WO2014203892A1 - Gas barrier film and method for producing same - Google Patents

Gas barrier film and method for producing same Download PDF

Info

Publication number
WO2014203892A1
WO2014203892A1 PCT/JP2014/066030 JP2014066030W WO2014203892A1 WO 2014203892 A1 WO2014203892 A1 WO 2014203892A1 JP 2014066030 W JP2014066030 W JP 2014066030W WO 2014203892 A1 WO2014203892 A1 WO 2014203892A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas
film
carbon
oxygen
Prior art date
Application number
PCT/JP2014/066030
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 達也
河村 朋紀
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015522932A priority Critical patent/JPWO2014203892A1/en
Publication of WO2014203892A1 publication Critical patent/WO2014203892A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, medicine, etc. It is used for.
  • a gas barrier film By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
  • CVD method Chemical Vapor Deposition: Chemical vapor deposition method, chemical vapor deposition method
  • PVD method Physical Vapor Deposition: physical vapor deposition method, physical vapor deposition method
  • the PVD method in the thin film growth process, columnar growth or island-like growth is generally performed. Therefore, grain boundaries are generated in the film, and high barrier properties are exhibited. Have difficulty.
  • the film formation by the CVD method has less grain boundary than the film formation by the PVD method, but it is not sufficient, and it generates particles compared to the PVD method, and barrier performance such as pinholes. Defects that degrade. When grain boundaries and defects are present in the film, the gas barrier performance is saturated even if the film thickness is increased.
  • JP 2011-241421A further describes a layer formed by the PVD method / CVD method on A manufacturing method in which a gas barrier layer is laminated using an atomic layer deposition method is disclosed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gas barrier film that has excellent gas barrier performance and maintains sufficient gas barrier performance even when stored under high temperature and high humidity conditions. It is to be.
  • the gas barrier film of the present invention includes a base material, a first layer having barrier performance, and a second layer formed by atomic layer deposition in this order, and the second layer is made of aluminum, titanium, silicon. Including a region having a carbon concentration of 0.3 at% or more and 3.0 at% or less with respect to the total amount of zirconium, nitrogen, oxygen and carbon with respect to the film thickness of the second layer, and the second It is characterized in that the carbon concentration with respect to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon in the layer is 3.0 at% or less.
  • FIG. 101 is a plasma CVD apparatus
  • 102 is a vacuum chamber
  • 103 is a cathode electrode
  • 105 is a susceptor
  • 106 is a heat medium circulation system
  • 107 is a vacuum exhaust system
  • 108 is a gas introduction system
  • 109 is a high-frequency power supply
  • 110 is a substrate
  • 160 is A heating / cooling apparatus is shown.
  • It is a schematic diagram which shows an example of the manufacturing apparatus used for formation of the 1st layer concerning this invention.
  • 11 is a gas barrier film
  • 12 is a base material
  • 13 is a manufacturing apparatus
  • 14 is a delivery roller
  • 15, 16, 17, and 18 are transport rollers
  • 19 and 20 are film forming rollers
  • 21 is a gas supply pipe
  • 22 is a plasma generator Power source
  • 24 and 24 are magnetic field generators
  • 25 is a winding roller
  • 26 is a first layer.
  • FIG. 5 is a schematic diagram illustrating an example of a coating head for ALD film formation used in the apparatus illustrated in FIGS. 3 and 4.
  • Reference numeral 70 denotes a coating head
  • 71 denotes a source gas supply device
  • 72 denotes an inert gas supply device
  • 73 denotes a second gas supply device
  • 74 denotes a gas introduction pipe
  • 75 denotes an exhaust pipe
  • 76 denotes a substrate.
  • the organic electroluminescent panel which is an electronic device using the gas barrier film which concerns on this invention as a sealing film.
  • 4 is a transparent electrode
  • 5 is an organic EL element
  • 6 is an adhesive layer
  • 7 is a counter film
  • 9 is an organic EL panel
  • 10 is a gas barrier film.
  • It is the schematic for demonstrating the interface of a 1st layer and a 2nd layer in case a 1st layer and a 2nd layer have a different metal as a main component.
  • It is the schematic for demonstrating the interface of a 1st layer and a 2nd layer in case a 1st layer and a 2nd layer have the same kind metal as a main component.
  • One embodiment of the present invention includes a substrate, a first layer having a barrier performance, and a second layer formed by an atomic layer deposition method in this order, and the second layer has a carbon concentration of 0.3 at.
  • the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen, and carbon in the second layer is 30% or more with respect to the film thickness of the second layer.
  • It is a gas barrier film characterized by having a carbon concentration of 3.0 at% or less.
  • the gas barrier film of the present invention has excellent gas barrier properties and exhibits sufficient gas barrier performance even under high temperature and high humidity conditions.
  • the present invention is characterized in that it has a second layer formed by an atomic layer deposition method on a first layer having gas barrier performance and in which a region where carbon exists is present in a certain amount or more.
  • the second layer is formed by the atomic layer deposition method, it has a repair effect of covering or filling defects such as pinholes and grain boundaries of the first layer generated by the PVD method / CVD method.
  • the inorganic oxide formed by the atomic layer deposition method has a relatively small molecular weight, can fill in the minute defects present in the first layer, and can repair the minute defects.
  • a certain concentration of carbon atoms is present in a certain region or more in the second layer, a flexible portion is generated in the film as compared with a film formed only from an inorganic oxide such as silicon oxide, It is considered that the occurrence of cracks is also suppressed when the film is bent. Further, in a humid heat environment, a change in shape (expansion / shrinkage) of the base material due to changes in temperature and humidity occurs. Such a shape change of the substrate is larger than that of the gas barrier layer. On the other hand, since the carbon atoms are present in the second layer, the film is more flexible than a film formed only from an inorganic oxide such as silicon oxide.
  • the layers are also easily expanded, and the upper and lower sides (base material and second layer) of the first gas barrier layer are similarly expanded in the lateral direction, so that the external force applied to the first layer is reduced, and the first Since the layer is protected, it is considered that the gas barrier performance does not deteriorate even when stored under high temperature and high humidity conditions.
  • the carbon concentration in the second layer needs to be 3.0 at% or less.
  • a preferred embodiment is that the base material, the first layer, and the second layer formed (directly) on the first layer are arranged in this order. It is a form to have.
  • the gas barrier unit having the first layer and the second layer may be formed on one surface of the base material, or may be formed on both surfaces of the base material.
  • the gas barrier unit may include a layer that does not necessarily have a gas barrier property.
  • the gas barrier film of the present invention preferably has a permeated water amount measured by the method described in Examples below, of less than 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h).
  • the thickness of the first layer is not particularly limited, but is usually in the range of 20 to 1000 nm, preferably 50 to 300 nm in order to improve the gas barrier performance while making it difficult to cause defects.
  • the film thickness referred to here is the total of each sub-layer when it is composed of a plurality of sub-layers.
  • the thickness of the first layer employs a film thickness measurement method by observation with a transmission microscope (TEM) described later.
  • the first layer may have a stacked structure including a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 30.
  • each sublayer may have the same composition or a different composition.
  • the first layer has gas barrier performance.
  • having gas barrier performance means that only the first layer is laminated on the base material, and the permeated water amount measured by the method described in Examples below is 0.1 g / (m 2 ⁇ 24 h) or less. It is more preferable that it is 0.01 g / (m 2 ⁇ 24h) or less.
  • the first layer preferably contains at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium.
  • Specific examples of the at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium include silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride ( These composites include SiON), silicon oxycarbide (SiOC), silicon carbide, aluminum oxide, titanium oxide, and aluminum silicate. These may contain other elements as secondary components.
  • the first layer can be formed by physical vapor deposition or chemical vapor deposition.
  • the physical vapor deposition method is a method in which a thin film of a target substance is deposited on the surface of the substance by a physical method in a gas phase, and these methods include vapor deposition (resistance heating method, electron beam evaporation, molecular beam). Epitaxy), ion plating, sputtering, and the like.
  • the chemical vapor deposition method chemical vapor deposition method
  • a raw material gas containing a target thin film component is supplied onto a base material, and a film is deposited by a chemical reaction on the substrate surface or in the gas phase. It is a method to do.
  • FIG. 1 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the first layer according to the present invention.
  • the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface side inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is disposed in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • the heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105.
  • the supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160.
  • the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105.
  • the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
  • the vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the vacuum plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heat medium is heated from room temperature. The temperature is raised to a set temperature, and a heat medium having the set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
  • the substrate 110 to be deposited is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105.
  • a large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105.
  • the cathode electrode 103 is connected to a gas introduction system 108.
  • a CVD gas is introduced from the gas introduction system 108 to the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
  • the cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to a ground potential.
  • a high-frequency power source 109 is activated while a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed.
  • the distance between the susceptor 105 and the cathode electrode 103 is set as appropriate.
  • the flow rates of the raw material gas and the cracked gas are appropriately set in consideration of the raw material gas, the cracked gas type and the like.
  • the flow rate of the source gas is 5 to 300 sccm
  • the flow rate of the decomposition gas is 10 to 1000 sccm.
  • a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature.
  • the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film, and the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the substrate 110.
  • the lower limit temperature and upper limit temperature vary depending on the material of the thin film to be formed, the material of the thin film already formed, etc., but the lower limit temperature is 50 ° C. or more in order to ensure the film quality with high gas barrier properties, It is preferable that it is below the heat-resistant temperature.
  • the correlation between the film quality of the thin film formed by the vacuum plasma CVD method and the film formation temperature and the correlation between the damage to the film formation target (substrate 110) and the film formation temperature are obtained in advance, and the lower limit temperature and the upper limit temperature are determined. Is done.
  • the temperature of the substrate 110 (at the start of film formation) during the vacuum plasma CVD process is preferably 20 to 250 ° C.
  • the relationship between the temperature of the heat medium supplied to the susceptor 105 and the temperature of the substrate 110 when plasma is formed by applying a high frequency voltage of 13.56 MHz or more to the cathode electrode 103 is measured in advance, and vacuum plasma CVD is performed.
  • the temperature of the heat medium supplied to the susceptor 105 is required.
  • the lower limit temperature (here, 50 ° C.) is stored, and a heat medium whose temperature is controlled to a temperature equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105.
  • the heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature of 50 ° C. is supplied to the susceptor 105.
  • a CVD gas a mixed gas of silane gas, ammonia gas, and nitrogen gas is supplied, and the SiN film is formed in a state where the substrate 110 is maintained at a temperature condition not lower than the lower limit temperature and not higher than the upper limit temperature.
  • the susceptor 105 Immediately after the startup of the vacuum plasma CVD apparatus 101, the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the activation, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature, and supplies it to the susceptor 105. In this case, the susceptor 105 and the substrate 110 are heated and heated by the heat medium, and the substrate 110 is maintained in a range between the lower limit temperature and the upper limit temperature.
  • the susceptor 105 When a thin film is continuously formed on a plurality of substrates 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (50 ° C.), the heating / cooling device 160 cools the heat medium and converts the heat medium at the set temperature into the susceptor. It supplies to 105. Thereby, it is possible to form a thin film while maintaining the substrate 110 in a range between the lower limit temperature and the upper limit temperature.
  • the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature.
  • a heat medium having a set temperature is supplied to the susceptor, and as a result, the substrate 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
  • the substrate 110 is unloaded from the vacuum chamber 102, the undeposited substrate 110 is loaded into the vacuum chamber 102, and a heating medium having a set temperature is supplied as described above. A thin film is formed.
  • the first layer has a condition (i) a distance (L) from the surface of the first layer in the thickness direction of the first layer, and the amount of silicon atoms relative to the total amount of silicon atoms, oxygen atoms, and carbon atoms.
  • Silicon distribution curve showing the relationship with the ratio (atomic ratio of silicon), oxygen distribution showing the relationship between L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen) 80% of the thickness of the first layer in the curve and the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of L and silicon atoms, oxygen atoms and carbon atoms (carbon atomic ratio)
  • formula (A) formula (carbon atomic ratio) ⁇ (silicon atomic ratio) ⁇ (oxygen atomic ratio)
  • the first layer has the above relationship, carbon atoms exist in addition to silicon atoms and oxygen atoms. Among these, the presence of silicon atoms and oxygen atoms is preferable because gas barrier properties can be imparted, and the presence of carbon atoms can impart flexibility to the barrier layer, which improves moisture and heat resistance.
  • at least 80% or more of the film thickness of the first layer does not need to be continuous in the barrier layer, and simply needs to satisfy the above-described relationship at a portion of 80% or more.
  • the relationship between the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more (upper limit: 100%) of the thickness of the barrier layer. It is more preferable to satisfy
  • oxygen atomic ratio), (silicon atomic ratio), (carbon atomic ratio) increase in this order.
  • Atomic ratio is O> Si> C, order magnitude relationship represented by formula (A)).
  • the film thickness of the first layer in the “region of 80% or more of the film thickness of the first layer” in the condition (i) is calculated from the distribution curve obtained by “XPS depth profile measurement” described below.
  • the film thickness of the first layer is calculated from the distribution curve obtained by “XPS depth profile measurement” described below.
  • the adjacent layer is a base material (particularly a resin base material) or an organic layer (such as a curable resin layer, a smooth layer, and an easy adhesion layer), in the silicon distribution curve (at%) and the carbon distribution curve (at%),
  • a point P where the silicon atomic ratio changes by ⁇ 0.5 at% / nm or more and the carbon atomic ratio changes by +1.0 at% or more is defined as the first layer. And the interface between adjacent layers.
  • the “film thickness of the first layer calculated from the distribution curve obtained by XPS depth profile measurement” in the present invention refers to the first layer from the interface between the first layer and the second layer. It is defined as the distance to the point P that is the transition point in the transition region where both the component and the component of the base material or the organic layer are detected.
  • the interface between the first layer and the second layer is determined as follows.
  • the main component refers to a metal or silicon atom having the highest content ratio among all metals and silicon atoms, and preferably refers to a metal that is 80 at% or more in all metals and silicon atoms.
  • the second A point where the carbon value from the surface of the layer to the above point satisfies both the average value within ⁇ 2 at% of the interval is A, and when the carbon content is observed in a direction where the sputter depth is deeper than the point A
  • the value of the carbon amount in the direction from the point toward the deeper sputter depth is The point where the carbon amount is within ⁇ 5 at% for 5 nm or
  • the atomic ratio of the content of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms in the layer is preferably 25 to 45 at%, preferably 30 to 40 at%. % Is more preferable.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first layer is preferably 33 to 67 at%, and preferably 45 to 67 at%. More preferred.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
  • the first layer of the present invention is a carbon / oxygen distribution curve showing the relationship between the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the ratio of the amount of carbon atoms to oxygen atoms. It is preferable that the carbon / oxygen distribution curve has at least two extreme values. The existence of such an extreme value indicates that the carbon and oxygen abundance ratio in the film is a non-uniform layer, and the presence of a part having a large number of carbon atoms results in the entire layer being It becomes a flexible structure and the flexibility is improved.
  • the first layer preferably has a carbon / oxygen distribution curve having at least 3 extreme values, more preferably at least 5 extreme values.
  • the number of opposed rolls (the number of TRs, the number of two opposite roll sets) is n (n is an integer of 1 or more)
  • the theoretical number of extreme values is Approximately (5 + 4 ⁇ (n ⁇ 1)).
  • the actual number of extreme values is not always the theoretical number of extreme values depending on the conveyance speed of the substrate, and may increase or decrease.
  • the extreme value of the carbon / oxygen distribution curve is two or more, the gas barrier property when the obtained gas barrier film is bent is sufficient.
  • the upper limit of the extreme value of the carbon / oxygen distribution curve is not particularly limited, but is preferably 30 or less, more preferably 25 or less, for example. Since the number of extreme values is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
  • a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a carbon / oxygen distribution curve can be obtained by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element and the horizontal axis as the etching time (sputtering time).
  • the silicon distribution curve, oxygen distribution curve, carbon distribution curve and carbon / oxygen distribution curve were prepared under the following measurement conditions.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): SiO 2 equivalent film thickness of the barrier film ⁇ 20 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the plot position is defined by the number of counter rolls that pass (etching interval below).
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value) (data plot interval): SiO 2 equivalent film thickness of the barrier film ⁇ 10 ⁇ TR number (number of opposing rolls) (nm)
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation
  • X-ray Single crystal spectroscopic AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m ellipse.
  • the film having the first layer having a small interval between adjacent extreme values that is, a rapid change in the composition of the film, has a remarkable decrease in gas barrier performance under high temperature and high humidity conditions.
  • a film comprising a first layer (the second layer is a layer having an extreme interval larger than the extreme interval in the first layer of the film of the present invention) Gas barrier performance at high temperature and high humidity is good.
  • the interval between at least one pair of adjacent extreme values is a value proportional to the conveyance speed of the base material when the apparatus shown in FIG. Specifically, when the conveyance speed of the base material is increased, the interval between adjacent extreme values tends to be shortened. In consideration of a realistic conveyance speed, the interval between at least one set of adjacent extreme values is 1 nm or more.
  • the first layer in which the distance between at least one pair of adjacent extreme values is 10 nm or less is particularly when the substrate conveying speed is 1 m / min or more in the apparatus of FIG. It can be formed easily. Furthermore, if it is 3 m / min or more, it will be easier. That is, in a preferred embodiment of the present invention, the first layer is a layer formed by a plasma CVD method using a plasma CVD apparatus having a counter roll electrode. In the carbon / oxygen distribution curve, It is a form that satisfies the requirement that the interval between at least one set of adjacent extreme values is 1 to 10 nm (more preferably 1 to 7 nm).
  • the interval between the extreme values in the carbon / oxygen distribution curve is obtained from the carbon / oxygen distribution curve, and is calculated from the SiO 2 equivalent film thickness (nm) from the surface of the first layer of each extreme value.
  • the interval between adjacent extreme values refers to the distance from the surface of the first layer in the thickness direction of the first layer at one extreme value of the carbon / oxygen distribution curve and the extreme value adjacent to the extreme value.
  • the absolute value of the difference in distance (L) hereinafter also simply referred to as “distance between extreme values”.
  • the “extreme value” in the carbon / oxygen distribution curve refers to a maximum value or a minimum value of C / O (carbon atom / oxygen atom) in the carbon / oxygen distribution curve.
  • the maximum value in the carbon / oxygen distribution curve is a point where the value of the atomic ratio of carbon atoms to oxygen atoms (C / O) changes from increasing to decreasing when the distance from the surface of the first layer is changed. That means. Further, the minimum value in the carbon / oxygen distribution curve is that the value of the atomic ratio (C / O) of the carbon to oxygen element changes from decreasing to increasing when the distance from the surface of the first layer is changed. I mean.
  • the film thickness (nm) measured by the film thickness measurement method by observation with a transmission electron microscope (TEM) described in the examples described later is divided by the number of extreme values of the carbon / oxygen distribution curve.
  • the measured value (hereinafter referred to as “film thickness (nm) by TEM / number of extreme values”) is preferably 20 (nm / number) or less. This value indicates the relationship between the film thickness and the extreme value. For example, when the film thickness is the same and the number of extreme values on one side is larger, the first layer having the larger number of extreme values is more The extreme value interval is smaller than that of the other first layer.
  • the composition in the film thickness direction changes as the film thickness (nm) by TEM / the number of extreme values decreases.
  • the lower limit of the film thickness (nm) / extreme number by TEM is not particularly limited, but is usually 3.5 (nm / number) or more.
  • the film thickness (nm) / extremum number by TEM is 15 (nm / number) or less, since the effect is particularly great, it is more preferable.
  • TEM transmission electron microscope
  • the carbon distribution curve preferably has at least two extreme values, preferably has at least three extreme values, and more preferably has at least five extreme values.
  • the carbon distribution curve has at least two extreme values, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced.
  • the “extreme value” in the carbon distribution curve means the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the maximum or minimum value of carbon atoms in the carbon distribution curve. That means.
  • the maximum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms decreases from an increase.
  • the minimum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms increases from a decrease. It refers to a changing point.
  • the oxygen distribution curve of the first layer preferably has at least one extreme value, more preferably at least two extreme values, more preferably at least three extreme values, and at least five extreme values. It is particularly preferred to have When the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved.
  • the upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, more preferably 10 or less, for example. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the thickness of the barrier layer, and it cannot be defined unconditionally.
  • the “extreme value” in the oxygen distribution curve is the distance (L) from the surface of the first layer in the film thickness direction of the first layer, and the maximum or minimum value of oxygen atoms in the oxygen distribution curve. That means.
  • the maximum value in the oxygen distribution curve means that when the distance from the surface of the first layer is changed, the value of the oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms decreases from an increase. A point that changes.
  • the minimum value in the oxygen distribution curve means that when the distance from the surface of the first layer is changed, the value of the oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms increases from a decrease. A point that changes.
  • the total amount of carbon and oxygen atoms in the film thickness direction of the first layer is substantially constant.
  • the 1st layer exhibits moderate flexibility, and the crack generation at the time of bending of a gas barrier film can be controlled and prevented more effectively.
  • the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the distribution curve hereinafter simply referred to as “OC max ⁇ OC”.
  • preferably also referred min difference is less than 5at%, more preferably less than 4at%, more preferably less than 3at%.
  • the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of the OC max -OC min difference since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
  • the first layer is substantially uniform in the film surface direction (direction parallel to the surface of the first layer). It is preferable that the fact that the first layer is substantially uniform in the film surface direction means that the oxygen distribution curve and the carbon distribution curve are measured at any two measurement points on the film surface of the first layer by XPS depth profile measurement.
  • the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum value of the atomic ratio of carbon in each carbon distribution curve And the absolute value of the difference between the minimum values is the same as each other or within 5 at%.
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time. Satisfying the condition expressed by the following formula (1) in the relationship between the distance from the surface in the film thickness direction (x, unit: nm) and the atomic ratio of carbon (C, unit: at%). Say.
  • the formation method of the first layer is not particularly limited, and can be applied in the same manner as the conventional method or appropriately modified.
  • the first layer is preferably a chemical vapor deposition (CVD) method, particularly a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”). It is preferably formed by.
  • CVD chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • the plasma CVD method using the plasma CVD method of the atmospheric pressure or the atmospheric pressure described in the international publication 2006/033233, and the plasma CVD apparatus with a counter roll electrode is mentioned. .
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • the base material includes a form in which the base material has been processed or has an intermediate layer on the base material) and discharge between a pair of film forming rollers to generate plasma. Is more preferable.
  • the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation.
  • the first layer is preferably a layer formed by a continuous film formation process.
  • the gas barrier film according to the present invention forms the first layer on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • an apparatus that can be used when manufacturing the barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of film forming processes. It is preferable that the apparatus has a configuration capable of discharging between rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible.
  • FIG. 2 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first layer.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the production apparatus 13 shown in FIG. 2 includes a delivery roller 14, transport rollers 15, 16, 17, 18, film formation rollers 19, 20, a gas supply pipe 21, a plasma generation power source 22, and a film formation roller 19. And 20 are provided with magnetic field generators 23 and 24 and winding rollers 25. Further, in such a manufacturing apparatus, at least the film forming rollers 19 and 20, the gas supply pipe 21, the plasma generating power source 22, and the magnetic field generating apparatuses 23 and 24 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 13, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for generating plasma so that the pair of film-forming rollers (film-forming roller 19 and film-forming roller 20) can function as a pair of counter electrodes. 22 is connected. Therefore, in such a manufacturing apparatus 13, it is possible to discharge to the space between the film forming roller 19 and the film forming roller 20 by supplying electric power from the plasma generating power source 22, thereby Plasma can be generated in the space between the film roller 19 and the film formation roller 20.
  • the material and design may be changed as appropriate so that the film-forming roller 19 and the film-forming roller 20 can also be used as electrodes.
  • the pair of film forming rollers (film forming rollers 19 and 20) be arranged so that their central axes are substantially parallel on the same plane.
  • the film forming rate can be doubled as compared with a normal plasma CVD method that does not use a roller, and the structure is the same. Since the film can be formed, the extreme value in the carbon distribution curve can be at least doubled.
  • the base material 12 on the surface of the base material 12 (here, the base material includes a form in which the base material is processed or has an intermediate layer on the base material) by the CVD method.
  • the first layer 26 can be formed on the film forming roller 19 while the first layer component is deposited on the surface of the base material 12 on the film forming roller 19 and also on the film forming roller 20. Since the first layer component can also be deposited on the surface, the barrier layer can be efficiently formed on the surface of the substrate 12.
  • magnetic field generators 23 and 24 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively are a magnetic field generator 23 provided on one film forming roller 19 and a magnetic field generator provided on the other film forming roller 20. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generators 24 and the magnetic field generators 23 and 24 form a substantially closed magnetic circuit.
  • the magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generating device 23 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 24 have the same polarity.
  • the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 23 and 24 are opposed.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 12 is excellent in that the first layer 26 which is a vapor deposition film can be efficiently formed.
  • the film forming roller 19 and the film forming roller 20 known rollers can be appropriately used. As such film forming rollers 19 and 20, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently.
  • the diameters of the film forming rollers 19 and 20 are preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated, and it is possible to avoid applying the total amount of plasma discharge to the substrate 12 in a short time. It is preferable because damage to the material 12 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the base material 12 is disposed on a pair of film forming rollers (the film forming roller 19 and the film forming roller 20) so that the surfaces of the base material 12 face each other.
  • the base material 12 By disposing the base material 12 in this way, when the plasma is generated by performing discharge in the facing space between the film forming roller 19 and the film forming roller 20, the base existing between the pair of film forming rollers is present.
  • Each surface of the material 12 can be formed simultaneously. That is, according to such a manufacturing apparatus, the barrier layer component is deposited on the surface of the substrate 12 on the film forming roller 19 by the plasma CVD method, and the barrier layer component is further deposited on the film forming roller 20. Therefore, the barrier layer can be efficiently formed on the surface of the substrate 12.
  • the feed roller 14 and the transport rollers 15, 16, 17, 18 used in such a manufacturing apparatus known rollers can be used as appropriate.
  • the winding roller 25 is not particularly limited as long as the gas barrier film 11 having the first layer 26 formed on the substrate 12 can be wound, and a known roller is appropriately used. be able to.
  • gas supply pipe 21 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 21 serving as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 19 and the film formation roller 20 and is a vacuum serving as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space. In this way, by providing the gas supply pipe 21 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 19 and the film formation roller 20. It is excellent in that the film formation efficiency can be improved.
  • the plasma generating power source 22 a known power source for a plasma generating apparatus can be used as appropriate.
  • a power source 22 for generating plasma supplies power to the film forming roller 19 and the film forming roller 20 connected thereto, and makes it possible to use them as a counter electrode for discharging.
  • Such a plasma generation power source 22 can perform plasma CVD more efficiently, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used.
  • the plasma generating power source 22 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 23 and 24 known magnetic field generators can be used as appropriate.
  • the base material 12 in addition to the base material used in the present invention, a material in which the first layer 26 is formed in advance can be used. As described above, by using the substrate 12 in which the first layer 26 is formed in advance, the thickness of the first layer 26 can be increased.
  • the first layer can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 13 shown in FIG. 2, a discharge is generated between the pair of film forming rollers (film forming rollers 19 and 20) while supplying a film forming gas (raw material gas or the like) into the vacuum chamber.
  • the film-forming gas (such as source gas) is decomposed by plasma, and the first layer 26 is formed on the surface of the base material 12 on the film-forming roller 19 and on the surface of the base material 12 on the film-forming roller 20. It is formed by the plasma CVD method. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axis of the film forming rollers 19 and 20, and the plasma is converged on the magnetic field. Therefore, when the substrate 12 passes through the point A of the film forming roller 19 and the point B of the film forming roller 20 in FIG. 2, the maximum value of the carbon / oxygen distribution curve is formed in the first layer. .
  • the distance between the extreme values of the first layer (the surface of the first barrier layer in the film thickness direction of the first layer at one extreme value of the carbon / oxygen distribution curve and the extreme value adjacent to the extreme value) (The absolute value of the difference in distance (L) from) can be adjusted by the rotation speed of the film forming rollers 19 and 20 (the conveyance speed of the substrate).
  • the substrate 12 is transported by the delivery roller 14 and the film formation roller 19, respectively, so that the surface of the substrate 12 is formed by a roll-to-roll continuous film formation process.
  • First layer 26 is formed.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the first layer 26 can be appropriately selected and used according to the material of the first layer 26 to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • phenyltrimethoxysilane methyltriethoxy
  • Examples include silane and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • organic compound gas containing carbon examples include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the first layer 26.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon and xenon; hydrogen; nitrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By not making the ratio of the reaction gas excessive, it is excellent in that excellent barrier properties and bending resistance can be obtained by the first layer 26 to be formed. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • hexamethyldisiloxane organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O
  • oxygen (O 2 ) oxygen
  • the preferred ratio of the raw material gas to the reactive gas in the film forming gas will be described in more detail.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, the first layer that satisfies the above conditions (i) and (ii) cannot be formed. Therefore, when forming the first layer, the oxygen amount is set to a stoichiometric ratio of 12 with respect to 1 mol of hexamethyldisiloxane so that the reaction of the reaction formula (1) does not proceed completely.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced.
  • the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • an electrode drum in this embodiment, the film forming roller 19 connected to the plasma generating power source 22 for discharging between the film forming roller 19 and the film forming roller 20.
  • the power to be applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the conveyance speed (line speed) of the substrate 12 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 100 m / min.
  • a preferable manufacturing method of the present invention includes a step of forming a first layer containing silicon, oxygen, and carbon by conveying a substrate to a plasma CVD apparatus having a counter roll electrode at a conveyance speed of 1 m / min or more. And a step of forming a second layer containing an inorganic oxide by an atomic layer deposition method.
  • the first layer containing silicon, oxygen and carbon is formed by transporting the substrate to a plasma CVD apparatus having a counter roll electrode at a transport speed of 5 m / min or more (more preferably 10 m / min or more). Including the steps of:
  • the upper limit of the line speed is not particularly limited, and is preferably faster from the viewpoint of productivity. However, if it is 100 m / min or less, it is excellent in that a sufficient thickness can be secured as a barrier layer.
  • the first layer is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. It is characterized by.
  • This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • the second layer is formed by an atomic layer deposition method (ALD method).
  • ALD method atomic layer deposition method
  • the second layer is also referred to as an ALD layer.
  • the second layer preferably contains an inorganic oxide, an inorganic nitride, or an inorganic oxynitride, and more preferably contains an inorganic oxide, from the viewpoint of gas barrier performance.
  • the inorganic oxide is not particularly limited, and examples thereof include oxides and composite oxides such as aluminum, titanium, silicon, zirconium, hafnium, and lanthanum.
  • the inorganic oxide is selected from the group consisting of Al 2 O 3 , TiO 2 , SiO 2 and ZrO from the viewpoint of obtaining a good quality film at a temperature of 50 to 120 ° C. in consideration of forming a film on a resin substrate. It is preferable to contain at least one selected from the above. Since the material can be impregnated with minute defects, it is more preferable to include Al 2 O 3 and TiO 2 in consideration of the molecular weight of the material.
  • the inorganic nitride is not particularly limited, and examples thereof include nitrides such as aluminum, titanium, silicon, zirconium, hafnium, lanthanum, and composite nitrides.
  • the thickness of the second layer is preferably 1 to 100 nm, and more preferably 10 to 50 nm.
  • the film thickness of the second layer is 1 nm or more, the effect of the ALD layer such as repair of fine defects is appropriately obtained, and in view of the ALD film forming speed, it is preferably 100 nm or less from the viewpoint of productivity.
  • the gas barrier performance of the second layer alone may not be high because the gas barrier performance of the first layer is high. Therefore, the gas barrier performance of the second layer is such that the amount of permeated moisture measured by the method described in Examples below in the laminate in which the second layer is formed on the substrate is 0.5 g / (m 2 ⁇ 24 h) or less, and more preferably 0.1 g / (m 2 ⁇ 24 h) or less.
  • the carbon concentration with respect to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon is in a range of 0.3 at% to 3.0 at% (hereinafter simply referred to as carbon-containing). Is also 30% or more of the thickness of the second layer.
  • the region having a carbon concentration of 0.3 at% or more and 3.0 at% or less is 30% or more with respect to the film thickness of the second layer, wet heat resistance is improved.
  • a certain number of carbon atoms are present in the second layer, when a flexible part is generated in the film and the film is bent as compared with a film formed only from an inorganic oxide such as silicon oxide. It is thought that the occurrence of cracks is also suppressed.
  • the film is more flexible than a film formed only from an inorganic oxide such as silicon oxide.
  • the layers are also easily expanded, and the upper and lower sides (base material and second layer) of the first gas barrier layer are similarly expanded in the lateral direction, so that the external force applied to the first layer is reduced, and the first Since the layer is protected, it is considered that the gas barrier performance does not deteriorate even when stored under high temperature and high humidity conditions.
  • the carbon-containing region may not be continuous in the second layer, may be discontinuous, and when the carbon-containing region is discontinuous, the total film thickness of the carbon-containing region is equal to that of the second layer. It becomes 30% or more with respect to the film thickness.
  • the upper limit of the ratio in the film thickness direction of the region where the carbon concentration is 0.3 at% or more is not particularly limited, and the carbon concentration is 0.1 in all regions (100% with respect to the film thickness of the second layer). It may be 3 at% or more and 3.0 at% or less.
  • the carbon-containing region is preferably 40% or more, and more preferably 50% or more.
  • the upper limit of the carbon-containing region is 100% (the carbon concentration in the layer is 0.3 to 3.0 at%).
  • the carbon concentration region is low (the carbon concentration is 0.00%). (Region of less than 3 at%) is preferably present, and the region of 0.3 at% or more and 3.0 at% or less is preferably 70% or less with respect to the film thickness of the second layer.
  • the carbon (atom) concentration in the second layer is 3.0 at% or less with respect to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon. That is, the maximum value of the carbon concentration in the second layer is 3.0 at% or less.
  • the carbon concentration in the second layer is high, it tends to react with H 2 O in the air, the film composition tends to change over time, and the resistance to moist heat is significantly reduced. For this reason, the carbon concentration in the second layer needs to be 3.0 at% or less.
  • the carbon concentration in the second layer is preferably 2.5 at% or less.
  • the carbon concentration in the second layer refers to the carbon concentration in the film thickness direction measured by the following XPS depth profile measurement. Further, when performing the XPS depth profile, the composition changes easily under the influence of the surface in the vicinity of the surface. For this reason, the interface between the surface and the second layer is defined as follows.
  • the sputtering depth is from 3 nm to the outermost surface (interface between the surface and the second layer).
  • the region having a low carbon concentration (region having a carbon concentration of less than 0.3 at%) is preferably present on the surface side of the second layer opposite to the substrate. This is because when the carbon concentration is large in the surface layer, the carbon on the surface reacts with moisture in the atmosphere, the film composition changes, and as a result, internal stress is generated in the film and the initial gas barrier performance decreases. It is.
  • the region within at least 3 nm from the outermost surface of the second layer has an average carbon concentration of 0. 0 relative to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon. It is less than 3 at%.
  • the average carbon concentration in the region within 3 nm from the outermost surface is less than 0.3 at%, the initial gas barrier performance is enhanced.
  • the “region within 3 nm from the outermost surface” means that the average carbon concentration of “region within 3 nm from the outermost surface” is essentially less than 0.3 at%, and the average carbon up to the region exceeding 3 nm. It means that the concentration may be less than 0.3 at%.
  • a region within at least 3 nm from the outermost surface indicates a region where “distance from the surface of the second layer in the film thickness direction of the second layer” is within 3 nm in the following XPS depth profile.
  • the calculation method of “distance from the surface of the second layer in the film thickness direction of the second layer” in the XPS depth profile is the same as the method described in the first layer.
  • the carbon concentration in the film thickness direction in the second layer is sequentially measured while exposing the inside of the sample by using both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon. It can be measured by so-called XPS depth profile measurement in which surface composition analysis is performed. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of carbon elements and the horizontal axis as the etching time (sputtering time).
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
  • Etching rate SiO 2 thermal oxide equivalent value
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
  • Irradiation X-ray Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the average carbon concentration within 3 nm from the outermost surface is a value obtained by measuring the carbon composition in the film thickness direction, integrating the carbon content in the film thickness direction, and dividing by the integrated film thickness.
  • the ALD film after the ALD film is formed, it is kept in the atmosphere at room temperature of 20 to 30 ° C. (humidity) for one week or longer, and then X-ray photoelectron spectroscopy is performed under the conditions described above.
  • the carbon concentration in the film thickness direction was measured by (XPS: Xray Photoelectron Spectroscopy).
  • the ALD layer when the ALD layer is the outermost layer, the surface is the outermost surface, and when another adjacent layer is laminated on the ALD layer, the adjacent layer and the ALD layer Is the outermost surface.
  • the carbon atoms in the second layer are preferably those in which carbon atoms contained in the source gas remain. Therefore, it is preferable to use a gas containing carbon atoms as the source gas.
  • the ALD method is a method of depositing atomic layers one by one by introducing two or more kinds of gases (first gas and second gas) alternately onto a substrate.
  • a desired film thickness is obtained by repeating the film forming cycle.
  • a first gas which is a source gas
  • an inert gas purge gas
  • remove an inert gas
  • the gas molecule layer of the formed first gas is not purged even when an inert gas is introduced by chemical adsorption.
  • an inorganic film is formed by oxidizing a gas molecular layer formed by introducing a second gas (for example, an oxidizing gas) which is a reactive gas.
  • the second gas is purged by introducing an inert gas, and one cycle of the ALD method is completed. By repeating the cycle, atomic layers are deposited one by one, and a second layer having a predetermined thickness can be formed.
  • the ALD method can form an inorganic film including a shaded portion regardless of the unevenness of the surface of the lower layer.
  • the method for controlling the concentration of carbon atoms in the second layer includes (1) controlling the introduction time of the first gas so that the first gas is not completely purged, and / or inert gas.
  • a method for controlling the introduction time (hereinafter referred to as the method (1)) may be mentioned.
  • the source gas When the source gas is adsorbed on the first layer, the source gas is adsorbed in layers.
  • the source gas that is not adsorbed by the inert gas is purged, so that only the gas molecule layer of the first gas adsorbed in the lower layer remains as a single layer. Since this gas molecule layer is almost completely oxidized by the second gas, almost no carbon atoms remain in the gas molecule layer.
  • the introduction time of the source gas and / or the introduction time of the inert gas is controlled so that the source gas is not completely purged.
  • the gas molecule layers remain stacked (multiple gas molecule layers not adsorbed on the lower layer exist).
  • the second gas is introduced in this state, only the surface of the gas molecular layer is oxidized, so that the gas molecules in the lower layer other than the surface layer are not oxidized and remain as the source gas containing carbon atoms. Therefore, a layer having a carbon concentration gradient in the film thickness direction is formed in one cycle of the ALD method. Similarly, by repeating the cycle, a layer having a carbon concentration distribution in the film thickness direction is formed.
  • a preferred embodiment of the present invention is a method for producing a gas barrier film comprising a substrate, a first layer having barrier performance, and a second layer formed by an atomic layer deposition method in this order.
  • the atomic layer deposition method includes a step (1) of introducing a first gas, which is a source gas containing carbon, onto the first layer, and purging the first gas by introducing an inert gas.
  • a region having a carbon concentration of 0.3 at% or more and 3.0 at% or less is included at 30% or more with respect to the film thickness of the second layer, and the carbon concentration in the second layer is 3.0 at% or less.
  • the introduction time of the first gas is controlled in the step (1).
  • Controls the deployment time of the inert gas in the step (2) is a method for producing the gas barrier film.
  • the introduction time of the first gas is appropriately set in balance with the purge time of the gas, the film formation rate, and the like.
  • the time is preferably from 05 to less than 0.3 seconds, and more preferably from 0.01 to 0.15 seconds.
  • the suitable first gas introduction time may be satisfied in all cycles, or a part of the cycle may satisfy the suitable first gas introduction time.
  • the above-mentioned preferable range is preferably at least in the region of the second layer on the substrate side.
  • the cycle for forming a region exceeding 25% of the above is at least within the above range, preferably within the above preferable range at a region of 50% or more, and within the above preferable range in all cycles. preferable.
  • the first gas purge time is preferably 0.1 to less than 20 seconds in at least one cycle, and is preferably 0.1 to 4.0 seconds. More preferably.
  • the suitable inert gas introduction time may be satisfied in all cycles, or a part of the cycle may satisfy the suitable inert gas introduction time.
  • the preferred range is applied in a cycle when forming the region on the substrate side.
  • the region on the substrate side in this case is a region having a film thickness of 30% or more, preferably 40% or more, more preferably 50% or more from the substrate side, and preferably 80% or more. % Or less.
  • the purge time is set longer than the region having a carbon concentration of 0.3 at% or more and 3.0 at% or less so that the average carbon concentration is less than 0.3 at%. It is preferable to make it longer.
  • the preferred ratio may be satisfied in all cycles, and a part of the cycle may satisfy the preferred ratio.
  • the surface side of the second layer is made of carbon. Since the form which does not remain is suitable, it is preferable that the suitable range is applied in a cycle when forming the region on the substrate side.
  • the ratio is within the above-mentioned preferable range, and in the second half cycle (surface layer side), the normal ratio (for example, more than 100 and 500 or less) is performed. Is mentioned.
  • the formation thickness of the first gas in one cycle in the atomic layer deposition method is controlled.
  • a method, (3) a method of using water or ozone as a reactive gas used in the atomic layer deposition method, (4) a method of controlling the substrate temperature when forming the second layer by introducing an oxidizing gas, etc. Can be mentioned. These control methods may be performed in all cycles or only in some cycles. That is, in a preferred embodiment of the present invention, in addition to the method of (1), (2) the formation thickness of the first gas in one cycle in the atomic layer deposition method is 0.2 to 0.5 nm. (3) the reaction gas used in the atomic layer deposition method is water or ozone, and (4) the temperature of the substrate in the step (2) is 120 ° C. or less (2) A method for producing a gas barrier film satisfying at least one of (4) to (4).
  • the formation film thickness of the first gas in one cycle it is preferable to control the formation film thickness of the first gas in one cycle to be relatively thick.
  • the larger the film thickness formed in one cycle the more a source gas molecular layer is formed by laminating a number of monomolecular layers.
  • the monomolecular layer close to the surface layer is oxidized, and the molecular layer close to the first layer remains without being oxidized. For this reason, since the carbon concentration of the molecular layer closer to the first layer becomes high, the carbon concentration distribution in the second layer becomes large (a region with a high carbon concentration tends to exist). For this reason, resistance to moist heat resistance is improved.
  • the formation thickness of the first gas in at least one cycle in the atomic layer deposition method is 0.2 nm / cycle or more.
  • the film thickness formed in at least one cycle is preferably 0.5 nm / cycle or less.
  • the said suitable cycle speed may be satisfy
  • the cycle rate is within the above-mentioned preferable range
  • the normal cycle speed for example, 0.05 to 0.2 nm / cycle
  • the region on the substrate side is specifically a region having a film thickness of 30% or more, preferably 40% or more, more preferably 50% or more from the substrate side, and preferably 80%. % Or less.
  • the substrate temperature during the second gas reaction is preferably 120 ° C. or less, and preferably 100 ° C. or less.
  • the lower limit of the substrate temperature is not particularly limited, but the film formation temperature requires activation of the substrate surface for adsorption of gas molecules to the substrate, and the film formation temperature may be high to some extent. preferable. For this reason, when using a plastic base material, it is preferable that the base-material temperature at the time of reaction is 50 degreeC or more.
  • a plurality of (2) to (4) may be combined, or all may be combined.
  • the first gas may be a gas obtained by vaporizing an aluminum compound
  • the second gas may be an oxidizing gas.
  • the inert gas is a gas that does not react with the first gas and / or the second gas.
  • the reaction gas is not particularly limited, and the source gas may be appropriately selected depending on the inorganic oxide film to be formed.
  • Ritala Appl. Surf. Sci. 112, 223 (1997) can be used.
  • the reaction gas used in the present invention preferably contains a gas obtained by vaporizing a compound containing carbon atoms.
  • Examples of the compound containing a carbon atom include aluminum compounds such as trimethylaluminum (TMA) and triethylaluminum (TEA); aminosilane-based tetrakisdimethylaminosilane (Si [N (CH 3 ) 2 ] 4 , 4DMAS), trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, 3DMASi), bisdiethylaminosilane (Si [N (C 2 H 5 ) 2 ] 2 H 2 , 2DEAS), Vistaly butylaminosilane (SiH 2 [NH (C 4 H 9) )] 2 , BTBAS) and the like; titanium (IV) isopropoxide (Ti [(OCH) (CH 3 ) 2 ] 4 ), tetrakisdimethylaminotitanium ([(CH 3 ) 2 N] 4 Ti, TDMAT ), Tetrakisdiethylaminotitanium (Ti [
  • a gas obtained by vaporizing the other compound may be included.
  • Other compounds include trichloroaluminum; monochlorosilane (SiH 3 Cl, MCS), hexachlorodisilane (Si 2 Cl 6 , HCD), tetrachlorosilane (SiCl 4 , STC), trichlorosilane (SiHCl 3 , TCS), etc.
  • Chlorosilanes inorganic materials such as trisilane (Si 3 H 8 , TS), disilane (Si 2 H 6 , DS), monosilane (SiH 4 , MS); titanium tetrachloride (TiCl 4 ) and the like.
  • the first gas is preferably obtained by vaporizing a compound having a molecular weight of 240 or less because it is effective to repair minute defects in the first layer and the initial gas barrier performance is improved.
  • Compounds having a molecular weight of 240 or less include trimethylaluminum (TMA, molecular weight 72.1), triethylaluminum (TEA, molecular weight 114.17), tetramethoxytitanium (Ti (CH 3 ) 4 , molecular weight 172), tetrakisdimethylamino And titanium ([(CH 3 ) 2 N] 4 Ti, TDMAT, molecular weight 224.21).
  • the oxidizing gas is not particularly limited as long as it can oxidize the gas molecular layer.
  • ozone (O 3 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), methanol (CH 3 ). OH), ethanol (C 2 H 5 OH) and the like can be used.
  • oxygen radicals it is possible to generate high-density oxygen radicals by exciting the gas using a high-frequency power source (for example, a power source having a frequency of 13.56 MHz), which further promotes oxidation and nitridation reactions. be able to.
  • ICP Inductively Coupled Plasma
  • water or ozone as the oxidizing agent because the reaction progress is mild and the oxidation of the molecular layer of the source gas is easy to control (form of the above method (3)).
  • nitrogen radicals can be used when nitrides and nitride oxides are desired. Nitrogen radicals can be generated in the same manner as the oxygen radical generation described above.
  • the inert gas As the inert gas (purge gas), a rare gas (helium, neon, argon, krypton, xenon), nitrogen gas, or the like can be used.
  • a rare gas helium, neon, argon, krypton, xenon
  • nitrogen gas or the like
  • the introduction time of the second gas is preferably 10 seconds or less, and more preferably 5 seconds or less. It is preferable that the introduction time of the second gas is 5 seconds or less because the reaction of the second layer does not proceed completely and the carbon concentration in the second layer is easily controlled.
  • the introduction time of the second gas is preferably 0.1 seconds or more, and more preferably 0.5 seconds or more. It is preferable that the introduction time of the second gas is 0.5 seconds or longer because an inorganic oxide or the like can be formed and the gas barrier performance can be improved.
  • the introduction time of the inert gas for purging the second gas is preferably 0.05 to 10 seconds. It is preferable that the introduction time of the inert gas is 0.05 seconds or longer because the second gas can be sufficiently purged. On the other hand, an inert gas introduction time of 10 seconds or less is preferable because the time required for one cycle can be reduced and the influence on the formed atomic layer is small.
  • the second layer may be formed using a roll-to-roll film forming apparatus.
  • the film can be continuously produced by the roll-to-roll method. Therefore, when the second layer is formed using a roll-to-roll film forming apparatus, productivity is improved. Improved and preferred.
  • apparatuses described in US Patent Application Publication No. 2007/0224348 and US Patent Application Publication No. 2008/0026162 can be used.
  • FIGS. 3 and 4 As the formation of the second layer by the roll-to-roll method, as described in JP-T 2010-541242, an apparatus as shown in FIGS. 3 and 4 can be used.
  • the substrate 82 (on which the first layer and other layers are laminated if necessary) is unwound from the feed roller 80, and taken up by the take-up roller 81. It is done. While being conveyed from the feed roller 80 to the take-up roller 81, the second layer is formed by the gas supplied from the coating head.
  • the base material 84 (with the first layer and other layers laminated if necessary) is unwound from the feed roller 83, and the base material is guided by the guide roll 85. Then, it is supplied onto the MR (main roll) 86. A coating head 87 is disposed on the MR, and the substrate 84 is exposed to a gas supplied from the coating head. The temperature of the substrate 84 is appropriately adjusted by the temperature adjusting means 90 before being supplied to the coating head. Next, the base material 84 on which the second layer is formed passes through the guide roll 88 and is taken up by the take-up roller-89.
  • a stepped roll as disclosed in JP-A-2009-256709 may be used so as to be in contact with the film formation surface (barrier surface) and the water vapor transmission rate is not deteriorated.
  • an adhesive protective film is attached to the film-forming surface before winding with a winding roller or a protective layer is provided, damage during winding will occur. Is more preferable (“protective film winding" shown in FIGS. 3 and 4).
  • by providing an adhesive protective film it helps to protect the gas barrier film surface from damage, and is easy to install on an object to which the gas barrier film is applied.
  • the adhesive protective film is not particularly limited as long as it can be applied to a gas barrier film, and conventionally known ones can be used.
  • acrylic resin, urethane resin, epoxy resin, polyester resin, melamine resin, phenol resin, polyamide, Those formed of a ketone resin, a vinyl resin, a hydrocarbon resin or the like can be used.
  • FIG. 5 is a schematic diagram showing an example of a coating head for ALD film formation used in the apparatus shown in FIGS.
  • the coating head 70 includes a source gas supply device 71 that supplies a source gas, an inert gas supply device 72 that supplies an inert gas, a second gas supply device that supplies a second gas, and a gas.
  • An introduction pipe 74 and an exhaust pipe 75 are provided.
  • the substrate 76 (laminated with the first layer and other layers if necessary) is conveyed in the A to B directions.
  • the source gas is supplied from the first gas (source gas) supply device 71 through the gas introduction pipe 74 to the base material.
  • the supplied gas is then exhausted through the exhaust pipe 75.
  • an inert gas is introduced into the base material 76 from the inert gas supply device 72 and the source gas is purged (removed).
  • the second gas is introduced from the second gas (for example, oxidizing gas) supply device 73 through the gas introduction pipe 74 to form an inorganic film.
  • the inert gas is introduced from the inert gas supply device 72 to purge the second gas, and one cycle of the ALD method is completed.
  • the inert gas and the second gas are exhausted through the exhaust pipe before the gas supply in the next step.
  • the source gas and the second gas may be supplied after being mixed with an inert gas (carrier gas) (see FIGS. 3 and 4).
  • an inert gas carrier gas
  • an ALD film can be formed with high productivity.
  • the gas barrier film of the present invention usually uses a plastic film as a substrate.
  • the plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold the barrier laminate, and can be appropriately selected depending on the purpose of use and the like.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic
  • thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the plastic film is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • the thickness of the plastic film used for the gas barrier film is appropriately selected depending on the application and is not particularly limited, but is typically 1 to 800 ⁇ m, preferably 10 to 200 ⁇ m.
  • These plastic films may have functional layers such as a transparent conductive layer and a smooth layer.
  • As the functional layer in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • An intermediate layer may be separately provided on the substrate, the first layer, and the second interlayer or the surface as long as the effects of the present invention are not impaired.
  • a layer or a curable resin layer obtained by modifying a coating film formed by applying a liquid containing a silicon compound on the second layer.
  • Silicon compound A layer obtained by modifying a coating film formed by applying a liquid containing a silicon compound (hereinafter also simply referred to as a silicon compound modified layer)) (Silicon compound)
  • the silicon compound is not particularly limited as long as a coating solution containing the silicon compound can be prepared.
  • perhydropolysilazane organopolysilazane, silsesquioxane, tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, Tetramethoxysilane, tetramethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, 1,1-dimethyl-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, ethyltrimethoxysilane, dimethyldivinylsilane, dimethyl Ethoxyethynylsilane, diacetoxydimethylsilane, dimethoxymethyl-3,3,3-
  • polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane, etc. are preferable in terms of film formation, fewer defects such as cracks, and less residual organic matter, and high gas barrier performance. Polysilazane is more preferable because the barrier performance is maintained even when bent and under high temperature and high humidity conditions.
  • Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
  • polysilazanes include paragraphs “0103” to “0117” of International Publication No. 2012-077753 (US Patent Application No. 2013/236710) and paragraphs “0038” to “0056” of JP2013-226758A. And polysilazane described in the above.
  • the content of polysilazane in the silicon compound modified layer may be 100% by weight when the total weight of the silicon compound modified layer is 100% by weight.
  • the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. More preferably, it is 70 wt% or more and 95 wt% or less.
  • the method for forming the silicon compound modified layer is not particularly limited, and a known method can be applied. However, a coating liquid for forming a silicon compound modified layer containing a silicon compound and, if necessary, a catalyst in an organic solvent is used in a known wet process. A method of applying by a coating method, evaporating and removing the solvent, and then performing a modification treatment is preferable.
  • the solvent for preparing the coating solution for forming the silicon compound modified layer is not particularly limited as long as it can dissolve the silicon compound, but water and reactive groups (for example, hydroxyl group) that easily react with the silicon compound.
  • the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben.
  • Hydrogen solvents Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to the purpose such as the solubility of the silicon compound and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
  • the concentration of the silicon compound in the coating solution for forming a silicon compound-modified layer is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 5 to 50. % By weight.
  • the coating solution for forming a silicon compound modified layer preferably contains a catalyst in order to promote the modification.
  • a sol-gel method can be used for forming the silicon compound modified layer.
  • Method of applying a coating solution for forming a silicon compound modified layer As a method for applying the silicon compound-modified layer forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
  • the coating thickness can be appropriately set according to the purpose.
  • the coating thickness is preferably about 10 nm to 10 ⁇ m after drying, more preferably 15 nm to 1 ⁇ m, and even more preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 ⁇ m or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
  • a coating film obtained by applying a coating solution for forming a silicon compound modified layer includes a step of removing moisture before or during the modification treatment. Also good.
  • the modification treatment in the present invention refers to a conversion reaction of a silicon compound into silicon oxide or silicon oxynitride.
  • the gas barrier film of the present invention as a whole has a gas barrier property (water vapor permeability is 1 ⁇ 10 ⁇ 2). 3 g / (m 2 ⁇ 24 h) or less) is a treatment for forming an inorganic thin film at a level that can contribute to the development. Therefore, the silicon compound modified layer is also a gas barrier layer having gas barrier properties.
  • the conversion reaction of the silicon compound to silicon oxide or silicon oxynitride a known method based on the conversion reaction of the silicon compound modified layer can be selected.
  • Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment, and vacuum ultraviolet irradiation treatment is particularly preferable.
  • the method and specific conditions for each treatment are described in paragraphs “0132” to “0162” of International Publication No. 2012-077753 (US Patent Application No. 2013/236710), paragraphs “0075” to “0095” of JP2013-232320A. Or the like can be appropriately used.
  • the thickness of the silicon compound modified layer can be appropriately set according to the purpose.
  • the thickness of the silicon compound modified layer is preferably about 10 nm to 10 ⁇ m, more preferably 15 nm to 1 ⁇ m, and further preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 ⁇ m or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
  • the gas barrier film may have a curable resin layer formed by curing a curable resin on a substrate.
  • the curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material with an active energy ray such as ultraviolet ray to be cured is heated.
  • the thermosetting resin etc. which are obtained by curing by the above method.
  • Such a curable resin layer is at least one of (1) smoothing the surface of the substrate, (2) relieving the stress of the upper layer to be laminated, and (3) improving the adhesion between the substrate and the upper layer. Has one function. For this reason, the curable resin layer may also be used as a smooth layer and an anchor coat layer (easy adhesion layer) described later.
  • the active energy ray-curable material examples include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene
  • examples thereof include compositions containing polyfunctional acrylate monomers such as glycol acrylate and glycerol methacrylate.
  • OPSTAR registered trademark
  • JSR Corporation JSR Corporation. It is also possible to use any mixture of the above-mentioned compositions, and an active energy ray-curable material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no restriction in particular.
  • the thickness of the curable resin layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • the gas barrier film may have a primer layer (smooth layer) on the surface of the substrate having the barrier layer.
  • the primer layer is provided for flattening the rough surface of the substrate on which protrusions and the like exist.
  • Such a primer layer is basically formed by curing an active energy ray-curable material or a thermosetting material.
  • the primer layer may basically have the same configuration as the curable resin layer as long as it has the above-described function.
  • the examples of the active energy ray-curable material and the thermosetting material, and the method for forming the primer layer are the same as those described in the column of the curable resin layer, and thus the description thereof is omitted here.
  • the thickness of the primer layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • the smooth layer may be used as the following anchor coat layer.
  • an anchor coat layer On the surface of the base material, an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving the adhesion (adhesion) with the barrier layer.
  • the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One or two or more can be used in combination.
  • a commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
  • the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
  • a commercially available base material with an easy-adhesion layer may be used.
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 ⁇ m.
  • a bleed-out prevention layer In the gas barrier film, a bleed-out prevention layer can be provided.
  • the purpose of the bleed-out prevention layer is to suppress the phenomenon in which unreacted oligomers migrate from the film base material to the surface when the film having the curable resin layer / smooth layer is heated and contaminate the contact surface. And provided on the opposite surface of the substrate having the curable resin layer / smooth layer.
  • the bleed-out prevention layer may basically have the same configuration as the curable resin layer / smooth layer as long as it has this function.
  • the constituent material and forming method of the bleed-out preventing layer the materials and methods disclosed in paragraphs “0249” to “0262” of JP2013-52561A are appropriately employed.
  • the thickness of the bleed-out preventing layer is 1 to 10 ⁇ m, preferably 2 to 7 ⁇ m. By making it 1 ⁇ m or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 ⁇ m or less, it becomes easy to adjust the balance of optical properties of the smooth film, and the curable resin layer / smooth layer is transparent. When it is provided on one surface of the polymer film, curling of the gas barrier film can be easily suppressed.
  • the gas barrier film may be further provided with functionalized layers such as another organic layer, a protective layer, a hygroscopic layer, and an antistatic layer as necessary.
  • the substrate is transferred to a plasma CVD apparatus having a counter roll electrode at a transfer speed of 1 m / min or more and contains silicon, oxygen and carbon.
  • a method for producing a gas barrier film comprising: forming a layer; and forming a second layer containing an inorganic oxide by an atomic layer deposition method.
  • the atomic deposition method it is more preferable to use at least water or ozone as the oxidizing agent. Since water or ozone rarely has a physical influence on the first layer, micro defects or the like are rarely generated in the lower layer.
  • a preferred embodiment according to the manufacturing method of the present invention is a method of forming the second layer by an atomic layer deposition method using water or ozone as an oxidizing agent at least from the surface of the first layer to the stacking direction of 5 nm. . Details of each step are as described above for each layer.
  • the gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, and flexibility. Therefore, the gas barrier film of the present invention is a gas barrier film used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various purposes such as an electronic device using the same.
  • packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various purposes such as an electronic device using the same.
  • the electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side according to the present invention.
  • the electronic element body a known electronic device body to which sealing with a gas barrier film can be applied can be used.
  • an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given.
  • the electronic element body is preferably an organic EL element or a solar battery.
  • FIG. 6 shows an example of an organic EL panel 9 which is an electronic device using the gas barrier film 10 according to the present invention as a sealing film.
  • the organic EL panel 9 is formed on the gas barrier film 10 through the gas barrier film 10, the transparent electrode 4 such as ITO formed on the gas barrier film 10, and the transparent electrode 4.
  • the organic EL element 5 and a counter film 7 disposed via an adhesive layer 6 so as to cover the organic EL element 5 are provided. It can be said that the transparent electrode 4 forms part of the organic EL element 5.
  • the transparent electrode 4 and the organic EL element 5 are formed on the surface of the gas barrier film 10 on which the gas barrier layer is formed.
  • the counter film 7 may be a gas barrier film according to the present invention in addition to a metal film such as an aluminum foil. When a gas barrier film is used as the counter film 7, the surface on which the gas barrier layer is formed may be attached to the organic EL element 5 with the adhesive layer 6.
  • Example 1 Production of gas barrier film 1
  • Base material A 125 ⁇ m thick polyester film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET Q83), which is a thermoplastic resin and is easily bonded on both sides, was used as a base material.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation was applied to one side of the substrate, and after applying with a die coater so that the film thickness after drying was 4 ⁇ m, drying conditions: 80 ° C., After drying for 3 minutes, curing was performed in air using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a bleed-out prevention layer.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the opposite surface of the base material, and is applied with a die coater so that the film thickness after drying is 4 ⁇ m, followed by drying conditions; After drying at 80 ° C. for 3 minutes, curing was performed in an air atmosphere using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a curable resin layer.
  • a 50 nm thick SiOC film was formed on the curable resin layer using a vacuum plasma CVD apparatus.
  • a power source for applying a voltage to the cathode electrode a high frequency power source of 27.12 MHz was used, and the distance between the electrodes was set to 20 mm.
  • HMDSO Hexamethyldisiloxane
  • a SiO 2 film having a thickness of 50 nm was formed on the SiOC film using the same vacuum plasma CVD apparatus.
  • a 27.12 MHz high frequency power source was used as the power source, and the distance between the electrodes was 20 mm.
  • Silane gas with a flow rate of 7.5 sccm was used as the source gas, and was introduced into the vacuum chamber together with oxygen gas with a flow rate of 30 sccm.
  • the substrate temperature at the start of film formation was set to 100 ° C., and the internal pressure of the apparatus at the time of film formation was set to 30 Pa.
  • a SiOC film having a thickness of 50 nm was formed on the SiO 2 film, and these films (a SiOC film having a thickness of 50 nm and a SiO 2 film having a thickness of 50 nm and a thickness of 50 nm were formed).
  • a gas barrier layer was formed from the SiOC film.
  • a 27.12 MHz high frequency power source was used as the power source, and the distance between the electrodes was 20 mm.
  • Hexamethyldisiloxane (HMDSO) with a flow rate of 7.5 sccm was used as a source gas, and was introduced into the vacuum chamber together with an oxygen gas with a flow rate of 30 sccm. Further, the substrate temperature at the start of film formation was set to 100 ° C., and the internal pressure of the apparatus at the time of film formation was set to 30 Pa.
  • An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas 2
  • nitrogen was used as the purge gas
  • the deposition rate was 0.3 nm / cycle (67 cycles).
  • the film formation speed of the ALD film is determined by measuring the film thickness by cross-sectional observation using the transmission electron microscope described below, and the first gas, purge gas, second gas, and purge gas required to form the film thickness. The film formation rate was obtained by dividing the value by the number of cycles taken as one cycle.
  • ⁇ Measurement method of film thickness of each layer The film thickness of each layer was measured at 10 locations by cross-sectional observation with a transmission electron microscope (TEM), and the average value was taken as the film thickness.
  • TEM transmission electron microscope
  • FIB processing SII SMI2050 Processed ions: (Ga 30 kV) Sample thickness: 100 nm to 200 nm (TEM observation) Apparatus: JEOL JEM2000FX (acceleration voltage: 200 kV)
  • the supply time of each gas of 1 cycle was as follows.
  • Example 2 Production of gas barrier film 2
  • a gas barrier film 2 was produced in the same manner as in the production of the gas barrier film 1 except that the first layer was formed as follows.
  • a first layer was formed on the curable resin layer using the vacuum plasma CVD apparatus shown in FIG.
  • a SiO 2 film having a thickness of 50 nm was formed on the curable resin layer using a vacuum plasma CVD apparatus.
  • a 27.12 MHz high frequency power source was used as the power source, and the distance between the electrodes was 20 mm.
  • Silane gas with a flow rate of 7.5 sccm was used as the source gas, and was introduced into the vacuum chamber together with oxygen gas with a flow rate of 30 sccm.
  • the substrate temperature at the start of film formation was set to 100 ° C., and the internal pressure of the apparatus at the time of film formation was set to 30 Pa.
  • Example 3 Production of gas barrier film 3
  • the second layer was formed as follows.
  • ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas No. 2
  • nitrogen was used as the purge gas
  • the cycle was repeated until the film thickness reached 15 nm.
  • the film formation rate was 0.3 nm / cycle (50 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • Example 4 Production of gas barrier film 4
  • a gas barrier film 4 was produced in the same manner except that the second layer was formed as follows.
  • ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas No. 2
  • nitrogen was used as the purge gas
  • the cycle was repeated until the film thickness reached 15 nm.
  • the deposition rate was 0.3 nm / cycle (50 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • Example 5 Production of gas barrier film 5
  • a gas barrier film 5 was produced in the same manner except that the first layer was formed as follows.
  • the polysilazane coating solution prepared above was applied on the second layer in the atmosphere with an oxygen concentration of about 21% under the condition that the layer thickness after drying was 100 nm, and was applied at 100 ° C. in an atmosphere with an oxygen concentration of about 21%.
  • the sample was provided with a polysilazane layer by drying for a minute. The application was performed at room temperature using a spin coater.
  • the “Pass number” in the modification treatment condition is the number of times that the sample passes through the excimer light (ultraviolet) irradiation region in modifying the polysilazane layer.
  • ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TDMAT (tetrakis).
  • Dimethylaminotitanium), H 2 O as the second gas, and nitrogen as the purge gas were used, and the cycle was repeated until the film thickness reached 15 nm.
  • the deposition rate was 0.25 nm / cycle (60 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • Example 8 Production of gas barrier film 8
  • a gas barrier film 8 was produced in the same manner except that the second layer was formed as follows.
  • ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas No. 2
  • nitrogen was used as the purge gas
  • the cycle was repeated until the film thickness reached 15.2 nm.
  • the deposition rate was 0.4 nm / cycle (38 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • Example 9 Production of gas barrier film 9
  • a gas barrier film 9 was produced in the same manner except that the second layer was formed as follows.
  • ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is tetrakis (ethyl).
  • the film formation rate was 0.2 nm / cycle (74 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • Example 10 Production of gas barrier film 10
  • a gas barrier film 10 was produced in the same manner except that the second layer was formed as follows.
  • An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas No. 2
  • nitrogen was used as the purge gas
  • the cycle was repeated until the film thickness reached 7.2 nm.
  • the film formation rate was 0.3 nm / cycle (24 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas No. 2
  • nitrogen was used as the purge gas
  • the cycle was repeated until the film thickness reached 20 nm.
  • the deposition rate was 0.1 nm / cycle (200 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas No. 2
  • nitrogen was used as the purge gas
  • the cycle was repeated until the film thickness reached 15.2 nm.
  • the deposition rate was 0.4 nm / cycle (38 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used for gas No. 2
  • nitrogen was used for purge gas
  • the cycle was repeated until the film thickness reached 3.6 nm.
  • the film formation rate was 0.3 nm / cycle (12 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech.
  • the temperature of the substrate is maintained at 100 ° C.
  • the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr)
  • the first gas is TMA
  • H 2 O was used as the gas No. 2
  • nitrogen was used as the purge gas
  • the cycle was repeated until the film thickness reached 20 nm.
  • the film formation rate was 0.4 nm / cycle (100 cycles).
  • the supply time of each gas of 1 cycle was as follows.
  • Vapor deposition device JEOL Ltd., vacuum evaporation device JEE-400 Constant temperature and humidity oven: Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation cell)
  • a vacuum deposition device manufactured by JEOL Ltd., vacuum deposition device JEE-400
  • the portion of the gas barrier film sample to be deposited before attaching the transparent conductive film (9 locations of 12 mm x 12 mm)
  • the metal calcium (granular form) was vapor-deposited (deposition film thickness 80 nm).
  • metal aluminum ( ⁇ 3 to 5 mm, granular), which is a water vapor impermeable metal, was deposited on the entire surface of one side of the sheet from another metal deposition source.
  • metal aluminum ⁇ 3 to 5 mm, granular
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • the amount of moisture permeated into the cell was calculated from the corrosion amount of metallic calcium.
  • a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was stored under high temperature and high humidity at 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
  • the permeated water amount (g / m 2 ⁇ day; “WVTR” in the table) of each gas barrier film measured as described above was evaluated by the Ca method and ranked as follows. In addition, if it is rank 3 or more, there is no problem in actual use and it is a pass product.
  • the film was repeatedly bent 100 times at an angle of 180 degrees so as to have a curvature, and the water vapor transmission rate was measured in the same manner, and the same rank evaluation was performed. In addition, if it is rank 3 or more, there is no problem in actual use and it is a pass product.
  • Table 1 below shows the composition of each gas barrier film, and Table 2 below shows the evaluation results. In addition, all the 1st layers of the Example and the comparative example had barrier performance.
  • film No. Although the gas barrier films Nos. 11 to 14 were excellent in the initial gas barrier performance, the gas barrier performance was remarkably lowered by storage under high temperature and high humidity conditions, and the gas barrier performance did not satisfy the required level.

Abstract

[Problem] To provide a gas barrier film which exhibits sufficient gas barrier performance even under high temperature high humidity conditions. [Solution] A gas barrier film which comprises, in the following order, a base, a first layer that has barrier properties and a second layer that is formed by an atomic layer deposition method, and which is characterized in that: the second layer contains a region, in which the carbon concentration is from 0.3 at% to 3.0 at% (inclusive) relative to the total amount of aluminum, titanium, silicon, zirconium, oxygen and carbon, so that the region makes up 30% or more of the thickness of the second layer; and the carbon concentration relative to the total amount of aluminum, titanium, silicon, zirconium, oxygen and carbon in the second layer is 3.0 at% or less.

Description

ガスバリア性フィルム、およびその製造方法Gas barrier film and method for producing the same
 本発明は、ガスバリア性フィルム、およびその製造方法に関する。 The present invention relates to a gas barrier film and a method for producing the same.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む薄膜(ガスバリア層)を形成したガスバリア性フィルムが、食品、医薬品等の分野で物品を包装する用途に用いられている。ガスバリア性フィルムを用いることによって、水蒸気や酸素等のガスによる物品の変質を防止することができる。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used for packaging articles in the fields of food, medicine, etc. It is used for. By using the gas barrier film, it is possible to prevent alteration of the article due to gas such as water vapor or oxygen.
 近年、このような水蒸気や酸素等の透過を防ぐガスバリア性フィルムについて、有機エレクトロルミネッセンス(EL)素子、液晶表示(LCD)素子等の電子デバイスへの展開が要望され、多くの検討がなされている。これらの電子デバイスにおいては、高いガスバリア性、例えば、ガラス基材に匹敵するガスバリア性が要求される。 In recent years, with regard to such a gas barrier film that prevents permeation of water vapor, oxygen, and the like, development for electronic devices such as an organic electroluminescence (EL) element and a liquid crystal display (LCD) element has been requested, and many studies have been made. . In these electronic devices, a high gas barrier property, for example, a gas barrier property comparable to a glass substrate is required.
 ガスバリア性フィルムを製造する方法としては、蒸着法による無機成膜方法を利用した方法が知られている。当該蒸着法による無機成膜方法としては、CVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)や、PVD法(PVD:Physical Vapor Deposition:物理気相成長法、物理蒸着法)が用いられている。 As a method for producing a gas barrier film, a method using an inorganic film forming method by vapor deposition is known. As an inorganic film-forming method by the said vapor deposition method, CVD method (Chemical Vapor Deposition: Chemical vapor deposition method, chemical vapor deposition method) and PVD method (PVD: Physical Vapor Deposition: physical vapor deposition method, physical vapor deposition method) are used. It is used.
 しかしながら、PVD法を用いる場合、薄膜の成長過程において、柱状の成長や島状の成長をすることが一般的であるため、膜中にグレイン・バウンダリーが発生し、高いバリア性を発現することが困難である。また、CVD法による成膜の場合、PVD法による成膜と比べて、グレイン・バウンダリーは少ないが、十分とは言えず、また、PVD法に比べてパーティクルを生成し、ピンホールなどのバリア性能を劣化させる欠陥を生成する。グレイン・バウンダリーや欠陥が膜内に存在すると、膜厚を厚くしてもガスバリア性能は飽和する。 However, when the PVD method is used, in the thin film growth process, columnar growth or island-like growth is generally performed. Therefore, grain boundaries are generated in the film, and high barrier properties are exhibited. Have difficulty. In addition, the film formation by the CVD method has less grain boundary than the film formation by the PVD method, but it is not sufficient, and it generates particles compared to the PVD method, and barrier performance such as pinholes. Defects that degrade. When grain boundaries and defects are present in the film, the gas barrier performance is saturated even if the film thickness is increased.
 上記PVD法やCVD法により成膜された金属酸化物層の不十分なガスバリア性能を補う目的で、特開2011-241421号公報では、PVD法/CVD法により成膜された層上に、さらに原子層堆積法を用いてガスバリア層を積層させる製造方法が開示されている。原子層堆積法により成膜を行うことで、PVD法/CVD法により発生したピンホールやグレイン・バウンダリー等の欠陥を覆う、または埋めることが可能である。 For the purpose of supplementing the insufficient gas barrier performance of the metal oxide layer formed by the PVD method or the CVD method, JP 2011-241421A further describes a layer formed by the PVD method / CVD method on A manufacturing method in which a gas barrier layer is laminated using an atomic layer deposition method is disclosed. By performing film formation by the atomic layer deposition method, defects such as pinholes and grain boundaries generated by the PVD method / CVD method can be covered or filled.
 しかしながら、上記PVD法/CVD法により成膜されたガスバリア層上に原子層堆積法により成膜された金属酸化物膜を積層させたガスバリア性フィルムにおいては、高温高湿条件下に配置された場合、特に屈曲時に、ガスバリア性能が顕著に低下し、要求されるガスバリア性能に満たないものとなっていた。 However, when the gas barrier film in which the metal oxide film formed by the atomic layer deposition method is laminated on the gas barrier layer formed by the PVD method / CVD method is disposed under a high temperature and high humidity condition In particular, especially during bending, the gas barrier performance was remarkably lowered, and the required gas barrier performance was not achieved.
 本発明は、上記課題に鑑みなされたものであり、本発明の一目的は、ガスバリア性能に優れ、さらに高温高湿条件下で保存されても、十分なガスバリア性能を維持するガスバリア性フィルムを提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas barrier film that has excellent gas barrier performance and maintains sufficient gas barrier performance even when stored under high temperature and high humidity conditions. It is to be.
 本発明のガスバリア性フィルムは、基材、バリア性能を有する第1の層、および原子層堆積法により形成される第2の層をこの順に含み、前記第2の層が、アルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対して炭素濃度0.3at%以上3.0at%以下の領域を第2の層の膜厚に対して30%以上含み、かつ、前記第2の層内のアルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対する炭素濃度が3.0at%以下とすることに特徴を有する。 The gas barrier film of the present invention includes a base material, a first layer having barrier performance, and a second layer formed by atomic layer deposition in this order, and the second layer is made of aluminum, titanium, silicon. Including a region having a carbon concentration of 0.3 at% or more and 3.0 at% or less with respect to the total amount of zirconium, nitrogen, oxygen and carbon with respect to the film thickness of the second layer, and the second It is characterized in that the carbon concentration with respect to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon in the layer is 3.0 at% or less.
本発明に係る第1の層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。101はプラズマCVD装置、102は真空槽、103はカソード電極、105はサセプタ、106は熱媒体循環系、107は真空排気系、108はガス導入系、109は高周波電源、110は基板、160は加熱冷却装置を示す。It is a schematic diagram which shows an example of the vacuum plasma CVD apparatus used for formation of the 1st layer concerning this invention. 101 is a plasma CVD apparatus, 102 is a vacuum chamber, 103 is a cathode electrode, 105 is a susceptor, 106 is a heat medium circulation system, 107 is a vacuum exhaust system, 108 is a gas introduction system, 109 is a high-frequency power supply, 110 is a substrate, 160 is A heating / cooling apparatus is shown. 本発明に係る第1の層の形成に用いられる製造装置の一例を示す模式図である。11はガスバリア性フィルム、12は基材、13は製造装置、14は送り出しローラー、15、16、17、18は搬送ローラー、19、20は成膜ローラー、21はガス供給管、22はプラズマ発生用電源、23、24は磁場発生装置、25は巻取りローラー、26は第1の層を示す。It is a schematic diagram which shows an example of the manufacturing apparatus used for formation of the 1st layer concerning this invention. 11 is a gas barrier film, 12 is a base material, 13 is a manufacturing apparatus, 14 is a delivery roller, 15, 16, 17, and 18 are transport rollers, 19 and 20 are film forming rollers, 21 is a gas supply pipe, and 22 is a plasma generator Power source 23, 24 and 24 are magnetic field generators, 25 is a winding roller, and 26 is a first layer. 本発明に係る第2の層の形成に用いられる製造装置の一例を示す模式図である。80は送り出しローラー、81は巻取りローラー、82は基材を示す。It is a schematic diagram which shows an example of the manufacturing apparatus used for formation of the 2nd layer concerning this invention. Reference numeral 80 denotes a feed roller, 81 denotes a take-up roller, and 82 denotes a substrate. 本発明に係る第2の層の形成に用いられる製造装置の他の一例を示す模式図である。83は送り出しローラー、84は基材、85、88はガイドロール、86はMR、87はコーティングヘッド、89は巻取りローラー、90は温度調節手段を示す。It is a schematic diagram which shows another example of the manufacturing apparatus used for formation of the 2nd layer concerning this invention. 83 is a delivery roller, 84 is a substrate, 85 and 88 are guide rolls, 86 is MR, 87 is a coating head, 89 is a winding roller, and 90 is a temperature adjusting means. 図3および図4に記載の装置で用いられるALD成膜のコーティングヘッドの一例を示す模式図である。70はコーティングヘッド、71は原料ガス供給装置、72は不活性ガス供給装置、73は第2のガス供給装置、74はガス導入管、75は排気管、76は基材を示す。FIG. 5 is a schematic diagram illustrating an example of a coating head for ALD film formation used in the apparatus illustrated in FIGS. 3 and 4. Reference numeral 70 denotes a coating head, 71 denotes a source gas supply device, 72 denotes an inert gas supply device, 73 denotes a second gas supply device, 74 denotes a gas introduction pipe, 75 denotes an exhaust pipe, and 76 denotes a substrate. 本発明に係るガスバリア性フィルムを封止フィルムとして用いた電子デバイスである有機ELパネルの一例である。4は透明電極、5は有機EL素子、6は接着剤層、7は対向フィルム、9は有機ELパネル、10はガスバリア性フィルムを示す。It is an example of the organic electroluminescent panel which is an electronic device using the gas barrier film which concerns on this invention as a sealing film. 4 is a transparent electrode, 5 is an organic EL element, 6 is an adhesive layer, 7 is a counter film, 9 is an organic EL panel, and 10 is a gas barrier film. 第1の層と第2の層が異種金属を主成分とする場合の第1の層および第2の層の界面を説明するための概略図である。It is the schematic for demonstrating the interface of a 1st layer and a 2nd layer in case a 1st layer and a 2nd layer have a different metal as a main component. 第1の層と第2の層が同種金属を主成分とする場合の第1の層および第2の層の界面を説明するための概略図である。It is the schematic for demonstrating the interface of a 1st layer and a 2nd layer in case a 1st layer and a 2nd layer have the same kind metal as a main component.
 本発明の一実施形態は、基材、バリア性能を有する第1の層、および原子層堆積法により形成される第2の層をこの順に含み、前記第2の層が、炭素濃度0.3at%以上3.0at%以下の領域を第2の層の膜厚に対して30%以上含み、かつ、前記第2の層内のアルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対する炭素濃度が3.0at%以下であることを特徴とするガスバリア性フィルムである。本発明のガスバリア性フィルムは、優れたガスバリア性を有するとともに、高温高湿条件下であっても十分なガスバリア性能を示す。 One embodiment of the present invention includes a substrate, a first layer having a barrier performance, and a second layer formed by an atomic layer deposition method in this order, and the second layer has a carbon concentration of 0.3 at. The total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen, and carbon in the second layer is 30% or more with respect to the film thickness of the second layer. It is a gas barrier film characterized by having a carbon concentration of 3.0 at% or less. The gas barrier film of the present invention has excellent gas barrier properties and exhibits sufficient gas barrier performance even under high temperature and high humidity conditions.
 本発明は、ガスバリア性能を有する第1の層上に、原子層堆積法により形成され、かつ炭素が存在する領域が一定以上存在する第2の層を有することに特徴がある。かような構成とすることで、初期のガスバリア性能に優れるばかりでなく、ガスバリア性フィルムを高温高湿条件下に保存してもガスバリア性能(特に耐屈曲性)が維持される。 The present invention is characterized in that it has a second layer formed by an atomic layer deposition method on a first layer having gas barrier performance and in which a region where carbon exists is present in a certain amount or more. With such a configuration, not only the initial gas barrier performance is excellent, but the gas barrier performance (particularly flex resistance) is maintained even when the gas barrier film is stored under high temperature and high humidity conditions.
 詳細なメカニズムは不明であるが、本発明の構成とすることで、上記効果が奏されるメカニズムは以下のとおりであると推定される。 Although the detailed mechanism is unknown, it is presumed that the mechanism that achieves the above-mentioned effect by the configuration of the present invention is as follows.
 第2の層は原子層堆積法により形成されるので、PVD法/CVD法により発生した第1の層のピンホールやグレイン・バウンダリー等の欠陥を覆う、または埋めるといった補修効果を有する。原子層堆積法により形成される無機酸化物は比較的分子量が小さく、第1の層に存在する微小欠陥を埋めることができ、微小欠陥の補修が可能となる。 Since the second layer is formed by the atomic layer deposition method, it has a repair effect of covering or filling defects such as pinholes and grain boundaries of the first layer generated by the PVD method / CVD method. The inorganic oxide formed by the atomic layer deposition method has a relatively small molecular weight, can fill in the minute defects present in the first layer, and can repair the minute defects.
 さらに、第2の層内に一定濃度の炭素原子が一定領域以上存在することで、酸化ケイ素などの無機酸化物のみから形成される膜と比較して、膜内に柔軟な部分が生成し、フィルムが屈曲した場合にもクラックの発生が抑制されると考えられる。また、湿熱環境下では、温度や湿度の変化による基材の形状変化(膨脹収縮)が発生する。かような基材の形状変化はガスバリア層よりも大きい。一方、炭素原子が第2の層内に存在することで、酸化ケイ素などの無機酸化物のみから形成される膜と比較して、膜が柔軟であるため、湿熱環境下にあると第2の層も膨張しやすく、第1のガスバリア性層の上下(基材および第2の層)が同様に横方向に膨張することで、第1の層に負荷される外力が低減し、第1の層が保護されるため、高温高湿条件下に保存されてもガスバリア性能が低下しないものと考えられる。 Furthermore, since a certain concentration of carbon atoms is present in a certain region or more in the second layer, a flexible portion is generated in the film as compared with a film formed only from an inorganic oxide such as silicon oxide, It is considered that the occurrence of cracks is also suppressed when the film is bent. Further, in a humid heat environment, a change in shape (expansion / shrinkage) of the base material due to changes in temperature and humidity occurs. Such a shape change of the substrate is larger than that of the gas barrier layer. On the other hand, since the carbon atoms are present in the second layer, the film is more flexible than a film formed only from an inorganic oxide such as silicon oxide. The layers are also easily expanded, and the upper and lower sides (base material and second layer) of the first gas barrier layer are similarly expanded in the lateral direction, so that the external force applied to the first layer is reduced, and the first Since the layer is protected, it is considered that the gas barrier performance does not deteriorate even when stored under high temperature and high humidity conditions.
 ただし、第2の層内の炭素濃度が高いと、空気中のHOと反応しやすくなり、経時で膜組成が変化しやすくなる。このため、第2の層内の炭素濃度は3.0at%以下である必要がある。 However, if the carbon concentration in the second layer is high, it tends to react with H 2 O in the air, and the film composition tends to change over time. For this reason, the carbon concentration in the second layer needs to be 3.0 at% or less.
 なお、上記メカニズムは推定であり、本発明の効果はこれらメカニズムに拘泥されるものではない。 In addition, the said mechanism is estimation and the effect of this invention is not bound to these mechanisms.
 したがって、本発明のガスバリア性フィルムにおいては、好適な一実施形態は、基材と、第1の層と、第1の層上に(直接)形成されてなる第2の層と、をこの順に有する形態である。 Therefore, in the gas barrier film of the present invention, a preferred embodiment is that the base material, the first layer, and the second layer formed (directly) on the first layer are arranged in this order. It is a form to have.
 また、第1の層、および第2の層を有するガスバリア性ユニットは、基材の一方の表面上に形成されていてもよく、基材の両方の表面上に形成されていてもよい。また、該ガスバリア性ユニットは、ガスバリア性を必ずしも有しない層を含んでいてもよい。 In addition, the gas barrier unit having the first layer and the second layer may be formed on one surface of the base material, or may be formed on both surfaces of the base material. The gas barrier unit may include a layer that does not necessarily have a gas barrier property.
 また、本発明のガスバリア性フィルムは、後述の実施例に記載の方法により測定された透過水分量が1×10-3g/(m・24h)未満であることが好ましい。 In addition, the gas barrier film of the present invention preferably has a permeated water amount measured by the method described in Examples below, of less than 1 × 10 −3 g / (m 2 · 24 h).
 以下、本発明を実施するための好ましい形態について詳細に説明するが、本発明はこれらに限定されるものではない。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 Hereinafter, preferred modes for carrying out the present invention will be described in detail, but the present invention is not limited thereto. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 〔第1の層〕
 第1の層の厚みは特に限定されないが、ガスバリア性能を向上させ、一方で、欠陥を生じにくくするために、通常、20~1000nmの範囲内であり、好ましくは50~300nmである。ここでいう膜厚は複数のサブレイヤーで構成されている場合、各サブレイヤーの合計である。ここで、第1の層の厚みは、後述の透過型顕微鏡(TEM)観察による膜厚測定法を採用する。第1の層は、複数のサブレイヤーからなる積層構造であってもよい。この場合サブレイヤーの層数は、2~30層であることが好ましい。また、各サブレイヤーが同じ組成であっても異なる組成であってもよい。
[First layer]
The thickness of the first layer is not particularly limited, but is usually in the range of 20 to 1000 nm, preferably 50 to 300 nm in order to improve the gas barrier performance while making it difficult to cause defects. The film thickness referred to here is the total of each sub-layer when it is composed of a plurality of sub-layers. Here, the thickness of the first layer employs a film thickness measurement method by observation with a transmission microscope (TEM) described later. The first layer may have a stacked structure including a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 30. Moreover, each sublayer may have the same composition or a different composition.
 第1の層はガスバリア性能を有する。ここで、ガスバリア性能を有するとは、基材上に第一の層のみを積層させ、後述の実施例に記載の方法により測定された透過水分量が0.1g/(m・24h)以下であることを指し、0.01g/(m・24h)以下であることがより好ましい。 The first layer has gas barrier performance. Here, having gas barrier performance means that only the first layer is laminated on the base material, and the permeated water amount measured by the method described in Examples below is 0.1 g / (m 2 · 24 h) or less. It is more preferable that it is 0.01 g / (m 2 · 24h) or less.
 第1の層は、ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物の少なくとも1種を含むことが好ましい。ケイ素、アルミニウムおよびチタンからなる群より選択される少なくとも1種の酸化物、窒化物、酸窒化物または酸炭化物としては、具体的には、酸化ケイ素(SiO)、窒化ケイ素、酸窒化ケイ素(SiON)、酸炭化ケイ素(SiOC)、炭化ケイ素、酸化アルミニウム、酸化チタン、およびアルミニウムシリケートなどのこれらの複合体が挙げられる。これらは、副次的な成分として他の元素を含有してもよい。 The first layer preferably contains at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium. Specific examples of the at least one oxide, nitride, oxynitride, or oxycarbide selected from the group consisting of silicon, aluminum, and titanium include silicon oxide (SiO 2 ), silicon nitride, silicon oxynitride ( These composites include SiON), silicon oxycarbide (SiOC), silicon carbide, aluminum oxide, titanium oxide, and aluminum silicate. These may contain other elements as secondary components.
 第1の層は、物理気相成長法または化学気相成長法により成膜することができる。物理気相成長法は、気相中で物質の表面に物理的手法により目的とする物質の薄膜を堆積する方法であり、これらの方法としては、蒸着(抵抗加熱法、電子ビーム蒸着、分子線エピタキシー)法、イオンプレーティング法、スパッタ法等がある。一方、化学気相成長法(化学蒸着法、Chemical Vapor Deposition)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基板表面或いは気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられるが、本発明においては、いずれも有利に用いることができる。 The first layer can be formed by physical vapor deposition or chemical vapor deposition. The physical vapor deposition method is a method in which a thin film of a target substance is deposited on the surface of the substance by a physical method in a gas phase, and these methods include vapor deposition (resistance heating method, electron beam evaporation, molecular beam). Epitaxy), ion plating, sputtering, and the like. On the other hand, in the chemical vapor deposition method (chemical vapor deposition method), a raw material gas containing a target thin film component is supplied onto a base material, and a film is deposited by a chemical reaction on the substrate surface or in the gas phase. It is a method to do. In addition, there is a method of generating plasma etc. for the purpose of activating chemical reaction, and known CVD methods such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, plasma CVD method, atmospheric pressure plasma CVD method, etc. In the present invention, any of them can be advantageously used.
 以下、CVD法のうち、好適な形態であるプラズマCVD法について具体的に説明する。 Hereinafter, the plasma CVD method which is a preferable form among the CVD methods will be described in detail.
 図1は、本発明に係る第1の層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。 FIG. 1 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the first layer according to the present invention.
 図1において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。 In FIG. 1, the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface side inside the vacuum chamber 102. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105. A heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102. A heat medium is disposed in the heat medium circulation system 106. The heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium. A heating / cooling device 160 having a storage device is provided.
 加熱冷却装置160は、熱媒体の温度を測定し、熱媒体を記憶された設定温度まで加熱又は冷却し、サセプタ105に供給するように構成されている。供給された熱媒体はサセプタ105の内部を流れ、サセプタ105を加熱又は冷却して加熱冷却装置160に戻る。このとき、熱媒体の温度は、設定温度よりも高温又は低温になっており、加熱冷却装置160は熱媒体を設定温度まで加熱又は冷却し、サセプタ105に供給する。かくて冷却媒体はサセプタと加熱冷却装置160の間を循環し、サセプタ105は、供給された設定温度の熱媒体によって加熱又は冷却される。 The heating / cooling device 160 is configured to measure the temperature of the heat medium, heat or cool the heat medium to a stored set temperature, and supply the heat medium to the susceptor 105. The supplied heat medium flows inside the susceptor 105, heats or cools the susceptor 105, and returns to the heating / cooling device 160. At this time, the temperature of the heat medium is higher or lower than the set temperature, and the heating and cooling device 160 heats or cools the heat medium to the set temperature and supplies the heat medium to the susceptor 105. Thus, the cooling medium circulates between the susceptor and the heating / cooling device 160, and the susceptor 105 is heated or cooled by the supplied heating medium having the set temperature.
 真空槽102は真空排気系107に接続されており、この真空プラズマCVD装置101によって成膜処理を開始する前に、予め真空槽102の内部を真空排気すると共に、熱媒体を加熱して室温から設定温度まで昇温させておき、設定温度の熱媒体をサセプタ105に供給する。サセプタ105は使用開始時には室温であり、設定温度の熱媒体が供給されると、サセプタ105は昇温される。 The vacuum chamber 102 is connected to an evacuation system 107, and before the film formation process is started by the vacuum plasma CVD apparatus 101, the inside of the vacuum chamber 102 is evacuated in advance and the heat medium is heated from room temperature. The temperature is raised to a set temperature, and a heat medium having the set temperature is supplied to the susceptor 105. The susceptor 105 is at room temperature at the start of use, and when a heat medium having a set temperature is supplied, the susceptor 105 is heated.
 一定時間、設定温度の熱媒体を循環させた後、真空槽102内の真空雰囲気を維持しながら真空槽102内に成膜対象の基板110を搬入し、サセプタ105上に配置する。 After circulating the heat medium at a set temperature for a certain time, the substrate 110 to be deposited is carried into the vacuum chamber 102 while maintaining the vacuum atmosphere in the vacuum chamber 102 and placed on the susceptor 105.
 カソード電極103のサセプタ105に対向する面には多数のノズル(孔)が形成されている。カソード電極103はガス導入系108に接続されており、ガス導入系108からカソード電極103にCVDガスを導入すると、カソード電極103のノズルから真空雰囲気の真空槽102内にCVDガスが噴出される。 A large number of nozzles (holes) are formed on the surface of the cathode electrode 103 facing the susceptor 105. The cathode electrode 103 is connected to a gas introduction system 108. When a CVD gas is introduced from the gas introduction system 108 to the cathode electrode 103, the CVD gas is ejected from the nozzle of the cathode electrode 103 into the vacuum chamber 102 in a vacuum atmosphere.
 カソード電極103は高周波電源109に接続されており、サセプタ105及び真空槽102は接地電位に接続されている。 The cathode electrode 103 is connected to a high frequency power source 109, and the susceptor 105 and the vacuum chamber 102 are connected to a ground potential.
 ガス導入系108から真空槽102内にCVDガスを供給し、加熱冷却装置160から一定温度の熱媒体をサセプタ105に供給しながら高周波電源109を起動し、カソード電極103に高周波電圧を印加すると、導入されたCVDガスのプラズマが形成される。 When a CVD gas is supplied from the gas introduction system 108 into the vacuum chamber 102, a high-frequency power source 109 is activated while a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and a high-frequency voltage is applied to the cathode electrode 103, Plasma of the introduced CVD gas is formed.
 プラズマ中で活性化されたCVDガスがサセプタ105上の基板110の表面に到達すると、基板110の表面に薄膜である第1の層が成長する。 When the CVD gas activated in the plasma reaches the surface of the substrate 110 on the susceptor 105, a first layer which is a thin film grows on the surface of the substrate 110.
 この際のサセプタ105とカソード電極103との距離は適宜設定される。 In this case, the distance between the susceptor 105 and the cathode electrode 103 is set as appropriate.
 また、原料ガスおよび分解ガスの流量は、原料ガスおよび分解ガス種等を考慮して適宜設定される。一実施形態として、原料ガスの流量は、5~300sccmであり、分解ガスの流量は10~1000sccmである。 Further, the flow rates of the raw material gas and the cracked gas are appropriately set in consideration of the raw material gas, the cracked gas type and the like. In one embodiment, the flow rate of the source gas is 5 to 300 sccm, and the flow rate of the decomposition gas is 10 to 1000 sccm.
 薄膜成長中は、加熱冷却装置160から一定温度の熱媒体がサセプタ105に供給されており、サセプタ105は、熱媒体によって加熱又は冷却され、一定温度に維持された状態で薄膜が形成される。 During the growth of the thin film, a heating medium having a constant temperature is supplied from the heating / cooling device 160 to the susceptor 105, and the susceptor 105 is heated or cooled by the heating medium, and a thin film is formed while being maintained at a constant temperature.
 一般に、薄膜を形成する際の成長温度の下限温度は、薄膜の膜質により決まっており、上限温度は、基板110上に既に形成されている薄膜のダメージの許容範囲により決まっている。 Generally, the lower limit temperature of the growth temperature when forming a thin film is determined by the film quality of the thin film, and the upper limit temperature is determined by the allowable range of damage to the thin film already formed on the substrate 110.
 下限温度や上限温度は形成する薄膜の材質や、既に形成されている薄膜の材質等によって異なるが、ガスバリア性の高い膜質を確保するために下限温度は50℃以上であり、上限温度は基材の耐熱温度以下であることが好ましい。 The lower limit temperature and upper limit temperature vary depending on the material of the thin film to be formed, the material of the thin film already formed, etc., but the lower limit temperature is 50 ° C. or more in order to ensure the film quality with high gas barrier properties, It is preferable that it is below the heat-resistant temperature.
 真空プラズマCVD法で形成される薄膜の膜質と成膜温度の相関関係と、成膜対象物(基板110)が受けるダメージと成膜温度の相関関係とを予め求め、下限温度・上限温度が決定される。例えば、真空プラズマCVDプロセス中の(成膜開始時の)基板110の温度は20~250℃であることが好ましい。 The correlation between the film quality of the thin film formed by the vacuum plasma CVD method and the film formation temperature and the correlation between the damage to the film formation target (substrate 110) and the film formation temperature are obtained in advance, and the lower limit temperature and the upper limit temperature are determined. Is done. For example, the temperature of the substrate 110 (at the start of film formation) during the vacuum plasma CVD process is preferably 20 to 250 ° C.
 更に、カソード電極103に13.56MHz以上の高周波電圧を印加してプラズマを形成した場合の、サセプタ105に供給する熱媒体の温度と基板110の温度の関係が予め測定されており、真空プラズマCVDプロセス中に基板110の温度を、下限温度以上、上限温度以下に維持するために、サセプタ105に供給する熱媒体の温度が求められる。 Furthermore, the relationship between the temperature of the heat medium supplied to the susceptor 105 and the temperature of the substrate 110 when plasma is formed by applying a high frequency voltage of 13.56 MHz or more to the cathode electrode 103 is measured in advance, and vacuum plasma CVD is performed. In order to maintain the temperature of the substrate 110 between the lower limit temperature and the upper limit temperature during the process, the temperature of the heat medium supplied to the susceptor 105 is required.
 例えば、下限温度(ここでは50℃)が記憶され、下限温度以上の温度に温度制御された熱媒体がサセプタ105に供給されるように設定されている。サセプタ105から還流された熱媒体は、加熱又は冷却され、50℃の設定温度の熱媒体がサセプタ105に供給される。例えば、CVDガスとして、シランガスとアンモニアガスと窒素ガスの混合ガスが供給され、基板110が、下限温度以上、上限温度以下の温度条件に維持された状態で、SiN膜が形成される。 For example, the lower limit temperature (here, 50 ° C.) is stored, and a heat medium whose temperature is controlled to a temperature equal to or higher than the lower limit temperature is set to be supplied to the susceptor 105. The heat medium refluxed from the susceptor 105 is heated or cooled, and a heat medium having a set temperature of 50 ° C. is supplied to the susceptor 105. For example, as a CVD gas, a mixed gas of silane gas, ammonia gas, and nitrogen gas is supplied, and the SiN film is formed in a state where the substrate 110 is maintained at a temperature condition not lower than the lower limit temperature and not higher than the upper limit temperature.
 真空プラズマCVD装置101の起動直後は、サセプタ105は室温であり、サセプタ105から加熱冷却装置160に還流された熱媒体の温度は設定温度よりも低い。したがって、起動直後は、加熱冷却装置160は還流された熱媒体を加熱して設定温度に昇温させ、サセプタ105に供給することになる。この場合、サセプタ105及び基板110は熱媒体によって加熱、昇温され、基板110は、下限温度以上、上限温度以下の範囲に維持される。 Immediately after the startup of the vacuum plasma CVD apparatus 101, the susceptor 105 is at room temperature, and the temperature of the heat medium returned from the susceptor 105 to the heating / cooling apparatus 160 is lower than the set temperature. Therefore, immediately after the activation, the heating / cooling device 160 heats the refluxed heat medium to raise the temperature to the set temperature, and supplies it to the susceptor 105. In this case, the susceptor 105 and the substrate 110 are heated and heated by the heat medium, and the substrate 110 is maintained in a range between the lower limit temperature and the upper limit temperature.
 複数枚の基板110に連続して薄膜を形成すると、プラズマから流入する熱によってサセプタ105が昇温する。この場合、サセプタ105から加熱冷却装置160に還流される熱媒体は下限温度(50℃)よりも高温になっているため、加熱冷却装置160は熱媒体を冷却し、設定温度の熱媒体をサセプタ105に供給する。これにより、基板110を下限温度以上、上限温度以下の範囲に維持しながら薄膜を形成することができる。 When a thin film is continuously formed on a plurality of substrates 110, the susceptor 105 is heated by heat flowing from the plasma. In this case, since the heat medium recirculated from the susceptor 105 to the heating / cooling device 160 is higher than the lower limit temperature (50 ° C.), the heating / cooling device 160 cools the heat medium and converts the heat medium at the set temperature into the susceptor. It supplies to 105. Thereby, it is possible to form a thin film while maintaining the substrate 110 in a range between the lower limit temperature and the upper limit temperature.
 このように、加熱冷却装置160は、還流された熱媒体の温度が設定温度よりも低温の場合には熱媒体を加熱し、設定温度よりも高温の場合は熱媒体を冷却し、いずれの場合も設定温度の熱媒体をサセプタに供給しており、その結果、基板110は下限温度以上、上限温度以下の温度範囲が維持される。 Thus, the heating / cooling device 160 heats the heating medium when the temperature of the refluxed heating medium is lower than the set temperature, and cools the heating medium when the temperature is higher than the set temperature. In addition, a heat medium having a set temperature is supplied to the susceptor, and as a result, the substrate 110 is maintained in a temperature range between the lower limit temperature and the upper limit temperature.
 薄膜が所定膜厚に形成されたら、基板110を真空槽102の外部に搬出し、未成膜の基板110を真空槽102内に搬入し、上記と同様に、設定温度の熱媒体を供給しながら薄膜を形成する。 Once the thin film has been formed to a predetermined thickness, the substrate 110 is unloaded from the vacuum chamber 102, the undeposited substrate 110 is loaded into the vacuum chamber 102, and a heating medium having a set temperature is supplied as described above. A thin film is formed.
 上記の操作は必要であれば繰り返し行ってもよい。 The above operation may be repeated if necessary.
 (第1の層の好適な形態)
 第1の層は、条件(i)第1の層の膜厚方向における第1の層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびにLとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、第1の層の膜厚の80%以上(上限:100%)の領域で、下記式(A):式(A)(炭素の原子比)<(ケイ素の原子比)<(酸素の原子比)または下記式(B):式(B)(酸素の平均原子比)<(ケイ素の原子比)<(炭素の原子比)で表される序列の大小関係を有することが好ましい。
(Suitable form of the first layer)
The first layer has a condition (i) a distance (L) from the surface of the first layer in the thickness direction of the first layer, and the amount of silicon atoms relative to the total amount of silicon atoms, oxygen atoms, and carbon atoms. Silicon distribution curve showing the relationship with the ratio (atomic ratio of silicon), oxygen distribution showing the relationship between L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen) 80% of the thickness of the first layer in the curve and the carbon distribution curve showing the relationship between the ratio of the amount of carbon atoms to the total amount of L and silicon atoms, oxygen atoms and carbon atoms (carbon atomic ratio) In the above region (upper limit: 100%), the following formula (A): formula (A) (carbon atomic ratio) <(silicon atomic ratio) <(oxygen atomic ratio) or the following formula (B): B) (average atomic ratio of oxygen) <(atomic ratio of silicon) <(atomic ratio of carbon) It is preferable to have a magnitude relation represented by ordered in.
 上記のような関係を第1の層が有することで、ケイ素原子及び酸素原子に加えて炭素原子が存在する。このうちケイ素原子及び酸素原子を存在させることによってガスバリア性を付与でき、炭素原子を存在させることによってバリア層に柔軟性を付与することができ、耐湿熱耐性が向上するため好ましい。ここで、第1の層の膜厚の少なくとも80%以上とは、バリア層中で連続していなくてもよく、単に80%以上の部分で上記した関係を満たしていればよい。 Since the first layer has the above relationship, carbon atoms exist in addition to silicon atoms and oxygen atoms. Among these, the presence of silicon atoms and oxygen atoms is preferable because gas barrier properties can be imparted, and the presence of carbon atoms can impart flexibility to the barrier layer, which improves moisture and heat resistance. Here, at least 80% or more of the film thickness of the first layer does not need to be continuous in the barrier layer, and simply needs to satisfy the above-described relationship at a portion of 80% or more.
 上記分布曲線において、上記(酸素の原子比)、(ケイ素の原子比)および(炭素の原子比)の関係は、バリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。また、好ましくは、第1の層の膜厚の80%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C、式(A)で表される序列の大小関係)。かような条件となることで、得られるガスバリア性フィルムのガスバリア性や屈曲性が十分となる。 In the above distribution curve, the relationship between the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more (upper limit: 100%) of the thickness of the barrier layer. It is more preferable to satisfy | fill, and it is more preferable to satisfy | fill in the area | region of 93% or more (upper limit: 100%). Preferably, in the region of 80% or more (upper limit: 100%) of the film thickness of the first layer, (oxygen atomic ratio), (silicon atomic ratio), (carbon atomic ratio) increase in this order. (Atomic ratio is O> Si> C, order magnitude relationship represented by formula (A)). By satisfying such conditions, the resulting gas barrier film has sufficient gas barrier properties and flexibility.
 ここで、条件(i)における「第1の層の膜厚の80%以上の領域」」における第1の層の膜厚は、下記記載の「XPSデプスプロファイル測定により得られる分布曲線から算出される第1の層の膜厚」を指す。 Here, the film thickness of the first layer in the “region of 80% or more of the film thickness of the first layer” in the condition (i) is calculated from the distribution curve obtained by “XPS depth profile measurement” described below. The film thickness of the first layer.
 また、隣接層が基材(特に樹脂基材)または有機層(硬化性樹脂層、平滑層、易接着層など)の場合、ケイ素分布曲線(at%)および炭素分布曲線(at%)において、深さ方向にXPSデプスプロファイルのデータをプロットしたときに、ケイ素原子比率が-0.5at%/nm以上変化し、かつ炭素原子比率が+1.0at%以上変化する点Pを、第1の層と隣接層との界面と定義する。 In the case where the adjacent layer is a base material (particularly a resin base material) or an organic layer (such as a curable resin layer, a smooth layer, and an easy adhesion layer), in the silicon distribution curve (at%) and the carbon distribution curve (at%), When plotting XPS depth profile data in the depth direction, a point P where the silicon atomic ratio changes by −0.5 at% / nm or more and the carbon atomic ratio changes by +1.0 at% or more is defined as the first layer. And the interface between adjacent layers.
 これは、XPSデプスプロファイルにて組成分析を行う際、測定の性質上、第1の層と、隣接層(基材又は基材上に形成された中間層層等の有機層)との界面で、必ず両方の組成が混在する遷移領域が存在することによる。 This is because at the interface between the first layer and an adjacent layer (an organic layer such as an intermediate layer formed on the base material) due to the nature of the measurement when performing composition analysis with an XPS depth profile. This is because there is always a transition region in which both compositions are mixed.
 XPSは、真空下で試料表面にX線を照射し、光電効果により表面から真空中に放出される光電子の運動エネルギーを観測することにより、その表面の元素組成や化学状態に関する情報を得ることができるものであるが、当該X線照射時に界面近傍では、膜だけでなく、基材にもX線が到達してしまい、その影響を受けることにより、組成的に混在する遷移領域が存在し、界面として明確な位置を特定するのは困難である。したがって、本発明でいう「XPSデプスプロファイル測定により得られる分布曲線から算出される第1の層の膜厚」とは、第1の層と第2の層との界面から、第1の層の成分と基材や有機層の成分との両方が検出される遷移領域内であって、上記変化点である点Pまでの距離と定義する。 XPS can obtain information on the elemental composition and chemical state of the surface by irradiating the sample surface with X-rays under vacuum and observing the kinetic energy of photoelectrons emitted from the surface into the vacuum by the photoelectric effect. Although it is possible, near the interface at the time of the X-ray irradiation, X-rays reach not only the film but also the base material, and there is a transition region that is mixed in composition due to the influence thereof, It is difficult to specify a clear position as an interface. Therefore, the “film thickness of the first layer calculated from the distribution curve obtained by XPS depth profile measurement” in the present invention refers to the first layer from the interface between the first layer and the second layer. It is defined as the distance to the point P that is the transition point in the transition region where both the component and the component of the base material or the organic layer are detected.
 さらに、第1の層と第2の層との界面は、以下のように決定する。 Furthermore, the interface between the first layer and the second layer is determined as follows.
 i)第1の層と第2の層が異種金属を主成分とする場合(例えば、第1の層がSiOCからなる層、第2の層がAlOCからなる層である場合) 深さ方向にXPSデプスプロファイルのデータをプロットしたときに、異なる二つの金属の交点を界面とする(図7A参照)。ここで、主成分とは、全金属およびケイ素原子中、最も含有比率が高い金属またはケイ素原子を指し、好適には、全金属およびケイ素原子中、80at%以上である金属を指す。 i) When the first layer and the second layer are mainly composed of dissimilar metals (for example, when the first layer is a layer made of SiOC and the second layer is a layer made of AlOC) in the depth direction When XPS depth profile data is plotted, the intersection of two different metals is taken as the interface (see FIG. 7A). Here, the main component refers to a metal or silicon atom having the highest content ratio among all metals and silicon atoms, and preferably refers to a metal that is 80 at% or more in all metals and silicon atoms.
 ii)第1の層と第2の層が同種金属を主成分とする場合(例えば、第1の層がSiOCからなる層、第2の層がSiOCからなる層である場合) 表面から深さ方向にXPSデプスプロファイルのデータをプロットしたときに、第2層のC量の変化量aがa=δC(at%)/δスパッタ深さ(nm)≧2となる点で、かつ、第2層の表面から上記の点までの炭素の値がその区間の平均値±2at%以内の両方を満たす点をAとし、更に点Aよりスパッタ深さが深い方向に炭素量を見たとき、第2層のC量の変化量aがa=δC(at%)/δスパッタ深さ(nm)<2となる点で、該点からスパッタ深さの深い方向の炭素量の値が該点の炭素量±5at%以内を5nm以上継続し、さらに上記点Aとの炭素濃度差Δが3at%以上である点をBとし、A点とB点の中点を界面と定義する。 ii) When the first layer and the second layer are mainly composed of the same kind of metal (for example, when the first layer is a layer made of SiOC and the second layer is a layer made of SiOC), the depth from the surface When the XPS depth profile data is plotted in the direction, the change amount a of the C amount in the second layer is a = δC (at%) / δ sputter depth (nm) ≧ 2, and the second A point where the carbon value from the surface of the layer to the above point satisfies both the average value within ± 2 at% of the interval is A, and when the carbon content is observed in a direction where the sputter depth is deeper than the point A, The change amount a of the C amount of the two layers is a = δC (at%) / δ sputter depth (nm) <2, and the value of the carbon amount in the direction from the point toward the deeper sputter depth is The point where the carbon amount is within ± 5 at% for 5 nm or more, and the carbon concentration difference Δ from the point A is 3 at% or more. And B, and it defines the midpoint of the points A and B and the interface.
 ケイ素分布曲線、酸素分布曲線、および炭素分布曲線において、ケイ素の原子比、酸素の原子比、および炭素の原子比が、該第1の層の膜厚の80%以上の領域において、該式(A)の条件を満たす場合には、前記層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の含有量の原子比率は、25~45at%であることが好ましく、30~40at%であることがより好ましい。また、前記第1の層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の含有量の原子比率は、33~67at%であることが好ましく、45~67at%であることがより好ましい。さらに、前記層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の含有量の原子比率は、3~33at%であることが好ましく、3~25at%であることがより好ましい。 In the silicon distribution curve, oxygen distribution curve, and carbon distribution curve, in the region where the atomic ratio of silicon, the atomic ratio of oxygen, and the atomic ratio of carbon are 80% or more of the film thickness of the first layer, the formula ( When the condition of A) is satisfied, the atomic ratio of the content of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms in the layer is preferably 25 to 45 at%, preferably 30 to 40 at%. % Is more preferable. The atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the first layer is preferably 33 to 67 at%, and preferably 45 to 67 at%. More preferred. Furthermore, the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the layer is preferably 3 to 33 at%, and more preferably 3 to 25 at%.
 本発明の第1の層は、第1の層の膜厚方向における第1の層表面からの距離(L)と、酸素原子に対する炭素原子の量の比率との関係を示す炭素/酸素分布曲線において、炭素/酸素分布曲線が少なくとも2つの極値を有することが好ましい。かような極値の存在は、膜内の炭素、および酸素の存在比が均一ではない層であることを示すものであり、部分的に炭素原子が多い部分が存在することで、層全体がフレキシブルな構造となり、屈曲性が向上する。第1の層は、炭素/酸素分布曲線が少なくとも3つの極値を有することが好ましく、少なくとも5つの極値を有することがより好ましい。また、後述の図2の装置において、対向ロール数(TR数、対極する二つのロールセット数)がn個の場合には(nは1以上の整数)、理論上の極値の数は、約(5+4×(n-1))個となる。しかしながら、実際の極値数は基材の搬送速度などにより、理論上の極値数となるとは限らず、増減する場合がある。炭素/酸素分布曲線の極値が2つ以上であることで、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性が十分となる。なお、炭素/酸素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下である。極値の数は、バリア層の膜厚にも起因するため、一概に規定することはできない。 The first layer of the present invention is a carbon / oxygen distribution curve showing the relationship between the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the ratio of the amount of carbon atoms to oxygen atoms. It is preferable that the carbon / oxygen distribution curve has at least two extreme values. The existence of such an extreme value indicates that the carbon and oxygen abundance ratio in the film is a non-uniform layer, and the presence of a part having a large number of carbon atoms results in the entire layer being It becomes a flexible structure and the flexibility is improved. The first layer preferably has a carbon / oxygen distribution curve having at least 3 extreme values, more preferably at least 5 extreme values. In addition, in the apparatus shown in FIG. 2 described later, when the number of opposed rolls (the number of TRs, the number of two opposite roll sets) is n (n is an integer of 1 or more), the theoretical number of extreme values is Approximately (5 + 4 × (n−1)). However, the actual number of extreme values is not always the theoretical number of extreme values depending on the conveyance speed of the substrate, and may increase or decrease. When the extreme value of the carbon / oxygen distribution curve is two or more, the gas barrier property when the obtained gas barrier film is bent is sufficient. The upper limit of the extreme value of the carbon / oxygen distribution curve is not particularly limited, but is preferably 30 or less, more preferably 25 or less, for example. Since the number of extreme values is also caused by the film thickness of the barrier layer, it cannot be specified unconditionally.
 ケイ素分布曲線、酸素分布曲線、炭素分布曲線、および炭素/酸素分布曲線は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記第1の層の膜厚方向における前記第1の層の表面からの距離(L)に概ね相関することから、「第1の層の膜厚方向における第1の層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される第1の層の表面からの距離(すなわち、SiO換算膜厚(nm)=(エッチング時間(sec)×エッチング速度(nm/sec))を採用することができる。 A silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a carbon / oxygen distribution curve can be obtained by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element and the horizontal axis as the etching time (sputtering time). In this way, in the element distribution curve with the horizontal axis as the etching time, the etching time is the distance (L) from the surface of the first layer in the film thickness direction of the first layer in the film thickness direction. Since there is a general correlation, the “distance from the surface of the first layer in the film thickness direction of the first layer” is calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface of one layer (that is, SiO 2 equivalent film thickness (nm) = (etching time (sec) × etching rate (nm / sec)) can be employed.
 なお、本発明では、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および炭素/酸素分布曲線は、下記測定条件にて作成した。 In the present invention, the silicon distribution curve, oxygen distribution curve, carbon distribution curve and carbon / oxygen distribution curve were prepared under the following measurement conditions.
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):バリア膜のSiO換算膜厚÷20nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): SiO 2 equivalent film thickness of the barrier film ÷ 20 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
 また、対向ロール電極を持つプラズマCVD装置で作製した膜をプロットする場合は、通過する対向ロール数でプロット位置を定義する(下記エッチング間隔)。 Also, when plotting a film produced by a plasma CVD apparatus having a counter roll electrode, the plot position is defined by the number of counter rolls that pass (etching interval below).
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値)(データプロット間隔):バリア膜のSiO換算膜厚÷10÷TR数(対向ロール数)(nm)
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα X線のスポット及びそのサイズ:800×400μmの楕円形。
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value) (data plot interval): SiO 2 equivalent film thickness of the barrier film ÷ 10 ÷ TR number (number of opposing rolls) (nm)
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopic AlKα X-ray spot and size: 800 × 400 μm ellipse.
 また、フィルム膜厚方向の炭素/酸素組成分布の変化が急激であればあるほど、第2の層の積層による高温高湿条件下でのガスバリア性能の維持(湿熱耐性の向上)という効果が顕著となる。この観点からは、炭素/酸素分布曲線において、少なくとも1組の隣接する極値間の間隔が1~10nmであることで本発明の効果が顕著に得られる。より効果が顕著なのは、少なくとも1組の隣接する極値間の間隔が1~7nmである。隣接する極値間隔が小さい、すなわち、急激な膜内組成変化を有する第1の層を有するフィルムは、上述したように高温高湿条件下でのガスバリア性能の低下が顕著であるが、かようなフィルムであっても、第2の層を設けることで高温高湿時のガスバリア性能の低下が抑制される。そして、驚くべきことに、本発明のフィルムの第1の層における極値間隔よりも広い極値間隔を有する(膜内の組成変化が少ない)第1の層を含むフィルム(第2の層は含まない)と比較しても、高温高湿時のガスバリア性能が良好となる。少なくとも1組の隣接する極値間の間隔は、例えば、後述の図2に記載の装置を用いた場合に基材の搬送速度に比例する値である。具体的には、基材の搬送速度を速めた場合には、隣接する極値間の間隔が短くなる傾向にある。また、現実的な搬送速度を考慮すると、少なくとも1組の隣接する極値間の間隔は1nm以上となる。ここで、炭素/酸素分布曲線において、少なくとも1組の隣接する極値間の間隔が10nm以下となる第1の層は、特に図2の装置において基材搬送速度1m/分以上とした場合に容易に形成させることができる。更には3m/分以上であれば更に容易である。すなわち、本発明の好適な一実施形態は、さらに、第1の層が、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法により形成されてなる層であり、炭素/酸素分布曲線において、少なくとも1組の隣接する極値間の間隔が1~10nm(より好ましくは1~7nm)であるという要件を具備する形態である。 In addition, the more rapid the change in the carbon / oxygen composition distribution in the film thickness direction, the more remarkable is the effect of maintaining gas barrier performance under high-temperature and high-humidity conditions (improving wet heat resistance) by laminating the second layer. It becomes. From this point of view, the effect of the present invention is remarkably obtained when the interval between at least one set of adjacent extreme values is 1 to 10 nm in the carbon / oxygen distribution curve. The effect is more remarkable when the distance between at least one set of adjacent extreme values is 1 to 7 nm. As described above, the film having the first layer having a small interval between adjacent extreme values, that is, a rapid change in the composition of the film, has a remarkable decrease in gas barrier performance under high temperature and high humidity conditions. Even if it is a simple film, the fall of the gas barrier performance at the time of high temperature and high humidity is suppressed by providing a 2nd layer. Surprisingly, a film comprising a first layer (the second layer is a layer having an extreme interval larger than the extreme interval in the first layer of the film of the present invention) Gas barrier performance at high temperature and high humidity is good. The interval between at least one pair of adjacent extreme values is a value proportional to the conveyance speed of the base material when the apparatus shown in FIG. Specifically, when the conveyance speed of the base material is increased, the interval between adjacent extreme values tends to be shortened. In consideration of a realistic conveyance speed, the interval between at least one set of adjacent extreme values is 1 nm or more. Here, in the carbon / oxygen distribution curve, the first layer in which the distance between at least one pair of adjacent extreme values is 10 nm or less is particularly when the substrate conveying speed is 1 m / min or more in the apparatus of FIG. It can be formed easily. Furthermore, if it is 3 m / min or more, it will be easier. That is, in a preferred embodiment of the present invention, the first layer is a layer formed by a plasma CVD method using a plasma CVD apparatus having a counter roll electrode. In the carbon / oxygen distribution curve, It is a form that satisfies the requirement that the interval between at least one set of adjacent extreme values is 1 to 10 nm (more preferably 1 to 7 nm).
 炭素/酸素分布曲線における極値間の間隔は、炭素/酸素分布曲線から求められ、各極値の第1の層の表面からのSiO換算膜厚(nm)から算出される。なお、隣接する極値間の間隔とは、炭素/酸素分布曲線の有する1つの極値および該極値に隣接する極値における第1の層の膜厚方向における第1の層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)を指す。また、炭素/酸素分布曲線における「極値」とは、炭素/酸素分布曲線における、C/O(炭素原子/酸素原子)の極大値又は極小値のことをいう。また、炭素/酸素分布曲線における極大値とは、第1の層の表面からの距離を変化させた場合に酸素原子に対する炭素原子の原子比(C/O)の値が増加から減少に変わる点でのことをいう。さらに、炭素/酸素分布曲線における極小値とは、第1の層の表面からの距離を変化させた場合に炭素と酸素の元素の原子比(C/O)の値が減少から増加に変わる点のことをいう。 The interval between the extreme values in the carbon / oxygen distribution curve is obtained from the carbon / oxygen distribution curve, and is calculated from the SiO 2 equivalent film thickness (nm) from the surface of the first layer of each extreme value. Note that the interval between adjacent extreme values refers to the distance from the surface of the first layer in the thickness direction of the first layer at one extreme value of the carbon / oxygen distribution curve and the extreme value adjacent to the extreme value. The absolute value of the difference in distance (L) (hereinafter also simply referred to as “distance between extreme values”). In addition, the “extreme value” in the carbon / oxygen distribution curve refers to a maximum value or a minimum value of C / O (carbon atom / oxygen atom) in the carbon / oxygen distribution curve. The maximum value in the carbon / oxygen distribution curve is a point where the value of the atomic ratio of carbon atoms to oxygen atoms (C / O) changes from increasing to decreasing when the distance from the surface of the first layer is changed. That means. Further, the minimum value in the carbon / oxygen distribution curve is that the value of the atomic ratio (C / O) of the carbon to oxygen element changes from decreasing to increasing when the distance from the surface of the first layer is changed. I mean.
 または、第1の層において、後述の実施例に記載の、透過型電子顕微鏡(TEM)観察による膜厚測定法により測定された膜厚(nm)を炭素/酸素分布曲線の極値数で除した値(以下、「TEMによる膜厚(nm)/極値数」とする)が、20(nm/数)以下であることが好ましい。この値は、膜厚と極値との関係を示すものであり、例えば、膜厚が同じ場合に、一方の極値数が多い場合には、極値数の多い第1の層のほうが、他方の第1の層よりも極値間隔が小さいものとなる。したがって、TEMによる膜厚(nm)/極値数が小さいほど、膜厚方向の組成が変化しているものと言える。本発明では、かような急激な膜内組成変化を有する第1の層を有するフィルムであっても、高温高湿時のガスバリア性能の低下が抑制される。TEMによる膜厚(nm)/極値数の下限は特に限定されるものではないが、通常3.5(nm/数)以上である。TEMによる膜厚(nm)/極値数が15(nm/数)以下の場合、特に効果が大きいため、より好ましい。ここで、TEMによる膜厚(nm)/極値数が、20(nm/数)以下である第1の層は、図2の装置(つまりTR数=1の場合)において基材の搬送速度を速めた場合、特に搬送速度1.5m/min以上とした場合に容易に形成させることができる。更に、酸素/炭素分布曲線において、少なくとも1組の隣接する極値間隔が1~10nmである、更には2組以上である場合、効果が大きい。すなわち、本発明の好適な一実施形態は、さらに、第1の層が、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法により形成されてなる層であり、透過型電子顕微鏡(TEM)観察による膜厚測定法により測定された膜厚(nm)を炭素/酸素分布曲線の極値数で除した値が、20(nm/数)以下であるという要件を具備する形態である。 Alternatively, in the first layer, the film thickness (nm) measured by the film thickness measurement method by observation with a transmission electron microscope (TEM) described in the examples described later is divided by the number of extreme values of the carbon / oxygen distribution curve. The measured value (hereinafter referred to as “film thickness (nm) by TEM / number of extreme values”) is preferably 20 (nm / number) or less. This value indicates the relationship between the film thickness and the extreme value. For example, when the film thickness is the same and the number of extreme values on one side is larger, the first layer having the larger number of extreme values is more The extreme value interval is smaller than that of the other first layer. Therefore, it can be said that the composition in the film thickness direction changes as the film thickness (nm) by TEM / the number of extreme values decreases. In this invention, even if it is a film which has a 1st layer which has such a rapid in-film composition change, the fall of the gas barrier performance at the time of high temperature and high humidity is suppressed. The lower limit of the film thickness (nm) / extreme number by TEM is not particularly limited, but is usually 3.5 (nm / number) or more. When the film thickness (nm) / extremum number by TEM is 15 (nm / number) or less, since the effect is particularly great, it is more preferable. Here, the first layer whose film thickness (nm) / extreme number by TEM is 20 (nm / number) or less is the substrate conveyance speed in the apparatus of FIG. 2 (that is, when TR number = 1). Can be formed easily, particularly when the conveyance speed is 1.5 m / min or more. Further, in the oxygen / carbon distribution curve, the effect is large when at least one set of adjacent extreme value intervals is 1 to 10 nm, and more than two sets. That is, in a preferred embodiment of the present invention, the first layer is a layer formed by a plasma CVD method using a plasma CVD apparatus having a counter roll electrode, and is a transmission electron microscope (TEM). In this embodiment, the value obtained by dividing the film thickness (nm) measured by the film thickness measurement method by observation by the number of extreme values of the carbon / oxygen distribution curve is 20 (nm / number) or less.
 また、炭素分布曲線においても、少なくとも2つの極値を有することが好ましく、少なくとも3つの極値を有することが好ましく、少なくとも5つの極値を有することがより好ましい。炭素分布曲線が少なくとも2つの極値を有することで、炭素原子比率が濃度勾配を有して連続的に変化し、屈曲時のガスバリア性能が高まる。ここで、炭素分布曲線における「極値」とは、第1の層の膜厚方向における第1の層の表面からの距離(L)と、炭素分布曲線における炭素原子の極大値又は極小値のことをいう。また、炭素分布曲線における極大値とは、第1の層の表面からの距離を変化させた場合に、ケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子比の値が増加から減少に変わる点でのことをいう。さらに、炭素分布曲線における極小値とは、第1の層の表面からの距離を変化させた場合に、ケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子比の値が減少から増加に変わる点のことをいう。 Also, the carbon distribution curve preferably has at least two extreme values, preferably has at least three extreme values, and more preferably has at least five extreme values. When the carbon distribution curve has at least two extreme values, the carbon atom ratio continuously changes with a concentration gradient, and the gas barrier performance during bending is enhanced. Here, the “extreme value” in the carbon distribution curve means the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the maximum or minimum value of carbon atoms in the carbon distribution curve. That means. In addition, the maximum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms decreases from an increase. This is a change. Furthermore, the minimum value in the carbon distribution curve means that when the distance from the surface of the first layer is changed, the value of the carbon atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms increases from a decrease. It refers to a changing point.
 第1の層の酸素分布曲線は、少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましく、少なくとも5つの極値を有することが特に好ましい。酸素分布曲線が極値を少なくとも1つ有する場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性がより向上する。なお、酸素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは20以下、より好ましくは10以下である。酸素分布曲線の極値の数においても、バリア層の膜厚に起因する部分があり一概に規定できない。ここで、酸素分布曲線における「極値」とは、第1の層の膜厚方向における第1の層の表面からの距離(L)と、酸素分布曲線における酸素原子の極大値又は極小値のことをいう。また、酸素分布曲線における極大値とは、第1の層の表面からの距離を変化させた場合に、ケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子比の値が増加から減少に変わる点をいう。さらに、酸素分布曲線における極小値とは、第1の層の表面からの距離を変化させた場合に、ケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子比の値が減少から増加に変わる点をいう。 The oxygen distribution curve of the first layer preferably has at least one extreme value, more preferably at least two extreme values, more preferably at least three extreme values, and at least five extreme values. It is particularly preferred to have When the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved. The upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, more preferably 10 or less, for example. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the thickness of the barrier layer, and it cannot be defined unconditionally. Here, the “extreme value” in the oxygen distribution curve is the distance (L) from the surface of the first layer in the film thickness direction of the first layer, and the maximum or minimum value of oxygen atoms in the oxygen distribution curve. That means. Further, the maximum value in the oxygen distribution curve means that when the distance from the surface of the first layer is changed, the value of the oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms decreases from an increase. A point that changes. Furthermore, the minimum value in the oxygen distribution curve means that when the distance from the surface of the first layer is changed, the value of the oxygen atom ratio with respect to the total amount of silicon atoms, oxygen atoms, and carbon atoms increases from a decrease. A point that changes.
 また、第1の層の膜厚方向に対する炭素および酸素原子の合計量はほぼ一定であることが好ましい。これにより、第1の層は適度な屈曲性を発揮し、ガスバリア性フィルムの屈曲時のクラック発生をより有効に抑制・防止されうる。より具体的には、第1の層の膜厚方向における該バリア層の表面からの距離(L)とケイ素原子、酸素原子、および炭素原子の合計量に対する、酸素原子および炭素原子の合計量の比率(酸素および炭素の原子比)との関係を示す分布曲線において、該分布曲線における酸素および炭素の原子比の合計の最大値および最小値の差の絶対値(以下、単に「OCmax-OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性がより向上する。なお、OCmax-OCmin差の下限は、OCmax-OCmin差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。 Moreover, it is preferable that the total amount of carbon and oxygen atoms in the film thickness direction of the first layer is substantially constant. Thereby, the 1st layer exhibits moderate flexibility, and the crack generation at the time of bending of a gas barrier film can be controlled and prevented more effectively. More specifically, the total amount of oxygen atoms and carbon atoms with respect to the distance (L) from the surface of the barrier layer in the film thickness direction of the first layer and the total amount of silicon atoms, oxygen atoms, and carbon atoms. In the distribution curve showing the relationship with the ratio (atomic ratio of oxygen and carbon), the absolute value of the difference between the maximum value and the minimum value of the total atomic ratio of oxygen and carbon in the distribution curve (hereinafter simply referred to as “OC max −OC”). preferably also referred min difference ") is less than 5at%, more preferably less than 4at%, more preferably less than 3at%. When the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved. The lower limit of the OC max -OC min difference, since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
 膜面全体において均一でかつ優れたガスバリア性を有する第1の層を形成するという観点から、第1の層が膜面方向(第1の層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、第1の層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により第1の層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。 From the viewpoint of forming the first layer having a uniform and excellent gas barrier property over the entire film surface, the first layer is substantially uniform in the film surface direction (direction parallel to the surface of the first layer). It is preferable that Here, the fact that the first layer is substantially uniform in the film surface direction means that the oxygen distribution curve and the carbon distribution curve are measured at any two measurement points on the film surface of the first layer by XPS depth profile measurement. When the oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement locations is the same, and the maximum value of the atomic ratio of carbon in each carbon distribution curve And the absolute value of the difference between the minimum values is the same as each other or within 5 at%.
 さらに、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される膜厚方向の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(1)で表される条件を満たすことをいう。 Furthermore, it is preferable that the carbon distribution curve is substantially continuous. Here, the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, the carbon distribution curve is calculated from the etching rate and the etching time. Satisfying the condition expressed by the following formula (1) in the relationship between the distance from the surface in the film thickness direction (x, unit: nm) and the atomic ratio of carbon (C, unit: at%). Say.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 第1の層の形成方法は特に制限されず、従来の方法と同様にしてあるいは適宜修飾して適用できる。第1の層は、好ましくは化学気相成長(CVD)法、特に、プラズマ化学気相成長法(プラズマCVD、PECVD(plasma-enhanced chemical vapor deposition)、以下、単に「プラズマCVD法」とも称する)により形成されることが好ましい。 The formation method of the first layer is not particularly limited, and can be applied in the same manner as the conventional method or appropriately modified. The first layer is preferably a chemical vapor deposition (CVD) method, particularly a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”). It is preferably formed by.
 以下では、本発明で好ましく使用されるプラズマCVD法を利用して第1の層を形成する方法を説明する。 Hereinafter, a method of forming the first layer using the plasma CVD method preferably used in the present invention will be described.
 プラズマCVD法としては、特に限定されないが、国際公開第2006/033233号に記載の大気圧または大気圧近傍でのプラズマCVD法、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法が挙げられる。中でも、生産性が高いことから、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法により第1の層を形成することが好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。 Although it does not specifically limit as a plasma CVD method, The plasma CVD method using the plasma CVD method of the atmospheric pressure or the atmospheric pressure described in the international publication 2006/033233, and the plasma CVD apparatus with a counter roll electrode is mentioned. . In particular, since the productivity is high, it is preferable to form the first layer by a plasma CVD method using a plasma CVD apparatus having a counter roll electrode. The plasma CVD method may be a Penning discharge plasma type plasma CVD method.
 以下、対向ロール電極を持つプラズマCVD装置を用いたプラズマCVD法により第1の層を形成する方法について説明する。 Hereinafter, a method for forming the first layer by plasma CVD using a plasma CVD apparatus having a counter roll electrode will be described.
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材(ここでいう、基材には、基材が処理された、または基材上に中間層を有する形態も含む)を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できる。加えて、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)および(ii)を満たす層を形成することが可能となる。 When generating plasma in the plasma CVD method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers. A pair of film forming rollers is used, and a substrate is provided for each of the pair of film forming rollers. (Here, the base material includes a form in which the base material has been processed or has an intermediate layer on the base material) and discharge between a pair of film forming rollers to generate plasma. Is more preferable. In this way, by using a pair of film forming rollers, placing a base material on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller It is possible to form a film on the surface part of the base material existing on the other film, and simultaneously form the film on the surface part of the base material present on the other film forming roller, so that a thin film can be produced efficiently. In addition, the film formation rate can be doubled compared to the normal plasma CVD method that does not use a roller, and a film with substantially the same structure can be formed, so it is possible to at least double the extreme value in the carbon distribution curve. Thus, it is possible to efficiently form a layer that satisfies the above conditions (i) and (ii).
 また、このようにして一対の成膜ローラー間に放電する際には、一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、第1の層が連続的な成膜プロセスにより形成された層であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation. In addition, the first layer is preferably a layer formed by a continuous film formation process.
 また、本発明に係るガスバリア性フィルムは、生産性の観点から、ロールツーロール方式で基材の表面上に第1の層を形成させることが好ましい。また、このようなプラズマCVD法によりバリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。 Moreover, it is preferable that the gas barrier film according to the present invention forms the first layer on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity. Further, an apparatus that can be used when manufacturing the barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of film forming processes. It is preferable that the apparatus has a configuration capable of discharging between rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible.
 以下、図2を参照しながら、第1の層の形成方法について、より詳細に説明する。なお、図2は、第1の層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, the method for forming the first layer will be described in more detail with reference to FIG. FIG. 2 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing the first layer. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図2に示す製造装置13は、送り出しローラー14と、搬送ローラー15、16、17、18と、成膜ローラー19、20と、ガス供給管21と、プラズマ発生用電源22と、成膜ローラー19および20の内部に設置された磁場発生装置23、24と、巻取りローラー25とを備えている。また、このような製造装置においては、少なくとも成膜ローラー19、20と、ガス供給管21と、プラズマ発生用電源22と、磁場発生装置23、24とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置13において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 The production apparatus 13 shown in FIG. 2 includes a delivery roller 14, transport rollers 15, 16, 17, 18, film formation rollers 19, 20, a gas supply pipe 21, a plasma generation power source 22, and a film formation roller 19. And 20 are provided with magnetic field generators 23 and 24 and winding rollers 25. Further, in such a manufacturing apparatus, at least the film forming rollers 19 and 20, the gas supply pipe 21, the plasma generating power source 22, and the magnetic field generating apparatuses 23 and 24 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 13, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置においては、一対の成膜ローラー(成膜ローラー19および成膜ローラー20)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源22に接続されている。そのため、このような製造装置13においては、プラズマ発生用電源22により電力を供給することにより、成膜ローラー19と成膜ローラー20との間の空間に放電することが可能であり、これにより成膜ローラー19と成膜ローラー20との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー19と成膜ローラー20とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー19および20)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー19および20)を配置することにより、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材12(ここでいう、基材には、基材が処理された、または基材上に中間層を有する形態も含む)の表面上に第1の層26を形成することが可能であり、成膜ローラー19上において基材12の表面上に第1の層成分を堆積させつつ、さらに成膜ローラー20上においても基材12の表面上に第1の層成分を堆積させることもできるため、基材12の表面上にバリア層を効率よく形成することができる。 In such a manufacturing apparatus, each film-forming roller has a power source for generating plasma so that the pair of film-forming rollers (film-forming roller 19 and film-forming roller 20) can function as a pair of counter electrodes. 22 is connected. Therefore, in such a manufacturing apparatus 13, it is possible to discharge to the space between the film forming roller 19 and the film forming roller 20 by supplying electric power from the plasma generating power source 22, thereby Plasma can be generated in the space between the film roller 19 and the film formation roller 20. In addition, when using the film-forming roller 19 and the film-forming roller 20 as electrodes as described above, the material and design may be changed as appropriate so that the film-forming roller 19 and the film-forming roller 20 can also be used as electrodes. Moreover, in such a manufacturing apparatus, it is preferable that the pair of film forming rollers (film forming rollers 19 and 20) be arranged so that their central axes are substantially parallel on the same plane. Thus, by arranging a pair of film forming rollers (film forming rollers 19 and 20), the film forming rate can be doubled as compared with a normal plasma CVD method that does not use a roller, and the structure is the same. Since the film can be formed, the extreme value in the carbon distribution curve can be at least doubled. And according to such a manufacturing apparatus, on the surface of the base material 12 (here, the base material includes a form in which the base material is processed or has an intermediate layer on the base material) by the CVD method. The first layer 26 can be formed on the film forming roller 19 while the first layer component is deposited on the surface of the base material 12 on the film forming roller 19 and also on the film forming roller 20. Since the first layer component can also be deposited on the surface, the barrier layer can be efficiently formed on the surface of the substrate 12.
 成膜ローラー19および成膜ローラー20の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置23および24がそれぞれ設けられている。 In the film forming roller 19 and the film forming roller 20, magnetic field generators 23 and 24 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
 成膜ローラー19および成膜ローラー20にそれぞれ設けられた磁場発生装置23および24は、一方の成膜ローラー19に設けられた磁場発生装置23と他方の成膜ローラー20に設けられた磁場発生装置24との間で磁力線がまたがらず、それぞれの磁場発生装置23、24がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置23、24を設けることにより、各成膜ローラー19、20の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively are a magnetic field generator 23 provided on one film forming roller 19 and a magnetic field generator provided on the other film forming roller 20. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generators 24 and the magnetic field generators 23 and 24 form a substantially closed magnetic circuit. By providing such magnetic field generators 23 and 24, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surface of each of the film forming rollers 19 and 20, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー19および成膜ローラー20にそれぞれ設けられた磁場発生装置23および24は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置23と他方の磁場発生装置24とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置23、24を設けることにより、それぞれの磁場発生装置23、24について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材12を用いて効率的に蒸着膜である第1の層26を形成することができる点で優れている。 The magnetic field generators 23 and 24 provided on the film forming roller 19 and the film forming roller 20 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generating device 23 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 24 have the same polarity. By providing such magnetic field generators 23 and 24, the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 23 and 24 are opposed. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 12 is excellent in that the first layer 26 which is a vapor deposition film can be efficiently formed.
 成膜ローラー19および成膜ローラー20としては適宜公知のローラーを用いることができる。このような成膜ローラー19および20としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー19および20の直径としては、放電条件、チャンバのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材12にかかることを回避できることから、基材12へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 As the film forming roller 19 and the film forming roller 20, known rollers can be appropriately used. As such film forming rollers 19 and 20, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rollers 19 and 20 are preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated, and it is possible to avoid applying the total amount of plasma discharge to the substrate 12 in a short time. It is preferable because damage to the material 12 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
 このような製造装置13においては、基材12の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー19と成膜ローラー20)上に、基材12が配置されている。このようにして基材12を配置することにより、成膜ローラー19と成膜ローラー20との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材12のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー19上にて基材12の表面上にバリア層成分を堆積させ、さらに成膜ローラー20上にてバリア層成分を堆積させることができるため、基材12の表面上にバリア層を効率よく形成することが可能となる。 In such a manufacturing apparatus 13, the base material 12 is disposed on a pair of film forming rollers (the film forming roller 19 and the film forming roller 20) so that the surfaces of the base material 12 face each other. By disposing the base material 12 in this way, when the plasma is generated by performing discharge in the facing space between the film forming roller 19 and the film forming roller 20, the base existing between the pair of film forming rollers is present. Each surface of the material 12 can be formed simultaneously. That is, according to such a manufacturing apparatus, the barrier layer component is deposited on the surface of the substrate 12 on the film forming roller 19 by the plasma CVD method, and the barrier layer component is further deposited on the film forming roller 20. Therefore, the barrier layer can be efficiently formed on the surface of the substrate 12.
 このような製造装置に用いる送り出しローラー14および搬送ローラー15、16、17、18としては適宜公知のローラーを用いることができる。また、巻取りローラー25としても、基材12上に第1の層26を形成したガスバリア性フィルム11を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller 14 and the transport rollers 15, 16, 17, 18 used in such a manufacturing apparatus, known rollers can be used as appropriate. Further, the winding roller 25 is not particularly limited as long as the gas barrier film 11 having the first layer 26 formed on the substrate 12 can be wound, and a known roller is appropriately used. be able to.
 また、ガス供給管21および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。 Further, as the gas supply pipe 21 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
 また、ガス供給手段であるガス供給管21は、成膜ローラー19と成膜ローラー20との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管21と、真空排気手段である真空ポンプを配置することにより、成膜ローラー19と成膜ローラー20との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 21 serving as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 19 and the film formation roller 20 and is a vacuum serving as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. In this way, by providing the gas supply pipe 21 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 19 and the film formation roller 20. It is excellent in that the film formation efficiency can be improved.
 さらに、プラズマ発生用電源22としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源22は、これに接続された成膜ローラー19と成膜ローラー20とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源22としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源22としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置23、24としては適宜公知の磁場発生装置を用いることができる。さらに、基材12としては、本発明で用いられる基材の他に、第1の層26を予め形成させたものを用いることができる。このように、基材12として第1の層26を予め形成させたものを用いることにより、第1の層26の厚みを厚くすることも可能である。 Furthermore, as the plasma generating power source 22, a known power source for a plasma generating apparatus can be used as appropriate. Such a power source 22 for generating plasma supplies power to the film forming roller 19 and the film forming roller 20 connected thereto, and makes it possible to use them as a counter electrode for discharging. Such a plasma generation power source 22 can perform plasma CVD more efficiently, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used. In addition, since the plasma generating power source 22 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this. As the magnetic field generators 23 and 24, known magnetic field generators can be used as appropriate. Furthermore, as the base material 12, in addition to the base material used in the present invention, a material in which the first layer 26 is formed in advance can be used. As described above, by using the substrate 12 in which the first layer 26 is formed in advance, the thickness of the first layer 26 can be increased.
 このような図2に示す製造装置13を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルム(基材)の搬送速度を適宜調整することにより、第1の層を製造することができる。すなわち、図2に示す製造装置13を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー19および20)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー19上の基材12の表面上および成膜ローラー20上の基材12の表面上に、第1の層26がプラズマCVD法により形成される。この際、成膜ローラー19、20のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材12が、図2中の成膜ローラー19のA地点および成膜ローラー20のB地点を通過する際に、第1の層で炭素/酸素分布曲線の極大値が形成される。これに対して、基材12が、図2中の成膜ローラー19のC1およびC2地点、ならびに成膜ローラー20のC3およびC4地点を通過する際に、第1のバリア層で炭素/酸素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、通常、5つの極値が生成する。 Using such a manufacturing apparatus 13 shown in FIG. 2, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the transport of the film (base material) The first layer can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 13 shown in FIG. 2, a discharge is generated between the pair of film forming rollers (film forming rollers 19 and 20) while supplying a film forming gas (raw material gas or the like) into the vacuum chamber. As a result, the film-forming gas (such as source gas) is decomposed by plasma, and the first layer 26 is formed on the surface of the base material 12 on the film-forming roller 19 and on the surface of the base material 12 on the film-forming roller 20. It is formed by the plasma CVD method. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axis of the film forming rollers 19 and 20, and the plasma is converged on the magnetic field. Therefore, when the substrate 12 passes through the point A of the film forming roller 19 and the point B of the film forming roller 20 in FIG. 2, the maximum value of the carbon / oxygen distribution curve is formed in the first layer. . On the other hand, when the substrate 12 passes through the points C1 and C2 of the film forming roller 19 and the points C3 and C4 of the film forming roller 20 in FIG. 2, the carbon / oxygen distribution in the first barrier layer. A local minimum of the curve is formed. For this reason, five extreme values are usually generated for two film forming rollers.
 また、第1の層の極値間の距離(炭素/酸素分布曲線の有する1つの極値および該極値に隣接する極値における第1の層の膜厚方向における第1のバリア層の表面からの距離(L)の差の絶対値)は、成膜ローラー19、20の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材12が送り出しローラー14や成膜ローラー19等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材12の表面上に第1の層26が形成される。 The distance between the extreme values of the first layer (the surface of the first barrier layer in the film thickness direction of the first layer at one extreme value of the carbon / oxygen distribution curve and the extreme value adjacent to the extreme value) (The absolute value of the difference in distance (L) from) can be adjusted by the rotation speed of the film forming rollers 19 and 20 (the conveyance speed of the substrate). In such film formation, the substrate 12 is transported by the delivery roller 14 and the film formation roller 19, respectively, so that the surface of the substrate 12 is formed by a roll-to-roll continuous film formation process. First layer 26 is formed.
 前記ガス供給管21から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。第1の層26の形成に用いる前記成膜ガス中の原料ガスとしては、形成する第1の層26の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られるバリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、第1の層26の種類に応じて適切な原料ガスが選択される。 As the film forming gas (raw material gas or the like) supplied from the gas supply pipe 21 to the facing space, a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more. The source gas in the film forming gas used for forming the first layer 26 can be appropriately selected and used according to the material of the first layer 26 to be formed. As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting barrier layer. These organosilicon compounds can be used alone or in combination of two or more. Examples of the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene. As these organosilicon compound gas and organic compound gas, an appropriate source gas is selected according to the type of the first layer 26.
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the raw material gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
 前記成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電ガスを用いてもよい。このようなキャリアガスおよび放電ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素;窒素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon and xenon; hydrogen; nitrogen can be used.
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成される第1の層26によって、優れたバリア性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film-forming gas contains a source gas and a reactive gas, the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By not making the ratio of the reaction gas excessive, it is excellent in that excellent barrier properties and bending resistance can be obtained by the first layer 26 to be formed. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
 以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)を含有するものとを用い、ケイ素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。 Hereinafter, as the film forming gas, hexamethyldisiloxane (organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O) as a raw material gas and oxygen (O 2 ) as a reactive gas are used. Taking a case of producing a silicon-oxygen-based thin film as an example, the preferred ratio of the raw material gas to the reactive gas in the film forming gas will be described in more detail.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式(1)で表されるような反応が起こり、二酸化ケイ素が生成する。 A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system When the thin film is produced, a reaction represented by the following reaction formula (1) occurs by the film forming gas, and silicon dioxide is generated.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、上記条件(i)および(ii)を満たす第1の層を形成することができなくなってしまう。そのため、第1の層を形成する際には、上記反応式(1)の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバ内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサンおよび酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がバリア層中に取り込まれ、上記条件(i)および(ii)を満たす第1の層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性および耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, the first layer that satisfies the above conditions (i) and (ii) cannot be formed. Therefore, when forming the first layer, the oxygen amount is set to a stoichiometric ratio of 12 with respect to 1 mol of hexamethyldisiloxane so that the reaction of the reaction formula (1) does not proceed completely. It is preferable to make it less than a mole. In the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material. (It may be about 20 times or more the molar amount (flow rate) of siloxane). Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. . By containing hexamethyldisiloxane and oxygen at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the barrier layer, and the above conditions (i) and (ii) It is possible to form a first layer that satisfies the above), and to exhibit excellent gas barrier properties and bending resistance in the obtained gas barrier film. From the viewpoint of use as a flexible substrate for devices that require transparency, such as organic EL elements and solar cells, the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas The lower limit of (flow rate) is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
 また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。 Further, the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
 また、このようなプラズマCVD法において、成膜ローラー19と成膜ローラー20との間に放電するために、プラズマ発生用電源22に接続された電極ドラム(本実施形態においては、成膜ローラー19および20に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 Further, in such a plasma CVD method, an electrode drum (in this embodiment, the film forming roller 19) connected to the plasma generating power source 22 for discharging between the film forming roller 19 and the film forming roller 20. The power to be applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed, and if it is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the substrate during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
 基材12の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~100m/minの範囲とすることがより好ましい。 The conveyance speed (line speed) of the substrate 12 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 100 m / min.
 図2のような対向ロール電極を持つプラズマCVD装置において、生産性を高める目的で基材の搬送速度を速くした場合に、高温高湿条件下にフィルムが配置されても、ガスバリア性能が維持される。このため、基材の搬送速度が速い場合に本願発明の効果がより顕著となる。すなわち、本発明の好適な製造方法は、基材を搬送速度1m/分以上で対向ロール電極を持つプラズマCVD装置に搬送してケイ素、酸素および炭素を含有する第1の層を形成する段階と、原子層堆積法により無機酸化物を含む第2の層を形成する段階と、を含む、ガスバリア性フィルムの製造方法である。より好ましい形態は、基材を搬送速度5m/分以上(さらに好ましくは10m/分以上)で対向ロール電極を持つプラズマCVD装置に搬送してケイ素、酸素および炭素を含有する第1の層を形成する段階を含む。なお、ライン速度の上限は特に限定されず、生産性の観点からは速い方が好ましいが、100m/min以下であれば、バリア層として十分な厚みを確保することができる点で優れている。 In the plasma CVD apparatus having the counter roll electrode as shown in FIG. 2, the gas barrier performance is maintained even when the film is placed under high temperature and high humidity conditions when the substrate transport speed is increased for the purpose of increasing productivity. The For this reason, when the conveyance speed of a base material is quick, the effect of this invention becomes more remarkable. That is, a preferable manufacturing method of the present invention includes a step of forming a first layer containing silicon, oxygen, and carbon by conveying a substrate to a plasma CVD apparatus having a counter roll electrode at a conveyance speed of 1 m / min or more. And a step of forming a second layer containing an inorganic oxide by an atomic layer deposition method. In a more preferred form, the first layer containing silicon, oxygen and carbon is formed by transporting the substrate to a plasma CVD apparatus having a counter roll electrode at a transport speed of 5 m / min or more (more preferably 10 m / min or more). Including the steps of: The upper limit of the line speed is not particularly limited, and is preferably faster from the viewpoint of productivity. However, if it is 100 m / min or less, it is excellent in that a sufficient thickness can be secured as a barrier layer.
 上記したように、本実施形態のより好ましい態様としては、第1の層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、バリア性能とが両立するバリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, the first layer is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. It is characterized by. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce a barrier layer having both the barrier performance and the barrier performance. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
 〔第2の層〕
 第2の層は、原子層堆積法(ALD法)により形成される。以下、第2の層をALD層とも称する。
[Second layer]
The second layer is formed by an atomic layer deposition method (ALD method). Hereinafter, the second layer is also referred to as an ALD layer.
 第2の層は、ガスバリア性能の点から、無機酸化物、無機窒化物、無機酸窒化物を含むことが好ましく、無機酸化物を含むことがより好ましい。 The second layer preferably contains an inorganic oxide, an inorganic nitride, or an inorganic oxynitride, and more preferably contains an inorganic oxide, from the viewpoint of gas barrier performance.
 無機酸化物としては、特に限定されず、アルミニウム、チタン、ケイ素、ジルコニウム、ハフニウム、ランタンなどの酸化物および複合酸化物が挙げられる。樹脂基材上に成膜することを考慮し、50~120℃の温度で良質な膜が得られる観点から、無機酸化物がAl、TiO、SiOおよびZrOからなる群から選択される少なくとも1種を含むことが好ましい。微小な欠陥に材料を含浸できることから、材料の分子量の大きさを考慮して、AlおよびTiOを含むことが更に好ましい。 The inorganic oxide is not particularly limited, and examples thereof include oxides and composite oxides such as aluminum, titanium, silicon, zirconium, hafnium, and lanthanum. The inorganic oxide is selected from the group consisting of Al 2 O 3 , TiO 2 , SiO 2 and ZrO from the viewpoint of obtaining a good quality film at a temperature of 50 to 120 ° C. in consideration of forming a film on a resin substrate. It is preferable to contain at least one selected from the above. Since the material can be impregnated with minute defects, it is more preferable to include Al 2 O 3 and TiO 2 in consideration of the molecular weight of the material.
 無機窒化物としては、特に限定されず、アルミニウム、チタン、ケイ素、ジルコニウム、ハフニウム、ランタンなどの窒化物および複合窒化物が挙げられる。 The inorganic nitride is not particularly limited, and examples thereof include nitrides such as aluminum, titanium, silicon, zirconium, hafnium, lanthanum, and composite nitrides.
 また、各ガスの導入時間や、成膜温度、成膜時の圧力を調整することによりAlOx、TiOx、SiOx、ZrOxなどの中間酸化物、窒化物なども可能であり、必要により使用することは問題ない。 In addition, by adjusting the introduction time of each gas, the film formation temperature, and the pressure during film formation, intermediate oxides such as AlOx, TiOx, SiOx, ZrOx, nitrides, and the like are also possible. no problem.
 第2の層の厚さは、1~100nmであることが好ましく、10~50nmであることがより好ましい。第2の層の膜厚が1nm以上であると、微細欠陥の補修といったALD層の効果が適切に得られ、ALDの製膜速度を考慮すると生産性の観点から100nm以下であることが好ましい。 The thickness of the second layer is preferably 1 to 100 nm, and more preferably 10 to 50 nm. When the film thickness of the second layer is 1 nm or more, the effect of the ALD layer such as repair of fine defects is appropriately obtained, and in view of the ALD film forming speed, it is preferably 100 nm or less from the viewpoint of productivity.
 なお、第2の層はガスバリア性能を有するが、第1の層のガスバリア性が高いため、第2の層単独でのガスバリア性能は高くなくともよい。したがって、第2の層のガスバリア性能は、基材上に第2の層を形成させた積層体における後述の実施例に記載の方法により測定された透過水分量が0.5g/(m・24h)以下であることが好ましく、0.1g/(m・24h)以下であることがより好ましい。 Although the second layer has gas barrier performance, the gas barrier performance of the second layer alone may not be high because the gas barrier performance of the first layer is high. Therefore, the gas barrier performance of the second layer is such that the amount of permeated moisture measured by the method described in Examples below in the laminate in which the second layer is formed on the substrate is 0.5 g / (m 2 · 24 h) or less, and more preferably 0.1 g / (m 2 · 24 h) or less.
 本発明においては、第2の層内において、アルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対する炭素濃度が0.3at%以上3.0at%以下の領域(以下、単に炭素含有領域とも称する)が第2の層の膜厚に対して30%以上である。炭素濃度が0.3at%以上3.0at%以下の領域が第2の層の膜厚に対して30%以上であることで、湿熱耐性が向上する。第2の層内に炭素原子が一定以上存在することで、酸化ケイ素などの無機酸化物のみから形成される膜と比較して、膜内に柔軟な部分が生成し、フィルムが屈曲した場合にもクラックの発生が抑制されると考えられる。また、湿熱環境下では、温度や湿度の変化による基材の形状変化(膨脹収縮)が発生する。かような形状変化はガスバリア層よりも大きい。一方、炭素原子が第2の層内に存在することで、酸化ケイ素などの無機酸化物のみから形成される膜と比較して、膜が柔軟であるため、湿熱環境下にあると第2の層も膨張しやすく、第1のガスバリア性層の上下(基材および第2の層)が同様に横方向に膨張することで、第1の層に負荷される外力が低減し、第1の層が保護されるため、高温高湿条件下に保存されてもガスバリア性能が低下しないものと考えられる。 In the present invention, in the second layer, the carbon concentration with respect to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon is in a range of 0.3 at% to 3.0 at% (hereinafter simply referred to as carbon-containing). Is also 30% or more of the thickness of the second layer. When the region having a carbon concentration of 0.3 at% or more and 3.0 at% or less is 30% or more with respect to the film thickness of the second layer, wet heat resistance is improved. When a certain number of carbon atoms are present in the second layer, when a flexible part is generated in the film and the film is bent as compared with a film formed only from an inorganic oxide such as silicon oxide. It is thought that the occurrence of cracks is also suppressed. Further, in a humid heat environment, a change in shape (expansion / shrinkage) of the base material due to changes in temperature and humidity occurs. Such a shape change is larger than that of the gas barrier layer. On the other hand, since the carbon atoms are present in the second layer, the film is more flexible than a film formed only from an inorganic oxide such as silicon oxide. The layers are also easily expanded, and the upper and lower sides (base material and second layer) of the first gas barrier layer are similarly expanded in the lateral direction, so that the external force applied to the first layer is reduced, and the first Since the layer is protected, it is considered that the gas barrier performance does not deteriorate even when stored under high temperature and high humidity conditions.
 なお、炭素含有領域は、第2の層中で連続していなくてもよく、非連続的であってもよく、非連続的である場合、炭素含有領域の合計膜厚が第2の層の膜厚に対して30%以上となる。 In addition, the carbon-containing region may not be continuous in the second layer, may be discontinuous, and when the carbon-containing region is discontinuous, the total film thickness of the carbon-containing region is equal to that of the second layer. It becomes 30% or more with respect to the film thickness.
 炭素濃度が0.3at%以上の領域の膜厚方向の割合の上限は特に限定されるものではなく、全ての領域(第2の層の膜厚に対して100%)において炭素濃度が0.3at%以上3.0at%以下であってもよい。炭素含有領域は40%以上であることが好ましく、50%以上であることが好ましい。炭素含有領域の上限は100%(層内の炭素濃度が0.3~3.0at%)であるが、初期のガスバリア性能を確保するためには、炭素濃度が低い領域(炭素濃度が0.3at%未満の領域)が存在することが好ましく、0.3at%以上3.0at%以下の領域が第2の層の膜厚に対して70%以下であることが好ましい。 The upper limit of the ratio in the film thickness direction of the region where the carbon concentration is 0.3 at% or more is not particularly limited, and the carbon concentration is 0.1 in all regions (100% with respect to the film thickness of the second layer). It may be 3 at% or more and 3.0 at% or less. The carbon-containing region is preferably 40% or more, and more preferably 50% or more. The upper limit of the carbon-containing region is 100% (the carbon concentration in the layer is 0.3 to 3.0 at%). However, in order to ensure the initial gas barrier performance, the carbon concentration region is low (the carbon concentration is 0.00%). (Region of less than 3 at%) is preferably present, and the region of 0.3 at% or more and 3.0 at% or less is preferably 70% or less with respect to the film thickness of the second layer.
 第2の層内の炭素(原子)濃度はアルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対して3.0at%以下である。すなわち、第2の層内における炭素濃度の最大値が3.0at%以下である。第2の層内の炭素濃度が高いと、空気中のHOと反応しやすくなり、経時で膜組成が変化しやすくなり、耐湿熱耐性が著しく低下する。このため、第2の層内の炭素濃度は3.0at%以下である必要がある。第2の層内の炭素濃度は2.5at%以下であることが好ましい。なお、第2の層内の炭素濃度とは、下記XPSデプスプロファイル測定により測定した膜厚方向の炭素濃度を指す。また、XPSデプスプロファイルを行う際には、表面近傍においては、表面の影響を受けて組成変化をしやすい。このため、表面と第2の層の界面は、以下のように定義する。 The carbon (atom) concentration in the second layer is 3.0 at% or less with respect to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon. That is, the maximum value of the carbon concentration in the second layer is 3.0 at% or less. When the carbon concentration in the second layer is high, it tends to react with H 2 O in the air, the film composition tends to change over time, and the resistance to moist heat is significantly reduced. For this reason, the carbon concentration in the second layer needs to be 3.0 at% or less. The carbon concentration in the second layer is preferably 2.5 at% or less. The carbon concentration in the second layer refers to the carbon concentration in the film thickness direction measured by the following XPS depth profile measurement. Further, when performing the XPS depth profile, the composition changes easily under the influence of the surface in the vicinity of the surface. For this reason, the interface between the surface and the second layer is defined as follows.
 i)スパッタ深さ0~3nmの範囲で炭素濃度が5at%以上急激に変化し、かつ金属成分が相反して急激に増加する場合
 炭素成分の傾きΔ炭素濃度(at%)/Δスパッタ深さ(nm)が0.5at%/nm未満となる点を表面とする。エッチングレートは、0.05nm/secであるので、0.05nmごとの炭素の変化量が0.5at%/nm未満となる点ともいえる。
i) When the carbon concentration changes abruptly by 5 at% or more in the range of sputter depth of 0 to 3 nm and the metal component increases rapidly in contradiction. Carbon component slope Δ Carbon concentration (at%) / Δ Sputter depth The point where (nm) is less than 0.5 at% / nm is defined as the surface. Since the etching rate is 0.05 nm / sec, it can be said that the amount of change in carbon every 0.05 nm is less than 0.5 at% / nm.
 ii)i)以外はスパッタ深さが3nmからを最表面(表面と第2層との界面)とする。 Ii) Except i), the sputtering depth is from 3 nm to the outermost surface (interface between the surface and the second layer).
 上記炭素濃度が低い領域(炭素濃度が0.3at%未満の領域)は基材と反対側の第2の層の表面側に存在することが好ましい。これは、炭素濃度が表層に多く存在すると、表面にある炭素が雰囲気中の水分と反応し、膜組成が変化し、その結果、膜に内部応力が発生し、初期のガスバリア性能が低下するためである。 The region having a low carbon concentration (region having a carbon concentration of less than 0.3 at%) is preferably present on the surface side of the second layer opposite to the substrate. This is because when the carbon concentration is large in the surface layer, the carbon on the surface reacts with moisture in the atmosphere, the film composition changes, and as a result, internal stress is generated in the film and the initial gas barrier performance decreases. It is.
 したがって、本発明の好適な一実施形態は、第2の層の最表面から少なくとも3nm以内の領域は、アルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対する平均炭素濃度が0.3at%未満である。最表面から3nm以内の領域の平均炭素濃度が0.3at%未満であることで、初期のガスバリア性能が高くなる。ここで「最表面から少なくとも3nm以内の領域」とは、「最表面から3nm以内の領域」の平均炭素濃度が必須に0.3at%未満であることを指し、3nmを超える領域までの平均炭素濃度が0.3at%未満であってもよいことを意味する。ここで、最表面から少なくとも3nm以内の領域は、下記XPSデプスプロファイルにおいて、「第2の層の膜厚方向における第2の層の表面からの距離」が3nm以内の領域を指す。また、XPSデプスプロファイルにおける、「第2の層の膜厚方向における第2の層の表面からの距離」の算出方法は上記第1の層において記載した方法と同様である。 Therefore, in a preferred embodiment of the present invention, the region within at least 3 nm from the outermost surface of the second layer has an average carbon concentration of 0. 0 relative to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon. It is less than 3 at%. When the average carbon concentration in the region within 3 nm from the outermost surface is less than 0.3 at%, the initial gas barrier performance is enhanced. Here, the “region within 3 nm from the outermost surface” means that the average carbon concentration of “region within 3 nm from the outermost surface” is essentially less than 0.3 at%, and the average carbon up to the region exceeding 3 nm. It means that the concentration may be less than 0.3 at%. Here, a region within at least 3 nm from the outermost surface indicates a region where “distance from the surface of the second layer in the film thickness direction of the second layer” is within 3 nm in the following XPS depth profile. In addition, the calculation method of “distance from the surface of the second layer in the film thickness direction of the second layer” in the XPS depth profile is the same as the method described in the first layer.
 第2の層内の膜厚方向の炭素濃度は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により測定することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を炭素元素の原子比とし、横軸をエッチング時間(スパッタ時間)として作成することができる。 The carbon concentration in the film thickness direction in the second layer is sequentially measured while exposing the inside of the sample by using both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon. It can be measured by so-called XPS depth profile measurement in which surface composition analysis is performed. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of carbon elements and the horizontal axis as the etching time (sputtering time).
 なお、本発明では、下記測定条件にて作成した。 In the present invention, it was created under the following measurement conditions.
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
 また、最表面から3nm以内の平均炭素濃度は膜厚方向の炭素組成を測定し、炭素量を膜厚方向で積分し、積分した範囲の膜厚で割った値である。 Also, the average carbon concentration within 3 nm from the outermost surface is a value obtained by measuring the carbon composition in the film thickness direction, integrating the carbon content in the film thickness direction, and dividing by the integrated film thickness.
 なお、下記実施例においては、ALD成膜を行った後、室温20~30℃(湿度なりゆき)の大気中に1週間以上保持し、そのあと、上記記載の条件で、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)で膜厚方向の炭素濃度を測定した。また、製造後のフィルムにおいては、ALD層が最表層である場合には、その表面が最表面であり、ALD層上に別の隣接層が積層されている場合には該隣接層とALD層との界面が最表面である。上記のように、第2の層内には炭素原子がある程度存在する。第2の層内の炭素原子は、好適には原料ガス中に含まれる炭素原子が残存したものである。したがって、原料ガスとして炭素原子を含むものを用いることが好ましい。 In the following examples, after the ALD film is formed, it is kept in the atmosphere at room temperature of 20 to 30 ° C. (humidity) for one week or longer, and then X-ray photoelectron spectroscopy is performed under the conditions described above. The carbon concentration in the film thickness direction was measured by (XPS: Xray Photoelectron Spectroscopy). Moreover, in the film after manufacture, when the ALD layer is the outermost layer, the surface is the outermost surface, and when another adjacent layer is laminated on the ALD layer, the adjacent layer and the ALD layer Is the outermost surface. As described above, there are some carbon atoms in the second layer. The carbon atoms in the second layer are preferably those in which carbon atoms contained in the source gas remain. Therefore, it is preferable to use a gas containing carbon atoms as the source gas.
 ALD法は、2種以上のガス(第1のガスおよび第2のガス)を基材上に交互に導入することにより、原子層を1層ごとに堆積させる方法である。製膜サイクルを繰り返すことによって所望の膜厚とする。 The ALD method is a method of depositing atomic layers one by one by introducing two or more kinds of gases (first gas and second gas) alternately onto a substrate. A desired film thickness is obtained by repeating the film forming cycle.
 ALD法は、はじめに原料ガスである第1のガスを第1の層上に導入してガス分子層を形成させ、次いで不活性ガス(パージガス)を導入することにより、第1のガスをパージ(除去)する。なお、形成された第1のガスのガス分子層は、化学吸着により不活性ガスを導入してもパージされない。次に、反応ガスである第2のガス(例えば、酸化性ガス)を導入して形成されたガス分子層を酸化して無機膜が形成される。最後に、不活性ガスを導入することにより、第2のガスをパージし、ALD法の1サイクルが完了する。上記サイクルを繰り返すことにより、原子層が1層ずつ堆積されて、所定の膜厚を有する第2の層を形成することができる。なお、ALD法は、下層の表面の凹凸によらず、陰影部分も含めて無機膜を形成することができる。 In the ALD method, a first gas, which is a source gas, is first introduced onto a first layer to form a gas molecular layer, and then an inert gas (purge gas) is introduced to purge the first gas ( Remove. Note that the gas molecule layer of the formed first gas is not purged even when an inert gas is introduced by chemical adsorption. Next, an inorganic film is formed by oxidizing a gas molecular layer formed by introducing a second gas (for example, an oxidizing gas) which is a reactive gas. Finally, the second gas is purged by introducing an inert gas, and one cycle of the ALD method is completed. By repeating the cycle, atomic layers are deposited one by one, and a second layer having a predetermined thickness can be formed. Note that the ALD method can form an inorganic film including a shaded portion regardless of the unevenness of the surface of the lower layer.
 第2の層内の炭素原子の濃度を制御する方法としては、(1)第1のガスが完全にパージされないように第1のガスの導入時間を制御する、および/または、不活性ガスの導入時間を制御する方法(以下、(1)の方法とする)が挙げられる。 The method for controlling the concentration of carbon atoms in the second layer includes (1) controlling the introduction time of the first gas so that the first gas is not completely purged, and / or inert gas. A method for controlling the introduction time (hereinafter referred to as the method (1)) may be mentioned.
 原料ガスを第1の層上に吸着させると、原料ガスが何層も吸着する。ここで、通常のALD法では、不活性ガスによって吸着していない原料ガスがパージされることによって、下層に吸着した第1のガスのガス分子層のみがほぼ単層として残る。そして、このガス分子層が第2のガスによりほぼ完全に酸化されるため、ガス分子層には炭素原子がほとんど残存しない。 When the source gas is adsorbed on the first layer, the source gas is adsorbed in layers. Here, in the normal ALD method, the source gas that is not adsorbed by the inert gas is purged, so that only the gas molecule layer of the first gas adsorbed in the lower layer remains as a single layer. Since this gas molecule layer is almost completely oxidized by the second gas, almost no carbon atoms remain in the gas molecule layer.
 一方、第1のガスを基材上に導入してガス分子層を形成させた後、原料ガスが完全にパージされないように原料ガスの導入時間、および/または、不活性ガスの導入時間を制御することによって、ガス分子層が何層にも積層されたままとなる(下層に吸着していないガス分子層が複数層存在する)。この状態で第2のガスを導入すると、ガス分子層の表面のみが酸化されるため、表面層以外の下層のガス分子は酸化されずに、炭素原子を含む原料ガスのままで残存する。したがって、ALD法1サイクルで膜厚方向に炭素濃度傾斜を有する層が形成される。同様にサイクルを繰り返すことで、膜厚方向に炭素濃度分布ができる層が形成されることとなる。 On the other hand, after the first gas is introduced onto the substrate to form the gas molecular layer, the introduction time of the source gas and / or the introduction time of the inert gas is controlled so that the source gas is not completely purged. By doing so, the gas molecule layers remain stacked (multiple gas molecule layers not adsorbed on the lower layer exist). When the second gas is introduced in this state, only the surface of the gas molecular layer is oxidized, so that the gas molecules in the lower layer other than the surface layer are not oxidized and remain as the source gas containing carbon atoms. Therefore, a layer having a carbon concentration gradient in the film thickness direction is formed in one cycle of the ALD method. Similarly, by repeating the cycle, a layer having a carbon concentration distribution in the film thickness direction is formed.
 したがって、本発明の好適な一実施形態は、基材、バリア性能を有する第1の層、および原子層堆積法により形成される第2の層をこの順に含むガスバリア性フィルムの製造方法であって、前記原子層堆積法は、炭素を含む原料ガスである第1のガスを第1の層上に導入する工程(1)と、不活性ガスを導入することにより、第1のガスをパージする工程(2)と、酸化ガスである第2のガスを導入する工程(3)と、不活性ガスを導入することにより、第2のガスをパージする工程(4)と、をこの順に含み、炭素濃度0.3at%以上3.0at%以下の領域を第2の層の膜厚に対して30%以上含み、かつ、前記第2の層内の炭素濃度が3.0at%以下となるように、前記工程(1)において第1のガスの導入時間を制御する、または、前記工程(2)において不活性ガスの導入時間を制御する、上記ガスバリア性フィルムの製造方法である。 Therefore, a preferred embodiment of the present invention is a method for producing a gas barrier film comprising a substrate, a first layer having barrier performance, and a second layer formed by an atomic layer deposition method in this order. The atomic layer deposition method includes a step (1) of introducing a first gas, which is a source gas containing carbon, onto the first layer, and purging the first gas by introducing an inert gas. A step (2), a step (3) for introducing a second gas which is an oxidizing gas, and a step (4) for purging the second gas by introducing an inert gas in this order, A region having a carbon concentration of 0.3 at% or more and 3.0 at% or less is included at 30% or more with respect to the film thickness of the second layer, and the carbon concentration in the second layer is 3.0 at% or less. In addition, the introduction time of the first gas is controlled in the step (1). Controls the deployment time of the inert gas in the step (2) is a method for producing the gas barrier film.
 上記(1)の方法における第1のガスの導入時間は、ガスのパージ時間、成膜速度等とのバランスで適宜設定されるが、第1のガスの導入時間は、少なくとも1サイクルにおいて0.05~0.3秒未満であることが好ましく、0.01~0.15秒であることがより好ましい。なお、上記好適な第1のガスの導入時間は、全サイクルにおいて満たされていてもよく、サイクル中の一部が上記好適な第1のガス導入時間を満たしていてもよい。好適には、少なくとも基材側の第2の層の領域で上記好適な範囲となっていることが好ましく、具体的には、全膜厚の第2の層側(ALD積層の前半のサイクル)の25%を超える領域を形成するサイクルが少なくとも上記範囲内であることが好ましく、50%以上の領域で上記好適な範囲内であることが好ましく、全サイクルで上記好適な範囲内であることが好ましい。 In the method (1), the introduction time of the first gas is appropriately set in balance with the purge time of the gas, the film formation rate, and the like. The time is preferably from 05 to less than 0.3 seconds, and more preferably from 0.01 to 0.15 seconds. The suitable first gas introduction time may be satisfied in all cycles, or a part of the cycle may satisfy the suitable first gas introduction time. Preferably, the above-mentioned preferable range is preferably at least in the region of the second layer on the substrate side. Specifically, the second layer side of the entire film thickness (the first half cycle of ALD lamination) It is preferable that the cycle for forming a region exceeding 25% of the above is at least within the above range, preferably within the above preferable range at a region of 50% or more, and within the above preferable range in all cycles. preferable.
 上記(1)の方法における第1のガスのパージ時間(不活性ガスの導入時間)は、少なくとも1サイクルにおいて0.1~20秒未満であることが好ましく、0.1~4.0秒であることがより好ましい。なお、上記好適な不活性ガスの導入時間は、全サイクルにおいて満たされていてもよく、サイクル中の一部が上記好適な不活性ガス導入時間を満たしていてもよい。上述したように、第2の層の表面側は炭素が残存しない形態が好適であるため、上記好適な範囲は、基材側の領域を形成する際のサイクルで適用される。この際の基材側の領域としては、具体的には、基材側から膜厚で30%以上、好ましくは40%以上、より好ましくは50%以上の領域であり、また好適には、80%以下の領域である。逆に、最表面から3nm以内の領域を形成する際には、平均炭素濃度が0.3at%未満となるように、炭素濃度0.3at%以上3.0at%以下の領域よりもパージ時間を長くすることが好ましい。 In the method (1), the first gas purge time (inert gas introduction time) is preferably 0.1 to less than 20 seconds in at least one cycle, and is preferably 0.1 to 4.0 seconds. More preferably. The suitable inert gas introduction time may be satisfied in all cycles, or a part of the cycle may satisfy the suitable inert gas introduction time. As described above, since the form in which carbon does not remain on the surface side of the second layer is suitable, the preferred range is applied in a cycle when forming the region on the substrate side. Specifically, the region on the substrate side in this case is a region having a film thickness of 30% or more, preferably 40% or more, more preferably 50% or more from the substrate side, and preferably 80% or more. % Or less. On the contrary, when forming a region within 3 nm from the outermost surface, the purge time is set longer than the region having a carbon concentration of 0.3 at% or more and 3.0 at% or less so that the average carbon concentration is less than 0.3 at%. It is preferable to make it longer.
 また、第2の層内の炭素濃度を適切に調整しやすいことから、工程(2)における第1のガスのパージ時間(秒)/第1のガスの導入時間(秒)=10~100である工程を含むことが好ましく、第1のガスのパージ時間(秒)/第1のガスの導入時間(秒)=10~50である工程を含むことがより好ましい。なお、上記好適な比は、全サイクルにおいて満たされていてもよく、サイクル中の一部が上記好適な比を満たしていてもよいが上述したように、第2の層の表面側は炭素が残存しない形態が好適であるため、上記好適な範囲は、基材側の領域を形成する際のサイクルで適用されることが好ましい。例えば、成膜の前半のサイクル(基材側)では、上記好適な範囲の比で行い、後半のサイクル(表層側)において、通常の比(例えば、100を超え、500以下)で行う形態などが挙げられる。 Further, since the carbon concentration in the second layer can be easily adjusted appropriately, the purge time (second) of the first gas / second introduction time (second) of the first gas in the step (2) = 10 to 100 It is preferable to include a certain process, and it is more preferable to include a process in which the purge time of the first gas (seconds) / the introduction time of the first gas (seconds) = 10 to 50. The preferred ratio may be satisfied in all cycles, and a part of the cycle may satisfy the preferred ratio. However, as described above, the surface side of the second layer is made of carbon. Since the form which does not remain is suitable, it is preferable that the suitable range is applied in a cycle when forming the region on the substrate side. For example, in the first half cycle (base material side) of film formation, the ratio is within the above-mentioned preferable range, and in the second half cycle (surface layer side), the normal ratio (for example, more than 100 and 500 or less) is performed. Is mentioned.
 第2の層の炭素原子の濃度を制御する他の方法としては、上記(1)の方法に加えて、(2)原子層堆積法における1サイクルの第1のガスの形成膜厚を制御する方法、(3)原子層堆積法において用いられる反応ガスとして水またはオゾンを用いる方法、(4)酸化ガスを導入して第2の層を形成する際の基材温度を制御する方法、等が挙げられる。これらの制御方法は全てのサイクルで行ってもよいし、一部のサイクルでのみ行ってもよい。すなわち、本発明において好適な一実施形態は、上記(1)の方法に加えて、(2)前記原子層堆積法における1サイクルの第1のガスの形成膜厚が0.2~0.5nm/サイクルである、(3)前記原子層堆積法において用いられる反応ガスが水またはオゾンである、および(4)前記工程(2)における基材の温度が120℃以下である、の(2)~(4)の少なくとも一を満たす、ガスバリア性フィルムの製造方法である。 As another method for controlling the concentration of carbon atoms in the second layer, in addition to the method (1), (2) the formation thickness of the first gas in one cycle in the atomic layer deposition method is controlled. A method, (3) a method of using water or ozone as a reactive gas used in the atomic layer deposition method, (4) a method of controlling the substrate temperature when forming the second layer by introducing an oxidizing gas, etc. Can be mentioned. These control methods may be performed in all cycles or only in some cycles. That is, in a preferred embodiment of the present invention, in addition to the method of (1), (2) the formation thickness of the first gas in one cycle in the atomic layer deposition method is 0.2 to 0.5 nm. (3) the reaction gas used in the atomic layer deposition method is water or ozone, and (4) the temperature of the substrate in the step (2) is 120 ° C. or less (2) A method for producing a gas barrier film satisfying at least one of (4) to (4).
 上記(2)の方法の場合、1サイクルの第1のガスの形成膜厚を比較的厚く制御することが好ましい。1サイクルでの形成膜厚が大きければ大きいほど、単分子層が何層にも積層された原料ガスの分子層が形成され、次工程の酸化ガス導入による酸化工程において原料ガスの分子層のうち、表層に近い単分子層が酸化され、第1の層に近い側の分子層は酸化されずに残ることとなる。このため、第1の層に近い側の分子層の炭素濃度が高くなるため、第2の層内の炭素濃度分布は大きくなる(炭素濃度が高い領域が存在しやすくなる)。このため、耐湿熱耐性が向上する。かような観点から、原子層堆積法における少なくとも1サイクルの第1のガスの形成膜厚は、0.2nm/サイクル以上であることが好ましい。一方で、少なくとも1サイクルでの形成膜厚は0.5nm/サイクル以下であることが好ましい。形成膜厚を0.5nm/サイクル以下とすることで、過度に炭素濃度が高い領域が存在することがなく、初期のガスバリア性能が維持されるため好ましい。なお、上記好適なサイクル速度は、全サイクルにおいて満たされていてもよく、サイクル中の一部が上記好適なサイクル速度を満たしていてもよい。例えば、成膜の前半のサイクル(基材側)では、上記好適な範囲のサイクル速度で行い、後半のサイクル(表層側)において、通常のサイクル速度(例えば、0.05~0.2nm/サイクル未満)でガスを導入する形態などが挙げられる。ここで、基材側の領域としては、具体的には、基材側から膜厚で30%以上、好ましくは40%以上、より好ましくは50%以上の領域であり、また好適には、80%以下の領域である。 In the case of the above method (2), it is preferable to control the formation film thickness of the first gas in one cycle to be relatively thick. The larger the film thickness formed in one cycle, the more a source gas molecular layer is formed by laminating a number of monomolecular layers. Of the source gas molecular layers in the oxidation step by introducing the oxidizing gas in the next step, The monomolecular layer close to the surface layer is oxidized, and the molecular layer close to the first layer remains without being oxidized. For this reason, since the carbon concentration of the molecular layer closer to the first layer becomes high, the carbon concentration distribution in the second layer becomes large (a region with a high carbon concentration tends to exist). For this reason, resistance to moist heat resistance is improved. From such a viewpoint, it is preferable that the formation thickness of the first gas in at least one cycle in the atomic layer deposition method is 0.2 nm / cycle or more. On the other hand, the film thickness formed in at least one cycle is preferably 0.5 nm / cycle or less. By setting the formed film thickness to 0.5 nm / cycle or less, a region having an excessively high carbon concentration does not exist, and the initial gas barrier performance is maintained, which is preferable. In addition, the said suitable cycle speed may be satisfy | filled in all the cycles, and a part in cycle may satisfy | fill the said suitable cycle speed. For example, in the first half cycle (substrate side) of the film formation, the cycle rate is within the above-mentioned preferable range, and in the second half cycle (surface side), the normal cycle speed (for example, 0.05 to 0.2 nm / cycle) For example, a mode in which gas is introduced. Here, the region on the substrate side is specifically a region having a film thickness of 30% or more, preferably 40% or more, more preferably 50% or more from the substrate side, and preferably 80%. % Or less.
 上記(3)の方法の場合、酸化剤の酸化力が強力であると、原料ガスの酸化進行度を制御することが難しくなる。このため、酸化剤の中でも、反応の進行がマイルドで原料ガスの分子層の酸化を制御しやすいことから、酸化剤として水またはオゾンを用いることが好ましい。 In the case of the above method (3), if the oxidizing power of the oxidizing agent is strong, it becomes difficult to control the progress of oxidation of the raw material gas. For this reason, it is preferable to use water or ozone as the oxidant since the progress of the reaction is mild and the oxidation of the molecular layer of the source gas is easy to control.
 上記(4)の方法の場合、第2の層を形成時の基材温度が高いと原料ガスの分子層と酸化ガスとの反応が進行しやすく、原料ガスの酸化が進行しやすいため、第2の層中の炭素濃度が減少する。具体的には、第2のガス反応時の基材温度は120℃以下であることが好ましく、100℃以下であることが好ましい。なお、基材温度の下限は特に制限されないが、製膜温度は、ガス分子の基材への吸着のため基材表面の活性化が必要であり、製膜温度は、ある程度高温であることが好ましい。このため、プラスチック基材を用いる場合、反応時の基材温度は50℃以上であることが好ましい。 In the case of the above method (4), if the substrate temperature at the time of forming the second layer is high, the reaction between the molecular layer of the source gas and the oxidizing gas easily proceeds, and the oxidation of the source gas easily proceeds. The carbon concentration in the second layer is reduced. Specifically, the substrate temperature during the second gas reaction is preferably 120 ° C. or less, and preferably 100 ° C. or less. The lower limit of the substrate temperature is not particularly limited, but the film formation temperature requires activation of the substrate surface for adsorption of gas molecules to the substrate, and the film formation temperature may be high to some extent. preferable. For this reason, when using a plastic base material, it is preferable that the base-material temperature at the time of reaction is 50 degreeC or more.
 上記(2)~(4)は複数組み合わせてもよいし、全てを組み合わせてもよい。 A plurality of (2) to (4) may be combined, or all may be combined.
 ALD法において用いられる原料ガス、反応ガスおよび不活性ガスは従来公知のものを用いることができる。 Conventional materials known in the art can be used as the source gas, reaction gas, and inert gas used in the ALD method.
 例えば、第2の層の無機酸化物が酸化アルミニウムの場合、前記第1のガスはアルミニウム化合物を気化して得られるガスであり、前記第2のガスは酸化性ガスでありうる。また、不活性ガスは、上記第1のガスおよび/または第2のガスと反応しないガスである。 For example, when the inorganic oxide of the second layer is aluminum oxide, the first gas may be a gas obtained by vaporizing an aluminum compound, and the second gas may be an oxidizing gas. The inert gas is a gas that does not react with the first gas and / or the second gas.
 反応ガスとしては特に制限されず、形成する無機酸化物膜によって原料ガスを適宜選択すればよく、例えば、M.Ritala:Appl.Surf.Sci.112,223(1997)に記載のものを使用することができる。 The reaction gas is not particularly limited, and the source gas may be appropriately selected depending on the inorganic oxide film to be formed. Ritala: Appl. Surf. Sci. 112, 223 (1997) can be used.
 上述のように本発明において用いる反応ガスは炭素原子を含む化合物を気化して得られるガスを含むことが好ましい。 As described above, the reaction gas used in the present invention preferably contains a gas obtained by vaporizing a compound containing carbon atoms.
 炭素原子を含む化合物としては、トリメチルアルミニウム(TMA)、トリエチルアルミニウム(TEA)などのアルミニウム化合物;アミノシラン系のテトラキスジメチルアミノシラン(Si[N(CH、4DMAS)、トリスジメチルアミノシラン(Si[N(CHH、3DMASi)、ビスジエチルアミノシラン(Si[N(C、2DEAS)、ビスターシャリーブチルアミノシラン(SiH[NH(C)]、BTBAS)などのケイ素化合物;チタン(IV)イソプロポキシド(Ti[(OCH)(CH)、テトラキスジメチルアミノチタン([(CHN]Ti、TDMAT)、テトラキスジエチルアミノチタン(Ti[N(CHCH、TDEATi)、テトラメチルチタン(Ti(CH、テトラキス(エチルメチルアミノ)チタン(Ti[N(CH、TMEAT)などのチタン化合物;テトラキスジメチルアミノジルコニウム(IV)([(CHN]Zr)などのジルコニウム化合物などが挙げられる。 Examples of the compound containing a carbon atom include aluminum compounds such as trimethylaluminum (TMA) and triethylaluminum (TEA); aminosilane-based tetrakisdimethylaminosilane (Si [N (CH 3 ) 2 ] 4 , 4DMAS), trisdimethylaminosilane (Si [N (CH 3 ) 2 ] 3 H, 3DMASi), bisdiethylaminosilane (Si [N (C 2 H 5 ) 2 ] 2 H 2 , 2DEAS), Vistaly butylaminosilane (SiH 2 [NH (C 4 H 9) )] 2 , BTBAS) and the like; titanium (IV) isopropoxide (Ti [(OCH) (CH 3 ) 2 ] 4 ), tetrakisdimethylaminotitanium ([(CH 3 ) 2 N] 4 Ti, TDMAT ), Tetrakisdiethylaminotitanium (Ti [N (C 2 CH 3) 2] 4, TDEATi), tetramethyl titanium (Ti (CH 3) 4, tetrakis (ethylmethylamino) titanium (Ti [N (CH 2 C 2 H 5) 2] 4, TMEAT) titanium such as Compound: Examples include zirconium compounds such as tetrakisdimethylaminozirconium (IV) ([(CH 3 ) 2 N] 4 Zr).
 その他、上記炭素原子を含む化合物に加えて、その他の化合物を気化して得られるガスを含んでいてもよい。その他の化合物としては、トリクロロアルミニウム;モノクロロシラン(SiHCl、MCS)、ヘキサクロロジシラン(SiCl、HCD)、テトラクロロシラン(SiCl、STC)、トリクロロシラン(SiHCl、TCS)等の他のクロロシラン系や、トリシラン(Si、TS)、ジシラン(Si、DS)、モノシラン(SiH、MS)等の無機原料;四塩化チタン(TiCl)などが挙げられる。 In addition, in addition to the compound containing the carbon atom, a gas obtained by vaporizing the other compound may be included. Other compounds include trichloroaluminum; monochlorosilane (SiH 3 Cl, MCS), hexachlorodisilane (Si 2 Cl 6 , HCD), tetrachlorosilane (SiCl 4 , STC), trichlorosilane (SiHCl 3 , TCS), etc. Chlorosilanes, inorganic materials such as trisilane (Si 3 H 8 , TS), disilane (Si 2 H 6 , DS), monosilane (SiH 4 , MS); titanium tetrachloride (TiCl 4 ) and the like.
 第1のガスとしては、第1の層の微小欠陥の補修が効果的であり、初期のガスバリア性能が向上することから、分子量が240以下の化合物を気化して得られることが好ましい。分子量が240以下である化合物としては、トリメチルアルミニウム(TMA、分子量72.1)、トリエチルアルミニウム(TEA、分子量114.17)、テトラメトキシチタン(Ti(CH、分子量172)、テトラキスジメチルアミノチタン([(CHN]Ti、TDMAT、分子量224.21)などが挙げられる。 The first gas is preferably obtained by vaporizing a compound having a molecular weight of 240 or less because it is effective to repair minute defects in the first layer and the initial gas barrier performance is improved. Compounds having a molecular weight of 240 or less include trimethylaluminum (TMA, molecular weight 72.1), triethylaluminum (TEA, molecular weight 114.17), tetramethoxytitanium (Ti (CH 3 ) 4 , molecular weight 172), tetrakisdimethylamino And titanium ([(CH 3 ) 2 N] 4 Ti, TDMAT, molecular weight 224.21).
 酸化性ガスとしては、ガス分子層を酸化できるものであれば特に制限はなく、例えば、オゾン(O)、水(HO)、過酸化水素(H)、メタノール(CHOH)、およびエタノール(COH)等が用いられうる。また、酸素ラジカルを用いることも可能である。ラジカルを用いる場合は、高周波電源(例えば、周波数13.56MHzの電源)を用いてガスを励起させることで、高密度な酸素ラジカルを生じさせることが可能であり、酸化および窒化反応をより促進させることができる。装置の大型化や実用性等を考慮すると、13.56MHzの電源を用いたICP(InductivelyCoupledPlasma)モードでの放電が望ましい。中でも、反応の進行がマイルドで原料ガスの分子層の酸化を制御しやすいことから、酸化剤として水またはオゾンを用いることが好ましい(上記方法(3)の形態)。 The oxidizing gas is not particularly limited as long as it can oxidize the gas molecular layer. For example, ozone (O 3 ), water (H 2 O), hydrogen peroxide (H 2 O 2 ), methanol (CH 3 ). OH), ethanol (C 2 H 5 OH) and the like can be used. It is also possible to use oxygen radicals. In the case of using radicals, it is possible to generate high-density oxygen radicals by exciting the gas using a high-frequency power source (for example, a power source having a frequency of 13.56 MHz), which further promotes oxidation and nitridation reactions. be able to. Considering the increase in size and practicality of the apparatus, it is desirable to discharge in ICP (Inductively Coupled Plasma) mode using a 13.56 MHz power source. Among them, it is preferable to use water or ozone as the oxidizing agent because the reaction progress is mild and the oxidation of the molecular layer of the source gas is easy to control (form of the above method (3)).
 また、窒化物、及び窒酸化物にしたい場合は、窒素ラジカルを用いることができる。窒素ラジカルは、前述酸素ラジカル生成と同様にして生成することができる。 In addition, nitrogen radicals can be used when nitrides and nitride oxides are desired. Nitrogen radicals can be generated in the same manner as the oxygen radical generation described above.
 不活性ガス(パージガス)としては、希ガス(ヘリウム、ネオン、アルゴン、クリプトン、キセノン)、窒素ガス等が用いられうる。 As the inert gas (purge gas), a rare gas (helium, neon, argon, krypton, xenon), nitrogen gas, or the like can be used.
 第2のガスの導入時間は、10秒以下であることが好ましく、5秒以下であることがより好ましい。第2のガスの導入時間が5秒以下であることで、第2の層の反応が完全に進行せず、第2の層内の炭素濃度の制御が容易であることから好ましい。また、第2のガスの導入時間は、0.1秒以上であることが好ましく、0.5秒以上であることがより好ましい。第2のガスの導入時間が0.5秒以上であることで、無機酸化物等を形成させガスバリア性能を高めることができることから好ましい。 The introduction time of the second gas is preferably 10 seconds or less, and more preferably 5 seconds or less. It is preferable that the introduction time of the second gas is 5 seconds or less because the reaction of the second layer does not proceed completely and the carbon concentration in the second layer is easily controlled. The introduction time of the second gas is preferably 0.1 seconds or more, and more preferably 0.5 seconds or more. It is preferable that the introduction time of the second gas is 0.5 seconds or longer because an inorganic oxide or the like can be formed and the gas barrier performance can be improved.
 第2のガスをパージするための不活性ガスの導入時間は、0.05~10秒であることが好ましい。不活性ガスの導入時間が0.05秒以上であると、第2のガスを十分にパージできることから好ましい。一方、不活性ガスの導入時間が10秒以下であると、1サイクルに要する時間が低減でき、形成された原子層への影響が少ないことから好ましい。 The introduction time of the inert gas for purging the second gas is preferably 0.05 to 10 seconds. It is preferable that the introduction time of the inert gas is 0.05 seconds or longer because the second gas can be sufficiently purged. On the other hand, an inert gas introduction time of 10 seconds or less is preferable because the time required for one cycle can be reduced and the influence on the formed atomic layer is small.
 第2の層は、ロールツーロール方式の成膜装置を用いて形成してもよい。第1の層をロールツーロール方式で生産する場合、継続してロールツーロール方式でフィルムを製造できるため、第2の層をロールツーロール方式の成膜装置を用いて形成させると生産性が向上し、好ましい。ロールツーロール方式により第2の層を形成させる際に用いる装置としては、米国特許出願公開第2007/0224348号公報や米国特許出願公開第2008/0026162号公報に記載の装置を用いることができる。 The second layer may be formed using a roll-to-roll film forming apparatus. When the first layer is produced by the roll-to-roll method, the film can be continuously produced by the roll-to-roll method. Therefore, when the second layer is formed using a roll-to-roll film forming apparatus, productivity is improved. Improved and preferred. As an apparatus used when forming the second layer by the roll-to-roll method, apparatuses described in US Patent Application Publication No. 2007/0224348 and US Patent Application Publication No. 2008/0026162 can be used.
 更に、ロールツーロール方式による第2の層の形成としては、特表2010-541242号等に記載のように、下記図3や図4のような装置を用いることもできる。図3のALD成膜用のロールツーロール装置では、送り出しローラー80から(第1の層および必要により他の層が積層された)基材82が巻き出され、巻き取りローラー81にて巻き取られる。送り出しローラー80から巻き取りローラー81に搬送される間に、コーティングヘッドより供給されるガスにより第2の層が形成される。図4のALD成膜用のロールツーロール装置では、送り出しローラー83から(第1の層および必要により他の層が積層された)基材84が巻き出され、基材は、ガイドロール85を経て、MR(メインロール)86上に供給される。MR上にはコーティングヘッド87が配置され、基材84はコーティングヘッドから供給されるガスに暴露される。基材84は、コーティングヘッドに供給される前に、温度調節手段90により、温度が適宜調整される。次いで、第2の層が形成された基材84はガイドロール88を経て、巻き取りローラ-89で巻き取られる。なお、ガイドロールは成膜面(バリア面)と接触し水蒸気透過率の劣化がないように、特開2009-256709号のような段付きロールを用いてもよい。更に、巻き取り時の成膜面への傷を抑制するために、巻き取りローラーにより巻き取る前に粘着性保護フィルムを成膜面に張り付ける、又は保護層を設けると、巻き取り時のダメージを抑制できより好ましい(図3および4に示す「保護フィルム(の)巻き」)。特に粘着性保護フィルムを備えることにより、ガスバリア性フィルム表面を損傷から保護するのに役立ち、かつ、ガスバリア性フィルムを適用する対象物に設置し易い。粘着性保護フィルムとしては、ガスバリア性フィルムに適用できれば、特に制限はなく、従来公知のものを使用でき、例えば、アクリル系樹脂、ウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ポリアミド、ケトン樹脂、ビニル樹脂、炭化水素樹脂等で形成されたものを使用できる。 Furthermore, as the formation of the second layer by the roll-to-roll method, as described in JP-T 2010-541242, an apparatus as shown in FIGS. 3 and 4 can be used. In the roll-to-roll apparatus for ALD film formation in FIG. 3, the substrate 82 (on which the first layer and other layers are laminated if necessary) is unwound from the feed roller 80, and taken up by the take-up roller 81. It is done. While being conveyed from the feed roller 80 to the take-up roller 81, the second layer is formed by the gas supplied from the coating head. In the roll-to-roll apparatus for ALD film formation in FIG. 4, the base material 84 (with the first layer and other layers laminated if necessary) is unwound from the feed roller 83, and the base material is guided by the guide roll 85. Then, it is supplied onto the MR (main roll) 86. A coating head 87 is disposed on the MR, and the substrate 84 is exposed to a gas supplied from the coating head. The temperature of the substrate 84 is appropriately adjusted by the temperature adjusting means 90 before being supplied to the coating head. Next, the base material 84 on which the second layer is formed passes through the guide roll 88 and is taken up by the take-up roller-89. As the guide roll, a stepped roll as disclosed in JP-A-2009-256709 may be used so as to be in contact with the film formation surface (barrier surface) and the water vapor transmission rate is not deteriorated. Furthermore, in order to suppress scratches on the film-forming surface during winding, if an adhesive protective film is attached to the film-forming surface before winding with a winding roller or a protective layer is provided, damage during winding will occur. Is more preferable ("protective film winding" shown in FIGS. 3 and 4). In particular, by providing an adhesive protective film, it helps to protect the gas barrier film surface from damage, and is easy to install on an object to which the gas barrier film is applied. The adhesive protective film is not particularly limited as long as it can be applied to a gas barrier film, and conventionally known ones can be used. For example, acrylic resin, urethane resin, epoxy resin, polyester resin, melamine resin, phenol resin, polyamide, Those formed of a ketone resin, a vinyl resin, a hydrocarbon resin or the like can be used.
 図5は、図3および図4に記載の装置で用いられるALD成膜用のコーティングヘッドの一例を示す模式図である。図5について説明すると、コーティングヘッド70は、原料ガスを供給する原料ガス供給装置71、不活性ガスを供給する不活性ガス供給装置72、第2のガスを供給する第2のガス供給装置、ガス導入管74および排気管75を有する。(第1の層および必要により他の層が積層された)基材76はA~B方向に搬送される。初めにガス導入管74を通じて第1のガス(原料ガス)供給装置71から原料ガスが基材に供給される。供給されたガスは次いで排気管75を通じて排気される。次いで、基材76に不活性ガス供給装置72から不活性ガスを導入し、原料ガスをパージ(除去)する。次に、ガス導入管74を通じて第2のガス(例えば、酸化性ガス)供給装置73から第2のガスを導入し無機膜が形成される。最後に、不活性ガス供給装置72から不活性ガスを導入することにより、第2のガスをパージし、ALD法の1サイクルが完了する。不活性ガスおよび第2のガスは、次工程のガス供給前に排気管を通じて排気される。なお、原料ガスおよび第2のガスは、不活性ガス(キャリアガス)と混合されて供給されてもよい(図3および図4参照)。コーティングヘッド内には、所望の膜厚を達成するために必要なサイクル数分のガス導入管および排気管を設ければよく、また、複数のコーティングヘッドを用いて、所望のサイクル数としてもよい。 FIG. 5 is a schematic diagram showing an example of a coating head for ALD film formation used in the apparatus shown in FIGS. Referring to FIG. 5, the coating head 70 includes a source gas supply device 71 that supplies a source gas, an inert gas supply device 72 that supplies an inert gas, a second gas supply device that supplies a second gas, and a gas. An introduction pipe 74 and an exhaust pipe 75 are provided. The substrate 76 (laminated with the first layer and other layers if necessary) is conveyed in the A to B directions. First, the source gas is supplied from the first gas (source gas) supply device 71 through the gas introduction pipe 74 to the base material. The supplied gas is then exhausted through the exhaust pipe 75. Next, an inert gas is introduced into the base material 76 from the inert gas supply device 72 and the source gas is purged (removed). Next, the second gas is introduced from the second gas (for example, oxidizing gas) supply device 73 through the gas introduction pipe 74 to form an inorganic film. Finally, the inert gas is introduced from the inert gas supply device 72 to purge the second gas, and one cycle of the ALD method is completed. The inert gas and the second gas are exhausted through the exhaust pipe before the gas supply in the next step. The source gas and the second gas may be supplied after being mixed with an inert gas (carrier gas) (see FIGS. 3 and 4). In the coating head, it suffices to provide as many gas introduction pipes and exhaust pipes as the number of cycles necessary to achieve a desired film thickness, and a plurality of coating heads may be used to obtain the desired number of cycles. .
 これらのロールツーロール方式で製造できるALD装置を用いることで、高い生産性で、ALD膜を形成することができる。 By using an ALD apparatus that can be manufactured by these roll-to-roll methods, an ALD film can be formed with high productivity.
 〔基材〕
 本発明のガスバリア性フィルムは、通常、基材として、プラスチックフィルムを用いる。用いられるプラスチックフィルムは、バリア性積層体を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
〔Base material〕
The gas barrier film of the present invention usually uses a plastic film as a substrate. The plastic film to be used is not particularly limited in material, thickness and the like as long as it can hold the barrier laminate, and can be appropriately selected depending on the purpose of use and the like. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
 ガスバリア性フィルムは有機EL素子等のデバイスとして利用されうることから、プラスチックフィルムは透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the gas barrier film can be used as a device such as an organic EL element, the plastic film is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 ガスバリア性フィルムに用いられるプラスチックフィルムの厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1~800μmであり、好ましくは10~200μmである。これらのプラスチックフィルムは、透明導電層、平滑層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006-289627号公報の段落番号0036~0038に記載されているものを好ましく採用できる。 The thickness of the plastic film used for the gas barrier film is appropriately selected depending on the application and is not particularly limited, but is typically 1 to 800 μm, preferably 10 to 200 μm. These plastic films may have functional layers such as a transparent conductive layer and a smooth layer. As the functional layer, in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくとも、バリア層を設ける側を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
 また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the base material using the above-described resins or the like may be an unstretched film or a stretched film.
 基材の両面、少なくとも本発明に係るバリア層(硬化型樹脂層)を設ける側には、接着性向上のための公知の種々の処理、コロナ放電処理、火炎処理、酸化処理、プラズマ処理、もしくは平滑層の積層等を、必要に応じて組み合わせて行うことができる。 Various known treatments for improving adhesion, corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, or both sides of the substrate, at least on the side where the barrier layer (curable resin layer) according to the present invention is provided, or The smooth layers can be laminated and combined as necessary.
 〔中間層〕
 上述の基材、第1の層、および第2の層間または表面には、本発明の効果を損なわない範囲で別途中間層を設けてもよい。
[Middle layer]
An intermediate layer may be separately provided on the substrate, the first layer, and the second interlayer or the surface as long as the effects of the present invention are not impaired.
 第2の層上に、ケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して得られる層または硬化性樹脂層を有することが好ましい。かような層を有することで、バリア層を基材の熱膨張、屈曲などの応力から保護するという効果がある。 It is preferable to have a layer or a curable resin layer obtained by modifying a coating film formed by applying a liquid containing a silicon compound on the second layer. By having such a layer, there is an effect of protecting the barrier layer from stress such as thermal expansion and bending of the substrate.
 (ケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して得られる層(以下、単にケイ素化合物改質層とも称する))
 (ケイ素化合物)
 ケイ素化合物としては、ケイ素化合物を含有する塗布液の調製が可能であれば特に限定はされない。
(A layer obtained by modifying a coating film formed by applying a liquid containing a silicon compound (hereinafter also simply referred to as a silicon compound modified layer))
(Silicon compound)
The silicon compound is not particularly limited as long as a coating solution containing the silicon compound can be prepared.
 具体的には、例えば、パーヒドロポリシラザン、オルガノポリシラザン、シルセスキオキサン、テトラメチルシラン、トリメチルメトキシシラン、ジメチルジメトキシシラン、メチルトリメトキシシラン、トリメチルエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、テトラメトキシシラン、テトラメトキシシラン、ヘキサメチルジシロキサン、ヘキサメチルジシラザン、1,1-ジメチル-1-シラシクロブタン、トリメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、エチルトリメトキシシラン、ジメチルジビニルシラン、ジメチルエトキシエチニルシラン、ジアセトキシジメチルシラン、ジメトキシメチル-3,3,3-トリフルオロプロピルシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、アリールトリメトキシシラン、エトキシジメチルビニルシラン、アリールアミノトリメトキシシラン、N-メチル-N-トリメチルシリルアセトアミド、3-アミノプロピルトリメトキシシラン、メチルトリビニルシラン、ジアセトキシメチルビニルシラン、メチルトリアセトキシシラン、アリールオキシジメチルビニルシラン、ジエチルビニルシラン、ブチルトリメトキシシラン、3-アミノプロピルジメチルエトキシシラン、テトラビニルシラン、トリアセトキシビニルシラン、テトラアセトキシシラン、3-トリフルオロアセトキシプロピルトリメトキシシラン、ジアリールジメトキシシラン、ブチルジメトキシビニルシラン、トリメチル-3-ビニルチオプロピルシラン、フェニルトリメチルシラン、ジメトキシメチルフェニルシラン、フェニルトリメトキシシラン、3-アクリロキシプロピルジメトキシメチルシラン、3-アクリロキシプロピルトリメトキシシラン、ジメチルイソペンチロキシビニルシラン、2-アリールオキシエチルチオメトキシトリメチルシラン、3-グリシドキシプロピルトリメトキシシラン、3-アリールアミノプロピルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ジメチルエチキシフェニルシラン、ベンゾイロキシトリメチルシラン、3-メタクリロキシプロピルジメトキシメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、ジメチルエトキシ-3-グリシドキシプロピルシラン、ジブトキシジメチルシラン、3-ブチルアミノプロピルトリメチルシラン、3-ジメチルアミノプロピルジエトキシメチルシラン、2-(2-アミノエチルチオエチル)トリエトキシシラン、ビス(ブチルアミノ)ジメチルシラン、ジビニルメチルフェニルシラン、ジアセトキシメチルフェニルシラン、ジメチル-p-トリルビニルシラン、p-スチリルトリメトキシシラン、ジエチルメチルフェニルシラン、ベンジルジメチルエトキシシラン、ジエトキシメチルフェニルシラン、デシルメチルジメトキシシラン、ジエトキシ-3-グリシドキシプロピルメチルシラン、オクチロキシトリメチルシラン、フェニルトリビニルシラン、テトラアリールオキシシラン、ドデシルトリメチルシラン、ジアリールメチルフェニルシラン、ジフェニルメチルビニルシラン、ジフェニルエトキシメチルシラン、ジアセトキシジフェニルシラン、ジベンジルジメチルシラン、ジアリールジフェニルシラン、オクタデシルトリメチルシラン、メチルオクタデシルジメチルシラン、ドコシルメチルジメチルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,4-ビス(ジメチルビニルシリル)ベンゼン、1,3-ビス(3-アセトキシプロピル)テトラメチルジシロキサン、1,3,5-トリメチル-1,3,5-トリビニルシクロトリシロキサン、1,3,5-トリス(3,3,3-トリフルオロプロピル)-1,3,5-トリメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラエトキシ-1,3,5,7-テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等を挙げることができる。 Specifically, for example, perhydropolysilazane, organopolysilazane, silsesquioxane, tetramethylsilane, trimethylmethoxysilane, dimethyldimethoxysilane, methyltrimethoxysilane, trimethylethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, Tetramethoxysilane, tetramethoxysilane, hexamethyldisiloxane, hexamethyldisilazane, 1,1-dimethyl-1-silacyclobutane, trimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, ethyltrimethoxysilane, dimethyldivinylsilane, dimethyl Ethoxyethynylsilane, diacetoxydimethylsilane, dimethoxymethyl-3,3,3-trifluoropropylsilane, 3,3,3-trifluoro Ropropyltrimethoxysilane, aryltrimethoxysilane, ethoxydimethylvinylsilane, arylaminotrimethoxysilane, N-methyl-N-trimethylsilylacetamide, 3-aminopropyltrimethoxysilane, methyltrivinylsilane, diacetoxymethylvinylsilane, methyltriacetoxy Silane, aryloxydimethylvinylsilane, diethylvinylsilane, butyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, tetravinylsilane, triacetoxyvinylsilane, tetraacetoxysilane, 3-trifluoroacetoxypropyltrimethoxysilane, diaryldimethoxysilane, butyldimethoxy Vinylsilane, trimethyl-3-vinylthiopropylsilane, phenyltrimethylsila , Dimethoxymethylphenylsilane, phenyltrimethoxysilane, 3-acryloxypropyldimethoxymethylsilane, 3-acryloxypropyltrimethoxysilane, dimethylisopentyloxyvinylsilane, 2-aryloxyethylthiomethoxytrimethylsilane, 3-glycidoxy Propyltrimethoxysilane, 3-arylaminopropyltrimethoxysilane, hexyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane, dimethylethoxyphenylsilane, benzoyloxytrimethylsilane, 3-methacryloxypropyldimethoxymethylsilane, 3- Methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, dimethylethoxy-3-glycidoxypropylsilane, di Butoxydimethylsilane, 3-butylaminopropyltrimethylsilane, 3-dimethylaminopropyldiethoxymethylsilane, 2- (2-aminoethylthioethyl) triethoxysilane, bis (butylamino) dimethylsilane, divinylmethylphenylsilane, di Acetoxymethylphenylsilane, dimethyl-p-tolylvinylsilane, p-styryltrimethoxysilane, diethylmethylphenylsilane, benzyldimethylethoxysilane, diethoxymethylphenylsilane, decylmethyldimethoxysilane, diethoxy-3-glycidoxypropylmethylsilane , Octyloxytrimethylsilane, phenyltrivinylsilane, tetraaryloxysilane, dodecyltrimethylsilane, diarylmethylphenylsilane, diphenylmethyl Vinylsilane, diphenylethoxymethylsilane, diacetoxydiphenylsilane, dibenzyldimethylsilane, diaryldiphenylsilane, octadecyltrimethylsilane, methyloctadecyldimethylsilane, docosylmethyldimethylsilane, 1,3-divinyl-1,1,3,3- Tetramethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,4-bis (dimethylvinylsilyl) benzene, 1,3-bis (3-acetoxypropyl) tetramethyldi Siloxane, 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane, 1,3,5-tris (3,3,3-trifluoropropyl) -1,3,5-trimethylcyclotri Siloxane, octamethylcyclotetrasiloxane, 1,3, , It may be mentioned 7-tetraethoxy-1,3,5,7-tetramethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and the like.
 中でも、成膜性、クラック等の欠陥が少ないこと、残留有機物の少なさの点で、パーヒドロポリシラザン、オルガノポリシラザン等のポリシラザン;シルセスキオキサン等のポリシロキサン等が好ましく、ガスバリア性能が高く、屈曲時および高温高湿条件下であってもバリア性能が維持されることから、ポリシラザンがより好ましい。 Among them, polysilazane such as perhydropolysilazane and organopolysilazane; polysiloxane such as silsesquioxane, etc. are preferable in terms of film formation, fewer defects such as cracks, and less residual organic matter, and high gas barrier performance. Polysilazane is more preferable because the barrier performance is maintained even when bent and under high temperature and high humidity conditions.
 ポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 Polysilazane is a polymer having a silicon-nitrogen bond, such as SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H, and ceramics such as both intermediate solid solutions SiO x N y. It is a precursor inorganic polymer.
 ポリシラザンとしては、具体的には国際公開2012-077553号(米国特許出願2013/236710号明細書)の段落「0103」~「0117」、特開2013-226758号公報の段落「0038」~「0056」に記載のポリシラザンが挙げられる。 Specific examples of polysilazanes include paragraphs “0103” to “0117” of International Publication No. 2012-077753 (US Patent Application No. 2013/236710) and paragraphs “0038” to “0056” of JP2013-226758A. And polysilazane described in the above.
 ケイ素化合物改質層中におけるポリシラザンの含有率としては、ケイ素化合物改質層の全重量を100重量%としたとき、100重量%でありうる。また、ケイ素化合物改質層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10重量%以上99重量%以下であることが好ましく、40重量%以上95重量%以下であることがより好ましく、特に好ましくは70重量%以上95重量%以下である。 The content of polysilazane in the silicon compound modified layer may be 100% by weight when the total weight of the silicon compound modified layer is 100% by weight. When the silicon compound-modified layer contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by weight or more and 99% by weight or less, and 40% by weight or more and 95% by weight or less. More preferably, it is 70 wt% or more and 95 wt% or less.
 ケイ素化合物改質層の形成方法は、特に制限されず、公知の方法が適用できるが、有機溶剤中にケイ素化合物および必要に応じて触媒を含むケイ素化合物改質層形成用塗布液を公知の湿式塗布方法により塗布し、この溶剤を蒸発させて除去し、次いで、改質処理を行う方法が好ましい。 The method for forming the silicon compound modified layer is not particularly limited, and a known method can be applied. However, a coating liquid for forming a silicon compound modified layer containing a silicon compound and, if necessary, a catalyst in an organic solvent is used in a known wet process. A method of applying by a coating method, evaporating and removing the solvent, and then performing a modification treatment is preferable.
 (ケイ素化合物改質層形成用塗布液)
 ケイ素化合物改質層形成用塗布液を調製するための溶剤としては、ケイ素化合物を溶解できるものであれば特に制限されないが、ケイ素化合物と容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ケイ素化合物に対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ケイ素化合物の溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
(Coating liquid for forming silicon compound modified layer)
The solvent for preparing the coating solution for forming the silicon compound modified layer is not particularly limited as long as it can dissolve the silicon compound, but water and reactive groups (for example, hydroxyl group) that easily react with the silicon compound. An organic solvent that is inert to the silicon compound and more preferably an aprotic organic solvent. Specifically, the solvent includes an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben. Hydrogen solvents; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to the purpose such as the solubility of the silicon compound and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.
 ケイ素化合物改質層形成用塗布液におけるケイ素化合物の濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1~80重量%、より好ましくは5~50重量%である。 The concentration of the silicon compound in the coating solution for forming a silicon compound-modified layer is not particularly limited and varies depending on the film thickness of the layer and the pot life of the coating solution, but is preferably 1 to 80% by weight, more preferably 5 to 50. % By weight.
 ケイ素化合物改質層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。 The coating solution for forming a silicon compound modified layer preferably contains a catalyst in order to promote the modification.
 また、特開2005-231039号に記載のようにケイ素化合物改質層の形成にゾルゲル法を用いることができる。 Further, as described in JP-A-2005-231039, a sol-gel method can be used for forming the silicon compound modified layer.
 (ケイ素化合物改質層形成用塗布液を塗布する方法)
 ケイ素化合物改質層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
(Method of applying a coating solution for forming a silicon compound modified layer)
As a method for applying the silicon compound-modified layer forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method.
 塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが10nm~10μm程度であることが好ましく、15nm~1μmであることがより好ましく、20~500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The coating thickness can be appropriately set according to the purpose. For example, the coating thickness is preferably about 10 nm to 10 μm after drying, more preferably 15 nm to 1 μm, and even more preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 μm or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
 塗布液を塗布した後は、塗膜を乾燥させることが好ましい。 After applying the coating solution, it is preferable to dry the coating film.
 ケイ素化合物改質層形成用塗布液を塗布して得られた塗膜(以下、単にケイ素化合物塗膜とする)は、改質処理前または改質処理中に水分を除去する工程を含んでいてもよい。 A coating film obtained by applying a coating solution for forming a silicon compound modified layer (hereinafter simply referred to as a silicon compound coating film) includes a step of removing moisture before or during the modification treatment. Also good.
 (ケイ素化合物改質層の改質処理)
 本発明における改質処理とは、ケイ素化合物の酸化ケイ素または酸化窒化ケイ素への転化反応を指し、具体的には本発明のガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10-3g/(m・24h)以下)を発現するに貢献できるレベルの無機薄膜を形成する処理をいう。したがって、ケイ素化合物改質層もガスバリア性を有するガスバリア層である。
(Modification treatment of silicon compound modified layer)
The modification treatment in the present invention refers to a conversion reaction of a silicon compound into silicon oxide or silicon oxynitride. Specifically, the gas barrier film of the present invention as a whole has a gas barrier property (water vapor permeability is 1 × 10 −2). 3 g / (m 2 · 24 h) or less) is a treatment for forming an inorganic thin film at a level that can contribute to the development. Therefore, the silicon compound modified layer is also a gas barrier layer having gas barrier properties.
 ケイ素化合物の酸化ケイ素または酸化窒化ケイ素への転化反応は、ケイ素化合物改質層の転化反応に基づく公知の方法を選ぶことができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理、熱処理が挙げられる、特に真空紫外線照射処理が好ましい。各処理の方法、具体的条件は、国際公開2012-077553号(米国特許出願2013/236710号明細書)の段落「0132」~「0162」、特開2013-232320号 段落「0075」~「0095」などに記載の方法、条件を適宜用いることができる。 As the conversion reaction of the silicon compound to silicon oxide or silicon oxynitride, a known method based on the conversion reaction of the silicon compound modified layer can be selected. Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment, and vacuum ultraviolet irradiation treatment is particularly preferable. The method and specific conditions for each treatment are described in paragraphs “0132” to “0162” of International Publication No. 2012-077753 (US Patent Application No. 2013/236710), paragraphs “0075” to “0095” of JP2013-232320A. Or the like can be appropriately used.
 ケイ素化合物改質層の厚さは、目的に応じて適切に設定され得る。例えば、ケイ素化合物改質層の厚さは、10nm~10μm程度であることが好ましく、15nm~1μmであることがより好ましく、20~500nmであることがさらに好ましい。膜厚が10nm以上であれば十分なバリア性を得ることができ、10μm以下であれば、層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。 The thickness of the silicon compound modified layer can be appropriately set according to the purpose. For example, the thickness of the silicon compound modified layer is preferably about 10 nm to 10 μm, more preferably 15 nm to 1 μm, and further preferably 20 to 500 nm. If the film thickness is 10 nm or more, sufficient barrier properties can be obtained, and if it is 10 μm or less, stable coating properties can be obtained during layer formation, and high light transmittance can be realized.
 (硬化性樹脂層)
 ガスバリア性フィルムは、基材上に、硬化性樹脂を硬化させて形成されてなる硬化性樹脂層を有していてもよい。硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でもまたは2種以上組み合わせて用いてもよい。
(Curable resin layer)
The gas barrier film may have a curable resin layer formed by curing a curable resin on a substrate. The curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material with an active energy ray such as ultraviolet ray to be cured is heated. The thermosetting resin etc. which are obtained by curing by the above method. These curable resins may be used alone or in combination of two or more.
 かような硬化性樹脂層は、(1)基材表面を平滑にする、(2)積層される上層の応力を緩和する、(3)基材と上層との接着性を高める、の少なくとも一つの機能を有する。このため、該硬化性樹脂層は、後述の、平滑層、アンカーコート層(易接着層)と兼用されてもよい。 Such a curable resin layer is at least one of (1) smoothing the surface of the substrate, (2) relieving the stress of the upper layer to be laminated, and (3) improving the adhesion between the substrate and the upper layer. Has one function. For this reason, the curable resin layer may also be used as a smooth layer and an anchor coat layer (easy adhesion layer) described later.
 活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。 Examples of the active energy ray-curable material include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene Examples thereof include compositions containing polyfunctional acrylate monomers such as glycol acrylate and glycerol methacrylate. Specifically, it is possible to use a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series (compound formed by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) manufactured by JSR Corporation. it can. It is also possible to use any mixture of the above-mentioned compositions, and an active energy ray-curable material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no restriction in particular.
 硬化性樹脂層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。 The thickness of the curable resin layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 (プライマー層(平滑層))
 ガスバリア性フィルムは、基材のバリア層を有する面にプライマー層(平滑層)を有していてもよい。プライマー層は突起等が存在する基材の粗面を平坦化するために設けられる。このようなプライマー層は、基本的には、活性エネルギー線硬化性材料または熱硬化性材料等を硬化させて形成される。プライマー層は、上記のような機能を有していれば、基本的に上記の硬化性樹脂層と同じ構成をとっても構わない。
(Primer layer (smooth layer))
The gas barrier film may have a primer layer (smooth layer) on the surface of the substrate having the barrier layer. The primer layer is provided for flattening the rough surface of the substrate on which protrusions and the like exist. Such a primer layer is basically formed by curing an active energy ray-curable material or a thermosetting material. The primer layer may basically have the same configuration as the curable resin layer as long as it has the above-described function.
 前記活性エネルギー線硬化性材料および前記熱硬化性材料の例、およびプライマー層の形成方法は、上記の硬化性樹脂層の欄で説明したものと同様であるので、ここでは説明を省略する。 The examples of the active energy ray-curable material and the thermosetting material, and the method for forming the primer layer are the same as those described in the column of the curable resin layer, and thus the description thereof is omitted here.
 プライマー層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。 The thickness of the primer layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 なお、該平滑層は、下記アンカーコート層として用いてもよい。 The smooth layer may be used as the following anchor coat layer.
 (アンカーコート層)
 基材表面には、バリア層との接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)を用いることができる。
(Anchor coat layer)
On the surface of the base material, an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving the adhesion (adhesion) with the barrier layer. Examples of the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One or two or more can be used in combination. A commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5g/m(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do. The application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state). A commercially available base material with an easy-adhesion layer may be used.
 または、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。 Alternatively, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10.0μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 μm.
 (ブリードアウト防止層)
 ガスバリア性フィルムにおいては、ブリードアウト防止層を設けることができる。ブリードアウト防止層は、硬化性樹脂層/平滑層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、硬化性樹脂層/平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に硬化性樹脂層/平滑層と同じ構成をとっても構わない。ブリードアウト防止層の構成材料、形成方法等は、特開2013-52561号公報の段落「0249」~「0262」に開示される材料、方法等が適宜採用される。
(Bleed-out prevention layer)
In the gas barrier film, a bleed-out prevention layer can be provided. The purpose of the bleed-out prevention layer is to suppress the phenomenon in which unreacted oligomers migrate from the film base material to the surface when the film having the curable resin layer / smooth layer is heated and contaminate the contact surface. And provided on the opposite surface of the substrate having the curable resin layer / smooth layer. The bleed-out prevention layer may basically have the same configuration as the curable resin layer / smooth layer as long as it has this function. As the constituent material and forming method of the bleed-out preventing layer, the materials and methods disclosed in paragraphs “0249” to “0262” of JP2013-52561A are appropriately employed.
 ブリードアウト防止層の厚さとしては、1~10μm、好ましくは2~7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、硬化性樹脂層/平滑層を透明高分子フィルムの一方の面に設けた場合におけるガスバリア性フィルムのカールを抑え易くすることができるようになる。 The thickness of the bleed-out preventing layer is 1 to 10 μm, preferably 2 to 7 μm. By making it 1 μm or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 μm or less, it becomes easy to adjust the balance of optical properties of the smooth film, and the curable resin layer / smooth layer is transparent. When it is provided on one surface of the polymer film, curling of the gas barrier film can be easily suppressed.
 ガスバリア性フィルムには、必要に応じてさらに別の有機層や保護層、吸湿層、帯電防止層等の機能化層を設けることができる。 The gas barrier film may be further provided with functionalized layers such as another organic layer, a protective layer, a hygroscopic layer, and an antistatic layer as necessary.
 [ガスバリア性フィルムの製造方法]
 本発明のガスバリア性フィルムの製造方法の好適な一実施形態は、基材を搬送速度1m/分以上で対向ロール電極を持つプラズマCVD装置に搬送してケイ素、酸素および炭素を含有する第1の層を形成する段階と、原子層堆積法により無機酸化物を含む第2の層を形成する段階と、を含む、ガスバリア性フィルムの製造方法である。また、原子堆積法において、酸化剤として少なくとも水またはオゾンを用いることがより好ましい。水またはオゾンは第1の層に物理的影響を与えることが少ないため、下層に対して微小欠陥等を発生させることが少ない。なお、第1の層への影響を考慮すれば、第1の層の表面~5nm程度まで酸化剤として水またはオゾンを用いてALD法により無機酸化物を形成させれば、それ以上の膜形成では、例えばICPなどを用いて酸素ラジカルにより無機酸化物を形成させてもよい。したがって、本発明の製造方法による好適な形態は、少なくとも、第1の層の表面から積層方向5nmまで、酸化剤として水またはオゾンを用いる原子層堆積法により第2の層を形成する方法である。各工程の詳細は各層で上述したとおりである。
[Method for producing gas barrier film]
In a preferred embodiment of the method for producing a gas barrier film of the present invention, the substrate is transferred to a plasma CVD apparatus having a counter roll electrode at a transfer speed of 1 m / min or more and contains silicon, oxygen and carbon. A method for producing a gas barrier film, comprising: forming a layer; and forming a second layer containing an inorganic oxide by an atomic layer deposition method. In the atomic deposition method, it is more preferable to use at least water or ozone as the oxidizing agent. Since water or ozone rarely has a physical influence on the first layer, micro defects or the like are rarely generated in the lower layer. If the influence on the first layer is taken into consideration, if an inorganic oxide is formed by ALD using water or ozone as the oxidizing agent from the surface of the first layer to about 5 nm, further film formation is possible. Then, for example, an inorganic oxide may be formed by oxygen radicals using ICP or the like. Therefore, a preferred embodiment according to the manufacturing method of the present invention is a method of forming the second layer by an atomic layer deposition method using water or ozone as an oxidizing agent at least from the surface of the first layer to the stacking direction of 5 nm. . Details of each step are as described above for each layer.
 〔電子デバイス〕
 上記したような本発明のガスバリア性フィルムは、優れたガスバリア性、透明性、屈曲性を有する。このため、本発明のガスバリア性フィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリア性フィルムおよびこれを用いた電子デバイスなど、様々な用途に使用することができる。
[Electronic device]
The gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, and flexibility. Therefore, the gas barrier film of the present invention is a gas barrier film used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various purposes such as an electronic device using the same.
 (電子素子本体)
 電子素子本体は電子デバイスの本体であり、本発明に係るガスバリア性フィルム側に配置される。電子素子本体としては、ガスバリア性フィルムによる封止が適用されうる公知の電子デバイスの本体が使用できる。例えば、有機EL素子、太陽電池(PV)、液晶表示素子(LCD)、電子ペーパー、薄膜トランジスタ、タッチパネル等が挙げられる。本発明の効果がより効率的に得られるという観点から、該電子素子本体は、有機EL素子または太陽電池であることが好ましい。これらの電子素子本体の構成についても、特に制限はなく、従来公知の構成を有しうる。
(Electronic element body)
The electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side according to the present invention. As the electronic element body, a known electronic device body to which sealing with a gas barrier film can be applied can be used. For example, an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic element body is preferably an organic EL element or a solar battery. There is no restriction | limiting in particular also about the structure of these electronic element main bodies, It can have a conventionally well-known structure.
 以下、具体的な電子素子本体の一例として有機EL素子およびこれを用いた有機ELパネルについて説明する。 Hereinafter, an organic EL element and an organic EL panel using the same will be described as an example of a specific electronic element body.
 本発明に係るガスバリア性フィルム10を封止フィルムとして用いた電子機器である有機ELパネル9の一例を図6に示す。有機ELパネル9は、図6に示すように、ガスバリア性フィルム10と、ガスバリア性フィルム10上に形成されたITOなどの透明電極4と、透明電極4を介してガスバリア性フィルム10上に形成された有機EL素子5と、その有機EL素子5を覆うように接着剤層6を介して配設された対向フィルム7等を備えている。なお、透明電極4は、有機EL素子5の一部を成すともいえる。このガスバリア性フィルム10におけるガスバリア層が形成された面に、透明電極4と有機EL素子5が形成されるようになっている。また、対向フィルム7は、アルミ箔などの金属フィルムのほか、本発明に係るガスバリア性フィルムを用いてもよい。対向フィルム7にガスバリア性フィルムを用いる場合、ガスバリア層が形成された面を有機EL素子5に向けて、接着剤層6によって貼付するようにすればよい。 FIG. 6 shows an example of an organic EL panel 9 which is an electronic device using the gas barrier film 10 according to the present invention as a sealing film. As shown in FIG. 6, the organic EL panel 9 is formed on the gas barrier film 10 through the gas barrier film 10, the transparent electrode 4 such as ITO formed on the gas barrier film 10, and the transparent electrode 4. The organic EL element 5 and a counter film 7 disposed via an adhesive layer 6 so as to cover the organic EL element 5 are provided. It can be said that the transparent electrode 4 forms part of the organic EL element 5. The transparent electrode 4 and the organic EL element 5 are formed on the surface of the gas barrier film 10 on which the gas barrier layer is formed. The counter film 7 may be a gas barrier film according to the present invention in addition to a metal film such as an aluminum foil. When a gas barrier film is used as the counter film 7, the surface on which the gas barrier layer is formed may be attached to the organic EL element 5 with the adhesive layer 6.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 (実施例1:ガスバリア性フィルム1の作製)
 <試料の調製>
 (基材)
 熱可塑性樹脂である、両面に易接着加工された125μm厚みのポリエステルフィルム(帝人デュポンフィルム株式会社製、極低熱収PET Q83)を基材として用いた。
(Example 1: Production of gas barrier film 1)
<Preparation of sample>
(Base material)
A 125 μm thick polyester film (manufactured by Teijin DuPont Films Ltd., extremely low heat yield PET Q83), which is a thermoplastic resin and is easily bonded on both sides, was used as a base material.
 (ブリードアウト防止層の形成)
 上記基材の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7535を塗布、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件;80℃、3分で乾燥後、空気下、高圧水銀ランプ使用、硬化条件;1.0J/cmで硬化を行い、ブリードアウト防止層を形成した。
(Formation of bleed-out prevention layer)
A UV curable organic / inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation was applied to one side of the substrate, and after applying with a die coater so that the film thickness after drying was 4 μm, drying conditions: 80 ° C., After drying for 3 minutes, curing was performed in air using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a bleed-out prevention layer.
 (硬化性樹脂層(平滑層)の形成)
 続けて上記基材の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材OPSTAR Z7501を塗布、乾燥後の膜厚が4μmになるようにダイコーターで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;1.0J/cmで硬化を行い、硬化性樹脂層を形成した。
(Formation of curable resin layer (smooth layer))
Subsequently, a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation is applied to the opposite surface of the base material, and is applied with a die coater so that the film thickness after drying is 4 μm, followed by drying conditions; After drying at 80 ° C. for 3 minutes, curing was performed in an air atmosphere using a high-pressure mercury lamp, curing conditions: 1.0 J / cm 2 to form a curable resin layer.
 (ガスバリア性フィルム1の作製)
 (第1の層の形成)
 図1に示す真空プラズマCVD装置を用いて、下記成膜条件にて硬化性樹脂層上に第1の層を形成した。
(Preparation of gas barrier film 1)
(Formation of the first layer)
A first layer was formed on the curable resin layer using the vacuum plasma CVD apparatus shown in FIG.
 (CVD法による成膜条件)
 真空プラズマCVD装置を用いて硬化性樹脂層上に厚さ50nmのSiOC膜を成膜した。なお、カソード電極に電圧を印加する電源としては27.12MHzの高周波電源を用い、電極間距離を20mmとした。原料ガスとしては流量7.5sccmのヘキサメチルジシロキサン(HMDSO)を用い、流量30sccmの酸素ガスとともに真空槽内へ導入した。また、成膜開始時の基材温度を100℃、成膜時の装置内圧を30Paに設定した。
(Deposition conditions by CVD method)
A 50 nm thick SiOC film was formed on the curable resin layer using a vacuum plasma CVD apparatus. As a power source for applying a voltage to the cathode electrode, a high frequency power source of 27.12 MHz was used, and the distance between the electrodes was set to 20 mm. Hexamethyldisiloxane (HMDSO) with a flow rate of 7.5 sccm was used as a source gas, and was introduced into the vacuum chamber together with an oxygen gas with a flow rate of 30 sccm. Further, the substrate temperature at the start of film formation was set to 100 ° C., and the internal pressure of the apparatus at the time of film formation was set to 30 Pa.
 続いて、同じ真空プラズマCVD装置を用いて、SiOC膜上に厚さ50nmのSiO膜を成膜した。電源としては27.12MHzの高周波電源を用い、電極間距離を20mmとした。原料ガスとしては流量7.5sccmのシランガスを用い、流量30sccmの酸素ガスとともに真空槽内へ導入した。また、成膜開始時の基材温度を100℃、成膜時の装置内圧を30Paに設定した。 Subsequently, a SiO 2 film having a thickness of 50 nm was formed on the SiOC film using the same vacuum plasma CVD apparatus. A 27.12 MHz high frequency power source was used as the power source, and the distance between the electrodes was 20 mm. Silane gas with a flow rate of 7.5 sccm was used as the source gas, and was introduced into the vacuum chamber together with oxygen gas with a flow rate of 30 sccm. The substrate temperature at the start of film formation was set to 100 ° C., and the internal pressure of the apparatus at the time of film formation was set to 30 Pa.
 続いて、同じ真空プラズマCVD装置を用いて、SiO膜上に厚さ50nmのSiOC膜を成膜し、これらの膜(厚さ50nmのSiOC膜及び厚さ50nmのSiO膜及び厚さ50nmのSiOC膜)によってガスバリア層を形成した。電源としては27.12MHzの高周波電源を用い、電極間距離を20mmとした。原料ガスとしては流量7.5sccmのヘキサメチルジシロキサン(HMDSO)を用い、流量30sccmの酸素ガスとともに真空槽内へ導入した。また、成膜開始時の基材温度を100℃、成膜時の装置内圧を30Paに設定した。 Subsequently, using the same vacuum plasma CVD apparatus, a SiOC film having a thickness of 50 nm was formed on the SiO 2 film, and these films (a SiOC film having a thickness of 50 nm and a SiO 2 film having a thickness of 50 nm and a thickness of 50 nm were formed). A gas barrier layer was formed from the SiOC film. A 27.12 MHz high frequency power source was used as the power source, and the distance between the electrodes was 20 mm. Hexamethyldisiloxane (HMDSO) with a flow rate of 7.5 sccm was used as a source gas, and was introduced into the vacuum chamber together with an oxygen gas with a flow rate of 30 sccm. Further, the substrate temperature at the start of film formation was set to 100 ° C., and the internal pressure of the apparatus at the time of film formation was set to 30 Pa.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が20.1nmとなるまでサイクルを繰り返した。また、成膜速度は、0.3nm/cycleであった(67サイクル)。ALD膜の成膜速度は、以下に記載の透過型電子顕微鏡による断面観察により、膜厚を測定し、その膜厚を形成するまでに要した第一のガス、パージガス、第2のガス、パージガスを1サイクルとしたサイクル数で割った値を成膜速度とした。
(Formation of second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 20.1 nm. The deposition rate was 0.3 nm / cycle (67 cycles). The film formation speed of the ALD film is determined by measuring the film thickness by cross-sectional observation using the transmission electron microscope described below, and the first gas, purge gas, second gas, and purge gas required to form the film thickness. The film formation rate was obtained by dividing the value by the number of cycles taken as one cycle.
 <各層の膜厚の測定方法>
 透過型電子顕微鏡(TEM)による断面観察により、各層の膜厚を10箇所測定し、平均した値を膜厚とした。
<Measurement method of film thickness of each layer>
The film thickness of each layer was measured at 10 locations by cross-sectional observation with a transmission electron microscope (TEM), and the average value was taken as the film thickness.
 (膜厚方向の断面のTEM画像)
 断面TEM観察として、観察試料を以下のFIB加工装置により薄片作成後、TEM観察を行った。(FIB加工)
 装置:SII製SMI2050
 加工イオン:(Ga 30kV)
 試料厚み:100nm~200nm(TEM観察)
 装置:日本電子製JEM2000FX(加速電圧:200kV)
 尚、1サイクルの各ガスの供給時間は以下の通りであった。
(TEM image of cross section in film thickness direction)
As a cross-sectional TEM observation, the observation sample was made into a thin piece by the following FIB processing apparatus, and then subjected to TEM observation. (FIB processing)
Device: SII SMI2050
Processed ions: (Ga 30 kV)
Sample thickness: 100 nm to 200 nm (TEM observation)
Apparatus: JEOL JEM2000FX (acceleration voltage: 200 kV)
In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (実施例2:ガスバリア性フィルム2の作製)
 ガスバリアフィルム1において、第1の層を以下のように形成した以外はガスバリアフィルム1の作製と同様にしてガスバリア性フィルム2を作製した。
・ First gas TMA 0.05sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Example 2: Production of gas barrier film 2)
In the gas barrier film 1, a gas barrier film 2 was produced in the same manner as in the production of the gas barrier film 1 except that the first layer was formed as follows.
 (第1の層の形成)
 図1に示す真空プラズマCVD装置を用いて、下記成膜条件にて硬化性樹脂層上に第1の層を形成した。
(Formation of the first layer)
A first layer was formed on the curable resin layer using the vacuum plasma CVD apparatus shown in FIG.
 (CVD法による成膜条件)
 真空プラズマCVD装置を用いて、硬化性樹脂層上に厚さ50nmのSiO膜を成膜した。電源としては27.12MHzの高周波電源を用い、電極間距離を20mmとした。原料ガスとしては流量7.5sccmのシランガスを用い、流量30sccmの酸素ガスとともに真空槽内へ導入した。また、成膜開始時の基材温度を100℃、成膜時の装置内圧を30Paに設定した。
(Deposition conditions by CVD method)
A SiO 2 film having a thickness of 50 nm was formed on the curable resin layer using a vacuum plasma CVD apparatus. A 27.12 MHz high frequency power source was used as the power source, and the distance between the electrodes was 20 mm. Silane gas with a flow rate of 7.5 sccm was used as the source gas, and was introduced into the vacuum chamber together with oxygen gas with a flow rate of 30 sccm. The substrate temperature at the start of film formation was set to 100 ° C., and the internal pressure of the apparatus at the time of film formation was set to 30 Pa.
 (実施例3:ガスバリア性フィルム3の作製)
 ガスバリア性フィルム1において、第2の層を以下のように形成した以外は同様にしてガスバリア性フィルム3を作製した。
(Example 3: Production of gas barrier film 3)
In the gas barrier film 1, a gas barrier film 3 was produced in the same manner except that the second layer was formed as follows.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が15nmとなるまでサイクルを繰り返した。成膜速度は、0.3nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
(Formation of second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 15 nm. The film formation rate was 0.3 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が5nmとなるまでサイクルを繰り返した。成膜速度は、0.1nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TMA 0.05sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
· Purge gas N 2 10.0sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 5 nm. The film formation rate was 0.1 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (実施例4:ガスバリア性フィルム4の作製)
 ガスバリア性フィルム2に於いて、第2の層を以下のように形成した以外は同様にしてガスバリア性フィルム4を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Example 4: Production of gas barrier film 4)
In the gas barrier film 2, a gas barrier film 4 was produced in the same manner except that the second layer was formed as follows.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が15nmとなるまでサイクルを繰り返した。また、成膜速度は、0.3nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
(Formation of second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 15 nm. The deposition rate was 0.3 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が5nmとなるまでサイクルを繰り返した。また、成膜速度は、0.1nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TMA 0.05sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 5 nm. The deposition rate was 0.1 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (実施例5:ガスバリア性フィルム5の作製)
 ガスバリア性フィルム3において、第1の層を以下のように形成した以外は同様にしてガスバリア性フィルム5を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Example 5: Production of gas barrier film 5)
In the gas barrier film 3, a gas barrier film 5 was produced in the same manner except that the first layer was formed as follows.
 (第1の層の形成)
 図2に示す真空プラズマCVD装置を用いて、下記成膜条件にて硬化性樹脂層上に第1の層を250nm形成した。このとき、第1の層の膜厚の80%以上の領域で、(i)下記式(A):式(A)(炭素の原子比)<(ケイ素の原子比)<(酸素の原子比)で表される序列の大小関係を有し、(ii)前記第1の層の膜厚方向における前記第1の層表面からの距離(L)と、酸素原子の量に対する炭素原子の量の比率との関係を示す炭素/酸素分布曲線において、前記炭素/酸素分布曲線が5個の極値を有していた。
(Formation of the first layer)
A first layer of 250 nm was formed on the curable resin layer using the vacuum plasma CVD apparatus shown in FIG. At this time, in the region of 80% or more of the film thickness of the first layer, (i) the following formula (A): formula (A) (atomic ratio of carbon) <(atomic ratio of silicon) <(atomic ratio of oxygen) (Ii) the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the amount of carbon atoms relative to the amount of oxygen atoms. In the carbon / oxygen distribution curve showing the relationship with the ratio, the carbon / oxygen distribution curve had five extreme values.
 [プラズマ成膜条件]
〈製膜条件〉
 ・原料ガス(HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:3Pa
 ・プラズマ発生用電源からの印加電力:1.2kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度;1m/min
 ・TR通過回数;2回
 (実施例6:ガスバリア性フィルム6の作製)
 ガスバリア性フィルム5において、第2の層に続いて、以下条件で更にケイ素化合物改質層を形成した以外は同様にしてガスバリア性フィルム6を作製した。
[Plasma deposition conditions]
<Film forming conditions>
・ Supply amount of source gas (HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 3Pa
・ Applied power from the power source for plasma generation: 1.2 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film transport speed: 1 m / min
-Number of times TR passed; 2 times (Example 6: Production of gas barrier film 6)
In the gas barrier film 5, a gas barrier film 6 was produced in the same manner except that a silicon compound modified layer was further formed under the following conditions following the second layer.
 (ケイ素化合物改質層の形成)
 (ポリシラザン塗布液の調製)
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(アクアミカ NN120-20:AZエレクトロニックマテリアルズ株式会社製)と、5質量%のアミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン)及び20質量%のパーヒドロポリシラザンを含むジブチルエーテル溶液(アクアミカ NAX120-20:AZエレクトロニックマテリアルズ株式会社製)と、を4:1の比率(質量比)で混合し、さらにジブチルエーテルで、塗布液の固形分が10重量%になるように、塗布液を希釈調製した。ポリシラザン塗布液を調製した。得られた塗布液は、アミン触媒が1質量%(固形分)であった。
(Formation of silicon compound modified layer)
(Preparation of polysilazane coating solution)
Dibutyl ether solution containing 20% by mass of non-catalytic perhydropolysilazane (Aquamica NN120-20: manufactured by AZ Electronic Materials Co., Ltd.) and 5% by mass of amine catalyst (N, N, N ′, N′-tetramethyl- 1,6-diaminohexane) and a dibutyl ether solution containing 20% by mass of perhydropolysilazane (Aquamica NAX120-20: manufactured by AZ Electronic Materials Co., Ltd.) at a ratio (mass ratio) of 4: 1, Further, the coating solution was diluted with dibutyl ether so that the solid content of the coating solution was 10% by weight. A polysilazane coating solution was prepared. The obtained coating liquid was 1% by mass (solid content) of the amine catalyst.
 (ポリシラザン塗布液の塗布、乾燥)
 上記で調製したポリシラザン塗布液を、乾燥後の層厚が100nmとなる条件で酸素濃度21%程度の大気下で第2の層上に塗布し、酸素濃度21%程度の雰囲気で100℃で2分間乾燥させて、ポリシラザン層を設けた試料を得た。塗布にはスピンコーターを用い、常温で塗布を行った。
(Application of polysilazane coating solution, drying)
The polysilazane coating solution prepared above was applied on the second layer in the atmosphere with an oxygen concentration of about 21% under the condition that the layer thickness after drying was 100 nm, and was applied at 100 ° C. in an atmosphere with an oxygen concentration of about 21%. The sample was provided with a polysilazane layer by drying for a minute. The application was performed at room temperature using a spin coater.
 (改質処理)
 ポリシラザン層を形成した上記試料を、以下の改質処理装置の稼動ステージ上に固定した後、以下の条件で改質処理を行って、ガスバリアー性フィルム6を作製した。なお、改質処理条件における「Pass数」とは、ポリシラザン層の改質にあたって試料がエキシマ光(紫外線)照射領域を通過する回数である。
(Modification process)
After fixing the sample on which the polysilazane layer was formed on the operation stage of the following reforming treatment apparatus, the reforming treatment was performed under the following conditions to produce a gas barrier film 6. The “Pass number” in the modification treatment condition is the number of times that the sample passes through the excimer light (ultraviolet) irradiation region in modifying the polysilazane layer.
 《改質処理装置》
 装置     :株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長     :172nm
 ランプ封入ガス:Xe
 《改質処理条件》
 エキシマ光強度   :130mW/cm(172nm)
 試料と光源の距離  :1mm
 ステージ加熱温度  :70℃
 照射装置内の酸素濃度:0.1体積%
 フィルムの搬送速度 :0.6m/min
 Pass数     :1回
 エキシマ照射時間  :5秒
 1Passでポリシラザン塗膜に照射されるエネルギー:3.0J/cm
 (実施例7:ガスバリア性フィルム7の作製)
 ガスバリア性フィルム5において、第2の層を以下のように形成した以外は同様にしてガスバリア性フィルム7を作製した。
《Reforming treatment equipment》
Apparatus: Ex D-irradiator MODEL manufactured by M.D. Com: MECL-M-1-200
Wavelength: 172 nm
Lamp filled gas: Xe
<Reforming treatment conditions>
Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 0.1% by volume
Film transport speed: 0.6 m / min
Pass number: 1 time Excimer irradiation time: 5 seconds Energy irradiated to polysilazane coating film at 1 Pass: 3.0 J / cm 2
(Example 7: Production of gas barrier film 7)
In the gas barrier film 5, a gas barrier film 7 was produced in the same manner except that the second layer was formed as follows.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTDMAT(テトラキスジメチルアミノチタン)、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が15nmとなるまでサイクルを繰り返した。また、成膜速度は、0.25nm/cycleであった(60サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
(Formation of the second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TDMAT (tetrakis). Dimethylaminotitanium), H 2 O as the second gas, and nitrogen as the purge gas were used, and the cycle was repeated until the film thickness reached 15 nm. The deposition rate was 0.25 nm / cycle (60 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TDMAT  0.05sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が5nmとなるまでサイクルを繰り返した。また、成膜速度は、0.1nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TDMAT 0.05sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 5 nm. The deposition rate was 0.1 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (実施例8:ガスバリア性フィルム8の作製)
 ガスバリアフィルム5において、第2の層を以下のように形成した以外は同様にしてガスバリアフィルム8を作成した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Example 8: Production of gas barrier film 8)
In the gas barrier film 5, a gas barrier film 8 was produced in the same manner except that the second layer was formed as follows.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が15.2nmとなるまでサイクルを繰り返した。また、成膜速度は、0.4nm/cycleであった(38サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
(Formation of the second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 15.2 nm. The deposition rate was 0.4 nm / cycle (38 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.10sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が5nmとなるまでサイクルを繰り返した。また、成膜速度は、0.1nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TMA 0.10 sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 5 nm. The deposition rate was 0.1 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (実施例9:ガスバリア性フィルム9の作製)
 ガスバリアフィルム3において、第2の層を以下のように形成した以外は同様にしてガスバリアフィルム9を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Example 9: Production of gas barrier film 9)
In the gas barrier film 3, a gas barrier film 9 was produced in the same manner except that the second layer was formed as follows.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはテトラキス(エチルメチルアミド)チタン(IV)(TMEAT)分子量280.28、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が14.8nmとなるまでサイクルを繰り返した。また、成膜速度は、0.2nm/cycleであった(74サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
(Formation of second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is tetrakis (ethyl). Methylamido) titanium (IV) (TMEAT) molecular weight 280.28, H 2 O as the second gas, nitrogen as the purge gas, and the cycle was repeated until the film thickness reached 14.8 nm. The film formation rate was 0.2 nm / cycle (74 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMEAT  0.05sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が5nmとなるまでサイクルを繰り返した。また、成膜速度は、0.1nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TMEAT 0.05sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 5 nm. The deposition rate was 0.1 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (実施例10:ガスバリア性フィルム10の作製)
 ガスバリア性フィルム5において、第2の層を以下のように形成した以外は同様にしてガスバリア性フィルム10を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Example 10: Production of gas barrier film 10)
In the gas barrier film 5, a gas barrier film 10 was produced in the same manner except that the second layer was formed as follows.
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が7.2nmとなるまでサイクルを繰り返した。成膜速度は、0.3nm/cycleであった(24サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。 An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 7.2 nm. The film formation rate was 0.3 nm / cycle (24 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が12.8nmとなるまでサイクルを繰り返した。成膜速度は、0.1nm/cycleであった(128サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TMA 0.05sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
· Purge gas N 2 10.0sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, The cycle was repeated until the film thickness reached 12.8 nm using H 2 O as the gas 2 and nitrogen as the purge gas. The film formation rate was 0.1 nm / cycle (128 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (比較例1:ガスバリア性フィルム11の作製)
 ガスバリアフィルム1において、第2の層を以下のように形成した以外は同様にしてガスバリアフィルム11を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Comparative Example 1: Production of gas barrier film 11)
In the gas barrier film 1, a gas barrier film 11 was produced in the same manner except that the second layer was formed as follows.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が20nmとなるまでサイクルを繰り返した。また、成膜速度は、0.1nm/cycleであった(200サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
(Formation of second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 20 nm. The deposition rate was 0.1 nm / cycle (200 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (比較例2:ガスバリア性フィルム12の作製)
 ガスバリアフィルム1において、第2の層を以下のように形成した以外は同様にしてガスバリアフィルム12を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Comparative Example 2: Production of gas barrier film 12)
In the gas barrier film 1, a gas barrier film 12 was produced in the same manner except that the second layer was formed as follows.
 (第2の層の形成)
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が15.2nmとなるまでサイクルを繰り返した。また、成膜速度は、0.4nm/cycleであった(38サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
(Formation of second layer)
An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 15.2 nm. The deposition rate was 0.4 nm / cycle (38 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.15sec
 ・パージガス N   1.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が5nmとなるまでサイクルを繰り返した。また、成膜速度は、0.1nm/cycleであった(50サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TMA 0.15sec
・ Purge gas N 2 1.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 5 nm. The deposition rate was 0.1 nm / cycle (50 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (比較例3:ガスバリア性フィルム13の作製)
 ガスバリア性フィルム9において、第2の層を以下のように形成した以外は同様にしてガスバリア性フィルム13を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Comparative Example 3: Production of gas barrier film 13)
In the gas barrier film 9, a gas barrier film 13 was produced in the same manner except that the second layer was formed as follows.
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が3.6nmとなるまでサイクルを繰り返した。成膜速度は、0.3nm/cycleであった(12サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。 An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used for gas No. 2 and nitrogen was used for purge gas, and the cycle was repeated until the film thickness reached 3.6 nm. The film formation rate was 0.3 nm / cycle (12 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   1.5sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 続いて、Cambridge NanoTech社製、Savannah S200を用いて、更にALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が16.4nmとなるまでサイクルを繰り返した。成膜速度は、0.1nm/cycleであった(164サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。
・ First gas TMA 0.05sec
· Purge gas N 2 1.5sec
・ Second gas H 2 O 1.0 sec
· Purge gas N 2 10.0sec
Subsequently, an ALD film was further formed by using Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 16.4 nm. The film formation rate was 0.1 nm / cycle (164 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  0.05sec
 ・パージガス N   15.0sec
 ・第2のガス HO  1.0sec
 ・パージガス N   10.0sec
 (比較例4:ガスバリア性フィルム14の作製)
 ガスバリア性フィルム11において、第2の層を以下のように形成した以外は同様にしてガスバリア性フィルム14を作製した。
・ First gas TMA 0.05sec
・ Purge gas N 2 15.0 sec
・ Second gas H 2 O 1.0 sec
・ Purge gas N 2 10.0 sec
(Comparative Example 4: Production of gas barrier film 14)
In the gas barrier film 11, a gas barrier film 14 was produced in the same manner except that the second layer was formed as follows.
 Cambridge NanoTech社製、Savannah S200を用いて、ALD膜を形成した。ここで、基材の温度を100℃に保持し、チャンバ内のベース圧は13.3~26.6Pa(0.1~0.2Torr)の窒素雰囲気とし、第1のガスにはTMA、第2のガスにはHO、パージガスには窒素をそれぞれ用い、膜厚が20nmとなるまでサイクルを繰り返した。成膜速度は、0.4nm/cycleであった(100サイクル)。尚、1サイクルの各ガスの供給時間は以下の通りであった。 An ALD film was formed using a Savannah S200 manufactured by Cambridge NanoTech. Here, the temperature of the substrate is maintained at 100 ° C., the base pressure in the chamber is a nitrogen atmosphere of 13.3 to 26.6 Pa (0.1 to 0.2 Torr), and the first gas is TMA, H 2 O was used as the gas No. 2 and nitrogen was used as the purge gas, and the cycle was repeated until the film thickness reached 20 nm. The film formation rate was 0.4 nm / cycle (100 cycles). In addition, the supply time of each gas of 1 cycle was as follows.
 ・第1のガス TMA  2.0sec
 ・パージガス N   2.0sec
 ・第2のガス HO  2.0sec
 ・パージガス N   2.0sec
<水蒸気透過率の評価方法>
 以下の測定方法に従って、各ガスバリア性フィルムの透過水分量を測定し、下記の基準に従って、水蒸気バリア性を評価した(下記表2、初期のWVTR)。
・ First gas TMA 2.0sec
・ Purge gas N 2 2.0 sec
・ Second gas H 2 O 2.0 sec
・ Purge gas N 2 2.0 sec
<Evaluation method of water vapor transmission rate>
The permeated water amount of each gas barrier film was measured according to the following measurement method, and the water vapor barrier property was evaluated according to the following criteria (Table 2, below, initial WVTR).
 (装置)
 蒸着装置:日本電子株式会社製、真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価用セルの作製)
 試料のバリア層面に、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウム(粒状)を蒸着させた(蒸着膜厚80nm)。その後、真空状態のままマスクを取り去り、シート片側全面に水蒸気不透過性の金属である金属アルミニウム(φ3~5mm、粒状)をもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。
(apparatus)
Vapor deposition device: JEOL Ltd., vacuum evaporation device JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation cell)
Using a vacuum deposition device (manufactured by JEOL Ltd., vacuum deposition device JEE-400) on the surface of the barrier layer of the sample, the portion of the gas barrier film sample to be deposited before attaching the transparent conductive film (9 locations of 12 mm x 12 mm) The metal calcium (granular form) was vapor-deposited (deposition film thickness 80 nm). Thereafter, the mask was removed in a vacuum state, and metal aluminum (φ3 to 5 mm, granular), which is a water vapor impermeable metal, was deposited on the entire surface of one side of the sheet from another metal deposition source. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
 得られた試料を、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。 Based on the method described in Japanese Patent Application Laid-Open No. 2005-283561, the amount of moisture permeated into the cell was calculated from the corrosion amount of metallic calcium.
 なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under high temperature and high humidity at 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 以上により測定された各ガスバリア性フィルムの透過水分量(g/m・day;表中の「WVTR」)をCa法によって評価し、以下のようにランク付けした。なお、ランク3以上であれば実使用上問題なく、合格品である。 The permeated water amount (g / m 2 · day; “WVTR” in the table) of each gas barrier film measured as described above was evaluated by the Ca method and ranked as follows. In addition, if it is rank 3 or more, there is no problem in actual use and it is a pass product.
 (ランク評価)
 5:1×10-4g/m/day未満
 4:1×10-4g/m/day以上、5×10-4g/m/day未満
 3:5×10-4g/m/day以上、1×10-3g/m/day未満
 2:1×10-3g/m/day以上、1×10-2g/m/day未満
 1:1×10-2g/m/day以上
 〔高温高湿耐性の評価〕
 得られたガスバリア性フィルムについて、屈曲させず、85℃、85%RHに調整した高温高湿槽(恒温恒湿度オーブン:Yamato Humidic ChamberIG47M)内に、100時間連続で保管し、その後、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理したフィルムを、同様にして水蒸気透過率を測定し、同様のランク評価を行った。なお、ランク3以上であれば実使用上問題なく、合格品である。
(Rank evaluation)
Less than 5: 1 × 10 −4 g / m 2 / day 4: 1 × 10 −4 g / m 2 / day or more and less than 5 × 10 −4 g / m 2 / day 3: 5 × 10 −4 g / day m 2 / day or more, less than 1 × 10 −3 g / m 2 / day 2: 1 × 10 −3 g / m 2 / day or more, less than 1 × 10 −2 g / m 2 / day 1: 1 × 10 -2 g / m 2 / day or more [Evaluation of resistance to high temperature and high humidity]
The obtained gas barrier film was stored for 100 hours continuously in a high-temperature and high-humidity tank (constant temperature and humidity oven: Yamato Humidic Chamber IG47M) adjusted to 85 ° C. and 85% RH without being bent. The film was repeatedly bent 100 times at an angle of 180 degrees so as to have a curvature, and the water vapor transmission rate was measured in the same manner, and the same rank evaluation was performed. In addition, if it is rank 3 or more, there is no problem in actual use and it is a pass product.
 下記表1に各ガスバリア性フィルムの組成を示し、下記表2に評価結果を示す。なお、実施例および比較例の第1の層はいずれもバリア性能を有していた。 Table 1 below shows the composition of each gas barrier film, and Table 2 below shows the evaluation results. In addition, all the 1st layers of the Example and the comparative example had barrier performance.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記結果より、フィルムNo.1~10のガスバリア性フィルムは、初期のガスバリア性能が要求水準を満たしているとともに、高温高湿保存後であってもガスバリア性能が要求水準を満たしていた。一方、フィルムNo.11~14のガスバリア性フィルムは、初期のガスバリア性能には優れるものの、高温高湿条件下の保存によってガスバリア性能が著しく低下し、ガスバリア性能が要求水準を満たさないものとなっていた。 From the above results, film no. In the gas barrier films 1 to 10, the initial gas barrier performance met the required level, and the gas barrier performance met the required level even after storage at high temperature and high humidity. On the other hand, film No. Although the gas barrier films Nos. 11 to 14 were excellent in the initial gas barrier performance, the gas barrier performance was remarkably lowered by storage under high temperature and high humidity conditions, and the gas barrier performance did not satisfy the required level.
 本出願は、2013年6月20日に出願された日本特許出願番号2013-129963号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
 
This application is based on Japanese Patent Application No. 2013-129963 filed on June 20, 2013, the disclosure of which is incorporated by reference in its entirety.

Claims (7)

  1.  基材、バリア性能を有する第1の層、および原子層堆積法により形成される第2の層をこの順に含み、
     前記第2の層が、アルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対して炭素濃度0.3at%以上3.0at%以下の領域を第2の層の膜厚に対して30%以上含み、かつ、前記第2の層内のアルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対する炭素濃度が3.0at%以下であることを特徴とするガスバリア性フィルム。
    A substrate, a first layer having barrier performance, and a second layer formed by atomic layer deposition in this order;
    The second layer has a region having a carbon concentration of 0.3 at% or more and 3.0 at% or less with respect to the total thickness of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon with respect to the thickness of the second layer. 30% or more, and a carbon barrier film having a carbon concentration of 3.0 at% or less with respect to the total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon in the second layer .
  2.  前記第2の層の表面~少なくとも3nm以内の領域のアルミニウム、チタン、ケイ素、ジルコニウム、窒素、酸素および炭素の合計量に対する平均炭素濃度が0.3at%未満である、請求項1に記載のガスバリア性フィルム。 The gas barrier according to claim 1, wherein an average carbon concentration with respect to a total amount of aluminum, titanium, silicon, zirconium, nitrogen, oxygen and carbon in a region within a range of at least 3 nm from the surface of the second layer is less than 0.3 at%. Sex film.
  3.  前記第1の層が、下記条件(i)および(ii):
     (i)前記第1の層の膜厚方向における前記第1の層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、
     前記第1の層の膜厚の80%以上の領域で、下記式(A):式(A)  (炭素の原子比)<(ケイ素の原子比)<(酸素の原子比)または下記式(B):式(B)  (酸素の原子比)<(ケイ素の原子比)<(炭素の原子比)で表される序列の大小関係を有する、
     (ii)前記第1の層の膜厚方向における前記第1の層表面からの距離(L)と、酸素原子の量に対する炭素原子の量の比率との関係を示す炭素/酸素分布曲線において、前記炭素/酸素分布曲線が少なくとも2つの極値を有する、を満たす、請求項1または2に記載のガスバリア性フィルム。
    The first layer has the following conditions (i) and (ii):
    (I) The distance (L) from the surface of the first layer in the film thickness direction of the first layer and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (silicon atoms Ratio), a silicon distribution curve showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen), and In the carbon distribution curve showing the relationship between L and the ratio of the amount of carbon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon),
    In the region of 80% or more of the film thickness of the first layer, the following formula (A): formula (A) (atomic ratio of carbon) <(atomic ratio of silicon) <(atomic ratio of oxygen) or the following formula ( B): having an order of magnitude represented by the formula (B) (atomic ratio of oxygen) <(atomic ratio of silicon) <(atomic ratio of carbon),
    (Ii) In a carbon / oxygen distribution curve showing the relationship between the distance (L) from the surface of the first layer in the film thickness direction of the first layer and the ratio of the amount of carbon atoms to the amount of oxygen atoms, The gas barrier film according to claim 1 or 2, wherein the carbon / oxygen distribution curve satisfies at least two extreme values.
  4.  前記第2の層上に、ケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して得られる層または硬化性樹脂層をさらに有する、請求項1~3のいずれか1項に記載のガスバリア性フィルム。 The layer according to any one of claims 1 to 3, further comprising a layer obtained by modifying a coating film formed by applying a liquid containing a silicon compound on the second layer, or a curable resin layer. The gas barrier film according to Item.
  5.  基材、バリア性能を有する第1の層、および原子層堆積法により形成される第2の層をこの順に含むガスバリア性フィルムの製造方法であって、前記原子層堆積法は、炭素を含む原料ガスである第1のガスを第1の層上に導入する工程(1)と、不活性ガスを導入することにより、第2のガスをパージする工程(2)と、酸化ガスである第2のガスを導入する工程(3)と、不活性ガスを導入することにより、第2のガスをパージする工程(4)と、をこの順に含み、アルミニウム、チタン、ケイ素、ジルコニウム、酸素および炭素の合計量に対して炭素濃度0.3at%以上3.0at%以下の領域を第2の層の膜厚に対して30%以上含み、かつ、前記第2の層内のアルミニウム、チタン、ケイ素、ジルコニウム、酸素および炭素の合計量に対する炭素濃度が3.0at%以下となるように、前記工程(1)において第1のガスの導入時間を制御する、または、前記工程(2)において不活性ガスの導入時間を制御する、請求項1~4のいずれか1項に記載のガスバリア性フィルムの製造方法。 A method for producing a gas barrier film comprising, in this order, a base material, a first layer having barrier performance, and a second layer formed by an atomic layer deposition method, wherein the atomic layer deposition method is a raw material containing carbon A step (1) of introducing a first gas as a gas onto the first layer, a step (2) of purging the second gas by introducing an inert gas, and a second as an oxidizing gas. The step (3) of introducing a gas of (2) and the step (4) of purging the second gas by introducing an inert gas in this order include aluminum, titanium, silicon, zirconium, oxygen and carbon. A region having a carbon concentration of 0.3 at% or more and 3.0 at% or less with respect to the total amount includes 30% or more with respect to the thickness of the second layer, and aluminum, titanium, silicon in the second layer The combination of zirconium, oxygen and carbon The introduction time of the first gas is controlled in the step (1) or the introduction time of the inert gas is controlled in the step (2) so that the carbon concentration with respect to the amount is 3.0 at% or less. The method for producing a gas barrier film according to any one of claims 1 to 4.
  6.  前記原子層堆積法における少なくとも1サイクルの第1のガスの形成膜厚が0.2~0.5nm/サイクルである、前記原子層堆積法において用いられる反応ガスが水またはオゾンである、および前記工程(2)における基材の温度が120℃以下である、の少なくとも一を満たす、請求項5に記載のガスバリア性フィルムの製造方法。 The formation thickness of the first gas in at least one cycle in the atomic layer deposition method is 0.2 to 0.5 nm / cycle, the reaction gas used in the atomic layer deposition method is water or ozone, and The manufacturing method of the gas-barrier film of Claim 5 which satisfy | fills at least one of the temperature of the base material in a process (2) being 120 degrees C or less.
  7.  前記第1のガスが分子量240以下の化合物を気化して得られるガスである、請求項5または6に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to claim 5 or 6, wherein the first gas is a gas obtained by vaporizing a compound having a molecular weight of 240 or less.
PCT/JP2014/066030 2013-06-20 2014-06-17 Gas barrier film and method for producing same WO2014203892A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522932A JPWO2014203892A1 (en) 2013-06-20 2014-06-17 Gas barrier film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013129963 2013-06-20
JP2013-129963 2013-06-20

Publications (1)

Publication Number Publication Date
WO2014203892A1 true WO2014203892A1 (en) 2014-12-24

Family

ID=52104624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066030 WO2014203892A1 (en) 2013-06-20 2014-06-17 Gas barrier film and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2014203892A1 (en)
WO (1) WO2014203892A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182623A1 (en) * 2014-05-26 2015-12-03 コニカミノルタ株式会社 Gas barrier film and electronic device using same
WO2016152488A1 (en) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 Gas-barrier film
WO2016159206A1 (en) * 2015-04-03 2016-10-06 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
US10053548B2 (en) 2015-05-21 2018-08-21 Meidensha Corporation Method and device for modifying resin
KR20190019643A (en) * 2017-08-18 2019-02-27 주식회사 엘지화학 Laminate Film
US10253148B2 (en) 2015-03-12 2019-04-09 Meidensha Corporation Method and device for modifying resin
WO2020209202A1 (en) * 2019-04-09 2020-10-15 東ソー株式会社 Silicon oxide film, material for gas barrier film, and method for manufacturing silicon oxide film
JP2021174960A (en) * 2020-04-30 2021-11-01 東京エレクトロン株式会社 Selective film formation method
US11512177B2 (en) 2019-08-28 2022-11-29 Meidensha Corporation Reforming device and reforming method for porous material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068992A (en) * 2004-09-01 2006-03-16 Konica Minolta Holdings Inc Gas barrier film
JP2011073430A (en) * 2009-09-01 2011-04-14 Sumitomo Chemical Co Ltd Gas-barrier multilayer film
JP2011241421A (en) * 2010-05-17 2011-12-01 Toppan Printing Co Ltd Method of manufacturing gas-barrier laminated body, and gas-barrier laminated body
JP2012081632A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
WO2012077553A1 (en) * 2010-12-06 2012-06-14 コニカミノルタホールディングス株式会社 Gas-barrier film, method for producing gas-barrier film, and electronic device
WO2012081555A1 (en) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 Gas barrier laminate and method for producing gas barrier laminate
WO2014092085A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Gas barrier film, method for manufacturing same, and electronic device using same
JP5565537B1 (en) * 2012-10-19 2014-08-06 コニカミノルタ株式会社 Gas barrier film and method for producing gas barrier film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068992A (en) * 2004-09-01 2006-03-16 Konica Minolta Holdings Inc Gas barrier film
JP2011073430A (en) * 2009-09-01 2011-04-14 Sumitomo Chemical Co Ltd Gas-barrier multilayer film
JP2011241421A (en) * 2010-05-17 2011-12-01 Toppan Printing Co Ltd Method of manufacturing gas-barrier laminated body, and gas-barrier laminated body
JP2012081632A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
WO2012077553A1 (en) * 2010-12-06 2012-06-14 コニカミノルタホールディングス株式会社 Gas-barrier film, method for producing gas-barrier film, and electronic device
WO2012081555A1 (en) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 Gas barrier laminate and method for producing gas barrier laminate
JP5565537B1 (en) * 2012-10-19 2014-08-06 コニカミノルタ株式会社 Gas barrier film and method for producing gas barrier film
WO2014092085A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Gas barrier film, method for manufacturing same, and electronic device using same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182623A1 (en) * 2014-05-26 2015-12-03 コニカミノルタ株式会社 Gas barrier film and electronic device using same
US10253148B2 (en) 2015-03-12 2019-04-09 Meidensha Corporation Method and device for modifying resin
JPWO2016152488A1 (en) * 2015-03-20 2017-12-28 コニカミノルタ株式会社 Gas barrier film
WO2016152488A1 (en) * 2015-03-20 2016-09-29 コニカミノルタ株式会社 Gas-barrier film
WO2016159206A1 (en) * 2015-04-03 2016-10-06 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
US10053548B2 (en) 2015-05-21 2018-08-21 Meidensha Corporation Method and device for modifying resin
KR20190019643A (en) * 2017-08-18 2019-02-27 주식회사 엘지화학 Laminate Film
KR102093968B1 (en) * 2017-08-18 2020-03-26 주식회사 엘지화학 Laminate Film
WO2020209202A1 (en) * 2019-04-09 2020-10-15 東ソー株式会社 Silicon oxide film, material for gas barrier film, and method for manufacturing silicon oxide film
CN113785085A (en) * 2019-04-09 2021-12-10 东曹株式会社 Silicon oxide film, material for gas barrier film, and method for producing silicon oxide film
US11512177B2 (en) 2019-08-28 2022-11-29 Meidensha Corporation Reforming device and reforming method for porous material
JP2021174960A (en) * 2020-04-30 2021-11-01 東京エレクトロン株式会社 Selective film formation method
WO2021220696A1 (en) * 2020-04-30 2021-11-04 東京エレクトロン株式会社 Selective film formation mehtod
JP7345787B2 (en) 2020-04-30 2023-09-19 東京エレクトロン株式会社 Selective film formation method

Also Published As

Publication number Publication date
JPWO2014203892A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2014203892A1 (en) Gas barrier film and method for producing same
JP6504284B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP6638182B2 (en) Laminated films and flexible electronic devices
JP2014151571A (en) Gas barrier film, production method of the same and electronic device including the gas barrier film
WO2015002156A1 (en) Gas-barrier film and method for producing same, and electronic device using same
JP6398986B2 (en) Gas barrier film
TWI650438B (en) Laminated film and flexible electronic device
WO2018168671A1 (en) Gas barrier coating, gas barrier film, method for producing gas barrier coating, and method for producing gas barrier film
KR101881244B1 (en) Gas barrier film and electronic device using same
WO2015147221A1 (en) Gas barrier film and manufacturing method for gas barrier film
WO2015083706A1 (en) Gas barrier film and method for producing same
WO2015083681A1 (en) Gas barrier film and production method therefor
JP6354302B2 (en) Gas barrier film
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
JP6442874B2 (en) LAMINATE MANUFACTURING METHOD AND LAMINATE MANUFACTURING DEVICE
JP2016193526A (en) Gas barrier film, and electronic device using the gas barrier film
JP7261547B2 (en) laminated film
WO2014125877A1 (en) Gas barrier film
JP2016022589A (en) Gas barrier film
WO2015163358A1 (en) Gas barrier film and manufacturing method thereof
WO2016159206A1 (en) Gas barrier film and method for manufacturing same
WO2021106636A1 (en) Laminated film production method
CN109415805B (en) Method for producing gas barrier film
WO2015025783A1 (en) Device for producing gas barrier film and method for producing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813503

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14813503

Country of ref document: EP

Kind code of ref document: A1