripheral end surface of the glass substrate.
  • lapping processing similar to that in the first lapping step S12 is performed on both main surfaces of the glass substrate. Thereby, the fine uneven
  • the outer periphery / inner periphery polishing step S15 mirror polishing is performed on the outer peripheral end surface and the inner peripheral end surface of the glass substrate using a brush.
  • abrasive grains for example, a slurry containing cerium oxide abrasive grains is used.
  • both main surfaces of the glass substrate are polished by using a double-side polishing apparatus having a planetary gear mechanism.
  • abrasive for example, cerium oxide abrasive grains having an average particle diameter of about 1 ⁇ m are used.
  • scratches and warpage remaining on both main surfaces are corrected.
  • compressive stress layers are formed on both main surfaces of the glass substrate.
  • a mixed solution of potassium nitrate (70%) and sodium nitrate (30%) is heated to 300 ° C., and the glass substrate is immersed in the mixed solution for about 30 minutes.
  • a compressive stress layer is formed, and both main surfaces and both end surfaces of the glass substrate are strengthened.
  • the second polishing step S18 precision polishing is performed on both main surfaces of the glass substrate using a double-side polishing apparatus having a planetary gear mechanism.
  • abrasive for example, colloidal silica having an average particle diameter of about 20 nm is used.
  • the micro-defects remaining on both main surfaces are eliminated, and both main surfaces are finished in a mirror shape. Fine warpage is also eliminated, and both main surfaces have a desired flatness. Further details of the second polishing step S18 will be described later with reference to FIGS.
  • both main surfaces and both end surfaces of the glass substrate are cleaned, and then the glass substrate is appropriately dried.
  • the manufacturing method of the glass substrate for information recording media in this Embodiment is comprised as mentioned above.
  • a glass substrate 1G shown in FIG. 4 is obtained.
  • the information recording medium 10 shown in FIG. 3 is obtained by forming the magnetic thin film layer on the glass substrate 1G.
  • FIG. 9 is a side view showing a double-side polishing apparatus used in the second polishing step shown in FIG. 10 is a cross-sectional view taken along line XX shown in FIG.
  • FIG. 11 is a cross-sectional view showing a state in which the double-side polishing apparatus shown in FIG. Details of the second polishing step S18 will be described with reference to FIGS.
  • the double-side polishing apparatus 200 includes an upper surface plate 210, an upper polishing pad 211, a lower surface plate 220, and a lower polishing pad 221.
  • the upper surface plate 210 and the lower surface plate 220 have a cylindrical shape.
  • the upper polishing pad 211 is mounted on the lower surface on the side (glass substrate side) facing the lower surface plate 220 of the upper surface plate 210.
  • the lower polishing pad 221 is mounted on the upper surface on the side (glass substrate side) facing the upper surface plate 210 of the lower surface plate 220.
  • the lower surface of the upper surface plate 210 and the upper surface of the lower surface plate 220 are parallel to each other and rotate in directions opposite to each other.
  • the upper polishing pad 211 and the lower polishing pad 221 are processed members for precisely polishing both main surfaces of the glass substrate.
  • a polyurethane suede pad is used as the upper polishing pad 211 and the lower polishing pad 221.
  • a surface of the upper polishing pad 211 facing the lower surface plate 220 forms an upper polishing surface 212.
  • a surface of the lower polishing pad 221 facing the upper surface plate 210 forms a lower polishing surface 222.
  • a plurality of polishing carriers 250 having a disk shape are arranged on the lower polishing surface 222.
  • the carrier 250 includes a main body portion 251 having a plurality of circular holes, and a plurality of meshing teeth 252 are provided on the outer periphery of the carrier 250.
  • the thickness of the carrier 250 is, for example, 650 ⁇ m.
  • the glass substrate 1G is disposed in a circular hole provided in the main body 251.
  • the thickness of the glass substrate 1G before precision polishing is, for example, 810 ⁇ m.
  • a sun gear 230 is provided at the center of the lower surface plate 220.
  • An internal gear 240 is provided coaxially with the sun gear 230 at the periphery of the lower surface plate 220.
  • the sun gear 230 and the internal gear 240 are thicker than the carrier 250 in a direction parallel to the rotation axis of the sun gear 230.
  • the meshing teeth 252 of the carrier 250 mesh with both the tooth surface 232 of the sun gear 230 and the tooth surface 242 of the internal gear 240.
  • the carrier 250 is rotated using the sun gear 230 and the internal gear 240.
  • the carrier 250 revolves around the sun gear 230 while rotating.
  • a ring member 260 is inserted between the inner peripheral surface 253 of the carrier 250 defining the circular hole and the glass substrate 1G. In this state, the glass substrate 1G is sandwiched between the upper polishing pad 211 and the lower polishing pad 221.
  • the glass substrate 1G is located at a position where the ring member is separated from the inner peripheral surface 253 by about several mm. And sandwiched between the upper polishing pad 211 and the lower polishing pad 221.
  • a predetermined stress is applied to the glass substrate 1G in the thickness direction by the upper surface plate 210 and the lower surface plate 220, so that the main surface on the front side and the back side of the glass substrate 1G has the upper polished surface 212 and the lower surface surface. Pressed against the polishing surface 222.
  • the ring member 260 is interposed between the inner peripheral surface 253 and the glass substrate 1G, so that the upper polishing pad 211 and the lower polishing pad 221 sink in the vicinity of the outer peripheral end portion of the glass substrate 1G. Can be suppressed. Thereby, at the time of the grinding
  • the upper polishing surface 212 moves relative to the main surface on the front side of the glass substrate 1G, and the lower polishing surface 222 with respect to the main surface on the back side of the glass substrate 1G. Moves relative to each other.
  • the upper polishing surface 212 When the upper polishing surface 212 is in sliding contact with the main surface on the front side of the glass substrate 1G, the main surface on the front side of the glass substrate 1G is polished. Further, the lower polishing surface 222 is in sliding contact with the main surface on the back side of the glass substrate 1G, whereby the main surface on the back side of the glass substrate 1G is polished. Thus, both main surfaces of the glass substrate 1G are polished simultaneously.
  • the ring member 260 and the glass substrate 1G are not fixed in the circular hole, they can rotate in the circular hole. Thereby, the periphery of the main surface of the front side and back side of the glass substrate 1G can be further flattened.
  • the front and back sides of the glass substrate 1G are reversed during the polishing process in the second polishing step in order to make the shapes of the front and back main surfaces substantially the same, and the polishing process is performed again. In this way, precision polishing is performed in the second polishing step 18.
  • the material of the carrier 250 and the ring member 260 may be a resin member such as an epoxy resin so as not to damage the glass substrate 1G. Further, when a resin member having a hardness lower than that of the glass substrate 1G is adopted as the material of the ring member 260, the main surface of the ring member 260 is provided with wear resistance such as fluorine resin, DLC (Diamond-like carbon). It is preferable to form a film to be improved.
  • FIG. 12 is a diagram showing a usage example of the glass substrate for information recording medium shown in FIG. A usage example of the glass substrate 1G will be described with reference to FIG. In FIG. 12, the magnetic thin film layer is not shown.
  • each of the two information recording media 10 is disposed so as to be sandwiched between the two head sliders 21.
  • a magnetic head (not shown) is disposed at the tip of each head slider 21 so as to face the main surface on the front side or the back side of the information recording medium 10.
  • Comparative Examples 1 to 3 In carrying out the load / unload test, as Comparative Examples 1 to 3, three glass substrates manufactured based on a method of manufacturing a glass substrate 1H (see FIG. 13) in a comparative form to be described later are prepared, and these are magnetically prepared. A magnetic disk on which a film formation layer was formed was manufactured. Further, as Example 1 and Example 2, two glass substrates 1G according to the embodiment were prepared, and a magnetic disk having a magnetic film formation layer formed thereon was manufactured. For these magnetic disks, a load / unload test was performed by repeating the load / unload operation 5 million times with a flying height of 3 nm at the head flying height and 5400 rpm or 7200 rpm, and until a head crash occurred. Durability was evaluated.
  • a glass substrate 1G having an outer diameter of 2.5 inches (63.5 mm) was used as the substrate size.
  • the thickness of the glass substrate 1G was 0.8 mm and 0.65 mm.
  • a point R1 that is 23 mm away from the rotation center CP of the glass substrate 1G along the radial direction is a first reference point
  • a point R2 that is 27 mm from the rotation center CP along the radial direction is a second reference point.
  • the distribution in the circumferential direction of the above-described deviation amount with the straight line BL connecting the second reference points as the reference line, the point R3 on the reference line 32.2 mm away from the rotation center CP as the reference position, and the reference position as the radial position. was measured.
  • the amount of deviation was measured using an optical surface analyzer OSA (Optical Surface Analyzer) 7120 (manufactured by KLA-Tencor Candela).
  • OSA Optical Surface Analyzer
  • This apparatus irradiates the entire main surface of the glass substrate 1G while rotating the glass substrate 1G, and performs arithmetic processing based on the reflected light and scattered light received by the light receiver in the apparatus, whereby the glass substrate The surface shape of 1G can be grasped.
  • the larger PV value is 40 nm among the PV values of the circumferential distribution of the two deviation amounts on the front side and the back side, and the circumferential direction of the deviation amount on the front side.
  • the difference between the average value of the distribution and the average value of the circumferential distribution of the deviation amount on the back side was 10 nm (see FIGS. 19 and 20).
  • the larger PV value is 30 nm, and the circumferential direction of the shift amount on the front side
  • the difference between the average value of the distribution and the average value of the circumferential distribution of the deviation amount on the back side was 5 nm (see FIGS. 19 and 20).
  • the glass substrate in Comparative Examples 1 to 3 has a different manufacturing method, specifically, a second polishing step.
  • a second polishing step the manufacturing method of the glass substrate in a comparative example is demonstrated.
  • FIG. 13 is a cross-sectional view showing a state in which the double-side polishing apparatus performs precision polishing in the second polishing step when manufacturing the glass substrate for information recording medium in the comparative form.
  • FIG. 14 is a diagram showing a region surrounded by the XIV line shown in FIG.
  • FIG. 15 is a diagram showing a region surrounded by the XV line shown in FIG. With reference to FIG. 13 to FIG. 15, a method for manufacturing a glass substrate in a comparative form will be described.
  • the method of manufacturing the glass substrate 1H in the comparative form is different from the method of manufacturing the glass substrate 1G according to the embodiment in the second polishing process, and is almost the same in the other processes.
  • the gap between the inner peripheral surface 253 of the carrier 250 that defines the circular hole and the glass substrate 1H when precision polishing is performed by the double-side polishing apparatus 200, the gap between the inner peripheral surface 253 of the carrier 250 that defines the circular hole and the glass substrate 1H.
  • the front and back main surfaces of the glass substrate 1H are pressed against the upper polishing surface 212 of the upper polishing pad 211 and the lower polishing surface 222 of the lower polishing pad 221 without inserting the ring member 260 (see FIG. 11). Accordingly, as shown in FIGS. 14 and 15, the upper polishing pad 211 and the lower polishing pad 221 sink at the outer peripheral end portion of the glass substrate 1H.
  • the inclined surface 211a (see FIG. 14) formed on the upper polishing pad 211 and the inclined surface 221b (see FIG. 15) formed on the lower polishing pad come into contact with the outer peripheral end of the glass substrate 1H during polishing.
  • the peripheral edges of the main surfaces on the front side and the back side are likely to sink or rise.
  • the glass substrate 1H is easily affected by the surface conditions of the upper polishing pad 211 and the lower polishing pad 221.
  • the peripheral edges of the main surfaces on the front side and the back side tend to sink or rise.
  • FIGS. 16 to 18 are diagrams showing the distribution in the circumferential direction of the deviation amounts on the front side and the back side of the glass substrate 1H for information recording medium in Comparative Examples 1 to 3.
  • the distribution in the circumferential direction of the deviation amount on the front side when the reference position is the radial position The average value 51a of 51 and the average value 52a of the distribution 52 in the circumferential direction of the deviation amount on the back side both exceeded 150 nm.
  • the larger PV value is 60 nm, and the average value 51a of the circumferential distribution 51 of the deviation amount on the front side.
  • the average value 52a of the circumferential distribution 52 of the deviation amount on the back side was 30 nm (see FIG. 19).
  • the distribution in the circumferential direction of the deviation amount on the front side when the reference position is the radial position
  • the average value 53a of 53 and the average value 54a of the distribution 54 in the circumferential direction of the deviation amount on the back side both exceeded 150 nm.
  • the larger PV value is 60 nm, and the average value 53a of the circumferential distribution 53 of the deviation amount on the front side.
  • the average value 54a of the circumferential distribution 54 of the deviation amount on the back side was 10 nm (see FIG. 19).
  • the distribution in the circumferential direction of the deviation amount on the front side when the reference position is the radial position.
  • the average value 55a of 55 and the average value 56a of the circumferential distribution 56 of the deviation amount on the back side both exceeded 150 nm.
  • the larger PV value is 40 nm, and the average value 55a of the circumferential distribution 55 of the deviation amount on the front side.
  • the average value 56a of the circumferential distribution 56 of the deviation amount on the back side was 30 nm (see FIG. 19).
  • FIG. 19 is a diagram showing the conditions and results of the first experiment conducted for verifying the effects of the present invention. With reference to FIG. 19, the result of the first experiment performed to verify the effect of the present invention will be described.
  • Example 1 the head crash did not occur even when the number of rotations reached 5 million, regardless of whether the rotation speed of the magnetic disk was 5400 rpm or 7200 rpm. Was determined.
  • Example 2 no head crash occurred even when the number of rotations reached 5 million, regardless of whether the rotation speed of the magnetic disk was 5400 rpm or 7200 rpm. Further, when the same experiment was repeated in any of the above rotation speeds, head crash did not occur even when the rotation speed reached 5 million times both times. Was determined.
  • FIG. 20 is a diagram showing the conditions and results of the second experiment conducted for verifying the effect of the present invention. With reference to FIG. 20, the result of the second experiment conducted to verify the effect of the present invention will be described.
  • the PV value and the front side of Examples 1 and 2 and Comparative Examples 1 to 3 were used with a substrate thickness of 0.65 mm.
  • the difference between the average value of the circumferential distribution of the deviation amount and the average value of the circumferential distribution of the deviation amount on the back side is a value as shown in FIG.
  • the rotational speed of the magnetic disk in the load / unload test was set to 5400 rpm.
  • Example 1 no head crash occurred even when the number of rotations reached 5 million, and it was determined as “Acceptable” based on the above quality standards.
  • Example 2 no head crash occurred even when the number of rotations reached 5 million. Furthermore, even when the same experiment was repeated, head crash did not occur even when the number of rotations reached 5 million, and it was determined as “good” based on the above quality standards.
  • the air flow becomes non-uniform in the vicinity of the outer peripheral end portions on the front side and the back side, and the wind pressure in the vicinity of the outer peripheral end portion on the back side becomes higher than the wind pressure in the vicinity of the outer peripheral end portion on the front side. Therefore, the magnetic head located near the outer peripheral edge on the back side where the wind pressure is high is easily affected by fluttering of the substrate itself and other disturbances (vibration, sound) in addition to the wind pressure, and head crashes are likely to occur. It is considered.
  • the glass substrate according to the present embodiment has a more uniform air flow in the vicinity of the outer peripheral end portions on the front side and the back side of the glass substrate as the number of rotations during use in the magnetic disk increases. It can be said that it was proved experimentally that the flying characteristics of the magnetic head can be reliably stabilized.
  • the magnetic disk device has a configuration in which one or two information recording media are mounted is described as an example.
  • the present invention is not limited to this, and three or more information recording media are mounted. You may have the structure to do.
  • 1G glass substrate 10 information recording medium, 11 central hole, 12 outer peripheral end face, 13 inner peripheral end face, 14, 15 main surface, 14a, 15a flat part, 14b, 15b inclined part, 14c, 15c chamfered part, 16, 17 magnetism Thin film layer, 20 actuator, 21 head slider, 22 suspension, 23 arm, 24 vertical axis, 25 voice coil, 26 voice coil motor, 27 clamp member, 28 fixing screw, 29 spindle motor, 30 housing, 100 magnetic disk device, 200 double-side polishing machine, 210 upper surface plate, 211 upper polishing pad, 211a inclined surface, 212 upper polishing surface, 221 lower polishing pad, 221b inclined surface, 230 sun gear, 232 tooth surface, 240 internal gear, 242 tooth surface, 250 Yaria, 251 main body, 252 meshing teeth, inner peripheral surface of 253, 260 ring member.

Abstract

 情報記録媒体用ガラス基板は、回転中心(CP)を有するものであり、主表面と外周端面とを備え、ガラス基板(1G)の半径をRとし、回転中心(CP)から0.99R離れた基準線(BL)上の点R3を基準位置とし、回転中心(CP)を通る回転軸(L1)の延在方向に沿って見たときに基準位置と重なる主表面上の点から基準位置までの距離をずれ量とした場合に、表側および裏側の双方において、基準位置を半径位置とするずれ量の周方向の分布の最大値と最小値との差が40nm以下であり、表側のずれ量の周方向の分布の平均値と裏側のずれ量の周方向の分布の平均値との差が10nm以下である。

Description

情報記録媒体用ガラス基板および磁気ディスク装置
 本発明は、情報記録媒体用ガラス基板および磁気ディスク装置に関する。
 コンピュータなどに用いられる情報記録媒体(磁気ディスク記録媒体)には、従来からアルミニウム基板またはガラス基板が用いられている。これらの基板上に磁気薄膜層が形成され、磁気薄膜層を磁気ヘッドで磁化することにより、磁気薄膜層に情報が記録される。
 近年、コンピュータ等に搭載されるハードディスク(HDD)装置等の磁気ディスク装置においては、2.5インチの記録媒体1枚で、記録容量が500GB(片面250GB)、面記録密度が630Gbit/平方インチ以上の記録密度を有するものが開発されている。
 このような記録密度の高密度化に伴い、情報記録媒体と情報記録媒体上を浮上しながら記録の読み書きを行なう磁気ヘッドとのギャップ(フライングハイト)が狭小化している。
 フライングハイトが狭小化した場合には、ガラス基板の主表面上に形成された微細な凹凸に起因して、磁気ヘッドと情報記録媒体とが互いに接触(ヘッドクラッシュともいう)しやすくなる。ヘッドクラッシュを抑制するために、ガラス基板の主表面の平滑度および平坦度に対する要求がますます高くなっている。
 ガラス基板の主表面の平坦度を向上せることによりヘッドクラッシュを抑制することができる情報記録媒体用ガラス基板が開示された文献として、たとえば、特開2008-234823号公報(特許文献1)が挙げられる。
 特許文献1に開示の情報記録媒体用ガラス基板は、主表面内の周縁部において当該主表面内の周縁部以外の平坦面を基準とする基準平面から隆起または沈降することによって当該基準平面から乖離する乖離部を含んでおり、主表面の片側において当該乖離部が当該基準平面から乖離する大きさ(ずれ量)がガラス基板の全周に亘って略均一に形成されている。
特開2008-234823号公報
 HDDの記録密度を630Gbit/平方インチ以上にまで増大させるために磁気ヘッドと情報記録媒体とのギャップを調整するDFH(Dynamic Flying Height)機構が用いられる。このDFH機構を採用した場合には、フライングハイトを3nm以下にまで狭くすることができる。
 一般的に、磁気ディスク装置内にて情報記録媒体が高速回転する場合にあっては、特に情報記録媒体の外周端部において周速が速くなるため、当該外周端部近傍において発生する空気の流れ(風力)の影響を受けてヘッドが浮上しやすくなる。
 フライングハイトが3nm以下となる場合には、磁気ヘッドは、外周端部近傍において、風力の影響を顕著に受けやすくなり、磁気ヘッドの浮上特性が不安定となる傾向がある。磁気ヘッドは、情報記録媒体の片面側だけでなく、両面側に配置される場合がある。このような場合においては、情報記録媒体の両面の表面形状の差異によって、表側と裏側で発生する風力にばらつきが生じ、磁気ヘッドの浮上特性がより不安定となりやすい。
 特許文献1に開示のガラス基板にあっては、ガラス基板の両側の主表面に磁気薄膜層が形成され当該ガラス基板の両側に磁気ヘッドが配置される場合における磁気ヘッドの浮上特性については、十分に考慮されていない。
 本発明の目的は、情報記録媒体の外周端部近傍領域の形状に起因して空気の流れが乱れることを抑制し、磁気ヘッドの浮上特性を安定させることができる情報記録媒体用ガラス基板およびこれを備えた磁気ディスク装置を提供することにある。
 本発明に基づく情報記録媒体用ガラス基板は、630Gbit/平方インチ以上の記録密度を有する磁気記録層が形成された情報記録媒体に用いられ、回転中心を有するものであって、上記情報記録媒体用ガラス基板の表側および裏側のそれぞれに位置する主表面と、上記情報記録媒体用ガラス基板の外周端部に位置する外周端面とを備える。上記回転中心から上記外周端面までの上記情報記録媒体用ガラス基板の半径をRとし、表側および裏側の双方において、径方向に沿って上記回転中心から0.71R離れた上記主表面上の点を第1基準点とし、上記径方向に沿って上記回転中心から0.83R離れた上記主表面上の点を第2基準点とし、上記第1基準点および上記第2基準点を結ぶ直線を基準線とし、上記回転中心から0.99R離れた上記基準線上の点を基準位置とし、上記回転中心を通る回転軸の延在方向に沿って見たときに上記基準位置と重なる上記主表面上の点から上記基準位置までの距離をずれ量とした場合に、表側および裏側の双方において、上記回転中心から0.99R離れた半径位置における上記ずれ量の周方向の分布の最大値と最小値との差が40nm以下であり、表側における上記ずれ量の周方向の分布の平均値と裏側における上記ずれ量の周方向の分布の平均値との差が10nm以下である。
 上記本発明に基づく情報記録媒体用ガラス基板にあっては、表側および裏側の双方において、上記ずれ量の周方向の分布の平均値が150nm以下であることが好ましい。
 上記本発明に基づく情報記録媒体用ガラス基板にあっては、上記情報記録媒体用ガラス基板の厚さが0.65mm以下であることが好ましい。
 本発明に基づく磁気ディスク装置は、ある局面においては、複数枚の上記情報記録媒体用ガラス基板が、上記回転軸が同一となるように搭載される。
 本発明に基づく磁気ディスク装置は、その他の局面においては、1枚または複数枚の上記情報記録媒体用ガラス基板を7200rpm以上の回転数で回転させる。
 本発明によれば、情報記録媒体の外周端部近傍領域の形状に起因する空気流れの乱れを抑制し、磁気ヘッドの浮上特性を安定させることができる情報記録媒体用ガラス基板およびこれを備えた磁気ディスク装置を提供することができる。
本発明の実施の形態に係る情報記録媒体用ガラス基板を搭載する磁気ディスク装置を示す概略斜視図である。 図1に示す磁気ディスク装置の変形例を示す断面図である。 本発明の実施の形態に係る情報記録媒体用ガラス基板を備える情報記録媒体を示す概略図である。 本発明の実施の形態に係る情報記録媒体用ガラス基板を示す概略図である。 図4に示すV-V線に沿った断面図である。 図5に示す情報記録媒体用ガラス基板の裏側のずれ量の周方向の分布を示す図である。 図5に示す情報記録媒体用ガラス基板の表側および裏側のずれ量の周方向の分布を示す図である。 図4に示す情報記録媒体用ガラス基板の製造方法を示すフロー図である。 図8に示す第2ポリッシュ工程にて用いられる両面研磨装置を示す側面図である。 図9に示すX-X線に沿った矢視断面図である。 図9に示す両面研磨装置が研磨加工を行なっている様子を示す断面図である。 図4に示す情報記録媒体用ガラス基板の使用例を示す図である。 比較の形態における情報記録媒体用ガラス基板を製造する際に第2ポリッシュ工程にて両面研磨装置が精密研磨加工を行なっている様子を示す断面図である。 図13に示すXIV線に囲まれる領域を示す図である。 図13に示すXV線に囲まれる領域を示す図である。 比較例1における情報記録媒体用ガラスの表側および裏側のずれ量の周方向の分布を示す図である。 比較例2における情報記録媒体用ガラスの表側および裏側のずれ量の周方向の分布を示す図である。 比較例3における情報記録媒体用ガラスの表側および裏側のずれ量の周方向の分布を示す図である。 本発明の効果を検証するために行なった第1実験の条件および結果を示す図である。 本発明の効果を検証するために行なった第2実験の条件および結果を示す図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 (実施の形態)
 図1は、本実施の形態に係る情報記録媒体用ガラス基板を搭載する磁気ディスク装置を示す概略斜視図である。図1を参照して、本実施の形態に係る情報記録媒体用ガラス基板1Gを搭載する磁気ディスク装置100について説明する。
 図1に示すように、磁気ディスク装置100は、情報記録媒体10、アクチュエーター20、筐体30、クランプ部材27、および固定ネジ28を備えている。
 アクチュエーター20は、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25およびボイスコイルモーター26を有する。筐体30の上面上には、スピンドルモーター(図示せず)が設置されている。
 情報記録媒体用ガラス基板1G(以下、ガラス基板1Gとも称する)に磁性体を塗布して形成された磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定されている。情報記録媒体10は、ガラス基板1Gに磁気薄膜層(磁気記録層)が形成されることによって製造される。情報記録媒体10は、上記のスピンドルモーターによって、たとえば数千rpmの回転数でガラス基板1Gの回転中心CP(図4参照)を通る回転軸L1を中心にDR1方向に回転駆動される。
 アーム23は、垂直軸24回りに揺動可能に取り付けられている。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられている。サスペンション22の先端には、磁気ヘッド(図示せず)を備えたヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられている。
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられている。ボイスコイル25は、筐体30上に設けられたマグネット(図示せず)によって挟持されている。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成されている。
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。
 ヘッドスライダー21に設けられる磁気ヘッドが情報記録媒体10の表面に対して浮上する浮上量は、フライングハイトと称される。本実施の形態の磁気ディスク装置100では、フライングハイトは3nm以下である。すなわち、情報記録媒体10の回転時における、情報記録媒体10の厚み方向における情報記録媒体10と磁気ヘッドとの間隔は、3nm以下である。
 図2は、図1に示す磁気ディスク装置の変形例を示す断面図である。図2を参照して、図1に示す磁気ディスク装置100の変形例としての磁気ディスク装置100Aについて説明する。
 図2に示すように、磁気ディスク装置100Aは、磁気ディスク装置100と比較した場合に、2枚の情報記録媒体10が回転できるように構成されている点で相違し、具体的には、磁気ディスク装置100Aは、2つのクランプ部材27によって2枚の情報記録媒体10が、スピンドルモーター29に回転可能に固定されている。この際、2枚の情報記録媒体10は、回転中心CP(図4参照)を通る回転軸L1が同一となるように搭載されている。また、2枚の情報記録媒体10のそれぞれは、2つのヘッドスライダー21に挟み込まれるように配置されている。
 図3は、本発明の実施の形態に係る情報記録媒体用ガラス基板を備える情報記録媒体を示す概略図である。図3を参照して、本実施の形態に係る情報記録媒体用ガラス基板1Gを備える情報記録媒体について説明する。
 図3に示すように、情報記録媒体10は、中心孔11が形成された円板形状を有するガラス基板1Gと、当該ガラス基板1Gの表側の主表面14上に成膜された磁気薄膜層16(磁気記録層)と、当該ガラス基板1Gの裏側の主表面15上に成膜された磁気薄膜層17(磁気記録層)とを備えている。
 磁気薄膜層16,17は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1Gの表側の主表面14上および裏側の主表面15上にスピンコートすることによって形成される(スピンコート法)。磁気薄膜層16,17は、スパッタリング法または無電解めっき法等を使用して形成されていてもよい。
 磁気薄膜層16,17の膜厚は、スピンコート法の場合は約0.3μm~約1.2μm、スパッタリング法の場合は約0.04μm~約0.08μm、無電解めっき法の場合は約0.05μm~約0.1μmである。
 磁気薄膜層16,17の成膜に用いる磁性材料としては、結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などを用いるとよい。熱アシスト記録に好適な磁性材料として、FePt系の材料が用いられてもよい。
 磁気ヘッドに対する滑りをよくするために、磁気薄膜層16,17の表面に薄い潤滑剤をコーティングしてもよい。潤滑剤としては、たとえばパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。必要に応じて下地層や保護層を設けてもよい。
 下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、およびNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。下地層は、単層構造を有していてもよく、同一または異種の層を積層した複数層構造を有していてもよい。複数層構造としては、たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、NiAl/CrV等が挙げられる。
 磁気薄膜層16,17の摩耗や腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層およびシリカ層などが挙げられる。これらの保護層は、下地層、磁性膜など共にインライン型スパッタ装置で連続して形成できる。これらの保護層は、単層構造を有していてもよく、同一または異種の層を積層した複数層構造を有していてもよい。
 上記保護層上に、あるいは上記保護層に替えて、他の保護層を形成してもよい。たとえば、上記保護層に替えて、テトラアルコキシシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散してCr層の上に塗布し、さらに焼成して酸化ケイ素(SiO)層をその上に形成してもよい。
 図4は、本発明の実施の形態に係る情報記録媒体用ガラス基板を示す概略図である。図5は、図4に示すV-V線に沿った断面図である。図4および図5を参照して、本実施の形態に係る情報記録媒体用ガラス基板1Gについて説明する。
 図4および図5に示すように、ガラス基板1Gは、その表側および裏側のそれぞれに位置する主表面14,15と、中心孔11を規定する内周端面13と、当該ガラス基板1Gの外周端部に位置する外周端面12とを備える。
 主表面14、15は、内周端面13側から径方向および周方向に延在する平坦部14a,15aと、当該平坦部14a,15aの外側である主表面の周縁(外周端部近傍)に位置し、外側に向かうにつれて外周端面12の中央12cに近づくように傾斜する傾斜部14b,15bとを含む。また、傾斜部14b,15bと外周端面12の間には、面取り部14c,15cが設けられている。
 ガラス基板1Gは、たとえば、0.8インチ、1インチ、1.8インチ、2.5インチまたは3.5インチの大きさを有する。ガラス基板1Gは、たとえば、0.3mm、0.65mm、0.8mm、1mm、2mm、2.2mmの厚みを有する。ガラス基板1Gの厚みとは、ガラス基板1G上の点対称となる任意の複数の点で測定した値の平均によって算出される値である。
 ガラス基板1Gのガラス組成としては、イオン交換による化学強化が可能なガラスであれば特に限定されない。たとえば、SiO、NaO、CaOを主成分としたソーダライムガラス、SiO、AlO3、RO(R=K、Na、Li)を主成分としたアルミノシリケートガラス、ボロシリケートガラス、LiO-SiO系ガラス、LiO-Al-SiO系ガラス、R’O-Al-SiO系ガラス(R’=Mg、Ca、Sr、Ba)などを使用することができる。中でも、SiOを63~70mol%含み、かつSiOとAlとの合計量を70mol%以上とするアルミノシリケートガラスが好ましい。
 ここで、本実施の形態においては、ガラス基板1Gの回転中心CPから外周端面12までのガラス基板1Gの半径をRとする。次のように規定する。表側および裏側の双方において、径方向に沿って回転中心から0.71R離れた主表面14,15上の点R1を第1基準点とする。当該径方向に沿って回転中心から0.83R離れた主表面14,15上の点R2を第2基準点とする。第1基準点および第2基準点を結ぶ直線BLを基準線とする。上記径方向に沿って回転中心CPから0.99R離れた基準線上の点R3を基準位置とする。回転中心CPを通る回転軸L1の延在方向に沿って見たときに基準位置と重なる主表面14,15(より具体的には傾斜部14b,15b)上の点R4から上記基準位置までの距離Lをずれ量とする。
 上述の傾斜部14b,15bは、後述する第2ポリッシュ工程にて主として形成されるものであり、周方向において微小な凹凸形状を有する。傾斜部14b,15bにおけるずれ量は、周方向においてわずかに分布を有している。
 本実施の形態においては、傾斜部14b,15bが当該上記の基準線よりも沈降するロールオフ形状の場合を例示して説明するが、これに限定されず、当該基準線よりも隆起するスキージャンプ形状であってもよい。この場合においても、上記と同様に基準位置、点R4、ずれ量等を規定することができる。ずれ量は、基準線から沈降する深さまたは基準線から隆起する高さを意味するものである。
 図6は、図5に示す情報記録媒体用ガラス基板の裏側のずれ量の周方向の分布を示す図である。図7は、図5に示す情報記録媒体用の表側および裏側のずれ量の周方向の分布を示す図である。図6および図7を参照して、本実施の形態に係るガラス基板1Gのずれ量について説明する。
 図6に示すように、ガラス基板1Gの裏側における、回転中心CPから径方向に沿って0.99R離れた半径位置におけるずれ量の周方向の分布42は、最大値を示す点P2と最小値を示す点V2とを含む。ずれ量が最大となる位置は基準線から最も遠い位置に該当し、ずれ量が最少となる位置は基準線に最も近い位置に該当する。この最大値と最小値の差をPV値とする。また、当該ずれ量の周方向の分布42の平均値42aを破線にて示す。
 ガラス基板1Gを用いて作製された情報記録媒体10を高速回転する際に当該情報記録媒体10の外周端部近傍に発生する空気の流れは、片側(表側)のみの主表面の形状だけでなく、もう片側(裏側)の主表面の形状にも影響される。このため、表側および裏側の主表面はできるだけ同一であることが好ましい。表側および裏側の主表面の形状の相違は、表側および裏側のそれぞれにおける上記平均値の差を指標とすることにより確認することができる。
 具体的には、図7に示すように、ガラス基板1Gの表側における上記半径位置(0.99Rの位置)でのずれ量の周方向の分布41が有する平均値41aと、ガラス基板1Gの裏側における上記半径位置(0.99Rの位置)でのずれ量の周方向の分布42が有する平均値42aとの差を指標とする。
 図6および図7に示すように、本実施の形態に係るガラス基板1Gは、上記の半径位置において、表側および裏側のPV値(最大値と最小値との差)が40nm以下となり、かつ、表側におけるずれ量の周方向の分布41が有する平均値41aと裏側におけるずれ量の周方向の分布42が有する平均値42aとの差が10nm以下となるような構成を有している。
 このような構成とすることにより、情報記録媒体10の表側および裏側に磁気ヘッドを配置して当該情報記録媒体10を高速回転させた場合に、情報記録媒体の外周端部近傍において、磁気ヘッドと上記の傾斜部を含む主表面との間隔を周方向においてほぼ均一にすることができる。これにより、当該外周端部近傍において、情報記録媒体の表側および裏側で発生する空気の流れ(風力)のばらつきを抑制することができ、磁気ヘッドの浮上特性を安定させることができる。高速回転によって情報記録媒体10自体が回転方向に対して垂直方向に振動するフラッタリングやその他の外乱(振動、音響)に対する耐久性が向上し、これによっても磁気ヘッドの浮上特性を安定させることができる。
 さらに、上記の表側におけるずれ量の周方向の分布が有する平均値と上記の裏側におけるずれ量の周方向の分布が有する平均値との差が5nm以下となることが好ましい。この場合には、さらに上記の空気の流れのばらつきを抑制することができ、よりいっそう浮上特性を安定させることができる。
 また、本実施の形態に係るガラス基板1Gにあっては、上記の表側および裏側のずれ量の平均値は150nm以下である。このように、ずれ量自体を小さくすることによっても、さらに浮上特性を安定させることができる。
 なお、上述においては、一例として、ガラス基板1Gが、たとえば、0.3mm、0.65mm、0.8mm、1mm、2mm、2.2mmの厚みを有する場合を例示したが、特に0.65mm以下の厚みを有することが好ましい。ガラス基板の厚みが薄くなりガラス基板自体のフラッタリング量が大きくなる(厚さが0.635mmでのフラッタリング量は、たとえば厚さが0.8mmのフラッタリング量の2倍となる)場合に、上記のような構成とすることで、上記の耐久性がより顕著に向上し、より確実に磁気ヘッドの浮上特性を安定させることができる。
 図8は、図4に示す情報記録媒体用ガラス基板の製造方法を示すフロー図である。図8を参照して、本実施の形態に係るガラス基板1Gの製造方法について説明する。
 図8に示すように、当該製造方法は、工程S10~S19を備える。まず、ガラス溶融工程S10において、ガラス素材が溶融される。続いて、成形工程S11において、上型および下型を用いて溶融ガラス素材がプレス成形される。成形により、ガラス基板が得られる。ガラス基板は、板ガラスから切り出して作製してもよい。ガラス基板の組成は、たとえばアルミノシリケートガラスである。
 次に、第1ラップ工程S12において、遊星歯車機構を有する両面ラッピング装置を用いて、ガラス基板の表側および裏側の両主表面にラッピング加工が施される。ガラス基板に対して上下方向からラップ定盤が押圧され、砥粒および研削液をガラス基板の両主表面上に供給しながら、ガラス基板とラップ定盤とが相対的に移動される。砥粒としては、アルミナ等が使用される。ラッピング加工により、おおよそ平坦な面形状を有するガラス基板が得られる。
 続いて、コアリング工程S13において、円筒状のダイヤモンドドリルを用いて、ガラス基板の中心部に中心孔が形成される。ダイヤモンド砥石を用いて、ガラス基板の内周端面および外周端面に面取り加工が施される。次に、第2ラップ工程S14において、ガラス基板の両主表面に、第1ラップ工程S12と同様なラッピング加工が施される。これにより、両主表面に形成された微細な凹凸形状が除去される。
 次に、外周/内周研磨工程S15において、ブラシを用いて、ガラス基板の外周端面および内周端面に鏡面研磨加工が施される。研磨砥粒としては、たとえば酸化セリウム砥粒を含むスラリーが用いられる。
 続いて、第1ポリッシュ工程S16において、遊星歯車機構を有する両面研磨装置を用いて、ガラス基板の両主表面が研磨される。研磨剤としては、たとえば約1μmの平均粒径を有する酸化セリウム砥粒が用いられる。第1および第2ラップ工程(S12,S14)において両主表面に残留したキズや反りは矯正される。
 次に、化学強化工程S17において、ガラス基板の両主表面に圧縮応力層が形成される。硝酸カリウム(70%)と硝酸ナトリウム(30%)との混合溶液を300℃に加熱し、混合溶液中に、ガラス基板が約30分間浸漬される。圧縮応力層が形成され、ガラス基板の両主表面および両端面が強化される。
 続いて、第2ポリッシュ工程S18において、遊星歯車機構を有する両面研磨装置を用いて、ガラス基板の両主表面に精密研磨加工が施される。研磨剤としては、たとえば平均粒径が約20nmのコロイダルシリカが用いられる。両主表面に残存している微小欠陥等は解消され、両主表面は鏡面状に仕上げられる。微細な反りも解消され、両主表面は所望の平坦度を有することとなる。第2ポリッシュ工程S18の更なる詳細については、図9から図11を参照して後述する。
 次に、最終洗浄工程S19においては、ガラス基板の両主表面および両端面が洗浄され、その後、ガラス基板は適宜乾燥される。本実施の形態における情報記録媒体用ガラス基板の製造方法は、以上のように構成される。このガラス基板の製造方法を用いることで、図4に示すガラス基板1Gが得られる。上述のとおり、ガラス基板1Gに磁気薄膜層を形成することによって、図3に示す情報記録媒体10が得られる。
 図9は、図8に示す第2ポリッシュ工程にて用いられる両面研磨装置を示す側面図である。図10は、図9に示すX-X線に沿った矢視断面図である。図11は、図9に示す両面研磨装置が精密研磨加工を行なっている様子を示す断面図である。図9から図11を参照して、第2ポリッシュ工程S18の詳細について説明する。
 図9に示すように、両面研磨装置200は、上定盤210、上研磨パッド211、下定盤220および下研磨パッド221を備える。上定盤210および下定盤220は、円柱状の形状を有する。上研磨パッド211は、上定盤210の下定盤220に対向する側(ガラス基板側)の下面に装着されている。下研磨パッド221は、下定盤220の上定盤210に対向する側(ガラス基板側)の上面に装着されている。上定盤210の下面および下定盤220の上面は、相互に平行であり、相互に逆向きに回転する。
 上研磨パッド211および下研磨パッド221は、ガラス基板の両主表面を精密研磨するための加工部材である。上研磨パッド211および下研磨パッド221としては、たとえばポリウレタン製のスウェードパッドが用いられる。下定盤220と対向する上研磨パッド211の表面は、上研磨面212を形成する。上定盤210と対向する下研磨パッド221の表面は、下研磨面222を形成する。
 図10に示すように、下研磨面222の上には、円盤状の形状を有する研磨用のキャリア250が複数配置される。キャリア250は、複数の円孔を有する本体部251を備え、キャリア250の外周には、複数の噛合歯252が設けられる。キャリア250の厚さは、たとえば650μmである。
 ガラス基板1Gは、本体部251に設けられた円孔の中に配置される。精密研磨加工前のガラス基板1Gの厚さは、たとえば810μmである。下定盤220の中央部には、サンギア230が設けられる。下定盤220の周縁部には、インターナルギア240がサンギア230と同軸状に設けられる。サンギア230の回転軸に対して平行な方向において、サンギア230およびインターナルギア240は、キャリア250よりも厚い厚さを有している。
 キャリア250がサンギア230とインターナルギア240との間に配置された状態において、キャリア250の噛合歯252は、サンギア230の歯面232およびインターナルギア240の歯面242の双方に噛合する。キャリア250は、サンギア230およびインターナルギア240を用いて回転される。本実施の形態においては、サンギア230が回転駆動されることによって、キャリア250は自転しながらサンギア230の周りを公転する。
 図11に示すように、両面研磨装置200によって精密研磨加工が行なわれる際には、円孔を規定するキャリア250の内周面253とガラス基板1Gとの間にリング部材260を介挿させた状態で、ガラス基板1Gが、上研磨パッド211および下研磨パッド221の間に挟み込まれる。
 具体的には、ガラス基板1Gと略同等の厚さを有するリング部材260にガラス基板1Gが嵌め込まれた状態で、当該リング部材が内周面253から数mm程度離れた位置でガラス基板1Gが、上研磨パッド211および下研磨パッド221の間に挟み込まれる。
 続いて、上定盤210および下定盤220によって、ガラス基板1Gにはその厚さ方向に所定の応力が加えられることにより、ガラス基板1Gの表側および裏側の主表面は、上研磨面212および下研磨面222に押圧される。
 この際、上記のようにリング部材260を内周面253とガラス基板1Gとの間に介挿させることにより、ガラス基板1Gの外周端部近傍において上研磨パッド211および下研磨パッド221の沈み込みを抑制することができる。これにより、後述する研磨時において、ガラス基板1Gの表側および裏側の主表面の周縁をより平坦にすることができる。
 この状態で、コロイダルシリカなどの研磨液を供給しつつ、ガラス基板1Gの表側の主表面に対して上研磨面212が相対移動し、ガラス基板1Gの裏側の主表面に対して下研磨面222が相対移動する。
 上研磨面212がガラス基板1Gの表側の主表面に対して摺接することにより、ガラス基板1Gの表側の主表面が研磨される。また、下研磨面222がガラス基板1Gの裏側の主表面に対して摺接することにより、ガラス基板1Gの裏側の主表面が研磨される。このように、ガラス基板1Gの両主表面は、同時に研磨される。
 この際、リング部材260およびガラス基板1Gは、円孔内において固定されていないため、円孔内で自転することができる。これにより、ガラス基板1Gの表側および裏側の主表面の周縁をさらに平坦にすることができる。
 続いて、表側および裏側の主表面の形状をほぼ同等の形状にするために第2ポリッシュ工程の研磨加工の途中でガラス基板1Gの表側および裏側を反転させ、再度研磨加工を行う。このようにして、第2ポリッシュ工程18にて精密研磨加工が行われる。
 キャリア250とリング部材260の材質は、ガラス基板1Gを傷つけないように、たとえばエポキシ樹脂等の樹脂部材を採用することができる。また、リング部材260の材質としてガラス基板1Gよりも硬度が低い樹脂部材を採用する場合には、当該リング部材260の主表面にフッ素系樹脂、DLC(Diamond-like carbon)等の耐摩耗性を向上させる部材を成膜することが好ましい。
 図12は、図4に示す情報記録媒体用ガラス基板の使用例を示す図である。図12を参照して、ガラス基板1Gの使用例を説明する。図12において磁気薄膜層は記載していない。
 図2に示す磁気ディスク装置を用いる場合には、図12に示すように、2枚の情報記録媒体10のそれぞれが、2つのヘッドスライダー21に挟み込まれるように配置されている。各ヘッドスライダー21に先端には、情報記録媒体10の表側または裏側の主表面に対向するように磁気ヘッド(図示せず)がそれぞれ配置されている。
 4つの磁気ヘッドが2枚の情報記録媒体10上を走査する場合には、2つの磁気ヘッドが1枚の情報記録媒体10上を走査する場合と比較して、ヘッドクラッシュの頻度が2倍となる。
 このような場合であっても、表面形状のばらつきが抑えられた本実施の形態に係るガラス基板1Gを複数用いることで、磁気ヘッドの浮上特性が安定し、ヘッドクラッシュ頻度を低減させることができる。
 以下に、本発明の効果を検証するために行なったロードアンロード試験およびその結果について説明する。
 ロードアンロード試験を実施するにあたり、比較例1から3として、後述の比較の形態におけるガラス基板1H(図13参照)の製造方法に基づいて製造されたガラス基板を3つ準備し、これらに磁気成膜層を形成した磁気ディスクを製造した。また、実施例1および実施例2として、実施の形態に係るガラス基板1Gを2つ準備し、これらに磁気成膜層を形成した磁気ディスクを製造した。これら磁気ディスクに対して、ヘッド浮上時の浮上量を3nmとし、磁気ディスクの回転数を5400rpmまたは7200rpmとして、ロードアンロードを500万回繰り返すロードアンロード試験を行い、ヘッドクラッシュが発生するまでの耐久性を評価した。
 ロードアンロード試験において、回転回数が500万回に到達するまでにヘッドクラッシュが発生したものについては、製品の品質基準に満たないものとして「不可」と判定し、回転回数が500万回に到達してもヘッドクラッシュが発生しないものについては、製品の品質基準を満たすものとして「可」と判定した。さらにロードアンロード試験を繰り返し行ない、2回の試験のいずれにおいて500万回に到達してもヘッドクラッシュが発生しないものについては、製品の品質基準を十分に満たすものとして「良」と判定した。
 基板のサイズとしては、ガラス基板1Gの外径が2.5インチ(63.5mm)のものを用いた。ガラス基板1Gの厚みは、0.8mmのものと0.65mmのものを用いた。径方向に沿ってガラス基板1Gの回転中心CPから23mm離れた点R1を第1基準点とし、当該径方向に沿って回転中心CPから27mmの点R2を第2基準点とし、第1基準点および第2基準点を結ぶ直線BLを基準線とし、回転中心CPから32.2mm離れた基準線上の点R3を基準位置とし、当該基準位置を半径位置とする上述のずれ量の周方向の分布を測定した。
 ずれ量は、光学表面分析装置OSA(Optical Surface Analyzer)7120(KLA-Tencor Candela社製)を用いて測定した。本装置は、ガラス基板1Gを回転させながらレーザー光をガラス基板1Gの主表面全面に照射し、本装置内の受光器が受光した反射光および散乱光に基づいて演算処理することによって、ガラス基板1Gの表面形状を把握することができる。
 実施例1に係るガラス基板にあっては、表側および裏側の2つのずれ量の周方向の分布のPV値のうち、PV値が大きい方の値が40nmであり、表側におけるずれ量の周方向の分布が有する平均値と裏側におけるずれ量の周方向の分布が有する平均値との差が10nmであった(図19、図20参照)。
 実施例2に係るガラス基板にあっては、表側および裏側の2つのずれ量の周方向の分布のPV値のうち、PV値が大きい方の値が30nmであり、表側におけるずれ量の周方向の分布が有する平均値と裏側におけるずれ量の周方向の分布が有する平均値との差が5nmであった(図19、図20参照)。
 比較例1から3におけるガラス基板は、本実施の形態に係るガラス基板1Gと比較した場合に、その製造方法が相違し、具体的には、第2ポリッシュ工程が相違する。これにより、その比較例1から3に係るガラス基板においては、その主表面の形状が相違し、後述のようにずれ量の分布が相違する。以下に、比較例におけるガラス基板の製造方法について説明する。
 (比較の形態)
 図13は、比較の形態における情報記録媒体用ガラス基板を製造する際に第2ポリッシュ工程にて両面研磨装置が精密研磨加工を行なっている様子を示す断面図である。図14は、図13に示すXIV線に囲まれる領域を示す図である。図15は、図13に示すXV線に囲まれる領域を示す図である。図13から図15を参照して、比較の形態におけるガラス基板の製造方法について説明する。
 比較の形態におけるガラス基板1Hの製造方法は、実施の形態に係るガラス基板1Gの製造方法と比較した場合に、第2ポリッシュ工程が相違し、その他の工程においては、ほぼ同様の工程である。
 比較の形態におけるガラス基板の製造方法の第2ポリッシュ工程においては、両面研磨装置200によって精密研磨加工が行なわれる際に、円孔を規定するキャリア250の内周面253とガラス基板1Hとの間にリング部材260(図11参照)を介挿させていない点および第2ポリッシュ工程の途中で、ガラス基板1Hを反転させない点において実施の形態に係るガラス基板1Gの製造方法の第2ポリッシュ工程S18と相違する。
 リング部材260(図11参照)を介挿させずに、ガラス基板1Hの表側および裏側の主表面が上研磨パッド211の上研磨面212および下研磨パッド221の下研磨面222に押圧されることにより、図14および図15に示すように、ガラス基板1Hの外周端部において、上研磨パッド211および下研磨パッド221が沈み込む。
 これにより、上研磨パッド211に形成された傾斜面211a(図14参照)および下研磨パッドに形成された傾斜面221b(図15参照)が、研磨時にガラス基板1Hの外周端部に接触する。この結果、比較の形態におけるガラス基板にあっては、表側および裏側の主表面の周縁が沈降したり隆起したりしやすくなる。
 また、第2ポリッシュ工程の途中で、ガラス基板1Hの表側と裏側を反転させないため、上研磨パッド211および下研磨パッド221の表面状態の影響を受けやすくなり、これによっても比較の形態におけるガラス基板1Hにあっては、表側および裏側の主表面の周縁が沈降したり隆起したりしやすくなる。
 図16から図18は、比較例1から3における情報記録媒体用ガラス基板1Hの表側および裏側のずれ量の周方向の分布を示す図である。図16から図18を参照して、基板厚さが0.8mmの場合の比較例1から3におけるガラス基板のずれ量の分布について説明する。
 図16に示すように、比較の形態におけるガラス基板の製造方法によって製造された比較例1としてのガラス基板にあっては、基準位置を半径位置とした場合の表側のずれ量の周方向の分布51の平均値51aおよび裏側のずれ量の周方向の分布52の平均値52aがいずれも150nmを上回った。
 さらに、表側および裏側の2つのずれ量の周方向の分布51,52のPV値のうち、PV値が大きい方の値が60nmとなり、表側におけるずれ量の周方向の分布51が有する平均値51aと裏側におけるずれ量の周方向の分布52が有する平均値52aとの差が30nmであった(図19参照)。
 図17に示すように、比較の形態におけるガラス基板の製造方法によって製造された比較例2としてのガラス基板にあっては、基準位置を半径位置とした場合の表側のずれ量の周方向の分布53の平均値53aおよび裏側のずれ量の周方向の分布54の平均値54aがいずれも150nmを上回った。
 さらに、表側および裏側の2つのずれ量の周方向の分布53,54のPV値のうち、PV値が大きい方の値が60nmとなり、表側におけるずれ量の周方向の分布53が有する平均値53aと裏側におけるずれ量の周方向の分布54が有する平均値54aとの差が10nmであった(図19参照)。
 図18に示すように、比較の形態におけるガラス基板の製造方法によって製造された比較例1としてのガラス基板にあっては、基準位置を半径位置とした場合の表側のずれ量の周方向の分布55の平均値55aおよび裏側のずれ量の周方向の分布56の平均値56aがいずれも150nmを上回った。
 さらに、表側および裏側の2つのずれ量の周方向の分布55,56のPV値のうち、PV値が大きい方の値が40nmとなり、表側におけるずれ量の周方向の分布55が有する平均値55aと裏側におけるずれ量の周方向の分布56が有する平均値56aとの差が30nmであった(図19参照)。
 (実験結果)
 図19は、本発明の効果を検証するために行なった第1実験の条件および結果を示す図である。図19を参照して、本発明の効果を検証するために行なった第1実験の結果について説明する。
 本発明の効果を検証するために行なった第1実験においては、基板厚さが0.8mmのものを用いて、実施例1,2および比較例1~3として、PV値、および、表側におけるずれ量の周方向の分布が有する平均値と裏側におけるずれ量の周方向の分布が有する平均値との差が図19に示すような値のものを用いた。また、ロードアンロード試験における磁気ディスクの回転数を5400rpmおよび7200rpmとした。
 比較例1については、磁気ディスクの回転数が5400rpmの場合には、120万回でヘッドクラッシュが発生し、磁気ディスクの回転数が7200rpmの場合には、100万回でヘッドクラッシュが発生し、いずれも場合においても上記の品質基準に基づき「不可」と判定された。
 比較例2については、磁気ディスクの回転数が5400rpmの場合には、380万回でヘッドクラッシュが発生し、磁気ディスクの回転数が7200rpmの場合には、210万回でヘッドクラッシュが発生し、いずれも場合においても上記の品質基準に基づき「不可」と判定された。
 比較例3については、磁気ディスクの回転数が5400rpmの場合には、400万回でヘッドクラッシュが発生し、磁気ディスクの回転数が7200rpmの場合には、390万回でヘッドクラッシュが発生し、いずれも場合においても上記の品質基準に基づき「不可」と判定された。
 実施例1については、磁気ディスクの回転数が5400rpmの場合および7200rpmのいずれの場合においても、回転回数が500万回に到達してもヘッドクラッシュが発生せず、上記の品質基準に基づき「可」と判定された。
 実施例2については、磁気ディスクの回転数が5400rpmの場合および7200rpmのいずれの場合においても、回転回数が500万回に到達してもヘッドクラッシュが発生しなかった。さらに、上記回転数のいずれの場合において、同様の実験を繰り返し行なった際に、2回とも回転回数が500万回に到達してもヘッドクラッシュが発生せず、上記の品質基準に基づき「良」と判定された。
 図20は、本発明の効果を検証するために行なった第2実験の条件および結果を示す図である。図20を参照して、本発明の効果を検証するために行なった第2実験の結果について説明する。
 本発明の効果を検証するために行なった第2実験においては、基板厚さが0.65mmのものを用いて、実施例1,2および比較例1~3として、PV値、および、表側におけるずれ量の周方向の分布が有する平均値と裏側におけるずれ量の周方向の分布が有する平均値との差が図20に示すような値のものを用いた。また、ロードアンロード試験における磁気ディスクの回転数を5400rpmとした。
 比較例1については、90万回でヘッドクラッシュが発生し、上記の品質基準に基づき「不可」と判定された。
 比較例2については、190万回でヘッドクラッシュが発生し、上記の品質基準に基づき「不可」と判定された。
 比較例3については、380万回でヘッドクラッシュが発生し、上記の品質基準に基づき「不可」と判定された。
 実施例1については、回転回数が500万回に到達してもヘッドクラッシュが発生せず、上記の品質基準に基づき「可」と判定された。
 実施例2については、回転回数が500万回に到達してもヘッドクラッシュが発生しなかった。さらに、同様の実験を繰り返し行なった際でも、回転回数が500万回に到達してもヘッドクラッシュが発生せず、上記の品質基準に基づき「良」と判定された。
 本発明の効果を検証するために行なった第1実験および第2実験における比較例1から3と実施例1,2を比較して、PV値が40nm以下、かつ、表側の平均値を裏側の平均値との差が10nm以下となる条件を充足する実施例1,2では、表側および裏側の外周端部近傍において空気の流れが均一となり、その結果磁気ヘッドの浮上特性が安定することが実験的にも証明されたと言える。
 PV値が40nm以下、かつ、表側の平均値を裏側の平均値との差が10nm以下となる条件を充足しない、比較例1から3においては、表側および裏側の外周端部近傍において空気の流れが不均一となり、その結果磁気ヘッドの浮上特性が不安定になることが実験的にも証明されたと言える。
 比較例1から3においては、周方向に亘って裏面側のずれ量が表側のずれ量よりもほぼ小さくなっているため(図16から図18参照)、表側および裏側の情報記録媒体の外周端部近傍に磁気ヘッドを配置した場合には、裏面側の主表面が表側の主表面より磁気ヘッドに近づくことになる。
 このため、表側および裏側の外周端部近傍において空気の流れが不均一となり、裏側の外周端部近傍の風圧は、表側の外周端部近傍の風圧よりも高くなる。したがって、風圧の高い裏側の外周端部近傍に位置する磁気ヘッドは、風圧の他に基板自体のフラッタリングやその他の外乱(振動、音響)の影響を受けやすくなり、ヘッドクラッシュが発生しやすくなることが考察される。
 表側および裏側の外周端部近傍において空気の流れが均一となる実施例1,2では、上記の基板自体のフラッタリングやその他の外乱(振動、音響)の影響を受けにくく、ヘッドクラッシュが発生しにくくなることが考察される。
 また、上記第1実験と上記第2実験とを比較して、基板厚さが0.65mmと薄くなり基板自体のフラッタリング量がより増加する場合にあっては、比較例1から3においては、フラッタリング量の増加によりヘッドクラッシュまでの回数が短くなり、その耐久性が低下している。一方、実施例1,2においては、基板厚さが薄くなった場合であっても、ヘッドクラッシュは発生していない。これにより、本実施形態に係るガラス基板は、その厚さが薄くなる程、当該ガラス基板の表側および裏側の外周端部近傍において空気の流れを均一にすることで、より確実に磁気ヘッドの浮上特性を安定させることができることが実験的にも証明されたと言える。
 また、上記第1実験において回転数が5400rpmである場合と7200rpmである場合とを比較して、回転数が増加し、基板自体のフラッタリング量がより増加する場合にあっては、比較例1から3においては、フラッタリング量の増加によりヘッドクラッシュまでの回数が短くなり、品質が低下している。一方、実施例1,2においては、回転数が増加した場合であっても、ヘッドクラッシュは発生していない。これにより、本実施形態に係るガラス基板は、磁気ディスクでの使用時における回転数が増加する程、当該ガラス基板の表側および裏側の外周端部近傍において空気の流れを均一にすることで、より確実に磁気ヘッドの浮上特性を安定させることができることが実験的にも証明されたと言える。
 上述した本実施の形態においては、磁気ディスク装置が、情報記録媒体を1枚または2枚搭載する構成を有する場合を例示して説明したがこれに限定されず、情報記録媒体を3枚以上搭載する構成を有していてもよい。
 以上、本発明の実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 1G ガラス基板、10 情報記録媒体、11 中心孔、12 外周端面、13 内周端面、14,15 主表面、14a,15a 平坦部、14b,15b 傾斜部、14c,15c 面取り部、16,17 磁気薄膜層、20 アクチュエーター、21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、29 スピンドルモーター、30 筐体、100 磁気ディスク装置、200 両面研磨装置、210 上定盤、211 上研磨パッド、211a 傾斜面、212 上研磨面、221 下研磨パッド、221b 傾斜面、230 サンギア、232 歯面、240 インターナルギア、242 歯面、250 キャリア、251 本体部、252 噛合歯、253 内周面、260 リング部材。

Claims (5)

  1.  630Gbit/平方インチ以上の記録密度を有する磁気記録層が形成された情報記録媒体に用いられ、回転中心を有する情報記録媒体用ガラス基板であって、
     前記情報記録媒体用ガラス基板の表側および裏側のそれぞれに位置する主表面と、
     前記情報記録媒体用ガラス基板の外周端部に位置する外周端面とを備え、
     前記回転中心から前記外周端面までの前記情報記録媒体用ガラス基板の半径をRとし、表側および裏側の双方において、径方向に沿って前記回転中心から0.71R離れた前記主表面上の点を第1基準点とし、前記径方向に沿って前記回転中心から0.83R離れた前記主表面上の点を第2基準点とし、前記第1基準点および前記第2基準点を結ぶ直線を基準線とし、前記回転中心から0.99R離れた前記基準線上の点を基準位置とし、前記回転中心を通る回転軸の延在方向に沿って見たときに前記基準位置と重なる前記主表面上の点から前記基準位置までの距離をずれ量とした場合に、
     表側および裏側の双方において、前記回転中心から0.99R離れた半径位置における前記ずれ量の周方向の分布の最大値と最小値との差が40nm以下であり、
     表側における前記ずれ量の周方向の分布の平均値と裏側における前記ずれ量の周方向の分布の平均値との差が10nm以下である、情報記録媒体用ガラス基板。
  2.  表側および裏側の双方において、前記ずれ量の周方向の分布の平均値が150nm以下である、請求項1に記載の情報記録媒体用ガラス基板。
  3.  前記情報記録媒体用ガラス基板の厚さが0.65mm以下である、請求項1または2に記載の情報記録媒体用ガラス基板。
  4.  請求項1から3のいずれか1項に記載の複数枚の情報記録媒体用ガラス基板が、前記回転軸が同一となるように搭載される、磁気ディスク装置。
  5.  請求項1から3のいずれか1項に記載の1枚または複数枚の情報記録媒体用ガラス基板を7200rpm以上の回転数で回転させる、磁気ディスク装置。
PCT/JP2014/064217 2013-06-27 2014-05-29 情報記録媒体用ガラス基板および磁気ディスク装置 WO2014208259A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480030072.9A CN105247615B (zh) 2013-06-27 2014-05-29 信息记录介质用玻璃基板及磁盘装置
SG11201510551VA SG11201510551VA (en) 2013-06-27 2014-05-29 Glass substrate for information recording medium and magnetic disk device
JP2015523933A JP5898381B2 (ja) 2013-06-27 2014-05-29 情報記録媒体用ガラス基板、情報記録媒体、および磁気ディスク装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013134918 2013-06-27
JP2013-134918 2013-06-27

Publications (1)

Publication Number Publication Date
WO2014208259A1 true WO2014208259A1 (ja) 2014-12-31

Family

ID=52141611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064217 WO2014208259A1 (ja) 2013-06-27 2014-05-29 情報記録媒体用ガラス基板および磁気ディスク装置

Country Status (5)

Country Link
JP (1) JP5898381B2 (ja)
CN (1) CN105247615B (ja)
MY (1) MY168982A (ja)
SG (1) SG11201510551VA (ja)
WO (1) WO2014208259A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219085A (ja) * 2015-05-25 2016-12-22 旭硝子株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板、および磁気記録媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6786307B2 (ja) * 2016-08-29 2020-11-18 株式会社ニューフレアテクノロジー 気相成長方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310842A (ja) * 2007-06-12 2008-12-25 Konica Minolta Opto Inc 磁気記録媒体用ガラス基板及び磁気記録媒体
JP2010073289A (ja) * 2008-09-22 2010-04-02 Hoya Corp 磁気ディスク用基板および磁気ディスク
JP2013051026A (ja) * 2006-09-19 2013-03-14 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスク製造方法
JP2013080531A (ja) * 2011-09-30 2013-05-02 Hoya Corp 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法、並びにガラス基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356040B (zh) * 2006-09-19 2012-05-30 Hoya株式会社 磁盘用玻璃基板的制造方法及磁盘制造方法
MY201736A (en) * 2007-12-28 2024-03-15 Hoya Corp Glass substrate for a magnetic disk, magnetic disk and method of manufacturing a magentic disk
CN103930947B (zh) * 2011-09-30 2016-12-21 Hoya株式会社 信息记录介质用玻璃基板以及信息记录介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013051026A (ja) * 2006-09-19 2013-03-14 Hoya Corp 磁気ディスク用ガラス基板の製造方法および磁気ディスク製造方法
JP2008310842A (ja) * 2007-06-12 2008-12-25 Konica Minolta Opto Inc 磁気記録媒体用ガラス基板及び磁気記録媒体
JP2010073289A (ja) * 2008-09-22 2010-04-02 Hoya Corp 磁気ディスク用基板および磁気ディスク
JP2013080531A (ja) * 2011-09-30 2013-05-02 Hoya Corp 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法、並びにガラス基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219085A (ja) * 2015-05-25 2016-12-22 旭硝子株式会社 磁気記録媒体基板用ガラス、磁気記録媒体基板、および磁気記録媒体

Also Published As

Publication number Publication date
CN105247615B (zh) 2018-06-22
MY168982A (en) 2019-01-29
JP5898381B2 (ja) 2016-04-06
JPWO2014208259A1 (ja) 2017-02-23
CN105247615A (zh) 2016-01-13
SG11201510551VA (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6165227B2 (ja) ガラス基板、磁気ディスク用ガラス基板の製造方法、磁気ディスク用基板、磁気ディスク、磁気ディスクの製造方法
JP5593224B2 (ja) 磁気ディスク用基板及びその製造方法並びに磁気ディスク
JP6181107B2 (ja) 円環状基板、磁気ディスク用基板、磁気ディスク用基板の製造方法、磁気ディスク、磁気ディスクの製造方法、ハードディスク装置
CN108847256B (zh) 圆环状基板、磁盘用基板及其制造方法、磁盘及其制造方法
US9183866B2 (en) Magnetic disk substrate with offset portion on a main surface within a range of 92.0 to 97.0% in a radial direction from a center, magnetic disk with substrate and magnetic disk device
JP6089001B2 (ja) 磁気ディスク用ガラス基板、磁気ディスク
WO2011033948A1 (ja) 情報記録媒体用ガラス基板、情報記録媒体及び情報記録媒体用ガラス基板の製造方法
JP5898381B2 (ja) 情報記録媒体用ガラス基板、情報記録媒体、および磁気ディスク装置
JP4860580B2 (ja) 磁気ディスク用基板及び磁気ディスク
JP6423935B2 (ja) 情報記録媒体用ガラス基板の製造方法および研磨用ブラシ
JP5392075B2 (ja) 情報記録装置
JP2015060614A (ja) 情報記録媒体用ガラス基板の製造方法
WO2013047190A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP5869241B2 (ja) Hdd用ガラス基板、hdd用ガラス基板の製造方法、及びhdd用磁気記録媒体
WO2013146132A1 (ja) 情報記録媒体用ガラス基板の製造方法および情報記録媒体
WO2013047288A1 (ja) 情報記録媒体用ガラス基板の製造方法
WO2013145461A1 (ja) Hdd用ガラス基板の製造方法
WO2013047287A1 (ja) 情報記録媒体用ガラス基板の製造方法
WO2013047286A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP2015064915A (ja) 情報記録媒体用ガラス基板の製造方法
WO2013146131A1 (ja) 情報記録媒体用ガラス基板の製造方法および情報記録媒体
WO2013146134A1 (ja) 情報記録媒体用ガラス基板の製造方法および情報記録媒体
WO2014103983A1 (ja) 情報記録媒体用ガラス基板の製造方法
WO2014002693A1 (ja) 情報記録媒体用ガラス基板および情報記録媒体用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817061

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817061

Country of ref document: EP

Kind code of ref document: A1