WO2014208051A1 - 連想メモリセル及び連想メモリ - Google Patents

連想メモリセル及び連想メモリ Download PDF

Info

Publication number
WO2014208051A1
WO2014208051A1 PCT/JP2014/003248 JP2014003248W WO2014208051A1 WO 2014208051 A1 WO2014208051 A1 WO 2014208051A1 JP 2014003248 W JP2014003248 W JP 2014003248W WO 2014208051 A1 WO2014208051 A1 WO 2014208051A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
associative memory
data
nmos transistor
input
Prior art date
Application number
PCT/JP2014/003248
Other languages
English (en)
French (fr)
Inventor
竜介 根橋
崎村 昇
杉林 直彦
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/392,273 priority Critical patent/US10262738B2/en
Priority to JP2015523856A priority patent/JP6308216B2/ja
Publication of WO2014208051A1 publication Critical patent/WO2014208051A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/02Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using magnetic elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C15/00Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores
    • G11C15/04Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements
    • G11C15/046Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores using semiconductor elements using non-volatile storage elements

Definitions

  • the present invention relates to an associative memory cell and an associative memory including the associative memory cell.
  • the present invention relates to an associative memory cell and an associative memory using a variable resistance nonvolatile memory element.
  • CAM Content Addressable Memory
  • Patent Document 1 discloses an associative memory that calculates the similarity between data in parallel by hardware and searches for the most similar data.
  • the associative memory of Patent Document 1 includes a storage circuit that stores reference data, a comparison circuit that compares reference data and input data, and a pulse generation circuit that generates a pulse corresponding to a comparison result by the comparison circuit.
  • Patent Document 1 since the associative memory cell of Patent Document 1 is composed of a CMOS circuit, data is lost when the power is turned off (CMOS: Complementary Metal Oxide Semiconductor). Therefore, it is necessary to always turn on the power, and there is a problem that it is difficult to suppress the leakage current.
  • CMOS Complementary Metal Oxide Semiconductor
  • An object of the present invention is to provide a technique for reducing the area of an associative memory cell and suppressing leakage current in an associative memory for calculating similarity.
  • the content addressable memory cell includes a plurality of current paths, a logic circuit connected to the plurality of current paths and the search line pair, and a current circuit selected in response to input data input from the search line pair, and a plurality of currents.
  • a resistance variable nonvolatile memory element that is provided in at least one of the paths and stores stored data, a resistance network whose resistance value changes according to a logical operation result of the input data and the stored data, a resistance network, and A charge / discharge circuit connected to the match line and changing a delay time until a signal input from the match line is output according to a logical operation result of the input data and the stored data.
  • An associative memory includes a plurality of associative memory cells arranged in a grid, a plurality of search line pairs connected to a plurality of associative memory cells arranged in a first direction, and a second direction.
  • a plurality of match lines connecting a plurality of associative memory cells in series, a word circuit composed of a plurality of associative memory cells and match lines arranged in the second direction, and a plurality of search lines are connected.
  • a column side circuit that drives a search line pair according to input data, a plurality of match lines, a row side circuit that drives a plurality of match lines, a plurality of match lines, and a plurality of match line potentials
  • the associative memory cell is connected to the plurality of current paths and the plurality of current paths and the search line pair, and selects a current path in response to input data input from the search line pair.
  • a resistance variable nonvolatile memory element that is provided in at least one of the current path and a plurality of current paths and stores stored data, and whose resistance value varies depending on a logical operation result of the input data and the stored data
  • a charge / discharge circuit connected to the resistor network and the match line, and changing a delay time until a signal input from the match line is output according to a logical operation result of the input data and the stored data.
  • the associative memory for calculating the similarity it is possible to reduce the area of the associative memory cell and suppress the leakage current.
  • 1 is a block diagram schematically showing a configuration of an associative memory according to a first embodiment of the present invention.
  • 1 is a block diagram showing a configuration of an associative memory cell according to a first embodiment of the present invention.
  • 1 is a specific circuit diagram of an associative memory cell according to a first embodiment of the present invention. It is a logic operation table which shows the logic operation of the content addressable memory cell which concerns on the 1st Embodiment of this invention. It is a conceptual diagram which shows the calculation operation
  • 1 is a block diagram schematically showing a configuration of an associative memory according to a first embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a replica cell circuit 1 of Modification 2 according to the first embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a replica cell circuit 2 of Modification 2 according to the first embodiment of the present invention.
  • FIG. It is a conceptual diagram which shows typically the delay time of the replica circuit of the modification 2 which concerns on the 1st Embodiment of this invention. It is a block diagram which shows roughly the structure of the content addressable memory which concerns on the 2nd Embodiment of this invention.
  • FIG. 5 is a circuit diagram of an associative memory cell according to a second embodiment of the present invention. It is a logic operation table which shows the logic operation of the content addressable memory cell which concerns on the 2nd Embodiment of this invention. It is a conceptual diagram which shows the operation example of one word circuit based on the 2nd Embodiment of this invention.
  • FIG. 6 is a circuit diagram of an associative memory cell according to a third embodiment of the present invention. It is a block diagram which shows roughly the structure of the content addressable memory which concerns on the 4th Embodiment of this invention. It is a circuit diagram of the content addressable memory cell which concerns on the 4th Embodiment of this invention.
  • FIG. 6 is a circuit diagram of an associative memory cell according to a third embodiment of the present invention. It is a block diagram which shows roughly the structure of the content addressable memory which concerns on the 4th Embodiment of this invention. It is a circuit diagram of the content addressable memory cell which concerns on the 4th Embodiment of this invention.
  • FIG. 7 is a schematic plan view of a magnetic element and a resistance change nonvolatile memory element R0 according to a fourth embodiment of the present invention. It is a schematic sectional drawing of the magnetic element and resistance change type non-volatile memory element R0 which concern on the 4th Embodiment of this invention. It is a figure which shows the magnetization state of the data "1" of the domain wall motion element which concerns on the 4th Embodiment of this invention. It is a figure which shows the magnetization state of the data "0" of the domain wall motion element which concerns on the 4th Embodiment of this invention. It is a circuit diagram of the content addressable memory cell of the modification concerning the 4th Embodiment of this invention.
  • FIG. 10 is a circuit diagram of a ternary cell circuit according to a sixth embodiment of the present invention. It is a schematic plan view of the magnetic element and resistance variable nonvolatile memory element according to the sixth embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing the configuration of an associative memory 1 according to the first embodiment of the present invention.
  • a modified example having a different form such as an associative memory cell is also referred to as an associative memory 1.
  • the direction from the row side circuit 12 toward the sense circuit 13 is defined as the second direction
  • the direction from the column side circuit 11 toward each associative memory cell 10 is defined as the first direction so as to be orthogonal to the second direction.
  • the definitions of the first direction and the second direction are the same in other drawings.
  • the associative memory 1 includes a plurality of associative memory cells 10 arranged in a two-dimensional matrix (lattice), and the plurality of associative memory cells 10 arranged in the second direction include a word
  • the circuit 14 is configured.
  • a column number and a row number are added to the end of the reference numerals for the respective constituent elements. The number of is omitted.
  • the associative memory 1 also connects a plurality of search line pairs SL, / SL commonly connected to the associative memory cells 10 arranged in the first direction and the associative memory cells 10 arranged in the second direction in series.
  • a plurality of match lines ML In FIG. 1, in order to distinguish a plurality of wirings, a column number or a row number is added to the end of the reference numeral for each wiring. However, if not particularly distinguished, the last number is omitted.
  • the associative memory 1 includes a column side circuit 11, a row side circuit 12, and a sense circuit 13.
  • the column side circuit 11 is connected to a plurality of search line pairs SL, / SL, and drives the search line pairs SL, / SL according to input data at the time of calculation.
  • the row side circuit 12 is connected to a plurality of match lines ML and drives the match lines ML.
  • Sense circuit 13 is connected to a plurality of match lines ML and senses the potential of match line ML.
  • FIG. 2 is a block diagram schematically showing the configuration of the associative memory cell 10 according to the first embodiment of the present invention.
  • the associative memory cell 10 includes a charge / discharge circuit 15 and a resistance network 16.
  • the search line pair SL, / SL is connected to the resistance network 16.
  • the match line ML connected to one of the adjacent content addressable memory cells 10 arranged in the second direction is connected to the match line input terminal MLin of the charge / discharge circuit 15.
  • the match line ML connected to the other of the adjacent associative memory cells 10 arranged in the second direction is connected to the match line output terminal MLout of the charge / discharge circuit 15. That is, the match line input terminal MLin is connected to MLout of the content addressable memory 10 adjacent in the row side circuit 12 or the row side circuit 12 direction.
  • the match line output terminal MLout is connected to the sense side circuit 13 or MLin of the associative memory cell 10 adjacent in the sense side circuit 13.
  • FIG. 3 is a specific circuit diagram of the associative memory cell 100 according to the first embodiment of the present invention.
  • the associative memory cell 100 includes a charge / discharge circuit 150 and a resistance network 160.
  • the word circuit 14 including the associative memory cell 100 having this circuit configuration can reflect the Hamming distance between the stored data and the input data in the delay time of the word circuit 14.
  • the charge / discharge circuit 150 includes an NMOS transistor 151, a PMOS transistor 152, and an inverter 153.
  • the NMOS transistor 151 and the PMOS transistor 152 form a CMOS inverter 154.
  • the match line input terminal MLin is connected to the gate of the NMOS transistor 151 and the gate of the PMOS transistor 152.
  • the input terminal of the inverter 153 is connected to the drain of the PMOS transistor 152 and the drain of the NMOS transistor 151.
  • the output terminal of inverter 153 is connected to match line output terminal MLout.
  • the source of the PMOS transistor 152 is connected to the power supply voltage Vdd.
  • the source of the NMOS transistor 151 is connected to one end of the variable resistance nonvolatile memory element R 0 of the resistance network 160.
  • the resistance network 160 includes a variable resistance nonvolatile memory element R0, a variable resistance nonvolatile memory element R1, and an NMOS logic circuit 165 (logic circuit).
  • the variable resistance nonvolatile memory element R0 is a variable resistance nonvolatile memory element 161
  • the variable resistance nonvolatile memory element R is a variable resistance nonvolatile memory element 162.
  • the NMOS logic circuit 165 includes an NMOS transistor N0 that is a first NMOS transistor and an NMOS transistor N1 that is a second NMOS transistor.
  • the NMOS transistor N0 is an NMOS transistor 166
  • the NMOS transistor N1 is an NMOS transistor 167.
  • variable resistance nonvolatile memory element R0 is connected to the source of the NMOS transistor 151 of the charge / discharge circuit 150, and the other end is connected to the drain of the NMOS transistor N0.
  • One end of the variable resistance nonvolatile memory element R1 is connected to the source of the NMOS transistor 151 of the charge / discharge circuit 150, and the other end is connected to the drain of the NMOS transistor N1. Note that one ends of the variable resistance nonvolatile memory elements R0 and R1 are connected to each other.
  • the gate is connected to the search line SL, the drain is connected to the other end of the variable resistance nonvolatile memory element R0, and the source is grounded.
  • the gate is connected to the other / SL of the search line pair, the drain is connected to the other end of the variable resistance nonvolatile memory element R1, and the source is grounded.
  • the resistance change type nonvolatile memory element used in the present embodiment is a memory element used in a magnetoresistance change type random access memory, a phase change type random access memory, a resistance change type random access memory, a conductance bridge type random access memory, or the like. It is.
  • the variable resistance nonvolatile memory element can take two states, a high resistance state RH and a low resistance state RL.
  • the sense current of the resistance network 160 of the associative memory cell 100 flows from the charge / discharge circuit 150.
  • the resistance network 160 switches the current path of the resistance network 160 according to the input data on the search line.
  • the resistance value of the current path of the resistance network 160 changes according to the input data and the data of the resistance change nonvolatile memory element R0 and the resistance change nonvolatile memory element R1.
  • the calculation result of the input data and the storage data of the resistance change nonvolatile memory element R0 and the resistance change nonvolatile memory element R1 is expressed using a delay time. That is, in the circuit of the associative memory cell 100, the delay time from the input timing to the match line input terminal MLin to the output timing of the match line output terminal MLout is used according to the charge / discharge time information of the sense current. Represents the operation result of stored data.
  • the logical operation table 19 shown in FIG. 4 shows the logical operation of the associative memory cell 10 in the first embodiment of the present invention.
  • the first column of the logical operation table 19 indicates the resistance value of the variable resistance nonvolatile memory element R0.
  • the high resistance state is indicated as RH, and the low resistance state is indicated as RL.
  • the second column shows the resistance value of the variable resistance nonvolatile memory element R1.
  • the third column shows data A stored in the content addressable memory cell 10.
  • the fourth column shows the input data B on the search line SL.
  • the fifth column shows the delay time from the input to the output of the match line ML according to the logical value of the negative exclusive OR (XNOR) of the data A and the data B.
  • XNOR negative exclusive OR
  • the match line input terminal MLin is at the low level
  • the match line output terminal MLout is at the low level.
  • the search line pair SL, / SL is at the low level.
  • the sense current is transferred from the charge / discharge circuit 15 to the Gnd via the resistance change nonvolatile memory element R1 and the NMOS transistor N1. Flow into.
  • the match line output terminal MLout transitions to a high level with a delay time t (1) corresponding to the low resistance state RL.
  • the stored data A is 0 in the second row of the logical operation table 19 of FIG. At this time, R0 is in the high resistance state RH, and R1 is in the low resistance state RL.
  • the match line input terminal MLin is at the low level
  • the match line output terminal MLout is at the low level.
  • the search line pair is at the low level.
  • the sense current is transferred from the charge / discharge circuit 15 to the Gnd via the variable resistance nonvolatile memory element R0 and the NMOS transistor N0. Flow into.
  • the match line output terminal MLout transitions to the high level with the delay time t (0) corresponding to the high resistance state RH.
  • the stored data A is 1 in the third row of the logical operation table 19 of FIG. At this time, R0 is in the low resistance state RL, and R1 is in the high resistance state RH.
  • the match line input terminal MLin is at the low level
  • the match line output terminal MLout is at the low level.
  • the search line pair SL, / SL is at the low level.
  • the sense current is passed from the charge / discharge circuit 15 via the resistance change nonvolatile memory element R1 and the NMOS transistor N1. Flow into Gnd.
  • the match line output terminal MLout transitions to the high level with the delay time t (0) corresponding to the high resistance state RH.
  • Line 4 The stored data A is 1 in the fourth row of the logical operation table 19 of FIG. At this time, R0 is in the low resistance state RL, and R1 is in the high resistance state RH.
  • the match line input terminal MLin is at the low level
  • the match line output terminal MLout is at the low level.
  • the search line pair SL, / SL is at the low level.
  • the sense current is transferred from the charge / discharge circuit 15 to the Gnd via the variable resistance nonvolatile memory element R0 and the NMOS transistor N0. Flow into.
  • the match line output terminal MLout transitions to a high level with a delay time t (1) corresponding to the low resistance state RL.
  • the delay time t (1) is smaller than the delay time t (0), when the stored data A and the input data B match, the delay time is shorter than when they do not match.
  • the function of storing data and the function of generating a delay are realized by separate circuits.
  • both the function of storing data and the function of generating a delay can be realized by the variable resistance nonvolatile memory element, so that the cell area is reduced.
  • the content addressable memory cell described in Patent Document 1 cannot be easily shut down because stored data is lost when the power is shut off during standby.
  • the stored data is held in the variable resistance nonvolatile memory element R0 and the variable resistance nonvolatile memory element R1 even if the power is cut off during standby. Therefore, there is a concern that the leak current becomes large in a general associative memory, whereas in the associative memory 1 of the present embodiment, the power supply can be shut off to suppress the leak current.
  • FIG. 5 is a conceptual diagram showing an operation example of one word circuit in the associative memory 1 according to the first embodiment.
  • the word circuit shown in FIG. 5 includes six associative memory cells 10 and the number of bits N is six.
  • FIG. 6 is a block diagram schematically showing the configuration of the associative memory 1 according to the first embodiment of the present invention. However, in FIG. 6, for the sake of simplicity, the column side circuit 11 and the search line pair SL, / SL shown in FIG. 1 are omitted.
  • the calculation start signal START is connected to the input terminal of the buffer 120 of the row side circuit 12, and the output terminal of the buffer 120 is connected to the match line ML.
  • the sense circuit 13 includes a data flip-flop (hereinafter, DFF 131) corresponding to each word circuit 14 (DFF: Data Flip-Flop).
  • the clock signal CLK is connected to the input terminal of the buffer 130 of the sense circuit 13, and the output terminal of the buffer 130 is connected to the clock terminal of the DFF 131.
  • the match line ML in each row is connected to the data input terminal of the DFF 131.
  • the output terminal of the DFF 131 outputs a sense amplifier output signal SAOUT.
  • FIG. 7 is a diagram showing an operation example of the associative memory 1 according to the first embodiment of the present invention.
  • the search line pair SL, / SL is at the low level
  • the calculation start signal START is at the low level
  • the clock signal CLK signal is at the low level.
  • the low-side circuit 12 receives the calculation start signal START and drives the match line ML to the high level.
  • the search line SL is also driven to a high or low level according to input data.
  • Each word circuit 14 outputs an output signal to each match line ML with a delay time corresponding to the Hamming distance between the stored data and the input data as described above.
  • the sense circuit 13 latches the data of the match line ML in the sense circuit 13 and outputs the data to the sense amplifier output signal SAOUT.
  • FIG. 8 is a histogram of timing when the match line ML becomes High. Note that the number of bits of the word circuit 14 is N.
  • the interval of each distribution is t (0) -t (1).
  • the variation of each distribution is ⁇ t.
  • the clock signal CLK may transition to a high level in a window W1 between T0 + ⁇ t and T1- ⁇ t.
  • the window W1 is expressed by Expression 6.
  • W1 t (0) ⁇ t (1) ⁇ 2 ⁇ ⁇ t (6)
  • SAOUT the sense amplifier output signal SAOUT corresponding to the word circuit 14 in which the hamming distance between the stored data and the input data is 0 becomes High level, and otherwise becomes Low level. That is, only the word circuit 14 having a Hamming distance of 0 can be detected.
  • the clock signal CLK may transition to a high level in a window W2 between T1 + ⁇ t and T2- ⁇ t.
  • the sense amplifier output signal SAOUT corresponding to the word circuit whose hamming distance between the stored data and the input data is 1 or less becomes High level, and otherwise becomes Low level. That is, only word circuits with a Hamming distance of 1 or less can be detected.
  • the associative memory 1 can detect the word circuit 14 having a Hamming distance of d bits or less (d is an integer of 0 to N).
  • the first embodiment of the present invention it is possible to detect a word circuit in which the operation result of input data and a plurality of stored data is d bits or less.
  • the case of the Hamming distance calculation is shown as a specific similarity calculation.
  • the power supply can be cut off easily, so that the leakage current can be suppressed.
  • the resistance change type nonvolatile memory element of this embodiment takes a binary value (digital value) of a low resistance state and a high resistance state is shown, it is not necessarily limited to a binary value.
  • the variable resistance nonvolatile memory element may take an arbitrary analog value between the low resistance state and the high resistance state.
  • a variable resistance nonvolatile memory element disclosed in International Publication No. 2009/101827 may be used.
  • the delay time of the content addressable memory cell is also changed to an analog value, but the delay time can be added, Easy to apply.
  • the charge / discharge circuit 155 of Modification 1 includes an NMOS transistor 156, a PMOS transistor 157, and an inverter 158.
  • NMOS transistor 156 and PMOS transistor 157 form a CMOS inverter 159.
  • the match line input terminal MLin is connected to the gate of the NMOS transistor 156.
  • An inverted signal / PRC of the precharge signal is connected to the gate of the PMOS transistor 157.
  • the input terminal of the inverter 158 is connected to the drain of the PMOS transistor 157 and the drain of the NMOS transistor 156.
  • the output terminal of inverter 158 is connected to match line output terminal MLout.
  • the source of the PMOS transistor 157 is connected to the power supply voltage Vdd.
  • the source of the NMOS transistor 156 is connected to one end of the variable resistance nonvolatile memory elements 161 and 162 of the resistance network 160.
  • the inverted signal / PRC of the precharge signal has the same waveform as the calculation start signal START.
  • the word circuit 14 in the associative memory 1 resets the match line input terminal MLin and the match line output terminal MLout of all the associative memory cells 10 to a low level after the operation is completed.
  • the associative memory cell 100 it is necessary to reset the associative memory cells 10 connected in series in order.
  • the match line input terminal MLin and the match line output terminal MLout of all the associative memory cells 101 are simultaneously set if the inverted signal / PRC of the precharge signal is set to the Low level. Can be reset to Low level.
  • the reset time of the word circuit 14 is shortened by providing the inversion signal / PRC of the precharge signal.
  • the reset time of the word circuit 14 can be shortened and the calculation throughput can be improved.
  • the associative memory 1 of Modification 2 has the circuit configuration shown in FIG. 6 differs from the circuit configuration shown in FIG. 6 only in that the CLK signal is generated by the replica circuit 17.
  • the description about the overlapping structure is abbreviate
  • FIG. 10 is a block diagram schematically showing the configuration of the associative memory 1 according to the second modification of the present embodiment.
  • the column side circuit 11 and the search line pair SL, / SL shown in FIG. 1 are omitted.
  • the same components as those in FIG. 6 are denoted by the same reference numerals used in FIG.
  • the calculation start signal START is connected to the input terminal of the buffer 120 of the row side circuit 12, and the output terminal of the buffer 120 is connected to the match line ML. Further, the calculation start signal START is connected to the replica circuit 17.
  • the replica circuit 17 generates the clock signal CLK after a predetermined delay time from the START signal.
  • the sense circuit 13 includes a data flip-flop (DFF 131) corresponding to the word circuit 14.
  • the clock signal CLK is connected to the input terminal of the buffer 130 of the sense circuit 13.
  • the output terminal of the buffer 130 is connected to the clock terminal of the DFF 131.
  • the match line ML in each row is connected to the data input terminal of the DFF 131.
  • the output terminal of the DFF 131 outputs a sense amplifier output signal SAOUT.
  • the replica circuit 17 includes one replica cell circuit A 171 and N ⁇ 1 replica cell circuits B 172.
  • Replica cell circuit A 171 and N ⁇ 1 replica cell circuits B 172 are connected in series via match line ML.
  • Replica cell circuit A171 receives a START signal on match line ML.
  • the last-stage replica cell circuit B 172 (172-5) outputs the CLK signal onto the match line ML.
  • Replica search line SLR 0 is connected to replica cell circuit 171.
  • Replica search line pair SLRn, / SLRn is connected to each replica cell circuit B 172 (n is a natural number).
  • the SLR connected to the d replica cell circuits B 172 is set to the low level and / SLR is set to the high level.
  • the high level is the power supply voltage Vdd
  • the low level is the ground voltage Gnd.
  • the SRL connected to the N-1-d replica circuits 172 is set to the high level and / SRL is set to the low level.
  • the SRL0 connected to the replica cell circuit A171 is set to a high level.
  • FIG. 12 shows a replica cell circuit A171 in the content addressable memory 1 according to the second modification of the present embodiment.
  • the replica cell circuit A 171 includes a charge / discharge circuit 175 and a resistance network 180.
  • the charge / discharge circuit 175 includes an NMOS transistor 176, a PMOS transistor 177, and an inverter 178.
  • NMOS transistor 176 and PMOS transistor 177 form a CMOS inverter 179.
  • the match line input terminal MLin is connected to the gate of the NMOS transistor 176 and the gate of the PMOS transistor 177.
  • the input terminal of the inverter 178 is connected to the drain of the PMOS transistor 177 and the drain of the NMOS transistor 176.
  • An output terminal of inverter 178 is connected to match line output terminal MLout.
  • the source of the PMOS transistor 177 is connected to the power supply voltage Vdd.
  • the source of the NMOS transistor 176 is connected to one end of the variable resistance nonvolatile memory element R 0 of the resistance network 180.
  • the resistance network 180 of the replica cell circuit A 171 includes four variable resistance nonvolatile memory elements 181 to 184 and an NMOS logic circuit 190 including one NMOS transistor 191.
  • variable resistance nonvolatile memory element 181 and the variable resistance nonvolatile memory element 183 One end of each of the variable resistance nonvolatile memory element 181 and the variable resistance nonvolatile memory element 183 is connected to the source of the NMOS transistor 176 of the charge / discharge circuit 175.
  • the other ends of the variable resistance nonvolatile memory element 181 and the variable resistance nonvolatile memory element 183 are connected to one end of the variable resistance nonvolatile memory element 182 and the variable resistance nonvolatile memory element 184, respectively.
  • the other ends of the variable resistance nonvolatile memory element 182 and the variable resistance nonvolatile memory element 184 are connected to the drain of the NMOS transistor N0.
  • the four variable resistance nonvolatile memory elements 181 to 184 are connected in series and parallel as shown in FIG. 12, and the combined resistance of the variable resistance nonvolatile memory elements 181 to 184 is (RH + RL) / 2.
  • FIG. 13 shows a replica cell circuit B172 in the content addressable memory 1 according to the second modification of the present embodiment.
  • the replica cell circuit B 172 includes a charge / discharge circuit 175 and a resistance network 185.
  • the charge / discharge circuit 175 of the replica cell circuit A 171 and the replica cell circuit B 172 is the same, and thus detailed description thereof is omitted.
  • each of the variable resistance nonvolatile memory elements 186 and 187 is connected to the NMOS transistor 176 of the charge / discharge circuit 175.
  • the other end of the variable resistance nonvolatile memory element 186 in the low resistance state RL is connected to the drain of the NMOS transistor N0, and the other end of the variable resistance nonvolatile memory element 187 in the high resistance state RH is connected to the drain of the NMOS transistor N1. Is done.
  • the gate is connected to the replica search line SLR
  • the drain is connected to the other end of the variable resistance nonvolatile memory element 186 in the low resistance state RL, and the source is grounded.
  • the gate is connected to the other / SLR of the replica search line pair, the drain is connected to the variable resistance nonvolatile memory element 187 in the high resistance state RH, and the source is grounded.
  • the delay time t1 in the replica cell circuit A171 is expressed by Expression 7.
  • t1 (t (0) + t (1)) / 2 (7)
  • the delay times of the d replica cell circuits B172 are t (0), respectively. Therefore, the total delay time t2 of the d replica cell circuits B172 is expressed as Expression 8.
  • t2 d ⁇ t (0) (8)
  • the delay times of the N-1-d replica cell circuits B172 are t (1), respectively. Therefore, the total delay time t3 of the N-1-d replica cell circuits is expressed as Equation 9.
  • t_clk t1 + t2 + t3 (10) t_clk is between (N ⁇ d) ⁇ t (1) + d ⁇ t (0) and (N ⁇ d ⁇ 1) ⁇ t (1) + (d + 1) ⁇ t (0), and Hamming A word circuit having a distance of d or less can be detected.
  • the replica circuit 17 according to the second modification of the present embodiment operates at the same environmental temperature and the same power supply voltage as the word circuit 14, even if the environmental temperature and the power supply voltage change, the clock is generated at an appropriate timing. Can be generated.
  • the replica circuit 17 according to the second modification since the distance between the replica circuit 17 and the word circuit 14 is short, global variations in transistor characteristics and MTJ resistance values are not included, and only local variations are included. Therefore, according to the replica circuit 17 in the second modification, input data and comparison data can be compared with high accuracy, and erroneous reading can be suppressed (MTJ: Magnetic Tunnel Junction).
  • the associative memory 2 includes a plurality of associative memory cells 20 arranged in a two-dimensional matrix, and the plurality of associative memory cells 20 arranged in the second direction constitute a word circuit 24. To do. In FIG. 15, in order to distinguish between the plurality of associative memory cells 20 and the word circuit 24, the column number and the row number are attached to the end of the reference numerals for the respective constituent elements. The number of is omitted.
  • the associative memory 2 includes a column side circuit 21, a row side circuit 22, and a sense circuit 23.
  • the column side circuit 21 is connected to a plurality of search line pairs SL, / SL, and drives the search line pairs in accordance with input data during calculation.
  • the row side circuit 22 is connected to a plurality of match lines ML and drives the match lines ML.
  • the sense circuit 23 is connected to the plurality of match lines ML and senses the potential of the match line ML.
  • FIG. 16 is a specific circuit diagram (associative memory cell 200) of the associative memory cell 20 according to the second embodiment of the present invention.
  • the charge / discharge circuit 250 includes an NMOS transistor 251, a PMOS transistor 252, and an inverter 253.
  • the NMOS transistor 251 and the PMOS transistor 252 form a CMOS inverter 254.
  • the resistance network 260 includes a variable resistance nonvolatile memory element R0 (261) and an NMOS logic circuit 265 (logic circuit).
  • the NMOS logic circuit 265 includes an NMOS transistor N0 that is a first NMOS transistor and an NMOS transistor N1 that is a second NMOS transistor.
  • the NMOS transistor N0 is an NMOS transistor 266, and the NMOS transistor N1 is an NMOS transistor 267.
  • variable resistance nonvolatile memory element R0 is connected to the source of the NMOS transistor 251 and the drain of the NMOS transistor N1 of the charge / discharge circuit 250, and the other end is connected to the drain of the NMOS transistor N0.
  • the gate is connected to the search line SL, the drain is connected to the other end of the variable resistance nonvolatile memory element R0, and the source is grounded.
  • the drain is connected to the source of the NMOS transistor 251 of the charge / discharge circuit 250 and one end of the variable resistance nonvolatile memory element R0, the gate is connected to the other / SL of the search line pair, and the source is grounded. .
  • the sense current of the resistance network 260 of the associative memory cell 200 flows from the charge / discharge circuit 250.
  • the current path of the resistance network 260 is switched according to the input data on the search line.
  • the resistance value of the current path of the resistance network 260 changes according to the input data and the data (storage data) of the resistance change nonvolatile memory element R0.
  • the calculation result of the storage data of the variable resistance nonvolatile memory element and the input data is expressed using a delay time. That is, the delay time from the timing of input to the match line input terminal MLin to the timing of output from the match line output terminal MLout is expressed according to the time information for charging / discharging the sense current.
  • the logical operation table 28 shown in FIG. 17 shows the logical operation of the associative memory cell 20 in the second embodiment of the present invention.
  • the first column of the logical operation table 28 indicates the resistance value of the variable resistance nonvolatile memory element R0.
  • the high resistance state is indicated as RH, and the low resistance state is indicated as RL.
  • the second column of the logical operation table 28 indicates the data A stored in the associative memory cell.
  • the third column of the logical operation table 28 shows input data on the search line SL.
  • the fourth column of the logical operation table 28 shows the delay time from the input to the output of the match line ML according to the logical value of the AND of the data A and the data B.
  • the match line input terminal MLin is at the low level
  • the match line output terminal MLout is at the low level.
  • the search line pair SL, / SL is at the low level.
  • the sense current flows from the charge / discharge circuit 250 to the Gnd via the NMOS transistor N1.
  • the output terminal MLout of the match line ML transitions to a high level with a delay time t (0, tr) corresponding to the transistor N1.
  • the match line input terminal MLin is at the low level
  • the match line output terminal MLout is at the low level.
  • the search line pair SL, / SL is at the low level.
  • the sense current is transferred from the charge / discharge circuit 250 to the Gnd via the variable resistance nonvolatile memory element R0 and the NMOS transistor N0. Flows in.
  • the output terminal MLout of the match line ML transitions to a high level with a delay time t (0) corresponding to the high resistance state RH.
  • the match line input terminal MLin is at the low level
  • the match line output terminal MLout is at the low level.
  • the search line pair SL, / SL is at the low level.
  • the sense current flows from the charge / discharge circuit 250 to the Gnd via the NMOS transistor N1.
  • FIG. 18 is a conceptual diagram showing an operation example of one word circuit 24 in the associative memory 2 according to the second embodiment. Note that the word circuit 24 of FIG. 18 includes six associative memory cells, and the number of bits N is six.
  • FIG. 20 is a diagram illustrating an operation example of the content addressable memory 2 according to the second exemplary embodiment of the present invention.
  • the search line pair SL, / SL is at the low level
  • the calculation start signal START is at the low level
  • the clock signal CLK signal is at the low level.
  • the low-side circuit 22 receives the calculation start signal START and drives the match line ML to the high level.
  • the search line SL is also driven to a high or low level according to input data.
  • Each word circuit 24 outputs an output signal to each match line ML with a delay time corresponding to the inner product of the stored data and the input data as described above.
  • the sense circuit 23 latches the data on the match line ML in the sense circuit 23 and outputs the data to the sense amplifier output signal SAOUT.
  • FIG. 21 shows a histogram of timing when the match line ML becomes High. Note that the number of bits of the word circuit is N.
  • the interval of each distribution is t (0) -t (1).
  • the variation of each distribution is ⁇ t.
  • the window W3 is between + t (0) ⁇ t.
  • the clock signal CLK may be shifted to the high level in the window W3 in FIG.
  • the window W3 is expressed by Expression 15.
  • the sense amplifier output signal SAOUT corresponding to the word circuit 24 in which the inner product of the stored data and the input data is M is at the high level, and the others are at the low level. That is, only the word circuit 24 whose inner product is M can be detected.
  • the associative memory of the second embodiment can detect the word circuit 24 whose inner product is d bits or more (d is an integer of 0 to N).
  • the second embodiment of the present invention it is possible to detect a word circuit in which the operation result of input data and a plurality of stored data is d bits or more.
  • the case of inner product calculation is shown as a specific calculation of similarity.
  • the area of the associative memory cell is reduced by realizing both the function of storing data and the function of generating a delay by the variable resistance nonvolatile memory element. be able to.
  • the associative memory 2 of Modification 2 has the circuit configuration shown in FIG. 19 differs from the circuit configuration shown in FIG. 19 only in that the sense circuit 27 includes a comparison circuit 270.
  • the description about the overlapping structure is abbreviate
  • a 2n is data stored in the word circuit 24 in the 2n-th row, where n is an integer of 0 or more.
  • a 2n + 1 is data stored in the word circuit 24 in the 2n + 1th row.
  • B is input data.
  • SAOUTn is an output of the nth comparison circuit 270.
  • the sense amplifier according to the first modification outputs a result of Expression 17 as a result of comparing the delay time of the word circuit 24 in the 2n-th row with the delay time of the word circuit 24 in the 2n + 1-th row.
  • the first term (in the first square bracket) is the delay time of the (2n + 1) th row
  • the second term (in the second square bracket) is the 2nd row.
  • Delay time N is the number of bits of the word circuit 24, M is the number of 1 in the input data B
  • C 2n is the inner product A 2n ⁇ B of the stored data and the input data of the word circuit 24 in the 2n-th row
  • C 2n + 1 is 2n + 1-row.
  • t (0, tr), t (0), and t (1) are delay times (fourth column) in the logical operation table 28 of FIG. However, it is assumed that there is no variation in delay.
  • Expression 18 is equivalent to Expression 16.
  • the calculation start signal START is connected to the input terminal of the buffer 220 of the row side circuit 22, and the output terminal of the buffer 220 is connected to the match line ML.
  • the sense circuit 27 includes a comparison circuit 270.
  • Comparison circuit 270-n receives the output of match line ML of word circuit 24-2n and word circuit 24-2n + 1.
  • Comparison circuit 270-n detects which of match line ML2n and match line ML2n + 1 has first transitioned to the high level. When the match line 2n first transitions to the high level, the output signal SAOUTn of the comparison circuit 270-n is at the low level. When the match line ML2n + 1 first transitions to the high level, the output signal SAOUTn of the comparison circuit 270n is at the high level.
  • FIG. 23 is a circuit diagram of the comparison circuit 270 in the associative memory 1 of the first modification of the present embodiment.
  • the comparison circuit 270 is a circuit that detects which of the match lines MLout0 and MLout1 first transitions to the high level.
  • the comparison circuit 270 includes four PMOS transistors P0 to P3 (271 to 274), five NMOS transistors N0 to N4 (275 to 279), an inverter INV0 (inverter 280) and an inverter INV1 (inverter 282), and a buffer BUF0. (Buffer 283).
  • PMOS transistors P0 to P3 are PMOS transistors 271 to 274, and NMOS transistors N0 to N4 are NMOS transistors 275 to 279.
  • the inverter INV0 is an inverter 280
  • the inverter INV1 is an inverter 282
  • the buffer BUF0 is a buffer 283.
  • the PMOS transistor P0 and the NMOS transistor N0 form an inverter INV2 (inverter 291), and the PMOS transistor P1 and the NMOS transistor N1 form an inverter INV3 (inverter 293).
  • the inverter INV2 and the inverter INV3 are cross-coupled so as to hold 1-bit data.
  • the power supply terminal is connected to the power supply voltage Vddsa of the sense amplifier, and the Gnd terminal is connected to the drain of the NMOS transistor N2.
  • the power supply terminal is connected to the power supply voltage Vddsa of the sense amplifier, and the Gnd terminal is connected to the drain of the NMOS transistor N3.
  • the output terminal of the inverter INV2 is connected to the input terminal of the inverter INV0 and the PMOS transistor P2.
  • the output terminal of the inverter INV3 is connected to the input terminal of the inverter INV1 and the PMOS transistor P3.
  • the output terminal of the inverter INV1 outputs a sense amplifier output signal SAOUT.
  • the gate is connected to the match line MLout0, and the source is grounded to Gnd.
  • the gate is connected to the match line MLout1, and the source is grounded to Gnd.
  • the gate is connected to the inverted signal / PRC of the precharge signal, and the source is connected to the power supply voltage Vddsa of the sensor amplifier.
  • the gate is connected to the inverted signal / PRC of the precharge signal.
  • the buffer BUF0 the input terminal is connected to MLout0, and the output terminal is connected to the gate of the transistor N4.
  • the drain is connected to the Gnd terminal of the inverter N2, and the source is grounded. Even if the power supply voltage Vddsa of the sense amplifier does not coincide with the power supply voltage Vdd of the associative memory cell, it operates normally.
  • the comparison circuit 270 sets the inverted signal / PRC of the precharge signal to the low level, the match lines MLout0 and MLout1 to the low level, and the PMOS transistors P2 and P3 set the nodes D and / D to the high level. After that, at the time of comparison, the inverted signal / PRC of the precharge signal becomes High level.
  • the match line MLout1 transits to the high level before MLout0, the charge of the node / D is discharged and becomes the low level.
  • the node D is at a high level, and the output signal SAOUT is at a high level.
  • the NMOS transistor N2 and the NMOS transistor N3 are turned on, and the charges at the nodes D and / D start to be discharged.
  • the NMOS transistor N4 is turned on, the node D becomes low level, the node / D becomes high level, and the output signal SAOUT becomes low level.
  • the associative memory 2 according to the first modification of the present embodiment can execute a step function calculation with respect to a difference between inner products.
  • the associative memory 2 according to the first modification of the present embodiment operates properly even when the environmental temperature and the power supply voltage change because the two word circuits 24 to be compared operate at the same environmental temperature and the same power supply voltage. Can do.
  • the distance between the two word circuits 24 to be compared is short, so that the transistor characteristics and the MTJ resistance value variations do not include global variations, but are only local variations. Therefore, in the associative memory 2 in the first modification, input data and stored data can be compared with high accuracy, and erroneous reading can be suppressed.
  • the associative memory 2 according to the second embodiment can be regarded as calculating the inner product of the data of the ternary associative memory cell 20 and the input data.
  • the ternary associative memory cell 20 is composed of the associative memory cells in the 2nth row and the pth column and the 2n + 1th row and the pth column. As shown in the logical operation table 29 shown in FIG. Take state.
  • R1 in the first column of the logical operation table 29 is the resistance of the associative memory cell in the 2n + 1th row and the pth column.
  • R2 in the second column of the logical operation table 29 is the resistance of the associative memory cell in the 2nth row and the pth column.
  • the third column of the logical operation table 29 is the storage data A. Then, Expression 16 is rewritten to Expression 19.
  • An is data stored in the ternary associative memory cell 20 in the n-th row, where n is an integer of 0 or more.
  • B is input data.
  • SAOUTn is an output of the nth comparison circuit 270. Therefore, the associative memory 2 of the second embodiment can execute a step function on the inner product of ternary stored data and input data.
  • FIG. 25 is a block diagram schematically showing the configuration of the associative memory 3 according to the third embodiment of the present invention.
  • the description which overlaps with 1st and 2nd embodiment is abbreviate
  • the associative memory 3 includes a plurality of associative memory cells 30 arranged in a two-dimensional matrix, and the plurality of associative memory cells 30 arranged in the second direction include a word circuit. 34 is configured.
  • FIG. 25 in order to distinguish between the plurality of associative memory cells 30 and the word circuit 34, column numbers and row numbers are added to the end of the reference numerals for the respective constituent elements. The number of is omitted.
  • the associative memory 3 includes a plurality of search line pairs SL, / SL, a plurality of match lines ML, and a plurality of word line pairs WL, / WL.
  • the plurality of search line pairs SL, / SL are commonly connected to the content addressable memory cell 30 arranged in the first direction.
  • the plurality of match lines ML connect the associative memory cells 30 arranged in the second direction in series.
  • the plurality of word line pairs WL, / WL are commonly connected to the content addressable memory cells 30 arranged in the second direction.
  • a column number or a row number is added to the end of the reference numeral for each wire. However, if not particularly distinguished, the last number is omitted.
  • the associative memory 3 includes a column side circuit 31, a row side circuit 32, and a sense circuit 33.
  • the column side circuit 31 is connected to a plurality of search line pairs SL, / SL, and drives the search line pairs SL, / SL according to input data at the time of calculation.
  • the row side circuit 32 is connected to a plurality of match lines ML and word lines WL, and drives the match lines ML and word lines WL.
  • the sense circuit 33 is connected to the plurality of match lines ML and senses the potential of the match line ML.
  • FIG. 26 is a specific circuit diagram (associative memory cell 300) of the associative memory cell 30 according to the third embodiment of the present invention.
  • the word circuit 34 including the associative memory cell 300 of this circuit configuration can reflect the inner product of the storage data and the input data in the delay time of the word circuit 34, as in the second embodiment.
  • the charge / discharge circuit 350 includes an NMOS transistor 351, a PMOS transistor 352, and an inverter 353.
  • NMOS transistor 351 and PMOS transistor 352 form a CMOS inverter 354.
  • the match line input terminal MLin is connected to the gate of the NMOS transistor 351 and the gate of the PMOS transistor 352.
  • the input terminal of the inverter 353 is connected to the drain of the PMOS transistor 352 and the drain of the NMOS transistor 351.
  • An output terminal of inverter 353 is connected to match line output terminal MLout.
  • the source of the PMOS transistor 352 is connected to the power supply voltage Vdd, and the source of the NMOS transistor 351 is connected to one end of the variable resistance nonvolatile memory element R 0 of the resistance network 360.
  • the resistance network 360 includes a variable resistance nonvolatile memory element R0 (361) and an NMOS logic circuit 370 (logic circuit).
  • the NMOS logic circuit 370 (logic circuit) includes an NMOS transistor N0 (NMOS transistor 371) that is a first NMOS transistor and an NMOS transistor N1 (NMOS transistor 372) that is a second NMOS transistor.
  • One end of the volatile memory element R0 is connected to the source of the NMOS transistor 351 and the drain of the NMOS transistor N1 of the charge / discharge circuit 350, and the other end is connected to the drain of the NMOS transistor N0.
  • the gate is connected to the search line SL, the drain is connected to the other end of the variable resistance nonvolatile memory element R0, and the source is connected to the word line WL.
  • the drain is connected to the source of the NMOS transistor 351 of the charge / discharge circuit 350 and one end of the variable resistance nonvolatile memory element R0, the gate is connected to the other / SL of the search line pair, and the source is connected to the word line pair. Connected to the other / WL.
  • the logical operation of the associative memory cell 300 according to the third embodiment of the present invention is the same as that of the second embodiment except that the word line pair WL and / WL are grounded at the time of the logical operation. .
  • the resistance value of the resistance change nonvolatile memory element R0 in FIG. 26 changes depending on the direction in which a current exceeding a threshold value of a certain write current flows. Specifically, when a write current flows from the transistor N0 to the transistor N1 via the variable resistance nonvolatile memory element R0, the variable resistance nonvolatile memory element R0 changes to the low resistance state RL. Conversely, when a write current flows from the transistor N1 to the transistor N0 via the variable resistance nonvolatile memory element R0, the variable resistance nonvolatile memory element R0 changes to the high resistance state RH.
  • the low resistance state RL is associated with data “1”
  • the high resistance state RH is associated with data “0”.
  • all the match lines MLin, MLout, the search line pair SL, / SL, and the word line pair WL, / WL are set to the low level.
  • the search line pair SL, / SL connected to the selected cell to which data is written is set to the high level.
  • the word line pair WL, / WL connected to the selected cell is driven according to the data to be written.
  • the word line WL is set to the high level, and the other of the word line pairs / WL is set to the low level.
  • the write current flows from WL to / WL via the transistor N0 of the selected cell, the variable resistance nonvolatile memory element R0, and the transistor N1. At this time, the variable resistance nonvolatile memory element R0 of the selected cell is in the low resistance state RL.
  • the word line WL is set to the low level, and the other of the word line pairs / WL is set to the high level.
  • the write current flows from / WL to WL via the transistor N1 of the selected cell, the variable resistance nonvolatile memory element R0, and the transistor N0. At this time, the variable resistance nonvolatile memory element R0 of the selected cell is in the high resistance state RH.
  • all MLin, MLout, search line pair SL, / SL, word line pair WL, / WL are set to low level.
  • the search line pair SL, / SL connected to the selected cell from which data is read is set to a high level.
  • the word line WL is set to the read voltage Vr.
  • the other of the word line pairs / WL is set to the Low level.
  • the read current flows from the word line WL to the other of the word line pair WL, / WL via the transistor N0, the resistance change nonvolatile memory element R0, and the transistor N1.
  • the read current changes according to the resistance state of the variable resistance nonvolatile memory element R0, and the row side circuit 32 determines data.
  • the transistor used for data calculation is used for flowing a write current when writing data, and is used for flowing a read current when reading data. can do. Therefore, the cell size can be reduced.
  • FIG. 27 is a block diagram schematically showing the configuration of the associative memory 4 according to the fourth embodiment of the present invention. Note that descriptions overlapping with the first to third embodiments are omitted as appropriate.
  • the associative memory 4 includes a plurality of associative memory cells 40 arranged in a two-dimensional matrix, and the plurality of associative memory cells 40 arranged in the second direction constitute a word circuit 44.
  • FIG. 27 in order to distinguish between the plurality of associative memory cells 40 and the word circuit 44, column numbers and row numbers are added to the end of the reference numerals for the respective constituent elements. The number of is omitted.
  • the associative memory 4 includes a plurality of search line pairs SL, / SL, a plurality of write bit lines WBL, / WBL, a plurality of match lines ML, and a plurality of word lines WL.
  • the plurality of search line pairs SL, / SL and the plurality of write bit lines WBL, / WBL are commonly connected to the content addressable memory cell 40 arranged in the first direction.
  • the plurality of match lines ML connect the associative memory cells 40 arranged in the second direction in series.
  • the plurality of word lines WL are commonly connected to associative memory cells arranged in the second direction.
  • a column number or a row number is added to the end of the code for each wiring. However, if not particularly distinguished, the last number is omitted.
  • the associative memory 4 includes a column side circuit 41, a row side circuit 42, and a sense circuit 43.
  • the column side circuit 41 is connected to a plurality of search line pairs SL, / SL, and drives the search line pairs SL, / SL according to input data during calculation. Further, the column side circuit 41 is connected to a plurality of write bit line pairs WBL, / WBL, and drives the write bit line pairs according to the write data at the time of data writing.
  • the row side circuit 42 is connected to the plurality of match lines ML and the plurality of word lines WL, and drives the match lines ML and the word lines WL.
  • the sense circuit 43 is connected to the plurality of match lines ML and senses the potential of the match line ML.
  • FIG. 28 is a specific circuit diagram (associative memory cell 400) of the associative memory cell 40 according to the fourth embodiment of the present invention.
  • the associative memory cell 400 includes a charge / discharge circuit 450, a resistance network 460, and a magnetic element unit.
  • the word circuit 44 including the associative memory cell 400 having this circuit configuration can reflect the inner product of the storage data and the input data in the delay time of the word circuit, as in the second embodiment.
  • the charge / discharge circuit 450 includes an NMOS transistor 451, a PMOS transistor 452, and an inverter 453.
  • the NMOS transistor 451 and the PMOS transistor 452 form a CMOS inverter 454.
  • the match line input terminal MLin is connected to the gate of the NMOS transistor 451 and the gate of the PMOS transistor 452.
  • the input terminal of the inverter 453 is connected to the drain of the PMOS transistor 452 and the drain of the NMOS transistor 451.
  • An output terminal of inverter 453 is connected to match line output terminal MLout.
  • the source of the PMOS transistor 452 is connected to the power supply voltage Vdd, and the source of the NMOS transistor 451 is connected to one end of the variable resistance nonvolatile memory element R 0 of the resistance network 460.
  • the resistance network 460 includes a variable resistance nonvolatile memory element R0 and an NMOS logic circuit 465 (logic circuit) including an NMOS transistor N0 and an NMOS transistor N1.
  • the variable resistance nonvolatile memory element R0 is a variable resistance nonvolatile memory element 470
  • the NMOS transistor N0 is an NMOS transistor 466
  • the NMOS transistor N1 is an NMOS transistor 467.
  • variable resistance nonvolatile memory element R0 is connected to the source of the NMOS transistor 451 of the charge / discharge circuit 450, and the other end is connected to the drain of the NMOS transistor N0.
  • the gate is connected to the search line SL, and the source is grounded.
  • the drain is connected to the source of the NMOS transistor 451 of the charge / discharge circuit 450 and one end of the variable resistance nonvolatile memory element R0, the gate is connected to the other / SL of the search line pair, and the source is grounded.
  • the magnetic element unit includes an NMOS transistor N2 (NMOS transistor 492), an NMOS transistor N3 (NMOS transistor 493), and a magnetic element 480.
  • the gate is connected to the word line WL, one of the drain / source is connected to the write bit line WBL, and the other end is connected to the magnetic element 480.
  • the gate is connected to the word line WL, one of the drain / source is connected to the other / WBL of the write bit line, and the other end is connected to the magnetic element 480.
  • 29 and 30 are a schematic plan view and a sectional view of a magnetic element 480 and a resistance change nonvolatile memory element R0 (resistance change nonvolatile memory element 470) according to the fourth embodiment of the present invention.
  • the magnetic element 480 is a domain wall motion element including a recording layer 481, a first fixed layer 482, a second fixed layer 483, a first terminal T1, and a second terminal T2.
  • the variable resistance nonvolatile memory element R0 is a magnetic tunnel junction (MTJ) element including a sense layer 471, a tunnel barrier layer 472, a reference layer 473, a third terminal T3, and a fourth terminal T4. .
  • the variable resistance nonvolatile memory element R ⁇ b> 0 is a variable resistance nonvolatile memory element 470.
  • the + Z direction is defined as a direction from the back surface of the paper surface to the front surface perpendicular to the paper surface, and the X direction and the Y direction are orthogonal to the Z direction.
  • the X direction is the longitudinal direction of the element, and the Y direction is defined as a direction perpendicular to the X direction and the Z direction.
  • the arrow in the figure indicates the magnetization direction of each magnetic layer.
  • the recording layer 481 is a ferromagnetic material. More specifically, it is formed of a perpendicular magnetization film having perpendicular magnetic anisotropy.
  • the material of the recording layer 481 preferably includes at least one selected from iron (Fe), cobalt (Co), and nickel (Ni).
  • the recording layer 481 includes a thin film having perpendicular magnetic anisotropy exemplified by a Co / Ni laminated film, a Co / Pd laminated film, a Co / Pt laminated film, a Co—Cr—Pt alloy, a Co—Fe—B alloy, and the like. (Pd: palladium, Cr: chromium, Pt: platinum, B: boron).
  • the first fixed layer 482 and the second fixed layer 483 are formed of a ferromagnetic material. More specifically, it is formed of a perpendicular magnetization film having perpendicular magnetic anisotropy.
  • the material of the first fixed layer 482 and the second fixed layer 483 is the same as that of the recording layer 481. Note that the magnetizations of the first fixed layer 482 and the second fixed layer 483 are fixed and do not change depending on the writing and reading operations.
  • the sense layer 471 is made of a ferromagnetic material. More specifically, it is formed of an in-plane magnetization film having in-plane magnetic anisotropy.
  • the material of the sense layer 471 preferably includes at least one selected from Fe, Co, and Ni.
  • the magnetization direction can be changed to either the + Y direction or the ⁇ Y direction.
  • the reference layer 473 is formed of a ferromagnetic material. More specifically, it is formed of an in-plane magnetization film having in-plane magnetic anisotropy. The material of the reference layer 473 is the same as that of the sense layer 471. Note that the magnetization of the reference layer 473 is fixed and does not change depending on the writing and reading operations. Therefore, for example, an antiferromagnetic layer (not shown) may be stacked on the reference layer 473. Further, the reference layer 473 may be a laminated film including a ferromagnetic layer, a nonmagnetic layer, and a ferromagnetic layer. The magnetizations of the two ferromagnetic layers of the laminated film may be set to be antiparallel to each other by antiferromagnetic coupling.
  • the tunnel barrier layer 472 is a nonmagnetic layer.
  • the tunnel barrier layer 472 is formed of an insulating film, and Mg—O, Al—O, Ni—O, and Hf—O are suitable for the material.
  • the tunnel barrier layer 472 is sandwiched between the sense layer 471 and the reference layer 473.
  • the sense layer 471, the tunnel barrier layer 472, and the reference layer 473 form a magnetic tunnel junction (MTJ). Note that as the material of the tunnel barrier layer 472, a nonmagnetic semiconductor or a metal material is formed.
  • the domain wall of the recording layer 481 can move. As shown in FIG. 30, the recording layer 481 includes a first fixed area 484, a second fixed area 485, and an inversion area 486.
  • first fixed region 484 magnetization is held in the + Z direction by the first fixed layer 482, and the first fixed region 484 is not changed by the write and read operations.
  • second fixed region 485 magnetization is held in the ⁇ Z direction by the second fixed layer 483, and the second fixed region 485 is not changed by the write and read operations.
  • the inversion region 486 is provided between the first fixed region 484 and the second fixed region 485, and the magnetization direction can be changed to either the + Z direction or the ⁇ Z direction.
  • the first terminal T1 is a current terminal connected to the first fixed region 484 (first fixed layer 482), and is connected to the NMOS transistor N3.
  • the second terminal T2 is a current terminal connected to the second fixed region 485 (second fixed layer 483), and is connected to the NMOS transistor N2.
  • the third terminal T 3 is a current terminal connected to the sense layer 471 and is connected to the charge / discharge circuit 450.
  • the fourth terminal T4 is a current terminal connected to the reference layer 473, and is connected to the NMOS transistor N0.
  • Magneticization state of data “0” and “1”) 31 and 32 show two magnetization states that can be taken by the domain wall motion element according to the present embodiment.
  • Each magnetization state is associated with either stored data “0” or “1”.
  • the magnetization direction of the first fixed region 484 is held in the + Z direction.
  • the magnetization direction of the second fixed region 485 is maintained in the ⁇ Z direction.
  • the magnetization of the reference layer 473 is fixed in the + Y direction.
  • a domain wall 490 is formed in the vicinity of the boundary between the inversion region 486 and the second fixed region 485.
  • the leakage magnetic field from the inversion region 486 has a component in the + Y direction at the position of the sense layer 471, and the magnetization of the sense layer 471 is directed in the + Y direction according to the direction of the leakage magnetic field.
  • the magnetizations of the sense layer 471 and the reference layer 473 are parallel, and the resistance value of the variable resistance nonvolatile memory element R0 is low (low resistance state).
  • the low resistance state of the variable resistance nonvolatile memory element R0 is associated with data “1”.
  • the domain wall 490 is formed in the vicinity of the boundary between the inversion region 486 and the first fixed region 484.
  • the leakage magnetic field from the inversion region 486 has a component in the ⁇ Y direction at the position of the sense layer 471, and the magnetization of the sense layer 471 is directed in the ⁇ Y direction according to the direction of the leakage magnetic field.
  • the magnetizations of the sense layer 471 and the reference layer 473 are antiparallel, and the resistance value of the variable resistance nonvolatile memory element R0 is high (high resistance state).
  • the high resistance state of the variable resistance nonvolatile memory element R0 is associated with data “0”.
  • Rewriting of stored data is performed by moving the domain wall 490 to reverse the magnetization direction of the inversion region 486. Due to the domain wall movement, a write current is supplied in the in-plane direction in the recording layer 481. The domain wall 490 moves in the recording layer according to the direction of the conduction electrons that carry the write current.
  • the magnetization direction of the first fixed region 484 is held in the + Z direction.
  • the magnetization direction of the second fixed region 485 is maintained in the ⁇ Z direction.
  • “current-driven domain wall movement” supplies a write current larger than the threshold current value necessary for the domain wall 490 to move in the inversion region 486.
  • the write current flows from the second terminal T2 through the recording layer 481 to the first terminal T1.
  • spin-polarized electrons from the first fixed region 484 are injected into the inversion region 486.
  • the spin of the injected electrons drives the domain wall 490 at the boundary between the first fixed region 484 and the inversion region 486 toward the second fixed region 485.
  • the intended data “1” can be written.
  • the write current flows from the first terminal T1 through the recording layer 481 to the second terminal T2.
  • spin-polarized electrons from the second fixed region 485 are injected into the inversion region 486.
  • the spin of the injected electrons drives the domain wall 490 at the boundary between the second fixed region 485 and the inversion region 486 in the direction of the first fixed region 484.
  • the intended data “0” can be written.
  • all the match lines MLin, MLout, the search line pair SL, / SL, the write bit line pair WBL, / WBL, and the word line WL are set to the low level.
  • the word line WL connected to the selected cell to which data is written is set to the high level.
  • the write bit line pair WBL, / WBL connected to the selected cell is driven according to the data to be written.
  • the write bit line WBL is set to the high level, and the other of the write bit line pairs / WBL is set to the low level.
  • the write current flows from WBL to / WBL through the transistor N2, the magnetic element 480, and the transistor N3 of the selected cell.
  • the variable resistance nonvolatile memory element R0 of the selected cell is in the low resistance state RL.
  • the write bit line WBL is set to the low level, and the other of the write bit line pairs / WBL is set to the high level.
  • the write current flows from / WBL to WBL via the transistor N3, the magnetic element 480, and the transistor N2 of the selected cell.
  • the variable resistance nonvolatile memory element R0 of the selected cell is in the high resistance state RH.
  • the content addressable memory cell 400 can physically separate a path through which a sense current flows during data calculation and a path through which a write current flows during data writing. Therefore, the resistance value suitable for data calculation can be set to the resistance value of the resistance change type nonvolatile memory element R0, and the resistance value suitable for data writing can be set to the resistance value of the magnetic element 480. As the resistance value of the resistance change type nonvolatile memory element R0 is larger, the time interval between adjacent distributions at which the match line ML shown in FIG. 27 becomes High becomes larger, and erroneous detection of the sense circuit 43 can be reduced. On the other hand, the lower the resistance value of the magnetic element 480, the lower the required write voltage, which is desirable in terms of power consumption.
  • a path through which a sense current flows during data calculation and a path through which a write current flows during data writing can be physically separated. For this reason, it is possible to reduce detection errors of the sense circuit and power consumption.
  • the modified associative memory cell 401 has the circuit configuration shown in FIG.
  • the content addressable memory cell 400 shown in FIG. 28 is different only in that one end of the transistor N2 and the magnetic element 480 is connected to the charge / discharge circuit 450. Therefore, the same reference numerals as those in FIG. 28 are used. In addition, the overlapping description is abbreviate
  • a node where the transistor N2 and the magnetic element 480 are connected is connected to the drain of the PMOS transistor 452 and the drain of the NMOS transistor 451 of the charge / discharge circuit 450. Is done.
  • the charging / discharging circuit 450 can use the parasitic capacitances of the transistor N2 and the transistor N3 as a capacitance to be charged.
  • a write transistor can be used as a capacitor for storing charge in the charge / discharge circuit, and erroneous detection of the sense circuit can be reduced.
  • FIG. 34 is a block diagram schematically showing the configuration of the associative memory 5 according to the fifth embodiment of the present invention.
  • the description which overlaps with 1st Embodiment is abbreviate
  • the associative memory 5 includes a plurality of associative memory cells 50 arranged in a two-dimensional matrix, and the plurality of associative memory cells 50 arranged in the second direction constitute a word circuit 54.
  • the column number and the row number are attached to the end of the reference numerals for the respective components. The number of is omitted.
  • the associative memory 5 is connected in series with a plurality of search line pairs SL, / SL connected in common to the associative memory cells 50 arranged in the first direction and the associative memory cells 50 arranged in the second direction.
  • a plurality of match lines ML are provided.
  • the associative memory 5 includes a column side circuit 51, a row side circuit 52, a sense circuit 53, a data input circuit 54, and a data output circuit 56.
  • the column side circuit 51 is connected to a plurality of search line pairs SL, / SL, and drives the search line pairs SL, / SL in accordance with input data during calculation.
  • the row side circuit 52 is connected to a plurality of match lines ML and drives the match lines ML.
  • the sense circuit 53 is connected to the plurality of match lines ML and senses the potential of the match line ML.
  • the data input circuit 54 is extended in the second direction
  • the data output circuit 56 is extended in the first direction
  • the data input circuit 54 and the data output circuit 56 are substantially perpendicular to each other.
  • a plurality of input data DIN are input to the data input circuit 54 in parallel or serially.
  • the data input circuit 54 holds the input data DIN.
  • the data input circuit 54 outputs a plurality of input data DIN_REG to the column side circuit 51.
  • the data output circuit 56 receives the sense result SAOUT of the sense circuit 53 in parallel.
  • the data output circuit 56 outputs the data output DOUT to the outside of the associative memory 5 in parallel or serial based on the SAOUT data.
  • FIG. 35 is a logic circuit including a plurality of associative memories 5 according to the fifth embodiment of the present invention.
  • four associative memories 5 (5-1 to 5-4) are connected in series.
  • the data output circuit 56 of the associative memory in the preceding stage and the data input circuit 54 of the associative memory in the subsequent stage are arranged in parallel, and the output from the data output circuit 56 of the associative memory 5 in the preceding stage is performed.
  • associative memories can be connected in series, and a wide bus width can be realized. Further, pipeline processing with one associative memory as one stage can be easily realized.
  • FIG. 36 is a logic circuit including a plurality of associative memories 5 according to the fifth embodiment of the present invention.
  • the four associative memories 5 are connected to the wiring 58 through the programmable switch 57.
  • the logic circuit of FIG. 36 includes a plurality of programmable switches 57, but they are not distinguished on the reference numerals.
  • the programmable switch 57 may use an SRAM-based switch used in a field programmable gate array.
  • a CBRAM element that is a variable resistance nonvolatile memory element may be used (CBRAM: Conductive Bridging Random Access Memory).
  • the logic circuit including the plurality of associative memories 5 shown in FIG. 36 exchanges data via the programmable switch 57 and the wiring 58. Therefore, although the data bit width is limited, data can be exchanged with the associative memories 5 other than the adjacent associative memories 5, and the versatility can be further improved.
  • data can be exchanged with an associative memory other than between adjacent associative memories, and versatility can be further improved.
  • FIG. 37 is a block diagram schematically showing the configuration of the associative memory 6 according to the sixth embodiment of the present invention. Note that the description overlapping with the first to fifth embodiments is omitted as appropriate.
  • the associative memory 6 includes a plurality of associative memory cells 60 arranged in a two-dimensional matrix, and the plurality of associative memory cells 60 arranged in the second direction constitute a word circuit 64.
  • Two cell circuits adjacent in the first direction constitute a ternary cell circuit.
  • a ternary cell can take three states: -1, 0, 1;
  • FIG. 37 will be described later with reference to FIG. 37, in order to distinguish between the plurality of associative memory cells 60 and the word circuit 64, the column number and the row number are added to the end of the reference numerals for the respective constituent elements. The number of is omitted.
  • the associative memory 6 includes a plurality of search line pairs SL, / SL, a plurality of write bit lines WBL, / WBL, a plurality of match lines ML, and a plurality of word lines WL.
  • the plurality of search line pairs SL, / SL and the plurality of write bit lines WBL, / WBL are commonly connected to the content addressable memory cell 60 arranged in the first direction.
  • the plurality of match lines ML connect the associative memory cells 60 arranged in the second direction in series.
  • the plurality of word lines WL are commonly connected to associative memory cells arranged in the second direction. Each word line WL is commonly connected to two rows of associative memory cells 60.
  • a column number or a row number is added to the end of the reference numeral for each wiring. However, if not particularly distinguished, the last number is omitted.
  • the associative memory 6 includes a column side circuit 61, a row side circuit 62, and a sense circuit 63.
  • the column side circuit 61 is connected to a plurality of search line pairs SL, / SL, and drives the search line pairs SL, / SL according to input data during calculation. Further, the column side circuit 61 is connected to the plurality of write bit line pairs WBL, / WBL, and drives the write bit line pair WBL, / WBL according to the write data at the time of data writing.
  • the row side circuit 62 is connected to the plurality of match lines ML and the plurality of word lines WL, and drives the match lines ML and the word lines WL.
  • the sense circuit 63 is connected to the plurality of match lines ML and senses the potential of the match line ML.
  • the associative memory 6 in the sixth embodiment of the present invention has the same configuration as the associative memory 1 according to the second embodiment shown in FIG.
  • the sense circuit 27 of this embodiment includes a comparison circuit 270.
  • Modification 1 refers to the description of Modification 1 according to the second embodiment.
  • FIG. 38 is a circuit diagram of a ternary cell circuit according to the sixth embodiment.
  • the ternary cell circuit of this circuit configuration can reflect the inner product of the stored data and the input data in the delay time of the word circuit 64.
  • the ternary cell circuit includes an associative memory cell 600 and an associative memory cell 601.
  • the associative memory cell 600 includes a charge / discharge circuit 610, a resistance network 620, and a magnetic element unit.
  • the charge / discharge circuit 610 of the associative memory cell 600 includes an NMOS transistor 611, a PMOS transistor 612, and an inverter 613.
  • NMOS transistor 611 and PMOS transistor 612 form a CMOS inverter 614.
  • the match line input terminal MLin0 is connected to the gates of the NMOS transistor 611 and the PMOS transistor 612, and the input terminal of the inverter 613 is connected to the drain of the PMOS transistor 612 and the drain of the NMOS transistor.
  • the output terminal of inverter 613 is connected to match line output terminal MLout0.
  • the source of the PMOS transistor 612 is connected to the power supply voltage Vdd, and the source of the NMOS transistor 611 is connected to one end of the variable resistance nonvolatile memory element R 0 of the resistance network 620.
  • the resistance network 620 of the associative memory cell 600 includes a variable resistance nonvolatile memory element R0 and an NMOS logic circuit 629 including NMOS transistors N0 and N1.
  • the variable resistance nonvolatile memory element R0 is a variable resistance nonvolatile memory element 630
  • the NMOS transistor N0 is an NMOS transistor 628
  • N1 is an NMOS transistor 629.
  • variable resistance nonvolatile memory element R0 is connected to the source of the NMOS transistor 611 and the drain of the NMOS transistor N1 of the charge / discharge circuit 610, and the other end is connected to the drain of the NMOS transistor N0.
  • the gate is connected to the search line SL
  • the drain is connected to the other end of the variable resistance nonvolatile memory element R0
  • the source is grounded.
  • the drain is connected to the source of the NMOS transistor 611 of the charge / discharge circuit 610 and one end of the variable resistance nonvolatile memory element R0
  • the gate is connected to the other / SL of the search line pair, and the source is grounded.
  • the associative memory cell 601 of this embodiment includes a charge / discharge circuit 650, a resistance network 660, and a magnetic element unit.
  • the magnetic element unit is shared by the associative memory 600 and the associative memory 601.
  • the charge / discharge circuit 650 of the associative memory cell 601 includes an NMOS transistor 651, a PMOS transistor 652, and an inverter 653.
  • the NMOS transistor 651 and the PMOS transistor 652 form a CMOS inverter 654.
  • the match line input terminal MLin1 is connected to the gates of the NMOS transistor 651 and the PMOS transistor 652, and the input terminal of the inverter 653 is connected to the drain of the PMOS transistor 652 and the drain of the NMOS transistor 651.
  • the output terminal of inverter 653 is connected to match line output terminal MLout1.
  • the source of the PMOS transistor 652 is connected to the power supply voltage Vdd, and the source of the NMOS transistor 651 is connected to one end of the variable resistance nonvolatile memory element R1 of the resistance network 660.
  • the resistance network 640 of the associative memory cell 601 includes a variable resistance nonvolatile memory element R1 and an NMOS logic circuit 647 including NMOS transistors N10 and N11.
  • the variable resistance nonvolatile memory element R1 is a variable resistance nonvolatile memory element 660
  • the NMOS transistor N10 is an NMOS transistor 648
  • the NMOS transistor N11 is an NMOS transistor 649.
  • variable resistance nonvolatile memory element R1 is connected to the source of the NMOS transistor 651 and the drain of the NMOS transistor N11 of the charge / discharge circuit 650, and the other end is connected to the drain of the NMOS transistor N10.
  • the gate is connected to the search line SL
  • the drain is connected to the other end of the variable resistance nonvolatile memory element R1, and the source is grounded.
  • the drain is connected to the source of the NMOS transistor 651 of the charge / discharge circuit 650 and one end of the variable resistance nonvolatile memory element R1, the gate is connected to the other / SL of the search line pair, and the source is grounded.
  • the magnetic element unit includes an NMOS transistor N2 (NMOS transistor 692), an NMOS transistor N3 (NMOS transistor 693), and a magnetic element 680.
  • the gate is connected to the word line WL, one of the drain / source is connected to the write bit line WBL, and the other end is connected to the magnetic element 680.
  • the gate is connected to the word line WL, one of the drain / source is connected to the other / WBL of the write bit line, and the other end is connected to the magnetic element 680.
  • 39 and 40 are a schematic plan view and a cross-sectional view of a magnetic element 680, a resistance change memory element R0, and a resistance change memory element R1 according to the sixth embodiment of the present invention.
  • the resistance change storage element R0 is a resistance change storage element 630
  • the resistance change storage element R1 is a resistance change storage element 660.
  • the magnetic element 680 is a domain wall motion element including a recording layer 681, a first fixed layer 682, a second fixed layer 683, a first terminal T1, and a second terminal T2.
  • the variable resistance nonvolatile memory element R0 is a magnetic tunnel junction (MTJ) element including a sense layer 631, a tunnel barrier layer 632, a reference layer 633, a third terminal T3, and a fourth terminal T4.
  • the variable resistance nonvolatile memory element R1 is a magnetic tunnel junction (MTJ) element including a sense layer 661, a tunnel barrier layer 662, a reference layer 663, a fifth terminal T5, and a sixth terminal T6.
  • MTJ magnetic tunnel junction
  • the + Z direction is a direction perpendicular to the substrate from the back surface to the front surface of the substrate, and the X direction and the Y direction are defined as horizontal directions perpendicular to the Z direction.
  • the X direction is the longitudinal direction of the element, and the Y direction is defined as a direction perpendicular to the X direction and the Z direction.
  • the arrow in the figure indicates the magnetization direction of each magnetic layer.
  • the recording layer 681 is a ferromagnetic material. More specifically, it is formed of a perpendicular magnetization film having perpendicular magnetic anisotropy.
  • the material of the recording layer 681 preferably includes at least one selected from Fe, Co, and Ni.
  • the recording layer 681 is a thin film having perpendicular magnetic anisotropy exemplified by a Co / Ni laminated film, a Co / Pd laminated film, a Co / Pt laminated film, a Co—Cr—Pt alloy, a Co—Fe—B alloy, and the like. Use.
  • the first fixed layer 682 and the second fixed layer 683 are formed of a ferromagnetic material. More specifically, it is formed of a perpendicular magnetization film having perpendicular magnetic anisotropy.
  • the material of the first fixed layer 682 and the second fixed layer 683 is the same as that of the recording layer 681. Note that the magnetizations of the first fixed layer 682 and the second fixed layer 683 are fixed and do not change depending on the writing and reading operations.
  • the sense layer 631 and the sense layer 661 are formed of a ferromagnetic material. More specifically, it is formed of an in-plane magnetization film having in-plane magnetic anisotropy.
  • the sense layer material 631 and the sense layer 661 preferably include at least one selected from Fe, Co, and Ni.
  • As the sense layer 631 and the sense layer 661 a thin film having in-plane magnetic anisotropy exemplified by Ni—Fe alloy, Co—Fe—B alloy, Co—Fe alloy, or the like is used.
  • the magnetization direction of the sense layer 631 and the sense layer 661 can be changed to either the + Y direction or the ⁇ Y direction.
  • the reference layer 633 and the reference layer 663 are formed of a ferromagnetic material. More specifically, it is formed of an in-plane magnetization film having in-plane magnetic anisotropy.
  • the materials of the reference layer 633 and the reference layer 663 are the same as those of the sense layer 631 and the reference layer 661. Note that the magnetizations of the reference layer 633 and the reference layer 663 are fixed and do not change depending on the writing and reading operations. Therefore, for example, an antiferromagnetic layer (not shown) may be stacked on the reference layer 633 and the reference layer 663.
  • the reference layer 633 and the reference layer 663 may be a laminated film including a ferromagnetic layer, a nonmagnetic layer, and a ferromagnetic layer.
  • the magnetizations of the two ferromagnetic layers of the laminated film may be set to be antiparallel to each other by antiferromagnetic coupling.
  • the tunnel barrier layer 632 and the tunnel barrier layer 662 are nonmagnetic layers.
  • the tunnel barrier layer 632 and the tunnel barrier layer 662 are formed of an insulating film, and Mg—O, Al—O, Ni—O, Hf—O, or the like is preferable as a material thereof.
  • the tunnel barrier layer 632 and the tunnel barrier layer 662 are sandwiched between the sense layer 631, the sense layer 661, the reference layer 633, and the reference layer 663.
  • the sense layer 631 and the sense layer 661, the tunnel barrier layer 632 and the tunnel barrier layer 662, and the reference layer 633 and the reference layer 663 form a magnetic tunnel junction (MTJ).
  • MTJ magnetic tunnel junction
  • the domain wall of the recording layer 681 can move. As shown in FIG. 40, the recording layer 681 includes a first fixed area 684, a second fixed area 685, and an inversion area 686.
  • the magnetization In the first fixed region 684, the magnetization is held in the + Z direction by the first fixed layer 682, and the first fixed region 684 is not changed by the write and read operations.
  • the second fixed region 685 magnetization is held in the ⁇ Z direction by the second fixed layer 683, and the second fixed region 685 is not changed by the write and read operations.
  • the inversion region 686 is provided between the first fixed region 684 and the second fixed region 685, and the magnetization direction can be changed to either the + Z direction or the ⁇ Z direction.
  • the first terminal T1 is a current terminal connected to the first fixed region 684 (first fixed layer 682), and is connected to the NMOS transistor N2.
  • the second terminal T2 is a current terminal connected to the second fixed region 685 (second fixed layer 683), and is connected to the NMOS transistor N3.
  • the third terminal T3 is a current terminal connected to the sense layer 631, and is connected to the charge / discharge circuit 610 of the associative memory cell 600.
  • the fourth terminal T4 is a current terminal connected to the reference layer 633, and is connected to the NMOS transistor N0.
  • the fifth terminal T5 is a current terminal connected to the sense layer 631, and is connected to the charge / discharge circuit 650 of the associative memory cell 601.
  • the sixth terminal T6 is a current terminal connected to the reference layer 663 and is connected to the NMOS transistor N10.
  • FIG. 44 shows the relationship between the resistance change storage element R0 and the resistance change storage element R1 and the stored data.
  • a domain wall 690 is formed in the vicinity of the boundary between the inversion region 686 and the second fixed region 685.
  • the leakage magnetic field from the inversion region 686 has a component in the + Y direction at the position of the sense layer 631 of R0, and the magnetization of the sense layer 631 is directed in the + Y direction according to the direction of the leakage magnetic field.
  • the magnetizations of the sense layer 631 and the reference layer 633 of the variable resistance nonvolatile memory element R0 are parallel, and the resistance value of the MTJ is low (low resistance state).
  • the leakage magnetic field from the inversion region 686 has a component in the ⁇ Y direction at the position of the sense layer of the variable resistance nonvolatile memory element R1, and the magnetization of the sense layer follows the direction of the leakage magnetic field in the ⁇ Y direction.
  • the magnetizations of the sense layer 661 and the reference layer 663 of the variable resistance nonvolatile memory element R1 are antiparallel, and the resistance value of the MTJ is high (high resistance state). This state is associated with data “ ⁇ 1”.
  • the center of the inversion region 686 is obtained.
  • a domain wall 690 is formed in the vicinity.
  • the leakage magnetic field from the inversion region 686 has a component in the ⁇ Y direction at the position of the sense layer 631 of the variable resistance nonvolatile memory element R0, and the magnetization of the sense layer 631 follows the direction of the leakage magnetic field in the ⁇ Y direction. Suitable for.
  • the magnetizations of the sense layer 631 and the reference layer 633 of the variable resistance nonvolatile memory element R0 are antiparallel, and the MTJ has a high resistance value (high resistance state).
  • the leakage magnetic field from the inversion region 686 has a component in the ⁇ Y direction at the position of the sense layer 661 of the variable resistance nonvolatile memory element R1, and the magnetization of the sense layer 661 follows the direction of the leakage magnetic field ⁇ Oriented in the Y direction.
  • the magnetizations of the sense layer 661 and the reference layer 663 of the variable resistance nonvolatile memory element R1 are antiparallel, and the resistance value of the MTJ is high (high resistance state). This state is associated with data “0”.
  • a domain wall 690 is formed in the vicinity of the boundary between the inversion region 686 and the first fixed region 684.
  • the leakage magnetic field from the inversion region 686 has a component in the ⁇ Y direction at the position of the sense layer 631 of R0, and the magnetization of the sense layer 631 is directed in the ⁇ Y direction according to the direction of the leakage magnetic field.
  • the magnetizations of the sense layer 631 and the reference layer 633 of the variable resistance nonvolatile memory element R0 are antiparallel, and the MTJ has a high resistance value (high resistance state).
  • the leakage magnetic field from the inversion region 686 has a component in the + Y direction at the position of the sense layer 661 of the variable resistance nonvolatile memory element R1, and the magnetization of the sense layer 661 follows the direction of the leakage magnetic field in the + Y direction. Suitable for.
  • the magnetizations of the sense layer 661 and the reference layer 663 of the variable resistance nonvolatile memory element R1 are parallel, and the resistance value of the MTJ is low (low resistance state). This state is associated with data “1”.
  • Rewriting of stored data is performed by moving the domain wall 690 to reverse the magnetization direction of the inversion region 686.
  • a write current is supplied in the in-plane direction in the recording layer 681.
  • the domain wall 690 moves in the recording layer in accordance with the direction of the conduction electrons that carry the write current.
  • the magnetization direction of the first fixed region 684 is held in the + Z direction
  • the magnetization direction of the second fixed region 685 is held in the ⁇ Z direction.
  • a notch or the like is formed near the center of the storage area 681 to function as a trap site for the domain wall 690.
  • “current-driven domain wall movement” supplies a write current larger than the threshold current value necessary for the domain wall 690 to move in the inversion region 686. Since it takes time for the domain wall 690 to escape from the trap site of the domain wall 690 in the inversion region 686, the position of the domain wall 690 can be controlled by the time during which the current is applied.
  • the write current flows from the terminal T1 through the recording layer 681 to the second terminal T2.
  • spin-polarized electrons from the second fixed region 685 are injected into the inversion region 686.
  • the spin of the injected electrons drives the domain wall 690 at the boundary between the second fixed region 685 and the inversion region 686 to the center of the inversion region 686.
  • the write current is stopped while the domain wall 690 remains at the trap site at the center of the inversion region 686. As a result, the intended data “0” can be written.
  • the write current flows from the first terminal T1 through the recording layer 681 to the second terminal T2.
  • spin-polarized electrons from the second fixed region 685 are injected into the inversion region 686.
  • the spin of the injected electrons drives the domain wall 690 at the center of the inversion region 686 in the direction of the first fixed region 684.
  • the intended data “1” can be written.
  • the write current flows from the second terminal T2 through the recording layer 681 to the first terminal T1.
  • spin-polarized electrons are injected into the inversion region 686 from the first fixed region 684.
  • the spin of the injected electrons drives the domain wall 690 at the boundary between the first fixed region 684 and the inversion region 686 to the vicinity of the center of the inversion region 686.
  • the write current is stopped while the domain wall 690 remains at the trap site at the center of the inversion region 686. As a result, the intended data “0” can be written.
  • the write current flows from the second terminal T2 through the recording layer 681 to the first terminal T1.
  • spin-polarized electrons are injected into the inversion region 686 from the first fixed region 684.
  • the spin of the injected electrons drives the domain wall 690 near the center of the inversion region 686 in the direction of the inversion region 686 and the second fixed region 685.
  • the intended data “ ⁇ 1” can be written.
  • the write current is obtained by configuring the ternary cell circuit in which the magnetic element is commonly used in the adjacent associative memory cells. It is possible to halve the number of transistors that flow. Therefore, the cost of the chip can be reduced.
  • the associative memory in the present embodiment has been described by taking the ternary cell circuit as an example, it is not necessarily ternary, and the n-value cell circuit may be configured with n being an odd number of 3 or more.
  • the data flip-flop and the comparison circuit are exemplified as the sense circuit.
  • a winner-take-all type sense circuit that detects only the word circuit having the shortest delay time may be used. .
  • a ring oscillator or the like whose frequency depends on the resistance value of the variable resistance nonvolatile memory element may be configured using the associative memory cell circuit according to the embodiment of the present invention.
  • a part or all of the above-described embodiment can be described as in the following supplementary notes, but is not limited thereto.
  • (Appendix 1) A plurality of current paths; a logic circuit connected to the plurality of current paths and search line pairs; and selecting the current paths in response to input data input from the search line pairs; and at least one of the plurality of current paths
  • a resistance variable nonvolatile memory element that is provided in one and stores storage data; a resistance network in which a resistance value changes according to a logical operation result of the input data and the storage data;
  • An associative memory comprising: a charge / discharge circuit connected to the resistance network and a match line, wherein a delay time until a signal input from the match line is output is changed according to a logical operation result of the input data and the stored data cell.
  • the charge / discharge circuit is A CMOS inverter including a PMOS transistor having a source connected to the electrode end, an NMOS transistor having a drain connected to the drain of the PMOS transistor, and a source connected to one end of the variable resistance nonvolatile memory element; An input terminal including an inverter connected to a drain of the PMOS transistor and the NMOS transistor;
  • the CMOS inverter is When a signal is input to the gate of the PMOS transistor, it is reset or preset according to the input signal, The content addressable memory cell according to appendix 1, wherein a signal input to the gate of the NMOS transistor is output to the inverter at a subsequent stage.
  • the charge / discharge circuit is A CMOS inverter including a PMOS transistor having a source connected to the electrode end, an NMOS transistor having a drain connected to the drain of the PMOS transistor, and a source connected to one end of the variable resistance nonvolatile memory element; An input terminal including an inverter connected to a drain of the PMOS transistor and the NMOS transistor;
  • the CMOS inverter is When an inverted precharge signal is input to the gate of the PMOS transistor, Reset or preset according to the input precharge signal, The content addressable memory cell according to appendix 1, wherein a signal input to the gate of the NMOS transistor is output to the inverter at a subsequent stage.
  • the logic circuit is Including first and second NMOS transistors;
  • the variable resistance nonvolatile memory element is: Including first and second variable resistance nonvolatile memory elements; One end of each of the first and second variable resistance nonvolatile memory elements is connected to a source of the NMOS transistor included in the charge / discharge circuit, The other ends of the first and second variable resistance nonvolatile memory elements are connected to the drains of the first and second NMOS transistors, respectively. 4.
  • the associative memory cell according to appendix 2 or 3, wherein the sources of the first and second NMOS transistors are grounded.
  • the logic circuit is Including first and second NMOS transistors; One end of the variable resistance nonvolatile memory element is connected to a source of the NMOS transistor and a drain of the second NMOS transistor included in the charge / discharge circuit, The other end of the variable resistance nonvolatile memory element is connected to the drain of the first NMOS transistor, 4.
  • the logic circuit is Including first and second NMOS transistors; One end of the variable resistance nonvolatile memory element is connected to a source of the NMOS transistor and a drain of the second NMOS transistor included in the charge / discharge circuit, The other end of the variable resistance nonvolatile memory element is connected to the drain of the first NMOS transistor, Sources of the first and second NMOS transistors are respectively connected to one of a pair of word lines, 4.
  • the associative memory cell according to appendix 2 or 3, wherein the stored data is read and written according to a state change of the word line pair.
  • a magnetic element disposed at a position capable of magnetically interacting with the variable resistance nonvolatile memory element;
  • a third NMOS transistor having one terminal of the source or drain connected to one end of the magnetic element, the other terminal of the source or drain connected to the write bit line, and a gate connected to the word line;
  • a magnetic circuit including a fourth NMOS transistor having one terminal of the source or drain connected to the other end of the magnetic element, the other terminal of the source or drain connected to the write bit line, and a gate connected to the word line;
  • the associative memory cell according to appendix 5, comprising an element portion.
  • the variable resistance nonvolatile memory element is: The associative memory cell according to any one of appendices 1 to 9, wherein the associative memory cell has a plurality of resistance states.
  • the variable resistance nonvolatile memory element is: The associative memory cell according to any one of appendices 1 to 9, wherein the associative memory cell has two resistance states.
  • (Appendix 12) A plurality of current paths; a logic circuit connected to the plurality of current paths and search line pairs; and selecting the current paths in response to input data input from the search line pairs; and at least one of the plurality of current paths
  • a variable resistance nonvolatile memory element for storing stored data, a resistance network whose resistance value changes according to a logical operation result of the input data and the stored data, the resistance network, and a match
  • the associative memory cell is connected to a line and includes a charge / discharge circuit that changes a delay time until the signal input from the match line is output according to a logical operation result of the input data and the stored data. Associative memory to be placed.
  • the charge / discharge circuit is A CMOS inverter including a PMOS transistor having a source connected to the electrode end, an NMOS transistor having a drain connected to the drain of the PMOS transistor, and a source connected to one end of the variable resistance nonvolatile memory element; An inverter having an input terminal connected to the drains of the PMOS transistor and the NMOS transistor;
  • the CMOS inverter is When a signal is input to the gate of the PMOS transistor, it is reset or preset according to the input signal, 13.
  • the associative memory according to appendix 12, wherein a signal input to the gate of the NMOS transistor is output to the subsequent inverter.
  • the charge / discharge circuit is A PMOS transistor whose source is connected to the electrode end;
  • a CMOS inverter including an NMOS transistor having a drain connected to the drain of the PMOS transistor and a source connected to one end of the variable resistance nonvolatile memory element;
  • An input terminal including an inverter connected to a drain of the PMOS transistor and the NMOS transistor;
  • the CMOS inverter is When an inverted precharge signal is input to the gate of the PMOS transistor, Depending on the input precharge signal, it is reset or preset, 13.
  • the associative memory according to appendix 12, wherein a signal input to the gate of the NMOS transistor is output to the subsequent inverter.
  • the logic circuit is Including first and second NMOS transistors;
  • the variable resistance nonvolatile memory element is: Including first and second variable resistance nonvolatile memory elements; One end of each of the first and second variable resistance nonvolatile memory elements is connected to a source of the NMOS transistor included in the charge / discharge circuit, The other ends of the first and second variable resistance nonvolatile memory elements are connected to the drains of the first and second NMOS transistors, respectively. 15.
  • the content addressable memory according to appendix 13 or 14, wherein sources of the first and second NMOS transistors are grounded.
  • the logic circuit is Including first and second NMOS transistors; One end of the variable resistance nonvolatile memory element is connected to a source of the NMOS transistor and a drain of the second NMOS transistor included in the charge / discharge circuit, 15.
  • Appendix 17 17.
  • Sources of the first and second NMOS transistors are respectively connected to one of a pair of word lines, The associative memory according to appendix 16, wherein the stored data is read and written according to a state change of the word line pair.
  • a magnetic element disposed at a position capable of magnetically interacting with the variable resistance nonvolatile memory element;
  • a third NMOS transistor having one terminal of the source or drain connected to one end of the magnetic element, the other terminal of the source or drain connected to the write bit line, and a gate connected to the word line;
  • Appendix 20 Item 20.
  • Appendix 21 Item 20.
  • (Appendix 22) A plurality of search line pairs connected to the plurality of associative memory cells arranged in the first direction; A plurality of match lines connecting the plurality of associative memory cells arranged in the second direction in series; A column side circuit connected to the plurality of search line pairs and driving the search line pairs in accordance with the input data at the time of calculation; A row-side circuit connected to the plurality of match lines and driving the plurality of match lines; A sense circuit connected to the plurality of match lines and sensing the potential of the plurality of match lines, A word circuit is constituted by the plurality of associative memory cells arranged in the second direction and the match line, When performing a logical operation on the input data and the stored data, The word circuit is The delay time of the match line is changed according to the input data on the search line pair and the storage data of the word circuit, The sense circuit The associative memory according to any one of appendices 12 to 21, wherein a potential of the match line is latched according to a clock signal input to the sense circuit.
  • Associative memory An operation start signal input to the row side circuit is input, and a replica circuit that generates the clock signal input to the sense side circuit is provided. The sense circuit 24. The content addressable memory according to appendix 22 or 23, wherein the potential of the match line is latched according to the clock signal input to the sense circuit.
  • the sense circuit Compare the delay times of two different match lines, 24.
  • the associative memory is A data input circuit that inputs the input data and outputs the input data to the column side circuit; 24.
  • Appendix 27 27.
  • the associative memory is A data input circuit that inputs the input data and outputs the input data to the column side circuit; A data output circuit for outputting at least a part of the input data output from the plurality of sense circuits; 24.
  • Associative memory (Appendix 29)
  • the data input circuit and the data output circuit provided in a plurality of associative memories are connected to programmable switches provided on a plurality of wirings, and exchange data between the different associative memories.
  • the variable resistance nonvolatile memory element is: 30.
  • the variable resistance nonvolatile memory element is: 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)

Abstract

 類似度を演算する連想メモリにおいて、連想メモリセルの面積を小さくするとともに、リーク電流を抑える技術を提供するため、本発明の連想メモリセルは、複数の電流パスと、入力データに応答して電流パスを選択する論理回路と、複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子と、を有し、入力データと記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、抵抗ネットワーク及びマッチ線に接続され、入力データと記憶データとの論理演算結果によって、マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備える。

Description

連想メモリセル及び連想メモリ
 本発明は、連想メモリセル及びその連想メモリセルを備えた連想メモリに関する。特に、抵抗変化型不揮発性記憶素子を用いた連想メモリセル及び連想メモリに関する。
 データ間の類似度を演算することは、パターン認識において基本的な演算である。一般的な連想メモリとして、コンテントアドレッサブルメモリ(以下、CAMと呼ぶ)が広く知られている(CAM:Content Addressable Memory)。一般的なCAMでは、入力データと記憶データとが完全に一致しているデータを検索できるものの、似ているデータを検索する用途には利用できない。
 特許文献1には、データ間の類似度をハードウェアで並列に計算し、最も似ているデータを検索する連想メモリが開示されている。
 特許文献1の連想メモリは、参照データを保存する保存回路と、参照データと入力データとを比較する比較回路と、比較回路による比較結果に応じたパルスを発生するパルス生成回路とを有する。
特開2011-76688号公報
 特許文献1の連想メモリでは、保存回路及び比較回路のみを有するCAMセルと比較して、連想メモリセルの面積を小さくすることが困難であるという課題がある。
 また、特許文献1の連想メモリセルは、CMOS回路で構成されているため、電源を切ってしまうとデータが消失する(CMOS:Complementary Metal Oxide Semiconductor)。そのため、常に電源を投入する必要があり、リーク電流が抑えるのが困難であるという課題がある。
 本発明の目的は、類似度を演算する連想メモリにおいて、連想メモリセルの面積を小さくするとともに、リーク電流を抑える技術を提供することである。
 本発明の連想メモリセルは、複数の電流パスと、複数の電流パス及びサーチ線対に接続され、サーチ線対から入力する入力データに応答して電流パスを選択する論理回路と、複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子とを有し、入力データと記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、抵抗ネットワーク及びマッチ線に接続され、入力データと記憶データとの論理演算結果によって、マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備える。
 本発明の連想メモリは、格子状に配置された複数の連想メモリセルと、第1方向に配置された複数の連想メモリセルに接続された複数のサーチ線対と、第2方向に配置された複数の連想メモリセルを直列に接続する複数のマッチ線と、第2方向に配置された複数の連想メモリセルとマッチ線とによって構成されるワード回路と、複数のサーチ線と接続され、演算時に入力データに応じてサーチ線対を駆動するカラム側回路と、複数のマッチ線と接続され、複数のマッチ線を駆動するロウ側回路と、複数のマッチ線と接続され、複数のマッチ線の電位をセンスするセンス回路とを含み、連想メモリセルは、複数の電流パスと、複数の電流パス及びサーチ線対に接続され、サーチ線対から入力する入力データに応答して電流パスを選択する論理回路と、複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子とを有し、入力データと記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、抵抗ネットワーク及びマッチ線に接続され、入力データと記憶データとの論理演算結果によって、マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備える。
 本発明によれば、類似度を演算する連想メモリにおいて、連想メモリセルの面積を小さくするとともに、リーク電流を抑えることが可能になる。
本発明の第1の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第1の実施形態に係る連想メモリセルの構成を示すブロック図である。 本発明の第1の実施形態に係る連想メモリセルの具体的な回路図である。 本発明の第1の実施形態に係る連想メモリセルの論理演算を示す論理演算テーブルである。 本発明の第1の実施形態に係る1つのワード回路の演算動作を示す概念図である。 本発明の第1の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第1の実施形態に係る連想メモリの動作を示す図である。 本発明の第1の実施形態に係るマッチ線がHighになるタイミング分布を示す図である。 本発明の第1の実施形態に係る変形例1の充放電回路である。 本発明の第1の実施形態に係る変形例2の連想メモリセルの構成を示すブロック図である。 本発明の第1の実施形態に係る変形例2のレプリカ回路のブロック図である。 本発明の第1の実施形態に係る変形例2のレプリカセル回路1の回路図である。 本発明の第1の実施形態に係る変形例2のレプリカセル回路2の回路図である。 本発明の第1の実施形態に係る変形例2のレプリカ回路の遅延時間を模式的に示す概念図である。 本発明の第2の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第2の実施形態に係る連想メモリセルの回路図である。 本発明の第2の実施形態に係る連想メモリセルの論理演算を示す論理演算テーブルである。 本発明の第2の実施形態に係る1つのワード回路の演算動作例を示す概念図である。 本発明の第2の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第2の実施形態に係る連想メモリの動作を示す図である。 本発明の第2の実施形態に係るマッチ線がHighになるタイミング分布を示す図である。 本発明の第2の実施形態に係る変形例1における連想メモリの構成を概略的に示すブロック図である。 本発明の第2の実施形態に係る変形例1における比較回路の回路図である。 本発明の第2の実施形態に係る3値の連想メモリセルの論理値と、抵抗変化型不揮発性記憶素子の抵抗値の対応を示す論理演算テーブルである。 本発明の第3の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第3の実施形態に係る連想メモリセルの回路図である。 本発明の第4の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第4の実施形態に係る連想メモリセルの回路図である。 本発明の第4の実施形態に係る磁性素子及び抵抗変化型不揮発性記憶素子R0の概略平面図である。 本発明の第4の実施形態に係る磁性素子及び抵抗変化型不揮発性記憶素子R0の概略断面図である。 本発明の第4の実施形態に係る磁壁移動素子のデータ「1」の磁化状態を示す図である。 本発明の第4の実施形態に係る磁壁移動素子のデータ「0」の磁化状態を示す図である。 本発明の第4の実施形態に係る変形例の連想メモリセルの回路図である。 本発明の第5の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第5の実施形態に係る複数の連想メモリから構成される論理回路である。 本発明の第5の実施形態に係る変形例における、複数の連想メモリから構成される論理回路である。 本発明の第6の実施形態に係る連想メモリの構成を概略的に示すブロック図である。 本発明の第6の実施形態に係る3値セル回路の回路図である。 本発明の第6実施形態の磁性素子及び抵抗変化型不揮発性記憶素子の概略平面図である。 本発明の第6実施形態の磁性素子及び抵抗変化型不揮発性記憶素子の概略断面図である。 本発明の第6実施形態に係る磁壁移動素子のデータ「-1」の磁化状態を示す図である。 本発明の第6実施形態に係る磁壁移動素子のデータ「0」の磁化状態を示す図である。 本発明の第6実施形態に係る磁壁移動素子のデータ「1」の磁化状態を示す図である。 本発明の第6の実施形態に係る3値セル回路の論理値と抵抗変化型不揮発性記憶素子の抵抗値との対応を示す論理演算テーブルである。
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
 (第1の実施形態)
 まず、本発明の第1の実施形態について、図面を参照しながら詳細に説明する。なお、以下の説明において、図中で記号及び符号を付した構成要素に関しては、初出ではない限り、その構成要素の名称の末尾に記号又は符号のいずれかを付す。
 (構成)
 図1は、本発明の第1の実施形態に係る連想メモリ1の構成を概略的に示すブロック図である。なお、本実施形態の説明においては、連想メモリセルなどの形態が異なる変形例についても連想メモリ1と表記する。なお、図1において、ロウ側回路12からセンス回路13に向かう方向を第2方向、第2方向と直交するようにカラム側回路11から各連想メモリセル10に向かう方向を第1方向と定義する。第1方向および第2方向の定義は、他の図面においても同様である。
 第1の実施形態に係る連想メモリ1は、2次元のマトリックス状(格子状)に配置された複数の連想メモリセル10を備え、第2方向に配列された複数の連想メモリセル10は、ワード回路14を構成する。なお、図1においては、複数の連想メモリセル10及びワード回路14を区別するために、それぞれの構成要素について符号の末尾に列番号及び行番号を付しているが、特に区別しない場合は末尾の番号を省略する。
 また、連想メモリ1は、第1方向に配置された連想メモリセル10に共通に接続された複数のサーチ線対SL、/SLと、第2方向に配置された連想メモリセル10を直列に接続する複数のマッチ線MLと、を含む。なお、図1においては、複数の配線を区別するために、それぞれの配線について符号の末尾に列番号又は行番号を付しているが、特に区別しない場合は末尾の番号を省略する。
 さらに、連想メモリ1は、カラム側回路11と、ロウ側回路12と、センス回路13と、を備える。カラム側回路11は、複数のサーチ線対SL、/SLと接続され、演算時、入力データに応じて、サーチ線対SL、/SLを駆動する。ロウ側回路12は、複数のマッチ線MLと接続され、マッチ線MLを駆動する。センス回路13は、複数のマッチ線MLと接続され、マッチ線MLの電位をセンスする。
 (連想メモリセル)
 図2は、本発明の第1の実施形態に係る連想メモリセル10の構成を概略的に示すブロック図である。
 連想メモリセル10は、充放電回路15と、抵抗ネットワーク16と、を有する。
 サーチ線対SL、/SLは、抵抗ネットワーク16へ接続される。
 第2方向に配置された隣接の連想メモリセル10の一方と接続されたマッチ線MLは、充放電回路15のマッチ線入力端子MLinに接続される。第2方向に配置された隣接の連想メモリセル10の他方と接続されたマッチ線MLは、充放電回路15のマッチ線出力端子MLoutに接続される。すなわち、マッチ線入力端子MLinは、ロウ側回路12又はロウ側回路12方向において隣接する連想メモリ10のMLoutに接続される。また、マッチ線出力端子MLoutは、センス側回路13又はセンス側回路13において隣接する連想メモリセル10のMLinに接続される。
 図3は、本発明の第1実施の形態に係る連想メモリセル100の具体的な回路図である。連想メモリセル100は、充放電回路150と、抵抗ネットワーク160と、を有する。
 本回路構成の連想メモリセル100から構成されるワード回路14は、記憶データと入力データのハミング距離を、ワード回路14の遅延時間に反映させることができる。
 充放電回路150は、NMOSトランジスタ151と、PMOSトランジスタ152と、インバータ153と、を備える。NMOSトランジスタ151及びPMOSトランジスタ152は、CMOSインバータ154を形成する。
 マッチ線入力端子MLinは、NMOSトランジスタ151のゲートとPMOSトランジスタ152のゲートに接続される。インバータ153の入力端子は、PMOSトランジスタ152のドレインと、NMOSトランジスタ151のドレインに接続される。インバータ153の出力端子は、マッチ線出力端子MLoutに接続される。PMOSトランジスタ152のソースは、電源電圧Vddに接続される。NMOSトランジスタ151のソースは抵抗ネットワーク160の抵抗変化型不揮発性記憶素子R0の一端に接続される。
 抵抗ネットワーク160は、抵抗変化型不揮発性記憶素子R0及び抵抗変化型不揮発性記憶素子R1と、NMOS論理回路165(論理回路)と、を有する。なお、図3において、抵抗変化型不揮発性記憶素子R0は抵抗変化型不揮発性記憶素子161、抵抗変化型不揮発性記憶素子Rは抵抗変化型不揮発性記憶素子162である。NMOS論理回路165は、第1のNMOSトランジスタであるNMOSトランジスタN0と、第2のNMOSトランジスタであるNMOSトランジスタN1と、を含む。なお、NMOSトランジスタN0はNMOSトランジスタ166、NMOSトランジスタN1はNMOSトランジスタ167である。
 抵抗変化型不揮発性記憶素子R0の一端は充放電回路150のNMOSトランジスタ151のソースに接続され、他端はNMOSトランジスタN0のドレインに接続される。抵抗変化型不揮発性記憶素子R1の一端は充放電回路150のNMOSトランジスタ151のソースに接続され、他端はNMOSトランジスタN1のドレインに接続される。なお、抵抗変化型不揮発性記憶素子R0及びR1の一端同士は、互いに接続される。
 NMOSトランジスタN0において、ゲートはサーチ線SLに接続され、ドレインは抵抗変化型不揮発性記憶素子R0の他端に接続され、ソースは接地される。NMOSトランジスタN1において、ゲートはサーチ線対の他方/SLに接続され、ドレインは抵抗変化型不揮発性記憶素子R1の他端に接続され、ソースは接地される。
 本実施形態で用いる抵抗変化型不揮発性記憶素子は、磁気抵抗変化型ランダムアクセスメモリ、相変化型ランダムアクセスメモリ、抵抗変化型ランダムアクセスメモリ、コンダクタンスブリッジ型ランダムアクセスメモリなどで利用されているメモリ素子である。一般に、抵抗変化型不揮発性記憶素子は、高抵抗状態RHと低抵抗状態RLの2つの状態を取ることができる。
 演算時、本連想メモリセル100の抵抗ネットワーク160のセンス電流は、充放電回路150から流れ込む。
 抵抗ネットワーク160は、サーチ線上の入力データによって、抵抗ネットワーク160の電流パスが切り替わる。抵抗ネットワーク160の電流パスの抵抗値は、入力データと、抵抗変化型不揮発性記憶素子R0及び抵抗変化型不揮発性記憶素子R1のデータに応じて変化する。
 連想メモリセル100の回路において、入力データと、抵抗変化型不揮発性記憶素子R0及び抵抗変化型不揮発性記憶素子R1の記憶データの演算結果は、遅延時間を用いて表現する。すなわち、連想メモリセル100の回路では、センス電流の充放電の時間情報に応じて、マッチ線入力端子MLinへの入力のタイミングから、マッチ線出力端子MLoutの出力のタイミングまでの遅延時間を用いて記憶データの演算結果を表現する。
 図4に示した論理演算テーブル19は、本発明の第1実施形態における連想メモリセル10の論理演算を示す。
 論理演算テーブル19の第1列は、抵抗変化型不揮発性記憶素子R0の抵抗値を示す。高抵抗状態をRH、低抵抗状態をRLとして表記している。第2列は、抵抗変化型不揮発性記憶素子R1の抵抗値を示す。第3列は、連想メモリセル10に記憶しているデータAを示す。第4列は、サーチ線SL上の入力データBを示す。第5列は、データAとデータBとの否定排他的論理和(XNOR)の論理値に応じたマッチ線MLの入力から出力までの遅延時間を示す。
 次に、図3を用いて、図4の論理演算テーブル19における各行の動作について説明する。なお、以下の説明においては、項目を除いて行数を起算しており、2行目を第1行とする。
 (第1行)
 図4の論理演算テーブル19の第1行において、記憶データAは0である。このとき、R0は高抵抗状態RH、R1は低抵抗状態RLである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対SL、/SLはLowレベルである。
 演算開始直後、入力データB=0に応じて、サーチ線SLはLowレベル、/SLはHighレベルに駆動される。
 前段の連想メモリセル10からの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は充放電回路15から、抵抗変化型不揮発性記憶素子R1、NMOSトランジスタN1を介してGndへ流れ込む。
 その結果、マッチ線出力端子MLoutは、低抵抗状態RLに応じた遅延時間t(1)でHighレベルに遷移する。
 (第2行)
 図4の論理演算テーブル19の第2行において、記憶データAは0である。このとき、R0は高抵抗状態RH、R1は低抵抗状態RLである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対はLowレベルである。
 演算開始直後、入力データB=1に応じて、サーチ線SLはHighレベル、/SLはLowレベルに駆動される。
 前段の連想メモリセル10からの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は充放電回路15から、抵抗変化型不揮発性記憶素子R0、NMOSトランジスタN0を介してGndへ流れ込む。
 その結果、マッチ線出力端子MLoutは、高抵抗状態RHに応じた遅延時間t(0)でHighレベルに遷移する。
 (第3行)
 図4の論理演算テーブル19の第3行において、記憶データAは1である。このとき、R0は低抵抗状態RL、R1は高抵抗状態RHである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対SL、/SLはLowレベルである。
 演算開始直後、入力データB=0に応じて、サーチ線SLはLowレベル、/SLはHighレベルに駆動される。
 前段の連想メモリセル10からの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は、充放電回路15から、抵抗変化型不揮発性記憶素子R1、NMOSトランジスタN1を介してGndへ流れ込む。
 その結果、マッチ線出力端子MLoutは、高抵抗状態RHに応じた遅延時間t(0)でHighレベルに遷移する。
 (第4行)
 図4の論理演算テーブル19の第4行において、記憶データAは1である。このとき、R0は低抵抗状態RL、R1は高抵抗状態RHである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対SL、/SLはLowレベルである。
 演算開始直後、入力データB=1に応じて、サーチ線SLはHighレベル、/SLはLowレベルに駆動される。
 前段の連想メモリセル10からの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は充放電回路15から、抵抗変化型不揮発性記憶素子R0、NMOSトランジスタN0を介してGndへ流れ込む。
 その結果、マッチ線出力端子MLoutは、低抵抗状態RLに応じた遅延時間t(1)でHighレベルに遷移する。
 遅延時間t(1)は、遅延時間t(0)より小さいため、記憶データAと入力データBが一致した場合は、一致しなかった場合に比べ、遅延時間は短い。
 特許文献1に記載の連想メモリセルは、データを記憶する機能と遅延を発生させる機能が別々の回路で実現されている。それに対し、本実施形態に係る連想メモリセル10では、データを記憶する機能と遅延を発生させる機能の両方を抵抗変化型不揮発性記憶素子で実現することができるため、セル面積が小さくなる。
 また、特許文献1に記載の連想メモリセルは、待機時に電源を遮断すると記憶データが消失してしまうために電源を容易に遮断できない。それに対し、本実施形態の連想メモリセル10では、待機時に電源を遮断しても記憶データは抵抗変化型不揮発性記憶素子R0及び抵抗変化型不揮発性記憶素子R1に保持される。そのため、一般的な連想メモリではリーク電流が大きくなる懸念があるのに対し、本実施形態の連想メモリ1では電源を遮断してリーク電流を抑えることができる。
 図5は、第1の実施形態に係る連想メモリ1における、1つのワード回路の演算動作例を示す概念図である。なお、図5のワード回路は、6つの連想メモリセル10から構成され、ビット数Nは6である。
 図5の例のワード回路において、記憶データAが「011010」であり、入力データBが「101001」の場合、AxnorBは「001100」である。
 ここで、AxnorB(001100)において、1の数Cは2となる。また、以下の式1で定義されるハミング距離Hは4である。
H=N-C・・・(1)
 図5のワード回路の遅延時間D1は式2で表される。すなわち、記憶データと入力データのハミング距離が近いほど、遅延時間が短い。
D1=(N-C)・t(0)+C・t(1)・・・(2)
 図6は、本発明の第1実施形態に係る連想メモリ1の構成を概略的に示すブロック図である。ただし、図6においては、簡単のため、図1に示したカラム側回路11とサーチ線対SL、/SLは省略している。
 演算開始信号STARTは、ロウ側回路12のバッファ120の入力端子に接続され、バッファ120の出力端子はマッチ線MLに接続される。センス回路13は、各ワード回路14に対応してデータフリップフロップ(以下、DFF131)を備える(DFF:Data Flip-Flop)。
 クロック信号CLKは、センス回路13のバッファ130の入力端子に接続され、バッファ130の出力端子はDFF131のクロック端子に接続される。各行のマッチ線MLはDFF131のデータ入力端子に接続される。DFF131の出力端子は、センスアンプ出力信号SAOUTを出力する。
 図7は、本発明の第1実施形態に係る連想メモリ1の動作例を示す図である。
 図6及び図7を参照して、本発明の第1実施形態に係る連想メモリ1の演算時の動作を説明する。
 演算開始前、サーチ線対SL、/SLはLowレベル、演算開始信号STARTはLowレベル、クロック信号CLK信号はLowレベルである。
 演算開始信号STARTがHighレベルになると演算が開始する。この時刻tを0とする。
 ロウ側回路12は演算開始信号STARTを受け、マッチ線MLをHighレベルに駆動する。サーチ線SLも入力データに応じてHigh又はLowレベルに駆動する。
 各ワード回路14は、前述のように記憶データと入力データのハミング距離に応じた遅延時間で、出力信号を各マッチ線MLに出力する。
 時刻t_clkにおいて、クロック信号CLKがHighになると、センス回路13は、センス回路13におけるマッチ線MLのデータをラッチし、センスアンプ出力信号SAOUTにそのデータを出力する。
 図8は、マッチ線MLがHighになるタイミングのヒストグラムである。なお、ワード回路14のビット数はNとする。
 記憶データと入力データのハミング距離が0の場合、マッチ線MLがHighになるタイミングは、式3で示した時刻T0を中心に分布する。
T0=N・t(1)・・・(3)
 同様に、記憶データと入力データのハミング距離が1の場合、マッチ線MLがHighになるタイミングは、式4で示した時刻T1を中心に分布する。
T1=(N-1)・t(1)+t(0)・・・(4)
 同様に、記憶データと入力データのハミング距離が2の場合、マッチ線MLがHighになるタイミングは、式5で示した時刻T2を中心に分布する。
T2=(N-2)・t(1)+2・t(0)・・・(5)
 ハミング距離が3以上の場合についても同様であるが、説明は省略する。
 各分布の間隔は、t(0)-t(1)である。
 ここで、各分布のばらつきをσtとする。例えば、ハミング距離が0のワード回路を検索したい場合、クロック信号CLKは、T0+σtからT1-σtの間のウィンドウW1においてHighレベルに遷移すればよい。なお、ウィンドウW1は、式6で表される。
W1=t(0)-t(1)-2・σt・・・(6)
 すると、記憶データと入力データのハミング距離が0のワード回路14に対応したセンスアンプ出力信号SAOUTはHighレベル、それ以外はLowレベルになる。すなわち、ハミング距離0のワード回路14のみ検出することができる。
 同様に、ハミング距離が1以下のワード回路を検索したい場合には、クロック信号CLKは、T1+σtからT2-σtの間のウィンドウW2においてHighレベルに遷移すればよい。
 すると、記憶データと入力データのハミング距離が1以下のワード回路に対応したセンスアンプ出力信号SAOUTはHighレベル、それ以外はLowレベルになる。つまり、ハミング距離1以下のワード回路のみ検出することができる。
 同様に、第1の実施形態に係る連想メモリ1は、ハミング距離がdビット以下のワード回路14を検出することができる(dは0以上N以下の整数)。
 以上のように、本発明の第1の実施形態によれば、入力データと複数の記憶データの演算結果がdビット以下であるワード回路を検出することができる。ただし、本実施形態においては、具体的な類似度の演算としてハミング距離の演算の場合を示した。
 また、本発明の第1の実施形態によれば、データを記憶する機能と、遅延を発生する機能の両方を抵抗変化型不揮発性記憶素子で実現することによって、連想メモリセルの面積をさらに小さくすることができる。
 さらに、本発明の第1の実施形態に係る連想メモリセルを用いた連想メモリを構成すれば、容易に電源を遮断できるため、リーク電流を抑えることができる。
 なお、本実施形態の抵抗変化型不揮発性記憶素子としては、低抵抗状態と、高抵抗状態の2値(デジタル値)を取った場合を示したが、必ずしも2値に限らない。抵抗変化型不揮発性記憶素子は、低抵抗状態と、高抵抗状態の間の任意のアナログ値を取っても良い。アナログ値を取る抵抗変化型不揮発性記憶素子としては、例えば、国際公開第2009/101827号公報などに公開されている抵抗変化型不揮発性記憶素子を利用しても良い。本実施形態に係る連想メモリは、アナログ値を有する抵抗変化型不揮発性記憶素子を利用した場合、連想メモリセルの遅延時間もアナログ値になる点が変更になるが、遅延時間は加算できるため、容易に適用できる。
 (変形例1)
 次に、第1の実施形態に係る連想メモリ1の変形例1について説明する。
 変形例1の連想メモリ1は、図9に示した連想メモリセル101を備える。変形例1の連想メモリ1は、連想メモリセル100の充放電回路150を充放電回路155に置換した構成を取る。なお、重複する構成についての説明は省略する。
 変形例1の充放電回路155は、NMOSトランジスタ156と、PMOSトランジスタ157と、インバータ158と、を備える。NMOSトランジスタ156及びPMOSトランジスタ157は、CMOSインバータ159を形成する。
 マッチ線入力端子MLinは、NMOSトランジスタ156のゲートに接続される。プリチャージ信号の反転信号/PRCは、PMOSトランジスタ157のゲートに接続される。インバータ158の入力端子は、PMOSトランジスタ157のドレインと、NMOSトランジスタ156のドレインに接続される。インバータ158の出力端子は、マッチ線出力端子MLoutに接続される。PMOSトランジスタ157のソースは電源電圧Vddに接続される。NMOSトランジスタ156のソースは抵抗ネットワーク160の抵抗変化型不揮発性記憶素子161及び162の一端に接続される。
 変形例1によれば、演算時、プリチャージ信号の反転信号/PRCは、演算開始信号STARTと同様の波形である。
 連想メモリ1におけるワード回路14では、演算終了後、全ての連想メモリセル10のマッチ線入力端子MLinとマッチ線出力端子MLoutをLowレベルにリセットする。連想メモリセル100を適用した場合、直列に接続されている連想メモリセル10を順番にリセットさせていく時間が必要である。一方、変形例1の連想メモリセル101を適用した場合、プリチャージ信号の反転信号/PRCをLowレベルにすれば、全ての連想メモリセル101のマッチ線入力端子MLinとマッチ線出力端子MLoutを同時にLowレベルにリセットできる。
 そのため、本実施形態の変形例1に係る連想メモリセル101を適用した連想メモリ1においては、プリチャージ信号の反転信号/PRCを設けることにより、ワード回路14のリセット時間が短くなる。
 以上のように、本実施形態の変形例1に係る連想メモリセル101を適用すると、ワード回路14のリセット時間を短くすることができ、演算のスループットを向上することができる。
 (変形例2)
 次に、第1の実施形態に係る連想メモリ1の変形例2について説明する。
 変形例2の連想メモリ1は、図10に示した回路構成を取る。図6に示した回路構成とは、CLK信号をレプリカ回路17で生成している点のみが異なる。なお、重複する構成についての説明は省略する。
 図10は、本実施形態の変形例2に係る連想メモリ1の構成を概略的に示すブロック図である。ただし、図10においては、図1に示したカラム側回路11とサーチ線対SL、/SLは省略している。また、図6と同様の構成要素については、図6で用いた同じ符号を付した。
 演算開始信号STARTは、ロウ側回路12のバッファ120の入力端子に接続され、バッファ120の出力端子はマッチ線MLに接続される。さらに、演算開始信号STARTはレプリカ回路17に接続される。レプリカ回路17は、START信号から所定の遅延時間後にクロック信号CLKを生成する。センス回路13は、ワード回路14に対応したデータフリップフロップ(DFF131)を備える。クロック信号CLKは、センス回路13のバッファ130の入力端子に接続される。バッファ130の出力端子はDFF131のクロック端子に接続される。各行のマッチ線MLはDFF131のデータ入力端子に接続される。DFF131の出力端子は、センスアンプ出力信号SAOUTを出力する。
 (レプリカ回路)
 図11は、本実施形態の変形例2の連想メモリ1におけるレプリカ回路17の一例を示すブロック図である。図11は、ビット数Nが6、ハミング距離が3以下のワードを検出するためにレプリカ回路17を使用する例である。なお、レプリカ回路17のビット数はワード回路14のビット数と同じ値にする。
 レプリカ回路17は、1つのレプリカセル回路A171と、N-1個のレプリカセル回路B172から構成される。レプリカセル回路A171とN-1個のレプリカセル回路B172は、マッチ線MLを介して直列に接続される。レプリカセル回路A171は、マッチ線ML上のSTART信号を受ける。最終段のレプリカセル回路B172(172-5)は、CLK信号をマッチ線ML上に出力する。レプリカ用サーチ線SLR0は、レプリカセル回路171に接続される。レプリカ用サーチ線対SLRn、/SLRnは、各々のレプリカセル回路B172に接続される(nは自然数)。
 ハミング距離がd以下のワードを検出するためにレプリカ回路17を使用する場合、d個のレプリカセル回路B172に接続するSLRはLowレベル、/SLRはHighレベルに設定される。図11では、Highレベルは電源電圧Vdd、Lowレベルはグラウンド電圧Gndとしている。N-1-d個のレプリカ回路172に接続するSRLはHighレベル、/SRLはLowレベルに設定される。レプリカセル回路A171に接続するSRL0はHighレベルが設定される。
 (レプリカセル回路A)
 図12は、本実施形態の変形例2の連想メモリ1におけるレプリカセル回路A171である。レプリカセル回路A171は、充放電回路175と、抵抗ネットワーク180と、を有する。
 充放電回路175は、NMOSトランジスタ176と、PMOSトランジスタ177と、インバータ178と、を備える。NMOSトランジスタ176及びPMOSトランジスタ177は、CMOSインバータ179を形成する。
 マッチ線入力端子MLinは、NMOSトランジスタ176のゲートとPMOSトランジスタ177のゲートに接続される。インバータ178の入力端子は、PMOSトランジスタ177のドレインと、NMOSトランジスタ176のドレインに接続される。インバータ178の出力端子は、マッチ線出力端子MLoutに接続される。PMOSトランジスタ177のソースは、電源電圧Vddに接続される。NMOSトランジスタ176のソースは抵抗ネットワーク180の抵抗変化型不揮発性記憶素子R0の一端に接続される。
 レプリカセル回路A171の抵抗ネットワーク180は、4つの抵抗変化型不揮発性記憶素子181~184と、1つのNMOSトランジスタ191を含むNMOS論理回路190と、を有する。
 抵抗変化型不揮発性記憶素子181及び抵抗変化型不揮発性記憶素子183の一端は、充放電回路175のNMOSトランジスタ176のソースに接続される。抵抗変化型不揮発性記憶素子181及び抵抗変化型不揮発性記憶素子183の他端は、それぞれ抵抗変化型不揮発性記憶素子182及び抵抗変化型不揮発性記憶素子184の一端に接続される。また、抵抗変化型不揮発性記憶素子182及び抵抗変化型不揮発性記憶素子184の他端は、NMOSトランジスタN0のドレインに接続される。4つの抵抗変化型不揮発性記憶素子181~184は図12のように直並列に接続され、抵抗変化型不揮発性記憶素子181~184の合成抵抗は(RH+RL)/2になる。
 レプリカ用サーチ線SLRはNMOSトランジスタN0(191)のゲートに接続される。NMOSトランジスタN0のドレインは抵抗変化型不揮発性記憶素子182に、ソースは接地される。レプリカセル回路A171の遅延時間は、直並列に接続された抵抗変化型不揮発性記憶素子181~184を介して流れるセンス電流の放電時間に対応した(t(0)+t(1))/2である。
 (レプリカセル回路B)
 図13は、本実施形態の変形例2の連想メモリ1におけるレプリカセル回路B172である。レプリカセル回路B172は、充放電回路175と、抵抗ネットワーク185と、を有する。なお、レプリカセル回路A171とレプリカセル回路B172の充放電回路175は同一であるため、詳細な説明は省略する。
 レプリカセル回路B172の抵抗ネットワーク185は、抵抗変化型不揮発性記憶素子186及び抵抗変化型不揮発性記憶素子187と、NMOSトランジスタN0及びNMOSトランジスタN1を含むNMOS論理回路195と、を有する。なお、図13において、NMOSトランジスタN0はNMOSトランジスタ196であり、NMOSトランジスタN1はNMOSトランジスタ197である。
 抵抗変化型不揮発性記憶素子186及び187の一端は充放電回路175のNMOSトランジスタ176に接続される。低抵抗状態RLの抵抗変化型不揮発性記憶素子186の他端はNMOSトランジスタN0のドレインに接続され、高抵抗状態RHの抵抗変化型不揮発性記憶素子187の他端はNMOSトランジスタN1のドレインに接続される。NMOSトランジスタN0において、ゲートはレプリカ用サーチ線SLRに接続され、ドレインは低抵抗状態RLの抵抗変化型不揮発性記憶素子186の他端に接続され、ソースは接地される。NMOSトランジスタN1において、ゲートはレプリカ用サーチ線対の他方/SLRに接続され、ドレインは高抵抗状態RHの抵抗変化型不揮発性記憶素子187に接続され、ソースは接地される。
 SLRがHighレベル、/SLRがLowレベルの場合、レプリカセル回路B172の遅延時間は、低抵抗状態RLの抵抗変化型不揮発性記憶素子186を介して流れるセンス電流の放電電流に対応したt(1)である。SLRがLowレベル、/SLRがHighレベルの場合、レプリカセル回路B172の遅延時間は、高抵抗状態RHの抵抗変化型不揮発性記憶素子187を介して流れるセンス電流の放電時間に対応したt(0)である。
 図14は、本実施形態の変形例2の連想メモリ1における遅延時間を模式的に示す概念図である。なお、図14は図10に対応する図である。
 レプリカセル回路A171での遅延時間t1は、式7で表される。
t1=(t(0)+t(1))/2・・・(7)
 d個のレプリカセル回路B172の遅延時間は、それぞれt(0)である。そのため、d個のレプリカセル回路B172の合計遅延時間t2は、式8のように表される。
t2=d・t(0)・・・(8)
 N-1-d個のレプリカセル回路B172の遅延時間は、それぞれt(1)である。そのため、N-1-d個のレプリカセル回路の合計遅延時間t3は、式9のように表される。
t3=(N-1-d)・t(1)・・・(9)
 従って、レプリカ回路17の遅延、すなわち、START信号の立ち上がりからCLK信号の立ち上がりまでの遅延時間t_clkは、式10で表される。
t_clk=t1+t2+t3・・・(10)
 t_clkは、(N-d)・t(1)+d・t(0)と、(N-d-1)・t(1)+(d+1)・t(0)と、の間であり、ハミング距離がd以下のワード回路を検出することができる。
 以上のように、本実施形態の変形例2におけるレプリカ回路17は、ワード回路14と同じ環境温度・同じ電源電圧で動作するため、環境温度や電源電圧が変化しても、適切なタイミングでクロックを発生することができる。また、変形例2におけるレプリカ回路17では、レプリカ回路17とワード回路14の距離が近いため、トランジスタの特性やMTJの抵抗値のグローバルなばらつきは含まれずにローカルなばらつきのみとなる。そのため、変形例2におけるレプリカ回路17によれば、入力データと比較データとを精度良く比較することができ、誤読み出しを抑制できる(MTJ:Magnetic Tunnel Junction)。
 (第2の実施形態)
 図15は、本発明の第2の実施形態に係る連想メモリ2の構成を概略的に示すブロック図である。
 第2の実施形態に係る連想メモリ2は、2次元のマトリックス状に配置された複数の連想メモリセル20を備え、第2方向に配列された複数の連想メモリセル20は、ワード回路24を構成する。なお、図15においては、複数の連想メモリセル20及びワード回路24を区別するために、それぞれの構成要素について符号の末尾に列番号及び行番号を付しているが、特に区別しない場合は末尾の番号を省略する。
 また、連想メモリ2は、第1方向に配置された連想メモリセル20に共通に接続された複数のサーチ線対SL、/SLと、第2方向に配置された連想メモリセル20を直列に接続する複数のマッチ線MLと、を含む。なお、図15においては、複数の線対を区別するために、それぞれの線対について符号の末尾に列番号又は行番号を付しているが、特に区別しない場合はそれらの番号を省略する。
 さらに、連想メモリ2は、カラム側回路21と、ロウ側回路22と、センス回路23と、を備える。カラム側回路21は、複数のサーチ線対SL、/SLと接続され、演算時、入力データに応じて、サーチ線対を駆動する。ロウ側回路22は、複数のマッチ線MLと接続され、マッチ線MLを駆動する。センス回路23は、複数のマッチ線MLと接続され、マッチ線MLの電位をセンスする。
 (連想メモリセル)
 図16は、本発明の第2の実施形態における連想メモリセル20の具体的な回路図(連想メモリセル200)である。
 本回路構成の連想メモリセル200を含むワード回路24は、記憶データと入力データの内積を、ワード回路24の遅延時間に反映させることができる。
 充放電回路250は、NMOSトランジスタ251と、PMOSトランジスタ252と、インバータ253と、を有する。NMOSトランジスタ251及びPMOSトランジスタ252は、CMOSインバータ254を形成する。
 マッチ線入力端子MLinは、NMOSトランジスタ251のゲートとPMOSトランジスタ252のゲートに接続される。インバータ253の入力端子は、PMOSトランジスタ252のドレインと、NMOSトランジスタ251のドレインに接続される。インバータ253の出力端子は、マッチ線出力端子MLoutに接続される。PMOSトランジスタ251のソースは電源電圧Vddに接続され、NMOSトランジスタ252のソースは抵抗ネットワーク260の抵抗変化型不揮発性記憶素子R0に接続される。
 抵抗ネットワーク260は、抵抗変化型不揮発性記憶素子R0(261)と、NMOS論理回路265(論理回路)と、を有する。NMOS論理回路265は、第1のNMOSトランジスタであるNMOSトランジスタN0と、第2のNMOSトランジスタであるNMOSトランジスタN1と、を含む。なお、図16において、NMOSトランジスタN0はNMOSトランジスタ266であり、NMOSトランジスタN1はNMOSトランジスタ267である。
 抵抗変化型不揮発性記憶素子R0の一端は充放電回路250のNMOSトランジスタ251のソース及びNMOSトランジスタN1のドレインに接続され、他端はNMOSトランジスタN0のドレインに接続される。
 NMOSトランジスタN0において、ゲートはサーチ線SLに接続され、ドレインは抵抗変化型不揮発性記憶素子R0の他端に接続され、ソースは接地される。NMOSトランジスタN1において、ドレインは充放電回路250のNMOSトランジスタ251のソース及び抵抗変化型不揮発性記憶素子R0の一端に接続され、ゲートはサーチ線対の他方/SLに接続され、ソースは接地される。
 演算時、本連想メモリセル200の抵抗ネットワーク260のセンス電流は、充放電回路250から流れ込む。
 抵抗ネットワーク260は、サーチ線上の入力データによって、抵抗ネットワーク260の電流パスが切り替わる。抵抗ネットワーク260の電流パスの抵抗値は、入力データと、抵抗変化型不揮発性記憶素子R0のデータ(記憶データ)に応じて変化する。
 連想メモリセル200の回路において、抵抗変化型不揮発性記憶素子の記憶データと入力データとの演算結果は、遅延時間を用いて表現する。すなわち、センス電流の充放電の時間情報に応じて、マッチ線入力端子MLinへの入力のタイミングから、マッチ線出力端子MLoutの出力のタイミングまでの遅延時間を用いて表現する。
 図17に示した論理演算テーブル28は、本発明の第2の実施形態における連想メモリセル20の論理演算を示す。
 論理演算テーブル28の第1列は、抵抗変化型不揮発性記憶素子R0の抵抗値を示す。高抵抗状態をRH、低抵抗状態をRLとして表記している。論理演算テーブル28の第2列は、連想メモリセルに記憶しているデータAを示す。論理演算テーブル28の第3列は、サーチ線SL上の入力データを示す。論理演算テーブル28の第4列は、データAとデータBのANDの論理値に応じたマッチ線MLの入力から出力までの遅延時間を示す。
 次に、図16を用いて、図17の論理演算テーブル28における各行の動作について説明する。
 (第1行)
 図17の論理演算テーブル28の第1行において、記憶データAは0である。このとき、R0は高抵抗状態RHである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対SL、/SLはLowレベルである。
 演算開始直後、入力データB=0に応じて、サーチ線SLはLowレベル、/SLはHighレベルに駆動される。
 前段の連想メモリセル200からの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は充放電回路250から、NMOSトランジスタN1を介してGndへ流れ込む。
 その結果、マッチ線MLの出力端子MLoutは、トランジスタN1に応じた遅延時間t(0,tr)でHighレベルに遷移する。
 (第2行)
 図17の論理演算テーブル28の第2行において、記憶データAは0である。このとき、R0は高抵抗状態RHである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対SL、/SLはLowレベルである。
 演算開始直後、入力データB=1に応じて、サーチ線SLはHighレベル、/SLはLowレベルに駆動される。
 前段の連想メモリセルからの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は充放電回路250から、抵抗変化型不揮発性記憶素子R0、NMOSトランジスタN0を介してGndへ流れ込む。
 その結果、マッチ線MLの出力端子MLoutは、高抵抗状態RHに応じた遅延時間t(0)でHighレベルに遷移する。
 (第3行)
 図17の論理演算テーブル28の第3行において、記憶データAは1である。このとき、R0は低抵抗状態RLである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対SL、/SLはLowレベルである。
 演算開始直後、入力データB=0に応じて、サーチ線SLはLowレベル、/SLはHighレベルに駆動される。
 前段の連想メモリセル200からの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は充放電回路250から、NMOSトランジスタN1を介してGndへ流れ込む。
 その結果、マッチ線MLの出力端子MLoutは、トランジスタN1に応じた遅延時間t(0,tr)でHighレベルに遷移する。
 (第4行)
 図17の論理演算テーブル28の第4行において、記憶データAは1である。このとき、R0は低抵抗状態RLである。
 演算前、マッチ線入力端子MLinはLowレベル、マッチ線出力端子MLoutはLowレベルである。サーチ線対SL、/SLはLowレベルである。
 演算開始直後、入力データB=1に応じて、サーチ線SLはHighレベル、/SLはLowレベルに駆動される。
 前段の連想メモリセル20からの信号の伝播により、マッチ線入力端子MLinがHighレベルに遷移すると、センス電流は充放電回路250から、抵抗変化型不揮発性記憶素子R0、NMOSトランジスタN0を介してGndへ流れ込む。
 その結果、マッチ線MLの出力端子MLoutは、低抵抗状態RLに応じた遅延時間t(1)でHighレベルに遷移する。
 図18は、第2の実施形態に係る連想メモリ2における、1つのワード回路24の演算動作例を示す概念図である。なお、図18のワード回路24は、6つの連想メモリセルから構成され、ビット数Nは6である。
 図18の例のワード回路24において、記憶データAが「011011」であり、入力データBが「101001」の場合、AandBは「001001」である。
 ここで、AandB(001001)において、1の数Cは2となる。また、入力データBの1の数Mは3である。このとき、ワード回路の遅延時間D2は式11で表される。
 D2=(N-M)・t(0、tr)+(M-C)・t(0)+C・t(1)・・・(11)
 図19は、本発明の第2の実施形態に係る連想メモリ2の構成を概略的に示すブロック図である。ただし、図19においては、簡単のため、カラム側回路21とサーチ線対SL、/SLは省略している。
 演算開始信号STARTは、ロウ側回路22のバッファ220の入力端子に接続され、バッファ220の出力端子はマッチ線MLに接続される。センス回路23は、各ワード回路24に対応してデータフリップフロップ(DFF231)を備える。
 クロック信号CLKは、センス回路23のバッファ230の入力端子に接続され、バッファ230の出力端子はDFF231のクロック端子に接続される。各行のマッチ線MLはDFF231のデータ入力端子に接続される。DFF231の出力端子は、センスアンプ出力信号SAOUTを出力する。
 図20は、本発明の第2の実施形態に係る連想メモリ2の動作例を示す図である。
 図19及び図20を参照して、本発明の第2の実施形態における連想メモリの演算時の動作を説明する。
 演算開始前、サーチ線対SL、/SLはLowレベル、演算開始信号STARTはLowレベル、クロック信号CLK信号はLowレベルである。
 演算開始信号STARTがHighレベルになると演算が開始する。この時刻tを0とする。
 ロウ側回路22は演算開始信号STARTを受け、マッチ線MLをHighレベルに駆動する。サーチ線SLも入力データに応じてHigh又はLowレベルに駆動する。
 各ワード回路24は、前述のように記憶データと入力データの内積に応じた遅延時間で、出力信号を各マッチ線MLに出力する。
 時刻t_clkにおいて、クロック信号CLKがHighになると、センス回路23は、センス回路23におけるマッチ線MLのデータをラッチし、センスアンプ出力信号SAOUTにそのデータを出力する。
 図21は、マッチ線MLがHighになるタイミングのヒストグラムを示す。なお、ワード回路のビット数はNとする。
 記憶データと入力データの内積がMの場合、マッチ線MLがHighになるタイミングは、式12に示した時刻TM0を中心に分布する。
TM0=(N―M)・t(0,tr)+M・t(1)・・・(12)
 同様に、記憶データと入力データの内積がM-1の場合、マッチ線MLがHighになるタイミングは、式13に示した時刻TM1を中心に分布する。
TM1=(N―M)・t(0,tr)+(M-1)・t(1)+t(0)・・・(13)
 同様に、記憶データと入力データの内積がM-2の場合、マッチ線MLがHighになるタイミングは、式14で示した時刻TM2を中心に分布する。
TM2=(N―M)・t(0,tr)+(M-2)・t(1)+2・t(0)・・・(14)
 内積がM-3以下の場合については、図21には示していない。
 各分布の間隔は、t(0)-t(1)である。
 ここで、各分布のばらつきがσtとする。このとき、図21において、(N―M)・t(0,tr)+M・t(1)+σtから(N―M)・t(0,tr)+(M-1)・t(1)+t(0)-σtの間がウィンドウW3となる。例えば、内積がMのワード回路24を検索したい場合、図21のウィンドウW3において、クロック信号CLKをHighレベルに遷移すればよい。なお、ウィンドウW3は、式15で表される。
W3=t(0)-t(1)-2・σt・・・(15)
 すると、記憶データと入力データの内積がMのワード回路24に対応したセンスアンプ出力信号SAOUTはHighレベル、それ以外はLowレベルになる。すなわち、内積がMのワード回路24のみ検出することができる。
 同様に、第2の実施形態の連想メモリは、内積がdビット以上のワード回路24を検出することができる(dは0以上N以下の整数)。
 以上のように、本発明の第2の実施形態によれば、入力データと複数の記憶データの演算結果がdビット以上であるワード回路を検出することができる。ただし、本実施形態によれば、類似度の具体的な演算として内積の演算の場合を示した。
 また、本発明の第2の実施形態によれば、データを記憶する機能と、遅延を発生する機能の両方を抵抗変化型不揮発性記憶素子で実現することで、連想メモリセルの面積を小さくすることができる。
 さらに、本発明の第2の実施形態に係る連想メモリセルを用いた連想メモリを構成すれば、電源を容易に遮断できるため、リーク電流を抑えることができる。
(変形例1)
 次に、第2の実施形態に係る連想メモリ2の変形例1について説明する。
 変形例2の連想メモリ2は、図22に示した回路構成を取る。図19に示した回路構成とは、センス回路27に比較回路270を備えている点のみが異なる。なお、重複する構成についての説明は適宜省略される。
 第2の実施形態の変形例1では、式16に示した内積の差に対する階段関数の演算を実行する。
Figure JPOXMLDOC01-appb-I000001
 ここで、A2nは、nを0以上の整数として、2n行目のワード回路24に記憶されているデータである。A2n+1は、2n+1行目のワード回路24に記憶されているデータである。Bは入力データである。SAOUTnはn番目の比較回路270の出力である。
 第2の実施形態の変形例1は、式16の演算を隣接するワード回路24間の遅延時間の比較で行う。以下、遅延時間の比較で式16を実行できることを示す。
 変形例1のセンスアンプは、2n行目のワード回路24の遅延時間と2n+1行目のワード回路24との遅延時間の比較の結果、式17のように出力する。
Figure JPOXMLDOC01-appb-I000002
 ここで、式17のそれぞれの不等式において、第1項(一つ目の角括弧内)は2n+1行目の遅延時間であり、第2項(二つ目の角括弧内)は2n行目の遅延時間である。なお、Nはワード回路24のビット数、Mは入力データBにおける1の数、C2nは2n行目のワード回路24の記憶データと入力データとの内積A2n・B、C2n+1は2n+1行目のワード回路の記憶データと入力データとの内積A2n+1・Bである。t(0、tr)、t(0)、t(1)は、図17の論理演算テーブル28中の遅延時間(4列目)である。ただし、遅延のばらつきがないと仮定している。式17を書き換えると、式18になる。
Figure JPOXMLDOC01-appb-I000003
 式18において、t(0)-t(1)は正であるため、式18は式16と等価である。
 図22を参照して、本発明の第2の実施形態に係る変形例1の連想メモリ1について説明する。なお、これ以降、隣接するワード回路24間の処理を説明するため、隣接する奇数行のワード回路24をワード回路24-2n+1、偶数行のワード回路24をワード回路24-2nと表記し、その他の構成要素についても対応するように表記する(n:整数)。
 演算開始信号STARTは、ロウ側回路22のバッファ220の入力端子に接続され、バッファ220の出力端子はマッチ線MLに接続される。センス回路27は、比較回路270を備える。比較回路270-nは、ワード回路24-2nとワード回路24-2n+1のマッチ線MLの出力を受ける。比較回路270-nは、マッチ線ML2nとマッチ線ML2n+1のどちらが先にHighレベルに遷移したかを検出する。マッチ線2nが先にHighレベルに遷移した場合、比較回路270-nの出力信号SAOUTnはLowレベルである。マッチ線ML2n+1が先にHighレベルに遷移した場合、比較回路270nの出力信号SAOUTnはHighレベルである。
 図23は、本実施形態の変形例1の連想メモリ1における比較回路270の回路図である。
 比較回路270は、マッチ線MLout0とMLout1のどちらが先にHighレベルに遷移するかを検出する回路である。
 比較回路270は、4つのPMOSトランジスタP0~P3(271~274)と、5つのNMOSトランジスタN0~N4(275~279)と、インバータINV0(インバータ280)及びインバータINV1(インバータ282)と、バッファBUF0(バッファ283)と、を有する。なお、図23において、PMOSトランジスタP0~P3はPMOSトランジスタ271~274であり、NMOSトランジスタN0~N4はNMOSトランジスタ275~279である。また、図23において、インバータINV0はインバータ280であり、インバータINV1はインバータ282であり、バッファBUF0はバッファ283である。
 PMOSトランジスタP0とNMOSトランジスタN0とはインバータINV2(インバータ291)を形成しPMOSトランジスタP1とNMOSトランジスタN1とはインバータINV3(インバータ293)を形成する。インバータINV2とインバータINV3は、1ビットのデータを保持するようにクロスカップルされる。
 インバータINV2において、電源端子はセンスアンプの電源電圧Vddsaに接続され、Gnd端子はNMOSトランジスタN2のドレインに接続される。インバータINV3において、電源端子はセンスアンプの電源電圧Vddsaに接続され、Gnd端子はNMOSトランジスタN3のドレインに接続される。インバータINV2の出力端子は、インバータINV0の入力端子及びPMOSトランジスタP2に接続される。インバータINV3の出力端子は、インバータINV1の入力端子及びPMOSトランジスタP3に接続される。インバータINV1の出力端子は、センスアンプ出力信号SAOUTを出力する。
 NMOSトランジスタN2において、ゲートはマッチ線MLout0に接続され、ソースはGndに接地される。NMOSトランジスタN3において、ゲートはマッチ線MLout1に接続され、ソースはGndに接地される。PMOSトランジスタP2において、ゲートはプリチャージ信号の反転信号/PRCに接続され、ソースはセンサアンプの電源電圧Vddsaに接続される。PMOSトランジスタP3において、ゲートはプリチャージ信号の反転信号/PRCに接続される。バッファBUF0において、入力端子はMLout0に接続され、出力端子はトランジスタN4のゲートに接続される。NMOSトランジスタN4において、ドレインはインバータN2のGnd端子に接続され、ソースは接地される。なお、センスアンプの電源電圧Vddsaは連想メモリセルの電源電圧Vddと一致していなくても、正常に動作する。
 比較回路270は、プリチャージ時、プリチャージ信号の反転信号/PRCがLowレベル、マッチ線MLout0、MLout1がLowレベルであり、PMOSトランジスタP2とP3がノードD、/DをHighレベルにする。その後、比較時、プリチャージ信号の反転信号/PRCがHighレベルになる。
 マッチ線MLout0がMLout1より先にHighレベルに遷移すると、ノードDの電荷が放電し、Lowレベルになる。一方、ノード/DはHighレベルであり、出力信号SAOUTはLowレベルである。
 マッチ線MLout1がMLout0より先にHighレベルに遷移すると、ノード/Dの電荷が放電し、Lowレベルになる。一方、ノードDはHighレベルであり、出力信号SAOUTはHighレベルになる。
 マッチ線MLout0とMLout1がある時間ばらつき2σt以内のほぼ同時にHighレベルに遷移した場合、NMOSトランジスタN2及びNMOSトランジスタN3がONし、ノードD及び/Dの電荷が放電し始める。その後、BUF0の伝播遅延後にNMOSトランジスタN4がONし、ノードDはLowレベル、ノード/DはHighレベルになり、出力信号SAOUTはLowレベルになる。
 以上のように、本実施形態の変形例1における連想メモリ2は、内積の差に対する階段関数の演算を実行することができる。本実施形態の変形例1における連想メモリ2は、比較される2つのワード回路24が、同じ環境温度・同じ電源電圧で動作するため、環境温度や電源電圧が変化しても適切に動作することができる。また、変形例1における連想メモリ2では、比較される2つのワード回路24の距離が近いため、トランジスタの特性やMTJの抵抗値ばらつきはグローバルなばらつきは含まれず、ローカルばらつきのみである。そのため、変形例1における連想メモリ2では、入力データと記憶データとを精度良く比較することができ、誤読み出しを抑制できる。
 なお、第2の実施形態に係る連想メモリ2は、3値の連想メモリセル20のデータと、入力データの内積を演算するとみなすこともできる。具体的には、3値の連想メモリセル20は、2n行p列目と2n+1行目p列目の連想メモリセルから構成され、図24に示した論理演算テーブル29に示したように3つの状態を取る。
 論理演算テーブル29の第1列目のR1は、2n+1行目p列目の連想メモリセルの抵抗である。論理演算テーブル29の第2列目のR2は、2n行目p列目の連想メモリセルの抵抗である。論理演算テーブル29の第3列目は、記憶データAである。すると、式16は式19に書き換えられる。
Figure JPOXMLDOC01-appb-I000004
 ここでAは、nを0以上の整数として、n行目の3値の連想メモリセル20に記憶されているデータである。Bは入力データである。SAOUTnはn番目の比較回路270の出力である。従って、第2の実施形態の連想メモリ2は、3値の記憶データと入力データの内積に対する階段関数の演算を実行できる。
 (第3の実施形態)
 図25は、本発明の第3の実施形態に係る連想メモリ3の構成を概略的に示すブロック図である。なお、第1及び第2の実施形態と重複する説明は適宜省略する。
 本発明の第3の実施形態に係る連想メモリ3は、2次元のマトリックス状に配置された複数の連想メモリセル30を備え、第2方向に配置された複数の連想メモリセル30は、ワード回路34を構成する。なお、図25においては、複数の連想メモリセル30及びワード回路34を区別するために、それぞれの構成要素について符号の末尾に列番号及び行番号を付しているが、特に区別しない場合はそれらの番号を省略する。
 また、連想メモリ3は、複数のサーチ線対SL、/SLと、複数のマッチ線MLと、複数のワード線対WL、/WLと、を含む。複数のサーチ線対SL、/SLは、第1方向に配置された連想メモリセル30に共通に接続される。
 複数のマッチ線MLは、第2方向に配置された連想メモリセル30を直列に接続する。複数のワード線対WL、/WLは、第2方向に配置された連想メモリセル30に共通に接続される。なお、図25においては、複数の配線を区別するために、それぞれの配線について符号の末尾に列番号又は行番号を付しているが、特に区別しない場合は末尾の番号を省略する。
 さらに、連想メモリ3は、カラム側回路31と、ロウ側回路32と、センス回路33と、を含む。カラム側回路31は、複数のサーチ線対SL、/SLと接続され、演算時、入力データに応じて、サーチ線対SL、/SLを駆動する。ロウ側回路32は、複数のマッチ線ML、ワード線WLと接続され、マッチ線ML、ワード線WLを駆動する。センス回路33は、複数のマッチ線MLと接続され、マッチ線MLの電位をセンスする。
 (連想メモリセル)
 図26は、本発明の第3の実施形態における連想メモリセル30の具体的な回路図(連想メモリセル300)である。
 本回路構成の連想メモリセル300を含むワード回路34は、第2の実施形態と同様、記憶データと入力データの内積を、ワード回路34の遅延時間に反映させることができる。
 充放電回路350は、NMOSトランジスタ351と、PMOSトランジスタ352と、インバータ353と、を有する。NMOSトランジスタ351及びPMOSトランジスタ352は、CMOSインバータ354を形成する。
 マッチ線入力端子MLinは、NMOSトランジスタ351のゲートとPMOSトランジスタ352のゲートに接続される。インバータ353の入力端子は、PMOSトランジスタ352のドレインと、NMOSトランジスタ351のドレインに接続される。インバータ353の出力端子は、マッチ線出力端子MLoutに接続される。PMOSトランジスタ352のソースは電源電圧Vddに接続され、NMOSトランジスタ351のソースは抵抗ネットワーク360の抵抗変化型不揮発性記憶素子R0の一端に接続される。
 抵抗ネットワーク360は、抵抗変化型不揮発性記憶素子R0(361)と、NMOS論理回路370(論理回路)と、を有する。NMOS論理回路370(論理回路)は、第1のNMOSトランジスタであるNMOSトランジスタN0(NMOSトランジスタ371)と、第2のNMOSトランジスタであるNMOSトランジスタN1(NMOSトランジスタ372)と、を含む
 抵抗変化型不揮発性記憶素子R0の一端は充放電回路350のNMOSトランジスタ351のソース及びNMOSトランジスタN1のドレインに接続され、他端はNMOSトランジスタN0のドレインに接続される。NMOSトランジスタN0において、ゲートはサーチ線SLに接続され、ドレインは抵抗変化型不揮発性記憶素子R0の他端に接続され、ソースはワード線WLに接続される。NMOSトランジスタN1において、ドレインは充放電回路350のNMOSトランジスタ351のソース及び抵抗変化型不揮発性記憶素子R0の一端に接続され、ゲートはサーチ線対の他方/SLに接続され、ソースはワード線対の他方/WLに接続される。
 本発明の第3実施形態における連想メモリセル300の論理演算は、論理演算時にワード線対WLと/WLが接地される点を除いて第2の実施形態と同様であるため、説明を省略する。
 (書き込み)
 本発明の第3の実施形態における連想メモリセル30の抵抗変化素子へのデータの書き込みについて、図25及び図26を参照して説明する。
 図26の抵抗変化型不揮発性記憶素子R0は、ある書き込み電流の閾値以上の電流が流れる方向に依存して抵抗値が変化する。具体的には、トランジスタN0から抵抗変化型不揮発性記憶素子R0を介してトランジスタN1へ書き込み電流が流れた場合、抵抗変化型不揮発性記憶素子R0は低抵抗状態RLに変化する。逆に、トランジスタN1から抵抗変化型不揮発性記憶素子R0を介してトランジスタN0へ書き込み電流が流れた場合、抵抗変化型不揮発性記憶素子R0は高抵抗状態RHへ変化する。本実施形態では、低抵抗状態RLをデータ「1」に対応付け、高抵抗状態RHをデータ「0」に対応付ける。
 本実施形態における連想メモリ30のデータの書き込み時、まず全てのマッチ線MLin、MLout、サーチ線対SL、/SL、ワード線対WL、/WLはLowレベルに設定される。次に、データを書き込む選択セルに接続されたサーチ線対SL、/SLはHighレベルに設定される。さらに、書き込むデータに応じて、選択セルに接続されたワード線対WL、/WLを駆動する。
 データ「1」を書き込むには、ワード線WLをHighレベル、ワード線対の他方/WLをLowレベルに設定する。書き込み電流はWLから、選択セルのトランジスタN0と抵抗変化型不揮発性記憶素子R0とトランジスタN1を介して、/WLへ流れる。このとき、選択セルの抵抗変化型不揮発性記憶素子R0は低抵抗状態RLになる。
 データ「0」を書き込むには、ワード線WLをLowレベル、ワード線対の他方/WLをHighレベルに設定する。書き込み電流は/WLから選択セルのトランジスタN1と抵抗変化型不揮発性記憶素子R0とトランジスタN0を介してWLへ流れる。このとき、選択セルの抵抗変化型不揮発性記憶素子R0は高抵抗状態RHになる。
 (読み出し)
 本発明の第3の実施形態における連想メモリセル300の抵抗変化素子におけるデータの読み出しについて、図26を参照して説明する。
 読み出し時、まず全てのMLin、MLout、サーチ線対SL、/SL、ワード線対WL、/WLはLowレベルに設定される。次に、データを読み出す選択セルに接続されたサーチ線対SL、/SLはHighレベルに設定される。さらに、ワード線WLは読み出し電圧Vrに設定される。ワード線対の他方/WLはLowレベルに設定される。読み出し電流は、ワード線WLから、トランジスタN0、抵抗変化型不揮発性記憶素子R0、トランジスタN1を介して、ワード線対WL、/WLの他方に流れる。読み出し電流は、抵抗変化型不揮発性記憶素子R0の抵抗状態に応じて変化し、ロウ側回路32でデータを判別する。
 以上のように、本発明の第3の実施形態によれば、データの演算で利用するトランジスタは、データの書き込み時には書き込み電流を流すことに利用され、データの読み出し時には読み出し電流を流すことに利用することができる。そのため、セルサイズを小さくすることができる。
 (第4の実施形態)
 図27は、本発明の第4の実施形態に係る連想メモリ4の構成を概略的に示すブロック図である。なお、第1~第3の実施形態と重複する説明は適宜省略する。
 連想メモリ4は、2次元のマトリックス状に配置された複数の連想メモリセル40を備え、第2方向に配置された複数の連想メモリセル40はワード回路44を構成する。なお、図27においては、複数の連想メモリセル40及びワード回路44を区別するために、それぞれの構成要素について符号の末尾に列番号及び行番号を付しているが、特に区別しない場合はそれらの番号を省略する。
 また、連想メモリ4は、複数のサーチ線対SL、/SLと、複数の書き込みビット線WBL、/WBLと、複数のマッチ線MLと、複数のワード線WLと、を含む。
 複数のサーチ線対SL、/SL及び複数の書き込みビット線WBL、/WBLは、第1方向に配置された連想メモリセル40に共通に接続される。複数のマッチ線MLは、第2方向に配置された連想メモリセル40を直列に接続する。複数のワード線WLは、第2方向に配置された連想メモリセルに共通に接続される。なお、図27においては、複数の配線を区別するために、それぞれの配線について符号の末尾に列番号又は行番号を付しているが、特に区別しない場合は末尾の番号を省略する。
 さらに、連想メモリ4は、カラム側回路41と、ロウ側回路42と、センス回路43と、を含む。カラム側回路41は、複数のサーチ線対SL、/SLと接続され、演算時、入力データに応じて、サーチ線対SL、/SLを駆動する。さらに、カラム側回路41は、複数の書き込みビット線対WBL、/WBLに接続され、データ書き込み時、書き込みデータに応じて、書き込みビット線対を駆動する。ロウ側回路42は、複数のマッチ線MLと、複数のワード線WLに接続され、マッチ線MLとワード線WLを駆動する。センス回路43は、複数のマッチ線MLと接続され、マッチ線MLの電位をセンスする。
 (連想メモリセル)
 図28は、本発明の第4の実施形態における連想メモリセル40の具体的な回路図(連想メモリセル400)である。
 本発明の第4の実施形態に係る連想メモリセル400は、充放電回路450と、抵抗ネットワーク460と、磁性素子部と、を備える。本回路構成の連想メモリセル400から構成されるワード回路44は、第2の実施形態と同様、記憶データと入力データの内積をワード回路の遅延時間に反映させることができる。
 充放電回路450は、NMOSトランジスタ451と、PMOSトランジスタ452と、インバータ453と、を有する。NMOSトランジスタ451及びPMOSトランジスタ452は、CMOSインバータ454を形成する。
 マッチ線入力端子MLinは、NMOSトランジスタ451のゲートとPMOSトランジスタ452のゲートに接続される。インバータ453の入力端子は、PMOSトランジスタ452のドレインと、NMOSトランジスタ451のドレインに接続される。インバータ453の出力端子は、マッチ線出力端子MLoutに接続される。PMOSトランジスタ452のソースは電源電圧Vddに接続され、NMOSトランジスタ451のソースは抵抗ネットワーク460の抵抗変化型不揮発性記憶素子R0の一端に接続される。
 抵抗ネットワーク460は、抵抗変化型不揮発性記憶素子R0と、NMOSトランジスタN0及びNMOSトランジスタN1を含むNMOS論理回路465(論理回路)と、を有する。なお、図28において、抵抗変化型不揮発性記憶素子R0は抵抗変化型不揮発性記憶素子470、NMOSトランジスタN0はNMOSトランジスタ466、NMOSトランジスタN1はNMOSトランジスタ467である。
 抵抗変化型不揮発性記憶素子R0の一端は充放電回路450のNMOSトランジスタ451のソースに接続され、他端はNMOSトランジスタN0のドレインに接続される。NMOSトランジスタN0において、ゲートはサーチ線SLに接続され、ソースは接地される。NMOSトランジスタN1において、ドレインは充放電回路450のNMOSトランジスタ451のソース及び抵抗変化型不揮発性記憶素子R0の一端に接続され、ゲートはサーチ線対の他方/SLに接続され、ソースは接地される。
 (磁性素子部)
 磁性素子部は、NMOSトランジスタN2(NMOSトランジスタ492)及びNMOSトランジスタN3(NMOSトランジスタ493)と磁性素子480を備える。
 NMOSトランジスタN2において、ゲートはワード線WLに接続され、ドレイン/ソースの一方は書き込みビット線WBLに、他端は磁性素子480に接続される。NMOSトランジスタN3において、ゲートはワード線WLに接続され、ドレイン/ソースの一方は書き込みビット線の他方/WBLに、他端は磁性素子480に接続される。
 図29及び図30は、本発明の第4の実施形態に係る磁性素子480及び抵抗変化型不揮発性記憶素子R0(抵抗変化型不揮発性記憶素子470)の概略平面図及び断面図である。
 本実施形態に係る磁性素子480は、記録層481と、第1固定層482と、第2固定層483と、第1端子T1と、第2端子T2と、を備えた磁壁移動素子である。
 抵抗変化型不揮発性記憶素子R0は、センス層471と、トンネルバリア層472と、リファレンス層473と、第3端子T3と、第4端子T4と、を備えた磁気トンネル接合(MTJ)素子である。なお、図29及び図30において、抵抗変化型不揮発性記憶素子R0は抵抗変化型不揮発性記憶素子470である。
 なお、図29において、+Z方向は、紙面に対して垂直に紙面の裏面から表面に向かう方向で定義され、X方向及びY方向は、Z方向に直交する。さらに、X方向は、素子の長手方向であり、Y方向は、X方向及びZ方向に垂直な方向として定義される。また、図中矢印は各磁性層の磁化方向を示している。
 記録層481は、強磁性体である。より詳細には、垂直磁気異方性を有する垂直磁化膜で形成される。記録層481の材料は、鉄(Fe)、コバルト(Co)、ニッケル(Ni)のうちから選択される少なくとも1つ以上を含むことが望ましい。記録層481には、Co/Ni積層膜、Co/Pd積層膜、Co/Pt積層膜、Co-Cr-Pt合金、Co-Fe-B合金などが例示される垂直磁気異方性を有する薄膜を用いる(Pd:パラジウム、Cr:クロム、Pt:白金、B:ホウ素)。
 第1固定層482及び第2固定層483は、強磁性体で形成される。より詳細には、垂直磁気異方性を有する垂直磁化膜で形成される。第1固定層482及び第2固定層483の材料は、記録層481と同様である。なお、第1固定層482及び第2固定層483の磁化は固定されており、書き込み及び読み出し動作によって変化しない。
 センス層471は、強磁性体で形成される。より詳細には、面内磁気異方性を有する面内磁化膜で形成される。センス層471の材料は、Fe、Co、Niのうちから選択される少なくとも1つ以上を含むことが望ましい。センス層471は、Ni-Fe合金、Co-Fe-B合金、Co-Fe合金などが例示される面内磁気異方性を有する薄膜を用いる。センス471層は、磁化方向が+Y方向及び-Y方向のいずれか一方に変更可能である。
 リファレンス層473は、強磁性体で形成される。より詳細には、面内磁気異方性を有する面内磁化膜で形成される。リファレンス層473の材料は、センス層471の場合と同様である。なお、リファレンス層473の磁化は固定されており、書き込み、及び、読み出し動作によって変化しない。そのために、例えば、リファレンス層473に反強磁性層(図示しない)が積層されてもよい。また、リファレンス層473は、強磁性層、非磁性層、強磁性層からなる積層膜であってもよい。その積層膜の2つの強磁性層の磁化は、反強磁性結合によって互いに反平行に向くように設定してもよい。
 トンネルバリア層472は、非磁性層である。トンネルバリア層472は絶縁膜で形成され、その材料としてはMg-O、Al-O、Ni-O、Hf-Oが好適である。トンネルバリア層472は、センス層471とリファレンス層473に挟まれている。センス層471と、トンネルバリア層472と、リファレンス層473と、によって磁気トンネル接合(MTJ)が形成されている。なお、トンネルバリア層472の材料として、非磁性の半導体や金属材料が形成されている。
 記録層481は、内部を磁壁が移動可能である。図30に示したように、記録層481は、第1固定領域484、第2固定領域485、反転領域486を含む。
 第1固定領域484は、第1固定層482により+Z方向に磁化が保持され、書き込み及び読み出し動作によって変化しない。第2固定領域485は、第2固定層483により-Z方向に磁化が保持され、書き込み及び読み出し動作によって変化しない。反転領域486は、第1固定領域484と第2固定領域485との間に設けられ、磁化方向が+Z方向及び-Z方向のいずれか一方に変更可能である。
 第1端子T1は、第1固定領域484(第1固定層482)に接続された電流端子であり、NMOSトランジスタN3に接続される。第2端子T2は、第2固定領域485(第2固定層483)に接続された電流端子であり、NMOSトランジスタN2に接続される。第3端子T3は、センス層471に接続された電流端子であり、充放電回路450に接続される。第4端子T4は、リファレンス層473に接続された電流端子であり、NMOSトランジスタN0に接続される。
 (データ「0」及び「1」の磁化状態)
 図31及び図32は、本実施形態に係る磁壁移動素子が取り得る2つの磁化状態を示している。
 それぞれの磁化状態は、記憶データ「0」と「1」のいずれかに対応付けられる。例として、第1固定領域484の磁化方向は+Z方向に保持されている。第2固定領域485の磁化方向は、-Z方向に保持されている。リファレンス層473の磁化は+Y方向に固定されている。
 図31に示されるように、反転領域486の磁化が+Z方向の場合、反転領域486と第2固定領域485の境の近傍位置に磁壁490が形成される。反転領域486からの漏洩磁界は、センス層471の位置において、+Y方向の成分を有し、センス層471の磁化は、漏洩磁界の方向に従って、+Y方向に向く。この場合、センス層471とリファレンス層473の磁化は平行であり、抵抗変化型不揮発性記憶素子R0の抵抗値は低くなる(低抵抗状態)。なお、抵抗変化型不揮発性記憶素子R0の低抵抗状態は、データ「1」に対応付けられる。
 図32に示されるように、反転領域486の磁化が-Z方向の場合、反転領域486と第1固定領域484の境の近傍位置に磁壁490が形成される。反転領域486からの漏洩磁界は、センス層471位置において、-Y方向の成分を有し、センス層471の磁化は、漏洩磁界の方向に従って、-Y方向に向く。この場合、センス層471とリファレンス層473の磁化は反平行であり、抵抗変化型不揮発性記憶素子R0の抵抗値は高くなる(高抵抗状態)。なお、抵抗変化型不揮発性記憶素子R0の高抵抗状態は、データ「0」に対応付けられる。
 (書き込み)
 次に、本実施形態に係る磁壁移動素子の書き込み動作について説明する。
 記憶データの書き換えは、磁壁490を移動させて反転領域486の磁化方向を反転させることにより行われる。その磁壁移動のために、記録層481において、書き込み電流が面内方向に供給される。その書き込み電流を担う伝導電子の方向に従って、磁壁490が記録層中を移動する。
 例として、第1固定領域484の磁化方向は+Z方向に保持されている。第2固定領域485の磁化方向は、-Z方向に保持されている。書き込み時、「電流駆動磁壁移動」によって、磁壁490が反転領域486を移動するのに必要な閾値電流値より大きな書き込み電流が供給される。
 データ「0」からデータ「1」への書き換え時、書き込み電流は第2端子T2から、記録層481を通り、第1端子T1へ流れる。この場合、反転領域486には、第1固定領域484からスピン偏極した電子が注入される。注入された電子のスピンは、第1固定領域484と反転領域486の境にある磁壁490を第2固定領域485の方向へ駆動する。その結果、意図したデータ「1」を書き込める。
 データ「1」からデータ「0」への書き換え時、書き込み電流は第1端子T1から、記録層481を通り、第2端子T2へ流れる。この場合、反転領域486には、第2固定領域485からスピン偏極した電子が注入される。注入された電子のスピンは、第2固定領域485と反転領域486の境にある磁壁490を第1固定領域484の方向へ駆動する。その結果、意図したデータ「0」を書き込める。
 本発明の第4の実施形態における連想メモリセル40の論理演算は、第2実施形態と同様のため、説明を省略する。
 本発明の第4の実施形態における連想メモリセル400の抵抗変化素子におけるデータの書き込みについて、図27、図28を参照して説明する。
 本実施形態における連想メモリ4のデータの書き込み時、まず全てのマッチ線MLin、MLout、サーチ線対SL、/SL、書き込みビット線対WBL、/WBL、ワード線WLはLowレベルに設定される。
 次に、データを書き込む選択セルに接続されたワード線WLはHighレベルに設定される。
 さらに、書き込むデータに応じて、選択セルに接続された書き込みビット線対WBL、/WBLを駆動する。
 データ「1」を書き込むには、書き込みビット線WBLをHighレベル、書き込みビット線対の他方/WBLをLowレベルに設定する。書き込み電流はWBLから、選択セルのトランジスタN2と磁性素子480とトランジスタN3を介して、/WBLへ流れる。このとき、選択セルの抵抗変化型不揮発性記憶素子R0は低抵抗状態RLになる。
 データ「0」を書き込むには、書き込みビット線WBLをLowレベル、書き込みビット線対の他方/WBLをHighレベルに設定する。書き込み電流は、/WBLから選択セルのトランジスタN3と磁性素子480とトランジスタN2を介してWBLへ流れる。このとき、選択セルの抵抗変化型不揮発性記憶素子R0は高抵抗状態RHになる。
 本実施形態の連想メモリセル400は、データの演算時にセンス電流が流れるパスと、データの書き込み時に書き込み電流が流れるパスを物理的に分離することができる。従って、データの演算に適した抵抗値を抵抗変化型不揮発性記憶素子R0の抵抗値に設定し、データの書き込みに適した抵抗値を磁性素子480の抵抗値に設定することができる。抵抗変化型不揮発性記憶素子R0の抵抗値が大きいほど、図27に示したマッチ線MLがHighになるタイミングの隣接する分布間の時間間隔が大きくなり、センス回路43の誤検出を低減できる。一方、磁性素子480の抵抗値は低いほど、必要な書き込み電圧が低くでき、消費電力の観点で望ましい。
 以上のように、本発明の第4の実施形態によれば、データの演算時にセンス電流が流れるパスと、データの書き込み時に書き込み電流が流れるパスを物理的に分離することができる。そのため、センス回路の誤検出の低減や、消費電力の低減を実現することができる。
 (変形例)
 次に、第4の実施形態に係る連想メモリ4の変形例について説明する。
 変形例の連想メモリセル401は、図33に示した回路構成を取る。図28に示した連想メモリセル400とは、トランジスタN2及び磁性素子480の一端が充放電回路450に接続している点のみが異なる。そのため、図28と同じ符号を用いる。なお、重複する説明は適宜省略する。
 変形例の連想メモリセル401は、連想メモリセル40の構造に加え、トランジスタN2と磁性素子480が接続されたノードが、充放電回路450のPMOSトランジスタ452のドレインと、NMOSトランジスタ451のドレインに接続される。変形例によれば、充放電回路450は、トランジスタN2とトランジスタN3の寄生容量を、電荷が充電される容量として利用することができる。
 遅延時間は、抵抗変化型不揮発性記憶素子R0の抵抗値だけでなく、電荷を蓄積する容量に依存する。そのため、遅延時間を設定する際の設計パラメータとして、書き込みトランジスタの寄生容量を利用できると、面積オーバーヘッドなしに、設計の自由度を広げることができる。例えば、容量が大きいほど、図27に示したマッチ線MLがHighになるタイミングの隣接する分布間の時間間隔が大きくなり、センス回路43の誤検出を低減できる。
 以上のように、本発明の第4の実施形態によれば、充放電回路が電荷を蓄積する容量として書き込み用のトランジスタを利用することができ、センス回路の誤検出を低減できる。
 (第5の実施形態)
 図34は、本発明の第5の実施形態に係る連想メモリ5の構成を概略的に示すブロック図である。なお、第1の実施形態と重複する説明は適宜省略する。
 連想メモリ5は、2次元のマトリックス状に配置された複数の連想メモリセル50を備え、第2方向に配置された複数の連想メモリセル50はワード回路54を構成する。なお、図34においては、複数の連想メモリセル50及びワード回路54を区別するために、それぞれの構成要素について符号の末尾に列番号及び行番号を付しているが、特に区別しない場合はそれらの番号を省略する。
 また、連想メモリ5は、第1方向に配置された連想メモリセル50に共通に接続された複数のサーチ線対SL、/SLと、第2方向に配置された連想メモリセル50を直列に接続する複数のマッチ線MLと、を含む。
 さらに、連想メモリ5は、カラム側回路51と、ロウ側回路52と、センス回路53と、データ入力用回路54と、データ出力用回路56と、を含む。カラム側回路51は、複数のサーチ線対SL、/SLと接続され、演算時、入力データに応じて、サーチ線対SL、/SLを駆動する。ロウ側回路52は、複数のマッチ線MLと接続され、マッチ線MLを駆動する。センス回路53は、複数のマッチ線MLと接続され、マッチ線MLの電位をセンスする。
 さらに、データ入力用回路54は第2方向に延伸され、データ出力用回路56は第1方向に延伸され、データ入力用回路54とデータ出力用回路56とは互いに実質的に垂直の関係にある。データ入力用回路54には、複数の入力データDINがパラレル又はシリアルに入力される。
 データ入力用回路54は、入力データDINを保持する。データ入力用回路54は、複数の入力データDIN_REGをカラム側回路51へ出力する。
 データ出力用回路56には、センス回路53のセンス結果SAOUTがパラレルに入力される。データ出力用回路56は、SAOUTデータを基に、連想メモリ5の外部へデータ出力DOUTをパラレル又はシリアルに出力する。
 図35は、本発明の第5の実施形態における複数の連想メモリ5を備える論理回路である。図35では、4つの連想メモリ5(5-1~5-4)が直列に接続されている。具体的には、前段の連想メモリのデータ出力用回路56と、後段の連想メモリのデータ入力用回路54とが平行するように配置され、前段の連想メモリ5のデータ出力用回路56からの出力を、後段の連想メモリ5のデータ入力用回路54へ入力する構成をとる。すなわち、隣接する連想メモリ5間において、前段の連想メモリ5のデータ入力用回路54の長手方向と、後段の連想メモリ5のデータ出力用回路56の長手方向とが、互いに向かい合うように近接して配置される。
 従って、隣接する連想メモリ5への入出力データの全て又は一部を、連想メモリ5間で容易に接続でき、広いバス幅を実現できる。また、1つの連想メモリ5を1ステージとした、パイプライン処理を容易に実現できる。
 以上のように、本発明の第5の実施形態によれば、連想メモリを直列に接続することができ、広いバス幅を実現することができる。また、1つの連想メモリを1ステージとした、パイプライン処理を容易に実現できる。
 (変形例)
 次に、第5の実施形態に係る連想メモリ5を備えた論理回路の変形例について説明する。
 図36は、本発明の第5の実施の形態における複数の連想メモリ5から構成される論理回路である。図36では、4つの連想メモリ5が、プログラマブルスイッチ57を介して配線58に接続されている。なお、図36の論理回路は複数のプログラマブルスイッチ57を含むが、符号の上では区別しないで表記する。
 プログラマブルスイッチ57は、フィールドプログラマブルゲートアレイで利用されているSRAMベースのスイッチを利用しても良い。もしくは、抵抗変化型不揮発性記憶素子であるCBRAM素子などを利用しても良い(CBRAM:Conductive Bridging Random Access Memory)。
 図36に示した複数の連想メモリ5を備える論理回路は、図35に示した論理回路とは異なり、プログラマブルスイッチ57と配線58を介してデータをやり取りする。そのため、データビット幅は制限されるものの、隣接する連想メモリ5間以外の連想メモリ5とデータをやり取りすることができ、より汎用性を向上できる。
 以上のように、本発明の第5の実施形態に係る変形例の論理回路によれば、隣接する連想メモリ間以外の連想メモリとデータをやり取りすることができ、より汎用性を向上できる。
 (第6の実施形態)
 図37は、本発明の第6の実施形態に係る連想メモリ6の構成を概略的に示すブロック図である。なお、第1~5の実施の形態と重複する説明は適宜省略する。
 連想メモリ6は、2次元のマトリックス状に配置された複数の連想メモリセル60を備え、第2方向に配置された複数の連想メモリセル60はワード回路64を構成する。また、第1方向に隣接した2つのセル回路は3値セル回路を構成する。3値セルは-1、0、1の3つの状態を取ることができる。ただし、図37については、後述する図38で説明する。なお、図37においては、複数の連想メモリセル60及びワード回路64を区別するために、それぞれの構成要素について符号の末尾に列番号及び行番号を付しているが、特に区別しない場合はそれらの番号を省略する。
 また、連想メモリ6は、複数のサーチ線対SL、/SLと、複数の書き込みビット線WBL、/WBLと、複数のマッチ線MLと、複数のワード線WLと、を含む。
 複数のサーチ線対SL、/SL及び複数の書き込みビット線WBL、/WBLは、第1方向に配置された連想メモリセル60に共通に接続される。複数のマッチ線MLは、第2方向に配置された連想メモリセル60を直列に接続する。複数のワード線WLは、第2方向に配置された連想メモリセルに共通に接続される。それぞれのワード線WLは、2行の連想メモリセル60に共通に接続される。なお、図37においては、複数の配線を区別するために、それぞれの配線について符号の末尾に列番号又は行番号を付しているが、特に区別しない場合は末尾の番号を省略する。
 さらに、連想メモリ6は、カラム側回路61と、ロウ側回路62と、センス回路63と、を含む。カラム側回路61は、複数のサーチ線対SL、/SLと接続され、演算時、入力データに応じて、サーチ線対SL、/SLを駆動する。さらに、カラム側回路61は、複数の書き込みビット線対WBL、/WBLに接続され、データ書き込み時、書き込みデータに応じて、書き込みビット線対WBL、/WBLを駆動する。ロウ側回路62は、複数のマッチ線ML及び複数のワード線WLに接続され、マッチ線ML及びワード線WLを駆動する。センス回路63は、複数のマッチ線MLと接続され、マッチ線MLの電位をセンスする。
 (連想メモリセル)
 本発明の第6の実施形態における連想メモリ6は、図22に示した第2の実施形態に係る連想メモリ1と同様の構成を取る。図22に示したように、本実施形態のセンス回路27は、比較回路270を備えている。なお、詳細については、第2の実施形態に係る変形例1の説明を参照する。
 図38は、第6の実施形態における3値セル回路の回路図である。本回路構成の3値セル回路は、記憶データと入力データの内積をワード回路64の遅延時間に反映させることができる。3値セル回路は、連想メモリセル600及び連想メモリセル601から構成される。
 連想メモリセル600は、充放電回路610と、抵抗ネットワーク620と、磁性素子部と、を備える。
 連想メモリセル600の充放電回路610は、NMOSトランジスタ611と、PMOSトランジスタ612と、インバータ613と、を有する。NMOSトランジスタ611及びPMOSトランジスタ612は、CMOSインバータ614を形成する。
 マッチ線入力端MLin0は、NMOSトランジスタ611とPMOSトランジスタ612のゲートに接続され、インバータ613の入力端子はPMOSトランジスタ612のドレインと、NMOSトランジスタのドレインに接続される。インバータ613の出力端子はマッチ線出力端子MLout0に接続される。PMOSトランジスタ612のソースは電源電圧Vddに接続され、NMOSトランジスタ611のソースは抵抗ネットワーク620の抵抗変化型不揮発性記憶素子R0の一端に接続される。
 連想メモリセル600の抵抗ネットワーク620は、抵抗変化型不揮発性記憶素子R0と、NMOSトランジスタN0及びN1を含むNMOS論理回路629と、を有する。なお、図38において、抵抗変化型不揮発性記憶素子R0は抵抗変化型不揮発性記憶素子630、NMOSトランジスタN0はNMOSトランジスタ628、N1はNMOSトランジスタ629である。
 抵抗変化型不揮発性記憶素子R0の一端は充放電回路610のNMOSトランジスタ611のソース及びNMOSトランジスタN1のドレインに接続され、他端はNMOSトランジスタN0のドレインに接続される。NMOSトランジスタN0において、ゲートはサーチ線SLに接続され、ドレインは抵抗変化型不揮発性記憶素子R0の他端に接続され、ソースは接地される。NMOSトランジスタN1において、ドレインは充放電回路610のNMOSトランジスタ611のソース及び抵抗変化型不揮発性記憶素子R0の一端に接続され、ゲートはサーチ線対の他方/SLに接続され、ソースは接地される。
 また、本実施形態の連想メモリセル601は、充放電回路650と、抵抗ネットワーク660と、磁性素子部と、を備える。なお、磁性素子部は、連想メモリ600及び連想メモリ601に共有される。
 連想メモリセル601の充放電回路650は、NMOSトランジスタ651と、PMOSトランジスタ652と、インバータ653と、を備える。NMOSトランジスタ651及びPMOSトランジスタ652は、CMOSインバータ654を形成する。
 マッチ線入力端MLin1は、NMOSトランジスタ651とPMOSトランジスタ652のゲートに接続され、インバータ653の入力端子はPMOSトランジスタ652のドレインと、NMOSトランジスタ651のドレインに接続される。インバータ653の出力端子はマッチ線出力端子MLout1に接続される。PMOSトランジスタ652のソースは電源電圧Vddに接続され、NMOSトランジスタ651のソースは抵抗ネットワーク660の抵抗変化型不揮発性記憶素子R1の一端に接続される。
 連想メモリセル601の抵抗ネットワーク640は、抵抗変化型不揮発性記憶素子R1と、NMOSトランジスタN10及びN11を含むNMOS論理回路647と、を有する。なお、図38において、抵抗変化型不揮発性記憶素子R1は抵抗変化型不揮発性記憶素子660、NMOSトランジスタN10はNMOSトランジスタ648、NMOSトランジスタN11はNMOSトランジスタ649である。
 抵抗変化型不揮発性記憶素子R1の一端は充放電回路650のNMOSトランジスタ651のソース及びNMOSトランジスタN11のドレインに接続され、他端はNMOSトランジスタN10のドレインに接続される。NMOSトランジスタN10において、ゲートはサーチ線SLに接続され、ドレインは抵抗変化型不揮発性記憶素子R1の他端に接続され、ソースは接地される。NMOSトランジスタN11において、ドレインは充放電回路650のNMOSトランジスタ651のソース及び抵抗変化型不揮発性記憶素子R1の一端に接続され、ゲートはサーチ線対の他方/SLに接続され、ソースは接地される。
 また、磁性素子部は、NMOSトランジスタN2(NMOSトランジスタ692)及びNMOSトランジスタN3(NMOSトランジスタ693)と磁性素子680を備える。
 NMOSトランジスタN2において、ゲートはワード線WLに接続され、ドレイン/ソースの一方は書き込みビット線WBLに、他端は磁性素子680に接続される。NMOSトランジスタN3において、ゲートはワード線WLに接続され、ドレイン/ソースの一方は書き込みビット線の他方/WBLに、他端は磁性素子680に接続される。
 図39及び図40は、本発明の第6の実施形態に係る磁性素子680と抵抗変化型記憶素子R0及び抵抗変化型記憶素子R1の概略平面図及び断面図である。なお、図39及び図40において、抵抗変化型記憶素子R0は抵抗変化型記憶素子630、抵抗変化型記憶素子R1は抵抗変化型記憶素子660である。
 本実施の形態に係る磁性素子680は、記録層681と、第1固定層682と、第2固定層683と、第1端子T1、第2端子T2と、を備えた磁壁移動素子である。
 抵抗変化型不揮発性記憶素子R0は、センス層631と、トンネルバリア層632と、リファレンス層633と、第3端子T3と、第4端子T4と、を備えた磁気トンネル接合(MTJ)素子である。抵抗変化型不揮発性記憶素子R1は、センス層661と、トンネルバリア層662と、リファレンス層663と、第5端子T5、第6端子T6と、を備えた磁気トンネル接合(MTJ)素子である。
 なお、+Z方向は、基板の裏面から表面への基板に垂直な方向であり、X方向及びY方向は、Z方向に垂直な水平方向として定義される。さらに、X方向は素子の長手方向であり、Y方向は、X方向及びZ方向に垂直な方向として定義される。また、図中矢印は各磁性層の磁化方向を示している。
 記録層681は、強磁性体である。より詳細には、垂直磁気異方性を有する垂直磁化膜で形成される。記録層681の材料は、Fe、Co、Niのうちから選択される少なくとも1つ以上を含むことが望ましい。記録層681は、Co/Ni積層膜、Co/Pd積層膜、Co/Pt積層膜、Co-Cr-Pt合金、Co-Fe-B合金などが例示される垂直磁気異方性を有する薄膜を用いる。
 第1固定層682及び第2固定層683は、強磁性体で形成される。より詳細には、垂直磁気異方性を有する垂直磁化膜で形成される。第1固定層682及び第2固定層683の材料は、記録層681と同様である。なお、第1固定層682及び第2固定層683の磁化は固定されており、書き込み及び読み出し動作によって変化しない。
 センス層631及びセンス層661は、強磁性体で形成される。より詳細には、面内磁気異方性を有する面内磁化膜で形成される。センス層の材料631及びセンス層661は、Fe、Co、Niのうちから選択される少なくとも1つ以上を含むことが望ましい。センス層631及びセンス層661は、Ni-Fe合金、Co-Fe-B合金、Co-Fe合金などが例示される面内磁気異方性を有する薄膜を用いる。センス層631及びセンス層661は、磁化方向が+Y方向及び-Y方向のいずれか一方に変更可能である。
 リファレンス層633及びリファレンス層663は、強磁性体で形成される。より詳細には、面内磁気異方性を有する面内磁化膜で形成される。リファレンス層633及びリファレンス層663の材料は、センス層631及びリファレンス層661の場合と同様である。なお、リファレンス層633及びリファレンス層663の磁化は固定されており、書き込み及び読み出し動作によって変化しない。そのために、例えばリファレンス層633及びリファレンス層663に反強磁性層(図示しない)が積層されてもよい。また、リファレンス層633及びリファレンス層663は、強磁性層、非磁性層、強磁性層からなる積層膜であってもよい。その積層膜の2つの強磁性層の磁化は、反強磁性結合によって互いに反平行に向くように設定してもよい。
 トンネルバリア層632及びトンネルバリア層662は、非磁性層である。トンネルバリア層632及びトンネルバリア層662は、絶縁膜で形成され、その材料としてはMg-O、Al-O、Ni-O、Hf-Oなどが好適である。トンネルバリア層632及びトンネルバリア層662は、センス層631及びセンス層661とリファレンス層633及びリファレンス層663に挟まれている。センス層631及びセンス層661と、トンネルバリア層632及びトンネルバリア層662と、リファレンス層633及びリファレンス層663と、によって磁気トンネル接合(MTJ)が形成されている。なお、トンネルバリア層632及びトンネルバリア層662の材料として、非磁性の半導体や金属材料が形成されている。
 記録層681は、内部を磁壁が移動可能である。図40に示したように、記録層681は、第1固定領域684、第2固定領域685、反転領域686を含む。
 第1固定領域684は、第1固定層682により+Z方向に磁化が保持され、書き込み及び読み出し動作によって変化しない。第2固定領域685は、第2固定層683により-Z方向に磁化が保持され、書き込み及び読み出し動作によって変化しない。反転領域686は、第1固定領域684と第2固定領域685の間に設けられ、磁化方向が+Z方向及び-Z方向のいずれか一方に変更可能である。
 第1端子T1は、第1固定領域684(第1固定層682)に接続された電流端子であり、NMOSトランジスタN2に接続される。第2端子T2は、第2固定領域685(第2固定層683)に接続された電流端子であり、NMOSトランジスタN3に接続される。第3端子T3は、センス層631に接続された電流端子であり、連想メモリセル600の充放電回路610に接続される。第4端子T4は、リファレンス層633に接続された電流端子であり、NMOSトランジスタN0に接続される。第5端子T5は、センス層631に接続された電流端子であり、連想メモリセル601の充放電回路650に接続される。第6端子T6は、リファレンス層663に接続された電流端子であり、NMOSトランジスタN10に接続される。
 (データ「-1」、「0」及び「1」の磁化状態)
 図41、図42及び図43は、本実施形態に係る磁壁移動素子が取りうる3つの状態を示している。それぞれの磁化状態は、記憶データ「-1」と「0」と「1」に対応付けられる。例として、第1固定領域684の磁化方向は+Z方向に保持されており、第2固定領域685の磁化方向は-Z方向に保持されており、リファレンス層633及びリファレンス層663の磁化は+Y方向に固定されている。また、図44には、抵抗変化型記憶素子R0及び抵抗変化型記憶素子R1と、記憶データとの関係を示す。
 図41に示されるように、反転領域686の磁化が+Z方向の場合、反転領域686と第2固定領域685の境の近傍位置に磁壁690が形成される。反転領域686からの漏洩磁界は、R0のセンス層631の位置において、+Y方向の成分を有し、センス層631の磁化は、漏洩磁界の方向に従って、+Y方向に向く。この場合、抵抗変化型不揮発性記憶素子R0のセンス層631とリファレンス層633の磁化は平行であり、MTJの抵抗値は低くなる(低抵抗状態)。一方、反転領域686からの漏洩磁界は、抵抗変化型不揮発性記憶素子R1のセンス層位置において、-Y方向の成分を有し、センス層の磁化は、漏洩磁界の方向に従って、-Y方向に向く。この場合、抵抗変化型不揮発性記憶素子R1のセンス層661とリファレンス層663の磁化は反平行であり、MTJの抵抗値は高くなる(高抵抗状態)。この状態は、データ「-1」に対応付けられる。
 図42に示されるように、第1固定領域684側の反転領域686の磁化が+Z方向であり、第2固定領域685側の反転領域686の磁化が-Z方向の場合、反転領域686の中央付近に磁壁690が形成される。反転領域686からの漏洩磁界は、抵抗変化型不揮発性記憶素子R0のセンス層631の位置において、-Y方向の成分を有し、センス層631の磁化は、漏洩磁界の方向に従って、-Y方向に向く。この場合、抵抗変化型不揮発性記憶素子R0のセンス層631とリファレンス層633の磁化は反平行であり、MTJの抵抗値は高くなる(高抵抗状態)。一方、反転領域686からの漏洩磁界は、抵抗変化型不揮発性記憶素子R1のセンス層661の位置において、-Y方向の成分を有し、センス層661の磁化は、漏洩磁界の方向に従って、-Y方向に向く。この場合、抵抗変化型不揮発性記憶素子R1のセンス層661とリファレンス層663の磁化は反平行であり、MTJの抵抗値は高くなる(高抵抗状態)。この状態は、データ「0」に対応付けられる。
 図43に示されるように、反転領域686の磁化が-Z方向の場合、反転領域686と第1固定領域684の境の近傍位置に磁壁690が形成される。反転領域686からの漏洩磁界は、R0のセンス層631の位置において、-Y方向の成分を有し、センス層631の磁化は、漏洩磁界の方向に従って、-Y方向に向く。この場合、抵抗変化型不揮発性記憶素子R0のセンス層631とリファレンス層633の磁化は反平行であり、MTJの抵抗値は高くなる(高抵抗状態)。一方、反転領域686からの漏洩磁界は、抵抗変化型不揮発性記憶素子R1のセンス層661の位置において、+Y方向の成分を有し、センス層661の磁化は、漏洩磁界の方向に従って、+Y方向に向く。この場合、抵抗変化型不揮発性記憶素子R1のセンス層661とリファレンス層663の磁化は平行であり、MTJの抵抗値は低くなる(低抵抗状態)。この状態は、データ「1」に対応付けられる。
 (書き込み)
 次に、本実施形態に係る磁壁移動素子の書き込み動作について説明する。
 記憶データの書き換えは、磁壁690を移動させて反転領域686の磁化方向を反転させることにより行われる。その磁壁移動のために、記録層681において、書き込み電流が面内方向に供給される。その書き込み電流を担う伝導電子の方向に従って、磁壁690が記録層中を移動する。
 例として、第1固定領域684の磁化方向は+Z方向に保持されており、第2固定領域685の磁化方向は、-Z方向に保持されている。記憶領域681の中央付近にはノッチなどを形成し、磁壁690のトラップサイトとして機能させる。書き込み時、「電流駆動磁壁移動」によって、磁壁690が反転領域686を移動するのに必要な閾値電流値より大きな書き込み電流が供給される。なお、反転領域686の磁壁690のトラップサイトから、磁壁690が脱出するには時間が掛かるため、電流を印加する時間によって、磁壁690の位置を制御できる。
 データ「-1」からデータ「0」への書き換え時、書き込み電流は端子T1から、記録層681を通り、第2端子T2へ流れる。この場合、反転領域686には、第2固定領域685からスピン偏極した電子が注入される。注入された電子のスピンは、第2固定領域685と反転領域686の境にある磁壁690を反転領域686の中央部へ駆動する。磁壁690が反転領域686の中央のトラップサイトに留まっている間に書き込み電流を停止する。その結果、意図したデータ「0」を書き込める。
 データ「0」からデータ「1」への書き換え時、書き込み電流は第1端子T1から、記録層681を通り、第2端子T2へ流れる。この場合、反転領域686には、第2固定領域685からスピン偏極した電子が注入される。注入された電子のスピンは、反転領域686の中央にある磁壁690を第1固定領域684の方向へ駆動する。その結果、意図したデータ「1」を書き込める。
 データ「1」からデータ「0」への書き換え時、書き込み電流は第2端子T2から、記録層681を通り、第1端子T1へ流れる。この場合、反転領域686には、第1固定領域684からスピン偏極した電子が注入される。注入された電子のスピンは、第1固定領域684と反転領域686の境にある磁壁690を反転領域686の中央付近へ駆動する。磁壁690が反転領域686の中央のトラップサイトに留まっている間に書き込み電流を停止する。その結果、意図したデータ「0」を書き込める。
 データ「0」からデータ「-1」への書き換え時、書き込み電流は第2端子T2から、記録層681を通り、第1端子T1へ流れる。この場合、反転領域686には、第1固定領域684からスピン偏極した電子が注入される。注入された電子のスピンは、反転領域686の中央付近にある磁壁690を反転領域686と第2固定領域685の方向へ駆動する。その結果、意図したデータ「-1」を書き込める。
 以上のように、本発明の第6の実施形態に係る連想メモリを備える論理回路によれば、磁性素子を隣接する連想メモリセルで共通に利用した3値セル回路を構成することにより、書き込み電流を流すトランジスタを半減することができる。そのため、チップのコストを安価にできる。
 なお、本実施形態における連想メモリは、3値セル回路を例にとって説明したが、必ずしも3値である必要はなく、nを3以上の奇数として、n値セル回路を構成してもよい。
 本発明の実施形態においては、センス回路として、データフリップフロップや、比較回路を例示したが、最も遅延時間が小さいワード回路のみを検出するウィナー・テイク・オール型のセンス回路を利用しても良い。
 また、本発明の実施形態に係る連想メモリセル回路を利用して、周波数が抵抗変化型不揮発性記憶素子の抵抗値に依存したリングオシレータ等を構成してもよい。
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 複数の電流パスと、前記複数の電流パス及びサーチ線対に接続され、前記サーチ線対から入力する入力データに応答して前記電流パスを選択する論理回路と、前記複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子とを有し、前記入力データと前記記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、
 前記抵抗ネットワーク及びマッチ線に接続され、前記入力データと前記記憶データとの論理演算結果によって、前記マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備える連想メモリセル。
(付記2)
 前記充放電回路は、
 ソースが電極端に接続されたPMOSトランジスタと、ドレインが前記PMOSトランジスタのドレインと接続され、ソースが前記抵抗変化型不揮発性記憶素子の一端に接続されたNMOSトランジスタとを含むCMOSインバータと、
 入力端子が前記PMOSトランジスタ及び前記NMOSトランジスタのドレインに接続されたインバータとを含み、
 前記CMOSインバータは、
 前記PMOSトランジスタのゲートに信号が入力されると、入力された信号に応じてリセット又はプリセットされ、
 前記NMOSトランジスタのゲートに入力された信号を後段の前記インバータに出力することを特徴とする付記1に記載の連想メモリセル。
(付記3)
 前記充放電回路は、
 ソースが電極端に接続されたPMOSトランジスタと、ドレインが前記PMOSトランジスタのドレインと接続され、ソースが前記抵抗変化型不揮発性記憶素子の一端に接続されたNMOSトランジスタとを含むCMOSインバータと、
 入力端子が前記PMOSトランジスタ及び前記NMOSトランジスタのドレインに接続されたインバータとを含み、
 前記CMOSインバータは、
 前記PMOSトランジスタのゲートに反転されたプリチャージ信号が入力されると、
 入力された前記プリチャージ信号に応じてリセット又はプリセットされ、
 前記NMOSトランジスタのゲートに入力された信号を後段の前記インバータに出力することを特徴とする付記1に記載の連想メモリセル。
(付記4)
 前記論理回路は、
 第1及び第2のNMOSトランジスタを含み、
 前記抵抗変化型不揮発性記憶素子は、
 第1及び第2の抵抗変化型不揮発性記憶素子を含み、
 前記第1及び第2の抵抗変化型不揮発性記憶素子の一端は、前記充放電回路に含まれる前記NMOSトランジスタのソースに接続され、
 前記第1及び第2の抵抗変化型不揮発性記憶素子の他端は、それぞれ前記第1及び第2のNMOSトランジスタのドレインに接続され、
 前記第1及び第2のNMOSトランジスタのソースは接地されることを特徴とする付記2又は3に記載の連想メモリセル。
(付記5)
 前記論理回路は、
 第1及び第2のNMOSトランジスタを含み、
 前記抵抗変化型不揮発性記憶素子の一端は、前記充放電回路に含まれる前記NMOSトランジスタのソース及び前記第2のNMOSトランジスタのドレインに接続され、
 前記抵抗変化型不揮発性記憶素子の他端は、前記第1のNMOSトランジスタのドレインに接続され、
 前記第1及び第2のNMOSトランジスタのソースは接地されることを特徴とする付記2又は3に記載の連想メモリセル。
(付記6)
 前記論理回路は、
 第1及び第2のNMOSトランジスタを含み、
 前記抵抗変化型不揮発性記憶素子の一端は、前記充放電回路に含まれる前記NMOSトランジスタのソース及び前記第2のNMOSトランジスタのドレインに接続され、
 前記抵抗変化型不揮発性記憶素子の他端は、前記第1のNMOSトランジスタのドレインに接続され、
 前記第1及び第2のNMOSトランジスタのソースは、それぞれ一対のワード線対の一方に接続され、
 前記ワード線対の状態変化によって前記記憶データを読み書きすることを特徴とする付記2又は3に記載の連想メモリセル。
(付記7)
 前記抵抗変化型不揮発性記憶素子と磁気的に相互作用できる位置に配置された磁性素子と、
 ソース又はドレインの一端子が前記磁性素子の一端に接続されるとともに、ソース又はドレインの他端子が書き込みビット線に接続され、ゲートがワード線に接続された第3のNMOSトランジスタと、
 ソース又はドレインの一端子が前記磁性素子の他端に接続されるとともに、ソース又はドレインの他端子が書き込みビット線に接続され、ゲートがワード線に接続された第4のNMOSトランジスタとを含む磁性素子部を備える付記5に記載の連想メモリセル。
(付記8)
 前記磁性素子の一端が前記充放電回路に含まれる前記PMOSトランジスタ及び前記NMOSトランジスタのドレインに接続される付記7に記載の連想メモリセル。
(付記9)
 異なる前記連想メモリセル間で共有させるように前記磁性素子を配置する付記7に記載の連想メモリセル。
(付記10)
 前記抵抗変化型不揮発性記憶素子は、
 複数の抵抗状態を有すること特徴とする付記1乃至9のいずれか一項に記載の連想メモリセル。
(付記11)
 前記抵抗変化型不揮発性記憶素子は、
 2つの抵抗状態を有すること特徴とする付記1乃至9のいずれか一項に記載の連想メモリセル。
(付記12)
 複数の電流パスと、前記複数の電流パス及びサーチ線対に接続され、前記サーチ線対から入力する入力データに応答して前記電流パスを選択する論理回路と、前記複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子とを有し、前記入力データと前記記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、前記抵抗ネットワーク及びマッチ線に接続され、前記入力データと前記記憶データとの論理演算結果によって、前記マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備える連想メモリセルが格子状に配置される連想メモリ。
(付記13)
 前記充放電回路は、
 ソースが電極端に接続されたPMOSトランジスタと、ドレインが前記PMOSトランジスタのドレインと接続され、ソースが前記抵抗変化型不揮発性記憶素子の一端に接続されたNMOSトランジスタとを含むCMOSインバータと、
 入力端子が前記PMOSトランジスタ及び前記NMOSトランジスタのドレインに接続されたインバータと、を含み、
 前記CMOSインバータは、
 前記PMOSトランジスタのゲートに信号が入力されると、入力された信号に応じてリセット又はプリセットされ、
 前記NMOSトランジスタのゲートに入力された信号を後段の前記インバータに出力することを特徴とする付記12に記載の連想メモリ。
(付記14)
 前記充放電回路は、
 ソースが電極端に接続されたPMOSトランジスタと、
 ドレインが前記PMOSトランジスタのドレインと接続され、ソースが前記抵抗変化型不揮発性記憶素子の一端に接続されたNMOSトランジスタとを含むCMOSインバータと、
 入力端子が前記PMOSトランジスタ及び前記NMOSトランジスタのドレインに接続されたインバータとを含み、
 前記CMOSインバータは、
 前記PMOSトランジスタのゲートに反転されたプリチャージ信号が入力されると、
 入力された前記プリチャージ信号に応じて、リセット又はプリセットされ、
 前記NMOSトランジスタのゲートに入力された信号を後段の前記インバータに出力することを特徴とする付記12に記載の連想メモリ。
(付記15)
 前記論理回路は、
 第1及び第2のNMOSトランジスタを含み、
 前記抵抗変化型不揮発性記憶素子は、
 第1及び第2の抵抗変化型不揮発性記憶素子を含み、
 前記第1及び第2の抵抗変化型不揮発性記憶素子の一端は、前記充放電回路に含まれる前記NMOSトランジスタのソースに接続され、
 前記第1及び第2の抵抗変化型不揮発性記憶素子の他端は、それぞれ第1及び第2のNMOSトランジスタのドレインに接続され、
 前記第1及び第2のNMOSトランジスタのソースは接地されることを特徴とする付記13又は14に記載の連想メモリ。
(付記16)
 前記論理回路は、
 第1及び第2のNMOSトランジスタを含み、
 前記抵抗変化型不揮発性記憶素子の一端は、前記充放電回路に含まれる前記NMOSトランジスタのソース及び前記第2のNMOSトランジスタのドレインに接続され、
 前記抵抗変化型不揮発性記憶素子の他端は、前記第1のNMOSトランジスタのドレインに接続されることを特徴とする付記13又は14に記載の連想メモリ。
(付記17)
 前記第1及び第2のNMOSトランジスタのソースは接地されることを特徴とする付記16に記載の連想メモリ。
(付記18)
 前記第1及び第2のNMOSトランジスタのソースは、それぞれ一対のワード線対の一方に接続され、
 前記ワード線対の状態変化によって前記記憶データを読み書きすることを特徴とする付記16に記載の連想メモリ。
(付記19)
 前記抵抗変化型不揮発性記憶素子と磁気的に相互作用できる位置に配置された磁性素子と、
 ソース又はドレインの一端子が前記磁性素子の一端に接続されるとともに、ソース又はドレインの他端子が書き込みビット線に接続され、ゲートがワード線に接続された第3のNMOSトランジスタと、
 ソース又はドレインの一端子が前記磁性素子の他端に接続されるとともに、ソース又はドレインの他端子が書き込みビット線に接続され、ゲートがワード線に接続された第4のNMOSトランジスタとを含む磁性素子部を備える付記16又は17に記載の連想メモリ。
(付記20)
 前記磁性素子の一端が前記充放電回路に含まれる前記PMOSトランジスタ及び前記NMOSトランジスタのドレインに接続される付記19に記載の連想メモリ。
(付記21)
異なる前記連想メモリセル間で共有させるように前記磁性素子を配置する付記19に記載の連想メモリ。
(付記22)
 
 第1方向に配置された複数の前記連想メモリセルに接続された複数のサーチ線対と、
 第2方向に配置された複数の前記連想メモリセルを直列に接続する複数のマッチ線と、
 複数の前記サーチ線対と接続され、演算時に前記入力データに応じて前記サーチ線対を駆動するカラム側回路と、
 複数の前記マッチ線と接続され、複数の前記マッチ線を駆動するロウ側回路と、
 複数の前記マッチ線と接続され、複数の前記マッチ線の電位をセンスするセンス回路とを含み、
 前記第2方向に配置された複数の前記連想メモリセルと前記マッチ線とによってワード回路を構成し、
 前記入力データと前記記憶データとの論理演算をする際に、
 前記ワード回路は、
 前記サーチ線対上の前記入力データ及び前記ワード回路の記憶データに応じて前記マッチ線の遅延時間を変化させ、
 前記センス回路は、
 前記センス回路に入力されたクロック信号に応じて前記マッチ線の電位をラッチすることを特徴とする付記12乃至21のいずれか一項に記載の連想メモリ。
(付記23)
 格子状に配置された複数の連想メモリセルと、
 第1方向に配置された複数の前記連想メモリセルに接続された複数のサーチ線対と、
 第2方向に配置された複数の前記連想メモリセルを直列に接続する複数のマッチ線と、
 前記第2方向に配置された複数の前記連想メモリセルと前記マッチ線とによって構成されるワード回路と、
 複数の前記サーチ線と接続され、演算時に前記入力データに応じて前記サーチ線対を駆動するカラム側回路と、
 複数の前記マッチ線と接続され、複数の前記マッチ線を駆動するロウ側回路と、
 複数の前記マッチ線と接続され、複数の前記マッチ線の電位をセンスするセンス回路とを含み、
 複数の電流パスと、前記複数の電流パス及び前記サーチ線対に接続され、前記サーチ線対から入力する前記入力データに応答して前記電流パスを選択する論理回路と、前記複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子とを有し、前記入力データと前記記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、
 前記抵抗ネットワーク及び前記マッチ線に接続され、前記入力データと前記記憶データとの論理演算結果によって、前記マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備えることを特徴とする連想メモリ。
(付記24)
 前記ロウ側回路に入力される演算開始信号を入力とし、前記センス側回路に入力される前記クロック信号を発生するレプリカ回路を備え、
 前記センス回路は、
 前記センス回路に入力される前記クロック信号に応じて前記マッチ線の電位をラッチすることを特徴とすることを特徴とする付記22又は23に記載の連想メモリ。
(付記25)
 前記センス回路は、
 異なる2つの前記マッチ線の遅延時間を比較し、
 一方の前記マッチ線の遅延時間と、他方の前記マッチ線の遅延時間と、の大小関係を検出する比較回路を含むことを特徴とする付記22又は23に記載の連想メモリ。
(付記26)
 前記連想メモリは、
 前記入力データを入力して前記カラム側回路へ出力するデータ入力用回路と、
 複数の前記センス回路から出力された前記入力データのうち少なくとも一部を出力するデータ出力用回路と、を有することを特徴とする付記22又は23に記載の連想メモリ。
(付記27)
 前段の前記連想メモリが備える前記データ出力回路の長手方向と、後段の前記連想メモリが備える前記データ入力回路の長手方向とが互いに向かい合うように配置されることを特徴とする付記26に記載の連想メモリ。
(付記28)
 前記連想メモリは、
 前記入力データを入力して前記カラム側回路へ出力するデータ入力用回路と、
 複数の前記センス回路から出力された前記入力データのうち少なくとも一部を出力するデータ出力用回路とを有し、
 前段の前記連想メモリが備える前記データ出力回路の長手方向と、後段の前記連想メモリが備える前記データ入力回路の長手方向とが互いに向かい合うように配置されることを特徴とする付記22又は23に記載の連想メモリ。
(付記29)
 複数の連想メモリに備えられた前記データ入力用回路と前記データ出力用回路とが複数の配線上に設けられたプログラマブルスイッチに接続され、異なる前記連想メモリ間でデータの授受をすることを特徴とする付記26乃至28のいずれか一項に記載の連想メモリ。
(付記30)
 前記抵抗変化型不揮発性記憶素子は、
 複数の抵抗状態を有することを特徴とする付記12乃至29のいずれか一項に記載の連想メモリ。
(付記31)
 前記抵抗変化型不揮発性記憶素子は、
 2つの抵抗状態を有すること特徴とする付記12乃至30のいずれか一項に記載の連想メモリ。
 この出願は、2013年6月26日に出願された日本出願特願2013-133483を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1、2、3、4、5、6  連想メモリ
 10、20、30、40、50、60  連想メモリセル
 11、21、31、41、51、61  カラム側回路
 12、22、32、42、52、62  ロウ側回路
 13、23、27、33、43、53、63  センス回路
 14、24、34、44、54、64  ワード回路
 15  充放電回路
 16  抵抗ネットワーク
 17  レプリカ回路
 54  データ入力用回路
 56  データ出力用回路
 57  プログラマブルスイッチ
 58  配線
 100、101、121、122、200、300、400、401、600、601  連想メモリセル
 120、130、220、230、283  バッファ
 150、155、175、250、350、450、610、650  充放電回路
 151、156、166、167、191、196、251、266、267、275、276、277、278、279、351、371、372、451、466、467、491、492、611、628、629、648、649、651  NMOSトランジスタ
 152、157、177、252、271、272、273、274、352、452、612、652  PMOSトランジスタ
 153、158、178、253、280、282、353、453、613、653  インバータ
 160、180、185、260、360、460、620、640  抵抗ネットワーク
 165、190、195、265、370、465、627、647  NMOS論理回路
 171  レプリカセル回路A
 172  レプリカセル回路B
 270  比較回路
 471、631、661  センス層
 472、632、662  トンネルバリア層
 473、633、663  リファレンス層
 480、680  磁性素子
 481、681  記録層
 482、682  第1固定層
 483、683  第2固定層
 484、684  第1固定領域
 485、685  第2固定領域
 486、686  反転領域
 490、690  磁壁

Claims (10)

  1.  複数の電流パスと、前記複数の電流パス及びサーチ線対に接続され、前記サーチ線対から入力する入力データに応答して前記電流パスを選択する論理回路と、前記複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子とを有し、前記入力データと前記記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、
     前記抵抗ネットワーク及びマッチ線に接続され、前記入力データと前記記憶データとの論理演算結果によって、前記マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備える連想メモリセル。
  2.  前記充放電回路は、
     ソースが電極端に接続されたPMOSトランジスタと、ドレインが前記PMOSトランジスタのドレインと接続され、ソースが前記抵抗変化型不揮発性記憶素子の一端に接続されたNMOSトランジスタとを含むCMOSインバータと、
     入力端子が前記PMOSトランジスタ及び前記NMOSトランジスタのドレインに接続されたインバータとを含み、
     前記CMOSインバータは、
     前記PMOSトランジスタのゲートに信号が入力されると、入力された信号に応じてリセット又はプリセットされ、
     前記NMOSトランジスタのゲートに入力された信号を後段の前記インバータに出力することを特徴とする請求項1に記載の連想メモリセル。
  3.  前記論理回路は、
     第1及び第2のNMOSトランジスタを含み、
     前記抵抗変化型不揮発性記憶素子は、
     第1及び第2の抵抗変化型不揮発性記憶素子を含み、
     前記第1及び第2の抵抗変化型不揮発性記憶素子の一端は、前記充放電回路に含まれる前記NMOSトランジスタのソースに接続され、
     前記第1及び第2の抵抗変化型不揮発性記憶素子の他端は、それぞれ前記第1及び第2のNMOSトランジスタのドレインに接続され、
     前記第1及び第2のNMOSトランジスタのソースは接地されることを特徴とする請求項2に記載の連想メモリセル。
  4.  前記論理回路は、
     第1及び第2のNMOSトランジスタを含み、
     前記抵抗変化型不揮発性記憶素子の一端は、前記充放電回路に含まれる前記NMOSトランジスタのソース及び前記第2のNMOSトランジスタのドレインに接続され、
     前記抵抗変化型不揮発性記憶素子の他端は、前記第1のNMOSトランジスタのドレインに接続され、
     前記第1及び第2のNMOSトランジスタのソースは接地されることを特徴とする請求項2に記載の連想メモリセル。
  5.  前記抵抗変化型不揮発性記憶素子と磁気的に相互作用できる位置に配置された磁性素子と、
     ソース又はドレインの一端子が前記磁性素子の一端に接続されるとともに、ソース又はドレインの他端子が書き込みビット線に接続され、ゲートがワード線に接続された第3のNMOSトランジスタと、
     ソース又はドレインの一端子が前記磁性素子の他端に接続されるとともに、ソース又はドレインの他端子が書き込みビット線に接続され、ゲートがワード線に接続された第4のNMOSトランジスタとを含む磁性素子部を備える請求項4に記載の連想メモリセル。
  6.  異なる前記連想メモリセル間で共有させるように前記磁性素子を配置する請求項5に記載の連想メモリセル。
  7.  格子状に配置された複数の連想メモリセルと、
     第1方向に配置された複数の前記連想メモリセルに接続された複数のサーチ線対と、
     第2方向に配置された複数の前記連想メモリセルを直列に接続する複数のマッチ線と、
     複数の前記サーチ線対と接続され、演算時に入力データに応じて前記サーチ線対を駆動するカラム側回路と、
     複数の前記マッチ線と接続され、複数の前記マッチ線を駆動するロウ側回路と、
     複数の前記マッチ線と接続され、複数の前記マッチ線の電位をセンスするセンス回路とを含み、
     前記連想メモリセルは、
     複数の電流パスと、前記複数の電流パス及び前記サーチ線対に接続され、前記サーチ線対から入力する前記入力データに応答して前記電流パスを選択する論理回路と、前記複数の電流パスのうち少なくとも一つに設けられ、記憶データを記憶する抵抗変化型不揮発性記憶素子とを有し、前記入力データと前記記憶データとの論理演算結果によって抵抗値が変化する抵抗ネットワークと、
     前記抵抗ネットワーク及び前記マッチ線に接続され、前記入力データと前記記憶データとの論理演算結果によって、前記マッチ線から入力された信号を出力するまでの遅延時間が変化する充放電回路とを備えることを特徴とする連想メモリ。
  8.  前記ロウ側回路に入力される演算開始信号を入力とし、前記センス側回路に入力されるクロック信号を発生するレプリカ回路を備え、
     前記センス回路は、
     前記センス回路に入力される前記クロック信号に応じて前記マッチ線の電位をラッチすることを特徴とする請求項7に記載の連想メモリ。
  9.  前記センス回路は、
     異なる2つの前記マッチ線の遅延時間を比較し、
     一方の前記マッチ線の遅延時間と他方の前記マッチ線の遅延時間との大小関係を検出する比較回路を含むことを特徴とする請求項7に記載の連想メモリ。
  10.  前記連想メモリは、
     前記入力データを入力して前記カラム側回路へ出力するデータ入力用回路と、
     複数の前記センス回路から出力された前記入力データのうち少なくとも一部を出力するデータ出力用回路とを有し、
     前段の前記連想メモリが備える前記データ出力回路の長手方向と、後段の前記連想メモリが備える前記データ入力回路の長手方向とが互いに向かい合うように配置されることを特徴とする請求項7に記載の連想メモリ。
PCT/JP2014/003248 2013-06-26 2014-06-17 連想メモリセル及び連想メモリ WO2014208051A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/392,273 US10262738B2 (en) 2013-06-26 2014-06-17 Content addressable memory cell and content addressable memory
JP2015523856A JP6308216B2 (ja) 2013-06-26 2014-06-17 連想メモリセル及び連想メモリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013133483 2013-06-26
JP2013-133483 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014208051A1 true WO2014208051A1 (ja) 2014-12-31

Family

ID=52141418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003248 WO2014208051A1 (ja) 2013-06-26 2014-06-17 連想メモリセル及び連想メモリ

Country Status (3)

Country Link
US (1) US10262738B2 (ja)
JP (1) JP6308216B2 (ja)
WO (1) WO2014208051A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200920A (ja) * 2012-03-26 2013-10-03 Tohoku Univ 不揮発機能メモリ装置
JP2018067365A (ja) * 2016-10-17 2018-04-26 Tdk株式会社 不揮発性連想メモリ
US10748614B2 (en) 2016-09-13 2020-08-18 Nec Corporation Semiconductor device and programming method therefor
JP2021504870A (ja) * 2017-11-30 2021-02-15 マイクロン テクノロジー,インク. 入力データと格納データの比較
KR20230018112A (ko) * 2021-07-29 2023-02-07 연세대학교 산학협력단 내용 주소화 메모리 및 이를 위한 매치라인 센스 앰프

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2851903B1 (en) * 2013-09-19 2017-03-01 Crocus Technology S.A. Self-referenced memory device and method for operating the memory device
KR20180028020A (ko) 2016-09-07 2018-03-15 르네사스 일렉트로닉스 가부시키가이샤 반도체 장치
KR102519458B1 (ko) * 2016-11-01 2023-04-11 삼성전자주식회사 비휘발성 메모리 장치 및 그것의 동작 방법
JP2018163716A (ja) * 2017-03-24 2018-10-18 東芝メモリ株式会社 抵抗変化型メモリ
WO2019073333A1 (ja) * 2017-10-13 2019-04-18 株式会社半導体エネルギー研究所 記憶装置、電子部品、及び電子機器
FR3079656B1 (fr) * 2018-03-27 2020-11-27 Commissariat Energie Atomique Memoire resistive 3d
US10319425B1 (en) * 2018-03-29 2019-06-11 QUALCOMM Technologies Incorporated Offset-cancellation sensing circuit (OCSC)-based non-volatile (NV) memory circuits
CN116296141B (zh) * 2023-05-17 2023-08-15 湖南隆深氢能科技有限公司 一种应用于气密性检测设备的实时监测方法及其系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137573A1 (ja) * 2009-05-29 2010-12-02 日本電気株式会社 不揮発性cam
JP2011048894A (ja) * 2009-08-28 2011-03-10 Internatl Business Mach Corp <Ibm> 連想メモリ・アレイ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224601B2 (ja) 2009-10-01 2013-07-03 国立大学法人広島大学 連想メモリ
JP5907524B2 (ja) * 2011-02-25 2016-04-26 国立大学法人東北大学 不揮発機能メモリ装置
US9230649B2 (en) * 2014-01-20 2016-01-05 National Tsing Hua University Non-volatile ternary content-addressable memory 4T2R cell with RC-delay search
US9431106B1 (en) * 2015-06-09 2016-08-30 Freescale Semiconductor, Inc. Ternary content addressable memory (TCAM) with magnetic tunnel junction (MTJ) devices
US9502114B1 (en) * 2015-11-14 2016-11-22 National Tsing Hua University Non-volatile ternary content-addressable memory with bi-directional voltage divider control and multi-step search

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137573A1 (ja) * 2009-05-29 2010-12-02 日本電気株式会社 不揮発性cam
JP2011048894A (ja) * 2009-08-28 2011-03-10 Internatl Business Mach Corp <Ibm> 連想メモリ・アレイ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200920A (ja) * 2012-03-26 2013-10-03 Tohoku Univ 不揮発機能メモリ装置
US10748614B2 (en) 2016-09-13 2020-08-18 Nec Corporation Semiconductor device and programming method therefor
JP2018067365A (ja) * 2016-10-17 2018-04-26 Tdk株式会社 不揮発性連想メモリ
JP2021504870A (ja) * 2017-11-30 2021-02-15 マイクロン テクノロジー,インク. 入力データと格納データの比較
KR20230018112A (ko) * 2021-07-29 2023-02-07 연세대학교 산학협력단 내용 주소화 메모리 및 이를 위한 매치라인 센스 앰프
KR102598015B1 (ko) 2021-07-29 2023-11-02 연세대학교 산학협력단 내용 주소화 메모리 및 이를 위한 매치라인 센스 앰프

Also Published As

Publication number Publication date
JP6308216B2 (ja) 2018-04-11
US10262738B2 (en) 2019-04-16
US20160300614A1 (en) 2016-10-13
JPWO2014208051A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6308216B2 (ja) 連想メモリセル及び連想メモリ
US9972373B2 (en) Self-referenced read with offset current in a memory
JP6201259B2 (ja) 集積回路
US9299411B2 (en) Hybrid read scheme for spin torque MRAM
US9536584B2 (en) Nonvolatile logic gate device
US9812205B2 (en) MTJ-based content addressable memory with measured resistance across matchlines
WO2017146644A1 (en) Circuit arrangement, method of forming and operating the same
Zhou et al. A self-timed voltage-mode sensing scheme with successive sensing and checking for STT-MRAM
JP4388889B2 (ja) プレチャージ回路を有するメモリおよびそのプレチャージ方法
US9502106B2 (en) Semiconductor memory device and method of controlling semiconductor memory device
Gupta et al. Robust high speed ternary magnetic content addressable memory
US7646635B2 (en) Data reading circuit of toggle magnetic memory
US6714440B2 (en) Memory architecture with write circuitry and method therefor
US9773538B2 (en) Nonvolatile semiconductor memory
Cho et al. A non-volatile ternary content-addressable memory cell for low-power and variation-toleration operation
TW200301484A (en) Low power content addressable memory architecture
JP6261041B2 (ja) 不揮発性連想メモリセル及び不揮発性連想メモリ
JP2007026477A (ja) 不揮発性記憶装置
JP6327902B2 (ja) 不揮発性連想メモリ
JP2018067365A (ja) 不揮発性連想メモリ
Chavan Design of Magnetic Tunnel Junction based Low Power Non-Volatile Ternary Content Addressable Memory
US20200027491A1 (en) Memory cell, methods of forming and operating the same
TWI779715B (zh) 半導體記憶裝置及其控制方法
Junsangsri et al. A non-volatile low-power TCAM design using racetrack memories
Hanyu et al. Beyond MRAM: Nonvolatile Logic‐in‐Memory VLSI

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14392273

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14818147

Country of ref document: EP

Kind code of ref document: A1