WO2019178951A1 - 液晶显示装置和量子点led - Google Patents
液晶显示装置和量子点led Download PDFInfo
- Publication number
- WO2019178951A1 WO2019178951A1 PCT/CN2018/090106 CN2018090106W WO2019178951A1 WO 2019178951 A1 WO2019178951 A1 WO 2019178951A1 CN 2018090106 W CN2018090106 W CN 2018090106W WO 2019178951 A1 WO2019178951 A1 WO 2019178951A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- quantum dot
- light
- wavelength
- wavelength light
- dot material
- Prior art date
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 161
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 88
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 40
- 239000010408 film Substances 0.000 claims description 30
- 239000012788 optical film Substances 0.000 claims description 6
- 230000003595 spectral effect Effects 0.000 claims description 2
- 230000005855 radiation Effects 0.000 claims 1
- 230000005284 excitation Effects 0.000 abstract description 13
- 239000000843 powder Substances 0.000 abstract description 3
- 230000009466 transformation Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004054 semiconductor nanocrystal Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/501—Wavelength conversion elements characterised by the materials, e.g. binder
- H01L33/502—Wavelength conversion materials
- H01L33/504—Elements with two or more wavelength conversion materials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133603—Direct backlight with LEDs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0066—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
- G02B6/0073—Light emitting diode [LED]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133624—Illuminating devices characterised by their spectral emissions
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
Definitions
- the present disclosure relates to the field of display technologies, and in particular, to a Light Emitting Diode (LED) and two liquid crystal display devices.
- LED Light Emitting Diode
- the white LEDs conventionally applied to the backlight module are mainly used to excite yellow phosphors or red and green phosphors by blue LEDs, and are mixed into white light, but because of their wide half-width, high color gamut cannot be achieved. Generally, it is between 70 and 85% NTSC.
- the prior art uses blue light to excite quantum dot materials to meet the high color gamut of the display device.
- the quantum dot material is composed of a semiconductor nanocrystal material, and a narrower wavelength band produces denser light, and has a special and excellent visible light region fluorescence emission property.
- the quantum dot film is encapsulated in the middle of two water-oxide barrier films, the light source adopts a blue light source, the quantum dot film is excited to generate red light and green light, and the blue light, red light and green light are mixed and converted into white light.
- the prior art also applies a quantum dot LED, which is provided with a quantum dot layer on the light emitting side of the LED chip, and the blue light emitted from the LED chip excites the quantum dot material disposed in the quantum dot layer to generate red-green light, so that the backlight The module eventually emits white light.
- the emission spectrum of the quantum film used in the conventional quantum dot backlight module, the peak intensity ratio of red light and green light is generally between 1:0.9 and 1:1.1.
- Embodiments of the present disclosure provide two liquid crystal display devices and a quantum dot LED.
- a liquid crystal display device comprising a quantum dot film, an optical film set and a backlight
- the backlight comprises an LED chip configured to generate light of a first wavelength and a phosphor layer disposed on the LED chip for light emission.
- the phosphor layer is configured to be excited by the first wavelength of light to produce a second wavelength of light.
- the quantum dot film includes a first quantum dot material and a second quantum dot material.
- the first wavelength light excites the first quantum dot material to produce a third wavelength of light.
- the first wavelength light and the second wavelength light excite the second quantum dot material to produce a fourth wavelength of light. Part of the first wavelength light, the third wavelength light, and the fourth wavelength light are emitted from the quantum dot film to the optical film group.
- the third wavelength light is the same color as the second wavelength light, and the third wavelength is smaller than the second wavelength.
- a quantum dot LED in a second aspect, includes a bracket internally provided with a cavity, a quantum dot layer disposed on the top of the cavity, and an LED chip disposed at the bottom of the cavity, the LED chip being configured to generate The first wavelength light and a phosphor layer disposed between the LED chip and the quantum dot layer.
- the phosphor layer is configured to be excited by the first wavelength of light to produce a second wavelength of light.
- the quantum dot layer includes a first quantum dot material and a second quantum dot material.
- the first wavelength light excites the first quantum dot material to produce a third wavelength of light.
- the first wavelength light and the second wavelength light excite the second quantum dot material to produce a fourth wavelength of light. Part of the first wavelength light, the third wavelength light, and the fourth wavelength light are emitted from the light exit side of the quantum dot layer.
- the third wavelength light is the same color as the second wavelength light, and the third wavelength is smaller than the second wavelength.
- a liquid crystal display device in a third aspect, includes a quantum dot LED.
- the quantum dot LED includes a bracket internally provided with a cavity, a quantum dot layer disposed on the top of the cavity, and an LED chip disposed at the bottom of the cavity, the LED chip being configured to generate first wavelength light and disposed on the LED chip and A phosphor layer between the quantum dot layers.
- the phosphor layer is configured to be excited by the first wavelength of light to produce a second wavelength of light.
- the quantum dot layer includes a first quantum dot material and a second quantum dot material. The first wavelength light excites the first quantum dot material to produce a third wavelength of light.
- the first wavelength light and the second wavelength light excite the second quantum dot material to produce a fourth wavelength of light.
- Part of the first wavelength light, the third wavelength light, and the fourth wavelength light are emitted from the light exit side of the quantum dot layer.
- the third wavelength light is the same color as the second wavelength light, and the third wavelength is smaller than the second wavelength.
- FIG. 1A is a schematic structural diagram of a liquid crystal display device according to some embodiments of the present disclosure.
- Figure 1B is a partial enlarged view of Figure 1A at C;
- FIG. 2 is a schematic diagram of an emission spectrum of a backlight provided by some embodiments of the present disclosure
- FIG. 3 is a schematic diagram of absorption values of red and green quantum dot materials for different wavelengths of light provided by some embodiments of the present disclosure
- Example 4A is a color gamut diagram of a liquid crystal display device provided by Example 1 of some embodiments of the present disclosure
- Example 4B is a color gamut diagram of a liquid crystal display device provided by Example 2 of some embodiments of the present disclosure.
- 4C is a color gamut diagram of a liquid crystal display device provided by Example 3 of some embodiments of the present disclosure.
- FIG. 5 is a schematic diagram of a spectrum of a quantum dot film 120 emitted by some embodiments of the present disclosure
- FIG. 6 is a schematic structural diagram of a quantum dot LED provided by some embodiments of the present disclosure.
- FIG. 1A is a schematic structural diagram of a liquid crystal display device 100 according to some embodiments of the present disclosure
- FIG. 1B is a partially enlarged schematic view of the liquid crystal display device 100 in FIG. 1A
- the liquid crystal display device 100 may include: quantum dots.
- the backlight 110 includes an LED chip 111 configured to generate light of a first wavelength and a phosphor layer 112 disposed at a light output of the LED chip 111.
- the phosphor layer 112 is configured to be excited by the first wavelength light generated by the LED chip 111 to generate second wavelength light.
- the first wavelength light and the second wavelength light emitted from the backlight 110 are incident on the light incident surface 121 of the quantum dot film 120.
- the quantum dot film 120 includes a first quantum dot material 122 and a second quantum dot material 123.
- the first wavelength light excites the first quantum dot material 122 to generate third wavelength light
- the first wavelength light and the second wavelength light excite the second quantum dot material 123 to generate fourth wavelength light, part of the first wavelength light and the third wavelength
- the light and the fourth wavelength light are emitted from the quantum dot film 120 to the optical film group 130.
- the third wavelength light and the second wavelength light belong to a wavelength range of the same color light, and satisfy the third wavelength is smaller than the second wavelength.
- the first wavelength light is blue light
- the second wavelength and the third wavelength light are green light
- the fourth wavelength light is red light
- the LED chip 111 in the backlight 110 is a blue chip, and generates blue excitation light when energized.
- the peak wavelength of the blue excitation light falls within the range of [440 nm, 470 nm].
- the phosphor layer 112 encapsulates a green phosphor, the blue excitation light excites the green phosphor layer to generate a second wavelength of green light, and the second wavelength of the green light has a peak wavelength range of [534 nm, 540 nm].
- the blue excitation light and the second wavelength green light are emitted from the backlight 110 and incident on the light incident surface 121 of the quantum dot film 120.
- the first quantum dot material 122 in the quantum dot film 120 is a green quantum dot material, and the peak wavelength range of the third wavelength green light generated by the blue excitation light is in the range of [528 nm, 533].
- the second quantum dot material 123 in the quantum dot film 120 is a red quantum dot material.
- FIG. 2 is a schematic diagram of the illuminating spectrum of the backlight 110 provided by the embodiment shown in FIGS. 1A and 1B.
- Quantum dot materials emit light with a certain half-band that can be excited by light below their own wavelength of illumination.
- FIG. 3 it is a schematic diagram of the absorption values of red and green quantum dot materials for different wavelengths of light. Since the green quantum dot material has a half-wave width corresponding to the blue excitation light, the blue excitation light can excite the green quantum dot material to generate a third wavelength of green light. Further, compared with the red quantum dot material, both the blue excitation light and the second wavelength green light are in a lower wavelength band than the half-wave width corresponding to the red quantum dot material, so the red quantum dot material can be excited by blue light. The green light of the second wavelength is excited to generate red light.
- the excitation conversion rate of the green light of the second wavelength to the green light of the third wavelength is extremely low, so that the absorption rate of the green light of the second wavelength of the green quantum dot material is lowered, and the second Most of the green light of the wavelength is emitted from the quantum dot film 120, so that the light emission rate of the green light is increased.
- the light output rate required for the high color gamut can be achieved without additionally increasing the concentration of the green quantum dot material. Reduce the amount of quantum dot material used and control costs.
- the ratio of the peak intensity of the first wavelength light to the peak intensity of the second wavelength light falls within the range of [1:0.05, 1:0.08].
- Peak intensity refers to the maximum value of spectral luminescence intensity or radiant power. The inventors have found through a large number of experimental tests that when the power of the LED chip 111 and the quantum dot film 120 have been determined, the blue light emitted from the backlight 110 and the green light of the second wavelength are measured by adjusting the amount of use of the green phosphor. The peak intensity, when the peak intensity ratio of the blue light and the second wavelength green light is controlled to fall within the range of [1:0.05, 1:0.08], the light emitted from the quantum dot film 120 will enhance the user's viewing experience.
- the peak intensity ratio of the red light emitted from the quantum dot film 120 to the green light of the third wavelength generally falls within the range of [1:0.45, 1:0.8], and the red and green light peaks in the prior art.
- the intensity of the green quantum dot material is reduced, and the color gamut can be further improved.
- FIG. 4A is a schematic diagram of a color gamut formed by a liquid crystal display device provided by the embodiment shown in FIGS. 1A and 1B, wherein a solid triangle is a standard color gamut, and a dotted triangle is a color gamut formed by the example 1 of the disclosure.
- a solid triangle is a standard color gamut
- a dotted triangle is a color gamut formed by the example 1 of the disclosure.
- the red, green, and blue coordinates of the liquid crystal display device are respectively: R (0.6923, 0.2974), G. (0.2397, 0.6901), B (0.151, 0.0602).
- the peak intensity ratio of the red light emitted from the quantum dot film 120 to the green light of the third wavelength is about 1:0.8, and the achievable color gamut coverage is about 101% NTSC.
- FIG. 4B is a schematic diagram of a color gamut formed by a liquid crystal display device provided by the embodiment shown in FIGS. 1A and 1B, wherein a solid triangle is a standard color gamut, and a dotted triangle is a color gamut formed by the example 2 of the disclosure.
- the peak wavelength of blue light is selected at 450 nm
- the peak wavelength of green phosphor is selected at 535 nm
- the peak wavelength of green quantum dot material is selected at 531 nm
- the peak wavelength of red quantum dot material is selected at 625 nm.
- the backlight is used.
- the red, green and blue coordinates of the liquid crystal display device are: R (0.6912, 0.298), G ( 0.2408, 0.874), B (0.1506, 0.0644).
- the peak intensity ratio of the red light emitted from the quantum dot film 120 to the green light of the third wavelength is about 1:0.6, and the achievable color gamut coverage is about 100% NTSC.
- FIG. 4C is a schematic diagram of a color gamut formed by a liquid crystal display device provided by the embodiment shown in FIGS. 1A and 1B, wherein the solid triangle is a standard color gamut, and the dotted triangle is the color gamut formed by the example 3 of the disclosure.
- the peak wavelength of blue light is selected at 450 nm
- the peak wavelength of green phosphor is selected at 535 nm
- the peak wavelength of green quantum dot material is selected at 531 nm
- the peak wavelength of red quantum dot material is selected at 625 nm.
- the backlight is used.
- the peak intensity ratio of the blue light emitted by 110 and the green light of the second wavelength is 1:0.08, as shown in FIG.
- the red, green and blue coordinates of the liquid crystal display device are: R (0.6856, 0.3002), G ( 0.2445, 0.6855), B (0.1509, 0.0646).
- the peak intensity ratio of the red light emitted from the quantum dot film 120 to the green light of the third wavelength is about 1:0.5, and the achievable color gamut coverage is about 98% NTSC.
- Example 2 when the peak intensity ratio of the blue light emitted from the backlight 110 and the green light of the second wavelength is 1:0.06, a schematic diagram of the spectrum emitted from the quantum dot film 120 is as shown in FIG. 5.
- the structure of the liquid crystal display device provided by the above embodiments of the present disclosure is not limited to the side-entry structure shown in FIG. 1A. It is within the scope of the present disclosure to employ a liquid crystal display device of other light-input modes, if the technical solutions to be protected by the present disclosure are applied.
- the liquid crystal display device includes a quantum dot film and a backlight.
- the backlight includes an LED chip configured to generate blue light and a phosphor layer disposed on the LED chip.
- the blue light generated by the LED chip excites the phosphor layer to produce a second wavelength of light.
- the quantum dot film includes a red quantum dot material and a green quantum dot material.
- the blue light generated by the LED chip excites the green quantum dot material to produce a third wavelength of light. Since the third wavelength is smaller than the second wavelength, the excitation conversion rate of the second wavelength light to the third wavelength light is decreased, and the second wavelength and the third wavelength light belong to the same green light band range, so that the quantum dot film is not added.
- the excitation conversion of the green light of the second wavelength to the green quantum dot material is reduced.
- the green quantum dot material is less excited by the third wavelength of green light, which reduces the secondary excitation conversion of the third wavelength green light to the red quantum dot material.
- most of the green light of the second wavelength generated by the phosphor layer is directly emitted from the quantum dot film, and a small portion is used to excite the red quantum dot material. In this way, under the premise of satisfying the color coordinates, the light extraction rate required for the high color gamut can be achieved without additionally increasing the concentration of the green quantum dot material, thereby reducing the amount of quantum dots used and controlling the cost.
- the quantum dot LED 200 includes a bracket 240 internally provided with a cavity, a quantum dot layer 230 disposed at the top of the cavity, an LED chip 210 configured to generate first wavelength light, and a phosphor layer 220 disposed on the LED chip 210 for light emission. .
- the LED chip 210 and the phosphor layer 22 are disposed inside the cavity formed by the bracket 240.
- Phosphor layer 220 is configured to be excited by the first wavelength of light to produce a second wavelength of light.
- an LED chip is disposed at the bottom of the cavity, and a phosphor layer is disposed between the LED chip and the quantum dot layer.
- the quantum dot layer 230 includes a first quantum dot material and a second quantum dot material.
- the first wavelength light excites the first quantum dot material to generate a third wavelength light
- the first wavelength light and the second wavelength light excite the second quantum dot material to generate a fourth wavelength light, part of the first wavelength light, the third wavelength light, and the fourth
- the wavelength light is emitted from the light exit side of the quantum dot layer 230.
- the third wavelength and the second wavelength belong to a wavelength range of green light, and the third wavelength is smaller than the second wavelength.
- the optical function and function of the phosphor layer and the quantum dot layer are the same as those of the LED chip in the quantum dot backlight module 100 provided by the embodiment shown in FIGS. 1A and 1B.
- the optical functions and functions of the powder layer and the quantum dot layer are similar, and therefore will not be described again.
- Some embodiments of the present disclosure further provide a liquid crystal display device, including the quantum dot LED 200 provided by the embodiment shown in FIG. 6, and the functions and functions of the quantum dot LED 200 have been described in detail in the foregoing embodiments, and are not described herein again.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Nonlinear Science (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Crystal (AREA)
- Planar Illumination Modules (AREA)
- Led Device Packages (AREA)
Abstract
提供两种液晶显示装置和一种量子点LED,通过在LED芯片(111、210)的出光侧设置荧光粉层(112、220),使得LED芯片产生的第一波长光激发荧光粉层产生第二波长光,第一波长光激发量子点层(120、230)的第一量子点材料产生第三波长光,第一波长光和第二波长光激发量子点层的第二量子点材料产生第四波长光,且第三波长小于第二波长,第三波长光与第二波长光颜色相同,从而降低第二波长光对第一量子点材料的激发转换,在满足色坐标的前提下,无需额外增加绿色量子点材料的浓度就能达到高色域所需的出光率,降低了量子点材料的使用量,控制了成本。
Description
本申请要求于2018年3月20日提交中国专利局、申请号为201810228475.4、申请名称为“量子点背光模组、液晶显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本公开涉及显示技术领域,特别涉及一种量子点发光二极管(Light Emitting Diode,LED)以及两种液晶显示装置。
随着显示技术的发展,各种具有显示功能的产品出现在日常生活中,而液晶显示器已成为现如今显示领域的主流产品。
传统上应用于背光模组上的白光LED主要通过蓝光LED激发黄色荧光粉或者红绿两种荧光粉的形式,混合成白光,但是由于其半波宽较宽,并不能实现很高的色域,一般在70~85%NTSC之间。针对以上问题,现有技术中采用蓝光激发量子点材料,以满足显示装置的高色域。量子点材料为半导体纳米晶体材料组成,较窄的波长带产生更密集的光,具有特殊而优良的可见光区荧光发射性质。通常是将量子点膜封装在两层水氧阻隔膜中间,光源采用蓝光光源,量子点膜受激发产生红光和绿光,蓝光、红光、绿光混合转换成白光。现有技术中还应用一种量子点LED,其在LED芯片的出光侧设置量子点层,从LED芯片出射的蓝色光线激发设置在量子点层中的量子点材料产生红绿色光,使得背光模组最终出射白光。此外,为满足用户的观看体验,液晶电视的色坐标一般设计为(x=0.280±0.015,y=0.290±0.015),其中红色主要影响色坐标中x的大小,绿色主要影响色坐标中y的大小。普通量子点背光模组所采用的量子膜的出射光谱,红光和绿光峰值强度比一般在1:0.9~1:1.1之间。
发明内容
本公开实施例提供了两种液晶显示装置和一种量子点LED。
第一方面,提供了一种液晶显示装置,包括量子点膜,光学膜片组和背光源。其中,背光源包括被配置为产生第一波长光的LED芯片以及设置在LED芯片出光测的荧光粉层。荧光粉层被配置为被第一波长光激发产生第二波长光。量子点膜包括第一量子点材料与第二量子点材料。第一波长光激发第一量子点材料产生第三波长光。第一波长光和第二波长 光激发第二量子点材料产生第四波长光。部分第一波长光、第三波长光与第四波长光从量子点膜出射到光学膜片组。第三波长光与第二波长光颜色相同,且第三波长小于第二波长。
第二方面,提供一种量子点LED,量子点LED包括内部设置有腔体的支架,设置在腔体顶部的量子点层,设置在腔体底部的LED芯片,所述LED芯片被配置为产生第一波长光以及设置在LED芯片和量子点层之间的荧光粉层。荧光粉层被配置为被第一波长光激发产生第二波长光。量子点层包括第一量子点材料与第二量子点材料。第一波长光激发第一量子点材料产生第三波长光。第一波长光和第二波长光激发第二量子点材料产生第四波长光。部分所述第一波长光、第三波长光与第四波长光从量子点层的出光侧出射。第三波长光与第二波长光颜色相同,且第三波长小于第二波长。
第三方面,还提供一种液晶显示装置。该液晶显示装置包括量子点LED。该量子点LED包括内部设置有腔体的支架,设置在腔体顶部的量子点层,设置在腔体底部的LED芯片,所述LED芯片被配置为产生第一波长光以及设置在LED芯片和量子点层之间的荧光粉层。荧光粉层被配置为被第一波长光激发产生第二波长光。量子点层包括第一量子点材料与第二量子点材料。第一波长光激发第一量子点材料产生第三波长光。第一波长光和第二波长光激发第二量子点材料产生第四波长光。部分所述第一波长光、第三波长光与第四波长光从量子点层的出光侧出射。第三波长光与第二波长光颜色相同,且第三波长小于第二波长。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显然,以下附图仅仅描述本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A是本公开一些实施例提供的一种液晶显示装置的结构示意图;
图1B是图1A在C处的局部放大示意图;
图2是本公开实施例一些所提供的背光源的发光光谱示意图;
图3是本公开一些实施例提供的红、绿色量子点材料对不同波长光的吸收值示意图;
图4A是本公开一些实施例的示例1提供的液晶显示装置形成的色域示意图;
图4B是本公开一些实施例的示例2提供的液晶显示装置形成的色域示意图;
图4C是本公开一些实施例的示例3提供的液晶显示装置形成的色域示意图;
图5是本公开一些实施例提供的量子点膜120出射的光谱示意图;
图6是本公开一些实施例提供的一种量子点LED的结构示意图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的组件或具有相同或类似功能的组件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
参考图1A、图1B,图1A为本公开一些实施例提供的一种液晶显示装置100的结构示意图,图1B为图1A中在C处的局部放大示意图,液晶显示装置100可以包括:量子点膜120、光学膜片组130、背光源110。背光源110包括被配置为产生第一波长光的LED芯片111以及设置在LED芯片111出光测的荧光粉层112。荧光粉层112被配置为被LED芯片111产生的第一波长光激发产生第二波长光。从背光源110出射的第一波长光与第二波长光入射到量子点膜120的入光面121。量子点膜120包括第一量子点材料122和第二量子点材料123。第一波长光激发第一量子点材料122产生第三波长光,第一波长光和第二波长光激发第二量子点材料123产生第四波长光,部分所述第一波长光、第三波长光与第四波长光从量子点膜120出射到光学膜片组130。第三波长光与第二波长光属于同种颜色光的波段范围,且满足第三波长小于第二波长。
在一种实施方式中,第一波长光为蓝光,第二波长与第三波长光为绿光,第四波长光为红光。背光源110中的LED芯片111为蓝光芯片,通电时产生蓝色激励光,该蓝色激励光的峰值波长落入[440nm,470nm]的范围。荧光粉层112内封装绿色荧光粉,蓝色激励光激发绿色荧光粉层产生第二波长的绿光,第二波长的绿光的峰值波长范围落入[534纳米,540纳米]的范围。蓝色激励光与第二波长的绿光从背光源110出射,入射到量子点膜120的入光面121。量子点膜120中的第一量子点材料122为绿色量子点材料,被蓝色激励光激发后产生的第三波长的绿光的峰值波长范围落入[528纳米,533]的范围。量子点膜120中的第二量子点材料123为红色量子点材料。如图2所示,图2为图1A和1B所示的实施例所提供的背光源110的发光光谱示意图。
量子点材料发光有一定的半波段,能被低于自己发光波长的光所激发。如图3所示,为红、绿色量子点材料对不同波长光的吸收值示意图。由于绿色量子点材料对应的半波宽大于蓝色激励光,因此,蓝色激励光能够激发绿色量子点材料产生第三波长的绿光。进一 步地,与红色量子点材料相比,蓝色激励光和第二波长的绿光都处于比红色量子点材料对应的半波宽低的低波段,因此红色量子点材料能被蓝色激励光和第二波长的绿光激发产生红光。由于第三波长小于第二波长,因此,第二波长的绿光对第三波长的绿光的激发转换率极低,使得绿色量子点材料对第二波长的绿光的吸收率降低,第二波长的绿光大部分从量子点膜120出射,使得绿光的出光率增高,在满足色坐标的前提下,无需额外增加绿色量子点材料的浓度就能达到高色域所需的出光率,进而降低了量子点材料的使用量,控制了成本。
在一种实施方式中,第一波长光的峰值强度与第二波长光的峰值强度的比值落入[1:0.05,1:0.08]的范围。峰值强度指光谱发光强度或辐射功率的最大值。发明人通过大量的实验测试发现,当采用的LED芯片111的功率以及量子点膜120已确定时,通过调整绿色荧光粉的使用量,测量从背光源110出射的蓝光与第二波长的绿光的峰值强度,控制蓝光与第二波长绿光的峰值强度比落入[1:0.05,1:0.08]的范围时,从量子点膜120出射的光线将增强用户的观看体验。此时,从量子点膜120出射的红光与第三波长的绿光的峰值强度比一般落入[1:0.45,1:0.8]的范围,与现有技术中的红光与绿光峰值强度比在1:0.9~1:1.1之间相比,在满足色坐标的标准要求前提下,降低了绿色量子点材料的使用量,能进一步地提高色域。
示例1:图4A为图1A和1B所示的实施例提供的一种液晶显示装置形成的色域示意图,其中实线三角形为标准色域,虚线三角形为本公开示例1形成的色域。当蓝光峰值波长选在450nm,绿色荧光粉峰值波长选在535nm,绿色量子点材料峰值波长选在531nm,红色量子点材料峰值波长选在625nm,通过控制绿色荧光粉的使用量,使得从背光源110出射的蓝光与第二波长的绿光的峰值强度比在1:0.05时,如图4A所示,,液晶显示装置的红、绿、蓝色坐标分别为:R(0.6923,0.2974)、G(0.2397,0.6901)、B(0.151,0.0602)。此时从量子点膜120出射的红光与第三波长的绿光的峰值强度比约为1:0.8,可实现的色域覆盖范围约为101%NTSC。
示例2:图4B为图1A和1B所示的实施例提供的一种液晶显示装置形成的色域示意图,其中实线三角形为标准色域,虚线三角形为本公开示例2形成的色域。当蓝光峰值波长选在450nm,绿色荧光粉峰值波长选在535nm,绿色量子点材料峰值波长选在531nm,红色量子点材料峰值波长选在625nm,通过控制绿色荧光粉的使用量,使得从背光源110出射的蓝光与第二波长的绿光的峰值强度比在1:0.06时,如图4B所示,液晶显示装置的红、绿、蓝色坐标分别为:R(0.6912,0.298)、G(0.2408,0.874)、B(0.1506,0.0644)。此时从量子点膜120出射的红光与第三波长的绿光的峰值强度比约为1:0.6,可实现的色域覆 盖范围约为100%NTSC。
示例3:图4C为图1A和1B所示的实施例提供的一种液晶显示装置形成的色域示意图,其中实线三角形为标准色域,虚线三角形为本公开示例3形成的色域。当蓝光峰值波长选在450nm,绿色荧光粉峰值波长选在535nm,绿色量子点材料峰值波长选在531nm,红色量子点材料峰值波长选在625nm,通过控制绿色荧光粉的使用量,使得从背光源110出射的蓝光与第二波长的绿光的峰值强度比在1:0.08时,如图4C所示,液晶显示装置的红、绿、蓝色坐标分别为:R(0.6856,0.3002)、G(0.2445,0.6855)、B(0.1509,0.0646)。此时从量子点膜120出射的红光与第三波长的绿光的峰值强度比约为1:0.5,可实现的色域覆盖范围约为98%NTSC。
在示例2中,当从背光源110出射的蓝光与第二波长的绿光的峰值强度比在1:0.06时,从量子点膜120出射的光谱示意图如图5所示。
需要注意的是,本公开上述实施例所提供的液晶显示装置的结构不仅限于图1A所示的侧入式结构。采用其它入光方式的液晶显示装置,若应用了本公开所要保护的技术方案,都在本公开保护的范围内。
与现有技术相比,本公开上述实施例所提出的技术方案的有益技术效果包括:
本公开上述实施例提供的液晶显示装置,包括量子点膜和背光源。背光源包括被配置为产生蓝光的LED芯片以及设置在LED芯片出光测的荧光粉层。LED芯片产生的蓝光激发荧光粉层产生第二波长光。量子点膜包括红色量子点材料与绿量子点材料。LED芯片产生的蓝光激发绿色量子点材料产生第三波长光。由于第三波长小于第二波长,使得第二波长光对第三波长光的激发转换率降低,而第二波长与第三波长光属于同种绿光的波段范围,使得在不增加量子点膜中绿色量子点材料的浓度的前提下,降低第二波长的绿光对绿色量子点材料的激发转换。而绿色量子点材料受激发产生的第三波长的绿光量减少,也就降低了第三波长的绿光对红色量子点材料的二次激发转换。此外,荧光粉层产生的第二波长的绿光大部分直接从量子点膜出射,少部分用于激发红色量子点材料。通过这样的方式,在满足色坐标的前提下,无需额外增加绿色量子点材料的浓度就能达到高色域所需的出光率,因此,降低了量子点的使用量,控制了成本。
本公开一些实施例还提供一种量子点LED200,其结构示意图可以如图6所示。该量子点LED200包括内部设置有腔体的支架240,设置在腔体顶部的量子点层230,被配置为产生第一波长光的LED芯片210以及设置在LED芯片210出光测的荧光粉层220。在一些实施例中,LED芯片210和荧光粉层22设置在支架240所形成的腔体的内部。荧光粉层220被配置为被第一波长光激发产生第二波长光。在一些实施例中,LED芯片设置在 所述腔体底部的,荧光粉层设置在LED芯片和量子点层之间。
量子点层230包括第一量子点材料与第二量子点材料。第一波长光激发第一量子点材料产生第三波长光,第一波长光与第二波长光激发第二量子点材料产生第四波长光,部分第一波长光、第三波长光与第四波长光从量子点层230的出光侧射出。
其中,第三波长与第二波长属于绿色光的波长范围,且第三波长小于第二波长。
由于本图6所示的实施例提供的LED芯片,荧光粉层、量子点层的光学功能与作用与图1A和1B所示的实施例提供的量子点背光模组100中的LED芯片,荧光粉层、量子点层的光学功能与作用类似,因此不再赘述。
本公开一些实施例还提供一种液晶显示装置,包括图6所示的实施例提供的量子点LED200,该量子点LED200的功能与作用已在前述实施例中详细说明,此处不再赘述。
以上具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (11)
- 一种液晶显示装置,其特征在于,包括:量子点膜;光学膜片组;背光源;其中,所述背光源包括被配置为产生第一波长光的发光二极管(Light Emitting Diode,LED)芯片以及设置在所述LED芯片出光侧的荧光粉层,所述荧光粉层被配置为被所述第一波长光激发产生第二波长光;所述量子点膜包括第一量子点材料与第二量子点材料;所述第一波长光激发所述第一量子点材料产生第三波长光;所述第一波长光和所述第二波长光激发所述第二量子点材料产生第四波长光;部分所述第一波长光、所述第三波长光与所述第四波长光从所述量子点膜出射到所述光学膜片组;所述第三波长光与所述第二波长光颜色相同,且所述第三波长小于所述第二波长。
- 根据权利要求1所述的液晶显示装置,其特征在于,所述第一波长光为蓝光;所述第二波长光和所述第三波长光为绿光;所述第四波长光为红光;所述荧光粉层为绿色荧光粉层;所述第一量子点材料为绿色量子点材料;所述第二量子点材料为红色量子点材料。
- 一种量子点LED,其特征在于,包括:内部设置有腔体的支架;设置在所述腔体顶部的量子点层;设置在所述腔体底部的LED芯片,所述LED芯片被配置为产生第一波长光;设置在所述LED芯片和所述量子点层之间的荧光粉层;其中,所述荧光粉层被配置为被所述第一波长光激发产生第二波长光;所述量子点层包括第一量子点材料与第二量子点材料;所述第一波长光激发所述第一量子点材料产生第三波长光;所述第一波长光和所述第二波长光激发所述第二量子点材料产生第四波长光;部分所述第一波长光、所述第三波长光与所述第四波长光从所述量子点层的出光侧射出;所述第三波长光与所述第二波长光颜色相同,且所述第三波长小于所述第二波长。
- 根据权利要求3所述的量子点LED,其特征在于:所述第一波长光为蓝光;所述第二波长光和所述第三波长光为绿光;所述第四波长光为红光;所述荧光粉层为绿色荧光粉层;所述第一量子点材料为绿色量子点材料;所述第二量子点材料为红色量子点材料。
- 一种液晶显示装置,其特征在于,包括量子点LED,其中,所述量子点LED包括内部设置有腔体的支架;设置在所述腔体顶部的量子点层;设置在所述腔体底部的LED芯片,所述LED芯片被配置为产生第一波长光;设置在所述LED芯片和所述量子点层之间的荧光粉层;其中,所述荧光粉层被配置为被所述第一波长光激发产生第二波长光;所述量子点层包括第一量子点材料与第二量子点材料;所述第一波长光激发所述第一量子点材料产生第三波长光;所述第一波长光和所述第二波长光激发所述第二量子点材料产生第四波长光;部分所述第一波长光、所述第三波长光与所述第四波长光从所述量子点层的出光侧射出;所述第三波长光与所述第二波长光颜色相同,且所述第三波长小于所述第二波长。
- 根据权利要5所述的液晶显示装置,其特征在于,所述第一波长光为蓝光;所述第二波长光和所述第三波长光为绿光;所述第四波长光为红光;所述荧光粉层为绿色荧光粉层;所述第一量子点材料为绿色量子点材料;所述第二量子点材料为红色量子点材料。
- 根据权利要求5或6所述的液晶显示装置,其特征在于:所述第一波长光的峰值强度与所述第二波长光的峰值强度的比值落入[1:0.05,1:0.08]的范围;其中,所述峰值强度指光谱发光强度或辐射功率的最大值。
- 根据权利要求5或6所述的液晶显示装置,其特征在于,所述第二波长落入[534纳米,540纳米]的范围,所述第三波长光的波长落入[528纳米,533]的范围。
- 根据权利要5或6所述的液晶显示装置,其特征在于,所述荧光粉层封装绿色荧光粉。
- 根据权利要求5或6所述的液晶显示装置,其特征在于,所述第一波长光的波长落入[440nm,470nm]的范围。
- 根据权利要求5所述的液晶显示装置,其特征在于,所述第一量子点材料为绿色量子点材料,所述第二量子点材料为红色量子点材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/727,694 US10797205B2 (en) | 2018-03-20 | 2019-12-26 | Liquid crystal display device and quantum dot LED |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810228475.4 | 2018-03-20 | ||
CN201810228475.4A CN108681147B (zh) | 2018-03-20 | 2018-03-20 | 量子点背光模组、量子点led和液晶显示装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/727,694 Continuation US10797205B2 (en) | 2018-03-20 | 2019-12-26 | Liquid crystal display device and quantum dot LED |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019178951A1 true WO2019178951A1 (zh) | 2019-09-26 |
Family
ID=63800086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/090106 WO2019178951A1 (zh) | 2018-03-20 | 2018-06-06 | 液晶显示装置和量子点led |
Country Status (3)
Country | Link |
---|---|
US (1) | US10797205B2 (zh) |
CN (1) | CN108681147B (zh) |
WO (1) | WO2019178951A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10401682B2 (en) * | 2017-01-25 | 2019-09-03 | Innolux Corporation | Display device capable of generating color of light close to or identical to blue primary color of DCI-P3 color gamut |
KR102497791B1 (ko) * | 2018-04-25 | 2023-02-09 | 삼성디스플레이 주식회사 | 표시 장치 |
CN109739053A (zh) * | 2019-02-28 | 2019-05-10 | 青岛海信电器股份有限公司 | 一种背光模组及显示装置 |
CN111856815B (zh) * | 2020-08-10 | 2021-07-02 | 深圳市宝明科技股份有限公司 | 一种背光模组及显示装置 |
CN114578613A (zh) * | 2020-11-30 | 2022-06-03 | 优美特创新材料股份有限公司 | 含有荧光粉及量子点的背光模块 |
CN113219730A (zh) * | 2021-05-17 | 2021-08-06 | 嘉兴追光智能科技有限公司 | 白光led照明灯具 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253637A (zh) * | 2005-08-30 | 2008-08-27 | 奥斯兰姆奥普托半导体有限责任公司 | 光电子器件 |
US20130265522A1 (en) * | 2012-04-04 | 2013-10-10 | Samsung Electronics Co., Ltd. | Film for backlight unit and backlight unit and liquid crystal display including same |
CN103597568A (zh) * | 2011-04-01 | 2014-02-19 | 纳晶科技股份有限公司 | 白光发光器件 |
CN104521016A (zh) * | 2012-08-10 | 2015-04-15 | 皇家飞利浦有限公司 | 磷光体转换发光二极管、灯及照明器 |
CN105093671A (zh) * | 2014-05-09 | 2015-11-25 | Lg电子株式会社 | 用于显示器的光源的设备和使用其的显示器的设备 |
CN105374922A (zh) * | 2014-08-18 | 2016-03-02 | 首尔半导体株式会社 | 发光二极管封装件及其制造方法 |
CN106773296A (zh) * | 2016-12-22 | 2017-05-31 | 深圳Tcl新技术有限公司 | 发光组件、背光模组和显示装置 |
CN107340647A (zh) * | 2017-09-01 | 2017-11-10 | 青岛海信电器股份有限公司 | 一种解决应用荧光膜的背光模组边缘偏色的方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6622187B2 (ja) * | 2014-04-08 | 2019-12-18 | Nsマテリアルズ株式会社 | 波長変換部材、導光装置、並びに表示装置 |
KR20200023440A (ko) * | 2017-06-30 | 2020-03-04 | 코닝 인코포레이티드 | Led 디스플레이용 양자점 led 백라이트 모듈 |
WO2019091107A1 (zh) * | 2017-11-07 | 2019-05-16 | 青岛海信电器股份有限公司 | 量子点led及其制备方法以及显示装置 |
-
2018
- 2018-03-20 CN CN201810228475.4A patent/CN108681147B/zh active Active
- 2018-06-06 WO PCT/CN2018/090106 patent/WO2019178951A1/zh active Application Filing
-
2019
- 2019-12-26 US US16/727,694 patent/US10797205B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101253637A (zh) * | 2005-08-30 | 2008-08-27 | 奥斯兰姆奥普托半导体有限责任公司 | 光电子器件 |
CN103597568A (zh) * | 2011-04-01 | 2014-02-19 | 纳晶科技股份有限公司 | 白光发光器件 |
US20130265522A1 (en) * | 2012-04-04 | 2013-10-10 | Samsung Electronics Co., Ltd. | Film for backlight unit and backlight unit and liquid crystal display including same |
CN104521016A (zh) * | 2012-08-10 | 2015-04-15 | 皇家飞利浦有限公司 | 磷光体转换发光二极管、灯及照明器 |
CN105093671A (zh) * | 2014-05-09 | 2015-11-25 | Lg电子株式会社 | 用于显示器的光源的设备和使用其的显示器的设备 |
CN105374922A (zh) * | 2014-08-18 | 2016-03-02 | 首尔半导体株式会社 | 发光二极管封装件及其制造方法 |
CN106773296A (zh) * | 2016-12-22 | 2017-05-31 | 深圳Tcl新技术有限公司 | 发光组件、背光模组和显示装置 |
CN107340647A (zh) * | 2017-09-01 | 2017-11-10 | 青岛海信电器股份有限公司 | 一种解决应用荧光膜的背光模组边缘偏色的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108681147B (zh) | 2019-11-19 |
US10797205B2 (en) | 2020-10-06 |
US20200144457A1 (en) | 2020-05-07 |
CN108681147A (zh) | 2018-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019178951A1 (zh) | 液晶显示装置和量子点led | |
TWI631397B (zh) | 背光模組及顯示裝置 | |
JP3223302U (ja) | Led発光装置 | |
TWI442139B (zh) | 液晶顯示裝置 | |
US7005667B2 (en) | Broad-spectrum A1(1-x-y)InyGaxN light emitting diodes and solid state white light emitting devices | |
US7859175B2 (en) | Illuminating device, display device and optical film | |
US20160116121A1 (en) | Led backlight light source | |
WO2014180053A1 (zh) | 显示装置的背光模组以及白光led | |
US20170059129A1 (en) | Quantum dot light emitting device, backlight module, and liquid crystal display device | |
JP2008117879A (ja) | 平面発光装置 | |
JP2007157831A (ja) | 発光装置 | |
TW202030526A (zh) | 背光模組、顯示裝置及其驅動方法 | |
US11588077B2 (en) | Display with quantum dot or quantum platelet converter | |
KR100771806B1 (ko) | 백색 발광 장치 | |
TW201426114A (zh) | 液晶顯示器 | |
JP2007180377A (ja) | 発光装置 | |
TWI397192B (zh) | 白色發光二極體 | |
CN113888991B (zh) | 一种发光面板、显示面板、背光模组和显示装置 | |
US20220352416A1 (en) | High color gamut photoluminescence wavelength converted white light emitting devices | |
KR100665221B1 (ko) | 백색 발광 장치 | |
CN101599520B (zh) | 发光二极管的封装结构及使用该封装结构的背光模块 | |
JP2018053202A (ja) | 量子ドット蛍光体及びそれを用いた発光装置 | |
JP2006303200A (ja) | 発光素子及び表示装置 | |
CN213601014U (zh) | 一种显示结构 | |
JP2007042939A (ja) | 白色発光デバイスおよびカラー表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18910243 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18910243 Country of ref document: EP Kind code of ref document: A1 |