WO2014206240A1 - 一种背接触太阳能电池及其制作方法 - Google Patents

一种背接触太阳能电池及其制作方法 Download PDF

Info

Publication number
WO2014206240A1
WO2014206240A1 PCT/CN2014/080309 CN2014080309W WO2014206240A1 WO 2014206240 A1 WO2014206240 A1 WO 2014206240A1 CN 2014080309 W CN2014080309 W CN 2014080309W WO 2014206240 A1 WO2014206240 A1 WO 2014206240A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous silicon
mold carrier
doped amorphous
carrier boat
finger region
Prior art date
Application number
PCT/CN2014/080309
Other languages
English (en)
French (fr)
Inventor
李锋
杨伟光
王建明
吴翠姑
李高非
胡志岩
熊景峰
Original Assignee
英利集团有限公司
英利能源(中国)有限公司
保定嘉盛光电科技有限公司
河北流云新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英利集团有限公司, 英利能源(中国)有限公司, 保定嘉盛光电科技有限公司, 河北流云新能源科技有限公司 filed Critical 英利集团有限公司
Publication of WO2014206240A1 publication Critical patent/WO2014206240A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a Chinese patent application filed on June 26, 2013, the Chinese Patent Application No. 201310261120.2, entitled “A Back Contact Solar Cell and Its Manufacturing Method” Priority is hereby incorporated by reference in its entirety.
  • TECHNICAL FIELD The present invention relates to the field of solar cells, and more particularly to a back contact solar cell and a method of fabricating the same. Background technique
  • Solar power generation technology is an important area for the development of new energy. To increase the amount of power generated per unit, it is important to use solar cells with high energy conversion efficiency.
  • the main electrical parameters that determine the energy conversion efficiency of a solar cell include short-circuit current, open circuit voltage, and fill factor, where the short-circuit current corresponds to the optical occlusion loss of the solar cell, the open circuit voltage characterizes the composite loss of the solar cell, and the fill factor represents the electrical energy of the solar cell. loss. That is, if you want to improve the energy conversion efficiency of the solar cell, you can find a breakthrough by reducing the optical occlusion loss, compound loss and electrical loss of the solar cell.
  • the occlusion loss refers to the energy loss caused by the sunlight that is not incident on the battery surface due to the shading of the solar cell receiving surface.
  • a solar cell technology of a back-contact interdigital structure has been proposed. The basic idea is to remove all the gate lines of the light-receiving surface of the solar cell, and to back-field and emit. The poles are all moved to the back of the battery, and the interdigitated structure of the p-zone and the n-zone are arranged to achieve true full-back contact.
  • the unique advantages of back-contact solar cells include: 1. Complete zero-shielding due to the absence of a grid-like structure on the front side; 2. Low series resistance; 3. Simplified interconnection technology and high efficiency, aesthetics, etc.
  • the conventional back contact solar cell has a complicated manufacturing process, high cost, and needs to undergo multiple high temperature operations in the manufacturing process, which increases the pollution path and reduces the life of the silicon substrate.
  • the present invention provides a back contact solar cell and a method of fabricating the same, the back contact
  • the solar cell is simple in manufacturing method and low in cost, and the back contact solar cell thus formed has high output efficiency and good temperature stability.
  • the embodiment of the present invention provides the following technical solutions:
  • a manufacturing method of a back contact solar cell comprising: providing a single crystal silicon substrate, a first mold carrier boat, and a second mold carrier boat, wherein the first mold carrier boat comprises a first phase arrangement a film growth zone and a first occlusion zone, the second mold carrier boat includes a second film growth zone and a second occlusion zone arranged in phase, and the first film growth zone corresponds to the second occlusion zone
  • the second thin film growth region corresponds to the first occlusion region;
  • a passivation layer is formed on one surface of the single crystal silicon substrate; and the first mold carrier boat is used to form a grating shape on the surface of the passivation layer a first doped amorphous silicon finger region and a first conductive film on a surface of the first doped amorphous silicon finger region; using a second mold carrier boat to form a grating-like surface on the surface of the passivation layer a doped amorphous silicon finger region and a second conductive film on a surface
  • the first mold carrier boat and the second mold carrier boat further include a frame around the first mold carrier boat and the second mold carrier boat, the frame surrounding the first mold The film growth zone and the occlusion zone of the carrier boat and the second mold carrier boat, and the side surface of the frame adjacent to the film growth zone and the occlusion zone is formed with a groove.
  • the passivation layer comprises a hydrogenated intrinsic amorphous silicon layer, a hydrogenated microcrystalline silicon layer, a hydrogenated amorphous silicon carbide layer or a hydrogenated amorphous silicon oxide layer.
  • the first conductive film and the second conductive film are both TCO films.
  • the first mold carrier boat forms a grating-shaped first doped amorphous silicon finger region on the surface of the passivation layer and a first conductive layer on the surface of the first doped amorphous silicon finger region.
  • the process of the film includes: placing the single crystal silicon substrate in the first mold carrier boat, and the passivation layer of the single crystal silicon substrate is in contact with the surface of the first mold carrier boat; Putting the first mold carrier boat on which the single crystal silicon substrate is placed into a PECVD apparatus, passing through the first film growth region of the first mold carrier boat, and using a lower plating film on the surface of the passivation layer Forming a grating-shaped first doped amorphous silicon finger region; transferring the first mold carrier boat on which the single crystal silicon substrate is placed from the PECVD device to the PVD device, through the first mold carrier boat a thin film growth region in which the first doped amorphous silicon finger region is formed by a lower plating method The surface forms a first conductive film.
  • a second mold carrier boat forming a grating-shaped second doped amorphous silicon finger region on the surface of the passivation layer and a second conductive layer on the surface of the second doped amorphous silicon finger region
  • the process of the film includes: placing the single crystal silicon substrate in the second mold carrier, and the first conductive film of the single crystal silicon substrate is in contact with the surface of the second mold carrier Inserting the second mold carrier boat on which the single crystal silicon substrate is placed into the PECVD apparatus, passing through the second film growth region of the second mold carrier boat, and using the lower plating film on the passivation layer Forming a grating-shaped second doped amorphous silicon finger region; transferring the second mold carrier boat on which the single crystal silicon substrate is placed from the PECVD device to the PVD device, and passing the second mold carrier boat In the second thin film growth region, a second conductive film is formed on the surface of the second doped amorphous silicon finger region by means of a lower plating film.
  • a back contact solar cell formed according to the above manufacturing method comprising: a single crystal silicon substrate; a passivation layer on one surface of the single crystal silicon substrate; and a first doped amorphous layer on the surface of the passivation layer a first conductive film of the silicon finger region and the surface thereof; a second doped amorphous silicon finger region on the surface of the passivation layer and a second conductive film on the surface thereof, and the first doped amorphous silicon finger region
  • the first conductive film on the surface thereof and the second doped amorphous silicon finger region and the second conductive film on the surface thereof are arranged in a cross arrangement.
  • the first doped amorphous silicon finger region and the second doped amorphous silicon finger region have a thickness of 3 nm to 30 nm, including an endpoint value.
  • the first conductive film and the second conductive film have a thickness of 20 nm to 500 nm, inclusive.
  • a gap between the first doped amorphous silicon finger region of the cross-arranged and the surface of the first conductive film and the second doped amorphous silicon finger region and the second conductive film on the surface thereof is 0.2 ⁇ 500 ⁇ , including the endpoint value.
  • the embodiment of the invention has the following advantages:
  • the method for manufacturing the back contact solar cell provided by the present invention first designs two mold carrier boats of different structures, and the mold carrier boat comprises a film growth area and an occlusion area arranged in phase, and ensures the first mold carrier boat.
  • the first film growth region corresponds to the second occlusion region of the second mold carrier boat
  • the second film growth region of the second mold carrier boat corresponds to the first occlusion region of the first mold carrier boat, that is, the guarantee
  • the first film growth zone of a mold carrier boat crosses the second film growth zone of the second mold carrier boat, and then is directly plated by the first mold carrier boat and the second mold carrier boat of the different structures described above.
  • the doping type of the finger region and the second doped amorphous silicon finger region are opposite, that is, the fork of the back surface of the solar cell is realized in a very simple and low-cost manner by simply adopting two different mold carrier boats.
  • the finger structure simplifies the manufacturing method of the back contact solar cell and reduces the manufacturing cost of the back contact solar cell.
  • the first doped amorphous silicon finger region and the surface of the first conductive film and the second doped amorphous silicon finger region and the second conductive film on the surface thereof directly pass the passivation therebetween
  • the layer realizes electrical isolation of the conductive region and excellent passivation effect, and does not require an additional fabrication process for forming a passivation layer, that is, the back contact solar cell ensures good electrical properties of the formed back contact solar cell.
  • the method of fabricating the back contact solar cell is further simplified.
  • the first doped amorphous silicon finger region and the second doped amorphous silicon finger region and the second doped amorphous silicon finger region which are opposite in doping type are formed with the single crystal silicon substrate Heterojunction.
  • Such a heterojunction solar cell may cause an increase in the band gap of the pn junction of the solar cell due to a change in the band gap between the single crystal silicon substrate and the polysilicon finger region, that is, the inside of the back contact solar cell is increased.
  • the electric field is built, so the heterojunction solar cell has a high open circuit voltage, thereby achieving high battery efficiency.
  • the cell conversion efficiency of the amorphous silicon finger region in the heterojunction composed of the amorphous silicon finger region and the single crystal silicon does not degenerate due to the illumination condition, that is, the heterojunction solar cell has better performance. Temperature stability ensures that the solar cell still has a good output when the light is warmed up.
  • FIG. 1 is a flow chart of a method for fabricating a back contact solar cell according to the present invention
  • FIG. 2 is a top view of a first mold carrier boat provided by the present invention
  • FIG. 3 is a top plan view of a second mold carrier boat provided by the present invention.
  • FIG. 4 is a cross-sectional view of a first mold carrier boat and a second mold carrier boat provided by the present invention
  • Figure 5 is a plan view of the carrier boat provided in step 201 of the present invention
  • FIG. 6 to FIG. 11 are schematic cross-sectional views showing respective steps of a method for fabricating a back contact solar cell according to the present invention.
  • Figure 12 is a cross-sectional view of a back contact solar cell provided by the present invention. detailed description
  • An embodiment of the present invention discloses a method for fabricating a back contact solar cell, comprising: providing a single crystal silicon substrate, a first mold carrier boat, and a second mold carrier boat, wherein the first mold carrier The boat includes a first film growth zone and a first occlusion zone arranged in phase, the second mold carrier boat includes a second film growth zone and a second occlusion zone arranged in phase, and the first film growth zone and the Corresponding to the second occlusion region, the second film growth region corresponds to the first occlusion region; forming a passivation layer on one surface of the single crystal silicon substrate; Forming a grating-shaped first doped amorphous silicon finger region on the surface of the passivation layer and a first conductive film on the surface of the first doped amorphous silicon finger region; using a second mold carrier boat, in the blunt Forming a grating-shaped second doped amorphous silicon finger region on the surface of the layer and a second conductive film on the surface of
  • the P region and the N region are formed by direct plating, and the P region and the N region are located on the surface of the single crystal silicon substrate to form a passivation layer.
  • a surface as in an embodiment, using a first mold carrier boat to form a first doped amorphous silicon finger region on the surface of the passivation layer by plasma deposition, the first doped amorphous silicon finger region
  • the doping type is N-type doping, forming an N region, using a second mold carrier boat, forming a second doped amorphous silicon finger region on the surface of the passivation layer by plasma deposition, the second doping
  • the doping type of the amorphous silicon finger region is opposite to the doping type of the first doped amorphous silicon finger region to form a P region; or, as another embodiment, the first mold carrier boat passes through the plasma Forming a first doped amorphous silicon finger region on the surface of the passivation layer, the doping type of the first doped amorphous silicon finger region is P-type doping, forming a P region, and using a second mold a boat, forming a second doped amorphous silicon finger on the surface of the passivation
  • An embodiment of the present invention further provides a back contact solar cell formed according to the above manufacturing method, comprising: a single crystal silicon substrate; a passivation layer on one surface of the single crystal silicon substrate; and the passivation layer a first doped amorphous silicon finger region of the surface and a first conductive film on the surface thereof; a second doped amorphous silicon finger region on the surface of the passivation layer and a second conductive film on the surface thereof, and the A doped amorphous silicon finger region and a surface of the first conductive film are interdigitated with the second doped amorphous silicon finger region and the second conductive film on the surface thereof.
  • the manufacturing method of the back contact solar cell provided by the embodiment of the invention can realize the interdigitated structure of the back contact battery back field in a very simple and low cost manner by using two different mold carrier boats, and the back contact is cylindricalized.
  • the manufacturing process of the solar cell reduces the manufacturing cost of the back contact solar cell.
  • electrical isolation and excellent passivation effect of the conductive region are directly achieved through the passivation layer without additional formation
  • the manufacturing process of the passivation layer further refines the manufacturing method of the back contact solar cell.
  • the back contact solar cell formed according to the manufacturing method has a heterojunction, and the heterojunction solar cell has a high open circuit voltage, high energy conversion efficiency, and the output efficiency of the heterojunction solar cell is higher. Good temperature stability.
  • the back contact solar cell provided by the present invention includes P-type back contact solar power.
  • the cell and the N-type back contact solar cell that is, the method for fabricating the back contact solar cell provided by the present invention, comprises a P-type single crystal silicon substrate and an N-type single crystal silicon substrate, which Not limited.
  • the embodiment of the present invention uses an N-type single crystal silicon substrate as an example to describe the back contact solar cell provided by the present invention and a manufacturing method thereof, but the manufacturing method of the present invention is still applicable to a P-type back contact solar cell. Production.
  • This embodiment provides a method for fabricating a back contact solar cell. As shown in FIG. 1, the method includes steps 101 to 106.
  • Step 101 providing a single crystal silicon substrate, a first mold carrier boat 20 and a second mold carrier boat 30, wherein a top view of the first mold carrier boat 20 is as shown in FIG. 2, and a second mold carrier boat A top view of 30 is shown in FIG. 3, and a cross-sectional view of the first mold carrier boat 20 and the second mold carrier boat 30 along AA' is shown in FIG.
  • the first mold carrier 20 includes a first film growth region 201 and a first occlusion region 202 which are interposed, and the first film growth region 201 is a hollow region between the first occlusion regions 202.
  • the second mold carrier 30 also includes a second film growth zone 301 and a second occlusion zone 302 which are interposed, and the second film growth zone 301 is a hollow region between the second occlusion zones 302. Comparing the first mold carrier boat shown in FIG. 2 with the second mold carrier boat shown in FIG. 3, the first mold carrier boat and the second mold carrier boat satisfy the following conditions: the first film The growth zone 201 corresponds to the second occlusion zone 302, and the second film growth zone 301 corresponds to the first occlusion zone 202.
  • the mold carrier boat (the first mold carrier boat 20 and the second mold carrier boat 30) provided by the present invention further includes a frame 403 located around the mold carrier boat (as shown in FIG. 2). a frame 203 located around the first mold carrier boat or a frame 303 located around the second mold carrier boat as shown in FIG.
  • the frame 403 surrounding the first mold carrier boat and the second The loading area 400 of the mold carrier boat (for convenience of description, the area composed of the film growth area and the shielding area is uniformly defined as the carrier area of the mold carrier boat), and the frame 403 of the mold carrier boat is adjacent to the loading area A side surface of the 400 is formed with a groove 404.
  • Step 102 As shown in FIG. 6, one surface of the single crystal silicon substrate 601 is selected as a front surface, and a front passivation field and an anti-reflection layer 604 are sequentially formed on the front surface of the single crystal silicon substrate 601.
  • the front passivation field includes an intrinsic amorphous silicon layer 602 and a doped amorphous silicon layer 603, wherein a doping type of the doped amorphous silicon layer 603 is The doping type of single crystal silicon is the same.
  • the intrinsic amorphous silicon layer 602 and the doped amorphous silicon layer 603 together constitute a front passivation field of the solar cell sheet, and function as a front field passivation on the front surface of the solar cell sheet; the anti-reflection Layer 604 acts to reduce the reflection of sunlight on the front surface of the solar cell.
  • the process of sequentially forming the front passivation field (including the intrinsic amorphous silicon layer and the doped amorphous silicon layer) and the anti-reflection layer on the front surface of the single crystal silicon substrate includes steps 201 to 204.
  • Step 201 Provide a carrier boat, as shown in FIG.
  • the carrier boat includes a carrier area 501, a frame 502, and a card slot 503.
  • the frame 502 is located around the carrier boat and surrounds the carrier area 501.
  • the card slot 503 is located at the frame 502. Corners.
  • Step 202 The single crystal silicon substrate is placed on the carrier area of the carrier boat and fixed by the frame 502 and the card slot 503.
  • the carrier boat provided in this step is different from the mold carrier boat in step 101, and the carrier area of the carrier boat provided in this step does not have a hollow structure.
  • the in-situ amorphous silicon layer 602, the doped amorphous silicon layer 603, and the anti-reflective layer 604 are formed on the front surface of the solar cell by using such a carrier, the solar cell is first placed on the carrier.
  • a front passivation field and an anti-reflection layer are formed on the front surface of the single crystal silicon substrate in the manner of the above-mentioned plating.
  • Step 203 placing a carrier boat on which a single crystal silicon substrate is placed in a PECVD apparatus, and sequentially forming a front passivation field and an anti-reflection layer on the front surface of the single crystal silicon substrate.
  • the front passivation field includes an intrinsic amorphous silicon layer a-Si:H(i) and a doped amorphous silicon layer a-Si:H(n+).
  • Step 204 Transfer the carrier boat on which the single crystal silicon substrate is placed from the PECVD apparatus into the PVD apparatus, and form an anti-reflection layer on the surface of the doped amorphous silicon layer by the PVD apparatus.
  • Step 103 Forming a passivation layer 605 on the back surface of the single crystal silicon substrate, the passivation layer 605 functioning as a surface passivation on the back surface of the single crystal silicon substrate.
  • the passivation layer 605 includes a hydrogenated intrinsic amorphous silicon layer, a hydrogenated microcrystalline silicon layer, a hydrogenated amorphous silicon carbide layer or a hydrogenated amorphous silicon oxide layer, that is, the passivation layer 605 may be in accordance with a back contact solar cell.
  • the requirements and process conditions are selected, and the invention is not limited thereto.
  • the passivation layer 605 is a hydrogenated intrinsic amorphous silicon layer a-Si:H(i), and a passivation layer 605 is formed on the back surface of the single crystal silicon substrate.
  • the process is formed by a PECVD apparatus.
  • Step 104 using a first mold carrier boat, forming a grating-shaped first doped amorphous silicon finger region on the surface of the passivation layer and a first conductive film on the surface of the first doped amorphous silicon finger region .
  • the manufacturing method of the embodiment is performed by taking the first conductive film and the second conductive film described below as TCO films as an example. Description. That is, when both the first conductive film and the second conductive film are TCO films, the method of forming the first doped amorphous silicon finger region and the first conductive film includes steps 301 to 303.
  • Step 301 As shown in FIG. 7, the single crystal silicon substrate 601 is placed in the first mold carrier boat 20, and the passivation layer 605 of the single crystal silicon substrate 601 and the first The surface of the carrier area of the mold carrier boat 20 is in contact.
  • Step 302 As shown in FIG. 8, the first mold carrier 20 on which the single crystal silicon substrate is placed is placed in a PECVD apparatus, and passes through the first film growth region 201 of the first mold carrier boat 20, A grating-shaped first doped amorphous silicon finger region 606 is formed on the surface of the passivation layer 605 by a lower plating method.
  • Step 303 As shown in FIG. 8, the first mold carrier boat 20 on which the single crystal silicon substrate is placed is transferred from the PECVD apparatus to the PVD apparatus, and the first film growth of the first mold carrier boat 20 is performed.
  • the region 201 is formed by forming a first conductive film 607 on the surface of the first doped amorphous silicon finger region by means of a lower plating film.
  • Step 105 using the second mold carrier boat, forming a grating-shaped second doped amorphous silicon finger region on the surface of the passivation layer and a second surface on the surface of the second doped amorphous silicon finger region Conductive film.
  • the single crystal silicon substrate 601 is placed in the second mold carrier 30, and the first conductive film 607 of the single crystal silicon substrate 601 is in contact with the surface of the second mold carrier 30;
  • the second mold carrier 30 on which the single crystal silicon substrate 601 is placed is placed in a PECVD apparatus through the second film growth zone 301 of the second mold carrier 30, and the blunt film is used in the blunt manner.
  • the second thin film growth region 301 of the boat 30 forms a second conductive film 609 on the surface of the second doped amorphous silicon finger region by means of a lower plating film.
  • the second doped amorphous silicon finger region 608 and the second conductive film 609 on the surface thereof are interdigitated with the first doped amorphous silicon finger region 606 and the first conductive film on the surface thereof. 607, to form a cross-aligned heterojunction on the back surface of the solar cell.
  • step 104 When the mold carrier boat provided by the present invention is used to carry the solar cell sheet for coating, since the film growth region and the shielding region of the mold carrier boat provided by the present invention are located in the carrier region of the mold carrier boat, in step 104 and During the implementation of step 105, as shown in FIGS. 8 and 9, a first doped amorphous silicon finger region 606 and a first conductive film 607 (or a second doped amorphous silicon finger region 608 and a second conductive layer) are formed.
  • the coating is carried out by means of a lower coating method by means of a lower coating film, even if the plasma is located on the substrate on which the single crystal silicon substrate is placed.
  • the corresponding relationship between the first mold carrier boat 20 and the single crystal silicon substrate 601 having the passivation layer 605 formed on the back surface is as shown in FIG. 8.
  • the first film growth region 201 of the first mold carrier boat 20 is to be formed.
  • a doped amorphous silicon finger region 606 corresponds to a region of the first conductive film 607, and then a first doped amorphous silicon finger region 606 or a first conductive film 607 is formed by a plasma located under the single crystal silicon substrate.
  • the corresponding relationship between the second mold carrier boat 30 and the single crystal silicon substrate 601 having the passivation layer 605 formed on the back surface is as shown in FIG.
  • the first film growth region 301 of the second mold carrier boat 30 is Corresponding to a region where the second doped amorphous silicon finger region 608 and the second conductive film 609 are to be formed, and then forming a second doped amorphous silicon finger region 608 or a second by plasma located under the single crystal silicon substrate Conductive film 609.
  • a doped amorphous silicon finger region and a second doped amorphous silicon finger region and a conductive film (the first conductive film and the second conductive film) to ensure a simple and low cost formation on the back surface of the solar cell a doped amorphous silicon finger region and a surface of the first conductive film and the second doped amorphous silicon finger region and a second conductive film on the surface thereof, and ensure the first doped amorphous silicon finger region and its surface
  • the first conductive film and the second doped amorphous silicon finger region and the second conductive film on the surface thereof are arranged in a cross.
  • the first doped amorphous silicon finger region 606 and the second doped amorphous silicon finger region 608 which are arranged in a crosswise arrangement on the back surface of the solar cell may be amorphous silicon grating
  • the film and the single crystal silicon substrate are both thin films of silicon atoms
  • the arrangement of the amorphous silicon atoms is completely different from the arrangement of the single crystal silicon atoms, and the amorphous silicon atoms are not compared with the single crystal silicon atoms.
  • there is a long-range and orderly physical law the bond length and the bond angle are distorted, and the degree of atomic chaos is extremely high.
  • the amorphous silicon finger region (the first doped amorphous silicon finger region 606 and the second doped amorphous silicon finger region 608) will form a heterojunction with the single crystal silicon substrate, and the heterojunction is amorphous.
  • the change in the band gap between silicon and single crystal silicon causes an increase in band bending, that is, an increase in the built-in electric field of the solar cell, so that the solar cell can obtain a high open circuit voltage, thereby achieving higher battery efficiency.
  • the amorphous silicon finger region of the heterojunction no cell conversion efficiency is found to be degraded by illumination, and the temperature stability of the heterojunction cell is good, and the temperature coefficient of the monocrystalline silicon cell is -0.5%/°C.
  • the temperature coefficient of the heterojunction battery can reach -0.25%/°C, so that the solar cell still has a good output even under the illumination temperature increase, and the solar cell has better light stability.
  • the formation of the amorphous silicon finger region (the first doped amorphous silicon finger region 606 and the second doped amorphous silicon finger region 608) is achieved by a coating process, due to the coating process.
  • the process temperature of the process is below 200 °C, so the back contact solar cell does not need to undergo high temperature process in the process of forming the pn junction, thereby greatly reducing the damage caused by the heat treatment to the silicon substrate and reducing the pollution path.
  • the lifetime of the silicon substrate is increased, and the performance of the solar cell is improved.
  • Step 106 Forming a metal electrode 6010 on the surface of the passivation layer 605, the first conductive film 607, and the second conductive film 609, and a top view of the back surface of the finally formed back contact solar cell is as shown in FIG.
  • the solar cell manufacturing method provided by the present invention only needs to design two different types of mold carrier boats in advance, and then carries the boat through two different molds, which is very simple and low-cost.
  • the interdigitated first doped amorphous silicon finger region and the surface of the first conductive film and the second doped amorphous silicon finger region and the second conductive film on the surface thereof directly pass between the two
  • the passivation layer between the layers realizes electrical isolation of the conductive region and excellent passivation effect, and does not require an additional process of forming a passivation layer, that is, the back contact solar cell ensures good performance of the formed back contact solar cell.
  • the back contact solar cell includes: a single crystal silicon substrate a passivation layer 1205 on a back surface of the single crystal silicon substrate 1201; a first doped amorphous silicon finger region 1206 on a surface of the passivation layer 1205 and a first conductive film 1207 on a surface thereof; a surface of the passivation layer 1205, a second doped amorphous silicon finger region 1208 interleaved with the first doped amorphous silicon finger region 1206 and a first conductive film 1207 on the surface thereof, and a second conductive film on the surface thereof 1209.
  • the thickness of the first doped amorphous silicon finger region 1206 and the second doped amorphous silicon finger region 1208 is 3 nm to 30 nm, including the endpoint value.
  • the thickness d2 of the first conductive film 1207 and the second conductive film 1209 is 20 nm to 500 nm, inclusive.
  • the gap d3 between the first doped amorphous silicon finger region 1206 and the surface of the first conductive film 1207 and the second doped amorphous silicon finger region 1208 and the second conductive film 1209 on the surface thereof are 0.2 ⁇ ! ⁇ 500 ⁇ , including endpoint values.
  • the back contact solar cell provided by the present embodiment further includes: a front passivation field (including the intrinsic amorphous silicon layer 1202 and the surface of the intrinsic amorphous silicon layer 1202) on the front surface of the single crystal silicon substrate 1201.
  • the doped amorphous silicon layer 1203) ; the anti-reflective layer 1204 on the surface of the front passivation field; the metal electrode 1210 on the surface of the passivation layer 1205, the first conductive film 1207 and the second conductive film 1209.
  • the back contact solar cell provided in this embodiment has a cross-arranged heterojunction, and the heterojunction back contact solar cell has a high open circuit voltage, high energy conversion efficiency and good temperature stability, and is cross-arranged.
  • the heterojunction directly isolates the conductive region through the passivation layer between the heterojunction and the semiconductor substrate, exhibits an excellent passivation effect of the passivation layer composed of intrinsic amorphous silicon, and improves the heterojunction back contact.
  • the performance of solar cells are merely preferred embodiments of the invention, and are not intended to limit the invention in any way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种背接触太阳能电池及其制作方法,该背接触太阳能电池的制作方法包括:提供相间排列的第一薄膜生长区和第一遮挡区的第一模具载片舟和包括相间排列的第二薄膜生长区和第二遮挡区的第二模具载片舟,且第一薄膜生长区与第二遮挡区对应,第二薄膜生长区与第一遮挡区对应;然后通过模具载片舟在单晶硅衬底形成有钝化层的表面形成掺杂类型相反,呈交叉排列的第一掺杂非晶硅指区和第二掺杂非晶硅指区。该制作方法以非常简单低成本的方式实现了背接触太阳能电池背场的叉指状结构,而且无需进行额外的形成钝化层的制作工艺,简化了背接触太阳能电池的制作方法。

Description

一种背接触太阳能电池及其制作方法 本申请要求于 2013 年 6 月 26 日提交中国专利局、 申请号为 201310261120.2、 发明名称为 "一种背接触太阳能电池及其制作方法" 的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明属于太阳能电池领域,尤其涉及一种背接触太阳能电池及其制作方 法。 背景技术
太阳能发电技术是新能源发展的一个重要领域, 为提高单位发电量, 采用 高能量转化效率的太阳能电池至关重要。决定太阳能电池能量转化效率的主要 电学参数包括短路电流、 开路电压和填充因子, 其中, 短路电流对应太阳能电 池的光学遮挡损失, 开路电压表征的是太阳能电池的复合损失, 填充因子代表 太阳能电池的电学损失。 也即, 若想提高太阳能电池的能量转化效率, 可以从 减小太阳能电池的光学遮挡损失、 复合损失和电学损失三方面去寻找突破。
遮挡损失是指由于太阳能电池受光面栅线的遮光,使得照射到电池表面的 太阳光不能全部进入电池而造成的能量损失。为了减小太阳能电池的受光面栅 线对光的遮挡损失,人们提出了背接触式叉指结构的太阳能电池技术,其基本 思想是去除了太阳能电池受光面所有的栅线,将背场和发射极都移到电池的背 面, 采用 p区和 n区交叉排列的叉指状结构, 实现真正意义上的全背接触。 背 接触太阳能电池特有的优势包括: 1、 由于正面无栅状结构, 完全实现了零遮 挡; 2、 较低的串联电阻; 3、 简化的互连技术以及高效率, 美观等。
但是传统的背接触太阳能电池的制作工艺复杂, 成本高,且在制作过程中 需要经历多次高温操作, 增加了污染途径, 降低了硅衬底的体寿命。 发明内容
有鉴于此,本发明提供一种背接触太阳能电池及其制作方法,此种背接触 太阳能电池的制作方法简单, 成本较低, 而且由此形成的背接触太阳能电池具 有较高的输出效率和较好的温度稳定性。
为实现上述目的, 本发明实施例提供了如下技术方案:
一种背接触太阳能电池的制作方法, 包括: 提供一单晶硅衬底、 第一模具 载片舟和第二模具载片舟, 其中, 所述第一模具载片舟包括相间排列的第一薄 膜生长区和第一遮挡区,所述第二模具载片舟包括相间排列的第二薄膜生长区 和第二遮挡区,且所述第一薄膜生长区与所述第二遮挡区对应, 所述第二薄膜 生长区与所述第一遮挡区对应; 在所述单晶硅衬底的一个表面形成钝化层; 釆 用第一模具载片舟,在所述钝化层表面形成光栅状的第一掺杂非晶硅指区和位 于所述第一掺杂非晶硅指区表面的第一导电薄膜; 采用第二模具载片舟,在所 述钝化层表面形成光栅状的第二掺杂非晶硅指区和位于所述第二掺杂非晶硅 指区表面的第二导电薄膜 ,所述第二掺杂非晶硅指区的掺杂类型与所述第一掺 杂非晶硅指区的掺杂类型相反,且所述第二掺杂非晶硅指区及其表面的第二导 电薄膜与所述第一掺杂非晶硅指区及其表面的第一导电薄膜交叉排列。
可选地,所述第一模具载片舟和第二模具载片舟还包括位于所述第一模具 载片舟和第二模具载片舟四周的边框,所述边框包围所述第一模具载片舟和第 二模具载片舟的薄膜生长区和遮挡区,且所述边框靠近所述薄膜生长区和遮挡 区的侧表面形成有凹槽。
可选地, 所述钝化层包括氢化本征非晶硅层、 氢化微晶硅层、 氢化非晶碳 化硅层或者氢化非晶氧化硅层。
可选地, 所述第一导电薄膜和所述第二导电薄膜均为 TCO薄膜。
可选地,釆用第一模具载片舟在所述钝化层表面形成光栅状的第一掺杂非 晶硅指区和位于所述第一掺杂非晶硅指区表面的第一导电薄膜的过程包括:将 所述单晶硅衬底放置于所述第一模具载片舟内,且所述单晶硅衬底的钝化层与 所述第一模具载片舟的表面接触;将所述放置有单晶硅衬底的第一模具载片舟 放入 PECVD设备, 通过所述第一模具载片舟的第一薄膜生长区, 采用下镀膜 的方式在所述钝化层表面形成光栅状的第一掺杂非晶硅指区;将所述放置有单 晶硅衬底的第一模具载片舟从 PECVD设备转移至 PVD设备, 通过所述第一 模具载片舟的第一薄膜生长区,采用下镀膜的方式在所述第一掺杂非晶硅指区 表面形成第一导电薄膜。
可选地, 采用第二模具载片舟,在所述钝化层表面形成光栅状的第二掺杂 非晶硅指区和位于所述第二掺杂非晶硅指区表面的第二导电薄膜的过程包括: 将所述单晶硅衬底放置于所述第二模具载片舟内,且所述单晶硅衬底的第一导 电薄膜与所述第二模具载片舟的表面接触;将所述放置有单晶硅衬底的第二模 具载片舟放入 PECVD设备, 通过所述第二模具载片舟的第二薄膜生长区, 采 用下镀膜的方式在所述钝化层表面形成光栅状的第二掺杂非晶硅指区;将所述 放置有单晶硅衬底的第二模具载片舟从 PECVD设备转移至 PVD设备, 通过 所述第二模具载片舟的第二薄膜生长区,釆用下镀膜的方式在所述第二掺杂非 晶硅指区表面形成第二导电薄膜。
一种根据上述制作方法形成的背接触太阳能电池, 包括: 单晶硅衬底; 位 于所述单晶硅衬底一个表面的钝化层;位于所述钝化层表面的第一掺杂非晶硅 指区及其表面的第一导电薄膜;位于所述钝化层表面的第二掺杂非晶硅指区及 其表面的第二导电薄膜,且所述第一掺杂非晶硅指区及其表面的第一导电薄膜 与第二掺杂非晶硅指区及其表面的第二导电薄膜交叉排列。
可选地, 所述第一掺杂非晶硅指区和所述第二掺杂非晶硅指区的厚度为 3nm~30nm, 包括端点值。
可选地, 所述第一导电薄膜和第二导电薄膜的厚度为 20nm〜500nm, 包括 端点值。
可选地,所述交叉排列的第一掺杂非晶硅指区及其表面的第一导电薄膜和 第二掺杂非晶硅指区及其表面的第二导电薄膜之间的间隙为 0.2μιη〜500μιη, 包括端点值。
与现有技术相比, 本发明实施例具有以下优点:
本发明提供的背接触太阳能电池的制作方法,首先设计两种不同结构的模 具载片舟, 此种模具载片舟包括相间排列的薄膜生长区和遮挡区, 并保证第一 模具载片舟的第一薄膜生长区与第二模具载片舟的第二遮挡区相对应 ,第二模 具载片舟的第二薄膜生长区与第一模具载片舟的第一遮挡区对应,也即保证第 一模具载片舟的第一薄膜生长区与第二模具载片舟的第二薄膜生长区交叉对 应, 然后直接通过上述不同结构的第一模具载片舟和第二模具载片舟进行镀 膜,形成交叉排列的第一掺杂非晶硅指区及其表面的第一导电薄膜和第二掺杂 非晶硅指区及其表面的第二导电薄膜,其中第一掺杂非晶硅指区和第二掺杂非 晶硅指区的掺杂类型相反,也即只需通过两个结构不同的模具载片舟, 以非常 简单低成本的方式实现了背接触太阳能电池背场的叉指状结构,简化了背接触 太阳能电池的制作方法, 降低了背接触太阳能电池的制作成本。
而且,所述第一掺杂非晶硅指区及其表面的第一导电薄膜和第二掺杂非晶 硅指区及其表面的第二导电薄膜之间直接通过两者之间的钝化层实现导电区 的电隔离和优良的钝化效果, 无需进行额外的形成钝化层的制作工艺,也即此 种背接触太阳能电池在保证形成的背接触太阳能电池具有良好的电性能的同 时, 进一步简化了背接触太阳能电池的制作方法。
此外,在根据此种制作方法形成的背接触太阳能电池的背场,通过掺杂类 型相反的第一掺杂非晶硅指区和第二掺杂非晶硅指区与单晶硅衬底形成了异 质结。 此种异质结太阳能电池由于单晶硅衬底和多晶硅指区之间的带隙的变 化,会致使太阳能电池的 pn结的能带弯曲增加,也即增加了此种背接触太阳能 电池的内建电场,故而此种异质结太阳能电池具有很高的开路电压, 进而获得 较高的电池效率。而且由非晶硅指区与单晶硅构成的异质结中的非晶硅指区的 电池转换效率不会因光照条件而出现衰退现象,也即此种异质结太阳能电池具 有较好的温度稳定性,从而保证太阳能电池在光照升温的情况下仍具有较好的 输出。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案 ,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明提供的一种背接触太阳能电池的制作方法的流程图; 图 2为本发明提供的第一模具载片舟的俯视图;
图 3为本发明提供的第二模具载片舟的俯视图;
图 4为本发明提供的第一模具载片舟和第二模具载片舟的剖面图; 图 5为本发明步骤 201提供的载片舟的俯视图;
图 6至图 11为本发明提供的一种背接触太阳能电池的制作方法的各步骤 的剖面示意图;
图 12为本发明提供的一种背接触太阳能电池的剖面图。 具体实施方式
本发明一实施例公开了一种背接触太阳能电池的制作方法, 包括: 提供一单晶硅衬底、 第一模具载片舟和第二模具载片舟, 其中, 所述第一 模具载片舟包括相间排列的第一薄膜生长区和第一遮挡区,所述第二模具载片 舟包括相间排列的第二薄膜生长区和第二遮挡区,且所述第一薄膜生长区与所 述第二遮挡区对应, 所述第二薄膜生长区与所述第一遮挡区对应; 在所述单晶 硅衬底的一个表面形成钝化层; 釆用第一模具载片舟,在所述钝化层表面形成 光栅状的第一掺杂非晶硅指区和位于所述第一掺杂非晶硅指区表面的第一导 电薄膜; 釆用第二模具载片舟,在所述钝化层表面形成光栅状的第二掺杂非晶 硅指区和位于所述第二掺杂非晶硅指区表面的第二导电薄膜,所述第二掺杂非 晶硅指区的掺杂类型与所述第一掺杂非晶硅指区的掺杂类型相反,且所述第二 掺杂非晶硅指区及其表面的第二导电薄膜与所述第一掺杂非晶硅指区及其表 面的第一导电薄膜交叉排列。
本发明实施例所提供的方法,在背接触太阳能电池的制作过程中,通过直 接镀膜的方式形成 P区和 N区, 所述 P区和 N区位于单晶硅衬底表面形成的 钝化层表面, 如在一实施例中, 采用第一模具载片舟, 通过等离子体沉积在所 述钝化层表面形成第一掺杂非晶硅指区,所述第一掺杂非晶硅指区的掺杂类型 为 N型掺杂, 形成 N区, 采用第二模具载片舟, 通过等离子体沉积在所述钝 化层表面形成第二掺杂非晶硅指区,所述第二掺杂非晶硅指区的掺杂类型与所 述第一掺杂非晶硅指区的掺杂类型相反, 形成 P区; 或者如另一实施例中, 釆 用第一模具载片舟,通过等离子体沉积在所述钝化层表面形成第一掺杂非晶硅 指区, 所述第一掺杂非晶硅指区的掺杂类型为 P型掺杂, 形成 P区, 釆用第二 模具载片舟, 通过等离子体沉积在所述钝化层表面形成第二掺杂非晶硅指区, 所述第二掺杂非晶硅指区的掺杂类型与所述第一掺杂非晶硅指区的掺杂类型 相反, 形成 N 区。 所述沉积方式不需要进行多次高温操作, 简化背接触太阳 能电池的制作工艺, 从而减少污染途径, 提高硅基底寿命和太阳能电池寿命。
本发明一实施例还提供了一种根据上述制作方法形成的背接触太阳能电 池, 包括: 单晶硅衬底; 位于所述单晶硅衬底一个表面的钝化层; 位于所述钝 化层表面的第一掺杂非晶硅指区及其表面的第一导电薄膜;位于所述钝化层表 面的第二掺杂非晶硅指区及其表面的第二导电薄膜,且所述第一掺杂非晶硅指 区及其表面的第一导电薄膜与第二掺杂非晶硅指区及其表面的第二导电薄膜 交叉排列。
本发明实施例提供的背接触太阳能电池的制作方法可以通过两个结构不 同的模具载片舟,以非常简单低成本的方式实现了背接触电池背场的叉指状结 构, 筒化了背接触太阳能电池的制作工艺, 降低了背接触太阳能电池的制作成 本。 而且, 在叉指状的第一掺杂非晶硅层和第二掺杂非晶硅层之间, 直接通过 钝化层实现导电区的电隔离和优良的钝化效果,无需进行额外的形成钝化层的 制作工艺, 进一步筒化了背接触太阳能电池的制作方法。 此外, 根据此种制作 方法形成的背接触太阳能电池具有异质结,此种异质结太阳能电池具有艮高的 开路电压,较高的能量转换效率, 而且异质结太阳能电池的输出效率具有较好 的温度稳定性。
为使本发明的上述目的、特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。
在下面的描述中阐述了 艮多细节以便于充分理解本发明 ,但是本发明还可 以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背 本发明内涵的情况下做类似推广, 因此本发明不受下面公开的实施例的限制。
其次, 本发明结合示意图进行详细描述, 在详述本发明实施例时, 为便于 说明,表示器件形状的平面图会不依一般比例作局部放大, 而且所述示意图只 是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、 宽度及深度的三维空间尺寸。
下面结合具体实施例和附图对本发明提供的背接触太阳能电池及其制作 方法进行详细描述。
需要说明的是,本发明提供的背接触太阳能电池包括 P型背接触太阳能电 池和 N型背接触太阳能电池, 也即本发明提供的背接触太阳能电池的制作方 法提供的单晶硅衬底包括 P型单晶硅衬底和 N型单晶硅衬底, 本发明对此不 作限定。 为了便于描述, 本发明的实施例以 N型单晶硅衬底为例对本发明提 供的背接触太阳能电池及其制作方法进行说明,但是本发明的制作方法依然适 用于 P型背接触太阳能电池的制作。
实施例一
本实施例提供了一种背接触太阳能电池的制作方法, 如图 1所示, 包括步 骤 101至步骤 106。
步骤 101 : 提供一单晶硅衬底, 第一模具载片舟 20和第二模具载片舟 30, 其中, 第一模具载片舟 20的俯视图如图 2所示, 第二模具载片舟 30的俯视图 如图 3所示, 而第一模具载片舟 20和第二模具载片舟 30沿 AA'的剖面图如图 4所示。
如图 2所示, 第一模具载片舟 20包括相间排列的第一薄膜生长区 201和 第一遮挡区 202,第一薄膜生长区 201是位于第一遮挡区 202之间的镂空区域。 如图 3所示, 第二模具载片舟 30同样包括相间排列的第二薄膜生长区 301和 第二遮挡区 302,第二薄膜生长区 301是位于第二遮挡区 302之间的镂空区域。 对比图 2所示的第一模具载片舟和图 3所示的第二模具载片舟可知,所述第一 模具载片舟和所述第二模具载片舟满足以下条件:第一薄膜生长区 201与第二 遮挡区 302对应, 第二薄膜生长区 301与第一遮挡区对应 202。
为了能更好地将本发明提供的模具载片的结构和使用方法表述清楚,在此 对本发明提供的模具载片舟的整体结构进行详细的介绍。如图 4所示, 本发明 提供的模具载片舟(第一模具载片舟 20和第二模具载片舟 30 )还包括位于所 述模具载片舟四周的边框 403 (如图 2所示位于所述第一模具载片舟四周的边 框 203或者如图 3所示位于所述第二模具载片舟四周的边框 303 ), 所述边框 403包围所述第一模具载片舟和第二模具载片舟的载片区 400(为了便于描述, 统一将薄膜生长区和遮挡区组成的区域定义为模具载片舟的载片区), 而且所 述模具载片舟的边框 403靠近所述载片区 400的侧表面形成有凹槽 404。 在应 用所述模具载片舟在所述单晶硅衬底表面形成镀膜时,所述单晶硅衬底放置于 硅衬底固定。
步骤 102: 如图 6所示, 选取单晶硅衬底 601的一个表面为正表面, 在所 述单晶硅衬底 601的正表面依次形成前钝化场和减反射层 604。 在本发明的一 个实施例中, 所述前钝化场包括本征非晶硅层 602、 掺杂非晶硅层 603, 其中, 所述掺杂非晶硅层 603的掺杂类型与所述单晶硅的掺杂类型相同。所述本征非 晶硅层 602和掺杂非晶硅层 603共同构成所述太阳能电池片的前钝化场,在太 阳能电池片的正表面起到前场钝化的作用;所述减反射层 604起到减少太阳光 在太阳能电池片正表面的反射作用。
在所述单晶硅衬底的正表面依次形成前钝化场(包括本征非晶硅层和掺杂 非晶硅层)和减反射层的过程包括步骤 201至步骤 204。
步骤 201 : 提供一载片舟, 如图 5所示。 所述载片舟包括载片区 501、 边 框 502和卡槽 503 , 其中所述边框 502位于所述载片舟的四周, 包围所述载片 区 501, 所述卡槽 503位于所述边框 502的四个边角。
步骤 202: 将所述单晶硅衬底放置于载片舟的载片区, 并通过边框 502和 卡槽 503固定。
需要说明的是, 本步骤提供的载片舟与步骤 101中的模具载片舟不同, 本 步骤提供的载片舟的载片区不存在镂空结构。在应用此种载片舟在所述太阳能 电池的正表面形成本征非晶硅层 602、 掺杂非晶硅层 603和减反射层 604时, 首先将所述太阳能电池片放置于所述载片舟内,并保证所述太阳能电池的背离 所述待镀膜表面的表面与所述载片舟的载片区接触,也即需要保证所述太阳能 电池片的待镀膜的表面背离所述载片舟的载片区,以上述镀膜的方式在所述单 晶硅衬底的正表面形成前钝化场和减反射层。
步骤 203: 将放置有单晶硅衬底的载片舟放入 PECVD设备, 依次在所述 单晶硅衬底的正表面形成前钝化场和减反射层,在本发明的一个实施中, 所述 前钝化场包括本征非晶硅层 a-Si:H(i)和掺杂非晶硅层 a-Si:H(n+)。
步骤 204:将放置有单晶硅衬底的载片舟从 PECVD设备转移至 PVD设备 内, 通过 PVD设备在所述掺杂非晶硅层表面形成减反射层。
步骤 103: 在所述单晶硅衬底的背表面形成钝化层 605 , 所述钝化层 605 在单晶硅衬底的背表面起到表面钝化的作用。 所述钝化层 605包括氢化本征非晶硅层、 氢化微晶硅层、氢化非晶碳化硅 层或者氢化非晶氧化硅层,也即所述钝化层 605可根据背接触太阳能电池的要 求和工艺条件进行选择, 本发明对此不作限定。 在本发明的一个实施例中, 所 述钝化层 605为氢化本征非晶硅层 a-Si:H(i), 且在所述单晶硅衬底的背表面形 成钝化层 605的过程是通过 PECVD设备形成的。
步骤 104: 采用第一模具载片舟, 在所述钝化层表面形成光栅状的第一掺 杂非晶硅指区和位于所述第一掺杂非晶硅指区表面的第一导电薄膜。
本发明对所述第一导电薄膜的种类不作限定, 为了便于描述,本实施例以 所述第一导电薄膜和下文所述的第二导电薄膜均为 TCO薄膜为例对本实施例 的制作方法进行说明。 也即, 当所述第一导电薄膜和第二导电薄膜均为 TCO 薄膜时, 形成所述第一掺杂非晶硅指区和第一导电薄膜的方法包括步骤 301 至步骤 303。
步骤 301 : 如图 7所示, 将所述单晶硅衬底 601放置于所述第一模具载片 舟 20内,且所述单晶硅衬底 601的钝化层 605与所述第一模具载片舟 20的载 片区表面接触。
步骤 302: 如图 8所示, 将所述放置有单晶硅衬底的第一模具载片舟 20 放入 PECVD设备,通过所述第一模具载片舟 20的第一薄膜生长区 201 , 采用 下镀膜的方式在所述钝化层 605表面形成光栅状的第一掺杂非晶硅指区 606。
步骤 303: 如图 8所示, 将所述放置有单晶硅衬底的第一模具载片舟 20 从 PECVD设备转移至 PVD设备, 通过所述第一模具载片舟 20的第一薄膜生 长区 201 , 釆用下镀膜的方式在所述第一掺杂非晶硅指区表面形成第一导电薄 膜 607。
步骤 105: 采用所述第二模具载片舟, 在所述钝化层表面形成光栅状的第 二掺杂非晶硅指区和位于所述第二掺杂非晶硅指区表面的第二导电薄膜。
形成第二掺杂非晶硅指区和位于所述第二掺杂非晶硅指区表面的第二导 电薄膜的过程与形成第一掺杂非晶硅指区及其表面的第一导电薄膜的过程相 似, 不同点是采用的第二模具载片舟与第一模具载片舟不同,且所述第二掺杂 非晶硅指区的掺杂类型与所述第一掺杂非晶硅指区的掺杂类型相反。形成所述 第二掺杂非晶硅指区及其表面的透明导电膜的方法, 如图 9所示, 包括: 将所 述单晶硅衬底 601放置于所述第二模具载片舟 30内, 且所述单晶硅衬底 601 的第一导电薄膜 607与所述第二模具载片舟 30的表面接触; 将所述放置有单 晶硅衬底 601的第二模具载片舟 30放入 PECVD设备, 通过所述第二模具载 片舟 30的第二薄膜生长区 301 , 采用下镀膜的方式在所述钝化层表面形成光 栅状的第二掺杂非晶硅指区 608; 将所述放置有单晶硅衬底的第二模具载片 舟从 PECVD设备转移至 PVD设备, 通过所述第二模具载片舟 30的第二薄膜 生长区 301 , 采用下镀膜的方式在所述第二掺杂非晶硅指区表面形成第二导电 薄膜 609。
如图 10所示,所述第二掺杂非晶硅指区 608及其表面的第二导电薄膜 609 与所述第一掺杂非晶硅指区 606及其表面的第一导电薄膜交叉排列 607, 以在 太阳能电池的背表面形成交叉排列的异质结。
在应用本发明提供的模具载片舟承载太阳能电池片进行镀膜时,由于本发 明提供的模具载片舟的薄膜生长区和遮挡区是位于模具载片舟的载片区内,故 在步骤 104和步骤 105的实施过程中,如图 8和图 9所示,在形成第一掺杂非 晶硅指区 606和第一导电薄膜 607 (或第二掺杂非晶硅指区 608和第二导电薄 膜 609 )的过程中, 无论是在 PECVD设备中, 还是在 PVD设备中, 均是采用 下镀膜的方式通过模具载片舟进行镀膜,也即使等离子体位于所述放置有单晶 硅衬底的模具载片舟的下方, 然后再通过所述模具载片舟的薄膜生长区,将等 离子体注入薄膜生长区对应的钝化层区域,在所述钝化层的表面形成叉指状的 掺杂非晶硅指区和薄膜区。
第一模具载片舟 20与背表面形成有钝化层 605的单晶硅衬底 601的对应 关系如图 8所示, 第一模具载片舟 20的第一薄膜生长区 201与待形成第一掺 杂非晶硅指区 606和第一导电薄膜 607的区域对应,然后通过位于所述单晶硅 衬底下方的等离子体形成第一掺杂非晶硅指区 606或第一导电薄膜 607。 相应 的, 第二模具载片舟 30与背表面形成有钝化层 605的单晶硅衬底 601的对应 关系如图 9所示, 第二模具载片舟 30的第一薄膜生长区 301与待形成第二掺 杂非晶硅指区 608和第二导电薄膜 609的区域对应,然后通过位于所述单晶硅 衬底下方的等离子体形成第二掺杂非晶硅指区 608或第二导电薄膜 609。
也即,在应用本发明提供的模具载片舟形成掺杂非晶硅指区时, 需要保证 所述单晶硅衬底的待镀膜表面靠近所述模具载片舟的载片区,以下镀膜的方式 在所述单晶硅衬底的钝化层的表面形成掺杂非晶硅指区(第一掺杂非晶硅指区 和第二掺杂非晶硅指区)和导电薄膜(第一导电薄膜和第二导电薄膜), 以便 保证以简单低成本的方式在太阳能电池的背表面形成第一掺杂非晶硅指区及 其表面的第一导电薄膜和第二掺杂非晶硅指区及其表面的第二导电薄膜,并保 证第一掺杂非晶硅指区及其表面的第一导电薄膜和第二掺杂非晶硅指区及其 表面的第二导电薄膜呈交叉排列。
综上所述, 如图 10所示, 在所述太阳能电池背表面的呈交叉排列的第一 掺杂非晶硅指区 606和第二掺杂非晶硅指区 608可以是非晶硅光栅状薄膜,虽 然与单晶硅衬底均为硅原子构成的薄膜,但是非晶硅原子的排列与单晶硅原子 的排列却是完全不同的, 与单晶硅原子相比, 非晶硅原子不再具有长程有序的 物理规律, 键长和键角都发生了畸变, 原子混乱程度极高。 故此时, 非晶硅指 区 (第一掺杂非晶硅指区 606和第二掺杂非晶硅指区 608 )就会和单晶硅衬底 构成异质结, 异质结由于非晶硅和单晶硅之间的带隙的变化,致使能带弯曲增 加, 即太阳能电池的内建电场增加,故而使得太阳能电池可获得很高的开路电 压, 进而获得较高的电池效率。 而且, 在异质结的非晶硅指区中没有发现电池 转换效率因光照而衰退的现象, 异质结电池的温度稳定性好, 与单晶硅电池 -0.5%/°C 的温度系数相比,异质结电池的温度系数可达到 -0.25%/°C , 使得太阳 能电池即使在光照升温情况下仍有好的输出, 太阳能电池的光照稳定性较好。
此外, 居步骤 104和步骤 105可知, 形成所述非晶硅指区(第一掺杂非 晶硅指区 606和第二掺杂非晶硅指区 608 )是通过镀膜工艺实现的, 由于镀膜 工艺的工艺温度是在 200 °C以下, 故此种背接触太阳能电池在形成 pn结的过 程中, 无需经历高温工艺, 从而大大降低了由于热处理给硅衬底带来的损害, 减少了污染途径, 增加了硅衬底的体寿命, 改善了太阳能电池的性能。
步骤 106: 在所述钝化层 605、 第一导电薄膜 607和第二导电薄膜 609表 面形成金属电极 6010, 且最终形成的背接触太阳能电池的背表面的俯视图如 图 11所述。
综上所示,本发明提供的太阳能电池的制作方法, 只需提前设计两种不同 结构的模具载片舟, 然后通过两种结构不同的模具载片舟, 以非常简单低成本 的方式实现了背接触电池背场的叉指状结构。 而且, 所述叉指状的第一掺杂非 晶硅指区及其表面的第一导电薄膜和第二掺杂非晶硅指区及其表面的第二导 电薄膜之间直接通过两者之间的钝化层实现导电区的电隔离和优良的钝化效 果, 无需进行额外形成钝化层的制作工艺,也即此种背接触太阳能电池在保证 形成的背接触太阳能电池具有良好的性能的同时,还可以筒化背接触太阳能电 池的制作方法。
实施例二
本实施例提供了一种背接触太阳能电池,所述背接触太阳能电池是通过实 施例一所述的制作方法形成的, 如图 12所示, 所述背接触太阳能电池包括: 单晶硅衬底 1201 ; 位于所述单晶硅衬底 1201背表面的钝化层 1205; 位于所述 钝化层 1205表面的第一掺杂非晶硅指区 1206及其表面的第一导电薄膜 1207; 位于所述钝化层 1205表面,与所述第一掺杂非晶硅指区 1206及其表面的第一 导电薄膜 1207交叉排列的第二掺杂非晶硅指区 1208及其表面的第二导电薄膜 1209。
其中, 所述第一掺杂非晶硅指区 1206 和所述第二掺杂非晶硅指区 1208 的厚度 dl为 3nm〜30nm, 包括端点值。 所述第一导电薄膜 1207和第二导电薄 膜 1209的厚度 d2为 20nm〜500nm, 包括端点值。 所述交叉排列的第一掺杂非 晶硅指区 1206及其表面的第一导电薄膜 1207和第二掺杂非晶硅指区 1208及 其表面的第二导电薄膜 1209之间的间隙 d3为 0.2μη!〜 500μιη, 包括端点值。
此外,本实施提供的背接触太阳能电池还包括:位于所述单晶硅衬底 1201 正表面的前钝化场 (包括本征非晶硅层 1202 和位于所述本征非晶硅层 1202 表面的掺杂非晶硅层 1203 ); 位于所述前钝化场表面的减反射层 1204; 位于所 述钝化层 1205、 第一导电薄膜 1207 和第二导电薄膜 1209表面的金属电极 1210。
本实施例提供的背接触太阳能电池具有交叉排列异质结,此种异质结背接 触太阳能电池具有很高的开路电压, 较高的能量转换效率和较好的温度稳定 性 ,同时交叉排列的异质结直接通过异质结与所述半导体衬底之间的钝化层实 现导电区隔离,发挥由本征非晶硅构成的钝化层的优良的钝化效果, 改善了异 质结背接触太阳能电池的性能。 以上所述实施例,仅是本发明的较佳实施例而已, 并非对本发明作任何形 式上的限制。
虽然本发明已以较佳实施例披露如上, 然而并非用以限定本发明。任何熟 悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭 示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为 等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本发 本发明技术方案保护的范围内。

Claims

权 利 要 求
1、 一种背接触太阳能电池的制作方法, 其特征在于, 包括:
提供一单晶硅衬底、 第一模具载片舟和第二模具载片舟, 其中, 所述第一 模具载片舟包括相间排列的第一薄膜生长区和第一遮挡区,所述第二模具载片 舟包括相间排列的第二薄膜生长区和第二遮挡区,且所述第一薄膜生长区与所 述第二遮挡区对应, 所述第二薄膜生长区与所述第一遮挡区对应;
在所述单晶硅衬底的一个表面形成钝化层;
釆用第一模具载片舟,在所述钝化层表面形成光栅状的第一掺杂非晶硅指 区和位于所述第一掺杂非晶硅指区表面的第一导电薄膜;
釆用第二模具载片舟,在所述钝化层表面形成光栅状的第二掺杂非晶硅指 区和位于所述第二掺杂非晶硅指区表面的第二导电薄膜,所述第二掺杂非晶硅 指区的掺杂类型与所述第一掺杂非晶硅指区的掺杂类型相反,且所述第二掺杂 非晶硅指区及其表面的第二导电薄膜与所述第一掺杂非晶硅指区及其表面的 第一导电薄膜交叉排列。
2、 根据权利要求 1所述的制作方法, 其特征在于, 所述第一模具载片舟 和第二模具载片舟还包括位于所述第一模具载片舟和第二模具载片舟四周的 边框,所述边框包围所述第一模具载片舟和第二模具载片舟的薄膜生长区和遮 挡区, 且所述边框靠近所述薄膜生长区和遮挡区的侧表面形成有凹槽。
3、 根据权利要求 1所述的制作方法, 其特征在于, 所述钝化层包括氢化 本征非晶硅层、 氢化微晶硅层、 氢化非晶碳化硅层或者氢化非晶氧化硅层。
4、 根据权利要求 1所述的制作方法, 其特征在于, 所述第一导电薄膜和 所述第二导电薄膜均为 TCO薄膜。
5、 根据权利要求 4所述的制作方法, 其特征在于, 采用第一模具载片舟 在所述钝化层表面形成光栅状的第一掺杂非晶硅指区和位于所述第一掺杂非 晶硅指区表面的第一导电薄膜的过程包括:
将所述单晶硅衬底放置于所述第一模具载片舟内,且所述单晶硅衬底的钝 化层与所述第一模具载片舟的表面接触;
将所述放置有单晶硅衬底的第一模具载片舟放入 PECVD设备, 通过所述 第一模具载片舟的第一薄膜生长区,采用下镀膜的方式在所述钝化层表面形成 光栅状的第一掺杂非晶硅指区;
将所述放置有单晶硅衬底的第一模具载片舟从 PECVD设备转移至 PVD 设备,通过所述第一模具载片舟的第一薄膜生长区, 采用下镀膜的方式在所述 第一掺杂非晶硅指区表面形成第一导电薄膜。
6、根据权利要求 4所述的制作方法, 其特征在于, 采用第二模具载片舟, 在所述钝化层表面形成光栅状的第二掺杂非晶硅指区和位于所述第二掺杂非 晶硅指区表面的第二导电薄膜的过程包括:
将所述单晶硅衬底放置于所述第二模具载片舟内,且所述单晶硅衬底的第 一导电薄膜与所述第二模具载片舟的表面接触;
将所述放置有单晶硅衬底的第二模具载片舟放入 PECVD设备, 通过所述 第二模具载片舟的第二薄膜生长区,采用下镀膜的方式在所述钝化层表面形成 光栅状的第二掺杂非晶硅指区;
将所述放置有单晶硅衬底的第二模具载片舟从 PECVD设备转移至 PVD 设备,通过所述第二模具载片舟的第二薄膜生长区, 采用下镀膜的方式在所述 第二掺杂非晶硅指区表面形成第二导电薄膜。
7、 一种背接触太阳能电池, 其特征在于, 包括: 单晶硅衬底; 位于所述 单晶硅衬底一个表面的钝化层;位于所述钝化层表面的第一掺杂非晶硅指区及 其表面的第一导电薄膜;位于所述钝化层表面的第二掺杂非晶硅指区及其表面 的第二导电薄膜,且所述第一掺杂非晶硅指区及其表面的第一导电薄膜与第二 掺杂非晶硅指区及其表面的第二导电薄膜交叉排列。
8、 根据权利要求 7所述的太阳能电池, 其特征在于, 所述第一掺杂非晶 硅指区和所述第二掺杂非晶硅指区的厚度为 3nm〜30nm, 包括端点值。
9、 根据权利要求 7所述的太阳能电池, 其特征在于, 所述第一导电薄膜 和第二导电薄膜的厚度为 20nm〜500nm, 包括端点值。
10、根据权利要求 7所述的太阳能电池, 其特征在于, 所述交叉排列的第 一掺杂非晶硅指区及其表面的第一导电薄膜和第二掺杂非晶硅指区及其表面 的第二导电薄膜之间的间隙为 0.2μιη〜500μιη, 包括端点值。
PCT/CN2014/080309 2013-06-26 2014-06-19 一种背接触太阳能电池及其制作方法 WO2014206240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310261120.2 2013-06-26
CN201310261120.2A CN103346211B (zh) 2013-06-26 2013-06-26 一种背接触太阳能电池及其制作方法

Publications (1)

Publication Number Publication Date
WO2014206240A1 true WO2014206240A1 (zh) 2014-12-31

Family

ID=49280996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080309 WO2014206240A1 (zh) 2013-06-26 2014-06-19 一种背接触太阳能电池及其制作方法

Country Status (2)

Country Link
CN (1) CN103346211B (zh)
WO (1) WO2014206240A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170840A (zh) * 2017-05-23 2017-09-15 中山大学 背接触异质结太阳电池及其发射极、太阳电池制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346211B (zh) * 2013-06-26 2015-12-23 英利集团有限公司 一种背接触太阳能电池及其制作方法
KR101867855B1 (ko) 2014-03-17 2018-06-15 엘지전자 주식회사 태양 전지
US20150280018A1 (en) * 2014-03-26 2015-10-01 Seung Bum Rim Passivation of light-receiving surfaces of solar cells
US20150380581A1 (en) * 2014-06-27 2015-12-31 Michael C. Johnson Passivation of light-receiving surfaces of solar cells with crystalline silicon
CN106575676B (zh) * 2014-07-17 2019-06-28 光城公司 具有叉指背接触的太阳能电池
NL2013722B1 (en) * 2014-10-31 2016-10-04 Univ Delft Tech Back side contacted wafer-based solar cells with in-situ doped crystallized thin-film silicon and/or silicon oxide regions.
JP6774163B2 (ja) * 2014-12-03 2020-10-21 シャープ株式会社 光電変換装置
CN105987662B (zh) * 2015-02-02 2018-09-18 北京大学 一种测量有机半导体异质结物理特性的方法及系统
CN108521832A (zh) * 2015-12-31 2018-09-11 中海阳能源集团股份有限公司 一种背电极异质结太阳能电池及其制备方法
CN105789342B (zh) * 2016-03-07 2018-01-23 中山大学 一种氧化物‑金属多层膜背接触晶体硅太阳电池及其制备方法
CN105576048A (zh) * 2016-03-17 2016-05-11 西安电子科技大学 一种简化的n型ibc电池结构及其制备方法
CN105576084A (zh) * 2016-03-17 2016-05-11 西安电子科技大学 N型ibc电池结构及其制备方法
EP3223318A1 (en) * 2016-03-23 2017-09-27 Meyer Burger (Germany) AG Hetero junction photovoltaic cell and method of manufacturing same
CN106024917B (zh) * 2016-05-31 2018-02-06 保定天威英利新能源有限公司 一种太阳能电池片及太阳能电池组件
CN107342333A (zh) * 2017-07-19 2017-11-10 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种hibc电池及其制备方法
CN108461554A (zh) * 2018-01-29 2018-08-28 君泰创新(北京)科技有限公司 全背接触式异质结太阳能电池及其制备方法
CN110556435A (zh) * 2018-05-15 2019-12-10 深圳市科纳能薄膜科技有限公司 一种太阳能电池制作方法及太阳能电池
CN110752274A (zh) * 2019-09-12 2020-02-04 常州比太科技有限公司 一种用阴罩掩膜镀膜制造hbc电池片及电池的方法
CN111668344B (zh) * 2020-06-29 2021-12-14 浙江晶科能源有限公司 一种太阳能电池的制作方法
CN113964229B (zh) * 2021-10-09 2024-07-26 国家电投集团科学技术研究院有限公司 背接触异质结电池及其制备方法
CN113823705A (zh) * 2021-11-24 2021-12-21 陕西众森电能科技有限公司 一种异质结背接触太阳电池及其制备方法
CN116454176A (zh) * 2022-01-07 2023-07-18 隆基绿能科技股份有限公司 一种背接触式硅异质结太阳能电池及其制备方法
CN114883451B (zh) * 2022-05-25 2023-09-29 中国科学院电工研究所 一种全背接触晶硅异质结太阳电池结构的制备方法
CN114883424B (zh) * 2022-05-25 2023-11-21 中国科学院电工研究所 一种基于丝网印刷制备全背接触晶硅异质结太阳电池结构的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401215A (zh) * 2006-01-26 2009-04-01 阿莱斯技术公司 太阳能电池
US20090293948A1 (en) * 2008-05-28 2009-12-03 Stichting Energieonderzoek Centrum Nederland Method of manufacturing an amorphous/crystalline silicon heterojunction solar cell
CN101952972A (zh) * 2007-12-11 2011-01-19 太阳能研究所股份有限公司 背面具有细长交叉指状发射极区域和基极区域的背接触式太阳能电池及其生产方法
CN103346211A (zh) * 2013-06-26 2013-10-09 英利集团有限公司 一种背接触太阳能电池及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7388147B2 (en) * 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US7718888B2 (en) * 2005-12-30 2010-05-18 Sunpower Corporation Solar cell having polymer heterojunction contacts
CN101548392A (zh) * 2006-12-01 2009-09-30 夏普株式会社 太阳能电池及其制造方法
US20100229928A1 (en) * 2009-03-12 2010-09-16 Twin Creeks Technologies, Inc. Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
DE102009024807B3 (de) * 2009-06-02 2010-10-07 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Solarzelle mit benachbarten elektrisch isolierenden Passivierbereichen mit hoher Oberflächenladung gegensätzlicher Polarität und Herstellungsverfahren

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401215A (zh) * 2006-01-26 2009-04-01 阿莱斯技术公司 太阳能电池
CN101952972A (zh) * 2007-12-11 2011-01-19 太阳能研究所股份有限公司 背面具有细长交叉指状发射极区域和基极区域的背接触式太阳能电池及其生产方法
US20090293948A1 (en) * 2008-05-28 2009-12-03 Stichting Energieonderzoek Centrum Nederland Method of manufacturing an amorphous/crystalline silicon heterojunction solar cell
CN103346211A (zh) * 2013-06-26 2013-10-09 英利集团有限公司 一种背接触太阳能电池及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170840A (zh) * 2017-05-23 2017-09-15 中山大学 背接触异质结太阳电池及其发射极、太阳电池制备方法

Also Published As

Publication number Publication date
CN103346211A (zh) 2013-10-09
CN103346211B (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
WO2014206240A1 (zh) 一种背接触太阳能电池及其制作方法
JP7504164B2 (ja) 高効率太陽電池構造体および製造方法
CN104979474A (zh) 基于钙钛矿电池和hit电池的叠层太阳能电池及制作方法
JP2009524916A (ja) 太陽電池
CN102751371B (zh) 一种太阳能薄膜电池及其制造方法
TWI474488B (zh) 太陽能電池
WO2024045917A1 (zh) 背接触太阳能电池及其制备方法
JP2017520928A (ja) 太陽電池セル
JP2024529031A (ja) パッシベーティングコンタクト構造体、その製造方法及びそれを用いた太陽電池
WO2014206211A1 (zh) 背钝化太阳能电池及其制作方法
CN108735828A (zh) 一种异质结背接触太阳能电池及其制备方法
WO2019144611A1 (zh) 异质结太阳能电池及其制备方法
TWI639241B (zh) 光伏元件及其製造方法
JP2018521502A (ja) 誘起結合を有するバックコンタクト型光電池
KR102632402B1 (ko) 후면접합 실리콘 태양전지 및 이를 제조하는 방법
KR101181225B1 (ko) 태양전지의 제조방법
JP2010533384A (ja) 太陽電池及びその製造方法
CN105470347A (zh) 一种perc电池的制作方法
KR101030447B1 (ko) 이종접합 실리콘 태양전지와 그 제조방법
CN111403538A (zh) 太阳能电池及其制备方法
CN219350239U (zh) 一种太阳能电池
KR20110015998A (ko) 태양 전지 및 그 제조 방법
CN110600577A (zh) 一种异质结太阳能电池及其制备方法
JP2013115434A (ja) 太陽電池及びその製造方法
KR20120034308A (ko) 박막형 태양전지 및 박막형 태양전지의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818745

Country of ref document: EP

Kind code of ref document: A1