WO2015081579A1 - 使用量子点的发光源及其制作方法与应用 - Google Patents

使用量子点的发光源及其制作方法与应用 Download PDF

Info

Publication number
WO2015081579A1
WO2015081579A1 PCT/CN2013/088849 CN2013088849W WO2015081579A1 WO 2015081579 A1 WO2015081579 A1 WO 2015081579A1 CN 2013088849 W CN2013088849 W CN 2013088849W WO 2015081579 A1 WO2015081579 A1 WO 2015081579A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light
bar
strip
short
Prior art date
Application number
PCT/CN2013/088849
Other languages
English (en)
French (fr)
Inventor
丘永元
张简圣哲
康志聪
苏赞加
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/233,155 priority Critical patent/US20150311385A1/en
Publication of WO2015081579A1 publication Critical patent/WO2015081579A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0083Processes for devices with an active region comprising only II-VI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the field of liquid crystal display technology, and more particularly to improvements in a backlight structure. Background technique
  • Quantum Dot also known as nanocrystal, is a nanoparticle composed of II-VI or III-V elements.
  • the particle diameter of a quantum dot is generally between 1 and 10 nm. Since electrons and holes are quantum confined, the continuous band structure becomes a discrete energy level structure with molecular characteristics, and can be excited after being excited. Based on quantum effects, quantum dots have broad application prospects in the fields of solar cells, light-emitting devices, and optical biomarkers.
  • the photoelectric properties of quantum dots are closely linked to their size and shape. It is found that the band gap of the quantum dot is inversely proportional to the size, that is, the quantum dot size is about a small band width, and the emitted light is shifted to the blue light.
  • quantum dots having different emission spectra are prepared.
  • the structure of the quantum dot luminescence spectrum is shown in Fig. 2.
  • the half-width of the quantum dot luminescence spectrum (about 50-60 nm) is lower than that of the current LED (the half-width is about 80 nm), and the red phosphor (half The peak width is about 100 nm)
  • the width of the half peak is narrow.
  • CF color filter
  • NTSC color gamut
  • commercial quantum dot materials mainly use CdSe as the core and CdS as the shell.
  • Quantum dot materials are subject to high temperature and oxygen, which can cause their failure. Therefore, the application of quantum dots in commercial fields needs to protect quantum dot materials.
  • QD-film quantum dot diaphragm
  • QD-rail quantum dot strip
  • Quantum dot diaphragms require a large number of quantum dot materials, and chromaticity control is difficult in BLU, and mass production is low. Quantum dot bars are more mass-produced in terms of price and chromaticity control.
  • FIG. 2 (a) and (b) The structure of the conventional quantum dot bar and the LED and the assembled light source 1 are as shown in FIG. 2 (a) and (b), which comprises a substrate 2 on which the light bar 4 is mounted and the lamp is surrounded. a light mixing body 3 provided in the strip 4; disposed at the top of the light mixing body 3
  • the quantum dot bar 6, the emitted light of the light bar 4 is refracted by the quantum dot bar 6 and then emitted.
  • the existing quantum dot bar 6 has a square strip shape, and when the light source strip 4 is matched, the light source 1 emits light at an angle of about 120°.
  • the above-mentioned illumination source 1 is used in a direct type backlight, as shown in FIG.
  • the backlight includes a back plate 10, a reflection plate 20 and a diffusion plate 30 from bottom to top, and a plurality of reflectors 20 are disposed on the diffusion plate 30 facing the diffusion plate 30.
  • Light source 1 on the side.
  • the distance between the reflecting plate 20 and the diffusing plate 30 is constant, and the light source 1 commonly used in the industry has a substantially uniform light-emitting angle (about 120°), and the phase is adjusted by adjusting the spacing between the adjacent two light-emitting sources 1.
  • the light emitted from the edge of the adjacent light source 1 just overlaps at the receiving surface of the diffusing plate 30.
  • the light energy distribution of the receiving surface 30 is relatively flat, so that the liquid crystal display has a good backlight quality and the human eye has a high degree of reception.
  • the high cost of quantum dot fabrication it is not economical to use a large number of quantum dot bars in the backlight.
  • the best solution is to reduce the number of quantum dot bars by increasing the light exit angle of the light source.
  • the present invention provides an illumination source using quantum dots, which includes a substrate on which a light bar and a light mixing body disposed around the light bar are disposed;
  • the quantum dot bar, the emitted light of the light bar is refracted by the quantum dot bar, and the light emitting surface of the quantum dot bar is curved.
  • the short-axis cross section of the light-emitting surface of the quantum dot strip is semi-elliptical or semi-circular.
  • the light exiting surface of the quantum dot strip has a concave groove. Further, the groove corresponds to an illuminating center of the light bar.
  • the short-axis cross-section of the light-emitting surface of the quantum dot strip is in a parallel double arch shape. Further, the short-axis cross-section of the light-emitting surface of the quantum dot strip block is in a parallel double wedge shape.
  • the present invention also provides a direct type backlight comprising a back plate, a reflection plate and a diffusion plate from bottom to top, and further comprising a plurality of illumination sources using quantum dots as described above, the illumination source being mounted on the reflection The plate faces one side of the diffuser plate.
  • the present invention also provides a method for fabricating the quantum dot strip, comprising the steps of: fabricating a hollow glass tube, and then encapsulating the quantum dot material into the hollow glass tube;
  • the first side of the hollow glass tube is curved.
  • the short-axis cross section of the first side surface of the hollow glass tube is semi-elliptical or semi-circular.
  • the first side surface of the hollow glass tube corresponding to the light exit surface of the quantum dot strip has a concave groove. Further, the groove corresponds to an illuminating center of the light bar. Further, the short-axis cross section of the first side surface of the hollow glass tube is in a parallel double arch shape.
  • the short-axis cross section of the first side surface of the hollow glass tube is a double wedge shape arranged in parallel.
  • the invention also provides a second method for fabricating the quantum dot strip, comprising the steps of: forming a astigmatism element on a first light-emitting surface of a quantum dot strip material by a mold forming method to form a target quantum dot strip; a top surface of the astigmatism element is a light exit surface of the quantum dot strip, and a top surface of the astigmatism element is a curved surface.
  • the short axis of the top surface of the astigmatism element is semi-elliptical or semi-circular.
  • the top surface of the astigmatism element has a concave groove.
  • the groove corresponds to the illuminating center of the light bar.
  • the short-axis cross section of the top surface of the astigmatism element is juxtaposed in a double arch shape.
  • the short axis of the top surface of the astigmatism element is in the form of a double wedge.
  • the quantum dot bar has a refractive index of 1.3 to 1.4 ; and the astigmatism material has a refractive index of 1.45 to 1.55.
  • the astigmatism element is made of one of silica gel, resin or silica.
  • the present invention forms a curved surface of a light-emitting surface of a quantum dot strip by improving the structure of the quantum dot strip.
  • the light diffusion angle after the light emitted by the light bar passes through the quantum dot strip is increased, and finally the light exiting angle of the light source is increased.
  • Figure 1 is a graph showing the emission spectrum of a conventional quantum dot material.
  • Fig. 2(a) is a schematic structural view of a short-axis cross section of a conventional illumination source; (b) is a schematic plan view of a conventional illumination source. 3 is a partial schematic view showing a cross-sectional structure of a conventional direct type backlight. 4 is a schematic view showing the structure of a short-axis cross section of a light-emitting source according to the present invention.
  • Fig. 5 (a) is a flow chart showing the fabrication of a quantum dot bar according to the first embodiment of the present invention;
  • (b) is a schematic structural view of a quantum dot bar according to the first embodiment of the present invention and an optical path diagram thereof.
  • FIG. 6(a) is a flow chart showing the fabrication of another quantum dot bar according to Embodiment 1 of the present invention
  • (b) is a schematic structural diagram of another quantum dot bar according to Embodiment 1 of the present invention and an optical path diagram thereof.
  • Fig. 7 is a schematic structural view and an optical path diagram of a quantum dot bar according to Embodiment 2 of the present invention
  • 8 is a schematic structural view and an optical path diagram of another quantum dot bar according to Embodiment 2 of the present invention.
  • Figure 9 is a schematic view showing the structure of a quantum dot strip according to Embodiment 3 of the present invention and an optical path diagram thereof.
  • FIG. 10 is a schematic structural view and an optical path diagram of another quantum dot bar according to Embodiment 3 of the present invention.
  • Figure 11 is a schematic view showing the structure of a quantum dot strip according to a fourth embodiment of the present invention and an optical path diagram thereof.
  • Figure 12 is a schematic structural view and an optical path diagram of another quantum dot bar according to Embodiment 4 of the present invention. Male ⁇
  • FIG. 4 illustrates a short-axis cross-sectional structure of a light-emitting source 40 using quantum dots provided by the present embodiment.
  • the light source 40 includes a substrate 41 on which a light bar 43 and a light mixing body 42 disposed around the light bar 43 are mounted.
  • the light bar 43 can be specifically composed of the LED lamp 44 and its circuit board.
  • a quantum dot bar 45 is disposed on the top of the light mixing body 42. The emitted light of the light bar 43 is refracted by the quantum dot bar 45, and the upper surface of the quantum dot bar 45 is discharged.
  • the surface is curved, so that the emitted light is further diverged and then emitted through the quantum dot strip 45, and the light extraction angle can reach 150°-160°, thereby effectively increasing the illumination angle of the illumination source.
  • the application of such a illuminating source 40 to an existing direct-type backlight provides significant benefits.
  • the existing illumination source 1 is replaced with the illumination source 40 of the present embodiment to form a new direct type backlight. It will be understood by those skilled in the art that when the distance between the reflector 20 and the diffuser 30 is relatively fixed, the light source exit angle is increased, so that the edge of the adjacent light source exits at the diffuser receiving surface.
  • the light-emitting source can be reduced by increasing the light-emitting angle of the light-emitting source on the reflector and the diffusion plate of the same area.
  • the installation density reduces the number of quantum dot bars used and reduces costs.
  • the light-emitting surface of the quantum dot bar 45 has a curved transition, such as a semi-elliptical shape or a semi-circular shape.
  • the light-emitting surface of the quantum dot bar may have a variety of curved surface patterns.
  • This embodiment also provides a method for fabricating such a quantum dot strip, which comprises the following steps: As shown in FIG. 5(a), a hollow glass tube 50 is fabricated. The first side surface 51 of the hollow glass tube 50 has a curved surface as a light-emitting surface of the quantum dot strip. The quantum dot material 60 is then encapsulated into the hollow glass tube 50 to obtain a target product quantum dot strip 45a. Since the wall of the hollow glass tube 50 is relatively thin, the refraction of light from the tube wall can be neglected. Thus, from the optical path diagram of the target product quantum dot strip 45a (Fig.
  • the quantum dot bar of this embodiment can also be obtained by another manufacturing method, and specifically includes the following steps: as shown in FIG. 6(a), a method of molding a mold is used in a quantum dot bar material (an existing one can be used) An astigmatism element 70 is formed on the first light-emitting surface 61 of the rectangular quantum dot bar 6 to form a new quantum dot bar 45b.
  • the top surface of the astigmatism element 70 is the light-emitting surface of the quantum dot bar 45b, The top surface of the astigmatism element 70 is curved.
  • the material of the astigmatism element can adopt a refractive index range (1.45 ⁇ 1.55).
  • a hard material such as silica gel, resin or silica having a certain hardness, realizes light divergence and increases the light exit angle.
  • the optical path of the obtained quantum dot bar 45b is as shown in Fig. 6 (b), and similarly, the light is emitted from the light The light emitted from the surface is further diverged to achieve the purpose of increasing the light exiting angle of the light source.
  • Embodiment 2 This embodiment is a further improvement or variation of the quantum dot strip structure and the manufacturing method.
  • the light surface has a concave groove.
  • a groove 48 may be formed on the top of the quantum dot bar 45a obtained in Embodiment 1, so that the obtained light-emitting surface is not a smooth transitional arc surface.
  • a new quantum dot bar 45c is formed.
  • the groove 48 preferably corresponds to the light emission center of the light bar.
  • the quantum dot bar 45c can be obtained by the first manufacturing method of the first embodiment, and the obtained quantum dot bar optical path diagram is as shown in FIG. 7, and the object of the light source output angle can be increased.
  • This embodiment also provides another method for fabricating a trenched quantum dot strip, which is obtained by referring to the second fabrication method provided in Embodiment 1.
  • Embodiment 3 This embodiment further improves the structure of the quantum dot bar provided in Embodiment 2.
  • the shape of the groove on the light-emitting surface may also change.
  • the quantum dot bar 45e of the present embodiment has a short-axis cross-section of the light-emitting surface in a double arch shape arranged side by side.
  • the juxtaposed arches are symmetrically disposed, and the groove 48a formed by the double arches corresponds to the light-emitting center of the light bar.
  • the quantum dot bar 45e of the present embodiment can be obtained by the first preparation method provided in Embodiment 1, and its structure and optical path diagram are as shown in FIG.
  • Another quantum dot bar 45f with a groove 48a can also be obtained by the second preparation method provided in Embodiment 1, and its structure and optical path diagram are as shown in FIG. Embodiment 4
  • This embodiment further improves the structure of the quantum dot bar provided in Embodiment 2. As shown in Fig.
  • the quantum dot bar 45g of the present embodiment has a double-wedge shape in which the short-axis cross-section of the light-emitting surface is juxtaposed in the right and left directions, and the object of the present invention can also be attained.
  • the slope of the bottom surface of the trench 48b it is necessary to design the slope of the bottom surface of the trench 48b according to the refractive index of the astigmatism element or the quantum dot material, so that the light emitted from the light strip is on the bottom surface of the trench 48b.
  • the corresponding light-emitting surface forms total reflection or near total reflection, and the reflected light is emitted from both sides of the double-wedge quantum dot strip 45g as much as possible, and the optical path diagram is as shown in FIG.
  • the structure of the quantum dot bar 45g of the present embodiment can be obtained by the first preparation method provided in Embodiment 1.
  • Another quantum dot bar 45h with a groove 48b can also be obtained by the second preparation method provided in Embodiment 1, and its structure and optical path diagram are as shown in FIG.

Abstract

一种直下式背光源的结构改进,涉及液晶显示技术领域,提供了一种使用量子点的发光源(40),包括:基板(41),所述基板(41)上装设有灯条(43)以及环绕所述灯条(43)设置的混光体(42);在所述混光体(42)顶部设有量子点条块(45),所述灯条(43)的发射光线均经过所述量子点条块(45)折射后出射,所述量子点条块(45)的出光面呈曲面。还提供了这种量子点条块(45)的制作方法,以及利用量子点条块(45)组装新的直下式背光源。通过对量子点条块(45)的结构改进,使量子点条块(45)的出光面形成曲面。实现了增大灯条(43)发射光穿过量子点条块(45)后的光扩散角度,最终使发光源(40)的出光角度增大。

Description

使用量子点的发光源及其制作方法与应用
术领域 本发明涉及液晶显示器技术领域, 尤其是对一种背光源结构的改进。 背景技术
量子点 (Quantum Dot, QD) 又可以称为纳米晶体, 是一种由 II一 VI族或 III一 V族元素组成的纳米颗粒。量子点的粒子直径一般介于 l~10nm之间, 由于 电子和空穴被量子限域, 连续的能带结构变成具有分子特性的分立能级结构, 受激后可以发射荧光。 基于量子效应, 量子点在太阳能电池, 发光器件, 光学 生物标记等领域具有广泛的应用前景。 量子点的光电特性与其尺寸和形状紧密相连。 研究发现量子点的能带带隙 与尺寸成反比, 即量子点尺寸约小能带带隙约宽, 发射光往蓝光偏移。 因此通 过控制量子点的尺寸, 制备出具有不同发射光谱的量子点。 量子点发光光谱结 构如图 2所示, 从图中可知, 量子点发光光谱半峰宽 (约 50~60nm) 相较于目 前 LED常用的绿色 (半峰宽约 80nm), 红色荧光粉 (半峰宽约 lOOnm) 半峰宽 窄。 在 TV中使用时, 能很好的搭配光阻 (color filter, CF), 实现高穿透率,同 时保证高色域 (NTSC)。 目前商业量子点材料主要以 CdSe为核, CdS为壳。 量子点材料受高温及氧 气的影响会导致其失效, 因此目前商业上量子点的运用都需保护量子点材料。 做法主要分为两种, 一为采用量子点膜片 (QD-film) 的形式, 通过 PET将量子 点材料封装起来; 另一种为量子点条块 (QD-rail) 形式, 即将量子点材料封装 在空心玻璃管封中。 量子点膜片需要使用的量子点材料多, 且在 BLU中色度控制困难, 量产性 低; 而量子点条块则在价格及色度控制上都较有量产性。 现常见量子点条块与 LED的配合及组装成的发光源 1结构如图 2 (a) (b)所示, 其包括基板 2, 所述基 板 2上装设有灯条 4以及环绕所述灯条 4设置的混光体 3; 在所述混光体 3顶部设有 量子点条块 6, 所述灯条 4的发射光线均经过所述量子点条块 6折射后出射。 从图 中可以看到, 现有的量子点条块 6呈方形长条形状, 与光源灯条 4配合后, 发光 源 1出射光角度仍约为 120° 。 将上述发光源 1运用于直下式背光源中时, 如图 3, 背光源从下至上包括背板 10、 反射板 20和扩散板 30, 以及若干个装设在反射板 20面向扩散板 30—侧的发光源 1。 从图中可知, 反射板 20和扩散板 30之间的距离 是一定的, 行业内常用的发光源 1出光角度基本固定 (约 120° ), 通过调整相邻 两发光源 1的间距, 使相邻发光源 1的边缘出射光线在扩散板 30接收面处刚好交 叠, 此时接收面 30光能分布比较平缓, 可令该液晶显示器具有较好的背光源品 位, 人眼接收度高。 然而, 由于量子点制作成本高昂, 在背光源中使用大数量 的量子点条块不符合经济效益。 为提高量子点条块在直下式背光源中使用效益 同时保证背光源品味可接受, 最佳方案是通过增大发光源的出光角度, 实现量 子点条块数量的减少。 发明内容
为解决上述问题, 本发明提供一种使用量子点的发光源, 其包括基板, 所 述基板上装设有灯条以及环绕所述灯条设置的混光体; 在所述混光体顶部设有 量子点条块, 所述灯条的发射光线均经过所述量子点条块折射后出射, 所述量 子点条块的出光面呈曲面。 进一步地, 所述量子点条块出光面的短轴截面呈半椭圆形或半圆形。 进一步地, 所述量子点条块的出光面具有内凹的沟槽。 进一步地, 所述沟槽与所述灯条的发光中心对应。 进一步地, 所述量子点条块出光面的短轴截面呈并列的双拱形。 进一步地, 所述量子点条块出光面的短轴截面呈并列的双楔形。 本发明还提供一种直下式背光源, 其从下至上包括背板、 反射板和扩散板, 还包括若干个如上所述的使用量子点的发光源, 所述发光源装设在所述反射板 面向所述扩散板的一侧。 本发明还提供一种所述量子点条块的制作方法, 包括如下步骤: 制作一空 心玻璃管, 然后将量子点材料封装到所述空心玻璃管中; 所述量子点条块出光 面对应的空心玻璃管第一侧面呈曲面。 进一步地, 所述空心玻璃管第一侧面的短轴截面呈半椭圆形或半圆形。 进一步地, 所述量子点条块出光面对应的空心玻璃管第一侧面具有内凹的 沟槽。 进一步地, 所述沟槽与所述灯条的发光中心对应。 进一步地, 所述空心玻璃管第一侧面的短轴截面呈并列的双拱形。 进一步地, 所述空心玻璃管第一侧面的短轴截面呈并列的双楔形。 本发明还提供第二种所述量子点条块的制作方法, 包括如下步骤: 采用模 具成型的方法在一量子点条块原材的第一出光面上制作一散光元件, 形成目标 量子点条块; 所述散光元件顶面为所述量子点条块出光面, 所述散光元件顶面 呈曲面。 进— -步 , 所述散光元件顶面的短轴截面呈半椭圆形或半圆形。 进— -步 , 所述散光元件的顶面具有内凹的沟槽。 进— -步 , 所述沟槽与所述灯条的发光中心对应。 进— -步 , 所述散光元件顶面的短轴截面呈并列的双拱形。 进— -步 , 所述散光元件顶面的短轴截面呈并列的双楔形。 进一 - , 所述量子点条块原材的折射率为 1.3~1.4; 所述散光元件材质的 折射率为 1.45~1.55。 进一步地,, 所述散光元件材质为硅胶、 树脂或二氧化硅中的一种。 有益效果: 本发明通过对量子点条块的结构改进, 使量子点条块的出光面形成曲面。 实现了增大灯条发射光穿过量子点条块后的光扩散角度, 最终使发光源的出光 角度增大。 将这种发光源应用到直下式背光源中, 可在保证背光源品位不降低 的情况下, 大大节约发光源的数量, 从而有效降低成本, 节省资源。 附图说明
图 1为现有的量子点材料发射光谱图。 图 2 (a) 为现有的发光源短轴截面的结构示意图; (b ) 为现有的发光源俯 视结构示意图。 图 3为现有的直下式背光源剖面结构局部示意图。 图 4为本发明的发光源短轴截面的结构示意图。 图 5 (a) 为本发明实施例 1量子点条块的制作流程图; (b) 为本发明实施 例 1量子点条块的结构示意及其光路图。 图 6 (a) 为本发明实施例 1另一种量子点条块的制作流程图; (b) 为本发 明实施例 1另一种量子点条块的结构示意及其光路图。 图 7为本发明实施例 2量子点条块的结构示意及其光路图。 图 8为本发明实施例 2另一种量子点条块的结构示意及其光路图。 图 9为本发明实施例 3量子点条块的结构示意及其光路图。 图 10为本发明实施例 3另一种量子点条块的结构示意及其光路图。 图 11为本发明实施例 4量子点条块的结构示意及其光路图。 图 12为本发明实施例 4另一种量子点条块的结构示意及其光路图。 雄^
下面, 将结合附图对本发明各实施例作详细说明。 实施例 1 图 4图示出了本实施例提供的使用量子点的发光源 40其短轴截面结构。 该 发光源 40包括: 基板 41, 所述基板 41上装设有灯条 43以及环绕所述灯条 43 设置的混光体 42。 其中, 灯条 43具体可由 LED灯 44及其电路板构成。 在所述 混光体 42顶部架设有量子点条块 45, 所述灯条 43的发射光线均经过所述量子 点条块 45折射后出射, 所述量子点条块 45的上表面 (即出光面) 呈曲面, 使 得发射光线经过量子点条块 45被进一步发散再出射,出光角度可达到 150° -160 ° , 实现了发光源的发光角度有效增加。 将这种发光源 40组装到现有的直下式背光源中应用, 可获得明显的有益效 果。 参见图 3所示, 将现有的发光源 1替换为本实施例的发光源 40, 形成新的 直下式背光源。 本领域技术人员可知, 反射板 20与扩散板 30的距离相对固定 的情况下, 增大发光源出光角度, 可使得相邻发光源的边缘出射光线在扩散板 接收面处交叠程度增加。 此时若拉大两相邻发光源的距离, 重新使相邻发光源 的边缘出射光线在扩散板接收面处刚好交叠, 仍然能获得较好的背光源品位。 即, 在相同面积的反射板、 扩散板上, 增大发光源的出光角度, 可减少发光源 的安装密度, 从而减少量子点条块的使用数量, 降低成本。 例如, 以 32寸 (长 *宽 =700mm*400mm) 的直下式背光源为例: 需要反射 板 20、 扩散板 30之间的距离为 25mm, 发光源可呈阵列排列。 为保证背光源的 品位可接受, 按照现有发光源 1的出光角度 (120° ), 在反射板 20长轴方向上 至少需要安装 8个发光源 1。 若更换为本实施例的发光源 40 (出光角度增大至 150° ), 则反射板 40长轴方向上只需要安装 4个发光源 40即可满足要求。 进一步地, 在本实施例中, 图 4可见, 量子点条块 45出光面呈圆滑过渡的 弧形, 如半椭圆形或半圆形。 为实现本发明目的, 所述量子点条块的出光面可 以有多种曲面图形的变化。 本实施例还提供这种量子点条块的制作方法, 其包括如下步骤: 如图 5 (a) 所示, 制作一空心玻璃管 50。 该空心玻璃管 50第一侧面 51呈曲面, 作为所述 量子点条块的出光面。 然后将量子点材料 60封装到所述空心玻璃管 50中获得 目标产品量子点条块 45a。 由于空心玻璃管 50的管壁比较薄, 光从管壁的折射 可以忽略, 这样从目标产品量子点条块 45a的光路图 (图 5 (b) ) 可知, 从该出 光面出射的光线进一步被发散, 达到增大发光源出光角度的目的。 本实施例的量子点条块还可以采用另一种制作方法获得, 具体包括如下步 骤: 如图 6 (a) 所示, 采用模具成型的方法在量子点条块原材 (可采用现有的 矩形量子点条块 6的第一出光面 61上制作一的散光元件 70,形成新的量子点条 块 45b。 所述散光元件 70顶面即为所述量子点条块 45b出光面, 所述散光元件 70顶面呈曲面。 在该制作方法中, 对应于常见的量子点条块原材 (折射率为 1.3-1.4) , 散光元件的材料可采用折射率范围 (1.45~1.55 ) 较大的硬性材质, 如 具有一定硬度的硅胶、 树脂或二氧化硅等, 实现光发散, 使出光角度增加。 所 获得目标量子点条块 45b的光路图 6 (b ) 所示, 同样地, 从该出光面出射的光 线进一步被发散, 达到增大发光源出光角度的目的。 实施例 2 本实施例是对量子点条块结构和制作方法的进一步改进或变化。 本实施例 的量子点条块的出光面具有内凹的沟槽。 例如, 如图 7所示, 可以在实施例 1 所获得的量子点条块 45a顶部上开设一沟槽 48, 使获得的出光面并非圆滑过渡 的弧面, 形成新的量子点条块 45c。 进一步地, 为了使得 LED灯的发射光从中 心均匀分散, 所述沟槽 48优选与所述灯条的发光中心对应。 上述量子点条块 45c可以采用实施例 1第一种制作方法获得, 得到的量子 点条块光路图如图 7所示, 同样可以实现发光源出光角度增大的发明目的。 本实施例还提供另一种带沟槽量子点条块的制作方法, 即参照实施例 1所 提供的第二种制作方法获得。 得到的量子点条块 45d的结构及其光路图如图 8 所示, 同样可以实现发光源出光角度增大的发明目的。 实施例 3 本实施例对实施例 2所提供的量子点条块的结构作进一步改进, 随着量子 点条块出光面曲面图形的变化, 出光面上的沟槽形状也可随之改变。 如图 9所 示, 本实施例的量子点条块 45e其出光面的短轴截面呈左右并列的双拱形。 为 了使得 LED灯 44的发射光从中心均匀分散, 并列的拱形呈对称设置, 双拱形 所构成的沟槽 48a与所述灯条的发光中心对应。 类似地, 本实施例的量子点条块 45e可采用实施例 1所提供的第一种制备 方法获得, 其结构和光路图如图 9所示。 也可以通过实施例 1所提供的第二种制备方法获得另一种带沟槽 48a的量 子点条块 45f, 其结构和光路图如图 10所示。 实施例 4 本实施例对实施例 2所提供的量子点条块的结构作进一步改进。 如图 11所 示, 本实施例的量子点条块 45g其出光面的短轴截面呈左右并列的双楔形, 同 样可达到本发明目的。 为了使得 LED灯的出射光能在沟槽 48b底面最大限度被 发散, 需要根据散光元件或量子点材质的折射率设计沟槽 48b底面的倾斜坡度, 使灯条的出射光在沟槽 48b底面所对应的出光面形成全反射或接近全反射, 而 反射光尽可能从双楔形量子点条块 45g的两侧出射, 光路图如图 11所示。 类似地, 本实施例的量子点条块 45g结构可采用实施例 1所提供的第一种 制备方法获得。 也可以通过实施例 1所提供的第二种制备方法获得另一种带沟槽 48b的量 子点条块 45h, 其结构和光路图如图 12所示。

Claims

权 利 要 求 书
1、 一种使用量子点的发光源,其包括基板,所述基板上装设有灯条以及环 绕所述灯条设置的混光体; 在所述混光体顶部设有量子点条块, 所述灯条的发 射光线均经过所述量子点条块折射后出射, 其中, 所述量子点条块的出光面呈 曲面。
2、 根据权利要求 1所述的发光源 ,其中,所述量子点条块出光面的短轴截 面呈半椭圆形或半圆形。
3、 根据权利要求 1所述的发光源,其中,所述量子点条块的出光面具有内 凹的沟槽。
4、 根据权利要求 3所述的发光源,其中,所述沟槽与所述灯条的发光中心 对应。
5、 根据权利要求 4所述的发光源,其中,所述量子点条块出光面的短轴截 面呈并列的双拱形。
6、 根据权利要求 4所述的发光源,其中,所述量子点条块出光面的短轴截 面呈并列的双楔形。
7、 一种如权利要求 1所述量子点条块的制作方法,包括如下步骤:制作一 空心玻璃管, 然后将量子点材料封装到所述空心玻璃管中; 其中, 所述量子点 条块出光面对应的空心玻璃管第一侧面呈曲面。
8、 根据权利要求 7所述量子点条块制作方法,其中,所述空心玻璃管第一 侧面的短轴截面呈半椭圆形或半圆形。
9、 根据权利要求 7所述量子点条块制作方法,其中,所述空心玻璃管第一 侧面具有内凹的沟槽。
10、 根据权利要求 9所述量子点条块制作方法, 其中, 所述沟槽与灯条的 发光中心对应。 第一侧面的短轴截面呈并列的双楔形。
13、 一种如权利要求 1所述量子点条块的制作方法,其中,包括如下步骤: 采用模具成型的方法在一量子点条块原材的第一出光面上制作一散光元件, 形 成目标量子点条块; 所述散光元件顶面为所述量子点条块出光面, 所述散光元 件顶面呈曲面。
14、 根据权利要求 13所述量子点条块制作方法, 其中, 所述散光元件顶 面的短轴截面呈半椭圆形或半圆形。
15、 根据权利要求 13所述] :子点条块制作方法, 其中, 所述散光元件的 顶面具有内凹的沟槽。
16、 根据权利要求 15所述] :子点条块制作方法, 其中, 所述沟槽与所述 灯条的发光中心对应。
17、 根据权利要求 16所述] :子点条块制作方法, 其中, 所述散光元件顶 面的短轴截面呈并列的双拱形。
18、 根据权利要求 16所述] :子点条块制作方法, 其中, 所述散光元件顶 面的短轴截面呈并列的双楔形。
19、 根据权利要求 13所述量子点条块制作方法, 其中: 所述量子点条块 原材的折射率为 1.3~1.4; 所述散光元件材质的折射率为 1.45- 1.55。
20、 根据权利要求 19所述量子点条块制作方法, 其中: 所述散光元件材 质为硅胶、 树脂或二氧化硅中的一种。
PCT/CN2013/088849 2013-12-02 2013-12-09 使用量子点的发光源及其制作方法与应用 WO2015081579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/233,155 US20150311385A1 (en) 2013-12-02 2013-12-09 Luminous Source Utilizing Quantum Dot, and Its Manufacturing Method and Application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310637526 2013-12-02
CN201310637526.6 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015081579A1 true WO2015081579A1 (zh) 2015-06-11

Family

ID=50310974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088849 WO2015081579A1 (zh) 2013-12-02 2013-12-09 使用量子点的发光源及其制作方法与应用

Country Status (3)

Country Link
US (1) US20150311385A1 (zh)
CN (1) CN103672609A (zh)
WO (1) WO2015081579A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090413A (zh) * 2014-06-20 2014-10-08 京东方科技集团股份有限公司 一种显示用基板及其制作方法、显示装置
CN104166178A (zh) * 2014-06-27 2014-11-26 京东方科技集团股份有限公司 一种导光板、背光模组和显示装置
JP6295237B2 (ja) * 2014-09-30 2018-03-14 富士フイルム株式会社 バックライトユニット、液晶表示装置および波長変換部材
JP6401994B2 (ja) * 2014-10-08 2018-10-10 エルジー ディスプレイ カンパニー リミテッド 液晶表示装置
CN105717698A (zh) * 2014-12-04 2016-06-29 南京瀚宇彩欣科技有限责任公司 量子管、背光模块及液晶显示装置
CN105864683A (zh) * 2015-01-22 2016-08-17 青岛海信电器股份有限公司 光源组件、背光模组及显示装置
CN104566042A (zh) * 2015-01-23 2015-04-29 京东方科技集团股份有限公司 灯条结构、背光模组及显示装置
CN105987325B (zh) * 2015-03-02 2019-02-15 南京瀚宇彩欣科技有限责任公司 量子管、背光模块及液晶显示装置
CN104696752A (zh) * 2015-03-09 2015-06-10 合肥京东方光电科技有限公司 一种发光二极管光源、背光模组、显示装置和照明装置
KR101686737B1 (ko) * 2015-04-30 2016-12-14 엘지전자 주식회사 광 변환 플레이트, 이를 포함하는 발광 다이오드 패키지, 백라이트 유닛 및 표시장치
CN105280789A (zh) * 2015-09-18 2016-01-27 创维液晶器件(深圳)有限公司 一种量子点led
CN106200118B (zh) 2016-07-06 2020-03-31 青岛海信电器股份有限公司 量子点光源组件、背光模组及液晶显示装置
CN106773289A (zh) * 2016-12-15 2017-05-31 青岛海信电器股份有限公司 一种量子点发光器件和背光模组以及液晶显示装置
CN206848649U (zh) * 2017-05-04 2018-01-05 深圳市华星光电技术有限公司 一种用于背光模组的光学膜、背光模组及显示设备
CN206848648U (zh) * 2017-05-04 2018-01-05 深圳市华星光电技术有限公司 一种背光模组和显示设备
CN109375421B (zh) * 2018-12-19 2021-08-24 惠州市华星光电技术有限公司 液晶显示器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080173886A1 (en) * 2006-05-11 2008-07-24 Evident Technologies, Inc. Solid state lighting devices comprising quantum dots
CN101443926A (zh) * 2006-05-17 2009-05-27 3M创新有限公司 利用含硅组合物制备发光器件的方法
CN102097425A (zh) * 2009-12-09 2011-06-15 三星Led株式会社 发光二极管、制造磷光体层的方法和发光装置
WO2012154665A2 (en) * 2011-05-11 2012-11-15 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US20130114242A1 (en) * 2011-11-09 2013-05-09 Cree, Inc. Solid state lighting device including multiple wavelength conversion materials
CN103292225A (zh) * 2013-06-28 2013-09-11 深圳市华星光电技术有限公司 一种led背光光源
US20130293098A1 (en) * 2006-08-03 2013-11-07 Intematix Corporation Solid-state linear lighting arrangements including light emitting phosphor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245436B (en) * 2003-10-30 2005-12-11 Kyocera Corp Package for housing light-emitting element, light-emitting apparatus and illumination apparatus
KR100586968B1 (ko) * 2004-05-28 2006-06-08 삼성전기주식회사 Led 패키지 및 이를 구비한 액정표시장치용 백라이트어셈블리
KR100665005B1 (ko) * 2004-12-30 2007-01-09 삼성전기주식회사 발광다이오드를 이용한 백라이트 장치
CN102884369A (zh) * 2010-02-17 2013-01-16 Next照明公司 具有配备发光元件和远程发光材料的照明条的照明单元
US20110303940A1 (en) * 2010-06-14 2011-12-15 Hyo Jin Lee Light emitting device package using quantum dot, illumination apparatus and display apparatus
KR101751999B1 (ko) * 2010-07-28 2017-06-28 엘지디스플레이 주식회사 광확산 렌즈를 이용한 액정표시장치
CN102748707B (zh) * 2011-04-21 2014-05-14 海洋王照明科技股份有限公司 一种泛光全反射透镜及使用该透镜的led灯具
KR20130015847A (ko) * 2011-08-05 2013-02-14 삼성전자주식회사 발광장치, 백라이트 유닛과 디스플레이 장치 및 그 제조방법
KR101673627B1 (ko) * 2011-08-31 2016-11-07 엘지이노텍 주식회사 광학 부재 및 표시장치
JP6042897B2 (ja) * 2011-10-05 2016-12-14 スリーエム イノベイティブ プロパティズ カンパニー 微細構造化転写テープ
KR102071485B1 (ko) * 2012-03-30 2020-01-30 루미리즈 홀딩 비.브이. 발광 디바이스 및 파장 변환 재료를 포함하는 광 공동
TWI598665B (zh) * 2013-03-15 2017-09-11 隆達電子股份有限公司 發光元件、長條狀發光元件及其應用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080173886A1 (en) * 2006-05-11 2008-07-24 Evident Technologies, Inc. Solid state lighting devices comprising quantum dots
CN101443926A (zh) * 2006-05-17 2009-05-27 3M创新有限公司 利用含硅组合物制备发光器件的方法
US20130293098A1 (en) * 2006-08-03 2013-11-07 Intematix Corporation Solid-state linear lighting arrangements including light emitting phosphor
CN102097425A (zh) * 2009-12-09 2011-06-15 三星Led株式会社 发光二极管、制造磷光体层的方法和发光装置
WO2012154665A2 (en) * 2011-05-11 2012-11-15 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
US20130114242A1 (en) * 2011-11-09 2013-05-09 Cree, Inc. Solid state lighting device including multiple wavelength conversion materials
CN103292225A (zh) * 2013-06-28 2013-09-11 深圳市华星光电技术有限公司 一种led背光光源

Also Published As

Publication number Publication date
CN103672609A (zh) 2014-03-26
US20150311385A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
WO2015081579A1 (zh) 使用量子点的发光源及其制作方法与应用
US9541790B2 (en) Direct-type backlight module and manufacturing method thereof
JP6084572B2 (ja) 偏光照明システム
EP2753976B1 (en) Display device
US11605764B2 (en) LED light source, surface light source display module, and preparation method for LED light source
US11175448B2 (en) Light-emitting device and method for fabricating same
US20120050649A1 (en) Display device
US20110164402A1 (en) Backlight unit and display device using the same
US9976722B2 (en) Display device and light conversion member
US20080088770A1 (en) Lens and backlight unit, liquid crystal display having the same and method thereof
WO2016106896A1 (zh) 背光模块及具有该背光模块的液晶显示器
WO2016141599A1 (zh) 一种背光模组及其灯条
CN102261604A (zh) 背光单元和具有背光单元的显示装置
CN108919558B (zh) 一种楔形基板的量子点彩膜结构
CN108845461B (zh) 背光模组及液晶显示装置
KR102227324B1 (ko) 광변환시트, 이를 구비한 백라이트 유닛 및 액정표시장치
CN102361057B (zh) 具有光栅的光学膜
KR20110045302A (ko) 백라이트 유닛
WO2016138699A1 (zh) 背光模组及具有该背光模组的液晶显示装置
WO2012006952A1 (zh) 光学系统
KR20220044431A (ko) 조광 필름, 백라이트 모듈 및 표시 장치
CN209674027U (zh) 反射片及背光模组
CN110676364A (zh) 一种四面出光蓝光波导面发光结构
CN207867183U (zh) 一种量子点渐进浓度导光板及背光模组
CN102997136A (zh) 一种发光装置、背光模组及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14233155

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898745

Country of ref document: EP

Kind code of ref document: A1