WO2014205880A1 - 一种led背光光源 - Google Patents

一种led背光光源 Download PDF

Info

Publication number
WO2014205880A1
WO2014205880A1 PCT/CN2013/079130 CN2013079130W WO2014205880A1 WO 2014205880 A1 WO2014205880 A1 WO 2014205880A1 CN 2013079130 W CN2013079130 W CN 2013079130W WO 2014205880 A1 WO2014205880 A1 WO 2014205880A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
chip
led backlight
backlight source
green
Prior art date
Application number
PCT/CN2013/079130
Other languages
English (en)
French (fr)
Inventor
胡哲彰
樊勇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/008,140 priority Critical patent/US20160116121A1/en
Publication of WO2014205880A1 publication Critical patent/WO2014205880A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the invention relates to an LED backlight source, in particular to an LED backlight source which combines a red and blue chip and a quantum dot phosphor.
  • the LCD since the LCD itself does not emit light, it is required to match the backlight and the RGB color filter film to realize color display.
  • the current LED backlight in order to achieve a high color gamut, it is usually achieved by using a blue chip plus RG phosphor and increasing the thickness of the color filter film. If the thickness of the color filter film is not increased, the half-peak width (FWHM) of the excitation spectrum of the conventional RG phosphor is usually greater than 40 nm, where R is a nitride and an oxynitride, and G is a silicon. Acids or nitrides and oxynitrides have lower color purity. This approach maximizes the NTSC by about 20% NTSC over the blue chip plus YAG phosphor.
  • FWHM half-peak width
  • the transmittance of the backlight after passing through the panel will be greatly reduced due to the increase in the thickness of the color filter.
  • Increasing 1% of NTSC requires a reduction in penetration of about 1% and an increase in the amount of color resist material used.
  • RGB chips high color gamut backlight LEDs are also implemented with RGB chips.
  • This method has different lifetime attenuation curves due to RGB tri-color chips, especially the green chip has the fastest lifetime decay, so that the backlight chromaticity follows the LED lighting time. Prolonged and drastic changes; although this method can achieve high NTSC and high transmittance, but because of the complex LED driving, and the need for chroma feedback system to adjust the driving current of LED different color chips, it is costly and not easy to apply. In a narrow border machine.
  • the main object of the present invention is to provide an LED backlight power supply combining a high color gamut high-brightness red-blue chip and a quantum dot phosphor to improve the NTSC of the LED backlight source, and the transmittance and brightness. .
  • An LED backlight source comprising at least one red chip and a blue chip, further comprising a green quantum dot phosphor layer, the green quantum dot phosphor layer and the red chip and the blue chip are not in contact with each other, and are packaged therewith Into the same LED backlight source.
  • the red and blue light emitted by the red chip and the blue chip respectively penetrate the green quantum dot phosphor layer to perform green light compensation to obtain white light with high NTSC, high transmittance and high brightness.
  • the red chip and the blue chip are arranged in parallel, and the outer periphery is wrapped with an encapsulation layer, and the green quantum dot phosphor layer is mixed into the upper layer of the encapsulation layer or adhered to the upper portion of the encapsulation layer.
  • the green quantum dot phosphor layer can be disposed on Inside the encapsulation layer, or above the encapsulation layer.
  • the peak wavelength of the green quantum dot is 525-540 nm, and the half-peak width (FWHM) value of the phosphor excitation spectrum is 25-40 nm; the peak wavelength of the blue chip is 440-455 nm, and the phosphor is excited.
  • the half-peak width (FWHM) value of the spectrum is less than 25 nm; the peak wavelength of the red chip is 625-650 nm, and the half-peak width (FWHM) value of the phosphor excitation spectrum is less than 25 nm.
  • the material of the green quantum dot phosphor is a mononuclear structure of indium phosphide (InP), cadmium selenide (CdSe), a core-shell structure of cadmium selenide/zinc selenium (CdSe/ZnSe), cadmium selenide/zinc sulfide.
  • CdSe/ZnS cadmium sulfide/zinc sulfide
  • CdS/ZnS cadmium sulfide/mercury sulfide
  • CdS/HgS cadmium selenide/zinc sulfide/cadmium sulfide
  • CdSe/ZnS/CdS cadmium selenide/sulfidation
  • cadmium/zinc sulfide CdSe/CdS/ZnS
  • InP/CdS indium phosphide/cadmium selenide
  • InP/CdSe indium phosphide/cadmium selenide
  • the green quantum dots have a size of less than 15 nm.
  • the red light intensity emitted by the red chip ranges from 0.6 to 1.4 (LED spectrum normalized to blue light); the green light intensity emitted by the green chip ranges from 0.25 to 0.5 (normalized to blue light) LED spectrum).
  • the green quantum dot phosphor layer has a thickness of between 100 nm and 0.7 mm and a density of 1.0 to 5.0 g/cm 3 .
  • the spacing between the green quantum dot phosphor layer and the red chip and the blue chip is greater than 100 nm.
  • the LED backlight source of the present invention combines the red and blue light emitted by the red and blue chips through the green quantum dot phosphor layer by combining the illuminable red and blue chips and the green quantum dot phosphor layer.
  • the quantum dot phosphor has a narrow FWHM, and the blue light excites the green quantum dot phosphor.
  • the quantum efficiency of the phosphor ultimately optimizes the emission wavelength of the blue chip, the red chip, and the green quantum dot phosphor emission spectrum.
  • This combination scheme is 50% higher than the conventional combination of blue chip and yellow phosphor; and the green-emitting quantum dot phosphor has a half-peak width of the emission spectrum and a narrow half-peak width (FWHM).
  • the emission peak wavelength can be adjusted according to the quantum dot size, and the peak wavelengths of the green and red light spectrums of the LEDs and the peak wavelengths of the green and red color-blocking spectrums can be adjusted, so that the entire green and red spectrums of the LEDs are in color.
  • the spectral region with the highest resistance to penetration improves the transmittance and brightness of the liquid crystal display.
  • the red and blue chips + quantum dot green phosphor LED can improve the transmittance and brightness.
  • the design of the green quantum dot phosphor coating or the thin film layer is separated from the red and blue chips, which can reduce the heating temperature of the phosphor, avoid color transition and reduce the efficiency of the phosphor, and realize the high NTSC of the TFT-LCD module. At the same time, the high transmittance of the backlight after passing through the panel is achieved.
  • 1 is a color filter spectrum and an LED spectrum diagram of an LED backlight source according to the present invention
  • FIG. 2 is a schematic view showing a package structure of an embodiment of an LED backlight source according to the present invention
  • FIG. 3 is a schematic diagram of a package structure of a second embodiment of an LED backlight source according to the present invention.
  • FIG. 4 is a schematic view showing a comparison of color gamut coverage of an LED backlight source according to the present invention. detailed description
  • an LED backlight source 100 includes at least one red chip 1 and a blue chip 2, and further includes a green quantum dot phosphor layer 3, the green quantum dot phosphor layer 3 and the red chip 1 and The blue chips 2 are not in contact with each other and are packaged together in the same LED backlight source 100.
  • the red chip 1 and the blue chip 2 are packaged at the bottom of the LED backlight power supply 100, the red chip 1 can emit red light, the blue chip 2 reveals blue light, and the green quantum dot phosphor layer 3 is wrapped outside the LED backlight power supply.
  • the short-wavelength red light does not excite the green light quantum dot phosphor, and only the blue light can excite the green light quantum dot phosphor.
  • the effect of the green quantum dot phosphor is that, on the one hand, the green quantum dot phosphor is excited by blue light to emit green light, and then mixed with blue light and red light to form white light.
  • the green quantum dot luminescence spectrum has a half-wave width narrow (usually less than 45 nm).
  • the RGB spectral wavelength and intensity are adjusted by chrominance simulation to calculate the brightness, NTSC, and panel penetration.
  • FIG. 1 a color filter spectrum and an LED spectrum are shown, wherein a curve A represents a penetration spectrum of a red color resistance, a curve B represents a penetration spectrum of a green color resistance, and a curve C represents a penetration spectrum of a blue resistance, Curve D represents the luminescence spectrum of the red-blue chip + quantum dot green phosphor LED, and curve E represents the luminescence spectrum of the blue chip + nitride red-green phosphor LED. The ordinate is the spectrum after normalizing the spectrum, and the abscissa is the wavelength.
  • the RGB color resistance of red, green and blue has a wide penetration spectrum, especially the green part curve B and the red part curve A have a great influence on the display color gamut of the LED backlight, and the green spectrum peak and green in the LED spectrum
  • the peak of the color resistance spectrum is close, the loss of green light after passing through the color resistance is the smallest.
  • the smaller the FWHM (half-peak width) of the green spectrum the higher the color saturation of the green light of the LED after passing through the green color resistance.
  • the color gamut of the display is larger; the red light of the LED is also the same.
  • red and blue chip + quantum dot green phosphor LED luminescence spectrum the FWHM (half peak width) of red and green light is small, the red spectrum FWHM is less than 25nm, the green spectrum FWHM is less than 45nm, red and blue chip +
  • the color saturation of the red and green light of the green phosphor LED through the red and green color resists is greatly improved compared with the nitride RG LED, which greatly increases the color gamut coverage of the display.
  • the energy efficiency of the red chip is also higher than that of the LED blue light-excited red phosphor, which does not require complicated circuit driving compared with the conventional RGB tri-color chip LED.
  • the red chip 1 and the blue chip 2 are disposed in parallel on the bottom layer of the LED backlight source 100, and the green quantum is used in the upper layer of the red chip 1 and the blue chip 2 by a packaging process.
  • Point phosphor mixing The encapsulation layer 4 composed of a filler is then packaged together into the LED backlight source, and includes a red and blue chip layer, an encapsulation layer 4 and a green quantum dot phosphor layer 3 from the inside to the outside.
  • the green quantum dot phosphor layer 3 is laid on the upper layer of the encapsulation layer 4, and the red chip 1 and the blue chip 2 respectively emit a red light source and a blue light source from the bottom layer of the LED backlight source, the red The light and blue light are optically compensated by the green quantum dot phosphor, and the green light quantum dot phosphor is excited by the blue light to achieve high NTSC, high transmittance and high brightness of the liquid crystal module.
  • the red chip 1 and the blue chip 2 are disposed in parallel on the bottom layer of the LED backlight source 100, and the upper layer of the red chip 1 and the blue chip 2 are mixed by a packaging process.
  • the encapsulation layer 4 is made of glue; then, the green quantum dot phosphor is embedded in the film to form a green quantum dot phosphor film 31, and the green quantum dot phosphor layer film 31 is tiled and adhered to the encapsulation layer 4, Inside and outside, a red and blue chip layer, an encapsulation layer 4, and a green quantum dot phosphor layer film 31 are sequentially included.
  • the NTSC can be increased by more than 50%, and the transmittance of the liquid crystal module can be increased by 4% to 8%, and It can reduce the use of color resist materials and reduce costs.
  • the peak wavelength of the green quantum dot is 525-540 nm, and the half-peak width (FWHM) value of the phosphor excitation spectrum is 25-40 nm; the peak wavelength of the blue chip is 440-455 nm, and the phosphor is excited.
  • the half-peak width (FWHM) value of the spectrum is less than 25 nm; the peak wavelength of the red chip is 625-650 nm, and the half-peak width (FWHM) value of the phosphor excitation spectrum is less than 25 nm.
  • the material of the green quantum dot phosphor is a mononuclear structure of indium phosphide (InP), cadmium selenide (CdSe), a core-shell structure of cadmium selenide/zinc selenium (CdSe/ZnSe), cadmium selenide/zinc sulfide.
  • CdSe/ZnS cadmium sulfide/zinc sulfide
  • CdS/ZnS cadmium sulfide/mercury sulfide
  • CdS/HgS cadmium selenide/zinc sulfide/cadmium sulfide
  • CdSe/ZnS/CdS cadmium selenide/sulfidation
  • One or more of cadmium/zinc sulfide (CdSe/CdS/ZnS) indium phosphide/cadmium sulfide (InP/CdS) or indium phosphide/cadmium selenide (InP/CdSe).
  • the green quantum dots have a size of less than 15 nm.
  • the red light intensity emitted by the red chip ranges from 0.6 to 1.4 L UX; the green light intensity emitted by the green chip ranges from 0.25 to
  • the green quantum dot phosphor layer has a thickness of between 100 nm and 0.7 mm and a density of 1.0-5.0 g/cm 3 .
  • the spacing between the green quantum dot phosphor layer and the red chip and the blue chip is greater than 100 nm, and the green quantum dot phosphor layer is away from the red chip and the blue chip to reduce the temperature of the phosphor, avoid chromatic aberration, and improve Phosphor usage efficiency.
  • the transmittance of the panel is mainly related to the aperture ratio of the Cell end, the transmittance of the TFT, the liquid crystal, the CF, the polarizer, and the glass.
  • the transmittance of the light of different wavelengths is different through the glass, the backlight of different spectra is transparent. After passing through the liquid crystal panel, the calculated transmittance is also different.
  • the main parameters affecting the NTSC color gamut of the liquid crystal display are: the filtering characteristics of the RGB color resistance to the visible light spectrum and the spectral characteristics of the backlight spectrum.
  • the principle of NTSC color gamut improvement is: Improve the color purity of the RGB three primary colors of the liquid crystal module by adopting the RGB three-color spectral light source with a narrow half-peak width, thereby improving the NTSC color gamut.
  • the gamut coverage area is shown as 32
  • the color resistance of the inch A05 is matched with the traditional blue chip + nitride RG phosphor LED backlight.
  • the NTSC color gamut of the liquid crystal module is about 82%. If the backlight uses red and blue chips + quantum dot green phosphor LED, The color gamut is increased to 106.5%, which greatly improves the color gamut coverage of the liquid crystal module, making the display color reproducible and the color more beautiful.
  • the curve a represents the CIE 1931 chromaticity diagram
  • the abscissa x and the ordinate y of the CIE 1931 are both a proportional coefficient, no unit
  • the entire area of the CIE 1931 horseshoe shape represents the color that the human eye can perceive
  • CIE 1931 Each coordinate within the horseshoe shape represents a color.
  • Curve b is the color gamut coverage of the blue chip + nitride RG phosphor LED backlit LCD display (ie, the area enclosed by RGB triangles)
  • curve c is the standard NTSC color gamut (100%) coverage.
  • the formula is: TSq ⁇ &Wi. Because the blue and green spectrum of the LED has a narrow half-wave width, it can adjust the peak wavelength of the green and red spectrum of the LED and the peak wavelength of the green and red color-blocking spectrum, so that the entire LED green and red spectrum are everywhere. In the spectral region with the highest color resistivity, the transmittance and brightness of the liquid crystal display are improved, and the red and blue chips + quantum dot green phosphor LED can improve the transmittance and brightness.

Abstract

一种LED背光光源(100),包括至少一个红色芯片(1)和蓝色芯片(2),还包括绿色量子点荧光粉层(3)。绿色量子点荧光粉层(3)与红色芯片(1)和蓝色芯片(2)相互不接触,并与其一并封装入同一颗LED背光电源(100)中。红色芯片(1)和蓝色芯片(2)所发出的红光和蓝光分别穿透绿色量子点荧光粉层(3),进行绿光补偿,以获得高NTSC、高穿透率和高亮度的白光。

Description

一种 LED背光光源
技术领域
本发明涉及一种 LED背光光源, 尤其是指一种将红蓝芯片和量子点荧光粉相组合而成 的 LED背光光源。
背景技术
在 TFT-LCD的彩色平板显示元件中,由于 LCD 本身并不发光,所以需要背光源和 RGB 彩色滤光膜相搭配来实现彩色显示。
就目前 LED背光而言, 为了实现高色域, 通常采用蓝色芯片加 RG荧光粉以及增加彩 色滤光膜的厚度来实现。若在不增加彩色滤光膜厚度的前提下, 由于现在的普通的 RG荧光 粉激发光谱的半高峰宽 (FWHM) 通常都大于 40nm, 其中, R为氮化物和氮氧化合物类, G为硅酸盐类或氮化物和氮氧化合物类,色纯度较低,这种方式最大可实现的 NTSC比蓝光 芯片加 YAG荧光粉的方式提高约 20%的 NTSC。若在采用蓝色芯片加普通 RG荧光粉 LED 的基础上再增加彩色滤光片的膜厚,则由于彩色滤光片膜厚增加,背光源经过面板后的穿透 率将会大大降低, 大约提高 1%的 NTSC要降低 1%左右的穿透率, 且增加厚度色阻材料使 用量。
此外, 高色域背光 LED, 也有用 RGB芯片来实现的, 这种方式由于 RGB三色芯片的 寿命衰减曲线不同, 尤其是绿色芯片寿命衰减最快, 这样背光源色度随着 LED点灯时间的 延长而激烈变化; 虽然这种方式可以实现高 NTSC和高穿透率, 但是由于 LED驱动复杂, 且需要色度反馈系统来调整 LED不同颜色芯片的驱动电流, 所以成本很高, 且不容易应用 在窄边框机中。
因此, 有必要提供一种高 NTSC、 高穿透率和亮度的 LED背光光源。
发明内容
基于现有技术的不足本发明的主要目的在于提供一种高色域高亮度红蓝芯片与量子点 荧光粉组合而成的 LED背光电源, 以提高 LED背光光源的 NTSC, 以及穿透率和亮度。
一种 LED背光光源, 包括至少一个红色芯片和蓝色芯片, 还进一步包括绿色量子点荧 光粉层, 所述绿色量子点荧光粉层与红色芯片和蓝色芯片相互不接触, 并与其一并封装入同 一颗 LED背光光源中。 红色芯片和蓝色芯片所发出的红光和蓝光分别穿透所述绿色量子点 荧光粉层, 进行绿光补偿, 以获得高 NTSC、 高穿透率和高亮度的白光。
优选地, 所述红色芯片和蓝色芯片平行排列, 其外周包裹有封装层, 所述绿色量子点荧 光粉层混入封装层的上层, 或黏贴于所述封装层的上方。所述绿色量子点荧光粉层可设置于 封装层内, 或封装层上方。
在本发明中, 所述绿色量子点的峰值波长为 525-540nm, 荧光粉激发光谱的半高峰宽 (FWHM )值为 25-40nm; 所述蓝色芯片峰值波长为 440-455nm, 荧光粉激发光谱的半高峰 宽 (FWHM ) 值小于 25nm; 所述红色芯片峰值波长为 625-650nm, 荧光粉激发光谱的半高 峰宽 (FWHM) 值小于 25nm。 所述绿色量子点荧光粉的材料为单核结构的磷化铟 (InP)、 硒化镉 (CdSe)、 核壳结构的硒化镉 /锌硒 (CdSe/ZnSe)、 硒化镉 /硫化锌(CdSe/ZnS)、 硫化 镉 /硫化锌(CdS/ZnS)、硫化镉 /硫化汞(CdS/HgS)、硒化镉 /硫化锌 /硫化镉(CdSe/ZnS/CdS)、 硒化镉 /硫化镉 /硫化锌 (CdSe/CdS/ZnS)、 磷化铟 /硫化镉 (InP/CdS ) 或磷化铟 /硒化镉 (InP /CdSe)中任选一种或多种。所述绿色量子点的尺寸小于 15nm。所述红色芯片所发的红光光 强度范围为 0.6-1.4 (对蓝光归一化的 LED光谱);所述绿色芯片所发出的绿光光强度范围为 0.25-0.5 (对蓝光归一化的 LED光谱)。
在本发明中, 所述绿色量子点荧光粉层的厚度为 lOOnm 至 0.7mm 之间, 密度为 1.0-5.0g/cm3。 所述绿色量子点荧光粉层与红色芯片和蓝色芯片之间的间距为大于 100nm。
与现有技术相比, 本发明一种 LED背光光源通过将可发光的红蓝芯片和绿色量子点荧 光粉层相组合, 红蓝芯片所发出的红光和蓝光穿透绿色量子点荧光粉层, 量子点荧光粉的 FWHM较窄, 蓝光激发绿光量子点荧光粉, 通过模拟计算彩色滤光片和 LED光谱相搭配后 的 NTSC和穿透率, 再综合考虑人眼视觉函数与红蓝芯片、荧光粉的量子效率, 最终将蓝色 芯片、 红色芯片的发射波长和绿光量子点荧光粉发射光谱进行优化。这种结合方案, 比传统 的采用蓝色芯片和黄色荧光粉结合的方式高 50%的 NTSC;且发绿光量子点荧光粉具有发射 光谱半高峰宽, 而半高峰宽 (FWHM ) 窄的特点, 使得发射峰值波长可随量子点尺寸而调 节, 可调节 LED绿光和红光光谱峰值波长与绿色和红色色阻光谱穿透谱峰值波长附近, 使 整个 LED绿光和红光光谱都处在色阻穿透率最高的光谱区域, 从而提高了液晶显示屏的穿 透率和亮度, 红蓝芯片 +量子点绿色荧光粉 LED可以提高穿透率和亮度。 另外, 采用绿色量 子点荧光粉涂层或薄膜层与红蓝芯片相隔离的设计,可降低荧光粉的发热温度,避免颜色转 变和荧光粉效率降低, 实现了 TFT-LCD模组的高 NTSC和同时实现背光经过面板后的高穿 透率。
附图说明
图 1为本发明一种 LED背光光源的彩色滤光片光谱与 LED光谱图;
图 2为本发明一种 LED背光光源的实施例一封装结构示意图;
图 3为本发明一种 LED背光光源的实施例二封装结构示意图;
图 4为本发明一种 LED背光光源的色域覆盖比较示意图。 具体实施方式
参照图 2所示, 一种 LED背光光源 100, 包括至少一个红色芯片 1和蓝色芯片 2, 还进 一步包括绿色量子点荧光粉层 3,所述绿色量子点荧光粉层 3与红色芯片 1和蓝色芯片 2相 互不接触, 并与其一并封装入同一颗 LED背光光源 100中。
其中, 红色芯片 1和蓝色芯片 2封装于 LED背光电源 100的底部, 红色芯片 1可透出 红光, 蓝色芯片 2透出蓝光, 绿色量子点荧光粉层 3包裹于 LED背光电源的外部, 短波长 的红光不会激发绿光量子点荧光粉,而仅有蓝光才能激发绿光量子点荧光粉。绿色量子点荧 光粉的作用是,一方面通过蓝光激发绿色量子点荧光粉发出绿光,再与蓝光和红光混合成白 光, 另一方面, 由于绿色量子点发光光谱半波宽窄 (通常小于 45nm), 色纯度高, 若应用在 照明领域,可以把绿色荧光粉替换成黄色或橙色荧光粉。红蓝芯片所发出的红光和蓝光穿透 绿色量子点荧光粉层 3, 通过模拟计算彩色滤光片和 LED光谱相搭配后的 NTSC (National Television System Committee, 美国国家电视标准委员会) 和穿透率, 其中, NTSC为 NTSC 标准下的色域, 结合 NTSC、 穿透率, 综合考虑人眼视觉函数与红蓝芯片、 荧光粉的量子效 率, 最后, 对蓝色芯片、 红色芯片的发射波长以及绿光量子点荧光粉发射光谱进行优化。 通 过色度模拟, 调整 RGB光谱波长和强度, 计算出亮度、 NTSC以及 panel 穿透率, 三个参 数的乘积越大则越好。 参照图 1, 示出彩色滤光片光谱与 LED光谱, 其中, 曲线 A表示红 色色阻的穿透频谱, 曲线 B表示绿色色阻的穿透频谱, 曲线 C表示蓝色阻的穿透频谱, 曲 线 D表示红蓝芯片 +量子点绿色荧光粉 LED的发光光谱,曲线 E表示蓝色芯片 +氮化物红绿 色荧光粉 LED的发光光谱。 纵坐标是对光谱进行归一后的光谱, 横坐标为波长。 其中, 红 色、绿色和蓝色的 RGB色阻的穿透频谱较宽, 尤其是绿色部分曲线 B和红色部分曲线 A对 LED背光的显示器色域影响很大, LED光谱中绿光光谱波峰与绿色色阻穿透频谱的波峰接 近时, 绿光透过色阻后, 损失最小, 绿光光谱的 FWHM (半高峰宽)越小, LED 的绿光透过 绿色色阻后的色饱和度越高, 显示器的色域越大; LED 的红光也同样的。 在曲线 D, 红蓝 芯片 +量子点绿色荧光粉 LED发光光谱中, 红光和绿光的 FWHM (半高峰宽) 都很小, 红 光谱 FWHM小于 25nm, 绿光谱 FWHM小于 45nm, 红蓝芯片 +绿色荧光粉 LED的红光和 绿光分别透过红光和绿光色阻后的色饱和度相较氮化物 RG LED有很大提高, 大大的增加 了显示器的色域覆盖率, 同时, 由于红色芯片的能量效率也比 LED蓝光激发红色荧光粉的 能量转换效率高, 与传统的 RGB三色芯片 LED相比, 无需复杂的电路驱动。
在本发明中, 提供了两种红蓝芯片和绿色量子点荧光粉的封装方式:
参照图 2所示, 在实施例一中, 所述红色芯片 1和蓝色芯片 2并行地设置于 LED背光 光源 100的底层,在红色芯片 1和蓝色芯片 2的上层采用封装工艺把绿色量子点荧光粉混入 由填充胶构成的封装层 4中, 然后再一起封装入所述 LED背光光源之中, 由内向外, 依次 包括红蓝芯片层、 封装层 4和绿色量子点荧光粉层 3。 这时, 所述绿色量子点荧光粉层 3平 铺于封装层 4的上层, 所述红色芯片 1和蓝色芯片 2从 LED背光光源的底层分别发散出红 色光源和蓝色光源,所述红光和蓝光透过绿色量子点荧光粉进行光补偿,通过蓝光激发绿光 量子点荧光粉, 以实现液晶模组的高 NTSC, 高穿透率和高亮度。
参照图 3所示, 在实施例二中, 所述红色芯片 1和蓝色芯片 2并行地设置于 LED背光 光源 100的底层,在红色芯片 1和蓝色芯片 2的上层采用封装工艺混入由填充胶构成的封装 层 4; 然后, 将绿色量子点荧光粉嵌入薄膜中, 形成绿色量子点荧光粉薄膜 31, 将所述绿色 量子点荧光粉层薄膜 31平铺黏贴于封装层 4上, 由内向外, 依次包括红蓝芯片层、 封装层 4和绿色量子点荧光粉层薄膜 31。
通过上述设置, 使得在相同的 CF条件下, 与传统的 YAG荧光粉 LED光源相比, 可提 高 50%以上的 NTSC, 同时, 液晶模组的穿透率可以提高 4%-8%, 并且, 可减小色阻材料 的使用, 降低成本。
在本发明中, 所述绿色量子点的峰值波长为 525-540nm, 荧光粉激发光谱的半高峰宽 (FWHM)值为 25-40nm; 所述蓝色芯片峰值波长为 440-455nm, 荧光粉激发光谱的半高峰 宽 (FWHM) 值小于 25nm; 所述红色芯片峰值波长为 625-650nm, 荧光粉激发光谱的半高 峰宽 (FWHM) 值小于 25nm。 所述绿色量子点荧光粉的材料为单核结构的磷化铟 (InP)、 硒化镉 (CdSe)、 核壳结构的硒化镉 /锌硒 (CdSe/ZnSe)、 硒化镉 /硫化锌(CdSe/ZnS)、 硫化 镉 /硫化锌(CdS/ZnS)、硫化镉 /硫化汞(CdS/HgS)、硒化镉 /硫化锌 /硫化镉(CdSe/ZnS/CdS)、 硒化镉 /硫化镉 /硫化锌 (CdSe/CdS/ZnS)、 磷化铟 /硫化镉 (InP/CdS) 或磷化铟 /硒化镉 (InP /CdSe)中任选一种或多种。所述绿色量子点的尺寸小于 15nm。所述红色芯片所发的红光光 强度范围为 0.6-1.4LUX; 所述绿色芯片所发出的绿光光强度范围为 0.25-0.5Lux。
其中, 所述绿色量子点荧光粉层的厚度为 lOOnm至 0.7mm之间, 密度为 1.0-5.0g/cm3。 所述绿色量子点荧光粉层与红色芯片和蓝色芯片之间的间距大于 100nm,所述绿色量子点荧 光粉层与红色芯片和蓝色芯片远离, 以降低荧光粉的温度, 避免色差, 提高荧光粉的使用效 率。 面板的穿透率主要与 Cell端开口率、 TFT、 液晶、 CF、 偏光片、 玻璃的穿透率相关, 但是, 由于不同波长的光透过玻璃的穿透率不一样, 不同光谱的背光透过液晶面板后, 计算 的穿透率也是不一样的, 影响液晶显示器 NTSC色域的主要参数是: RGB 色阻对可见光光 谱的滤光特性以及背光光谱的光谱特性。
NTSC色域提高的原理是: 通过采用半峰宽窄的 RGB三色光谱光源来提高提高液晶模 组 RGB三基色的色纯度, 从而提高 NTSC色域。 参照图 4所示, 示出色域覆盖区域, 以 32 寸 A05 的色阻为例,搭配传统的蓝色芯片 +氮化物 RG荧光粉 LED背光,液晶模组的 NTSC 色域约为 82%, 若背光采用红蓝芯片 +量子点绿色荧光粉 LED, 则色域增加到 106.5%, 大 大提高了液晶模组的色域覆盖, 使显示器颜色再现性更佳, 色彩更加绚丽。 其中, 曲线 a 表示 CIE 1931色品图, CIE 1931的横坐标 x和纵坐标 y, 都是一个比例系数, 无单位, 整 个 CIE 1931马蹄形内的区域表示人眼所能感知的所以颜色, CIE 1931马蹄形内的每一个坐 标都表示一种颜色。 曲线 b为蓝芯片 +氮化物 RG荧光粉 LED背光 LCD显示器的色域覆盖 范围 (即 RGB三角形围成的面积), 曲线 c为标准 NTSC色域(100% )覆盖范围。 曲线 d为 红蓝芯片 +绿色荧光粉 LED背光 LCD显示器的色域覆盖范围(即 RGB三角形围成的面积)。 d 曲线与 b曲线相比, d曲线的三角形面积大于 b曲线的三角形面积。 所述 NTSC色域的计算 隱繊 =显 ¾ 面积 %
公式为: TSq^&Wi 。 因为, 该 LED的蓝光和绿光光谱半波 宽窄, 可调节 LED绿光和红光光谱峰值波长与绿色和红色色阻光谱穿透谱峰值波长附近, 使整个 LED绿光和红光光谱都处在色阻穿透率最高的光谱区域, 从而提高了液晶显示屏的 穿透率和亮度, 红蓝芯片 +量子点绿色荧光粉 LED可以提高穿透率和亮度。

Claims

权 利 要 求 书
、 一种 LED背光光源, 包括至少一个红色芯片和蓝色芯片, 其中, 还进一步包括绿色量子点 荧光粉层, 所述绿色量子点荧光粉层与红色芯片和蓝色芯片相互不接触, 并与其一并设于同 一颗 LED背光光源中,所述绿色量子点的峰值波长为 525-540nm,荧光粉激发光谱的半高峰 宽值为 25-40nm; 所述蓝色芯片峰值波长为 440-455nm, 荧光粉激发光谱的半高峰宽值小于 25nm; 所述红色芯片峰值波长为 625-650nm, 荧光粉激发光谱的半高峰宽值小于 25nm。 、 根据权利要求 1所述的 LED背光光源, 其中, 所述红色芯片和蓝色芯片的外周包裹有封装 层。
、 根据权利要求 2所述的 LED背光光源,其中, 所述绿色量子点荧光粉层混入封装层的上层, 或黏贴于所述封装层的上方。
、 根据权利要求 2所述的 LED背光光源, 其中, 所述红色芯片和蓝色芯片平行排列。
、 根据权利要求 1所述的 LED背光光源, 其中, 所述绿色量子点荧光粉的材料为单核结构的 磷化铟、 硒化镉、 核壳结构的硒化镉 /锌硒、 硒化镉 /硫化锌 (CdSe/ZnS)、 硫化镉 /硫化锌、 硫化镉 /硫化汞、 硒化镉 /硫化锌 /硫化镉、 硒化镉 /硫化镉 /硫化锌、 磷化铟 /硫化镉或磷化铟 /硒 化镉中任选一种或多种。
、 根据权利要求 1所述的 LED背光光源, 其中, 所述绿色量子点的尺寸小于 15nm。
、 根据权利要求 6所述的 LED背光光源,其中,所述红色芯片所发的红光光强度范围为 0.6-1.4。 、 根据权利要求 7 所述的 LED 背光光源, 其中, 所述绿色芯片所发出的绿光光强度范围为 0.25-0.5
、 根据权利要求 8所述的 LED背光光源,其中,所述绿色量子点荧光粉层的厚度为 lOOnm至 0.7mmo
0、根据权利要求 9所述的 LED背光光源,其中,所述绿色量子点荧光粉层的密度为 1.0-5.0g/cm3。1、 根据权利要求 6 所述的 LED 背光光源, 其中, 所述绿色量子点荧光粉层与红色芯片 和蓝色芯片之间的间距为大于 100nm。
、 一种 LED背光光源, 包括至少一个红色芯片和蓝色芯片, 其中, 还进一步包括绿色量子点 荧光粉层,所述绿色量子点荧光粉层与红色芯片和蓝色芯片相互不接触,并与其一并设于同 一颗 LED背光光源中。
3、 根据权利要求 12所述的 LED背光光源, 其中, 所述绿色量子点的峰值波长为 525-540nm, 荧光粉激发光谱的半高峰宽值为 25-40nm; 所述蓝色芯片峰值波长为 440-455nm, 荧光粉激 发光谱的半高峰宽值小于 25nm; 所述红色芯片峰值波长为 625-650nm, 荧光粉激发光谱的 半高峰宽值小于 25nm。 、 根据权利要求 12所述的 LED背光光源, 其中, 所述绿色量子点荧光粉的材料为单核 结 构的磷化铟、 硒化镉、 核壳结构的硒化镉 /锌硒、 硒化镉 /硫化锌 (CdSe/ZnS)、 硫化镉 /硫化 锌、 硫化镉 /硫化汞、 硒化镉 /硫化锌 /硫化镉、 硒化镉 /硫化镉 /硫化锌、 磷化铟 /硫化镉或磷化 铟 /硒化镉中任选一种或多种。
、 根据权利要求 12所述的 LED背光光源, 其中, 所述绿色量子点的尺寸小于 15nm。
、 根据权利要求 12所述的 LED背光光源, 其中, 所述红色芯片所发的红光光强度范 围为 0.6-1.4。
、 根据权利要求 12所述的 LED背光光源, 其中, 所述绿色芯片所发出的绿光光强度 范围为 0.25-0.5。
、 根据权利要求 12所述的 LED背光光源, 其中, 所述绿色量子点荧光粉层的厚度为 lOOnm至 0.7mmo
、 根据权利要求 12 所述的 LED 背光光源, 其中, 所述绿色量子点荧光粉层的密度为 1.0-5.0g/cm3
、 根据权利要求 12所述的 LED背光光源, 其中, 所述绿色量子点荧光粉层与红色芯片和蓝 色芯片之间的间距为大于 100nm。
PCT/CN2013/079130 2013-06-28 2013-07-10 一种led背光光源 WO2014205880A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/008,140 US20160116121A1 (en) 2013-06-28 2013-07-10 Led backlight light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310269974.5 2013-06-28
CN2013102699745A CN103292225A (zh) 2013-06-28 2013-06-28 一种led背光光源

Publications (1)

Publication Number Publication Date
WO2014205880A1 true WO2014205880A1 (zh) 2014-12-31

Family

ID=49093548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079130 WO2014205880A1 (zh) 2013-06-28 2013-07-10 一种led背光光源

Country Status (3)

Country Link
US (1) US20160116121A1 (zh)
CN (1) CN103292225A (zh)
WO (1) WO2014205880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044975A (zh) * 2015-08-31 2015-11-11 京东方科技集团股份有限公司 一种液晶显示装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9927075B2 (en) * 2013-06-20 2018-03-27 Futuregreen Agricultural Co., Ltd. LED lighting module for plant factory and LED lighting device for plant factory having same mounted thereon
KR102129780B1 (ko) * 2013-08-30 2020-07-03 엘지이노텍 주식회사 조명 장치
WO2015081579A1 (zh) * 2013-12-02 2015-06-11 深圳市华星光电技术有限公司 使用量子点的发光源及其制作方法与应用
CN103775923B (zh) * 2014-02-21 2015-12-09 深圳市华星光电技术有限公司 灯条及用该灯条的背光模组
CN103887299A (zh) * 2014-03-19 2014-06-25 浙江古越龙山电子科技发展有限公司 一种高压led光源
CN103915045A (zh) * 2014-04-23 2014-07-09 广东威创视讯科技股份有限公司 一种显示器以及显示器的制作方法
CN104269144B (zh) * 2014-09-30 2018-08-14 深圳市华星光电技术有限公司 场色序法液晶显示装置及其色彩控制方法
TWI599825B (zh) * 2015-04-08 2017-09-21 友達光電股份有限公司 具藍光傷害改善設計之背光模組及使用其之顯示模組
CN104930403A (zh) * 2015-06-09 2015-09-23 京东方科技集团股份有限公司 一种量子点背光源结构及显示装置
CN105137651B (zh) * 2015-06-30 2017-12-05 武汉华星光电技术有限公司 背光模组和液晶显示器
CN105185890A (zh) * 2015-08-10 2015-12-23 深圳市华星光电技术有限公司 Led光源结构及其封装方法
US20170102132A1 (en) * 2015-10-07 2017-04-13 Sung-Bin Cho LED Lighting Module for Plant Factory and LED Lighting Device for Plant Factory having Same Mounted thereon
CN105805694A (zh) * 2016-04-07 2016-07-27 深圳市华星光电技术有限公司 一种量子点光源及量子点背光模组
CN106190128A (zh) * 2016-07-12 2016-12-07 青岛海信电器股份有限公司 量子点膜、背光模组及液晶显示设备
CN106125398A (zh) * 2016-07-25 2016-11-16 广东普加福光电科技有限公司 一种新型量子点液晶背光源
WO2018051199A1 (en) * 2016-09-13 2018-03-22 Efun Technology Co., Ltd. Quantum structure light-emitting module
US11898744B2 (en) 2016-09-13 2024-02-13 Sic Technology Co. Ltd Quantum structure thin film and quantum structure light-emitting module including the same
CN108072999A (zh) * 2016-11-15 2018-05-25 迎辉科技股份有限公司 量子结构发光模块
CN108071948A (zh) * 2016-11-15 2018-05-25 迎辉科技股份有限公司 量子结构发光模块
CN106558644A (zh) * 2016-11-30 2017-04-05 深圳市聚飞光电股份有限公司 一种分层型量子点led灯珠的封装方法
CN107167962A (zh) * 2017-06-08 2017-09-15 深圳市华星光电技术有限公司 一种led光源、背光模组及显示装置
CN107180908B (zh) * 2017-06-27 2019-12-27 深圳Tcl新技术有限公司 一种led、背光模组及液晶显示装置
CN109708026B (zh) * 2017-10-25 2021-12-31 苏州星烁纳米科技有限公司 一种照明灯具
CN108549175A (zh) * 2018-04-13 2018-09-18 青岛海信电器股份有限公司 一种量子点发光装置、量子点背光模组、液晶显示装置
CN111400901B (zh) * 2020-03-13 2023-08-01 纳晶科技股份有限公司 量子点选配方法、光致发光组件制备方法
CN113671614B (zh) * 2021-08-17 2022-08-02 深圳市华星光电半导体显示技术有限公司 一种彩色滤光片的制作方法及彩色滤光片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2809676Y (zh) * 2005-05-31 2006-08-23 优佰利股份有限公司 光源模组与液晶面板组合装置
CN101788737A (zh) * 2010-01-26 2010-07-28 友达光电股份有限公司 使用量子点荧光粉的显示装置
US7819539B2 (en) * 2008-10-28 2010-10-26 Samsung Electronics Co., Ltd. Light emitting diode, backlight assembly having the same and method thereof
WO2012064562A1 (en) * 2010-11-10 2012-05-18 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods
CN103155179A (zh) * 2010-08-11 2013-06-12 Qd视光有限公司 基于量子点的照明

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI229465B (en) * 2004-03-02 2005-03-11 Genesis Photonics Inc Single chip white light component
CN100507676C (zh) * 2004-08-18 2009-07-01 索尼株式会社 背光装置及彩色液晶显示装置
TW200950135A (en) * 2008-05-26 2009-12-01 wei-hong Luo Composite material for inorganic phosphor and white LED
CN101358717A (zh) * 2008-09-10 2009-02-04 深圳市中电淼浩固体光源有限公司 一种使用白色led光源的lcd背光系统
US20110303940A1 (en) * 2010-06-14 2011-12-15 Hyo Jin Lee Light emitting device package using quantum dot, illumination apparatus and display apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2809676Y (zh) * 2005-05-31 2006-08-23 优佰利股份有限公司 光源模组与液晶面板组合装置
US7819539B2 (en) * 2008-10-28 2010-10-26 Samsung Electronics Co., Ltd. Light emitting diode, backlight assembly having the same and method thereof
CN101788737A (zh) * 2010-01-26 2010-07-28 友达光电股份有限公司 使用量子点荧光粉的显示装置
CN103155179A (zh) * 2010-08-11 2013-06-12 Qd视光有限公司 基于量子点的照明
WO2012064562A1 (en) * 2010-11-10 2012-05-18 Nanosys, Inc. Quantum dot films, lighting devices, and lighting methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044975A (zh) * 2015-08-31 2015-11-11 京东方科技集团股份有限公司 一种液晶显示装置

Also Published As

Publication number Publication date
CN103292225A (zh) 2013-09-11
US20160116121A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
WO2014205880A1 (zh) 一种led背光光源
JP7383373B2 (ja) 低青色光ディスプレイ
CN100523596C (zh) 发光装置、显示装置和发光装置的控制方法
US7005667B2 (en) Broad-spectrum A1(1-x-y)InyGaxN light emitting diodes and solid state white light emitting devices
US9507200B2 (en) Method of manufacturing image display device and method of selecting color filter
CN104145210B (zh) 光致发光彩色显示器
US20200011508A1 (en) Method and apparatus to enhance spectral purity of a light source
JP5799212B2 (ja) 発光モジュール、バックライト装置および表示装置
TWI442139B (zh) 液晶顯示裝置
WO2016056485A1 (ja) 液晶表示装置
TWI512341B (zh) 顯示裝置
WO2014180053A1 (zh) 显示装置的背光模组以及白光led
JP2005005482A (ja) Led発光装置及びそれを用いたカラー表示装置
CN101252159A (zh) 白色发光器件
CN105892145B (zh) 一种显示器及其显示模组
US9557459B2 (en) Display apparatus
CN110534631B (zh) 一种led结合钙钛矿量子点微晶玻璃的显示用宽色域背光源
WO2019178951A1 (zh) 液晶显示装置和量子点led
JP2008288412A (ja) Led発光装置
KR20150135935A (ko) 표시 장치
CN103676220B (zh) 显示装置及其制造方法
CN108897170B (zh) 一种颜色转换膜及其构成的液晶模组
JP2009036989A (ja) 面発光表示装置
TWI397192B (zh) 白色發光二極體
KR101564067B1 (ko) 색재현율 개선제를 이용한 디스플레이 백라이트 유닛(blu)용 발광다이오드 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14008140

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888282

Country of ref document: EP

Kind code of ref document: A1