WO2015083706A1 - Gas barrier film and method for producing same - Google Patents

Gas barrier film and method for producing same Download PDF

Info

Publication number
WO2015083706A1
WO2015083706A1 PCT/JP2014/081883 JP2014081883W WO2015083706A1 WO 2015083706 A1 WO2015083706 A1 WO 2015083706A1 JP 2014081883 W JP2014081883 W JP 2014081883W WO 2015083706 A1 WO2015083706 A1 WO 2015083706A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier layer
film
atoms
nitrogen
Prior art date
Application number
PCT/JP2014/081883
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 一生
真琴 新
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015551523A priority Critical patent/JPWO2015083706A1/en
Publication of WO2015083706A1 publication Critical patent/WO2015083706A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/30Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
    • B65D85/48Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same.
  • a gas barrier film formed by laminating a plurality of layers including a thin film (gas barrier layer) of a metal oxide such as aluminum oxide, magnesium oxide or silicon oxide on the surface of a plastic substrate or film is made of water vapor or oxygen. It is widely used for packaging of articles that need to block various gases, for example, packaging for preventing deterioration of food, industrial goods, pharmaceuticals, and the like.
  • an organic silicon compound typified by tetraethoxysilane (hereinafter abbreviated as TEOS) is used to form a film on a substrate while being oxidized with oxygen plasma under reduced pressure.
  • Gas phase methods such as chemical deposition methods (plasma CVD method: Chemical Vapor Deposition), and physical deposition methods (vacuum deposition and sputtering) in which metal Si is evaporated using a semiconductor laser and deposited on a substrate in the presence of oxygen It has been known.
  • Examples of the inorganic film forming (gas barrier layer forming) method by the physical deposition method include a PVD method (PVD: Physical Vapor Deposition: physical vapor deposition method, physical vapor deposition method).
  • PVD Physical Vapor Deposition: physical vapor deposition method, physical vapor deposition method.
  • the PVD method tends to generate particles in the gas phase system.
  • it is common to perform columnar growth or island-like growth in the thin film growth process, so that grain boundaries are generated in the film and high barrier properties are exhibited. Have difficulty.
  • a CVD method (Chemical Vapor Deposition) is used as an inorganic film formation (gas barrier layer formation) method by a chemical deposition method.
  • gas barrier performance and bending performance are improved by a carbon-containing silicon oxide film formed by a plasma CVD method (plasma chemical vapor deposition method) in which plasma is generated by discharging between a pair of film forming rolls. If so.
  • the gas barrier film described in the above-mentioned patent document is excellent in flexibility that does not deteriorate the gas barrier performance even when bent, but the problem that the curl becomes large when the film is thickened to improve the gas barrier performance. was there.
  • the object of the present invention has been made in view of the above-mentioned problems, and the solution is to provide a gas barrier film having less curl, excellent bending resistance, and high gas barrier properties, and a method for producing the same. It is.
  • a gas barrier film comprising a silicon film is expected to be a barrier substrate member for flexible devices because of its excellent flexibility and resistance to cracking even when bent.
  • the film thickness is increased, the film curl becomes large, and the substrate for electronic devices has a problem in handling property during the process.
  • a carbon-containing silicon oxynitride film in which nitrogen is contained in a carbon-containing silicon oxide film (gradient SiOC barrier film) formed by a plasma CVD method, which has a maximum carbon atom ratio.
  • the absolute value of the difference between the extreme value and the minimum extreme value is 5 at% or more, the maximum nitrogen atom ratio is in the range of 0.5 to 10 at%, and the film composition (silicon, oxygen, Carbon, nitrogen) is continuously changed to have oxygen> silicon> carbon> nitrogen or carbon> silicon> oxygen> nitrogen in order to reduce curl and excel in bending resistance.
  • the present inventors have found that a gas barrier film having a high gas barrier property for blocking gas can be obtained.
  • the present inventors applied a liquid containing polysilazane (polysilazane containing liquid) on the carbon-containing silicon oxynitride film (SiOCN barrier film), and after excimer
  • the barrier film formed (laminated) with the SiON barrier film (polysilazane modified film; silicon oxynitride film) by the treatment (modification process) is not only compatible with low curling property and bending resistance, but also has the above-mentioned SiOCN barrier.
  • Nitrogen contained in both the film (first gas barrier layer) and the SiON barrier film (second gas barrier layer) is formed by interaction between the layers, so that structural defects between the layers are reduced, and barrier performance at the time of stacking
  • the inventors have also found that a gas barrier film having a large improvement effect can be obtained, and have reached the present invention.
  • a gas barrier film comprising a resin substrate and a first gas barrier layer formed on at least one surface side of the resin substrate,
  • the first gas barrier layer contains silicon atoms, oxygen atoms, carbon atoms, and nitrogen atoms, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2): Gas barrier film; (1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, the first gas barrier layer in the layer thickness direction of the first gas barrier layer Carbon showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”).
  • the distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, and the first The distance from the surface of the first gas barrier layer in the layer thickness direction of the gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio That at%) ".)
  • nitrogen atom ratio That at%) ".
  • the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
  • gas barrier film according to item 1 further comprising a second gas barrier layer containing a polysilazane modified product formed on the first gas barrier layer.
  • a method for producing a gas barrier film comprising at least a first gas barrier layer on at least one surface side of a resin substrate, A step of forming a first gas barrier layer containing a carbon atom, a silicon atom, an oxygen atom, and a nitrogen atom, the composition continuously changing in the layer thickness direction, and satisfying the following requirements (1) and (2):
  • a method for producing a gas barrier film (1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, the first gas barrier layer in the layer thickness direction of the first gas barrier layer Carbon showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”).
  • the distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, and the first The distance from the surface of the first gas barrier layer in the layer thickness direction of the gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio ( In nitrogen distribution curve showing the relationship between the called.) And t%) ", the maximum value of the nitrogen atomic ratio is in the range of 0.5 ⁇ 10at%, (2) In the region of 90% or more of the total thickness of the first gas barrier layer, the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
  • the first gas barrier layer is formed by a discharge plasma chemical vapor deposition method using a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas and having a discharge space between rollers to which a magnetic field is applied.
  • the first gas barrier layer is formed by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied, using a source gas containing an organic silicon compound, oxygen gas, and nitrogen gas.
  • the manufacturing method of the gas-barrier film of the said 4th item is formed by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied, using a source gas containing an organic silicon compound, oxygen gas, and nitrogen gas.
  • the method further includes forming a coating film by applying and drying a liquid containing polysilazane on the first gas barrier layer, and forming a second gas barrier layer by subjecting the coating film to an excimer modification treatment. 7. The method for producing a gas barrier film according to any one of the above items 4 to 6, wherein:
  • the gas barrier film according to the present invention is mainly composed of a resin base material and a first gas barrier layer (carbon-containing silicon oxynitride film) which is an inclined SiOCN barrier film formed on at least one surface side of the resin base material. It consists of and.
  • the gas barrier film of a preferred embodiment of the present invention is mainly composed of a resin base material and a first gas barrier layer (carbon-containing acid) which is an inclined SiOCN barrier film formed on at least one surface side of the resin base material.
  • a silicon nitride film) and a second gas barrier layer which is a polysilazane modified film formed on the first gas barrier layer.
  • a gas barrier is a tilted SiOC barrier film in which the carbon and oxygen contents in the carbon-containing silicon oxide film are continuously changed in the film thickness (depth) direction by a plasma CVD method on the substrate.
  • a layer carbon-containing silicon oxide film
  • a gas barrier film having a gas barrier layer that is excellent in flexibility and hardly broken even when bent can be formed.
  • the film curl becomes large when the film thickness is increased in order to improve the gas barrier property.
  • the substrate for electronic devices provided with the gas barrier film has a problem in handling properties during the process.
  • the present inventors surprisingly have a gradient SiOCN in which nitrogen is contained in the gas barrier layer (carbon-containing silicon oxide film) which is the above-described gradient SiOC barrier film constituting the gas barrier film.
  • It is a first gas barrier layer (carbon-containing silicon oxynitride film) that is a barrier film, and the film composition (silicon, oxygen, carbon, nitrogen) is continuously changed in the film thickness direction, and oxygen> silicon> carbon>
  • a second gas barrier layer obtained by further applying a polysilazane-containing liquid on the first gas barrier layer (carbon-containing silicon oxynitride film) that is the above-described inclined SiOCN barrier film and performing an excimer modifying treatment (When the SiON barrier film) is laminated, not only the low curling property and the bending resistance are compatible, but also the first gas barrier layer that is the inclined SiOCN barrier film and the second gas barrier layer that is the polysilazane modified film.
  • the nitrogen contained in both the first and second gas barrier layers is formed by the interaction between the layers, the structural defect between the layers is reduced, and the gas barrier having a large effect of improving the barrier performance at the time of lamination. It is speculated that the film could be realized.
  • FIG. 1 shows an example of the silicon distribution curve of the 1st gas barrier layer which is the inclination SiOCN barrier film which comprises the gas barrier film of this invention (sample 1), an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve.
  • the gas barrier film of the present invention is a gas barrier film comprising a resin base material and a first gas barrier layer formed on at least one surface side of the resin base material, wherein the first gas barrier layer is formed of carbon. It contains an atom, a silicon atom, an oxygen atom and a nitrogen atom, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2).
  • the first gas barrier layer in the layer thickness direction of the first gas barrier layer Carbon showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”).
  • the distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, and the first The distance from the surface of the first gas barrier layer in the layer thickness direction of the gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio In nitrogen distribution curve showing the relationship between the called.) And (at%) ", the maximum value of the nitrogen atomic ratio is in the range of 0.5 ⁇ 10at%.
  • the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
  • the present invention from the viewpoint of manifesting the effects of the present invention, it is possible to further include a second gas barrier layer containing a modified polysilazane on the first gas barrier layer which is the inclined SiOCN barrier film.
  • the nitrogen contained in both the first and second gas barrier layers is formed by the interaction between the layers, reducing structural defects between the layers and improving the barrier performance during lamination It is preferable from the viewpoint that a gas barrier film having a large effect can be obtained.
  • the second gas barrier layer is obtained by applying an excimer modification treatment to a coating film formed by applying and drying a polysilazane-containing liquid. It is preferable from the viewpoint of improving the adhesion between the two gas barrier layers and the surface smoothness, further reducing the structural defects between the layers, and obtaining a gas barrier film having a large effect of improving the barrier performance during lamination.
  • the relationship between the distance from the surface of the layer and the ratio of the amount of nitrogen atoms to the total amount of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (100 at%) (referred to as “nitrogen atom ratio (at%)”).
  • nitrogen atom ratio (at%) the maximum value of the nitrogen atomic ratio is in the range of 0.5 to 10 at%, preferably 2 to 10 at%, more preferably 4 to 10 at%.
  • the internal stress of the first gas barrier layer which is a tilted SiOCN barrier film, decreases, and a barrier film with excellent flatness can be obtained.
  • the more N (nitrogen atoms) in the first gas barrier layer the denser the film density becomes. Therefore, if the N gas (nitrogen atoms) is excessively contained, cracks occur in the barrier film when bent.
  • the barrier film is inferior in flexibility. If the maximum extreme value (maximum value) of the nitrogen atom ratio is within the above range, both flexibility and flatness can be achieved. Furthermore, it is also preferable from the viewpoint of effectively exhibiting the barrier performance improving effect.
  • the object effect of the present invention is exhibited effectively when a relatively thin resin substrate having a resin substrate thickness in the range of 40 to 150 ⁇ m is used. can do.
  • the method for producing a gas barrier film of the present invention is a method for producing a gas barrier film comprising a first gas barrier layer that is a tilted SiOCN barrier film on at least one surface side of a resin base material, comprising carbon atoms, It has a step of forming a first gas barrier layer containing silicon atoms, oxygen atoms and nitrogen atoms, the composition continuously changing in the layer thickness direction and satisfying the above requirements (1) and (2). .
  • the first gas barrier layer is a discharge having a discharge space between rollers to which a magnetic field is applied using a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas.
  • a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas e.g., a nitrogen-containing organosilicon compound and an oxygen gas.
  • the first gas barrier layer has a discharge space between rollers to which a magnetic field is applied using a raw material gas containing an organosilicon compound, oxygen gas, and nitrogen gas.
  • the first gas barrier layer carbon-containing silicon oxynitride film
  • the first gas barrier layer can also be realized by forming by a discharge plasma chemical vapor deposition method. It is preferable from the viewpoint.
  • a polysilazane-containing liquid is applied onto the first gas barrier layer (carbon-containing silicon oxynitride film) that is a gradient SiOCN barrier film, and dried to form a coating film.
  • the method further includes a step of forming a second gas barrier layer (SiON barrier film; silicon oxynitride film), which is a polysilazane modified film, by subjecting the coating film to an excimer modification treatment.
  • SiON barrier film silicon oxynitride film
  • the adhesion and surface smoothness between the first and second gas barrier layers are also improved, and further, structural defects between layers are reduced, realizing a gas barrier film with a great effect of improving barrier performance during lamination. It is preferable from the viewpoint that can be performed.
  • the excimer modification treatment means used for forming the second gas barrier layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less. It is preferable from the viewpoint that the second gas barrier layer having (interlayer structural defect repair (reduction) property, barrier performance improvement effect at the time of stacking, etc.) can be realized with high accuracy.
  • the “gas barrier property” as used in the present invention is the water vapor permeability measured by a method according to JIS K 7129-1992 (temperature: 60 ⁇ 0.5 ° C., relative humidity (RH): 90 ⁇ 2%). Is 1 ⁇ 10 ⁇ 2 g / m 2 ⁇ 24 h or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 2 ml / m 2 ⁇ 24 h ⁇ atm or less. Means.
  • vacuum ultraviolet light specifically mean light having a wavelength of 100 to 200 nm.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a gas barrier film according to the present invention.
  • a gas barrier film F according to the present invention contains a carbon substrate, a silicon atom, an oxygen atom, and a nitrogen atom on a resin substrate 1 as a support and a resin substrate 1, and has a layer thickness.
  • the first gas barrier layer 2 having a composition that continuously changes in the direction and satisfying the above requirements (1) and (2) is provided, and the second gas barrier layer 3 containing the polysilazane modified product is formed on the first gas barrier layer 2. It has a stacked basic configuration.
  • the gas barrier film F according to the present invention only needs to have a configuration in which the resin base material 1 as a support and the first gas barrier layer 2 having the above characteristics are formed on the resin substrate 1, Any other layer may be formed (other layers are not shown).
  • the first gas barrier layer 2 contains carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms, the composition continuously changes in the layer thickness direction, and the requirements specified in the above (1) and (2) It has the element distribution profile which satisfy
  • the 2nd gas barrier layer 3 which concerns on this invention contains a polysilazane modified material, It is characterized by the above-mentioned.
  • the second gas barrier layer 3 is obtained by applying a liquid containing polysilazane (polysilazane-containing liquid) and drying the coating film formed by excimer modification treatment.
  • Resin base material As the resin base material constituting the gas barrier film according to the present invention, the first gas barrier layer having the gas barrier property according to the present invention, and further the second gas barrier layer can be retained, and it is flex-resistant. As long as it is formed of an organic material having excellent properties, it is not particularly limited.
  • Examples of the resin base material applicable to the present invention include methacrylate ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polystyrene (PS), aromatic polyamide, and polyether.
  • Examples include resin films such as ether ketone, polysulfone, polyethersulfone, polyimide, polyetherimide, and a laminated film formed by laminating two or more layers of the above resins. From the viewpoint of cost and availability, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used.
  • the thickness of the resin base material is not particularly limited and can be selected within the range of 5 to 500 ⁇ m, preferably 20 to 150 ⁇ m. From the viewpoint of further manifesting the effects of the present invention, the thickness of the resin base material is 40 to It is preferable to be in the range of 150 ⁇ m.
  • the resin base material according to the present invention is preferably transparent. Since the resin base material is transparent and the layer formed on the base material is also transparent, a transparent gas barrier film can be obtained. Therefore, a transparent substrate such as an electronic device (for example, organic EL) It is also possible to do.
  • an electronic device for example, organic EL
  • the first gas barrier layer according to the present invention contains a carbon atom, a silicon atom, an oxygen atom and a nitrogen atom, the composition continuously changes in the layer thickness direction, and the above requirements (1) and It is the structure which satisfy
  • the measurement accuracy in the resin base material interface region is slightly lowered due to noise of constituent atoms of the resin base material, etc., so the region satisfying the relationship defined by the above formula (A) or formula (B) is A region within the range of 90 to 95% of the total thickness of one gas barrier layer is preferable.
  • the layer thickness of the first gas barrier layer according to the present invention is preferably in the range of 50 to 1000 nm.
  • the first gas barrier layer forming method according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile defined in the present invention, but the first element in which the element distribution is precisely controlled. From the viewpoint of being able to form one gas barrier layer, (a) a raw material gas containing a nitrogen-containing organosilicon compound and an oxygen gas, or (b) a raw material gas containing an organosilicon compound and an oxygen gas are used. A method of forming by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied is preferable.
  • the average value of the content ratio of carbon atoms in the first gas barrier layer according to the present invention can be obtained by measuring an XPS depth profile described later.
  • the first gas barrier layer according to the present invention contains carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms as constituent elements of the first gas barrier layer, and is composed in the layer thickness direction. Continuously changing and out of the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer.
  • Carbon distribution curve showing the relationship between the distance and the ratio of the amount of carbon atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”) (
  • carbon atom ratio (at%) Carbon distribution curve showing the relationship between the distance and the ratio of the amount of carbon atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”)
  • the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5a.
  • One of the characteristics is that it is t% or more.
  • the first gas barrier layer according to the present invention has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region of the first gas barrier layer.
  • This is a preferred embodiment from the viewpoint of providing a gas barrier film having both properties and high gas barrier properties.
  • the “configuration in which the carbon atom ratio varies continuously” means that the carbon distribution curve does not include a portion in which the carbon atom ratio varies discontinuously. Specifically, the etching rate and the etching rate are not included.
  • the first gas barrier layer according to the present invention is characterized in that the carbon distribution curve has at least one extreme value, more preferably at least two extreme values, and at least three extreme values. It is particularly preferred. When the carbon distribution curve does not have an extreme value, the gas barrier property when the obtained gas barrier film is bent is insufficient. Further, in the case of having at least two or three extreme values as described above, the one in the carbon distribution curve and the extreme value adjacent to the extreme value in the thickness direction of the first gas barrier layer.
  • the absolute value of the difference in distance from the surface of the first gas barrier layer is preferably 200 nm or less, and more preferably 100 nm or less.
  • the extreme value of the distribution curve means a measured value of the maximum value or the minimum value of the atomic ratio of the element to the distance from the surface of the first gas barrier layer in the thickness direction of the first gas barrier layer.
  • the maximum value is a point where the value of the atomic ratio of an element changes from increasing to decreasing when the distance from the surface of the first gas barrier layer is changed, and the value of the atomic ratio of the element at that point. Rather, the atomic ratio value of the element at a position where the distance from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer is further changed by 20 nm from this point is reduced by 3 at% or more.
  • the minimum value is a point where the value of the atomic ratio of an element changes from decreasing to increasing when the distance from the surface of the first gas barrier layer is changed, and the atomic ratio of the element at that point is changed.
  • the carbon distribution curve has at least one extreme value, and has a maximum extreme value (maximum value) and a minimum extreme value (minimum value) of the carbon atom ratio.
  • the absolute value of the difference is 5 at% or more.
  • the first gas barrier layer according to the present invention is characterized by containing carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms as constituent elements. Preferred embodiments of the atomic ratio, maximum value, and minimum value (maximum value for nitrogen atoms) will be described below.
  • the maximum extreme value (maximum value) and the minimum extreme value of the carbon atom ratio in the carbon distribution curve One of the characteristics is that the absolute value of the difference of (minimum value) is 5 at% or more. Moreover, in such a 1st gas barrier layer, it is more preferable that the absolute value of the difference of the maximum value of carbon atom ratio and minimum value is 6 at% or more, and it is especially preferable that it is 7 at% or more. By setting the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio to 5 at% or more, the gas barrier property when the produced gas barrier film is bent is sufficient.
  • the maximum value of nitrogen atom ratio (not necessarily the maximum extreme value) in the nitrogen distribution curve is 0.
  • the maximum value of the nitrogen atom ratio is more preferably in the range of 2 to 10 at%, and more preferably in the range of 4 to 10 at%. If it is in the said range, the low curl property and bending resistance of the gas barrier film obtained will be compatible, and gas barrier property and planarity as an electronic device member will become enough.
  • the nitrogen distribution curve is the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, in the thickness direction of the first gas barrier layer.
  • the distance from the surface of the first gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms refers to a nitrogen element distribution curve.
  • the maximum value of the nitrogen atomic ratio in the nitrogen distribution curve is the maximum value of the atomic ratio of the nitrogen element when the distance from the surface of the first gas barrier layer is changed. This is the point.
  • the absolute value of the difference between the maximum value and the minimum value in the oxygen distribution curve is 5 at% or more. Is preferably 6 at% or more, and more preferably 7 at% or more. When the absolute value is 5 at% or more, the gas barrier property when the obtained gas barrier film is bent is sufficient.
  • the oxygen distribution curve here is the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, in the thickness direction of the first gas barrier layer.
  • oxygen element distribution curve indicating the relationship between
  • the absolute value of the difference between the maximum value and the minimum value in the silicon distribution curve is less than 5 at%. Is preferably less than 4 at%, more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property and mechanical strength of the obtained gas barrier film are sufficient.
  • the silicon distribution curve here is the distribution curve of each constituent element based on the element distribution measurement in the depth direction by the X-ray photoelectron spectroscopy for the first gas barrier layer, in the thickness direction of the first gas barrier layer.
  • silicon atom ratio (at%) The distance from the surface of the first gas barrier layer and the ratio of the amount of silicon atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “silicon atom ratio (at%)”).
  • the distribution curve of silicon element showing the relationship between
  • total amount of atoms means the total at% of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms
  • amount of carbon atoms means the number of carbon atoms.
  • at% in the present invention means the atomic ratio of each atom when the total number of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms is 100%. The same applies to “amount of silicon atoms” and “amount of nitrogen atoms” for the carbon distribution curve, silicon distribution curve, oxygen distribution curve and nitrogen distribution curve as shown in FIGS.
  • the first gas barrier layer In the first gas barrier layer according to the present invention, carbon atoms are present in a region of 90% or more of the total layer thickness of the first gas barrier layer.
  • One of the features is that the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atom, oxygen atom and nitrogen atom has an order of magnitude represented by the following formula (A) or (B): To do.
  • the etching time generally correlates with the distance from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer in the layer thickness direction. Therefore, the “distance from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer” is calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface can be employed (applied in FIGS. 3 and 4).
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • the first gas barrier layer is in the film surface direction (parallel to the surface of the first gas barrier layer). (Direction) is preferably substantially uniform.
  • the fact that the first gas barrier layer is substantially uniform in the film surface direction means that the carbon distribution curve and the silicon distribution at any two measurement points on the film surface of the first gas barrier layer by XPS depth profile measurement.
  • the curve, the oxygen distribution curve, the nitrogen distribution curve, and the oxygen-carbon total distribution curve are created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in each carbon distribution curve is the same or within 5 at%.
  • the gas barrier film according to the present invention is indispensable to have at least one first gas barrier layer that simultaneously satisfies the requirements (1) and (2) defined in the present invention.
  • Two or more layers may be provided.
  • the materials of the plurality of first gas barrier layers may be the same or different.
  • such a first gas barrier layer may be formed on one surface of the substrate, and on both surfaces of the substrate. It may be formed.
  • the plurality of first gas barrier layers may include a first gas barrier layer that does not necessarily have gas barrier properties.
  • the silicon atom ratio to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is: A range of 19 to 40 at% is preferable, and a range of 30 to 40 at% is more preferable.
  • the oxygen atom ratio relative to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is: It is preferably in the range of 25 to 67 at%, more preferably in the range of 25 to 40 at%.
  • the carbon atom ratio to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is: The range is preferably 1 to 38 at%, more preferably 10 to 38 at%. Furthermore, in the carbon distribution curve, the silicon distribution curve, the oxygen distribution curve, and the nitrogen distribution curve in the first gas barrier layer, the nitrogen atom ratio with respect to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is The range is preferably 0.2 to 10 at%, more preferably 2 to 10 at%, and particularly preferably 4 to 10 at%.
  • the thickness of the first gas barrier layer according to the present invention is preferably in the range of 5 to 1000 nm, more preferably in the range of 10 to 1000 nm. Particularly preferably, it is in the range of ⁇ 1000 nm.
  • the thickness of the first gas barrier layer is within the above range, curling is small, gas barrier properties against various gases such as water vapor and oxygen are excellent, and no deterioration of the gas barrier properties due to bending is observed.
  • the thickness of the first gas barrier layer is increased within the above range, it is excellent in that the increase in film curl can be effectively suppressed.
  • the total thickness of the first gas barrier layers is preferably within a range of 5 to 1000 nm, more preferably within a range of 10 to 1000 nm, It is particularly preferable that it is in the range of 1000 nm. If the total thickness of the first gas barrier layers is within the above range, desired flatness can be realized, curl is small, gas barrier properties against various gases such as water vapor and oxygen, etc. are excellent, and the gas barrier by bending There is no decline in sex. In particular, even when the total thickness of the first gas barrier layer is increased within the above range, the film curl is excellent in that the increase in film curl can be effectively suppressed.
  • the forming method of the first gas barrier layer according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile defined in the present invention. From the viewpoint that the first gas barrier layer in which the element distribution is precisely controlled can be formed, (a) using a source gas containing nitrogen-containing organosilicon compound and oxygen gas, or (b) organosilicon compound It is preferable to use a source gas containing oxygen and oxygen gas to form by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied.
  • the first gas barrier layer according to the present invention uses an inter-roller discharge plasma processing apparatus to which a magnetic field is applied, winds a resin substrate around a pair of film forming rollers, and forms a film forming gas between the pair of film forming rollers.
  • This is a layer formed by plasma chemical vapor deposition by plasma discharge while supplying.
  • it is preferable to reverse the polarity between the pair of film forming rollers alternately.
  • the first gas barrier layer is preferably a layer formed by a continuous film forming process.
  • the first gas barrier layer constituting the gas barrier film according to the present invention uses an inter-roller discharge plasma treatment apparatus to which a magnetic field is applied, and is formed on the surface of the resin base material (an intermediate layer may be provided if necessary). 1 gas barrier layer is formed by forming.
  • an inter-roller discharge plasma chemical vapor deposition method using a magnetic field is applied. It is a preferable aspect to use.
  • a magnetic field is generated between a plurality of film forming rollers when generating plasma.
  • a pair of film forming rollers is used, and a resin substrate is wound around each of the pair of film forming rollers, and the pair of film forming rollers is used. It is preferable to generate plasma by discharging in a state where a magnetic field is applied between the film forming rollers.
  • the carbon atomic ratio has a concentration gradient and continuously changes in the layer.
  • the film formation rate can be doubled, and a film having the same structure can be formed, so that the extreme value in the carbon distribution curve can be at least doubled. It is possible to form the first gas barrier layer that satisfies the requirements (1) and (2) at the same time.
  • the first gas barrier layer constituting the gas barrier film according to the present invention is preferably formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • An apparatus that can be used for producing the first gas barrier layer constituting the gas barrier film by such a plasma chemical vapor deposition method is not particularly limited, but an apparatus that applies at least a pair of magnetic fields. It is preferable that the apparatus includes a film-forming roller provided with a plasma power source and is configured to be capable of discharging between a pair of film-forming rollers.
  • the manufacturing apparatus illustrated in FIG. In such a case, a gas barrier film can be produced by a roll-to-roll method using a plasma chemical vapor deposition method.
  • FIG. 2 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used in the production of the first gas barrier layer constituting the gas barrier film according to the present invention is applied.
  • An inter-roller discharge plasma CVD apparatus (hereinafter also referred to as a plasma CVD apparatus) to which a magnetic field shown in FIG. 2 is applied mainly includes a delivery roller 11, transport rollers 21, 22, 23 and 24, and a film formation roller 31. And 32, a film forming gas supply pipe 41, a plasma generation power source 51, magnetic field generators 61 and 62 installed inside the film forming rollers 31 and 32, and a winding roller 71. Further, in such a plasma CVD manufacturing apparatus, at least the film forming rollers 31 and 32, the film forming gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61 and 62 are not shown in a vacuum. Located in the chamber. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
  • each film forming roller generates plasma so that a pair of film forming rollers (the film forming roller 31 and the film forming roller 32) can function as a pair of counter electrodes. It is connected to the power source 51 for use.
  • the power source 51 for use By supplying electric power to the pair of film forming rollers (the film forming roller 31 and the film forming roller 32) from the power source 51 for generating plasma, the space between the film forming roller 31 and the film forming roller 32 can be discharged.
  • plasma can be generated in a space (also referred to as a discharge space) between the film formation roller 31 and the film formation roller 32.
  • the film-forming roller 31 and the film-forming roller 32 are used as electrodes in this way, materials and designs that can be used as electrodes may be changed as appropriate.
  • the pair of film forming rollers (film forming rollers 31 and 32) be arranged so that their central axes are substantially parallel on the same plane.
  • the film forming roller 31 and the film forming roller 32 are characterized in that magnetic field generators 61 and 62 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 61 and 62 provided on the film forming roller 31 and the film forming roller 32 respectively are a magnetic field generating device 61 provided on one film forming roller 31 and a magnetic field generating device provided on the other film forming roller 32. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generator 62 and the magnetic field generators 61 and 62 form a substantially closed magnetic circuit.
  • By providing such magnetic field generators 61 and 62 it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surface of each film forming roller 31 and 32, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 61 and 62 provided on the film forming roller 31 and the film forming roller 32 respectively include racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generating device 61 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 62 have the same polarity.
  • the racetrack-shaped magnetic poles are provided on the long protrusion at the center of the mountain-shaped cross section.
  • N pole or S pole the racetrack-shaped magnetic poles (two for each film-forming roller, four in total) are also provided on the short protrusions on both sides of the center of the mountain-shaped cross section. All of these magnetic poles are arranged so as to have the same polarity (S pole or N pole) as the counter pole of the magnetic pole of the central long protrusion. However, the magnetic poles (N pole and S pole) may be arranged in reverse.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 1 is excellent in that a first gas barrier layer (not shown) that is a vapor deposition film can be efficiently formed.
  • the film forming roller 31 and the film forming roller 32 known rollers can be used as appropriate.
  • the film forming rollers 31 and 32 those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently.
  • the diameters of the film forming rollers 31 and 32 are preferably in the range of 100 to 1000 mm ⁇ , particularly in the range of 100 to 700 mm ⁇ from the viewpoint of discharge conditions, chamber space, and the like. If the diameter is 100 mm ⁇ or more, the plasma discharge space does not become small, so there is no deterioration in productivity, and it is possible to avoid that the total heat of plasma discharge is applied to the film (resin substrate 1) in a short time, and the residual stress Is preferable because it is difficult to increase. On the other hand, a diameter of 1000 mm ⁇ or less is preferable because practicality can be maintained in terms of device design including uniformity of the plasma discharge space.
  • the winding roller 71 is not particularly limited as long as it can wind up the resin base material 1 on which the first gas barrier layer is formed, and a known roller can be used as appropriate.
  • a material gas and oxygen gas, or a material capable of supplying or discharging the material gas, oxygen gas and nitrogen gas at a predetermined rate can be appropriately used.
  • the plasma generating power source 51 a conventionally known power source for a plasma generating apparatus can be used.
  • Such a power source 51 for generating plasma supplies power to the film forming roller 31 and the film forming roller 32 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • a plasma generating power source 51 it is possible to more efficiently carry out the plasma CVD method, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used.
  • the applied power can be in the range of 100 W to 10 kW, and the AC frequency is 50 Hz. More preferably, it can be in the range of -500 kHz.
  • the magnetic field generators 61 and 62 known magnetic field generators can be used as appropriate.
  • the gas barrier film according to the present invention can be produced by appropriately adjusting the conveyance speed of the substrate. That is, using the plasma CVD apparatus shown in FIG. 2, a magnetic field is generated between a pair of film forming rollers (film forming rollers 31 and 32) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber.
  • the film forming gas (raw material gas or the like) is decomposed by plasma, and on the surface of the resin base material 1 on the film forming roller 31 and on the surface of the resin base material 1 on the film forming roller 32.
  • the first gas barrier layer according to the present invention is formed by a plasma CVD method. In such film formation, the resin base material 1 is conveyed by the delivery roller 11 and the film formation roller 31, respectively, so that the resin base material 1 is formed by a roll-to-roll continuous film formation process. The first gas barrier layer is formed on the surface.
  • the film forming gas used for forming the first gas barrier layer according to the present invention contains (a) a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas, or (b).
  • a source gas containing an organosilicon compound, oxygen gas and nitrogen gas can be used.
  • the source gas constituting the film forming gas used for forming the first gas barrier layer according to the present invention is a nitrogen-containing organosilicon compound containing at least nitrogen and silicon
  • Nitrogen-containing organosilicon compound examples include triethylsilazane, tripropylsilazane, triphenylsilazane, hexamethyldisilazane, and hexaethyldisilazane.
  • nitrogen-containing organosilicon compounds hexamethyldisilazane, hexaethyldisilazane, and the like are preferable from the viewpoints of handling in film formation and low curling properties, bending resistance, gas barrier properties, and the like of the obtained first gas barrier layer. .
  • these nitrogen-containing organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • Organosilicon compound examples include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, and methyltrimethyl.
  • Silane hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane , Octamethylcyclotetrasiloxane, and further nitrogen-containing organosilicon compounds such as triethylsilazane, tripropylsilazane, triphenylsilazane, hexamethyldisilazane, hexaethyldisilazane, hexapropyl Examples include disilazane, hexaphenyldisilazane, hexamethylcyclotrisilazane, octamethylcyclotetras
  • organosilicon compounds hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, hexamethyldisilazane, hexamethyldisiloxane are used from the viewpoints of handling in film formation and gas barrier properties of the obtained gas barrier layer. Ethyl disilazane and the like are preferable.
  • the above-described nitrogen-containing organosilicon compound may be used as the organosilicon compound.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the film forming gas is characterized in that (a) when a nitrogen-containing organosilicon compound is used as the source gas, oxygen gas is contained as a reaction gas in addition to the source gas. Alternatively, (b) when an organosilicon compound is used as the source gas, oxygen gas and nitrogen gas are contained as reaction gases in addition to the source gas.
  • the oxygen gas used in the above (a) and (b) is a gas that reacts with the raw material gas (nitrogen-containing organosilicon compound or organosilicon compound) to become an inorganic compound such as an oxide.
  • the nitrogen gas used in the above (b) is a gas that reacts with the raw material gas (organosilicon compound) to become an inorganic compound such as a nitride.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
  • a film forming gas contains (a) a source gas containing a nitrogen-containing organosilicon compound containing nitrogen and silicon and an oxygen gas
  • the ratio of the source gas to the oxygen gas is as follows: It is preferable that the ratio of oxygen gas is not excessively larger than the ratio of the amount of oxygen gas that is theoretically necessary for completely reacting. If the ratio of oxygen gas is excessive, it is difficult to obtain the first gas barrier layer intended in the present invention. Therefore, in order to obtain the desired performance as a barrier film, it is preferable that the total amount of the nitrogen-containing organosilicon compound in the film-forming gas is less than or equal to the theoretical oxygen amount necessary for complete oxidation.
  • the film forming gas contains (b) a raw material gas containing an organosilicon compound containing silicon, an oxygen gas, and a nitrogen gas
  • the ratio of the raw material gas, the oxygen gas, and the nitrogen gas is as follows. It is preferable that the ratio of oxygen gas and nitrogen gas is not excessively larger than the ratio of the amount of oxygen gas and nitrogen gas that is theoretically necessary for completely reacting the gas and nitrogen gas. If the ratio of oxygen gas and nitrogen gas is excessive, it is difficult to obtain the first gas barrier layer intended in the present invention. Therefore, in order to obtain the desired performance as a barrier film, it is preferable that the total amount of the organosilicon compound in the film-forming gas is less than or equal to the theoretical oxygen amount and the theoretical nitrogen amount necessary for complete oxynitriding.
  • the pressure (degree of vacuum) in the vacuum chamber can be adjusted as appropriate according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 100 Pa.
  • roller Film Formation In the plasma CVD method using a plasma CVD apparatus or the like as shown in FIG. 2, it is connected to a plasma generation power source 51 in order to discharge between the film formation rollers 31 and 32.
  • the power applied to the electrode drum (installed in the film forming rollers 31 and 32 in FIG. 2) can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, and the like. Although it cannot be generally stated, it is preferably within a range of 0.1 to 10 kW. If the applied power is in such a range, no generation of particles (illegal particles) is observed, and the amount of heat generated during film formation is within the control range. There is no thermal deformation of the base material, performance deterioration due to heat, and no wrinkles during film formation. In addition, damage to the film forming roller due to melting of the resin base material by heat and generation of a large current discharge between the bare film forming rollers can be prevented.
  • the conveyance speed (line speed) of the resin base material 1 can be appropriately adjusted according to the type of raw material gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is within the range of 0.5 to 20 m / min. When the line speed is within the above range, wrinkles due to the heat of the resin base material hardly occur, and the thickness of the formed first gas barrier layer can be sufficiently controlled.
  • FIG. 3 shows an example of each element profile in the layer thickness direction based on the XPS depth profile of the first gas barrier layer of the present invention formed as described above.
  • FIG. 3 is a graph showing an example of a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve of the first gas barrier layer that is the inclined SiOCN barrier film according to the present invention.
  • symbols A to D represent A as a carbon distribution curve, B as a silicon distribution curve, C as an oxygen distribution curve, and D as a nitrogen distribution curve.
  • the first gas barrier layer according to the present invention has at least one extreme value in the carbon distribution curve, and the difference between the maximum maximum value and the minimum maximum value of the carbon atom ratio.
  • the average value of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms in a region where the absolute value of is 5 at% or more and 90% or more of the total thickness of the first gas barrier layer It can be seen that the atomic ratio satisfies the order relationship defined by the previous formula (A) or (B).
  • FIG. 4 is a graph showing an example of a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve of a gas barrier layer that is a non-tilted SiOCN barrier film of a comparative example.
  • symbols A to D represent A as a carbon distribution curve
  • B as a silicon distribution curve
  • C as an oxygen distribution curve
  • D as a nitrogen distribution curve.
  • the first gas barrier layer of the comparative example includes a carbon atom profile A, a silicon atom profile B, an oxygen atom profile C in the first gas barrier layer formed by a flat electrode (horizontal conveyance) type plasma CVD discharge method, and
  • the nitrogen atom profile D is shown, and in particular, it can be seen that the non-gradient SiOCN barrier film configuration does not cause a continuous change in the concentration gradient of the carbon atom component A, and has no extreme value.
  • the gas barrier film according to the present invention preferably further includes a second gas barrier layer formed on the first gas barrier layer described above.
  • the second gas barrier layer may be any layer having gas barrier properties, and among them, a polysilazane modified film containing a polysilazane modified product is preferable.
  • a gas barrier layer other than the polysilazane modified film a conventionally used barrier layer can be used.
  • the second gas barrier layer as the polysilazane modified film is obtained by applying an excimer modifying treatment to a coating film formed by applying and drying a liquid containing polysilazane (polysilazane-containing liquid).
  • the contraction rate in the layer thickness direction before and after the excimer modification treatment is within the range of 10 to 30%, preferably within the range of 15 to 20%, to the coating film formed by applying and drying the polysilazane-containing liquid.
  • the second gas barrier layer may be formed by performing an excimer modification process under the following conditions. That is, the second gas barrier layer, which is a polysilazane modified film, is obtained by applying a liquid containing polysilazane on the first gas barrier layer and drying it to form a coating film, and subjecting the coating film to an excimer modification treatment. It can be manufactured by the step of forming the second gas barrier layer.
  • a 2nd gas barrier layer can be manufactured by using the manufacturing method of the barrier layer generally used conventionally.
  • the layer thickness after the excimer modification treatment is preferably in the range of 50 to 500 nm, and the second gas barrier layer is formed.
  • the polysilazane-containing liquid is applied and dried on the first gas barrier layer according to the present invention by a wet coating method, and the formed coating film is irradiated with vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less. Then, it is preferable that the formed gas film is subjected to an excimer modification treatment to form the second gas barrier layer.
  • VUV light vacuum ultraviolet light
  • the second gas barrier layer which is a polysilazane modified film
  • the first gas barrier layer which is a tilted SiOCN barrier film provided by, for example, an inter-roller discharge plasma CVD method to which a magnetic field is applied.
  • the hybrid gas barrier film of the first gas barrier layer, which is a tilted SiOCN barrier film, and the second gas barrier layer, which is a polysilazane modified film in addition to the compatibility between the first and second gas barrier layers. Since nitrogen contained in both layers is formed by interaction between layers, structural defects between the layers are reduced, and a gas barrier film having a large effect of improving barrier performance during lamination can be realized.
  • the second gas barrier layer that is the polysilazane modified film when the second gas barrier layer that is the polysilazane modified film is formed on the first gas barrier layer that is the inclined SiOCN barrier film, the second gas barrier layer has a similar structure because nitrogen is contained in the first gas barrier layer.
  • Film particles are formed (the film particles are formed by the interaction of nitrogen between the above-mentioned layers), and the effect of protecting and repairing structural defects of the first gas barrier layer is great, and barrier performance during lamination A gas barrier film having a large improvement effect can be realized. Furthermore, it is possible to obtain excellent planarity even after being left under certain conditions such as high-temperature and high-humidity treatment, and to provide a minute defect portion generated during the formation of the already formed first gas barrier layer from the top.
  • the thickness of the second gas barrier layer is in the range of 50 nm to 500 nm, preferably 50 nm to 400 nm, more preferably 50 nm to 300 nm. If the thickness of the second gas barrier layer is 50 nm or more, it is possible to protect and repair minute defects generated during the formation of the first gas barrier layer, and to achieve desired gas barrier properties and planarity, and at 500 nm or less.
  • the thickness of the gas barrier layer (second gas barrier layer) other than the polysilazane modified film is preferably in the same range as the thickness of the second gas barrier layer that is the polysilazane modified film.
  • the polysilazane according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure, and is a polymer that is a precursor of silicon oxynitride.
  • the polysilazane to be applied is not particularly limited.
  • a compound having a structure represented by the following general formula (1) is preferable.
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • perhydropolysilazane in which all of R 1 , R 2, and R 3 are composed of hydrogen atoms is particularly preferred from the viewpoint of denseness as the obtained second gas barrier layer (polysilazane modified film).
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6-membered and 8-membered rings, and its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
  • Mn number average molecular weight
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a polysilazane-containing liquid.
  • Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
  • the second gas barrier layer that is a modified polysilazane film is, for example, after applying and drying a liquid containing polysilazane (polysilazane-containing liquid) on the first gas barrier layer formed by the inter-roller discharge plasma CVD method to which a magnetic field is applied. It can be formed by irradiating with vacuum ultraviolet rays.
  • organic solvent for preparing a liquid containing polysilazane it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
  • organic solvents described in paragraph “0055” of JP2013-226757A and paragraph “0118” of WO2012 / 077753 can be used.
  • the organic solvent may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
  • the concentration of polysilazane in the liquid containing polysilazane varies depending on the layer thickness of the second gas barrier layer and the pot life of the coating liquid, but is preferably 0.2 to 35% by mass. Within range.
  • a catalyst can be added to a liquid containing polysilazane (a coating liquid for forming a second gas barrier layer).
  • a liquid containing polysilazane a coating liquid for forming a second gas barrier layer.
  • the catalyst that can be added to the liquid containing polysilazane (second gas barrier layer forming coating liquid) include, for example, paragraph “0057” of JP2013-226757A and paragraph “0103” of JP2013-226732A. , “0105” and paragraph “0120” of International Publication No. 2012/077753 can be used.
  • the amount of these catalysts added to the polysilazane is preferably in the range of 0.1 to 10% by mass with respect to the total mass of the polysilazane-containing liquid (second gas barrier layer forming coating liquid), and preferably 0.2 to 5%. It is more preferably in the range of mass%, and still more preferably in the range of 0.5 to 2 mass%.
  • the thickness of the coating film after applying and drying a liquid containing polysilazane (second gas barrier layer forming coating liquid) can be appropriately set according to the purpose.
  • the thickness of the coating film is preferably in the range of 50 nm to 2 ⁇ m as the thickness after drying, more preferably in the range of 70 nm to 1.5 ⁇ m, and in the range of 100 nm to 1 ⁇ m. Is more preferable.
  • the second gas barrier layer which is a polysilazane modification film according to the present invention, is a step of irradiating a layer (coating film) containing polysilazane with vacuum ultraviolet rays (VUV), and at least a part of the polysilazane. Is modified to silicon oxynitride.
  • VUV vacuum ultraviolet rays
  • the vacuum ultraviolet illuminance range described in paragraph "0086" of the above publication is also applied to the vacuum ultraviolet illumination on the coating surface received by the polysilazane-containing layer (coating film). be able to.
  • the known rare gas excimer lamp described in paragraphs “0088” to “0092” of the above publication the principle of excimer emission when the rare gas is xenon, the characteristics of the excimer lamp, and the like can be applied.
  • each functional layer In the gas barrier film according to the present invention, in addition to the above-described constituent layers (first and second gas barrier layers), each functional layer can be provided as necessary.
  • Overcoat layer may be formed on the second gas barrier layer according to the present invention for the purpose of further improving flexibility.
  • organic resins such as organic monomers, oligomers and polymers, and organic / inorganic composite resins using siloxane and silsesquioxane monomers, oligomers and polymers having organic groups are preferably used. be able to.
  • These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. It is preferable to apply a light irradiation treatment or a heat treatment to the layer formed from the organic resin composition coating solution to be cured.
  • Anchor layer In the gas barrier film according to the present invention, for the purpose of improving the adhesion between the resin substrate and the first gas barrier layer between the resin substrate and the first gas barrier layer, if necessary. And an anchor layer (also referred to as a clear hard coat layer (CHC layer)).
  • CHC layer clear hard coat layer
  • the anchor layer can also suppress a phenomenon (bleed out) that unreacted oligomers move from the resin base material to the surface and contaminate the contact surface.
  • the anchor layer is preferably smooth because the first gas barrier layer is disposed thereon, and the surface roughness Ra value is preferably in the range of 0.3 to 3 nm, more preferably 0. Within the range of 5 to 1.5 nm.
  • the surface roughness Ra value is 0.3 nm or more, the surface has an appropriate smoothness, and the smoothness can be maintained in the roller transportability and the formation of the first gas barrier layer by the plasma CVD method.
  • the thickness is 3 nm or less, it is possible to prevent the formation of minute defects in the first gas barrier layer when the first gas barrier layer is formed, and it is possible to obtain a high level of gas barrier properties and adhesion.
  • thermosetting resin or a photocurable resin is preferable because smoothness is required.
  • the thickness of the anchor layer is preferably in the range of 0.3 to 10 ⁇ m, more preferably in the range of 0.5 to 5 ⁇ m, from the viewpoint of adjusting the flatness.
  • the gas barrier film of the present invention as described above has excellent low curling properties, flex resistance, gas barrier properties, and transparency. For this reason, the gas barrier film of the present invention is used for various applications such as electronic devices such as packages for electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. can do.
  • electronic devices such as packages for electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. can do.
  • Examples of the electronic device include an organic electroluminescence panel, an organic electroluminescence element, an organic photoelectric conversion element, and a liquid crystal display element.
  • the gas barrier film according to the present invention seals, for example, a solar cell, a liquid crystal display element, an organic EL element, and the like. It can be used as a sealing film.
  • FIG. 1 An example of an organic EL panel P that is an electronic device using the gas barrier film F as a sealing film is shown in FIG.
  • the organic EL panel P is formed on the gas barrier film F through the gas barrier film F, the transparent electrode 4 such as ITO formed on the gas barrier film F, and the transparent electrode 4.
  • the organic EL element 5 that is the main body of the electronic device, and a counter film 7 disposed via an adhesive layer 6 so as to cover the organic EL element 5 are provided.
  • the transparent electrode 4 may form part of the organic EL element 5.
  • the gas barrier film according to the present invention by providing the gas barrier film according to the present invention, excellent gas barrier properties and flexibility (essential effects of the gas barrier film) ( (Bending resistance) and low curl properties, and also exhibits excellent flatness as a gas barrier film when stored over a long period of time in a high temperature and high humidity environment, thereby improving the flatness of the entire organic EL panel.
  • the high-quality electronic device can be obtained.
  • roller CVD method Formation of first gas barrier layer: roller CVD method
  • the surface opposite to the surface on which the anchor layer of the resin substrate is formed back surface
  • the resin base material is mounted on the apparatus so as to be in contact with the film formation roller, and the first gas barrier layer (gradient SiOCN barrier film) is formed on the anchor layer with the thickness according to the following film formation conditions (plasma CVD conditions).
  • the film was formed under the condition of 300 nm to prepare a gas barrier film sample 1.
  • ⁇ Plasma CVD conditions Supply amount of source gas (hexamethyldisilazane which is a nitrogen-containing organosilicon compound): 100 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Transport speed of resin substrate: 2 m / min.
  • source gas hexamethyldisilazane which is a nitrogen-containing organosilicon compound
  • O 2 oxygen gas
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval.
  • the average atomic ratio of silicon atoms, oxygen atoms, carbon atoms, and nitrogen atoms was determined in the difference between the maximum value and the minimum value of the atomic ratio of carbon and in the region of 90% or more of the total layer thickness.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisilazane): 100 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 500 sccm Supply amount of nitrogen gas (N 2 ): 50 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Transport speed of resin substrate: 2 m / min.
  • a 10 mass% dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was used as a coating solution for forming a polysilazane layer.
  • the prepared polysilazane layer-forming coating solution is applied with a wireless bar so that the (average) layer thickness after drying is 300 nm, and treated for 1 minute in an atmosphere at a temperature of 85 ° C. and a relative humidity of 55%. It was dried, and further kept in an atmosphere of a temperature of 25 ° C. and a relative humidity of 10% (dew point temperature ⁇ 8 ° C.) for 10 minutes to perform dehumidification, thereby forming a polysilazane layer.
  • Second gas barrier layer Excimer modification treatment of polysilazane layer by vacuum ultraviolet light (excimer light)> Next, the polysilazane layer formed above is subjected to excimer modification treatment by installing the following vacuum ultraviolet irradiation device in a vacuum chamber to form a second gas barrier layer (SiON barrier film) which is a polysilazane modified film. As a result, a gas barrier film sample 3 was obtained.
  • Excimer lamp light intensity 130 mW / cm 2 (172 nm) Distance between sample and light source: 1mm Stage heating temperature: 70 ° C Oxygen concentration in the irradiation device: 1.0% (volume ratio) Excimer lamp irradiation time: 5 seconds.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisilazane): 100 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 50 sccm Supply amount of nitrogen gas (N 2 ): 200 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Transport speed of resin substrate: 2 m / min.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisiloxane which is an organosilicon compound not containing nitrogen): 50 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Transport speed of resin substrate: 2 m / min.
  • raw material gas hexamethyldisiloxane which is an organosilicon compound not containing nitrogen
  • O 2 oxygen gas
  • a gas barrier film sample 7 was prepared in the same manner as in the preparation of the gas barrier film sample 4 except that the second gas barrier layer (formation method thereof) was changed as follows.
  • Second gas barrier layer On the first gas barrier layer (gradient SiOCN barrier film), a glassca HPC7003 manufactured by JSR Co., Ltd. was applied under the condition that the layer thickness after drying was 300 nm, and then dried at 120 ° C. for 3 minutes. An ultraviolet irradiation device was installed in the vacuum chamber and the excimer modification treatment was performed to form a second gas barrier layer (polysiloxane modified film), whereby a gas barrier film sample 7 was obtained.
  • first gas barrier layer grade SiOCN barrier film
  • a glassca HPC7003 manufactured by JSR Co., Ltd. was applied under the condition that the layer thickness after drying was 300 nm, and then dried at 120 ° C. for 3 minutes.
  • An ultraviolet irradiation device was installed in the vacuum chamber and the excimer modification treatment was performed to form a second gas barrier layer (polysiloxane modified film), whereby a gas barrier film sample 7 was obtained.
  • Excimer modification treatment is performed on the resin base material on which the polysiloxane layer fixed on the operation stage is formed on the first gas barrier layer under the following conditions, so that the second gas barrier layer (SiO 2) that is a polysiloxane modified film is obtained. Barrier film) was formed.
  • Excimer lamp light intensity 130 mW / cm 2 (172 nm) Distance between sample and light source: 1mm Stage heating temperature: 70 ° C Oxygen concentration in the irradiation device: 1.0% (volume ratio) Excimer lamp irradiation time: 5 seconds.
  • ⁇ Plasma CVD conditions Source gas (hexamethyldisilazane) supply amount: 20 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 50 sccm Supply amount of nitrogen gas (N 2 ): 50 sccm Degree of vacuum in the vacuum chamber: 10Pa Applied power from the power source for plasma generation: 0.5 kW Frequency of power source for plasma generation: 13.56 MHz Transport speed of resin substrate: 1 m / min.
  • Source gas hexamethyldisilazane
  • O 2 oxygen gas
  • N 2 50 sccm
  • Degree of vacuum in the vacuum chamber 10Pa
  • Applied power from the power source for plasma generation 0.5 kW
  • Frequency of power source for plasma generation 13.56 MHz Transport speed of resin substrate: 1 m / min.
  • the continuous change region and the extreme value in the film composition (particularly, the carbon distribution curve, the silicon distribution curve, and the oxygen distribution curve).
  • the difference between the maximum value and the minimum value of the carbon atom ratio was 0 at%, and the maximum value of the nitrogen atom ratio was 5 at%.
  • the average atomic ratio of silicon atoms, oxygen atoms, carbon atoms, and nitrogen satisfies the relationship defined by the formula (A) in a region of 90% or more of the total layer thickness.
  • gas barrier film sample ⁇ Evaluation of gas barrier film sample >> The gas barrier film samples 1 to 10 produced above were evaluated for water vapor barrier property, bending resistance (flexibility), flatness and film curl according to the amount of permeated water according to the following methods.
  • Vapor deposition device JEOL Ltd., vacuum vapor deposition device JEE-400 Constant temperature and humidity oven: Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular) Water vapor impervious metal: Aluminum (diameter ( ⁇ ) 3-5mm, granular) (Preparation of water vapor barrier property evaluation cell)
  • a vacuum vapor deposition device vacuum vapor deposition device JEE-400 manufactured by JEOL Ltd.
  • Other than (12 mm ⁇ 12 mm at 9 locations) was masked, and metallic calcium was deposited.
  • the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet (surface on which calcium was deposited).
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • the following bending treatment for the gas barrier film samples 1 to 10 is performed in advance with a curvature having a radius of 10 mm in order to confirm the change in the gas barrier property before and after the bending.
  • the water vapor barrier property evaluation cell was similarly produced also about the gas barrier property film sample which did not perform bending 100 times at an angle of 180 degree
  • the obtained sample with both sides sealed (evaluation cell) was stored under high temperature and high humidity of 60 ° C. and 90% RH, and from the amount of corrosion of metallic calcium based on the method described in JP-A-2005-283561. The amount of moisture permeated into the cell was calculated.
  • a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was stored under the same high temperature and high humidity conditions of 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
  • the permeated water amount (g / m 2 ⁇ day; “WVTR” in the table) of each gas barrier film sample measured as described above was evaluated by the Ca method.
  • the gas barrier film samples 1 to 4 and 7 having the constitution defined in the present invention are film curls compared to the gas barrier film samples 5 to 6 and 8 to 10 of the comparative example. There are few, and it turns out that it is excellent in bending tolerance (flexibility), and has high gas barrier property (water vapor barrier property).
  • the gas barrier film sample 1 is provided with a second gas barrier layer that is a polysilazane modified film, as compared with the gas barrier film sample 1. It can be seen that the functional film sample 3 has higher gas barrier properties (water vapor barrier properties). Similarly, as compared with the gas barrier film sample 2, the gas barrier film sample 4 in which the gas barrier film sample 2 is provided with the second gas barrier layer which is a polysilazane modified film has a higher gas barrier property (water vapor barrier property). It can be seen that
  • a SiOCN barrier film containing nitrogen is used for the first gas barrier layer as in the gas barrier film samples 3 and 4, and the second gas barrier layer is used.
  • the polysilazane modified film containing nitrogen not only the low curling property and the bending resistance are compatible, but also both the first gas barrier layer as the SiOCN barrier film and the second gas barrier layer as the SiON barrier film. It was confirmed that the nitrogen contained in the film is formed by the interaction between the layers, so that structural defects between the layers are reduced, and a gas barrier film having a large effect of improving the barrier performance at the time of lamination can be obtained.
  • a low-pressure mercury lamp having a wavelength of 184.9 nm is used as a cleaning surface modification treatment on both surfaces of the gas barrier film sample 1, and an irradiation intensity of 15 mW / cm. 2 , carried out at a distance of 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • ⁇ Drying and heat treatment conditions After the hole transport layer forming coating solution is applied on the first electrode layer, the height of the hole transport layer forming surface is 100 mm, the discharge wind speed is 1 m / s, the width wind speed distribution is 5%, and the temperature is 100 ° C. After the drying air was blown to remove the solvent, a back surface heat transfer system heat treatment was performed at a temperature of 150 ° C. using a heat treatment apparatus to form a hole transport layer.
  • the following white light emitting layer forming coating solution was applied using an extrusion coater under the following conditions, and then dried and heat-treated under the following conditions to form a light emitting layer. Formed.
  • the white light-emitting layer forming coating solution was applied under the condition that the thickness of the light-emitting layer after drying was 40 nm.
  • a host material 1.0 g of the compound HA shown below, 100 mg of the following compound DA as the first dopant material, 0.2 mg of the following compound DB as the second dopant material, As a dopant material 3, 0.2 mg of the following compound DC was dissolved in 100 g of toluene to prepare a white light emitting layer forming coating solution.
  • the coating conditions were as follows: in an atmosphere having a nitrogen gas concentration of 99% by volume or more, the coating temperature was 25 ° C. and the coating speed was 1 m / min.
  • a white light emitting layer forming coating solution is applied onto the hole transport layer, and then directed toward the film forming surface, with a height of 100 mm, a discharge wind speed of 1 m / s, a width of 5% of a wide wind speed, and a dry wind at a temperature of 60 ° C. After removing the solvent by spraying, heat treatment was subsequently performed at a temperature of 130 ° C. to form a light emitting layer.
  • the following electron transport layer forming coating solution was applied by an extrusion coater under the following conditions, and then dried and heat-treated under the following conditions to form an electron transport layer.
  • the coating liquid for forming an electron transport layer was applied under the condition that the thickness of the electron transport layer after drying was 30 nm.
  • the coating solution for forming an electron transport layer was prepared by dissolving the following compound EA in 2,2,3,3-tetrafluoro-1-propanol at 0.5% by mass.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% by volume or more, using a coating solution for forming an electron transport layer, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
  • An electron injection layer was formed on the formed electron transport layer according to the following method.
  • the gas barrier film 1 formed up to the electron transport layer was set in a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • the cesium fluoride previously loaded in the tantalum vapor deposition boat in the vacuum chamber was heated to form an electron injection layer having a thickness of 3 nm on the electron transport layer.
  • Second electrode On the electron injection layer formed as described above, aluminum is used as the second electrode forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa, except for the portion that becomes the extraction electrode of the first electrode, and the extraction electrode is provided. As described above, a mask pattern was formed by vapor deposition so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
  • the laminated body formed up to the second electrode was again transferred to a nitrogen atmosphere, and cut into a prescribed size using an ultraviolet laser to produce an organic EL element 1.
  • Crimping conditions Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
  • sealing As a sealing member, a 30 ⁇ m thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) is laminated with a polyethylene terephthalate (PET) film (12 ⁇ m thickness) using a dry lamination adhesive (two-component reaction type urethane adhesive). (Adhesive layer thickness: 1.5 ⁇ m) was prepared.
  • PET polyethylene terephthalate
  • thermosetting adhesive was uniformly applied to the aluminum surface of the prepared sealing member with a thickness of 20 ⁇ m along the adhesive surface (glossy surface) of the aluminum foil using a dispenser to form an adhesive layer.
  • thermosetting adhesive an epoxy adhesive mixed with the following constituent materials (A) to (C) was used.
  • a sealing member is closely attached and arranged so as to cover the joint between the take-out electrode and the electrode lead, and as a pressure bonding condition using a pressure roller, a pressure roller temperature is 120 ° C. and a pressure is 0.
  • the organic EL panel 1 having the configuration shown in FIG. 5 was prepared by closely sealing at 5 MPa and a conveyance speed of 0.3 m / min.
  • the organic EL panel 1 was subjected to an accelerated deterioration process for 400 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%, and then the flatness was measured using a CNC image measuring device Quick Vision QVH404 (manufactured by Mitutoyo Corporation).
  • the flatness measurement method was performed at 9 points (3 ⁇ 3 points in length and width) on the organic EL panel (opposite film surface). As a result, it was determined that the flatness was less than 0.1 mm at any of the nine measurement points, which was a practically preferable characteristic. That is, it was confirmed that the thick gas barrier film used in the organic EL panel was held without causing film curl even after the accelerated deterioration treatment.

Abstract

 A gas barrier film containing a resin base material and a first gas barrier layer, wherein the first gas barrier layer contains carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms, and in a carbon distribution curve which represents the relationship between the distance from the surface in the thickness direction of the layer, and the ratio of the quantity of carbon atoms to the total content of all atoms, there is at least one extreme value, and the absolute value of the difference between the maximum value and the minimum value is at least 5at%, and in a nitrogen distribution curve representing the relationship between the distance from the surface and the ratio of the quantity of nitrogen to the total content of all atoms, the maximum value falls within the range of 0.5 to 10at%, and in regions with 90% or more of the entire layer thickness, the average atomic ratio of each of the atoms with respect to the total quantity of all atoms satisfies the relations represented by formula (A) or (B). The gas barrier film has minimal curling, excellent bend resistance and high gas barrier properties. (A): carbon atomic ratio > silicon atomic ratio > oxygen atomic ratio > nitrogen atomic ratio (B): oxygen atomic ratio > silicon atomic ratio > carbon atomic ratio > nitrogen atomic ratio

Description

ガスバリア性フィルム及びその製造方法Gas barrier film and method for producing the same
 本発明は、ガスバリア性フィルムと、その製造方法に関するものである。 The present invention relates to a gas barrier film and a method for producing the same.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜(ガスバリア層)を含む複数の層を積層して形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や工業用品及び医薬品等の変質を防止するための包装用途に広く用いられている。 Conventionally, a gas barrier film formed by laminating a plurality of layers including a thin film (gas barrier layer) of a metal oxide such as aluminum oxide, magnesium oxide or silicon oxide on the surface of a plastic substrate or film is made of water vapor or oxygen. It is widely used for packaging of articles that need to block various gases, for example, packaging for preventing deterioration of food, industrial goods, pharmaceuticals, and the like.
 近年、このような水蒸気や酸素等の透過を防ぐガスバリア性フィルムについて、包装用途以外にも、フレキシブル性を有する太陽電池素子、有機エレクトロルミネッセンス(EL)素子、液晶表示(LCD)素子等のフレキシブル電子デバイスへの展開が要望され、多くの検討がなされている。しかしながら、これらフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリア性が要求されるため、現状では十分な性能を有するガスバリア性フィルムはいまだ得られていない。 In recent years, for such gas barrier films that prevent permeation of water vapor, oxygen, etc., in addition to packaging applications, flexible electronics such as flexible solar cell elements, organic electroluminescence (EL) elements, liquid crystal display (LCD) elements, etc. Many devices have been studied for the development of devices. However, in these flexible electronic devices, a gas barrier property having a very high glass substrate level is required, so that a gas barrier film having sufficient performance has not been obtained yet.
 この様なガスバリア性フィルムを製造する方法としては、テトラエトキシシラン(以下、TEOSとも略記する。)に代表される有機ケイ素化合物を用いて、減圧下、酸素プラズマで酸化しながら基板上に成膜する化学堆積法(プラズマCVD法:Chemical Vapor Deposition)や、半導体レーザーを用いて金属Siを蒸発させ酸素の存在下で基板上に堆積する物理堆積法(真空蒸着法やスパッタ法)といった気相法が知られている。 As a method for manufacturing such a gas barrier film, an organic silicon compound typified by tetraethoxysilane (hereinafter abbreviated as TEOS) is used to form a film on a substrate while being oxidized with oxygen plasma under reduced pressure. Gas phase methods such as chemical deposition methods (plasma CVD method: Chemical Vapor Deposition), and physical deposition methods (vacuum deposition and sputtering) in which metal Si is evaporated using a semiconductor laser and deposited on a substrate in the presence of oxygen It has been known.
 上記物理堆積法による無機成膜(ガスバリア層形成)方法としては、PVD法(PVD:Physical Vapor Deposition:物理気相成長法、物理蒸着法)が挙げられる。しかしながら、PVD法は、気相系内でのパーティクルが発生しやすい。また、PVD法を用いる場合、薄膜の成長過程において、柱状の成長や島状の成長をすることが一般的であるため、膜中にグレイン・バウンダリーが発生し、高いバリア性を発現することが困難である。 Examples of the inorganic film forming (gas barrier layer forming) method by the physical deposition method include a PVD method (PVD: Physical Vapor Deposition: physical vapor deposition method, physical vapor deposition method). However, the PVD method tends to generate particles in the gas phase system. In addition, when the PVD method is used, it is common to perform columnar growth or island-like growth in the thin film growth process, so that grain boundaries are generated in the film and high barrier properties are exhibited. Have difficulty.
 一方、化学堆積法による無機成膜(ガスバリア層形成)方法としては、CVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)が用いられる。例えば、特許文献1では、一対の成膜ロール間に放電してプラズマを発生させるプラズマCVD法(プラズマ化学気相成長法)により形成された炭素含有酸化ケイ素膜により、ガスバリア性能および屈曲性能が向上するとしている。 On the other hand, a CVD method (Chemical Vapor Deposition) is used as an inorganic film formation (gas barrier layer formation) method by a chemical deposition method. For example, in Patent Document 1, gas barrier performance and bending performance are improved by a carbon-containing silicon oxide film formed by a plasma CVD method (plasma chemical vapor deposition method) in which plasma is generated by discharging between a pair of film forming rolls. If so.
特開2011-73430号公報JP 2011-73430 A
 しかしながら、上記特許文献に記載されたガスバリア性フィルムは、屈曲してもガスバリア性能が劣化しないフレキシブル性に優れたものであるが、ガスバリア性能を向上させるために厚膜化するとカールが大きくなるという課題があった。 However, the gas barrier film described in the above-mentioned patent document is excellent in flexibility that does not deteriorate the gas barrier performance even when bent, but the problem that the curl becomes large when the film is thickened to improve the gas barrier performance. was there.
 そこで、本発明の目的は、上記問題に鑑みてなされたものであり、その解決課題は、カールが少なく、耐屈曲性に優れ、高いガスバリア性を持つガスバリア性フィルム及びその製造方法を提供するものである。 Accordingly, the object of the present invention has been made in view of the above-mentioned problems, and the solution is to provide a gas barrier film having less curl, excellent bending resistance, and high gas barrier properties, and a method for producing the same. It is.
 本発明者らは、上記課題を解決すべく検討した結果、プラズマCVD法により形成された炭素含有酸化ケイ素膜中の炭素及び酸素含有量が深さ方向に連続的に変化する、上記炭素含有酸化ケイ素膜(傾斜SiOCバリア膜;ガスバリア層)を備えてなるガスバリア性フィルムは、フレキシブル性に優れ折り曲げても割れにくいという特徴からフレキシブルデバイス用バリア基板部材として期待されるが、バリア性を向上させるため、厚膜化するとフィルムカールが大きく、電子デバイス用基板としてはプロセス中のハンドリング性に課題があった。そこで、プラズマCVD法により形成される炭素含有酸化ケイ素膜(傾斜SiOCバリア膜)中に窒素を含有させた炭素含有酸窒化ケイ素膜(SiOCNバリア膜;ガスバリア層)であって、炭素原子比率の最大の極値と最小の極値との差の絶対値が5at%以上で、窒素原子比率の最大値が0.5~10at%の範囲であり、さらに膜厚方向に膜組成(ケイ素、酸素、炭素、窒素)を連続的に変化させて、酸素>ケイ素>炭素>窒素、または炭素>ケイ素>酸素>窒素の順序とすることで、カールが小さく耐屈曲性に優れ、水蒸気や酸素等の各種ガスを遮断する高いガスバリア性を持つガスバリア性フィルムが得られることを見出し本発明に至った。 As a result of studying the above problems, the present inventors have determined that the carbon-containing oxidation in which the carbon and oxygen contents in the carbon-containing silicon oxide film formed by the plasma CVD method continuously change in the depth direction. A gas barrier film comprising a silicon film (gradient SiOC barrier film; gas barrier layer) is expected to be a barrier substrate member for flexible devices because of its excellent flexibility and resistance to cracking even when bent. When the film thickness is increased, the film curl becomes large, and the substrate for electronic devices has a problem in handling property during the process. Therefore, a carbon-containing silicon oxynitride film (SiOCN barrier film; gas barrier layer) in which nitrogen is contained in a carbon-containing silicon oxide film (gradient SiOC barrier film) formed by a plasma CVD method, which has a maximum carbon atom ratio. The absolute value of the difference between the extreme value and the minimum extreme value is 5 at% or more, the maximum nitrogen atom ratio is in the range of 0.5 to 10 at%, and the film composition (silicon, oxygen, Carbon, nitrogen) is continuously changed to have oxygen> silicon> carbon> nitrogen or carbon> silicon> oxygen> nitrogen in order to reduce curl and excel in bending resistance. The present inventors have found that a gas barrier film having a high gas barrier property for blocking gas can be obtained.
 さらに本発明者らは、上記発明に満足することなく、鋭意検討を重ねた結果、上記炭素含有酸窒化ケイ素膜(SiOCNバリア膜)上にポリシラザン含有する液(ポリシラザン含有液)を塗布、エキシマ後処理(改質処置)をしてSiONバリア膜(ポリシラザン改質膜;酸窒化ケイ素膜)を形成(積層)したバリア性フィルムは、低カール性と耐屈曲性の両立だけでなく、上記SiOCNバリア膜(第1ガスバリア層)と上記SiONバリア膜(第2ガスバリア層)の双方に含有される窒素同士が層間で相互作用して形成されるため層間における構造欠陥が低減され、積層時のバリア性能向上効果の大きいガスバリア性フィルムが得られることをも見出し本発明に至った。 Furthermore, as a result of intensive studies without satisfying the above invention, the present inventors applied a liquid containing polysilazane (polysilazane containing liquid) on the carbon-containing silicon oxynitride film (SiOCN barrier film), and after excimer The barrier film formed (laminated) with the SiON barrier film (polysilazane modified film; silicon oxynitride film) by the treatment (modification process) is not only compatible with low curling property and bending resistance, but also has the above-mentioned SiOCN barrier. Nitrogen contained in both the film (first gas barrier layer) and the SiON barrier film (second gas barrier layer) is formed by interaction between the layers, so that structural defects between the layers are reduced, and barrier performance at the time of stacking The inventors have also found that a gas barrier film having a large improvement effect can be obtained, and have reached the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.樹脂基材と、該樹脂基材の少なくとも一方の面側に形成された第1ガスバリア層と、を含むガスバリア性フィルムであって、
 前記第1ガスバリア層は、ケイ素原子、酸素原子、炭素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を満たすことを特徴とするガスバリア性フィルム;
 (1)前記第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、ケイ素原子、酸素原子、炭素原子及び窒素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、少なくとも1つの極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差の絶対値が5at%以上で、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する窒素原子の量の比率(「窒素原子比率(at%)」という。)との関係を示す窒素分布曲線における、窒素原子比率の最大値が0.5~10at%の範囲であり、
 (2)前記第1ガスバリア層の全層厚の90%以上の領域において、ケイ素原子、酸素原子、炭素原子及び窒素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
1. A gas barrier film comprising a resin substrate and a first gas barrier layer formed on at least one surface side of the resin substrate,
The first gas barrier layer contains silicon atoms, oxygen atoms, carbon atoms, and nitrogen atoms, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2): Gas barrier film;
(1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, the first gas barrier layer in the layer thickness direction of the first gas barrier layer Carbon showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”). The distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, and the first The distance from the surface of the first gas barrier layer in the layer thickness direction of the gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio That at%) ".) In a nitrogen distribution curve showing the relationship between the maximum value of the nitrogen atomic ratio is in the range of 0.5 ~ 10at%,
(2) In the region of 90% or more of the total thickness of the first gas barrier layer, the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 2.前記第1ガスバリア層上に形成されたポリシラザン改質物を含有する第2ガスバリア層をさらに含むことを特徴とする上記第1項に記載のガスバリア性フィルム。 2. 2. The gas barrier film according to item 1, further comprising a second gas barrier layer containing a polysilazane modified product formed on the first gas barrier layer.
 3.前記第2ガスバリア層が、ポリシラザンを含有する液を塗布、乾燥して形成される塗膜をエキシマ改質処理して得られることを特徴とする上記第2項に記載のガスバリア性フィルム。 3. 3. The gas barrier film according to item 2, wherein the second gas barrier layer is obtained by applying an excimer modification treatment to a coating film formed by applying and drying a liquid containing polysilazane.
 4.樹脂基材の少なくとも一方の面側に、少なくとも第1のガスバリア層を具備するガスバリア性フィルムの製造方法であって、
 炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を満たす第1ガスバリア層を形成する工程を有することを特徴とするガスバリア性フィルムの製造方法;
 (1)前記第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、ケイ素原子、酸素原子、炭素原子及び窒素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、少なくとも1つ極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差の絶対値が5at%以上で、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する窒素原子の量の比率(「窒素原子比率(at%)」という。)との関係を示す窒素分布曲線における、窒素原子比率の最大値が0.5~10at%の範囲であり、
 (2)前記第1ガスバリア層の全層厚の90%以上の領域において、ケイ素原子、酸素原子、炭素原子及び窒素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
4). A method for producing a gas barrier film comprising at least a first gas barrier layer on at least one surface side of a resin substrate,
A step of forming a first gas barrier layer containing a carbon atom, a silicon atom, an oxygen atom, and a nitrogen atom, the composition continuously changing in the layer thickness direction, and satisfying the following requirements (1) and (2): A method for producing a gas barrier film,
(1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, the first gas barrier layer in the layer thickness direction of the first gas barrier layer Carbon showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”). The distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, and the first The distance from the surface of the first gas barrier layer in the layer thickness direction of the gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio ( In nitrogen distribution curve showing the relationship between the called.) And t%) ", the maximum value of the nitrogen atomic ratio is in the range of 0.5 ~ 10at%,
(2) In the region of 90% or more of the total thickness of the first gas barrier layer, the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 5.前記第1ガスバリア層が、窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成することを特徴とする上記第4項に記載のガスバリア性フィルムの製造方法。 5. The first gas barrier layer is formed by a discharge plasma chemical vapor deposition method using a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas and having a discharge space between rollers to which a magnetic field is applied. The method for producing a gas barrier film according to the above item 4.
 6.前記第1ガスバリア層が、有機ケイ素化合物を含む原料ガスと酸素ガスと窒素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成することを特徴とする上記第4項に記載のガスバリア性フィルムの製造方法。 6. The first gas barrier layer is formed by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied, using a source gas containing an organic silicon compound, oxygen gas, and nitrogen gas. The manufacturing method of the gas-barrier film of the said 4th item.
 7.前記第1ガスバリア層上に、ポリシラザンを含有する液を塗布、乾燥して塗膜を形成し、該塗膜にエキシマ改質処理を施すことにより第2のガスバリア層を形成する工程を、更に含むことを特徴とする上記第4項~第6項のいずれか1項に記載のガスバリア性フィルムの製造方法。 7. The method further includes forming a coating film by applying and drying a liquid containing polysilazane on the first gas barrier layer, and forming a second gas barrier layer by subjecting the coating film to an excimer modification treatment. 7. The method for producing a gas barrier film according to any one of the above items 4 to 6, wherein:
 8.前記第2ガスバリア層の形成に用いる改質処理手段が、波長が200nm以下の真空紫外光を照射する方法であることを特徴とする上記第7項に記載のガスバリア性フィルムの製造方法。 8. 8. The method for producing a gas barrier film according to the above item 7, wherein the modification treatment means used for forming the second gas barrier layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.
 本発明の上記手段により、フィルムカールが少なく、耐屈曲性に優れ、高いガスバリア性を持つガスバリア性フィルム及びその製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a gas barrier film having little film curl, excellent bending resistance and high gas barrier properties, and a method for producing the same.
 本発明で規定する構成により、本発明の目的とする効果が得られる技術的理由に関しては、その機構の詳細は全て解明されてはいないが、以下のように推測している。 As for the technical reason why the intended effect of the present invention can be obtained by the configuration defined in the present invention, the details of the mechanism have not been elucidated, but are presumed as follows.
 本発明に係るガスバリア性フィルムは、主には、樹脂基材と、該樹脂基材の少なくとも一方の面側に形成された傾斜SiOCNバリア膜である第1ガスバリア層(炭素含有酸窒化ケイ素膜)とから構成されている。本発明の好適な実施形態のガスバリア性フィルムは、主には、樹脂基材と、該樹脂基材の少なくとも一方の面側に形成された傾斜SiOCNバリア膜である第1ガスバリア層(炭素含有酸窒化ケイ素膜)と、該第1ガスバリア層に形成されたポリシラザン改質膜である第2ガスバリア層とから構成されている。 The gas barrier film according to the present invention is mainly composed of a resin base material and a first gas barrier layer (carbon-containing silicon oxynitride film) which is an inclined SiOCN barrier film formed on at least one surface side of the resin base material. It consists of and. The gas barrier film of a preferred embodiment of the present invention is mainly composed of a resin base material and a first gas barrier layer (carbon-containing acid) which is an inclined SiOCN barrier film formed on at least one surface side of the resin base material. A silicon nitride film) and a second gas barrier layer which is a polysilazane modified film formed on the first gas barrier layer.
 上記特許文献1のように、基材上に、プラズマCVD法により炭素含有酸化ケイ素膜中の炭素及び酸素含有量が膜厚(深さ)方向に連続的に変化する傾斜SiOCバリア膜であるガスバリア層(炭素含有酸化ケイ素膜)を形成した場合には、フレキシブル性に優れ折り曲げても割れにくいガスバリア層を具備するガスバリア性フィルムを形成することができる。しかしながら、ガスバリア性を向上させるために厚膜化するとフィルムカールが大きくなるという問題があった。更に、当該ガスバリア性フィルムを具備した電子デバイス用基板では、プロセス中のハンドリング性に問題が及ぶことがわかった。 As in Patent Document 1, a gas barrier is a tilted SiOC barrier film in which the carbon and oxygen contents in the carbon-containing silicon oxide film are continuously changed in the film thickness (depth) direction by a plasma CVD method on the substrate. When a layer (carbon-containing silicon oxide film) is formed, a gas barrier film having a gas barrier layer that is excellent in flexibility and hardly broken even when bent can be formed. However, there has been a problem that the film curl becomes large when the film thickness is increased in order to improve the gas barrier property. Furthermore, it has been found that the substrate for electronic devices provided with the gas barrier film has a problem in handling properties during the process.
 このような問題に対し、本発明者らは、驚くべきことに、当該ガスバリア性フィルムを構成する上記傾斜SiOCバリア膜であるガスバリア層(炭素含有酸化ケイ素膜)中に窒素を含有させた傾斜SiOCNバリア膜である第1ガスバリア層(炭素含有酸窒化ケイ素膜)であって、さらに膜厚方向に膜組成(ケイ素、酸素、炭素、窒素)を連続的に変化させて、酸素>ケイ素>炭素>窒素、または炭素>ケイ素>酸素>窒素の順序とすることによって、フィルムカールが小さく耐屈曲性に優れ、水蒸気や酸素等の各種ガスを遮断する高いガスバリア性を持つガスバリア性フィルムを実現できたものと推測している。 In order to solve such a problem, the present inventors surprisingly have a gradient SiOCN in which nitrogen is contained in the gas barrier layer (carbon-containing silicon oxide film) which is the above-described gradient SiOC barrier film constituting the gas barrier film. It is a first gas barrier layer (carbon-containing silicon oxynitride film) that is a barrier film, and the film composition (silicon, oxygen, carbon, nitrogen) is continuously changed in the film thickness direction, and oxygen> silicon> carbon> Nitrogen or carbon> silicon> oxygen> nitrogen in order to achieve a gas barrier film with small film curl, excellent flex resistance, and high gas barrier properties that block various gases such as water vapor and oxygen I guess.
 さらに、上記傾斜SiOCNバリア膜である第1ガスバリア層(炭素含有酸窒化ケイ素膜)上に、更にポリシラザン含有液を塗布、エキシマ改質処置を施してなるポリシラザン改質膜である第2ガスバリア層(SiONバリア膜)を積層したした場合には、低カール性と耐屈曲性の両立だけでなく、上記傾斜SiOCNバリア膜である第1ガスバリア層と上記ポリシラザン改質膜である第2ガスバリア層とのハイブリッドガスバリア性フィルムでは、第1及び第2ガスバリア層の双方に含有される窒素同士が層間で相互作用して形成されるため層間における構造欠陥が低減され、積層時のバリア性能向上効果の大きいガスバリア性フィルムをも実現できたものと推測している。 Further, a second gas barrier layer (polysilazane modified film) obtained by further applying a polysilazane-containing liquid on the first gas barrier layer (carbon-containing silicon oxynitride film) that is the above-described inclined SiOCN barrier film and performing an excimer modifying treatment ( When the SiON barrier film) is laminated, not only the low curling property and the bending resistance are compatible, but also the first gas barrier layer that is the inclined SiOCN barrier film and the second gas barrier layer that is the polysilazane modified film. In the hybrid gas barrier film, since the nitrogen contained in both the first and second gas barrier layers is formed by the interaction between the layers, the structural defect between the layers is reduced, and the gas barrier having a large effect of improving the barrier performance at the time of lamination. It is speculated that the film could be realized.
本発明に係るガスバリア性フィルムの一例を示す基本構成を示す概略断面図である。It is a schematic sectional drawing which shows the basic composition which shows an example of the gas barrier film which concerns on this invention. 本発明に係るガスバリア性フィルムの製造方法において、磁場を印加したローラー間放電プラズマCVD装置を用いて、当該ガスバリア性フィルムを構成する傾斜SiOCNバリア膜である第1ガスバリア層の製造方法の一例を示す概略図である。In the method for producing a gas barrier film according to the present invention, an example of a method for producing a first gas barrier layer, which is a tilted SiOCN barrier film constituting the gas barrier film, is shown using an inter-roller discharge plasma CVD apparatus to which a magnetic field is applied. FIG. 本発明(試料1)のガスバリア性フィルムを構成する傾斜SiOCNバリア膜である第1ガスバリア層のケイ素分布曲線、酸素分布曲線、炭素分布曲線及び窒素分布曲線の一例を示すグラフである。It is a graph which shows an example of the silicon distribution curve of the 1st gas barrier layer which is the inclination SiOCN barrier film which comprises the gas barrier film of this invention (sample 1), an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve. 比較例(試料8)のガスバリア性フィルムを構成する非傾斜SiOCNバリア膜である第1ガスバリア層のケイ素分布曲線、酸素分布曲線、炭素分布曲線及び窒素分布曲線の一例を示すグラフである。It is a graph which shows an example of the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and nitrogen distribution curve of the 1st gas barrier layer which is a non-inclined SiOCN barrier film which comprises the gas barrier film of a comparative example (sample 8). 本発明に係るガスバリア性フィルムを具備した電子デバイスの模式図である。It is a schematic diagram of the electronic device provided with the gas barrier film according to the present invention.
 本発明のガスバリア性フィルムは、樹脂基材と、該樹脂基材の少なくとも一方の面側に形成された第1ガスバリア層と、を含むガスバリア性フィルムであって、前記第1ガスバリア層は、炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を満たすことを特徴とする。 The gas barrier film of the present invention is a gas barrier film comprising a resin base material and a first gas barrier layer formed on at least one surface side of the resin base material, wherein the first gas barrier layer is formed of carbon. It contains an atom, a silicon atom, an oxygen atom and a nitrogen atom, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2).
 (1)前記第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、ケイ素原子、酸素原子、炭素原子及び窒素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、少なくとも1つの極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差の絶対値が5at%以上で、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する窒素原子の量の比率(「窒素原子比率(at%)」という。)との関係を示す窒素分布曲線における、窒素原子比率の最大値が0.5~10at%の範囲である。 (1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, the first gas barrier layer in the layer thickness direction of the first gas barrier layer Carbon showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”). The distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, and the first The distance from the surface of the first gas barrier layer in the layer thickness direction of the gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio In nitrogen distribution curve showing the relationship between the called.) And (at%) ", the maximum value of the nitrogen atomic ratio is in the range of 0.5 ~ 10at%.
 (2)前記第1ガスバリア層の全層厚の90%以上の領域において、ケイ素原子、酸素原子、炭素原子及び窒素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。 (2) In the region of 90% or more of the total thickness of the first gas barrier layer, the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 この特徴は、請求項1(上記第1項)から請求項9(上記第9項)までの請求項(各項)に係る発明に共通する技術的特徴である。 This feature is a technical feature common to the inventions according to claims (each item) from claim 1 (the first item) to claim 9 (the ninth item).
 本発明の実施態様としては、本発明の効果発現の観点から、前記傾斜SiOCNバリア膜である第1ガスバリア層上に、ポリシラザン改質物を含有する第2ガスバリア層をさらに含むことが、低カール性と耐屈曲性の両立だけでなく、第1及び第2ガスバリア層の双方に含有される窒素同士が層間で相互作用して形成されるため層間における構造欠陥が低減され、積層時のバリア性能向上効果の大きいガスバリア性フィルムを得ることができる観点から好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, it is possible to further include a second gas barrier layer containing a modified polysilazane on the first gas barrier layer which is the inclined SiOCN barrier film. In addition to the balance between bending resistance and nitrogen, the nitrogen contained in both the first and second gas barrier layers is formed by the interaction between the layers, reducing structural defects between the layers and improving the barrier performance during lamination It is preferable from the viewpoint that a gas barrier film having a large effect can be obtained.
 上記第2ガスバリア層が、ポリシラザン含有液を塗布、乾燥して形成される塗膜をエキシマ改質処理して得られることが、低カール性と耐屈曲性の両立だけでなく、第1及び第2ガスバリア層同士の密着性や表面平滑性も向上し、さらに層間における構造欠陥が低減され、積層時のバリア性能向上効果の大きいガスバリア性フィルムを得ることができる観点から好ましい。 The second gas barrier layer is obtained by applying an excimer modification treatment to a coating film formed by applying and drying a polysilazane-containing liquid. It is preferable from the viewpoint of improving the adhesion between the two gas barrier layers and the surface smoothness, further reducing the structural defects between the layers, and obtaining a gas barrier film having a large effect of improving the barrier performance during lamination.
 また、ガスバリア性フィルムの第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する窒素原子の量の比率(「窒素原子比率(at%)」という。)との関係を示す窒素分布曲線における、窒素原子比率の最大値が、0.5~10at%、好ましくは2~10at%、より好ましくは4~10at%の範囲であることにより、SiOCに含有されるN(窒素原子)が多いほど、傾斜SiOCNバリア膜である第1ガスバリア層の内部応力が小さくなり、平面性に優れたバリア膜が得られる。一方、第1ガスバリア層内にN(窒素原子)が多いほど、膜密度が上がって緻密になるゆえ、過剰にN(窒素原子)を含むと折り曲げたときにバリア膜にクラックが発生する等、フレキシブル性に劣るバリア膜となる。窒素原子比率の最大の極値(極大値)が上記範囲内であれば、フレキシブル性と平面性を両立出来る。更に上記バリア性能向上効果を有効に発現させることができる観点からも好ましい。 The first gas barrier in the thickness direction of the first gas barrier layer among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer of the gas barrier film. The relationship between the distance from the surface of the layer and the ratio of the amount of nitrogen atoms to the total amount of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (100 at%) (referred to as “nitrogen atom ratio (at%)”). In the nitrogen distribution curve shown, the maximum value of the nitrogen atomic ratio is in the range of 0.5 to 10 at%, preferably 2 to 10 at%, more preferably 4 to 10 at%. As the number of atoms) increases, the internal stress of the first gas barrier layer, which is a tilted SiOCN barrier film, decreases, and a barrier film with excellent flatness can be obtained. On the other hand, the more N (nitrogen atoms) in the first gas barrier layer, the denser the film density becomes. Therefore, if the N gas (nitrogen atoms) is excessively contained, cracks occur in the barrier film when bent. The barrier film is inferior in flexibility. If the maximum extreme value (maximum value) of the nitrogen atom ratio is within the above range, both flexibility and flatness can be achieved. Furthermore, it is also preferable from the viewpoint of effectively exhibiting the barrier performance improving effect.
 また、本発明に係るガスバリア性フィルムにおいては、本発明の目的効果は、樹脂基材の膜厚が40~150μmの範囲内という、比較的薄膜の樹脂基材を用いた場合に効果的に発揮することができる。 In the gas barrier film according to the present invention, the object effect of the present invention is exhibited effectively when a relatively thin resin substrate having a resin substrate thickness in the range of 40 to 150 μm is used. can do.
 また、本発明のガスバリア性フィルムの製造方法は、樹脂基材の少なくとも一方の面側に、傾斜SiOCNバリア膜である第1ガスバリア層を具備するガスバリア性フィルムの製造方法であって、炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、前記要件(1)及び(2)を満たす第1ガスバリア層を形成する工程を有することを特徴とする。 Moreover, the method for producing a gas barrier film of the present invention is a method for producing a gas barrier film comprising a first gas barrier layer that is a tilted SiOCN barrier film on at least one surface side of a resin base material, comprising carbon atoms, It has a step of forming a first gas barrier layer containing silicon atoms, oxygen atoms and nitrogen atoms, the composition continuously changing in the layer thickness direction and satisfying the above requirements (1) and (2). .
 また、本発明のガスバリア性フィルムの製造方法においては、前記第1ガスバリア層は、窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成することが、より高い精度で所望の各元素プロファイルを有する傾斜SiOCNバリア膜である第1のガスバリア層(炭素含有酸窒化ケイ素膜)を実現することができる観点から好ましい。 In the method for producing a gas barrier film of the present invention, the first gas barrier layer is a discharge having a discharge space between rollers to which a magnetic field is applied using a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas. From the viewpoint of being able to realize the first gas barrier layer (carbon-containing silicon oxynitride film) that is a graded SiOCN barrier film having a desired element profile with higher accuracy by being formed by plasma enhanced chemical vapor deposition. preferable.
 また、本発明のガスバリア性フィルムの製造方法においては、前記第1ガスバリア層は、有機ケイ素化合物を含む原料ガスと酸素ガスと窒素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成することによっても、より高い精度で所望の各元素プロファイルを有する傾斜SiOCNバリア膜である第1のガスバリア層(炭素含有酸窒化ケイ素膜)を実現することができる観点から好ましい。 In the method for producing a gas barrier film of the present invention, the first gas barrier layer has a discharge space between rollers to which a magnetic field is applied using a raw material gas containing an organosilicon compound, oxygen gas, and nitrogen gas. The first gas barrier layer (carbon-containing silicon oxynitride film), which is a graded SiOCN barrier film having a desired element profile with higher accuracy, can also be realized by forming by a discharge plasma chemical vapor deposition method. It is preferable from the viewpoint.
 また、本発明のガスバリア性フィルムの製造方法においては、傾斜SiOCNバリア膜である前記第1ガスバリア層(炭素含有酸窒化ケイ素膜)上に、ポリシラザン含有液を塗布、乾燥して塗膜を形成し、該塗膜にエキシマ改質処理を施すことにより、ポリシラザン改質膜である第2ガスバリア層(SiONバリア膜;酸窒化ケイ素膜)を形成する工程を、更に含むことが、低カール性と耐屈曲性の両立だけでなく、第1及び第2ガスバリア層同士の密着性や表面平滑性も向上し、さらに層間における構造欠陥が低減され、積層時のバリア性能向上効果の大きいガスバリア性フィルムを実現することができる観点から好ましい。 Further, in the method for producing a gas barrier film of the present invention, a polysilazane-containing liquid is applied onto the first gas barrier layer (carbon-containing silicon oxynitride film) that is a gradient SiOCN barrier film, and dried to form a coating film. The method further includes a step of forming a second gas barrier layer (SiON barrier film; silicon oxynitride film), which is a polysilazane modified film, by subjecting the coating film to an excimer modification treatment. In addition to being compatible with flexibility, the adhesion and surface smoothness between the first and second gas barrier layers are also improved, and further, structural defects between layers are reduced, realizing a gas barrier film with a great effect of improving barrier performance during lamination. It is preferable from the viewpoint that can be performed.
 また、本発明のガスバリア性フィルムの製造方法においては、前記第2ガスバリア層の形成に用いるエキシマ改質処理手段が、波長が200nm以下の真空紫外光を照射する方法であることが、所望の特性(層間の構造欠陥修復(低減)性、積層時のバリア性能向上効果等)を備えた前記第2ガスバリア層を高精度で実現することができる観点から好ましい。 In the method for producing a gas barrier film of the present invention, the excimer modification treatment means used for forming the second gas barrier layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less. It is preferable from the viewpoint that the second gas barrier layer having (interlayer structural defect repair (reduction) property, barrier performance improvement effect at the time of stacking, etc.) can be realized with high accuracy.
 なお、本発明でいう「ガスバリア性」とは、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(温度:60±0.5℃、相対湿度(RH):90±2%)が1×10-2g/m・24h以下であり、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-2ml/m・24h・atm以下であることを意味する。 The “gas barrier property” as used in the present invention is the water vapor permeability measured by a method according to JIS K 7129-1992 (temperature: 60 ± 0.5 ° C., relative humidity (RH): 90 ± 2%). Is 1 × 10 −2 g / m 2 · 24 h or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −2 ml / m 2 · 24 h · atm or less. Means.
 また、本発明において、「真空紫外線」、「真空紫外光」、「VUV」、「VUV光」とは、具体的には波長が100~200nmの光を意味する。 In the present invention, “vacuum ultraviolet light”, “vacuum ultraviolet light”, “VUV”, and “VUV light” specifically mean light having a wavelength of 100 to 200 nm.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《ガスバリア性フィルム》
 図1は、本発明に係るガスバリア性フィルムの基本構成の一例を示す概略断面図である。
《Gas barrier film》
FIG. 1 is a schematic cross-sectional view showing an example of a basic configuration of a gas barrier film according to the present invention.
 図1に示すように、本発明に係るガスバリア性フィルムFは、支持体としての樹脂基材1と、樹脂基板1上に、炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、上記要件(1)及び(2)を満たす第1ガスバリア層2を有し、第1ガスバリア層2上に、ポリシラザン改質物を含有する第2ガスバリア層3を積層した基本構成を有している。なお、本発明に係るガスバリア性フィルムFは、支持体としての樹脂基材1と、樹脂基板1上に、上記諸特性を有する第1ガスバリア層2を形成した構成を有していればよく、その他のどのような層を形成してもよい(その他の層は図示せず)。 As shown in FIG. 1, a gas barrier film F according to the present invention contains a carbon substrate, a silicon atom, an oxygen atom, and a nitrogen atom on a resin substrate 1 as a support and a resin substrate 1, and has a layer thickness. The first gas barrier layer 2 having a composition that continuously changes in the direction and satisfying the above requirements (1) and (2) is provided, and the second gas barrier layer 3 containing the polysilazane modified product is formed on the first gas barrier layer 2. It has a stacked basic configuration. The gas barrier film F according to the present invention only needs to have a configuration in which the resin base material 1 as a support and the first gas barrier layer 2 having the above characteristics are formed on the resin substrate 1, Any other layer may be formed (other layers are not shown).
 本発明に係る第1ガスバリア層2は、炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、前記(1)及び(2)で規定する要件を同時に満たす元素分布プロファイルを有していることを特徴とする。また、本発明に係る第2ガスバリア層3は、ポリシラザン改質物を含有することを特徴とする。また第2ガスバリア層3は、ポリシラザンを含有する液(ポリシラザン含有液)を塗布、乾燥して形成される塗膜をエキシマ改質処理して得られてなることを特徴とする。 The first gas barrier layer 2 according to the present invention contains carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms, the composition continuously changes in the layer thickness direction, and the requirements specified in the above (1) and (2) It has the element distribution profile which satisfy | fills simultaneously. Moreover, the 2nd gas barrier layer 3 which concerns on this invention contains a polysilazane modified material, It is characterized by the above-mentioned. The second gas barrier layer 3 is obtained by applying a liquid containing polysilazane (polysilazane-containing liquid) and drying the coating film formed by excimer modification treatment.
 〔1〕樹脂基材
 本発明に係るガスバリア性フィルムを構成する樹脂基材としては、本発明に係るガスバリア性を有する第1ガスバリア層、更には第2ガスバリア層を保持することができ、耐屈曲性にも優れる有機材料で形成されたものであれば、特に限定されるものではない。
[1] Resin base material As the resin base material constituting the gas barrier film according to the present invention, the first gas barrier layer having the gas barrier property according to the present invention, and further the second gas barrier layer can be retained, and it is flex-resistant. As long as it is formed of an organic material having excellent properties, it is not particularly limited.
 本発明に適用可能な樹脂基材としては、例えば、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリスチレン(PS)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂フィルム、更には上記樹脂を2層以上積層して成る積層フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などが好ましく用いられる。 Examples of the resin base material applicable to the present invention include methacrylate ester, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polystyrene (PS), aromatic polyamide, and polyether. Examples include resin films such as ether ketone, polysulfone, polyethersulfone, polyimide, polyetherimide, and a laminated film formed by laminating two or more layers of the above resins. From the viewpoint of cost and availability, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used.
 樹脂基材の厚さは、特に制限はなく、5~500μm、好ましくは20~150μmの範囲内で選択することができるが、本発明の効果をより発現することができる観点からは、40~150μmの範囲内であることが好ましい。 The thickness of the resin base material is not particularly limited and can be selected within the range of 5 to 500 μm, preferably 20 to 150 μm. From the viewpoint of further manifesting the effects of the present invention, the thickness of the resin base material is 40 to It is preferable to be in the range of 150 μm.
 また、本発明に係る樹脂基材は、透明であることが好ましい。樹脂基材が透明であり、基材上に形成する層も透明であることにより、透明なガスバリア性フィルムとすることが可能となるため、電子デバイス(例えば、有機EL等)等の透明基板とすることも可能となるからである。 The resin base material according to the present invention is preferably transparent. Since the resin base material is transparent and the layer formed on the base material is also transparent, a transparent gas barrier film can be obtained. Therefore, a transparent substrate such as an electronic device (for example, organic EL) It is also possible to do.
 〔2〕第1ガスバリア層
 本発明に係る第1ガスバリア層は、炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、上記要件(1)及び(2)を同時に満たす構成
であることを特徴とする。即ち、本発明の第1ガスバリア層は、炭素含有酸窒化ケイ素膜であって、傾斜SiOCNバリア膜である。
[2] First gas barrier layer The first gas barrier layer according to the present invention contains a carbon atom, a silicon atom, an oxygen atom and a nitrogen atom, the composition continuously changes in the layer thickness direction, and the above requirements (1) and It is the structure which satisfy | fills (2) simultaneously. That is, the first gas barrier layer of the present invention is a carbon-containing silicon oxynitride film, and is a graded SiOCN barrier film.
 なお、樹脂基材界面領域における測定精度は、樹脂基材の構成原子のノイズ等でやや精度が低下するため、上記式(A)又は式(B)で規定する関係を満たす領域としては、第1ガスバリア層の全層厚の90~95%の範囲内の領域であることが好ましい。 In addition, the measurement accuracy in the resin base material interface region is slightly lowered due to noise of constituent atoms of the resin base material, etc., so the region satisfying the relationship defined by the above formula (A) or formula (B) is A region within the range of 90 to 95% of the total thickness of one gas barrier layer is preferable.
 また、より好ましい態様としては、本発明に係る第1ガスバリア層の層厚が、50~1000nmの範囲内であることが好ましい。また、本発明に係る第1ガスバリア層の形成方法としては、本発明で規定する元素プロファイルを実現することができる薄膜形成方法であれば特に制限はないが、緻密に元素分布が制御させた第1ガスバリア層を形成することができる観点からは、(a)窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、或いは(b)有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成する方法が好ましい。 Further, as a more preferable aspect, the layer thickness of the first gas barrier layer according to the present invention is preferably in the range of 50 to 1000 nm. The first gas barrier layer forming method according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile defined in the present invention, but the first element in which the element distribution is precisely controlled. From the viewpoint of being able to form one gas barrier layer, (a) a raw material gas containing a nitrogen-containing organosilicon compound and an oxygen gas, or (b) a raw material gas containing an organosilicon compound and an oxygen gas are used. A method of forming by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied is preferable.
 以下、本発明に係る第1ガスバリア層の詳細について説明する。 Hereinafter, details of the first gas barrier layer according to the present invention will be described.
 本発明において、本発明に係る第1ガスバリア層内における炭素原子の含有比率の平均値は、後述するXPSデプスプロファイルの測定によって求めることができる。 In the present invention, the average value of the content ratio of carbon atoms in the first gas barrier layer according to the present invention can be obtained by measuring an XPS depth profile described later.
 以下、本発明に係る第1ガスバリア層の詳細について更に説明する。 Hereinafter, details of the first gas barrier layer according to the present invention will be further described.
 (2.1)第1ガスバリア層における炭素元素プロファイル
 本発明に係る第1ガスバリア層は、第1ガスバリア層の構成元素として炭素原子、ケイ素原子、酸素原子及び窒素原子を含み、層厚方向に組成が連続的に変化し、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線(以下、単に炭素分布曲線とも称する)において、少なくとも1つ極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差の絶対値が5at%以上であることを特徴の一つとする。
(2.1) Carbon element profile in the first gas barrier layer The first gas barrier layer according to the present invention contains carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms as constituent elements of the first gas barrier layer, and is composed in the layer thickness direction. Continuously changing and out of the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer. Carbon distribution curve showing the relationship between the distance and the ratio of the amount of carbon atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”) ( Hereinafter, the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5a. One of the characteristics is that it is t% or more.
 また、本発明に係る第1ガスバリア層においては、炭素原子比率が第1ガスバリア層の特定の領域において、濃度勾配を有して連続的に変化する構成を有することが、低カール性と耐屈曲性を両立し、高いガスバリア性を持つガスバリア性フィルムを提供する観点から好ましい態様である。ここで、炭素原子比率が「連続的に変化する構成」とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される膜厚方向の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式(1)で表される条件を満たすことをいう。 In addition, the first gas barrier layer according to the present invention has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region of the first gas barrier layer. This is a preferred embodiment from the viewpoint of providing a gas barrier film having both properties and high gas barrier properties. Here, the “configuration in which the carbon atom ratio varies continuously” means that the carbon distribution curve does not include a portion in which the carbon atom ratio varies discontinuously. Specifically, the etching rate and the etching rate are not included. In the relationship between the distance (x, unit: nm) from the surface in the film thickness direction calculated from the time and the atomic ratio of carbon (C, unit: at%), the condition represented by the following formula (1) Satisfying.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 本発明に係る第1ガスバリア層においては、上記炭素分布曲線において、少なくとも1つの極値を有することを特徴とし、更に、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することが特に好ましい。前記炭素分布曲線が極値を有さない場合には、得られるガスバリア性フィルムのフィルムを屈曲させた場合におけるガスバリア性が不十分となる。また、このように少なくとも2つ又は3つの極値を有する場合においては、前記炭素分布曲線が有する一つの極値及び該極値に隣接する極値における前記第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。 The first gas barrier layer according to the present invention is characterized in that the carbon distribution curve has at least one extreme value, more preferably at least two extreme values, and at least three extreme values. It is particularly preferred. When the carbon distribution curve does not have an extreme value, the gas barrier property when the obtained gas barrier film is bent is insufficient. Further, in the case of having at least two or three extreme values as described above, the one in the carbon distribution curve and the extreme value adjacent to the extreme value in the thickness direction of the first gas barrier layer. The absolute value of the difference in distance from the surface of the first gas barrier layer is preferably 200 nm or less, and more preferably 100 nm or less.
 なお、本発明において分布曲線の極値とは、第1ガスバリア層の層厚方向における、第1ガスバリア層の表面からの距離に対する元素の原子比率の極大値又は極小値の測定値のことをいう。 In the present invention, the extreme value of the distribution curve means a measured value of the maximum value or the minimum value of the atomic ratio of the element to the distance from the surface of the first gas barrier layer in the thickness direction of the first gas barrier layer. .
 本発明において極大値とは、第1ガスバリア層の表面からの距離を変化させた場合に元素の原子比率の値が増加から減少に変わる点であって、かつその点の元素の原子比率の値よりも、該点から第1ガスバリア層の層厚方向における第1ガスバリア層の表面からの距離を更に20nm変化させた位置の元素の原子比率の値が3at%以上減少する点のことをいう。 In the present invention, the maximum value is a point where the value of the atomic ratio of an element changes from increasing to decreasing when the distance from the surface of the first gas barrier layer is changed, and the value of the atomic ratio of the element at that point. Rather, the atomic ratio value of the element at a position where the distance from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer is further changed by 20 nm from this point is reduced by 3 at% or more.
 さらに、本発明において極小値とは、第1ガスバリア層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる点であり、且つその点の元素の原子比率の値よりも、該点から第1ガスバリア層の層厚方向における第1ガスバリア層の表面からの距離を更に20nm変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。 Further, in the present invention, the minimum value is a point where the value of the atomic ratio of an element changes from decreasing to increasing when the distance from the surface of the first gas barrier layer is changed, and the atomic ratio of the element at that point is changed. The value of the atomic ratio of the element at a position where the distance from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer from the point is further changed by 20 nm from the point increases by 3 at% or more. .
 本発明に係る第1ガスバリア層においては、上記炭素分布曲線において、少なくとも1つの極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差の絶対値が5at%以上であることを特徴とする。 In the first gas barrier layer according to the present invention, the carbon distribution curve has at least one extreme value, and has a maximum extreme value (maximum value) and a minimum extreme value (minimum value) of the carbon atom ratio. The absolute value of the difference is 5 at% or more.
 (2.2)第1ガスバリア層における各元素プロファイル
 本発明に係る第1ガスバリア層においては、構成元素として炭素原子、ケイ素原子、酸素原子及び窒素原子を含有することを特徴とするが、それぞれの原子の比率と、極大値及び極小値(窒素原子については最大値)についての好ましい態様を、以下に説明する。
(2.2) Element profiles in the first gas barrier layer The first gas barrier layer according to the present invention is characterized by containing carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms as constituent elements. Preferred embodiments of the atomic ratio, maximum value, and minimum value (maximum value for nitrogen atoms) will be described below.
 〈2.2.1〉炭素原子比率の極大値と極小値の関係
 本発明に係る第1ガスバリア層では、上記炭素分布曲線における炭素原子比率の最大の極値(極大値)と最小の極値(極小値)の差の絶対値が5at%以上であることを特徴の一つとする。また、このような第1ガスバリア層においては、炭素原子比率の極大値及び極小値の差の絶対値が6at%以上であることがより好ましく、7at%以上であることが特に好ましい。炭素原子比率の極大値及び極小値の差の絶対値を5at%以上とすることにより、作製したガスバリア性フィルムを屈曲させた際のガスバリア性が十分となる。
<2.2.1> Relationship between maximum value and minimum value of carbon atom ratio In the first gas barrier layer according to the present invention, the maximum extreme value (maximum value) and the minimum extreme value of the carbon atom ratio in the carbon distribution curve. One of the characteristics is that the absolute value of the difference of (minimum value) is 5 at% or more. Moreover, in such a 1st gas barrier layer, it is more preferable that the absolute value of the difference of the maximum value of carbon atom ratio and minimum value is 6 at% or more, and it is especially preferable that it is 7 at% or more. By setting the absolute value of the difference between the maximum value and the minimum value of the carbon atom ratio to 5 at% or more, the gas barrier property when the produced gas barrier film is bent is sufficient.
 〈2.2.2〉窒素原子比率の最大値の関係
 本発明に係る第1ガスバリア層では、窒素分布曲線における、窒素原子比率の最大値(最大の極値でなくてもよい)が0.5~10at%の範囲であることを特徴の一つとする。また、このような第1ガスバリア層においては、窒素原子比率の最大値が2~10at%の範囲であることがより好ましく、4~10at%の範囲であることがより好ましい。上記範囲内であれば、得られるガスバリア性フィルムの低カール性と耐屈曲性を両立し、ガスバリア性及び電子デバイス部材としての平面性が十分となる。特に上記窒素原子比率の最大値が10at%以下であれば、折り曲げ時にバリア性能が劣化するのを効果的に防止することができる。また、上記窒素原子比率の最大値が0.5%以上、特に2at%以上であれば、フィルムカールがより小さく、より平面性に優れるバリア膜となり、更に4at%以上で特にフィルムカールが小さく抑えられ、更に平面性に優れるバリア膜が得られる点で優れている。ここでいう窒素分布曲線とは、第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1のガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する窒素原子の量の比率(「窒素原子比率(at%)」という。)との関係を示す窒素元素の分布曲線を指す。また、本発明に係る第1ガスバリア層において、窒素分布曲線における、窒素原子比率の最大値とは、第1ガスバリア層の表面からの距離を変化させた場合に窒素元素の原子比率の値が最大となる点である。
<2.2.2> Relationship of Maximum Value of Nitrogen Atom Ratio In the first gas barrier layer according to the present invention, the maximum value of nitrogen atom ratio (not necessarily the maximum extreme value) in the nitrogen distribution curve is 0. One of the characteristics is that it is in the range of 5 to 10 at%. In such a first gas barrier layer, the maximum value of the nitrogen atom ratio is more preferably in the range of 2 to 10 at%, and more preferably in the range of 4 to 10 at%. If it is in the said range, the low curl property and bending resistance of the gas barrier film obtained will be compatible, and gas barrier property and planarity as an electronic device member will become enough. In particular, when the maximum value of the nitrogen atom ratio is 10 at% or less, it is possible to effectively prevent the barrier performance from being deteriorated during bending. Further, when the maximum value of the nitrogen atom ratio is 0.5% or more, particularly 2 at% or more, the film curl becomes smaller and the barrier film is more excellent in flatness, and when it is 4 at% or more, the film curl is particularly suppressed small. Furthermore, it is excellent in that a barrier film having excellent flatness can be obtained. The nitrogen distribution curve here is the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, in the thickness direction of the first gas barrier layer. The distance from the surface of the first gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “nitrogen atom ratio (at%)”). Refers to a nitrogen element distribution curve. Further, in the first gas barrier layer according to the present invention, the maximum value of the nitrogen atomic ratio in the nitrogen distribution curve is the maximum value of the atomic ratio of the nitrogen element when the distance from the surface of the first gas barrier layer is changed. This is the point.
 〈2.2.3〉酸素原子比率の極大値と極小値の関係
 本発明に係る第1ガスバリア層においては、酸素分布曲線における極大値及び極小値の差の絶対値が5at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることが特に好ましい。前記絶対値が5at%以上では、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性が十分となる。ここでいう酸素分布曲線とは、第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1のガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する酸素原子の量の比率(「酸素原子比率(at%)」という。)との関係を示す酸素元素の分布曲線を指す。
<2.2.3> Relationship between Maximum Value and Minimum Value of Oxygen Atomic Ratio In the first gas barrier layer according to the present invention, the absolute value of the difference between the maximum value and the minimum value in the oxygen distribution curve is 5 at% or more. Is preferably 6 at% or more, and more preferably 7 at% or more. When the absolute value is 5 at% or more, the gas barrier property when the obtained gas barrier film is bent is sufficient. The oxygen distribution curve here is the distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, in the thickness direction of the first gas barrier layer. The distance from the surface of the first gas barrier layer and the ratio of the amount of oxygen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “oxygen atom ratio (at%)”). The oxygen element distribution curve indicating the relationship between
 〈2.2.4〉ケイ素原子比率の極大値と極小値の関係
 本発明に係る第1ガスバリア層においては、ケイ素分布曲線における極大値及び極小値の差の絶対値が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることが特に好ましい。前記絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性及び機械的強度が十分となる。ここでいうケイ素分布曲線とは、第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1のガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対するケイ素原子の量の比率(「ケイ素原子比率(at%)」という。)との関係を示すケイ素元素の分布曲線を指す。
<2.2.4> Relationship between maximum value and minimum value of silicon atomic ratio In the first gas barrier layer according to the present invention, the absolute value of the difference between the maximum value and the minimum value in the silicon distribution curve is less than 5 at%. Is preferably less than 4 at%, more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property and mechanical strength of the obtained gas barrier film are sufficient. The silicon distribution curve here is the distribution curve of each constituent element based on the element distribution measurement in the depth direction by the X-ray photoelectron spectroscopy for the first gas barrier layer, in the thickness direction of the first gas barrier layer. The distance from the surface of the first gas barrier layer and the ratio of the amount of silicon atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “silicon atom ratio (at%)”). The distribution curve of silicon element showing the relationship between
 なお、後述する図3及び図4に示すような炭素原子分布プロファイル(炭素分布曲線、ケイ素分布曲線、酸素分布曲線及び窒素分布曲線)に関する上記説明において、「炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量」とは、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計at%を意味し、「炭素原子の量」とは、炭素原子数を意味する。本発明でいうat%とは、炭素原子、ケイ素原子、酸素原子及び窒素原子の総原子数を100%としたときの各原子の原子数比率を意味する。また、図3及び図4に示すような炭素分布曲線、ケイ素分布曲線、酸素分布曲線及び窒素分布曲線についての「ケイ素原子の量」及び「窒素原子の量」についても同様である。 In the above description regarding the carbon atom distribution profile (carbon distribution curve, silicon distribution curve, oxygen distribution curve and nitrogen distribution curve) as shown in FIG. 3 and FIG. 4 described later, “carbon atom, silicon atom, oxygen atom and nitrogen”. “Total amount of atoms” means the total at% of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms, and “amount of carbon atoms” means the number of carbon atoms. The term “at%” in the present invention means the atomic ratio of each atom when the total number of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms is 100%. The same applies to “amount of silicon atoms” and “amount of nitrogen atoms” for the carbon distribution curve, silicon distribution curve, oxygen distribution curve and nitrogen distribution curve as shown in FIGS.
 〈2.2.6〉表面から層厚方向での全層厚領域における元素分布
 本発明に係る第1ガスバリア層においては、第1ガスバリア層の全層厚の90%以上の領域において、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有することを特徴の一つとする。かような条件となることで、得られるガスバリア性フィルムにおいて、低カール性と耐屈曲性を両立し、高いガスバリア性を持つものを提供することができる。
<2.2.6> Element distribution in the entire layer thickness region from the surface in the layer thickness direction In the first gas barrier layer according to the present invention, carbon atoms are present in a region of 90% or more of the total layer thickness of the first gas barrier layer. One of the features is that the average atomic ratio of each atom with respect to the total amount (100 at%) of silicon atom, oxygen atom and nitrogen atom has an order of magnitude represented by the following formula (A) or (B): To do. By satisfying such conditions, it is possible to provide a gas barrier film that has both a low curling property and a high bending resistance and a high gas barrier property.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (2.3)X線光電子分光法による深さ方向の元素分布測定
 第1ガスバリア層の層厚方向における炭素分布曲線、ケイ素分布曲線、酸素分布曲線、窒素分布曲線、及び酸素-炭素合計の分布曲線等は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向における前記第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離におおむね相関することから、「第1ガスバリア層の層厚方向における第1ガスバリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される第1ガスバリア層の表面からの距離を採用することができる(図3、4で適用した)。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
(2.3) Element distribution measurement in the depth direction by X-ray photoelectron spectroscopy Carbon distribution curve, silicon distribution curve, oxygen distribution curve, nitrogen distribution curve, and oxygen-carbon total distribution in the layer thickness direction of the first gas barrier layer Curves and the like are so-called XPS depth profiles in which X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon are used in combination to perform surface composition analysis sequentially while exposing the inside of the sample. It can be created by measurement. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In this way, in the element distribution curve with the horizontal axis as the etching time, the etching time generally correlates with the distance from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer in the layer thickness direction. Therefore, the “distance from the surface of the first gas barrier layer in the layer thickness direction of the first gas barrier layer” is calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement. The distance from the surface can be employed (applied in FIGS. 3 and 4). In addition, as a sputtering method employed for such XPS depth profile measurement, a rare gas ion sputtering method using argon (Ar + ) as an etching ion species is employed, and the etching rate (etching rate) is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
 また、本発明においては、膜面全体において均一で、かつ優れたガスバリア性を有する第1ガスバリア層を形成するという観点から、第1ガスバリア層が膜面方向(第1ガスバリア層の表面に平行な方向)において実質的に一様であることが好ましい。本発明において、第1ガスバリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により第1ガスバリア層の膜面の任意の2箇所の測定箇所について前記炭素分布曲線、前記ケイ素分布曲線、前記酸素分布曲線、前記窒素分布曲線及び前記酸素-炭素合計の分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか若しくは5at%以内の差であることをいう。 In the present invention, from the viewpoint of forming a first gas barrier layer that is uniform over the entire film surface and has excellent gas barrier properties, the first gas barrier layer is in the film surface direction (parallel to the surface of the first gas barrier layer). (Direction) is preferably substantially uniform. In the present invention, the fact that the first gas barrier layer is substantially uniform in the film surface direction means that the carbon distribution curve and the silicon distribution at any two measurement points on the film surface of the first gas barrier layer by XPS depth profile measurement. When the curve, the oxygen distribution curve, the nitrogen distribution curve, and the oxygen-carbon total distribution curve are created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same. The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in each carbon distribution curve is the same or within 5 at%.
 本発明に係るガスバリア性フィルムは、本発明で規定する前記要件(1)及び(2)を同時に満たす第1ガスバリア層を少なくとも1層備えることが必須の要件であるが、そのような条件を満たす層を、2層以上を備えていてもよい。さらに、このような第1ガスバリア層を2層以上備える場合には、複数の第1ガスバリア層の材質は、同一であってもよく、異なっていてもよい。また、このような第1ガスバリア層を2層以上備える場合には、このような第1ガスバリア層は前記基材の一方の表面上に形成されていてもよく、前記基材の両方の表面上に形成されていてもよい。また、このような複数の第1ガスバリア層としては、ガスバリア性を必ずしも有しない第1ガスバリア層を含んでいてもよい。 The gas barrier film according to the present invention is indispensable to have at least one first gas barrier layer that simultaneously satisfies the requirements (1) and (2) defined in the present invention. Two or more layers may be provided. Further, when two or more such first gas barrier layers are provided, the materials of the plurality of first gas barrier layers may be the same or different. Further, when two or more such first gas barrier layers are provided, such a first gas barrier layer may be formed on one surface of the substrate, and on both surfaces of the substrate. It may be formed. Further, the plurality of first gas barrier layers may include a first gas barrier layer that does not necessarily have gas barrier properties.
 また、前記第1ガスバリア層中における前記炭素分布曲線、前記ケイ素分布曲線、前記酸素分布曲線、前記窒素分布曲線において、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量に対するケイ素原子比率は、19~40at%の範囲であることが好ましく、30~40at%の範囲であることがより好ましい。また、前記第1ガスバリア層中における前記炭素分布曲線、前記ケイ素分布曲線、前記酸素分布曲線、前記窒素分布曲線において、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量に対する酸素原子比率は、25~67at%の範囲であることが好ましく、25~40at%の範囲であることがより好ましい。さらに、前記第1ガスバリア層中における前記炭素分布曲線、前記ケイ素分布曲線、前記酸素分布曲線、前記窒素分布曲線において、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量に対する炭素原子比率は、1~38at%の範囲であることが好ましく、10~38at%の範囲であることがより好ましい。さらにまた、前記第1ガスバリア層中における前記炭素分布曲線、前記ケイ素分布曲線、前記酸素分布曲線、前記窒素分布曲線において、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量に対する窒素原子比率は、0.2~10at%の範囲であることが好ましく、2~10at%の範囲であることがより好ましく、4~10at%の範囲であることが特に好ましい。 In the carbon distribution curve, the silicon distribution curve, the oxygen distribution curve, and the nitrogen distribution curve in the first gas barrier layer, the silicon atom ratio to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is: A range of 19 to 40 at% is preferable, and a range of 30 to 40 at% is more preferable. In the carbon distribution curve, the silicon distribution curve, the oxygen distribution curve, and the nitrogen distribution curve in the first gas barrier layer, the oxygen atom ratio relative to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is: It is preferably in the range of 25 to 67 at%, more preferably in the range of 25 to 40 at%. Furthermore, in the carbon distribution curve, the silicon distribution curve, the oxygen distribution curve, and the nitrogen distribution curve in the first gas barrier layer, the carbon atom ratio to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is: The range is preferably 1 to 38 at%, more preferably 10 to 38 at%. Furthermore, in the carbon distribution curve, the silicon distribution curve, the oxygen distribution curve, and the nitrogen distribution curve in the first gas barrier layer, the nitrogen atom ratio with respect to the total amount of carbon atoms, silicon atoms, oxygen atoms, and nitrogen atoms is The range is preferably 0.2 to 10 at%, more preferably 2 to 10 at%, and particularly preferably 4 to 10 at%.
 (2.4)第1ガスバリア層の厚さ
 本発明に係る第1ガスバリア層の厚さは、5~1000nmの範囲内であることが好ましく、10~1000nmの範囲内であることより好ましく、100~1000nmの範囲内であることが特に好ましい。第1ガスバリア層の厚さが前記範囲内であれば、カールが小さく、水蒸気や酸素等の各種ガスに対するガスバリア性に優れ、屈曲によるガスバリア性の低下がみられない。特に第1ガスバリア層の厚さを上記範囲内で厚膜化した場合であっても、フィルムカールが大きくなるのを効果的に抑制することができる点で優れている。
(2.4) Thickness of the First Gas Barrier Layer The thickness of the first gas barrier layer according to the present invention is preferably in the range of 5 to 1000 nm, more preferably in the range of 10 to 1000 nm. Particularly preferably, it is in the range of ˜1000 nm. When the thickness of the first gas barrier layer is within the above range, curling is small, gas barrier properties against various gases such as water vapor and oxygen are excellent, and no deterioration of the gas barrier properties due to bending is observed. In particular, even when the thickness of the first gas barrier layer is increased within the above range, it is excellent in that the increase in film curl can be effectively suppressed.
 第1ガスバリア層が2層以上の場合においても、第1ガスバリア層の厚さの合計値が5~1000nmの範囲内であることが好ましく、10~1000nmの範囲内であることより好ましく、100~1000nmの範囲内であることが特に好ましい。第1ガスバリア層の厚さの合計値が上記範囲内であれば、所望の平面性を実現することができると共に、カールが小さく、水蒸気や酸素等の各種ガスに対するガスバリア性に優れ、屈曲によるガスバリア性の低下がみられない。特に第1ガスバリア層の厚さの合計値を上記範囲内で厚膜化した場合であっても、フィルムカールが大きくなるのを効果的に抑制することができる点で優れている。 Even when there are two or more first gas barrier layers, the total thickness of the first gas barrier layers is preferably within a range of 5 to 1000 nm, more preferably within a range of 10 to 1000 nm, It is particularly preferable that it is in the range of 1000 nm. If the total thickness of the first gas barrier layers is within the above range, desired flatness can be realized, curl is small, gas barrier properties against various gases such as water vapor and oxygen, etc. are excellent, and the gas barrier by bending There is no decline in sex. In particular, even when the total thickness of the first gas barrier layer is increased within the above range, the film curl is excellent in that the increase in film curl can be effectively suppressed.
 (2.5)第1ガスバリア層の形成方法
 本発明に係る第1ガスバリア層の形成方法としては、本発明で規定する元素プロファイルを実現することができる薄膜形成方法であれば特に制限はないが、緻密に元素分布が制御させた第1ガスバリア層を形成することができる観点からは、(a)窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、或いは(b)有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成する方法が好ましい。
(2.5) Forming method of the first gas barrier layer The forming method of the first gas barrier layer according to the present invention is not particularly limited as long as it is a thin film forming method capable of realizing the element profile defined in the present invention. From the viewpoint that the first gas barrier layer in which the element distribution is precisely controlled can be formed, (a) using a source gas containing nitrogen-containing organosilicon compound and oxygen gas, or (b) organosilicon compound It is preferable to use a source gas containing oxygen and oxygen gas to form by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied.
 より詳しくは、本発明に係る第1ガスバリア層は、磁場を印加したローラー間放電プラズマ処理装置を用い、樹脂基材を一対の成膜ローラーに巻き回し、一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電してプラズマ化学気相成長法により形成される層である。また、このように一対の成膜ローラー間に磁場を印加しながら放電する際には、一対の成膜ローラー間の極性を交互に反転させることが好ましい。更に、このようなプラズマ化学気相成長法に用いる成膜ガスとしては、(a)窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、或いは(b)有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、その成膜ガス中の酸素ガスの含有量は、成膜ガス中の窒素含有有機ケイ素化合物、或いは有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。また、本発明に係るガスバリア性フィルムにおいては、第1ガスバリア層が連続的な成膜プロセスにより形成された層であることが好ましい。 More specifically, the first gas barrier layer according to the present invention uses an inter-roller discharge plasma processing apparatus to which a magnetic field is applied, winds a resin substrate around a pair of film forming rollers, and forms a film forming gas between the pair of film forming rollers. This is a layer formed by plasma chemical vapor deposition by plasma discharge while supplying. Further, when discharging while applying a magnetic field between the pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately. Furthermore, as a film forming gas used in such a plasma chemical vapor deposition method, (a) a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas are used, or (b) a source gas containing an organosilicon compound is used. The oxygen gas content in the deposition gas is less than or equal to the theoretical oxygen amount necessary to completely oxidize the nitrogen-containing organosilicon compound or the entire organosilicon compound in the deposition gas. It is preferable. In the gas barrier film according to the present invention, the first gas barrier layer is preferably a layer formed by a continuous film forming process.
 次に、本発明に係る第1ガスバリア層の具体的な形成方法について説明する。 Next, a specific method for forming the first gas barrier layer according to the present invention will be described.
 本発明に係るガスバリア性フィルムを構成する第1ガスバリア層は、磁場を印加したローラー間放電プラズマ処理装置を用い、樹脂基材表面上(必要に応じ、中間層を設ける場合がある)に、第1ガスバリア層を形成させることにより製造する。 The first gas barrier layer constituting the gas barrier film according to the present invention uses an inter-roller discharge plasma treatment apparatus to which a magnetic field is applied, and is formed on the surface of the resin base material (an intermediate layer may be provided if necessary). 1 gas barrier layer is formed by forming.
 本発明に係る第1ガスバリア層においては、炭素原子比率が濃度勾配を有し、かつ層内で連続的に変化する層を形成するため、磁場を印加したローラー間放電プラズマ化学気相成長法を用いることが好ましい態様である。 In the first gas barrier layer according to the present invention, in order to form a layer in which the carbon atom ratio has a concentration gradient and continuously changes in the layer, an inter-roller discharge plasma chemical vapor deposition method using a magnetic field is applied. It is a preferable aspect to use.
 本発明に係る磁場を印加したローラー間放電プラズマ化学気相成長法(以下、プラズマCVD法、あるいはローラーCVD法ともいう。)においては、プラズマを発生させる際に、複数の成膜ローラー間に磁場を印加しながら、形成した放電空間にプラズマ放電を発生させることが好ましく、本発明では一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに樹脂基材を巻き回して、当該一対の成膜ローラー間に、磁場を印加した状態で放電してプラズマを発生させることが好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に樹脂基材を巻き回して、かかる一対の成膜ローラー間にプラズマ放電することにより、樹脂基材と成膜ローラーとの間の距離が変化することによって、前記炭素原子比率が濃度勾配を有し、かつ層内で連続的に変化するような第1ガスバリア層を形成することが可能となる。 In the inter-roller discharge plasma chemical vapor deposition method (hereinafter also referred to as plasma CVD method or roller CVD method) to which a magnetic field is applied according to the present invention, a magnetic field is generated between a plurality of film forming rollers when generating plasma. In the present invention, a pair of film forming rollers is used, and a resin substrate is wound around each of the pair of film forming rollers, and the pair of film forming rollers is used. It is preferable to generate plasma by discharging in a state where a magnetic field is applied between the film forming rollers. Thus, by using a pair of film forming rollers, winding the resin base material on the pair of film forming rollers, and performing plasma discharge between the pair of film forming rollers, the resin base material and the film forming roller By changing the distance between the first gas barrier layer and the first gas barrier layer, the carbon atomic ratio has a concentration gradient and continuously changes in the layer.
 また、成膜時に一方の成膜ローラー上に存在する樹脂基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する樹脂基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記要件(1)及び(2)を同時に満たす第1ガスバリア層を形成することが可能となる。 It is also possible to form a film on the surface part of the resin substrate that exists on the other film forming roller while forming a film on the surface part of the resin substrate that exists on one film formation roller. In addition to efficiently producing a thin film, the film formation rate can be doubled, and a film having the same structure can be formed, so that the extreme value in the carbon distribution curve can be at least doubled. It is possible to form the first gas barrier layer that satisfies the requirements (1) and (2) at the same time.
 また、本発明に係るガスバリア性フィルムを構成する第1ガスバリア層は、生産性の観点から、ロールツーロール方式で前記基材の表面上に前記第1ガスバリア層を形成させることが好ましい。 Further, the first gas barrier layer constituting the gas barrier film according to the present invention is preferably formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
 また、このようなプラズマ化学気相成長法により、ガスバリア性フィルムを構成する第1ガスバリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の磁場を印加する装置を具備した成膜ローラーと、プラズマ電源とを備え、かつ一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマ化学気相成長法を利用しながらロールツーロール方式で、ガスバリア性フィルムを製造することができる。 An apparatus that can be used for producing the first gas barrier layer constituting the gas barrier film by such a plasma chemical vapor deposition method is not particularly limited, but an apparatus that applies at least a pair of magnetic fields. It is preferable that the apparatus includes a film-forming roller provided with a plasma power source and is configured to be capable of discharging between a pair of film-forming rollers. For example, the manufacturing apparatus illustrated in FIG. In such a case, a gas barrier film can be produced by a roll-to-roll method using a plasma chemical vapor deposition method.
 以下、図2を参照しながら、本発明に係るガスバリア性フィルムを構成する第1ガスバリア層の製造方法についてより詳細に説明する。なお、図2は、本発明に係るガスバリア性フィルムを構成する第1ガスバリア層の製造において好適に利用することができる磁場を印加したローラー間放電プラズマCVD装置の一例を示す模式図である。 Hereinafter, the manufacturing method of the first gas barrier layer constituting the gas barrier film according to the present invention will be described in more detail with reference to FIG. FIG. 2 is a schematic view showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used in the production of the first gas barrier layer constituting the gas barrier film according to the present invention is applied.
 図2に示す磁場を印加したローラー間放電プラズマCVD装置(以下、プラズマCVD装置ともいう。)は、主には、送り出しローラー11と、搬送ローラー21、22、23及び24と、成膜ローラー31及び32と、成膜ガス供給管41と、プラズマ発生用電源51と、成膜ローラー31及び32の内部に設置された磁場発生装置61及び62と、巻取りローラー71とを備えている。また、このようなプラズマCVD製造装置においては、少なくとも成膜ローラー31及び32と、成膜ガス供給管41と、プラズマ発生用電源51と、磁場発生装置61及び62とが、図示を省略した真空チャンバー内に配置されている。更に、このようなプラズマCVD製造装置において、真空チャンバー(不図示)は、真空ポンプ(不図示)に接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。 An inter-roller discharge plasma CVD apparatus (hereinafter also referred to as a plasma CVD apparatus) to which a magnetic field shown in FIG. 2 is applied mainly includes a delivery roller 11, transport rollers 21, 22, 23 and 24, and a film formation roller 31. And 32, a film forming gas supply pipe 41, a plasma generation power source 51, magnetic field generators 61 and 62 installed inside the film forming rollers 31 and 32, and a winding roller 71. Further, in such a plasma CVD manufacturing apparatus, at least the film forming rollers 31 and 32, the film forming gas supply pipe 41, the plasma generating power source 51, and the magnetic field generating apparatuses 61 and 62 are not shown in a vacuum. Located in the chamber. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
 このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー31と成膜ローラー32)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源51に接続されている。一対の成膜ローラー(成膜ローラー31と成膜ローラー32)に、プラズマ発生用電源51より電力を供給することにより、成膜ローラー31と成膜ローラー32との間の空間に放電することが可能となり、これにより成膜ローラー31と成膜ローラー32との間の空間(放電空間ともいう。)にプラズマを発生させることができる。なお、このように、成膜ローラー31と成膜ローラー32を電極として利用することになるため、電極として利用可能な材質や設計を適宜変更すればよい。また、このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー31及び32)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー31及び32)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。 In such a plasma CVD manufacturing apparatus, each film forming roller generates plasma so that a pair of film forming rollers (the film forming roller 31 and the film forming roller 32) can function as a pair of counter electrodes. It is connected to the power source 51 for use. By supplying electric power to the pair of film forming rollers (the film forming roller 31 and the film forming roller 32) from the power source 51 for generating plasma, the space between the film forming roller 31 and the film forming roller 32 can be discharged. Thus, plasma can be generated in a space (also referred to as a discharge space) between the film formation roller 31 and the film formation roller 32. In addition, since the film-forming roller 31 and the film-forming roller 32 are used as electrodes in this way, materials and designs that can be used as electrodes may be changed as appropriate. In such a plasma CVD manufacturing apparatus, it is preferable that the pair of film forming rollers (film forming rollers 31 and 32) be arranged so that their central axes are substantially parallel on the same plane. By arranging a pair of film forming rollers (film forming rollers 31 and 32) in this way, the film forming rate can be doubled, and a film having the same structure can be formed. Can be at least doubled.
 また、成膜ローラー31及び成膜ローラー32の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置61及び62がそれぞれ設けられていることが特徴である。 Further, the film forming roller 31 and the film forming roller 32 are characterized in that magnetic field generators 61 and 62 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
 成膜ローラー31および成膜ローラー32にそれぞれ設けられた磁場発生装置61および62は、一方の成膜ローラー31に設けられた磁場発生装置61と他方の成膜ローラー32に設けられた磁場発生装置62との間で磁力線がまたがらず、それぞれの磁場発生装置61、62がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置61、62を設けることにより、各成膜ローラー31、32の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 61 and 62 provided on the film forming roller 31 and the film forming roller 32 respectively are a magnetic field generating device 61 provided on one film forming roller 31 and a magnetic field generating device provided on the other film forming roller 32. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between the magnetic field generator 62 and the magnetic field generators 61 and 62 form a substantially closed magnetic circuit. By providing such magnetic field generators 61 and 62, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surface of each film forming roller 31 and 32, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー31および成膜ローラー32にそれぞれ設けられた磁場発生装置61および62は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置61と他方の磁場発生装置62とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。例えば、図2の磁場発生装置61及び62では、断面山形の中央の長い突起部分に上記レーストラック状の磁極(各成膜ローラーごとに1つ、合計2つ)を設け、この磁極が共に同一極性(N極ないしS極)となるように配置し、断面山形の中央の両側の短い突起部分にも上記レーストラック状の磁極(各成膜ローラーごとに2つ、合計4つ)を設け、この磁極がいずれも、上記中央の長い突起部分の磁極の対極となる同一極性(S極ないしN極)となるように配置している。但し、それぞれの磁極(N極とS極)を逆に配置してもよい。このような磁場発生装置61、62を設けることにより、それぞれの磁場発生装置61、62について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材1を用いて効率的に蒸着膜である第1ガスバリア層(不図示)を形成することができる点で優れている。 The magnetic field generators 61 and 62 provided on the film forming roller 31 and the film forming roller 32 respectively include racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generating device 61 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 62 have the same polarity. For example, in the magnetic field generators 61 and 62 of FIG. 2, the racetrack-shaped magnetic poles (one for each film-forming roller, two in total) are provided on the long protrusion at the center of the mountain-shaped cross section. It is arranged so as to be polar (N pole or S pole), and the racetrack-shaped magnetic poles (two for each film-forming roller, four in total) are also provided on the short protrusions on both sides of the center of the mountain-shaped cross section. All of these magnetic poles are arranged so as to have the same polarity (S pole or N pole) as the counter pole of the magnetic pole of the central long protrusion. However, the magnetic poles (N pole and S pole) may be arranged in reverse. By providing the magnetic field generators 61 and 62, the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the lines of magnetic force of each of the magnetic field generators 61 and 62 are opposed. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 1 is excellent in that a first gas barrier layer (not shown) that is a vapor deposition film can be efficiently formed.
 さらに、成膜ローラー31及び成膜ローラー32としては、適宜公知のローラーを用いることができる。成膜ローラー31及び32としては、より効率よく薄膜を形成することができる観点から、直径が同一のものを使うことが好ましい。また、成膜ローラー31及び32の直径としては、放電条件、チャンバーのスペース等の観点から、直径が100~1000mmφの範囲、特に100~700mmφの範囲が好ましい。直径が100mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量がフィルム(樹脂基材1)にかかることを回避でき、残留応力が大きくなりにくく好ましい。一方、直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 Furthermore, as the film forming roller 31 and the film forming roller 32, known rollers can be used as appropriate. As the film forming rollers 31 and 32, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. The diameters of the film forming rollers 31 and 32 are preferably in the range of 100 to 1000 mmφ, particularly in the range of 100 to 700 mmφ from the viewpoint of discharge conditions, chamber space, and the like. If the diameter is 100 mmφ or more, the plasma discharge space does not become small, so there is no deterioration in productivity, and it is possible to avoid that the total heat of plasma discharge is applied to the film (resin substrate 1) in a short time, and the residual stress Is preferable because it is difficult to increase. On the other hand, a diameter of 1000 mmφ or less is preferable because practicality can be maintained in terms of device design including uniformity of the plasma discharge space.
 また、このようなプラズマCVD製造装置に用いる送り出しローラー11及び搬送ローラー21、22、23及び24としては、公知のローラーを適宜選択して用いることができる。また、巻取りローラー71としても、第1ガスバリア層を形成した樹脂基材1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 Also, as the feed roller 11 and the transport rollers 21, 22, 23, and 24 used in such a plasma CVD manufacturing apparatus, known rollers can be appropriately selected and used. The winding roller 71 is not particularly limited as long as it can wind up the resin base material 1 on which the first gas barrier layer is formed, and a known roller can be used as appropriate.
 成膜ガス供給管41としては、原料ガス及び酸素ガス、或いは原料ガス、酸素ガス及び窒素ガスを所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源51としては、従来公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源51は、これに接続された成膜ローラー31と成膜ローラー32に電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源51としては、より効率よくプラズマCVD法を実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源51としては、より効率よくプラズマCVD法を実施することが可能となることから、印加電力を100W~10kWの範囲とすることができ、かつ交流の周波数を50Hz~500kHzの範囲とすることが可能なものであることがより好ましい。また、磁場発生装置61及び62としては、適宜公知の磁場発生装置を用いることができる。 As the film forming gas supply pipe 41, a material gas and oxygen gas, or a material capable of supplying or discharging the material gas, oxygen gas and nitrogen gas at a predetermined rate can be appropriately used. Furthermore, as the plasma generating power source 51, a conventionally known power source for a plasma generating apparatus can be used. Such a power source 51 for generating plasma supplies power to the film forming roller 31 and the film forming roller 32 connected thereto, and makes it possible to use these as counter electrodes for discharge. As such a plasma generating power source 51, it is possible to more efficiently carry out the plasma CVD method, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used. In addition, since such a plasma generating power source 51 can perform the plasma CVD method more efficiently, the applied power can be in the range of 100 W to 10 kW, and the AC frequency is 50 Hz. More preferably, it can be in the range of -500 kHz. As the magnetic field generators 61 and 62, known magnetic field generators can be used as appropriate.
 図2に示すようなプラズマCVD装置を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、磁場発生装置の強度、真空チャンバー内の圧力、成膜ローラーの直径、並びに、樹脂基材の搬送速度を適宜調整することにより、本発明に係るガスバリア性フィルムを製造することができる。すなわち、図2に示すプラズマCVD装置を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラー(成膜ローラー31及び32)間に、磁場を発生させながらプラズマ放電を行うことにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー31上の樹脂基材1の表面上並びに成膜ローラー32上の樹脂基材1の表面上に、本発明に係る第1ガスバリア層がプラズマCVD法により形成される。なお、このような成膜に際しては、樹脂基材1が送り出しローラー11や成膜ローラー31等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより樹脂基材1の表面上に前記第1ガスバリア層が形成される。 Using the plasma CVD apparatus as shown in FIG. 2, for example, the type of source gas, the power of the electrode drum of the plasma generator, the strength of the magnetic field generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the resin The gas barrier film according to the present invention can be produced by appropriately adjusting the conveyance speed of the substrate. That is, using the plasma CVD apparatus shown in FIG. 2, a magnetic field is generated between a pair of film forming rollers (film forming rollers 31 and 32) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber. By performing plasma discharge, the film forming gas (raw material gas or the like) is decomposed by plasma, and on the surface of the resin base material 1 on the film forming roller 31 and on the surface of the resin base material 1 on the film forming roller 32. The first gas barrier layer according to the present invention is formed by a plasma CVD method. In such film formation, the resin base material 1 is conveyed by the delivery roller 11 and the film formation roller 31, respectively, so that the resin base material 1 is formed by a roll-to-roll continuous film formation process. The first gas barrier layer is formed on the surface.
 〈2.5.1〉原料ガス
  本発明に係る第1ガスバリア層の形成に用いる成膜ガスは、(a)窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスとを含有する、或いは(b)有機ケイ素化合物を含む原料ガスと酸素ガスと窒素ガスを含有するものを用いることができる。本発明に係る第1ガスバリア層の形成に用いる成膜ガスを構成する原料ガスは、上記(a)の成膜ガスの場合、少なくとも窒素およびケイ素を含有する窒素含有有機ケイ素化合物、上記(b)の成膜ガスの場合、少なくともケイ素を含有する有機ケイ素化合物を用いることが好ましい。
<2.5.1> Source gas The film forming gas used for forming the first gas barrier layer according to the present invention contains (a) a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas, or (b). A source gas containing an organosilicon compound, oxygen gas and nitrogen gas can be used. In the case of the film forming gas (a) described above, the source gas constituting the film forming gas used for forming the first gas barrier layer according to the present invention is a nitrogen-containing organosilicon compound containing at least nitrogen and silicon, (b) In the case of the film forming gas, it is preferable to use an organosilicon compound containing at least silicon.
 〈2.5.1.1〉窒素含有有機ケイ素化合物
 本発明に適用可能な窒素含有有機ケイ素化合物としては、例えば、トリエチルシラザン、トリプロピルシラザン、トリフェニルシラザン、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサプロピルジシラザン、ヘキサフェニルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、ヘキサエチルシクロトリシラザン、オクタエチルシクロテトラシラザン、ヘキサフェニルシクロトリシラザン等が挙げられる。これらの窒素含有有機ケイ素化合物の中でも、成膜での取り扱い及び得られる第1ガスバリア層の低カール性、耐屈曲性、ガスバリア性等の観点から、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が好ましい。また、これらの窒素含有有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
<2.5.1.1> Nitrogen-containing organosilicon compound Examples of the nitrogen-containing organosilicon compound applicable to the present invention include triethylsilazane, tripropylsilazane, triphenylsilazane, hexamethyldisilazane, and hexaethyldisilazane. Hexapropyldisilazane, hexaphenyldisilazane, hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, hexaethylcyclotrisilazane, octaethylcyclotetrasilazane, hexaphenylcyclotrisilazane and the like. Among these nitrogen-containing organosilicon compounds, hexamethyldisilazane, hexaethyldisilazane, and the like are preferable from the viewpoints of handling in film formation and low curling properties, bending resistance, gas barrier properties, and the like of the obtained first gas barrier layer. . Moreover, these nitrogen-containing organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
 〈2.5.1.2〉有機ケイ素化合物
 本発明に適用可能な有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン、更に窒素含有有機ケイ素化合物であるトリエチルシラザン、トリプロピルシラザン、トリフェニルシラザン、ヘキサメチルジシラザン、ヘキサエチルジシラザン、ヘキサプロピルジシラザン、ヘキサフェニルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン、ヘキサエチルシクロトリシラザン、オクタエチルシクロテトラシラザン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い及び得られるガスバリア層のガスバリア性等の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ヘキサメチルジシラザン、ヘキサエチルジシラザン等が好ましい。また、上記有機ケイ素化合物には、上記した窒素含有有機ケイ素化合物を用いてもよい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
<2.5.1.2> Organosilicon compound Examples of the organosilicon compound applicable to the present invention include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, and methyltrimethyl. Silane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane , Octamethylcyclotetrasiloxane, and further nitrogen-containing organosilicon compounds such as triethylsilazane, tripropylsilazane, triphenylsilazane, hexamethyldisilazane, hexaethyldisilazane, hexapropyl Examples include disilazane, hexaphenyldisilazane, hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, hexaethylcyclotrisilazane, and octaethylcyclotetrasilazane. Among these organosilicon compounds, hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, hexamethyldisilazane, hexamethyldisiloxane are used from the viewpoints of handling in film formation and gas barrier properties of the obtained gas barrier layer. Ethyl disilazane and the like are preferable. In addition, the above-described nitrogen-containing organosilicon compound may be used as the organosilicon compound. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
 また、前記成膜ガスは、(a)原料ガスに窒素含有有機ケイ素化合物を用いる場合には、該原料ガスの他に反応ガスとして、酸素ガスを含有することを特徴とする。或いは、(b)原料ガスに有機ケイ素化合物を用いる場合には、該原料ガスの他に反応ガスとして、酸素ガス及び窒素ガスを含有することを特徴とする。上記(a)、(b)で用いられる酸素ガスは、前記原料ガス(窒素含有有機ケイ素化合物ないし有機ケイ素化合物)と反応して酸化物等の無機化合物となるガスである。上記(b)で用いられる窒素ガスは、前記原料ガス(有機ケイ素化合物)と反応して窒化物等の無機化合物となるガスである。 The film forming gas is characterized in that (a) when a nitrogen-containing organosilicon compound is used as the source gas, oxygen gas is contained as a reaction gas in addition to the source gas. Alternatively, (b) when an organosilicon compound is used as the source gas, oxygen gas and nitrogen gas are contained as reaction gases in addition to the source gas. The oxygen gas used in the above (a) and (b) is a gas that reacts with the raw material gas (nitrogen-containing organosilicon compound or organosilicon compound) to become an inorganic compound such as an oxide. The nitrogen gas used in the above (b) is a gas that reacts with the raw material gas (organosilicon compound) to become an inorganic compound such as a nitride.
 前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素ガスを用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
 このような成膜ガスが、(a)窒素及びケイ素を含有する窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスを含有する場合、原料ガスと酸素ガスの比率としては、原料ガスと酸素ガスとを完全に反応させるために理論上必要となる酸素ガスの量の比率よりも、酸素ガスの比率を過剰にし過ぎないことが好ましい。酸素ガスの比率を過剰にし過ぎてしまうと、本発明で目的とする第1ガスバリア層が得られにくい。よって、所望したバリア性フィルムとしての性能を得る上では、前記成膜ガス中の前記窒素含有有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下とすることが好ましい。同様に、成膜ガスが、(b)ケイ素を含有する有機ケイ素化合物を含む原料ガスと酸素ガスと窒素ガスを含有する場合、原料ガスと酸素ガスと窒素ガスの比率としては、原料ガスと酸素ガスと窒素ガスとを完全に反応させるために理論上必要となる酸素ガス及び窒素ガスの量の比率よりも、酸素ガス及び窒素ガスの比率を過剰にし過ぎないことが好ましい。酸素ガス及び窒素ガスの比率を過剰にし過ぎてしまうと、本発明で目的とする第1ガスバリア層が得られにくい。よって、所望したバリア性フィルムとしての性能を得る上では、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸窒化するのに必要な理論酸素量及び理論窒素量以下とすることが好ましい。 When such a film forming gas contains (a) a source gas containing a nitrogen-containing organosilicon compound containing nitrogen and silicon and an oxygen gas, the ratio of the source gas to the oxygen gas is as follows: It is preferable that the ratio of oxygen gas is not excessively larger than the ratio of the amount of oxygen gas that is theoretically necessary for completely reacting. If the ratio of oxygen gas is excessive, it is difficult to obtain the first gas barrier layer intended in the present invention. Therefore, in order to obtain the desired performance as a barrier film, it is preferable that the total amount of the nitrogen-containing organosilicon compound in the film-forming gas is less than or equal to the theoretical oxygen amount necessary for complete oxidation. Similarly, when the film forming gas contains (b) a raw material gas containing an organosilicon compound containing silicon, an oxygen gas, and a nitrogen gas, the ratio of the raw material gas, the oxygen gas, and the nitrogen gas is as follows. It is preferable that the ratio of oxygen gas and nitrogen gas is not excessively larger than the ratio of the amount of oxygen gas and nitrogen gas that is theoretically necessary for completely reacting the gas and nitrogen gas. If the ratio of oxygen gas and nitrogen gas is excessive, it is difficult to obtain the first gas barrier layer intended in the present invention. Therefore, in order to obtain the desired performance as a barrier film, it is preferable that the total amount of the organosilicon compound in the film-forming gas is less than or equal to the theoretical oxygen amount and the theoretical nitrogen amount necessary for complete oxynitriding.
 〈2.5.2〉真空度
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~100Paの範囲とすることが好ましい。
<2.5.2> Degree of vacuum The pressure (degree of vacuum) in the vacuum chamber can be adjusted as appropriate according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 100 Pa.
 〈2.5.3〉ローラー成膜
 図2に示すようなプラズマCVD装置等を用いたプラズマCVD法においては、成膜ローラー31及び32間に放電するために、プラズマ発生用電源51に接続された電極ドラム(図2においては、成膜ローラー31及び32に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概にいえるものでないが、0.1~10kWの範囲内とすることが好ましい。このような範囲の印加電力であれば、パーティクル(不正粒子)の発生も見られず、成膜時に発生する熱量も制御範囲内であるため、成膜時の基材表面温度の上昇による、樹脂基材の熱変形、熱による性能劣化や成膜時の皺の発生もない。また、熱で樹脂基材が溶けて、裸の成膜ローラー間に大電流の放電が発生することによる成膜ローラーに対する損傷等を防止することができる。
<2.5.3> Roller Film Formation In the plasma CVD method using a plasma CVD apparatus or the like as shown in FIG. 2, it is connected to a plasma generation power source 51 in order to discharge between the film formation rollers 31 and 32. The power applied to the electrode drum (installed in the film forming rollers 31 and 32 in FIG. 2) can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, and the like. Although it cannot be generally stated, it is preferably within a range of 0.1 to 10 kW. If the applied power is in such a range, no generation of particles (illegal particles) is observed, and the amount of heat generated during film formation is within the control range. There is no thermal deformation of the base material, performance deterioration due to heat, and no wrinkles during film formation. In addition, damage to the film forming roller due to melting of the resin base material by heat and generation of a large current discharge between the bare film forming rollers can be prevented.
 樹脂基材1の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~20m/minの範囲内とすることがより好ましい。ライン速度が前記範囲内であれば、樹脂基材の熱に起因する皺も発生し難く、形成される第1ガスバリア層の厚さも十分に制御可能となる。 The conveyance speed (line speed) of the resin base material 1 can be appropriately adjusted according to the type of raw material gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is within the range of 0.5 to 20 m / min. When the line speed is within the above range, wrinkles due to the heat of the resin base material hardly occur, and the thickness of the formed first gas barrier layer can be sufficiently controlled.
 以上のようにして形成される本発明の第1ガスバリア層のXPSデプスプロファイルによる層の厚さ方向の各元素プロファイルの一例を図3に示す。 FIG. 3 shows an example of each element profile in the layer thickness direction based on the XPS depth profile of the first gas barrier layer of the present invention formed as described above.
 図3は、本発明に係る傾斜SiOCNバリア膜である第1ガスバリア層のケイ素分布曲線、酸素分布曲線、炭素分布曲線及び窒素分布曲線の一例を示すグラフである。 FIG. 3 is a graph showing an example of a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve of the first gas barrier layer that is the inclined SiOCN barrier film according to the present invention.
 図3において、符号A~Dは、Aが炭素分布曲線、Bがケイ素分布曲線、Cが酸素分布曲線、Dが窒素分布曲線を表す。図3に示すグラフであるように、本発明に係る第1ガスバリア層が、炭素分布曲線において、少なくとも1つの極値を有し、炭素原子比率の最大の極大値と最小の極大値との差の絶対値が5at%以上であり、かつ第1ガスバリア層の全層厚の90%以上の領域において、ケイ素原子、酸素原子、炭素原子及び窒素原子の合計量(100at%)に対する各原子の平均原子比率が、前式(A)又は(B)で規定する序列の大小関係を満たしていることが分かる。 In FIG. 3, symbols A to D represent A as a carbon distribution curve, B as a silicon distribution curve, C as an oxygen distribution curve, and D as a nitrogen distribution curve. As shown in the graph of FIG. 3, the first gas barrier layer according to the present invention has at least one extreme value in the carbon distribution curve, and the difference between the maximum maximum value and the minimum maximum value of the carbon atom ratio. The average value of each atom with respect to the total amount (100 at%) of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms in a region where the absolute value of is 5 at% or more and 90% or more of the total thickness of the first gas barrier layer It can be seen that the atomic ratio satisfies the order relationship defined by the previous formula (A) or (B).
 図4は、比較例の非傾斜SiOCNバリア膜であるガスバリア層のケイ素分布曲線、酸素分布曲線、炭素分布曲線及び窒素分布曲線の一例を示すグラフである。図4において、符号A~Dは、Aが炭素分布曲線、Bがケイ素分布曲線、Cが酸素分布曲線、Dが窒素分布曲線を表す。 FIG. 4 is a graph showing an example of a silicon distribution curve, an oxygen distribution curve, a carbon distribution curve, and a nitrogen distribution curve of a gas barrier layer that is a non-tilted SiOCN barrier film of a comparative example. In FIG. 4, symbols A to D represent A as a carbon distribution curve, B as a silicon distribution curve, C as an oxygen distribution curve, and D as a nitrogen distribution curve.
 当該比較例(試料8)の第1ガスバリア層は、平型電極(水平搬送)タイプのプラズマCVD放電法で形成した第1ガスバリア層における炭素原子プロファイルA、ケイ素原子プロファイルB、酸素原子プロファイルC及び窒素原子プロファイルDを示したものであり、特に、炭素原子成分Aの濃度勾配の連続的な変化が起こらない非傾斜SiOCNバリア膜構成であり、極値を持たない構成であることが分かる。 The first gas barrier layer of the comparative example (sample 8) includes a carbon atom profile A, a silicon atom profile B, an oxygen atom profile C in the first gas barrier layer formed by a flat electrode (horizontal conveyance) type plasma CVD discharge method, and The nitrogen atom profile D is shown, and in particular, it can be seen that the non-gradient SiOCN barrier film configuration does not cause a continuous change in the concentration gradient of the carbon atom component A, and has no extreme value.
 〔3〕第2ガスバリア層
 本発明に係るガスバリア性フィルムにおいては、上記説明した第1ガスバリア層上に形成された第2ガスバリア層をさらに含むのが好ましい。第2ガスバリア層としては、ガスバリア性を有している層であれば何れでもよく、その中で好ましくはポリシラザン改質物を含有するポリシラザン改質膜である。このポリシラザン改質膜以外の他のガスバリア層としては、従来一般的に用いられているバリア層を利用することができる。
[3] Second Gas Barrier Layer The gas barrier film according to the present invention preferably further includes a second gas barrier layer formed on the first gas barrier layer described above. The second gas barrier layer may be any layer having gas barrier properties, and among them, a polysilazane modified film containing a polysilazane modified product is preferable. As a gas barrier layer other than the polysilazane modified film, a conventionally used barrier layer can be used.
 以下、第2ガスバリア層として好適なポリシラザン改質物を含有するポリシラザン改質膜を例にとり説明するが、本発明はこれらに何ら制限されるものではない。このポリシラザン改質膜である第2ガスバリア層は、ポリシラザンを含有する液(ポリシラザン含有液)を塗布、乾燥して形成される塗膜をエキシマ改質処理して得られる。この際、ポリシラザン含有液を塗布、乾燥して形成される塗膜に、エキシマ改質処理前後における層厚方向の収縮率が、10~30%の範囲内、好ましくは15~20%の範囲内となる条件でエキシマ改質処理を施して、第2ガスバリア層(ポリシラザン改質膜)を形成するようにしてもよい。即ち、ポリシラザン改質膜である第2ガスバリア層は、第1ガスバリア層上に、ポリシラザンを含有する液を塗布、乾燥して塗膜を形成し、該塗膜にエキシマ改質処理を施すことにより第2のガスバリア層を形成する工程により製造することができる。なお、ポリシラザン改質膜以外の他のガスバリア層については、従来一般的に用いられているバリア層の製造方法を用いることにより、第2ガスバリア層を製造することができる。 Hereinafter, a polysilazane modified film containing a polysilazane modified material suitable as the second gas barrier layer will be described as an example, but the present invention is not limited to these. The second gas barrier layer as the polysilazane modified film is obtained by applying an excimer modifying treatment to a coating film formed by applying and drying a liquid containing polysilazane (polysilazane-containing liquid). At this time, the contraction rate in the layer thickness direction before and after the excimer modification treatment is within the range of 10 to 30%, preferably within the range of 15 to 20%, to the coating film formed by applying and drying the polysilazane-containing liquid. The second gas barrier layer (polysilazane modified film) may be formed by performing an excimer modification process under the following conditions. That is, the second gas barrier layer, which is a polysilazane modified film, is obtained by applying a liquid containing polysilazane on the first gas barrier layer and drying it to form a coating film, and subjecting the coating film to an excimer modification treatment. It can be manufactured by the step of forming the second gas barrier layer. In addition, about gas barrier layers other than a polysilazane modified film | membrane, a 2nd gas barrier layer can be manufactured by using the manufacturing method of the barrier layer generally used conventionally.
 本発明に係るポリシラザン改質膜である第2ガスバリア層としては、更には、エキシマ改質処理後の層厚が、50~500nmの範囲内であることが好ましく、また、第2ガスバリア層の形成においては、本発明に係る第1ガスバリア層の上に、ポリシラザン含有液を湿式塗布方式により塗布及び乾燥し、形成された塗膜に、波長が200nm以下の真空紫外光(VUV光)を照射して、形成した塗膜にエキシマ改質処理を施して、第2ガスバリア層を形成することが好ましい。 As the second gas barrier layer which is the polysilazane modified film according to the present invention, the layer thickness after the excimer modification treatment is preferably in the range of 50 to 500 nm, and the second gas barrier layer is formed. In, the polysilazane-containing liquid is applied and dried on the first gas barrier layer according to the present invention by a wet coating method, and the formed coating film is irradiated with vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less. Then, it is preferable that the formed gas film is subjected to an excimer modification treatment to form the second gas barrier layer.
 本発明において、ポリシラザン改質膜である第2ガスバリア層を、例えば、磁場を印加したローラー間放電プラズマCVD法で設けた傾斜SiOCNバリア膜である第1ガスバリア層上に形成することにより、低カール性と耐屈曲性の両立だけでなく、傾斜SiOCNバリア膜である上記第1ガスバリア層とポリシラザン改質膜である上記第2ガスバリア層とのハイブリッドガスバリア性フィルムでは、第1及び第2ガスバリア層の双方に含有される窒素同士が層間で相互作用して形成されるため層間における構造欠陥が低減され、積層時のバリア性能向上効果の大きいガスバリア性フィルムを実現できる。詳しくは、傾斜SiOCNバリア膜である第1ガスバリア層上にポリシラザン改質膜である第2ガスバリア層を形成する場合、第1ガスバリア層に窒素が含有されることで、類似構造で第2ガスバリア層の膜粒子が形成される(上記各層間の窒素同士が層間で相互作用して膜粒子が形成される)ため、第1ガスバリア層の構造欠陥を保護、補修する効果が大きく、積層時にバリア性能向上効果が大きいガスバリア性フィルムを実現できる。更に高温高湿処理など、一定条件に放置した後でも優れた平面性を得ることができると共に、既に形成されている第1ガスバリア層の形成時に生じた微小な欠陥部分を、上部から付与するポリシラザンより構成される第2ガスバリア層成分で埋めることができ、ガスパージ等を効率的に防止し、更なるガスバリア性と耐屈曲性を向上できる。上記した作用効果を有効に発現させる観点から第2ガスバリア層の厚さは、50nm~500nm、好ましくは50nm~400nm、より好ましくは50nm~300nmの範囲内である。第2ガスバリア層の厚さが50nm以上であれば、第1ガスバリア層形成時に生じた微小欠陥を保護、補修可能であるほか、所望のガスバリア性、平面性を達成することができ、500nm以下であれば、バリア層間に膜応力が集中して発生する欠陥を抑制することが可能であるほか、所望のガスバリア性、平面性を達成することができると共に、緻密な酸窒化ケイ素膜(SiONバリア膜;第2ガスバリア層)でのクラックの発生等の膜質劣化を防止することができる。なお、ポリシラザン改質膜以外の他のガスバリア層(第2ガスバリア層)の厚さは、上記したポリシラザン改質膜である第2ガスバリア層の厚さと同様の範囲とするのが望ましい。 In the present invention, the second gas barrier layer, which is a polysilazane modified film, is formed on the first gas barrier layer, which is a tilted SiOCN barrier film provided by, for example, an inter-roller discharge plasma CVD method to which a magnetic field is applied. In the hybrid gas barrier film of the first gas barrier layer, which is a tilted SiOCN barrier film, and the second gas barrier layer, which is a polysilazane modified film, in addition to the compatibility between the first and second gas barrier layers. Since nitrogen contained in both layers is formed by interaction between layers, structural defects between the layers are reduced, and a gas barrier film having a large effect of improving barrier performance during lamination can be realized. Specifically, when the second gas barrier layer that is the polysilazane modified film is formed on the first gas barrier layer that is the inclined SiOCN barrier film, the second gas barrier layer has a similar structure because nitrogen is contained in the first gas barrier layer. Film particles are formed (the film particles are formed by the interaction of nitrogen between the above-mentioned layers), and the effect of protecting and repairing structural defects of the first gas barrier layer is great, and barrier performance during lamination A gas barrier film having a large improvement effect can be realized. Furthermore, it is possible to obtain excellent planarity even after being left under certain conditions such as high-temperature and high-humidity treatment, and to provide a minute defect portion generated during the formation of the already formed first gas barrier layer from the top. It can be filled with the second gas barrier layer component constituted, and gas purge and the like can be efficiently prevented, and further gas barrier properties and bending resistance can be improved. From the viewpoint of effectively expressing the above-described effects, the thickness of the second gas barrier layer is in the range of 50 nm to 500 nm, preferably 50 nm to 400 nm, more preferably 50 nm to 300 nm. If the thickness of the second gas barrier layer is 50 nm or more, it is possible to protect and repair minute defects generated during the formation of the first gas barrier layer, and to achieve desired gas barrier properties and planarity, and at 500 nm or less. If there is, it is possible to suppress defects caused by concentration of film stress between the barrier layers, and to achieve desired gas barrier properties and flatness, and a dense silicon oxynitride film (SiON barrier film) Film quality deterioration such as generation of cracks in the second gas barrier layer) can be prevented. The thickness of the gas barrier layer (second gas barrier layer) other than the polysilazane modified film is preferably in the same range as the thickness of the second gas barrier layer that is the polysilazane modified film.
 〈3.1〉ポリシラザン
 本発明に係るポリシラザンとは、分子構造内にケイ素-窒素結合を有するポリマーで、酸窒化ケイ素の前駆体となるポリマーであり、適用するポリシラザンとしては、特に制限はないが、下記一般式(1)で表される構造を有する化合物であることが好ましい。
<3.1> Polysilazane The polysilazane according to the present invention is a polymer having a silicon-nitrogen bond in the molecular structure, and is a polymer that is a precursor of silicon oxynitride. The polysilazane to be applied is not particularly limited. A compound having a structure represented by the following general formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)において、R、R及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。 In the general formula (1), R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
 本発明では、得られる第2ガスバリア層(ポリシラザン改質膜)としての緻密性の観点からは、R、R及びRの全てが水素原子で構成されているパーヒドロポリシラザンが特に好ましい。 In the present invention, perhydropolysilazane in which all of R 1 , R 2, and R 3 are composed of hydrogen atoms is particularly preferred from the viewpoint of denseness as the obtained second gas barrier layer (polysilazane modified film).
 パーヒドロポリシラザンは、直鎖構造と6員環及び8員環を中心とする環構造が存在した構造と推定されており、その分子量は、数平均分子量(Mn)で約600~2000程度(ゲルパーミエーションクロマトグラフィによるポリスチレン換算)であり、液体又は固体の物質である。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6-membered and 8-membered rings, and its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
 ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有液として使用することができる。ポリシラザン溶液の市販品としては、例えば、AZエレクトロニックマテリアルズ株式会社製のNN120-20、NAX120-20、NL120-20などが挙げられる。 Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a polysilazane-containing liquid. Examples of commercially available polysilazane solutions include NN120-20, NAX120-20, and NL120-20 manufactured by AZ Electronic Materials Co., Ltd.
 ポリシラザン改質膜である第2ガスバリア層は、例えば、磁場を印加したローラー間放電プラズマCVD法で形成した第1ガスバリア層上に、ポリシラザンを含有する液(ポリシラザン含有液)を塗布及び乾燥した後、真空紫外線を照射することにより形成することができる。 The second gas barrier layer that is a modified polysilazane film is, for example, after applying and drying a liquid containing polysilazane (polysilazane-containing liquid) on the first gas barrier layer formed by the inter-roller discharge plasma CVD method to which a magnetic field is applied. It can be formed by irradiating with vacuum ultraviolet rays.
 ポリシラザンを含有する液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。適用可能な有機溶媒としては、例えば、特開2013-226757号公報の段落「0055」や国際公開第2012/077553号の段落「0118」に記載の有機溶媒を用いることができる。上記有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の目的にあわせて選択し、複数の有機溶媒を混合しても良い。 As an organic solvent for preparing a liquid containing polysilazane, it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane. As an applicable organic solvent, for example, organic solvents described in paragraph “0055” of JP2013-226757A and paragraph “0118” of WO2012 / 077753 can be used. The organic solvent may be selected according to purposes such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
 ポリシラザンを含有する液(第2ガスバリア層形成用塗布液)中のポリシラザンの濃度は、第2ガスバリア層の層厚や塗布液のポットライフによっても異なるが、好ましくは0.2~35質量%の範囲内である。 The concentration of polysilazane in the liquid containing polysilazane (the coating liquid for forming the second gas barrier layer) varies depending on the layer thickness of the second gas barrier layer and the pot life of the coating liquid, but is preferably 0.2 to 35% by mass. Within range.
 酸窒化ケイ素への変性を促進するために、ポリシラザンを含有する液(第2ガスバリア層形成用塗布液)に触媒を添加することもできる。ポリシラザンを含有する液(第2ガスバリア層形成用塗布液)に添加し得る触媒としては、例えば、特開2013-226757号公報の段落「0057」やや特開2013-226732号公報の段落「0103」、「0105」や国際公開第2012/077553号の段落「0120」に記載の触媒を用いることができる。本発明においては、上記公報等に記載の触媒の中でも、アミン触媒を用いることが特に好ましい。 In order to promote modification to silicon oxynitride, a catalyst can be added to a liquid containing polysilazane (a coating liquid for forming a second gas barrier layer). Examples of the catalyst that can be added to the liquid containing polysilazane (second gas barrier layer forming coating liquid) include, for example, paragraph “0057” of JP2013-226757A and paragraph “0103” of JP2013-226732A. , “0105” and paragraph “0120” of International Publication No. 2012/077753 can be used. In the present invention, among the catalysts described in the above publications, it is particularly preferable to use an amine catalyst.
 ポリシラザンに対するこれら触媒の添加量は、ポリシラザンを含有する液(第2ガスバリア層形成用塗布液)全質量に対して0.1~10質量%の範囲内であることが好ましく、0.2~5質量%の範囲内であることがより好ましく、0.5~2質量%の範囲内であることが更に好ましい。触媒添加量を上記で規定する範囲内とすることにより、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大のなどを避けることができる。 The amount of these catalysts added to the polysilazane is preferably in the range of 0.1 to 10% by mass with respect to the total mass of the polysilazane-containing liquid (second gas barrier layer forming coating liquid), and preferably 0.2 to 5%. It is more preferably in the range of mass%, and still more preferably in the range of 0.5 to 2 mass%. By setting the addition amount of the catalyst within the range specified above, excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like can be avoided.
 ポリシラザンを含有する液(第2ガスバリア層形成用塗布液)を塗布する方法に関しては、例えば、特開2013-226757号公報の段落「0060」や特開2013-226732号公報の段落「0092」に記載の塗布方法を採用することができる。 With respect to a method of applying a liquid containing polysilazane (second gas barrier layer forming coating liquid), for example, paragraphs “0060” of JP2013-226757A and paragraph “0092” of JP2013-226732A are disclosed. The described coating method can be employed.
 ポリシラザンを含有する液(第2ガスバリア層形成用塗布液)を塗布、乾燥後の塗膜の厚さは、目的に応じて適切に設定され得る。例えば、塗膜の厚さは、乾燥後の厚さとして50nm~2μmの範囲内にあることが好ましく、より好ましくは70nm~1.5μmの範囲内にあり、100nm~1μmの範囲内にあることが更に好ましい。 The thickness of the coating film after applying and drying a liquid containing polysilazane (second gas barrier layer forming coating liquid) can be appropriately set according to the purpose. For example, the thickness of the coating film is preferably in the range of 50 nm to 2 μm as the thickness after drying, more preferably in the range of 70 nm to 1.5 μm, and in the range of 100 nm to 1 μm. Is more preferable.
 〈3.2〉エキシマ改質処理
 本発明に係るポリシラザン改質膜である第2ガスバリア層は、ポリシラザンを含む層(塗膜)に真空紫外線(VUV)を照射する工程で、ポリシラザンの少なくとも一部が酸窒化ケイ素へと改質される。
<3.2> Excimer Modification Treatment The second gas barrier layer, which is a polysilazane modification film according to the present invention, is a step of irradiating a layer (coating film) containing polysilazane with vacuum ultraviolet rays (VUV), and at least a part of the polysilazane. Is modified to silicon oxynitride.
 ここで、真空紫外線照射工程でポリシラザンを含む塗膜が改質され、SiOの特定組成となる推定メカニズムについて、パーヒドロポリシラザンを一例とした説明に関しては、例えば、特開2013-226757号公報の段落「0075」~「0083」に開示されてなるパーヒドロポリシラザンを一例として説明したメカニズムの通りである。 Here, regarding the presumed mechanism in which the coating film containing polysilazane is modified in the vacuum ultraviolet irradiation step and the specific composition of SiO x N y is assumed, for example, perhydropolysilazane is exemplified, for example, JP-A-2013-226757 Perhydropolysilazane disclosed in paragraphs “0075” to “0083” of the publication is as described as an example.
 ポリシラザンを含有する層(塗膜)に真空紫外線照射を施した層(第2ガスバリア層)の酸窒化ケイ素の組成の調整に関しても、上記公報の段落「0080」~「0083」に記載の(I)~(IV)の酸化機構を適宜組み合わせて酸化状態を制御することで行うことができる。 Regarding the adjustment of the composition of silicon oxynitride in the layer (second gas barrier layer) subjected to vacuum ultraviolet ray irradiation on the polysilazane-containing layer (coating film), the (I) described in paragraphs “0080” to “0083” of the above-mentioned publication ) To (IV) can be performed by appropriately combining the oxidation mechanisms of (IV) to control the oxidation state.
 本発明における真空紫外線照射工程において、ポリシラザンを含有する層(塗膜)が受ける塗膜面での真空紫外線の照度に関しても、上記公報の段落「0086」に記載の真空紫外線の照度範囲を適用することができる。 In the vacuum ultraviolet irradiation process of the present invention, the vacuum ultraviolet illuminance range described in paragraph "0086" of the above publication is also applied to the vacuum ultraviolet illumination on the coating surface received by the polysilazane-containing layer (coating film). be able to.
 ポリシラザンを含有する層(塗膜)の塗膜面における真空紫外線の照射エネルギー量に関しても、上記公報の段落「0087」に記載の照射エネルギー量の範囲を適用することができる。 The range of the irradiation energy amount described in paragraph “0087” of the above publication can also be applied to the irradiation energy amount of vacuum ultraviolet rays on the coating surface of the polysilazane-containing layer (coating film).
 真空紫外光源等に関しても、上記公報の段落「0088」~「0092」に記載の公知の希ガスエキシマランプ、該希ガスがキセノンの場合のエキシマ発光の原理やエキシマランプの特徴などが適用できる。 As for the vacuum ultraviolet light source and the like, the known rare gas excimer lamp described in paragraphs “0088” to “0092” of the above publication, the principle of excimer emission when the rare gas is xenon, the characteristics of the excimer lamp, and the like can be applied.
 エキシマ発光を得る方法、更には効率よくエキシマ発光を得る方法などに関しても、上記公報の段落「0093」~「0110」に記載の公知の方法などを適用することができる。 The publicly known methods described in paragraphs “0093” to “0110” of the above publication can also be applied to a method for obtaining excimer light emission and a method for obtaining excimer light emission efficiently.
 〔4〕各機能層
 本発明に係るガスバリア性フィルムにおいては、上記説明した各構成層(第1及び第2ガスバリア層)のほかに、必要に応じて、各機能層を設けることができる。
[4] Each functional layer In the gas barrier film according to the present invention, in addition to the above-described constituent layers (first and second gas barrier layers), each functional layer can be provided as necessary.
 〈4.1〉オーバーコート層
 本発明に係る第2ガスバリア層の上には、屈曲性を更に改善する目的で、オーバーコート層を形成しても良い。オーバーコート層の形成に用いられる有機物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂を好ましく用いることができる。これらの有機樹脂若しくは有機無機複合樹脂は、重合性基や架橋性基を有することが好ましく、これらの有機樹脂若しくは有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。
<4.1> Overcoat layer An overcoat layer may be formed on the second gas barrier layer according to the present invention for the purpose of further improving flexibility. As the organic material used for the formation of the overcoat layer, organic resins such as organic monomers, oligomers and polymers, and organic / inorganic composite resins using siloxane and silsesquioxane monomers, oligomers and polymers having organic groups are preferably used. be able to. These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. It is preferable to apply a light irradiation treatment or a heat treatment to the layer formed from the organic resin composition coating solution to be cured.
 〈4.2〉アンカー層
 本発明に係るガスバリア性フィルムにおいては、必要に応じて、樹脂基材と第1ガスバリア層の間に、樹脂基材と第1ガスバリア層との密着性改良を目的として、アンカー層(クリアハードコート層(CHC層)ともいう。)を有してもよい。
<4.2> Anchor layer In the gas barrier film according to the present invention, for the purpose of improving the adhesion between the resin substrate and the first gas barrier layer between the resin substrate and the first gas barrier layer, if necessary. And an anchor layer (also referred to as a clear hard coat layer (CHC layer)).
 アンカー層には、樹脂基材を加熱した際に、樹脂基材中から未反応のオリゴマー等が表面に移動して、接触する面を汚染してしまう現象(ブリードアウト)を抑制することもできる。アンカー層は、その上に第1ガスバリア層を設置するため、平滑であることが好ましく、その表面粗さRa値としては、0.3~3nmの範囲内であることが好ましく、より好ましくは0.5~1.5nmの範囲内である。表面粗さRa値が0.3nm以上であれば、表面が適度な平滑性を有し、ローラー搬送性及びプラズマCVD法による第1ガスバリア層形成に平滑性を維持することができる。一方、3nm以下であれば、第1ガスバリア層形成時に、第1ガスバリア層に微小な欠陥を形成することを防止でき、高度なガスバリア性や密着性等を得ることができる。 When the resin base material is heated, the anchor layer can also suppress a phenomenon (bleed out) that unreacted oligomers move from the resin base material to the surface and contaminate the contact surface. . The anchor layer is preferably smooth because the first gas barrier layer is disposed thereon, and the surface roughness Ra value is preferably in the range of 0.3 to 3 nm, more preferably 0. Within the range of 5 to 1.5 nm. When the surface roughness Ra value is 0.3 nm or more, the surface has an appropriate smoothness, and the smoothness can be maintained in the roller transportability and the formation of the first gas barrier layer by the plasma CVD method. On the other hand, when the thickness is 3 nm or less, it is possible to prevent the formation of minute defects in the first gas barrier layer when the first gas barrier layer is formed, and it is possible to obtain a high level of gas barrier properties and adhesion.
 アンカー層の組成としては、平滑性が必要なことから熱硬化系あるいは光硬化系の樹脂が好ましい。 As the composition of the anchor layer, a thermosetting resin or a photocurable resin is preferable because smoothness is required.
 アンカー層の厚さとしては、平面性を調整する観点から、0.3~10μmの範囲内が好ましく、さらに好ましくは、0.5~5μmの範囲内である。 The thickness of the anchor layer is preferably in the range of 0.3 to 10 μm, more preferably in the range of 0.5 to 5 μm, from the viewpoint of adjusting the flatness.
 《電子デバイス》
 上記したような本発明のガスバリア性フィルムは、優れた低カール性、耐屈曲性、ガスバリア性、透明性を有する。このため、本発明のガスバリア性フィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスなど、様々な用途に使用することができる。
《Electronic device》
The gas barrier film of the present invention as described above has excellent low curling properties, flex resistance, gas barrier properties, and transparency. For this reason, the gas barrier film of the present invention is used for various applications such as electronic devices such as packages for electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. can do.
 電子デバイスとしては、例えば、有機エレクトロルミネッセンスパネル、有機エレクトロルミネッセンス素子、有機光電変換素子、液晶表示素子等が挙げられる。 Examples of the electronic device include an organic electroluminescence panel, an organic electroluminescence element, an organic photoelectric conversion element, and a liquid crystal display element.
 〔1〕電子デバイスとしての有機ELパネル
 本発明に係るガスバリア性フィルム(例えば、図1に示す構成からなるガスバリア性フィルムF)は、例えば、太陽電池、液晶表示素子、有機EL素子等を封止する封止フィルムとして用いることができる。
[1] Organic EL Panel as Electronic Device The gas barrier film according to the present invention (for example, the gas barrier film F having the configuration shown in FIG. 1) seals, for example, a solar cell, a liquid crystal display element, an organic EL element, and the like. It can be used as a sealing film.
 このガスバリア性フィルムFを封止フィルムとして用いた電子デバイスである有機ELパネルPの一例を図5に示す。 An example of an organic EL panel P that is an electronic device using the gas barrier film F as a sealing film is shown in FIG.
 有機ELパネルPは、図5に示すように、ガスバリア性フィルムFと、ガスバリア性フィルムF上に形成されたITOなどの透明電極4と、透明電極4を介してガスバリア性フィルムF上に形成された電子デバイス本体である有機EL素子5と、その有機EL素子5を覆うように接着剤層6を介して配設された対向フィルム7等を備えている。なお、透明電極4は、有機EL素子5の一部を成すこともある。 As shown in FIG. 5, the organic EL panel P is formed on the gas barrier film F through the gas barrier film F, the transparent electrode 4 such as ITO formed on the gas barrier film F, and the transparent electrode 4. The organic EL element 5 that is the main body of the electronic device, and a counter film 7 disposed via an adhesive layer 6 so as to cover the organic EL element 5 are provided. The transparent electrode 4 may form part of the organic EL element 5.
 以上のような構成からなる電子デバイス(有機ELパネルP)において、本発明に係るガスバリア性フィルムを具備させることにより、ガスバリア性フィルムの本質的な効果である優れたガスバリア性やフレキシビリティー性(耐屈曲性)や低カール性を発現すると共に、高温高湿環境下で長期間にわたり保存された際に、ガスバリア性フィルムとして優れた平面性を発揮することにより、有機ELパネル全体の平面性を維持することができ、高品位の電子デバイスを得ることができる。 In the electronic device (organic EL panel P) having the above-described configuration, by providing the gas barrier film according to the present invention, excellent gas barrier properties and flexibility (essential effects of the gas barrier film) ( (Bending resistance) and low curl properties, and also exhibits excellent flatness as a gas barrier film when stored over a long period of time in a high temperature and high humidity environment, thereby improving the flatness of the entire organic EL panel. The high-quality electronic device can be obtained.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 〔ガスバリア性フィルム試料1の作製:実施例〕
 (樹脂基材の準備)
 2軸延伸のポリエチレンナフタレートフィルム(略称:PENフィルム、厚さ:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を、樹脂基材として用いた。
[Production of Gas Barrier Film Sample 1: Examples]
(Preparation of resin base material)
A biaxially stretched polyethylene naphthalate film (abbreviation: PEN film, thickness: 100 μm, width: 350 mm, manufactured by Teijin DuPont Films, trade name “Teonex Q65FA”) was used as a resin base material.
 (アンカー層の形成)
 上記樹脂基材の易接着面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を用い、乾燥後の層厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件として、80℃で3分間の乾燥を行った。次いで、空気雰囲気下で、高圧水銀ランプを使用し、硬化条件;1.0J/cmで硬化を行い、アンカー層を形成した。
(Formation of anchor layer)
After applying the UV curable organic / inorganic hybrid hard coat material OPSTARZ7501 manufactured by JSR Corporation on the easy adhesion surface side of the resin substrate with a wire bar so that the layer thickness after drying is 4 μm, drying conditions As a result, drying was performed at 80 ° C. for 3 minutes. Next, curing was carried out under an air atmosphere using a high-pressure mercury lamp under curing conditions; 1.0 J / cm 2 to form an anchor layer.
 (第1ガスバリア層の形成:ローラーCVD法)
 図2に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す。)を用い、樹脂基材のアンカー層を形成した面とは反対側の面(裏面)が成膜ローラーと接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)により、アンカー層上に第1ガスバリア層(傾斜SiOCNバリア膜)を、厚さが300nmとなる条件で成膜し、ガスバリア性フィルム試料1を作製した。
(Formation of first gas barrier layer: roller CVD method)
Using the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 2 is applied (hereinafter, this method is referred to as “roller CVD method”), the surface opposite to the surface on which the anchor layer of the resin substrate is formed (back surface) The resin base material is mounted on the apparatus so as to be in contact with the film formation roller, and the first gas barrier layer (gradient SiOCN barrier film) is formed on the anchor layer with the thickness according to the following film formation conditions (plasma CVD conditions). The film was formed under the condition of 300 nm to prepare a gas barrier film sample 1.
 〈プラズマCVD条件〉
 原料ガス(窒素含有有機ケイ素化合物であるヘキサメチルジシラザン)の供給量:100sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:2m/min。
<Plasma CVD conditions>
Supply amount of source gas (hexamethyldisilazane which is a nitrogen-containing organosilicon compound): 100 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Transport speed of resin substrate: 2 m / min.
 〈元素分布プロファイルの測定〉
 上記成膜条件で形成した第1ガスバリア層について、下記条件にてXPSデプスプロファイル測定を行い、層厚方向の薄膜層(第1ガスバリア層)の表面からの距離に対する、ケイ素元素分布曲線、酸素元素分布曲線、炭素元素分布曲線及び窒素分布曲線を得た。
<Measurement of element distribution profile>
For the first gas barrier layer formed under the above film formation conditions, XPS depth profile measurement was performed under the following conditions, and the silicon element distribution curve, oxygen element with respect to the distance from the surface of the thin film layer (first gas barrier layer) in the layer thickness direction Distribution curves, carbon element distribution curves and nitrogen distribution curves were obtained.
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形。
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval.
 以上のようにして測定した第1ガスバリア層の全層領域におけるケイ素元素分布曲線、酸素元素分布曲線、炭素元素分布曲線及び窒素分布曲線より、各元素組成における連続変化領域の有無、極値の有無、炭素の原子比率の最大値と最小値の差、全層厚の90%以上の領域において、ケイ素原子、酸素原子、炭素原子及び窒素原子の平均原子比率を求めた。 From the silicon element distribution curve, the oxygen element distribution curve, the carbon element distribution curve and the nitrogen distribution curve in the whole layer region of the first gas barrier layer measured as described above, the presence or absence of continuous change regions and the presence or absence of extreme values in each element composition The average atomic ratio of silicon atoms, oxygen atoms, carbon atoms, and nitrogen atoms was determined in the difference between the maximum value and the minimum value of the atomic ratio of carbon and in the region of 90% or more of the total layer thickness.
 その結果、図3に示すように、組成における連続変化領域及び極値が有り、炭素の原子比率の極大値と極小値の差の絶対値が8at%で、窒素の原子比率の最大値が4at%で、ケイ素原子、酸素原子、炭素原子及び窒素原子の平均原子比率が、全層厚の90%以上の領域で、式(A)で規定する関係、すなわち(炭素平均原子比率)>(ケイ素平均原子比率)>(酸素平均原子比率)>(窒素平均原子比率)の関係を満たしていることを確認した。 As a result, as shown in FIG. 3, there is a continuous change region and an extreme value in the composition, the absolute value of the difference between the maximum value and the minimum value of the carbon atomic ratio is 8 at%, and the maximum value of the nitrogen atomic ratio is 4 at%. %, The relationship defined by the formula (A) in the region where the average atomic ratio of silicon atoms, oxygen atoms, carbon atoms and nitrogen atoms is 90% or more of the total layer thickness, that is, (carbon average atomic ratio)> (silicon It was confirmed that the relationship of (average atomic ratio)> (oxygen average atomic ratio)> (nitrogen average atomic ratio) was satisfied.
 〔ガスバリア性フィルム試料2の作製:実施例〕
 ガスバリア性フィルム試料1の作製において、プラズマCVD条件を以下のように変更した以外は同様にして、ガスバリア性フィルム試料2を作製した。
[Production of Gas Barrier Film Sample 2: Example]
In the production of the gas barrier film sample 1, a gas barrier film sample 2 was produced in the same manner except that the plasma CVD conditions were changed as follows.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシラザン)の供給量:100sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:500sccm
 窒素ガス(N)の供給量:50sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:2m/min。
<Plasma CVD conditions>
Feed rate of raw material gas (hexamethyldisilazane): 100 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Supply amount of nitrogen gas (N 2 ): 50 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Transport speed of resin substrate: 2 m / min.
 〔ガスバリア性フィルム試料3の作製:実施例〕
 ガスバリア性フィルム試料1の作製と同様にして、樹脂基材の易接着面側に、アンカー層、第1ガスバリア層(傾斜SiOCNバリア膜)の順で形成した。更にこの第1ガスバリア層上に以下の手順で厚さ300nmの第2ガスバリア層(ポリシラザン改質膜)を形成し、ガスバリア性フィルム試料3を作製した。
[Production of Gas Barrier Film Sample 3: Examples]
In the same manner as the production of the gas barrier film sample 1, the anchor layer and the first gas barrier layer (gradient SiOCN barrier film) were formed in this order on the easy adhesion surface side of the resin base material. Further, a second gas barrier layer (polysilazane modified film) having a thickness of 300 nm was formed on the first gas barrier layer by the following procedure, and a gas barrier film sample 3 was produced.
 〈ポリシラザン層形成用塗布液の調製〉
 パーヒドロポリシラザン(アクアミカ NN120-10、無触媒タイプ、AZエレクトロニックマテリアルズ(株)製)の10質量%ジブチルエーテル溶液を、ポリシラザン層形成用塗布液として用いた。
<Preparation of coating solution for forming polysilazane layer>
A 10 mass% dibutyl ether solution of perhydropolysilazane (Aquamica NN120-10, non-catalytic type, manufactured by AZ Electronic Materials Co., Ltd.) was used as a coating solution for forming a polysilazane layer.
 〈ポリシラザン層の形成〉
 上記調製したポリシラザン層形成用塗布液を、ワイヤレスバーにて、乾燥後の(平均)層厚が300nmとなるように塗布し、温度85℃、相対湿度55%の雰囲気下で1分間処理して乾燥させ、更に温度25℃、相対湿度10%(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン層を形成した。
<Formation of polysilazane layer>
The prepared polysilazane layer-forming coating solution is applied with a wireless bar so that the (average) layer thickness after drying is 300 nm, and treated for 1 minute in an atmosphere at a temperature of 85 ° C. and a relative humidity of 55%. It was dried, and further kept in an atmosphere of a temperature of 25 ° C. and a relative humidity of 10% (dew point temperature −8 ° C.) for 10 minutes to perform dehumidification, thereby forming a polysilazane layer.
 〈第2ガスバリア層の形成:真空紫外光(エキシマ光)によるポリシラザン層のエキシマ改質処理〉
 次いで、上記にて形成したポリシラザン層に対し、下記真空紫外線照射装置を真空チャンバー内に設置してエキシマ改質処理を実施し、ポリシラザン改質膜である第2ガスバリア層(SiONバリア膜)を形成し、ガスバリア性フィルム試料3を得た。
<Formation of second gas barrier layer: Excimer modification treatment of polysilazane layer by vacuum ultraviolet light (excimer light)>
Next, the polysilazane layer formed above is subjected to excimer modification treatment by installing the following vacuum ultraviolet irradiation device in a vacuum chamber to form a second gas barrier layer (SiON barrier film) which is a polysilazane modified film. As a result, a gas barrier film sample 3 was obtained.
 〈真空紫外線照射装置〉
 装置:株式会社 エム・ディ・コム製のエキシマ照射装置MODEL:MECL-M-1-200(エキシマランプ)
 照射波長:172nm
 ランプ封入ガス:Xe(キセノンガス)。
<Vacuum ultraviolet irradiation device>
Apparatus: Excimer irradiation apparatus MODEL manufactured by M.D. Co., Ltd .: MECL-M-1-200 (Excimer lamp)
Irradiation wavelength: 172 nm
Lamp filled gas: Xe (xenon gas).
 〈エキシマ改質処理条件〉
 稼動ステージ上に固定したポリシラザン層を第1ガスバリア層上に形成した樹脂基材に対し、以下の条件でエキシマ改質処理を行って、第2ガスバリア層を形成した。
<Excimer reforming treatment conditions>
Excimer modification treatment was performed on the resin base material on which the polysilazane layer fixed on the operation stage was formed on the first gas barrier layer under the following conditions to form the second gas barrier layer.
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%(体積比)
 エキシマランプ照射時間:5秒。
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 1.0% (volume ratio)
Excimer lamp irradiation time: 5 seconds.
 〔ガスバリア性フィルム試料4の作製:実施例〕
 ガスバリア性フィルム試料2の作製と同様にして、樹脂基材を準備し、その樹脂基材上にアンカー層、第1ガスバリア層(傾斜SiOCNバリア膜)の順で形成した。更にこの第1ガスバリア層上に、ガスバリア性フィルム試料3と同様の手順で第2ガスバリア層(ポリシラザン改質膜)を形成し、ガスバリア性フィルム試料4を作製した。
[Production of Gas Barrier Film Sample 4: Example]
In the same manner as the production of the gas barrier film sample 2, a resin base material was prepared, and an anchor layer and a first gas barrier layer (gradient SiOCN barrier film) were formed on the resin base material in this order. Further, a second gas barrier layer (polysilazane modified film) was formed on the first gas barrier layer in the same procedure as the gas barrier film sample 3 to produce a gas barrier film sample 4.
 〔ガスバリア性フィルム試料5の作製:比較例〕
 ガスバリア性フィルム試料1の作製において、プラズマCVD条件を以下のように変更した以外は同様にして、ガスバリア性フィルム試料5を作製した。
[Production of Gas Barrier Film Sample 5: Comparative Example]
In the production of the gas barrier film sample 1, a gas barrier film sample 5 was produced in the same manner except that the plasma CVD conditions were changed as follows.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシラザン)の供給量:100sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:50sccm
 窒素ガス(N)の供給量:200sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:2m/min。
<Plasma CVD conditions>
Feed rate of raw material gas (hexamethyldisilazane): 100 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 50 sccm
Supply amount of nitrogen gas (N 2 ): 200 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Transport speed of resin substrate: 2 m / min.
 〔ガスバリア性フィルム試料6の作製:比較例〕
 ガスバリア性フィルム試料1の作製において、プラズマCVD条件を以下のように変更した以外は同様にして、ガスバリア性フィルム試料6を作製した。
[Production of Gas Barrier Film Sample 6: Comparative Example]
In the production of the gas barrier film sample 1, a gas barrier film sample 6 was produced in the same manner except that the plasma CVD conditions were changed as follows.
 〈プラズマCVD条件〉
 原料ガス(窒素を含まない有機ケイ素化合物であるヘキサメチルジシロキサン)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:500sccm
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:2m/min。
<Plasma CVD conditions>
Feed rate of raw material gas (hexamethyldisiloxane which is an organosilicon compound not containing nitrogen): 50 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Transport speed of resin substrate: 2 m / min.
 〔ガスバリア性フィルム試料7の作製:実施例〕
 ガスバリア性フィルム試料4の作製において、第2ガスバリア層(の形成方法)を以下のように変更した以外は同様にして、ガスバリア性フィルム試料7を作製した。
[Production of Gas Barrier Film Sample 7: Example]
A gas barrier film sample 7 was prepared in the same manner as in the preparation of the gas barrier film sample 4 except that the second gas barrier layer (formation method thereof) was changed as follows.
 (第2ガスバリア層の形成)
 第1ガスバリア層(傾斜SiOCNバリア膜)上に、JSR(株)製のグラスカHPC7003を、乾燥後の層厚が300nmとなる条件で塗布して、次いで120℃で3分間乾燥した後、下記真空紫外線照射装置を真空チャンバー内に設置してエキシマ改質処理を実施し、第2ガスバリア層(ポリシロキサン改質膜)を形成し、ガスバリア性フィルム試料7を得た。
(Formation of second gas barrier layer)
On the first gas barrier layer (gradient SiOCN barrier film), a glassca HPC7003 manufactured by JSR Co., Ltd. was applied under the condition that the layer thickness after drying was 300 nm, and then dried at 120 ° C. for 3 minutes. An ultraviolet irradiation device was installed in the vacuum chamber and the excimer modification treatment was performed to form a second gas barrier layer (polysiloxane modified film), whereby a gas barrier film sample 7 was obtained.
 〈真空紫外線照射装置〉
 装置:株式会社 エム・ディ・コム製のエキシマ照射装置MODEL:MECL-M-1-200(エキシマランプ)
 照射波長:172nm
 ランプ封入ガス:Xe(キセノンガス)。
<Vacuum ultraviolet irradiation device>
Apparatus: Excimer irradiation apparatus MODEL manufactured by M.D. Co., Ltd .: MECL-M-1-200 (Excimer lamp)
Irradiation wavelength: 172 nm
Lamp filled gas: Xe (xenon gas).
 〈エキシマ改質処理条件〉
 稼動ステージ上に固定したポリシロキサン層を第1ガスバリア層上に形成した樹脂基材に対し、以下の条件でエキシマ改質処理を行って、ポリシロキサン改質膜である第2ガスバリア層(SiOバリア膜)を形成した。
<Excimer reforming treatment conditions>
Excimer modification treatment is performed on the resin base material on which the polysiloxane layer fixed on the operation stage is formed on the first gas barrier layer under the following conditions, so that the second gas barrier layer (SiO 2) that is a polysiloxane modified film is obtained. Barrier film) was formed.
 エキシマランプ光強度:130mW/cm(172nm)
 試料と光源の距離:1mm
 ステージ加熱温度:70℃
 照射装置内の酸素濃度:1.0%(体積比)
 エキシマランプ照射時間:5秒。
Excimer lamp light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 1.0% (volume ratio)
Excimer lamp irradiation time: 5 seconds.
 〔ガスバリア性フィルム試料8の作製:比較例〕
 (平板電極型CVD装置)
 ガスバリア性フィルム試料1の作製と同様にして、樹脂基材を準備し、その樹脂基材上にアンカー層を形成した。次に市販されている平板電極タイプのプラズマCVD装置を用いて、下記の成膜条件(プラズマCVD条件)により、上記アンカー層上に第1ガスバリア層(非傾斜SiOCNバリア膜)を、厚さが300nmとなる条件で成膜し、ガスバリア性フィルム試料8を作製した。
[Production of Gas Barrier Film Sample 8: Comparative Example]
(Plate electrode type CVD equipment)
Similarly to the production of the gas barrier film sample 1, a resin base material was prepared, and an anchor layer was formed on the resin base material. Next, using a commercially available flat plate type plasma CVD apparatus, the first gas barrier layer (non-gradient SiOCN barrier film) is formed on the anchor layer under the following film formation conditions (plasma CVD conditions). A film was formed under the condition of 300 nm, and a gas barrier film sample 8 was produced.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシラザン)の供給量:20sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:50sccm
 窒素ガス(N)の供給量:50sccm
 真空チャンバー内の真空度:10Pa
 プラズマ発生用電源からの印加電力:0.5kW
 プラズマ発生用電源の周波数:13.56MHz
 樹脂基材の搬送速度:1m/min。
<Plasma CVD conditions>
Source gas (hexamethyldisilazane) supply amount: 20 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 50 sccm
Supply amount of nitrogen gas (N 2 ): 50 sccm
Degree of vacuum in the vacuum chamber: 10Pa
Applied power from the power source for plasma generation: 0.5 kW
Frequency of power source for plasma generation: 13.56 MHz
Transport speed of resin substrate: 1 m / min.
 形成した第1ガスバリア層の元素分布プロファイルを、同様の方法で測定した結果、図4に示すように、膜組成(特に炭素分布曲線、ケイ素分布曲線及び酸素分布曲線)における連続変化領域及び極値が存在せず、炭素原子比率の極大値と極小値の差が0at%で、窒素原子比率の最大値は5at%であった。なお、ケイ素原子、酸素原子、炭素原子、窒素の平均原子比率は、全層厚の90%以上の領域で、式(A)で規定する関係を満たしている。 As a result of measuring the element distribution profile of the formed first gas barrier layer by the same method, as shown in FIG. 4, the continuous change region and the extreme value in the film composition (particularly, the carbon distribution curve, the silicon distribution curve, and the oxygen distribution curve). The difference between the maximum value and the minimum value of the carbon atom ratio was 0 at%, and the maximum value of the nitrogen atom ratio was 5 at%. Note that the average atomic ratio of silicon atoms, oxygen atoms, carbon atoms, and nitrogen satisfies the relationship defined by the formula (A) in a region of 90% or more of the total layer thickness.
 〔ガスバリア性フィルム試料9の作製:比較例〕
 ガスバリア性フィルム試料8の作製と同様にして、樹脂基材を準備し、その樹脂基材上にアンカー層、第1ガスバリア層(非傾斜SiOCNバリア膜)の順で形成した。更にこの第1ガスバリア層上にガスバリア性フィルム試料3と同様の手順で第2ガスバリア層(ポリシラザン改質膜)を形成し、ガスバリア性フィルム試料9を作製した。
[Production of Gas Barrier Film Sample 9: Comparative Example]
In the same manner as the production of the gas barrier film sample 8, a resin base material was prepared, and an anchor layer and a first gas barrier layer (non-tilted SiOCN barrier film) were formed on the resin base material in this order. Further, a second gas barrier layer (polysilazane modified film) was formed on the first gas barrier layer in the same manner as the gas barrier film sample 3, and a gas barrier film sample 9 was produced.
 〔ガスバリア性フィルム試料10の作製:比較例〕
 ガスバリア性フィルム試料6の作製の作製と同様にして、樹脂基材を準備し、その樹脂基材上にアンカー層、第1ガスバリア層(傾斜SiOCNバリア膜)の順で形成した。更にこの第1ガスバリア層上にガスバリア性フィルム試料3と同様の手順で第2ガスバリア層(ポリシラザン改質膜)を形成し、ガスバリア性フィルム試料10を作製した。
[Production of Gas Barrier Film Sample 10: Comparative Example]
In the same manner as in the production of the gas barrier film sample 6, a resin base material was prepared, and an anchor layer and a first gas barrier layer (gradient SiOCN barrier film) were formed on the resin base material in this order. Further, a second gas barrier layer (polysilazane modified film) was formed on the first gas barrier layer in the same manner as the gas barrier film sample 3 to prepare a gas barrier film sample 10.
 《ガスバリア性フィルム試料の評価》
 上記で作製したガスバリア性フィルム試料1~10について、下記の方法に従って、透過水分量による水蒸気バリア性、折り曲げ耐性(屈曲性)、平面性及びフィルムカールの評価を行った。
<< Evaluation of gas barrier film sample >>
The gas barrier film samples 1 to 10 produced above were evaluated for water vapor barrier property, bending resistance (flexibility), flatness and film curl according to the amount of permeated water according to the following methods.
 〔水蒸気バリア性(WVTR)の評価〕
 以下の測定方法に従って、各ガスバリア性フィルム試料の透過水分量を測定し、下記の基準に従って、水蒸気バリア性を評価した。
[Evaluation of water vapor barrier properties (WVTR)]
According to the following measurement method, the permeated water amount of each gas barrier film sample was measured, and the water vapor barrier property was evaluated according to the following criteria.
 (装置)
 蒸着装置:日本電子株式会社製、真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(直径(φ)3~5mm、粒状)
 (水蒸気バリア性評価用セルの作製)
 各ガスバリア性フィルム試料のバリア層面(最表面)に、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用い、透明導電膜を付ける前のガスバリア性フィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面(カルシウムを蒸着した面)にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。また、屈曲前後のガスバリア性の変化を確認するために、下記屈曲の処理(ガスバリア性フィルム試料1~10について、屈曲前後のガスバリア性の変化を確認するために、あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理)を行わなかったガスバリア性フィルム試料についても同様に、水蒸気バリア性評価用セルを作製した。
(apparatus)
Vapor deposition device: JEOL Ltd., vacuum vapor deposition device JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impervious metal: Aluminum (diameter (φ) 3-5mm, granular)
(Preparation of water vapor barrier property evaluation cell)
The part of each gas barrier film sample to be vapor-deposited on the barrier layer surface (outermost surface) of the gas barrier film sample before applying the transparent conductive film using a vacuum vapor deposition device (vacuum vapor deposition device JEE-400 manufactured by JEOL Ltd.) Other than (12 mm × 12 mm at 9 locations) was masked, and metallic calcium was deposited. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet (surface on which calcium was deposited). After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays. Further, in order to confirm the change in the gas barrier property before and after bending, the following bending treatment (for the gas barrier film samples 1 to 10 is performed in advance with a curvature having a radius of 10 mm in order to confirm the change in the gas barrier property before and after the bending. Thus, the water vapor barrier property evaluation cell was similarly produced also about the gas barrier property film sample which did not perform bending 100 times at an angle of 180 degree | times.
 得られた両面を封止した試料(評価用セル)を60℃、90%RHの高温高湿下で保存し、特開2005-283561号公報に記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。 The obtained sample with both sides sealed (evaluation cell) was stored under high temperature and high humidity of 60 ° C. and 90% RH, and from the amount of corrosion of metallic calcium based on the method described in JP-A-2005-283561. The amount of moisture permeated into the cell was calculated.
 なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under the same high temperature and high humidity conditions of 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 以上により測定された各ガスバリア性フィルム試料の透過水分量(g/m・day;表中の「WVTR」)をCa法によって評価した。 The permeated water amount (g / m 2 · day; “WVTR” in the table) of each gas barrier film sample measured as described above was evaluated by the Ca method.
 (評価基準)
 ◎:1×10-5g/m/day未満
 ○:1×10-5g/m/day以上、5×10-5g/m/day未満
 ○△:5×10-5g/m/day以上、1×10-4g/m/day未満
 △:1×10-4g/m/day以上、1×10-2g/m/day未満
 ×:1×10-2g/m/day以上
 〔折り曲げ耐性(屈曲性)の評価〕
 ガスバリア性フィルム試料1~10について、屈曲前後のガスバリア性の変化を確認するために、あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理したガスバリア性フィルム試料について、上記水蒸気透過率(WVTR)を測定し、同様の評価基準に基づき評価を行った。
(Evaluation criteria)
A: Less than 1 × 10 −5 g / m 2 / day ○: 1 × 10 −5 g / m 2 / day or more, less than 5 × 10 −5 g / m 2 / day ○ Δ: 5 × 10 −5 g / M 2 / day or more, less than 1 × 10 −4 g / m 2 / day Δ: 1 × 10 −4 g / m 2 / day or more, less than 1 × 10 −2 g / m 2 / day ×: 1 × 10 −2 g / m 2 / day or more [Evaluation of bending resistance (flexibility)]
Regarding the gas barrier film samples 1 to 10, in order to confirm the change in the gas barrier property before and after the bending, the gas barrier film sample that has been repeatedly bent 100 times at an angle of 180 degrees so as to have a radius of curvature of 10 mm in advance. The water vapor transmission rate (WVTR) was measured and evaluated based on the same evaluation criteria.
 〔フィルムカールの測定〕
 ガスバリア性フィルム試料1~10を80℃で100時間処理を施した後、平らな板の上に置き、カール発生量をノギスを使って測定した(バリア面を上にしたとき、凹をマイナスカール、凸をプラスカールとした。下記表1では、カール発生量の絶対値を示す。)
[Measurement of film curl]
Gas barrier film samples 1 to 10 were treated at 80 ° C. for 100 hours, then placed on a flat plate, and the amount of curling was measured using calipers (when the barrier surface was facing up, the concave was negatively curled. The convexity is defined as plus curl.In Table 1 below, the absolute value of the amount of curling is shown.)
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に記載の結果より明らかなように、本発明で規定する構成からなるガスバリア性フィルム試料1~4、7は、比較例のガスバリア性フィルム試料5~6、8~10に対し、フィルムカールが少なく、折り曲げ耐性(屈曲性)に優れ、高いガスバリア性(水蒸気バリア性)を持つことが分かる。 As is apparent from the results shown in Table 1, the gas barrier film samples 1 to 4 and 7 having the constitution defined in the present invention are film curls compared to the gas barrier film samples 5 to 6 and 8 to 10 of the comparative example. There are few, and it turns out that it is excellent in bending tolerance (flexibility), and has high gas barrier property (water vapor barrier property).
 また、本発明で規定する構成からなるガスバリア性フィルム試料1~4において、ガスバリア性フィルム試料1に比して、該ガスバリア性フィルム試料1にポリシラザン改質膜である第2ガスバリア層を設けたガスバリア性フィルム試料3の方が、より高いガスバリア性(水蒸気バリア性)を有することがわかる。同様にガスバリア性フィルム試料2に比して、該ガスバリア性フィルム試料2にポリシラザン改質膜である第2ガスバリア層を設けたガスバリア性フィルム試料4の方が、より高いガスバリア性(水蒸気バリア性)を有することがわかる。 Further, in the gas barrier film samples 1 to 4 having the configuration defined in the present invention, the gas barrier film sample 1 is provided with a second gas barrier layer that is a polysilazane modified film, as compared with the gas barrier film sample 1. It can be seen that the functional film sample 3 has higher gas barrier properties (water vapor barrier properties). Similarly, as compared with the gas barrier film sample 2, the gas barrier film sample 4 in which the gas barrier film sample 2 is provided with the second gas barrier layer which is a polysilazane modified film has a higher gas barrier property (water vapor barrier property). It can be seen that
 また、本発明で規定する構成からなるガスバリア性フィルム試料3~4、7において、ガスバリア性フィルム試料3、4のように、第1ガスバリア層に窒素を含むSiOCNバリア膜を用い、第2ガスバリア層にも窒素を含むポリシラザン改質膜を用いることで、低カール性と耐屈曲性の両立だけでなく、上記SiOCNバリア膜である第1ガスバリア層と上記SiONバリア膜である第2ガスバリア層の双方に含有される窒素同士が層間で相互作用して形成されるため層間における構造欠陥が低減され、積層時のバリア性能向上効果の大きいガスバリア性フィルムが得られることが確認できた。 In addition, in the gas barrier film samples 3 to 4 and 7 having the configuration defined in the present invention, a SiOCN barrier film containing nitrogen is used for the first gas barrier layer as in the gas barrier film samples 3 and 4, and the second gas barrier layer is used. In addition, by using the polysilazane modified film containing nitrogen, not only the low curling property and the bending resistance are compatible, but also both the first gas barrier layer as the SiOCN barrier film and the second gas barrier layer as the SiON barrier film. It was confirmed that the nitrogen contained in the film is formed by the interaction between the layers, so that structural defects between the layers are reduced, and a gas barrier film having a large effect of improving the barrier performance at the time of lamination can be obtained.
 《電子デバイス:有機ELパネルの作製》
 〔有機ELパネル1の作製〕
 (第1電極層の形成)
 上記で作製したガスバリア性フィルム試料1の第1ガスバリア層上に、厚さ150nmのITO膜(インジウムチンオキシド)をスパッタ法により成膜し、フォトリソグラフィー法を用いてパターニングを行い、第1電極層を形成した。なお、電極パターンは、発光面積が50mm平方になるようなパターンとして形成した。
<< Electronic device: Preparation of organic EL panel >>
[Production of organic EL panel 1]
(Formation of first electrode layer)
On the first gas barrier layer of the gas barrier film sample 1 produced above, an ITO film (indium tin oxide) having a thickness of 150 nm is formed by sputtering, patterned using a photolithography method, and the first electrode layer Formed. The electrode pattern was formed as a pattern having a light emitting area of 50 mm square.
 (正孔輸送層の形成)
 第1電極層を形成したガスバリア性フィルム試料1の第1電極層上に、以下に記載の正孔輸送層形成用塗布液を用い、25℃、相対湿度50%の環境下で、押出し塗布機で塗布し、下記の条件で乾燥及び加熱処理を行って、正孔輸送層を形成した。なお、正孔輸送層形成用塗布液は、乾燥後の正孔輸送層の層厚が50nmとなる条件で塗布した。
(Formation of hole transport layer)
On the first electrode layer of the gas barrier film sample 1 on which the first electrode layer is formed, the following coating liquid for forming a hole transport layer is used and an extrusion coater in an environment of 25 ° C. and 50% relative humidity. And a hole transport layer was formed by drying and heat treatment under the following conditions. The hole transport layer forming coating solution was applied under the condition that the layer thickness of the hole transport layer after drying was 50 nm.
 なお、正孔輸送層形成用塗布液を塗布する前に、ガスバリア性フィルム試料1の両面に対し、洗浄表面改質処理として、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用して行った。 Before applying the coating liquid for forming the hole transport layer, a low-pressure mercury lamp having a wavelength of 184.9 nm is used as a cleaning surface modification treatment on both surfaces of the gas barrier film sample 1, and an irradiation intensity of 15 mW / cm. 2 , carried out at a distance of 10 mm. The charge removal treatment was performed using a static eliminator with weak X-rays.
 〈正孔輸送層形成用塗布液の調製〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(略称:PEDOT/PSS、Bayer社製 Bytron P AI 4083)を、純水で65質量%、メタノール5質量%で希釈した溶液を、正孔輸送層形成用塗布液として用いた。
<Preparation of coating solution for hole transport layer formation>
A solution obtained by diluting polyethylene dioxythiophene / polystyrene sulfonate (abbreviation: PEDOT / PSS, Baytron P AI 4083 manufactured by Bayer) with 65% by mass of pure water and 5% by mass of methanol is used as a coating solution for forming a hole transport layer. Using.
 〈乾燥及び加熱処理条件〉
 正孔輸送層形成用塗布液を第1電極層上に塗布した後、正孔輸送層形成面に対し、高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃の乾燥風を吹き付けて溶媒を除去した後、加熱処理装置を用い、温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
<Drying and heat treatment conditions>
After the hole transport layer forming coating solution is applied on the first electrode layer, the height of the hole transport layer forming surface is 100 mm, the discharge wind speed is 1 m / s, the width wind speed distribution is 5%, and the temperature is 100 ° C. After the drying air was blown to remove the solvent, a back surface heat transfer system heat treatment was performed at a temperature of 150 ° C. using a heat treatment apparatus to form a hole transport layer.
 (発光層の形成)
 上記形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件により押出し塗布機を用いて塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は、乾燥後の発光層の厚さが40nmとなる条件で塗布した。
(Formation of light emitting layer)
On the hole transport layer thus formed, the following white light emitting layer forming coating solution was applied using an extrusion coater under the following conditions, and then dried and heat-treated under the following conditions to form a light emitting layer. Formed. The white light-emitting layer forming coating solution was applied under the condition that the thickness of the light-emitting layer after drying was 40 nm.
 〈白色発光層形成用塗布液の調製〉
 ホスト材料として、下記に示す化合物H-Aを1.0gと、第1のドーパント材料として下記化合物D-Aを100mgと、第2のドーパント材料として下記化合物D-Bを0.2mgと、第3のドーパント材料として下記化合物D-Cを0.2mgとを、100gのトルエンに溶解して、白色発光層形成用塗布液を調製した。
<Preparation of white light emitting layer forming coating solution>
As a host material, 1.0 g of the compound HA shown below, 100 mg of the following compound DA as the first dopant material, 0.2 mg of the following compound DB as the second dopant material, As a dopant material 3, 0.2 mg of the following compound DC was dissolved in 100 g of toluene to prepare a white light emitting layer forming coating solution.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 〈塗布条件〉
 塗布条件としては、窒素ガス濃度が99体積%以上の雰囲気下で、塗布温度を25℃、塗布速度1m/minで行った。
<Application conditions>
The coating conditions were as follows: in an atmosphere having a nitrogen gas concentration of 99% by volume or more, the coating temperature was 25 ° C. and the coating speed was 1 m / min.
 〈乾燥及び加熱処理条件〉
 白色発光層形成用塗布液を、正孔輸送層上に塗布した後、成膜面に向け、高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で乾燥風を吹き付けて溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
<Drying and heat treatment conditions>
A white light emitting layer forming coating solution is applied onto the hole transport layer, and then directed toward the film forming surface, with a height of 100 mm, a discharge wind speed of 1 m / s, a width of 5% of a wide wind speed, and a dry wind at a temperature of 60 ° C. After removing the solvent by spraying, heat treatment was subsequently performed at a temperature of 130 ° C. to form a light emitting layer.
 (電子輸送層の形成)
 上記形成した発光層上に、以下に示す電子輸送層形成用塗布液を下記の条件により押出し塗布機で塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の電子輸送層の厚さが30nmとなる条件で塗布した。
(Formation of electron transport layer)
On the formed light emitting layer, the following electron transport layer forming coating solution was applied by an extrusion coater under the following conditions, and then dried and heat-treated under the following conditions to form an electron transport layer. The coating liquid for forming an electron transport layer was applied under the condition that the thickness of the electron transport layer after drying was 30 nm.
 〈電子輸送層形成用塗布液の調製〉
 電子輸送層形成用塗布液は、下記化合物E-Aを、2,2,3,3-テトラフルオロ-1-プロパノール中に0.5質量%の条件で溶解して調製した。
<Preparation of electron transport layer forming coating solution>
The coating solution for forming an electron transport layer was prepared by dissolving the following compound EA in 2,2,3,3-tetrafluoro-1-propanol at 0.5% by mass.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 〈塗布条件〉
 塗布工程は、窒素ガス濃度が99体積%以上の雰囲気下で、電子輸送層形成用塗布液を用い、塗布温度が25℃で、塗布速度が1m/minの条件で行った。
<Application conditions>
The coating process was performed in an atmosphere having a nitrogen gas concentration of 99% by volume or more, using a coating solution for forming an electron transport layer, a coating temperature of 25 ° C., and a coating speed of 1 m / min.
 〈乾燥及び加熱処理条件〉
 電子輸送層形成用塗布液を、発光層上に塗布した後、成膜面に向け、高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃の条件で乾燥風を吹きつけて溶媒を除去した。次いで、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
<Drying and heat treatment conditions>
After the electron transport layer forming coating solution is applied on the light emitting layer, it is directed toward the film formation surface, and the drying air is blown under the conditions of a height of 100 mm, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5% and a temperature of 60 ° C. The solvent was removed by spraying. Next, in the heat treatment section, heat treatment was performed at a temperature of 200 ° C. to form an electron transport layer.
 (電子注入層の形成)
 上記形成した電子輸送層上に、下記の方法に従って、電子注入層を形成した。
(Formation of electron injection layer)
An electron injection layer was formed on the formed electron transport layer according to the following method.
 電子輸送層まで形成したガスバリア性フィルム1を減圧チャンバーにセットし、5×10-4Paまで減圧した。あらかじめ、真空チャンバー内のタンタル製蒸着ボートに装填しておいたフッ化セシウムを加熱し、電子輸送層上に厚さ3nmの電子注入層を形成した。 The gas barrier film 1 formed up to the electron transport layer was set in a vacuum chamber and the pressure was reduced to 5 × 10 −4 Pa. The cesium fluoride previously loaded in the tantalum vapor deposition boat in the vacuum chamber was heated to form an electron injection layer having a thickness of 3 nm on the electron transport layer.
 (第2電極の形成)
 上記で形成した電子注入層上に、第1電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第2電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法により、発光面積が50mm平方になるようにマスクパターン成膜し、厚さ100nmの第2電極を積層した。
(Formation of second electrode)
On the electron injection layer formed as described above, aluminum is used as the second electrode forming material under a vacuum of 5 × 10 −4 Pa, except for the portion that becomes the extraction electrode of the first electrode, and the extraction electrode is provided. As described above, a mask pattern was formed by vapor deposition so that the light emission area was 50 mm square, and a second electrode having a thickness of 100 nm was laminated.
 (裁断)
 以上のように、第2電極まで形成した積層体を、再び窒素雰囲気下に移し、規定の大きさに、紫外線レーザーを用いて裁断して、有機EL素子1を作製した。
(Cutting)
As described above, the laminated body formed up to the second electrode was again transferred to a nitrogen atmosphere, and cut into a prescribed size using an ultraviolet laser to produce an organic EL element 1.
 (電極リード接続)
 作製した有機EL素子1に、ソニーケミカル&インフォメーションデバイス株式会社製の異方性導電フィルムDP3232S9を用いて、フレキシブルプリント基板(ベースフィルム:ポリイミド12.5μm、圧延銅箔18μm、カバーレイ:ポリイミド12.5μm、表面処理NiAuメッキ)を接続した。
(Electrode lead connection)
An anisotropic conductive film DP3232S9 manufactured by Sony Chemical & Information Device Co., Ltd. was used for the produced organic EL element 1, and a flexible printed circuit board (base film: polyimide 12.5 μm, rolled copper foil 18 μm, coverlay: polyimide 12. 5 μm, surface-treated NiAu plating) was connected.
 圧着条件:温度170℃(別途熱伝対を用いて測定したACF温度140℃)、圧力2MPa、10秒で圧着を行った。 Crimping conditions: Crimping was performed at a temperature of 170 ° C. (ACF temperature 140 ° C. measured using a separate thermocouple), a pressure of 2 MPa, and 10 seconds.
 (封止)
 封止部材として、30μm厚のアルミニウム箔(東洋アルミニウム株式会社製)に、ポリエチレンテレフタレート(PET)フィルム(12μm厚)をドライラミネーション用の接着剤(2液反応型のウレタン系接着剤)を用いラミネートした(接着剤層の厚さ:1.5μm)ものを用意した。
(Sealing)
As a sealing member, a 30 μm thick aluminum foil (manufactured by Toyo Aluminum Co., Ltd.) is laminated with a polyethylene terephthalate (PET) film (12 μm thickness) using a dry lamination adhesive (two-component reaction type urethane adhesive). (Adhesive layer thickness: 1.5 μm) was prepared.
 用意した封止部材のアルミニウム面に、熱硬化性接着剤を、ディスペンサーを使用してアルミ箔の接着面(つや面)に沿って厚み20μmで均一に塗布し、接着剤層を形成した。 A thermosetting adhesive was uniformly applied to the aluminum surface of the prepared sealing member with a thickness of 20 μm along the adhesive surface (glossy surface) of the aluminum foil using a dispenser to form an adhesive layer.
 このとき、熱硬化性接着剤としては、下記の(A)~(C)の構成原料を混合したエポキシ系接着剤を用いた。 At this time, as the thermosetting adhesive, an epoxy adhesive mixed with the following constituent materials (A) to (C) was used.
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 封止部材を、取り出し電極及び電極リードの接合部を覆うようにして密着・配置して、圧着ローラーを用いて圧着条件として、圧着ローラー温度120℃、圧力0.5MPa、搬送速度0.3m/minで密着封止して、図5に記載の構成からなる有機ELパネル1を作製した。
(A) Bisphenol A diglycidyl ether (DGEBA)
(B) Dicyandiamide (DICY)
(C) Epoxy adduct-based curing accelerator A sealing member is closely attached and arranged so as to cover the joint between the take-out electrode and the electrode lead, and as a pressure bonding condition using a pressure roller, a pressure roller temperature is 120 ° C. and a pressure is 0. The organic EL panel 1 having the configuration shown in FIG. 5 was prepared by closely sealing at 5 MPa and a conveyance speed of 0.3 m / min.
 有機ELパネル1について、温度60℃、相対湿度90%の環境下で400時間の加速劣化処理を施した後、CNC画像測定機クイックビジョンQVH404(ミツトヨ社製)を用いて平面度を測定した。平面度測定法は、有機ELパネル(対向フィルム面)上の9点(縦横3×3点)にて測定した。その結果、9点の測定箇所のいずれにおいても平面度が0.1mm未満であり実用上好ましい特性であると判定した。即ち、有機ELパネルに使用した厚膜のガスバリア性フィルムが加速劣化処理後であってもフィルムカールを生じることなく保持されていることが確認できた。 The organic EL panel 1 was subjected to an accelerated deterioration process for 400 hours in an environment of a temperature of 60 ° C. and a relative humidity of 90%, and then the flatness was measured using a CNC image measuring device Quick Vision QVH404 (manufactured by Mitutoyo Corporation). The flatness measurement method was performed at 9 points (3 × 3 points in length and width) on the organic EL panel (opposite film surface). As a result, it was determined that the flatness was less than 0.1 mm at any of the nine measurement points, which was a practically preferable characteristic. That is, it was confirmed that the thick gas barrier film used in the organic EL panel was held without causing film curl even after the accelerated deterioration treatment.
 本出願は、2013年12月2日に出願された日本特許出願番号2013-249444号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2013-249444 filed on December 2, 2013, the disclosure content of which is incorporated by reference as a whole.
 1 樹脂基材、
 2 第1ガスバリア層、
 3 第2ガスバリア層、
 4 陽極(透明電極)、
 5 有機EL素子(電子デバイス本体)、
 6 接着剤層、
 7 対向フィルム、
 F ガスバリア性フィルム、
 P 有機ELパネル(電子デバイス)、
 11 送り出しローラー、
 21、22、23、24 搬送ローラー、
 31、32 成膜ローラー、
 41 ガス供給管、
 51 プラズマ発生用電源、
 61、62 磁場発生装置、
 71 巻き取りローラー、
 A 炭素分布曲線、
 B ケイ素分布曲線、
 C 酸素分布曲線、
 D 窒素分布曲線。
1 resin base material,
2 first gas barrier layer,
3 second gas barrier layer,
4 Anode (transparent electrode),
5 Organic EL elements (electronic device body),
6 Adhesive layer,
7 Opposite film,
F gas barrier film,
P Organic EL panel (electronic device),
11 Feeding roller,
21, 22, 23, 24 transport rollers,
31, 32 Deposition rollers
41 gas supply pipe,
51 Power source for plasma generation,
61, 62 Magnetic field generator,
71 take-up roller,
A carbon distribution curve,
B silicon distribution curve,
C oxygen distribution curve,
D Nitrogen distribution curve.

Claims (8)

  1.  樹脂基材と、該樹脂基材の少なくとも一方の面側に形成された第1ガスバリア層と、を含むガスバリア性フィルムであって、
     前記第1ガスバリア層は、炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を満たすことを特徴とするガスバリア性フィルム;
     (1)前記第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、少なくとも1つの極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差の絶対値が5at%以上で、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する窒素原子の量の比率(「窒素原子比率(at%)」という。)との関係を示す窒素分布曲線における、窒素原子比率の最大値が0.5~10at%の範囲であり、
     (2)前記第1ガスバリア層の全層厚の90%以上の領域において、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
    Figure JPOXMLDOC01-appb-M000001
    A gas barrier film comprising a resin substrate and a first gas barrier layer formed on at least one surface side of the resin substrate,
    The first gas barrier layer contains carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms, the composition continuously changes in the layer thickness direction, and satisfies the following requirements (1) and (2): Gas barrier film;
    (1) Of the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer, the first gas barrier layer in the layer thickness direction of the first gas barrier layer Carbon showing the relationship between the distance from the surface and the ratio of the amount of carbon atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”). The distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, and the first The distance from the surface of the first gas barrier layer in the layer thickness direction of the gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio That at%) ".) In a nitrogen distribution curve showing the relationship between the maximum value of the nitrogen atomic ratio is in the range of 0.5 ~ 10at%,
    (2) In the region of 90% or more of the total thickness of the first gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
    Figure JPOXMLDOC01-appb-M000001
  2.  前記第1ガスバリア層上に、ポリシラザン改質物を含有する第2ガスバリア層をさらに含むことを特徴とする請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, further comprising a second gas barrier layer containing a polysilazane modified product on the first gas barrier layer.
  3.  前記第2ガスバリア層が、ポリシラザンを含有する液を塗布、乾燥して形成される塗膜をエキシマ改質処理して得られることを特徴とする請求項2に記載のガスバリア性フィルム。 The gas barrier film according to claim 2, wherein the second gas barrier layer is obtained by applying an excimer modification treatment to a coating film formed by applying and drying a liquid containing polysilazane.
  4.  樹脂基材の少なくとも一方の面側に、少なくとも第1ガスバリア層を具備するガスバリア性フィルムの製造方法であって、
     炭素原子、ケイ素原子、酸素原子及び窒素原子を含有し、層厚方向に組成が連続的に変化し、下記要件(1)及び(2)を満たす第1ガスバリア層を形成する工程を有することを特徴とするガスバリア性フィルムの製造方法;
     (1)前記第1ガスバリア層についてのX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、当該第1ガスバリア層の層厚方向における前記第1のガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する炭素原子の量の比率(「炭素原子比率(at%)」という。)との関係を示す炭素分布曲線において、少なくとも1つの極値を有し、前記炭素原子比率の最大の極値(極大値)と最小の極値(極小値)との差の絶対値が5at%以上で、当該第1ガスバリア層の層厚方向における前記第1ガスバリア層の表面からの距離と、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する窒素原子の量の比率(「窒素原子比率(at%)」という。)との関係を示す窒素分布曲線における、窒素原子比率の最大値が0.5~10at%の範囲であり、
     (2)前記第1ガスバリア層の全層厚の90%以上の領域において、炭素原子、ケイ素原子、酸素原子及び窒素原子の合計量(100at%)に対する各原子の平均原子比率が、下記式(A)又は(B)で表される序列の大小関係を有する。
    Figure JPOXMLDOC01-appb-M000002
    A method for producing a gas barrier film comprising at least a first gas barrier layer on at least one surface side of a resin substrate,
    A step of forming a first gas barrier layer containing a carbon atom, a silicon atom, an oxygen atom, and a nitrogen atom, the composition continuously changing in the layer thickness direction, and satisfying the following requirements (1) and (2): A method for producing a gas barrier film,
    (1) The first gas barrier layer in the layer thickness direction of the first gas barrier layer among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy for the first gas barrier layer And the ratio of the amount of carbon atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (referred to as “carbon atom ratio (at%)”). The carbon distribution curve has at least one extreme value, and an absolute value of a difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio is 5 at% or more, The distance from the surface of the first gas barrier layer in the thickness direction of one gas barrier layer and the ratio of the amount of nitrogen atoms to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms (“nitrogen atom ratio In nitrogen distribution curve showing the relationship between the called.) And (at%) ", is in the range maximum value of the nitrogen atom ratio of 0.5 ~ 10at%,
    (2) In the region of 90% or more of the total thickness of the first gas barrier layer, the average atomic ratio of each atom to the total amount (100 at%) of carbon atoms, silicon atoms, oxygen atoms and nitrogen atoms is expressed by the following formula ( It has an order of magnitude relationship represented by A) or (B).
    Figure JPOXMLDOC01-appb-M000002
  5.  前記第1ガスバリア層が、窒素含有有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成することを特徴とする請求項4に記載のガスバリア性フィルムの製造方法。 The first gas barrier layer is formed by a discharge plasma chemical vapor deposition method using a source gas containing a nitrogen-containing organosilicon compound and an oxygen gas and having a discharge space between rollers to which a magnetic field is applied. The manufacturing method of the gas-barrier film of Claim 4.
  6.  前記第1ガスバリア層が、有機ケイ素化合物を含む原料ガスと酸素ガスと窒素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により形成することを特徴とする請求項4に記載のガスバリア性フィルムの製造方法。 The first gas barrier layer is formed by a discharge plasma chemical vapor deposition method having a discharge space between rollers to which a magnetic field is applied, using a source gas containing an organic silicon compound, oxygen gas, and nitrogen gas. The method for producing a gas barrier film according to claim 4.
  7.  前記第1ガスバリア層上に、ポリシラザンを含有する液を塗布、乾燥して塗膜を形成し、該塗膜にエキシマ改質処理を施すことにより第2ガスバリア層を形成する工程を、更に含むことを特徴とする請求項4~6のいずれか1項に記載のガスバリア性フィルムの製造方法。 The method further includes forming a second gas barrier layer by applying a liquid containing polysilazane on the first gas barrier layer, drying to form a coating film, and applying an excimer modification treatment to the coating film. The method for producing a gas barrier film according to any one of claims 4 to 6, wherein:
  8.  前記第2ガスバリア層の形成に用いる改質処理手段が、波長が200nm以下の真空紫外光を照射する方法であることを特徴とする請求項7に記載のガスバリア性フィルムの製造方法。 The method for producing a gas barrier film according to claim 7, wherein the modifying means used for forming the second gas barrier layer is a method of irradiating vacuum ultraviolet light having a wavelength of 200 nm or less.
PCT/JP2014/081883 2013-12-02 2014-12-02 Gas barrier film and method for producing same WO2015083706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015551523A JPWO2015083706A1 (en) 2013-12-02 2014-12-02 Gas barrier film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-249444 2013-12-02
JP2013249444 2013-12-02

Publications (1)

Publication Number Publication Date
WO2015083706A1 true WO2015083706A1 (en) 2015-06-11

Family

ID=53273468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081883 WO2015083706A1 (en) 2013-12-02 2014-12-02 Gas barrier film and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2015083706A1 (en)
WO (1) WO2015083706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132901A1 (en) * 2015-02-19 2016-08-25 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
JP2018124367A (en) * 2017-01-31 2018-08-09 東レ株式会社 Film for organic electroluminescence display device sand laminate sheet
WO2023054175A1 (en) * 2021-09-30 2023-04-06 日東電工株式会社 Gas barrier film and production method of same, and gas barrier layer-provided polarizing plate and image display apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film
JP2011068124A (en) * 2009-08-26 2011-04-07 Konica Minolta Holdings Inc Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP2011194587A (en) * 2010-03-17 2011-10-06 Konica Minolta Holdings Inc Gas barrier film, method of manufacturing the same, organic photoelectric conversion element using the same, and solar cell
WO2012046767A1 (en) * 2010-10-08 2012-04-12 住友化学株式会社 Layered film
JP2012081632A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
JP2012082468A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
JP2012081633A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
JP2012097354A (en) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd Method for producing laminate
WO2013161785A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Transparent gas barrier film and electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film
JP2011068124A (en) * 2009-08-26 2011-04-07 Konica Minolta Holdings Inc Gas barrier film, method for producing the same, and organic photoelectric conversion element using the same
JP2011194587A (en) * 2010-03-17 2011-10-06 Konica Minolta Holdings Inc Gas barrier film, method of manufacturing the same, organic photoelectric conversion element using the same, and solar cell
WO2012046767A1 (en) * 2010-10-08 2012-04-12 住友化学株式会社 Layered film
JP2012081632A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
JP2012082468A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
JP2012081633A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Laminated film
JP2012097354A (en) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd Method for producing laminate
JP2012096531A (en) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd Layered film
WO2013161785A1 (en) * 2012-04-26 2013-10-31 コニカミノルタ株式会社 Transparent gas barrier film and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132901A1 (en) * 2015-02-19 2016-08-25 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
JP2018124367A (en) * 2017-01-31 2018-08-09 東レ株式会社 Film for organic electroluminescence display device sand laminate sheet
WO2023054175A1 (en) * 2021-09-30 2023-04-06 日東電工株式会社 Gas barrier film and production method of same, and gas barrier layer-provided polarizing plate and image display apparatus

Also Published As

Publication number Publication date
JPWO2015083706A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2014073438A1 (en) Electronic device and gas barrier film fabrication method
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
WO2014163062A1 (en) Method for manufacturing gas barrier film, gas barrier film, and electronic device
US20150247241A1 (en) Method for producing gas barrier film, gas barrier film, and electronic device
JP6398986B2 (en) Gas barrier film
WO2014203892A1 (en) Gas barrier film and method for producing same
WO2014178332A1 (en) Gas barrier film and method for producing same
WO2015083706A1 (en) Gas barrier film and method for producing same
JP5892030B2 (en) Method for producing gas barrier film and gas barrier film
JPWO2016039237A1 (en) Functional element and method for manufacturing functional element
JP2014141055A (en) Gas barrier film
WO2015147221A1 (en) Gas barrier film and manufacturing method for gas barrier film
WO2015190572A1 (en) Gas barrier film laminate and electronic component employing same
JP2016097500A (en) Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method
WO2015083681A1 (en) Gas barrier film and production method therefor
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
JP6354302B2 (en) Gas barrier film
WO2017047346A1 (en) Electronic device and method for sealing electronic device
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
WO2015146886A1 (en) Gas barrier film, method for manufacturing same, and electronic device using same
JP2016193526A (en) Gas barrier film, and electronic device using the gas barrier film
WO2016159206A1 (en) Gas barrier film and method for manufacturing same
WO2015025783A1 (en) Device for producing gas barrier film and method for producing gas barrier film
WO2014188981A1 (en) Gas barrier film
JP6222224B2 (en) Method for producing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551523

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867465

Country of ref document: EP

Kind code of ref document: A1