WO2015190572A1 - Gas barrier film laminate and electronic component employing same - Google Patents

Gas barrier film laminate and electronic component employing same Download PDF

Info

Publication number
WO2015190572A1
WO2015190572A1 PCT/JP2015/066934 JP2015066934W WO2015190572A1 WO 2015190572 A1 WO2015190572 A1 WO 2015190572A1 JP 2015066934 W JP2015066934 W JP 2015066934W WO 2015190572 A1 WO2015190572 A1 WO 2015190572A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
gas
layer
film laminate
Prior art date
Application number
PCT/JP2015/066934
Other languages
French (fr)
Japanese (ja)
Inventor
國信 隆史
正志 橋本
慧 七里
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to JP2016527871A priority Critical patent/JPWO2015190572A1/en
Publication of WO2015190572A1 publication Critical patent/WO2015190572A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a gas barrier film laminate.
  • the present invention relates to a gas barrier film laminate in which water vapor permeation to electronic components can be effectively suppressed, and further, layer peeling is suppressed.
  • an organic electroluminescence element hereinafter also referred to as an OLED element
  • an organic solar cell element hereinafter also referred to as an OPV element
  • a liquid crystal element etc.
  • an inorganic filler is formed on a glass or plastic film having a high barrier property.
  • a gas barrier film laminate in which a mixed / dispersed resin composition film or metal oxide thin film is formed has been used.
  • a gas barrier film laminate composed of multiple layers, there is a problem of adhesion between a plastic film and a resin composition film or a metal oxide thin film.
  • Cited Document 1 discloses “an article including a base material and a barrier layer which is provided on the surface of the base material and has a moisture and oxygen permeation resistance” (paragraph 0007). Further, as an additional layer, It is disclosed to provide an adhesive layer (paragraph 0025, FIG. 1) that enhances the adhesion of the barrier layer to the substrate.
  • a chemical vapor deposition method for example, a plasma chemical vapor deposition method (CVD) is known.
  • CVD plasma chemical vapor deposition method
  • the plasma CVD method has a problem of abrupt compressive stress generated during film formation and curling due to this, and a thin film such as a metal oxide as a gas barrier layer needs to improve its adhesion. .
  • the present invention has been made in view of the above-described problems of the prior art, and improves the adhesion of the gas barrier layer in the formation of a gas barrier layer by a plasma CVD method using an organometallic compound as a raw material, and a sufficient gas barrier. It is an object of the present invention to provide a gas barrier film laminate having properties.
  • the present inventors have been able to form an adhesion layer by changing the composition of the film forming gas during film formation by the plasma CVD method. It has been found that the adhesion of the layer can be improved (hardly peeled off), and the present invention has been completed.
  • the gas barrier film laminate according to the first aspect of the present invention includes, for example, as shown in FIG. 1 (a), a resin film 11 as a base material; and a film formed on at least one side of the resin film 11.
  • “single-sided” refers to stacking on one side with or without contact. “Up” refers to laminating in contact.
  • the “compound containing ⁇ in the composition” may be a compound containing ⁇ in the composition. If comprised in this way, a gas barrier layer can be firmly adhere
  • the thickness of the adhesion layer 13 is 10 to 500 nm. If comprised in this way, a contact
  • the gas barrier film laminate according to the third aspect of the present invention is the gas barrier film laminate according to the first aspect or the second aspect of the present invention, wherein the adhesion layer 13 and the gas barrier layer 14 are continuously formed by a plasma CVD method.
  • the ratio of the reactive gas in the film forming gas when forming the adhesion layer 13 is larger than the ratio of the reactive gas in the film forming gas when forming the gas barrier layer 14.
  • the “film formation gas” refers to a gas used during film formation, such as a source gas, a reactive gas, a carrier gas, and a discharge gas.
  • the “source gas” is a gas that can form a thin film with a single source gas or a thin film with a combination of a source gas and an auxiliary gas.
  • the “reactive gas” is an auxiliary gas that cannot form a thin film such as a gas barrier layer or an adhesion layer by itself, for example, a gas for oxidizing or nitriding a raw material compound. If comprised in this way, the elemental composition of the interface vicinity of an adhesion layer and a gas barrier layer can be changed by changing the film-forming conditions of a plasma CVD method, and the adhesiveness of a gas barrier layer can be improved. Moreover, only the ratio of the reactive gas is changed, and the adhesion layer and the gas barrier layer can be formed efficiently, so that the productivity can be improved and the production cost can be reduced. Furthermore, since the adhesion layer and the gas barrier layer are formed by a plasma CVD method, a dense and flexible film can be formed. Therefore, defects and peeling are less likely to occur compared to other methods, and the gas barrier layer can have high gas barrier properties.
  • the gas barrier film laminate according to the fourth aspect of the present invention is the gas barrier film laminate according to the third aspect of the present invention, wherein the ratio of the reactive gas in the deposition gas during the formation of the adhesion layer 13 is The ratio of the reactive gas in the film-forming gas when forming the gas barrier layer 14 is 1.2 to 4.0 times. If comprised in this way, the contact
  • the gas barrier film laminate according to the fifth aspect of the present invention is the gas barrier film laminate according to any one of the first to fourth aspects of the present invention, wherein the resin film 11 is polyethylene terephthalate, It is a film mainly composed of a resin which is polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture thereof.
  • the “main component” means containing 50% by weight or more of the compound. If constituted in this way, these resin films are preferred because of their excellent cost and availability. Moreover, resin according to a use, such as making it transparent, can be selected suitably.
  • the gas barrier film laminate according to the sixth aspect of the present invention is the gas barrier film laminate according to any one of the first to fifth aspects of the present invention, wherein water vapor at 40 ° C. and 90% RH is used.
  • the transmittance is 0.005 g / m 2 / day or less. If comprised in this way, a gas barrier film laminated body can be used for electronic elements, such as an OLED element and OPV element by which high gas barrier property is calculated
  • the gas barrier film laminate according to the seventh aspect of the present invention is the gas barrier film laminate according to any one of the first to sixth aspects of the present invention, for example, as shown in FIG.
  • the organic film layer 12 sandwiched between the resin film 11 and the adhesion layer 13 is provided. If comprised in this way, the unevenness
  • the gas barrier film laminate according to the eighth aspect of the present invention is obtained by photopolymerizing the photocurable resin composition in the gas barrier film laminate according to the seventh aspect of the present invention. Layer. If comprised in this way, since the photocurable resin composition is used, manufacture of an organic film layer becomes easy and production efficiency can be raised.
  • the electronic component according to the ninth aspect of the present invention includes, for example, an electronic element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes, as shown in FIG.
  • the gas barrier film laminate 10 according to any one of the first to eighth aspects of the present invention to be protected is provided. “Protecting from water vapor” is typically performed by enclosing the electronic device, in addition to enclosing the entire electronic device, as well as enclosing the entire device together with other protective bodies. Is also included. When configured in this way, the gas barrier film laminate is excellent in gas barrier properties, so that it is possible to prevent water vapor and oxygen from penetrating into the inside of the electronic element to deteriorate components constituting the electronic element and suppress performance from being deteriorated. it can.
  • the electronic component according to a tenth aspect of the present invention is the electronic component according to the ninth aspect of the present invention, wherein the gas barrier film laminate is transparent, and the electronic element is an OLED element or an OPV element.
  • Transparent means a state in which the gas barrier film laminate transmits visible light and the opposite side of the gas barrier film laminate can be seen through. If comprised in this way, when it uses for an OLED element, since the light emission from an element is not prevented, luminous efficiency is not deteriorated. Moreover, when it uses for a photoelectric element like an OPV element, it can comprise so that sunlight reception may be performed from the gas barrier film laminated body side.
  • the present invention it is possible to improve the adhesion of a gas barrier layer formed by a plasma CVD method and provide a gas barrier film laminate having a sufficient gas barrier property. Furthermore, the gas barrier film laminate can be used to protect electronic elements such as OLED elements and OPV elements from intrusion of water vapor.
  • FIG. 1 is the schematic of the gas barrier film laminated body 10 which concerns on the 1st Embodiment of this invention.
  • FIG. 1B is a schematic view of a gas barrier film laminate 10 ′ according to the second embodiment of the present invention.
  • FIG. 2 is the schematic of the electronic component which has an OLED element by a solid sealing system.
  • FIG. 2B is a schematic view of an electronic component using the gas barrier film laminate 10 of the present invention as an alternative.
  • FIG. 3 is a schematic view of another electronic component using the gas barrier film laminate 10 of the present invention.
  • FIG. 4A is a schematic view of an electronic component having an OLED element with a conventional hollow structure.
  • FIG. 4B is a schematic view of an electronic component using the gas barrier film laminate 10 of the present invention as an alternative.
  • FIG. 5 is a schematic view of a roll-to-roll system.
  • FIG. 6 is an XPS depth profile of the first embodiment.
  • FIG. 7 is an XPS depth profile of the second embodiment.
  • FIG. 8 is an XPS depth profile of Comparative Example 1.
  • FIG. 9 is an XPS depth profile of Comparative Example 2.
  • the gas barrier film laminate 10 includes, as shown in FIG. 1A, for example, a resin film 11 serving as a base material and an adhesion formed on at least one side of the resin film.
  • a layer 13 and a gas barrier layer 14 formed on the adhesion layer 13 are provided.
  • the adhesion layer 13 and the gas barrier layer 14 are preferably continuously formed by a plasma CVD method. By changing the film formation conditions of the plasma CVD method, the composition of elements in the vicinity of the interface between the adhesion layer 13 and the gas barrier layer 14 can be changed, and the adhesion of the gas barrier layer can be improved (hard to peel off).
  • the resin film 11 serving as the base material of the gas barrier film laminate 10 is not particularly limited as long as it is formed of an organic material that can hold each layer laminated on the resin film 11.
  • polyethylene terephthalate PET
  • polybutylene terephthalate polyethylene naphthalate
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • nylon Ny
  • cycloolefin polymer aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, acrylic ester polymer, methacrylic ester polymer, polyimide, polyetherimide, etc.
  • Heat-resistant transparent film based on sesquioxane (product name: Sila-DEC, manufactured by JNC Co., Ltd.), resin film made by laminating two or more layers of the above plastic, The composite film of resin-impregnated glass cloth and the like.
  • a film mainly composed of polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture thereof can be preferably used.
  • the thickness of the resin film is not particularly limited, but is preferably 20 to 500 ⁇ m, more preferably 30 to 300 ⁇ m.
  • the thickness is 20 ⁇ m or more, the rigidity as a base material is not sufficient, and stability does not decrease during film formation on a roll-to-roll basis. Further, when the thickness is 500 ⁇ m or less, it is possible to avoid that the flexibility is lowered and the cost is increased.
  • the resin film is transparent, the gas barrier layer and the like laminated on the resin film are also transparent, so that a transparent gas barrier film laminate can be obtained.
  • a transparent gas barrier film laminate can be used as a substrate such as an OLED element or an OPV element.
  • the adhesion layer 13 and the gas barrier layer 14 included in the gas barrier film laminate 10 illustrated in FIG. 1A are continuously formed by a plasma CVD method.
  • the adhesion layer 13 and the gas barrier layer 14 are films in which the composition ratio of the compound to be contained is changed.
  • the adhesion layer 13 and the gas barrier layer 14 may be films containing an organic component whose main component is a metal oxide. Further, it may be a single film or a composite film. Note that a film mainly containing a metal nitride or a mixture of a metal oxide and a metal nitride may be used instead of the metal oxide.
  • the adhesion layer 13 contains a compound containing SiO x in the composition satisfying 1.8 ⁇ x ⁇ 2.2, or containing a compound containing SiCy in the composition satisfying 0 ⁇ y ⁇ 0.15.
  • the compound containing SiO x on the composition to form a composition of SiO x repeatedly bound elemental Si and O, Similarly SiO x C y, SiO x N y, a composition such as SiO x N y C z Examples of the material to be formed (0 ⁇ y, 0 ⁇ z), a group of molecules such as SiO 2 , or a mixture thereof. The same applies to SiCy.
  • the adhesion layer 13 preferably contains, as a main component, a compound containing SiO x in the composition or a compound containing SiC y in the composition.
  • the gas barrier layer 14 contains a compound containing SiO x C y in the composition that satisfies 1.1 ⁇ x ⁇ 1.9 and 0 ⁇ y ⁇ 0.9.
  • the gas barrier layer 14 preferably contains a compound containing SiO x C y as a main component.
  • the thickness of the adhesion layer is preferably 10 to 500 nm, more preferably 30 to 400 nm, and still more preferably 50 to 250 nm in terms of the SiO 2 equivalent film thickness. When it is 10 nm or more, sufficient adhesion is expressed. When the thickness is 500 nm or less, the gas barrier film laminate can be prevented from becoming too thick.
  • the thickness of the gas barrier layer is preferably 0.2 to 2 ⁇ m in terms of SiO 2 thickness, more preferably 0.3 to 1.5 ⁇ m, and even more preferably 0.4 to 1.0 ⁇ m, resulting in good film thickness uniformity. Excellent gas barrier performance. When the thickness is 2 ⁇ m or less, generation of cracks due to bending can be suppressed.
  • a physical vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a thermochemical vapor deposition method
  • CVD chemical vapor deposition
  • the vacuum deposition method is widely used as a highly productive process, but the gas barrier performance is inferior.
  • a dense film can be formed by sputtering, the film formation rate is low and sufficient productivity cannot be obtained.
  • the film formed by the PVD method is inorganic and brittle, defects and peeling are likely to occur, and high barrier properties cannot be imparted.
  • the plasma CVD method has an advantage in terms of productivity as compared with the sputtering method, and can form a film having good gas barrier performance as compared with the vacuum evaporation method and the sputtering method.
  • the plasma CVD method can be preferably used as a method for forming the adhesion layer and the gas barrier layer. More preferably, a roll-to-roll type plasma CVD method can be used in terms of productivity and quality stability.
  • CVD Chemical Vapor Deposition
  • one or more source gases of a compound containing constituent elements of a thin film material to be manufactured are supplied onto a film formation target (for example, a substrate), and the vapor phase or the surface of the substrate is supplied.
  • a film formation target for example, a substrate
  • the plasma CVD method is a method in which a film forming gas is brought into a plasma state, active radicals and ions are generated, and a chemical reaction is performed in an active environment.
  • the roll-to-roll means that a film-forming target wound in a roll shape is sent out from a sending-out roll 31, and a target substance is formed and printed on the surface, and another roll (winding-up) is again made.
  • This is a production method in which the take-up roll 32) is wound up and collected.
  • the roller 33 is for conveying a film.
  • Japanese Patent Publication No. 2005-504880 includes a pair of film forming rolls that wind and convey a film to be formed, forms a magnetic field across the rolls, and the two film forming rolls are the same.
  • HMDSO hexamethyldisiloxane
  • Japanese Patent No. 2587507 discloses a pair of film forming rolls (metal drums) arranged facing each other in a vacuum chamber, an AC power source in which one and the other electrode are connected to one and the other film forming rolls, respectively.
  • a plasma CVD film forming apparatus having a discharge chamber disposed in an opposing space between film forming rolls and having a surface facing the film forming roll opened, and a monomer (raw material) gas supply means connected to the discharge chamber is described. Has been.
  • a pulse voltage accompanied by alternating current or polarity reversal is applied to the film forming rolls arranged to face each other under reduced pressure, and a facing space (film forming zone) between the film forming rolls arranged opposite to each other.
  • a device for generating a film by plasma CVD on a belt-like base material wound around facing a facing space of a film forming roll As an example, a plasma CVD apparatus (Roll coater W35) manufactured by Kobe Steel, Ltd. can be preferably used.
  • Examples of the metal oxide that is a main component of the adhesion layer and the gas barrier layer include silicon oxide, aluminum oxide, titanium oxide, and zinc oxide.
  • Examples of the metal nitride include silicon nitride, aluminum nitride, titanium nitride, and zinc nitride. In applications where transparency is required for the gas barrier film laminate, silicon oxide is more preferable.
  • the source gas used for forming the adhesion layer and the gas barrier layer is preferably an organometallic compound.
  • an organosilicon compound containing silicon, an organoaluminum compound containing aluminum, or the like can be used.
  • these source gases it is more preferable to use an organosilicon compound from the viewpoints of handling properties of the compound and imparting flexibility and high gas barrier properties to the obtained adhesion layer and gas barrier layer.
  • organosilicon compounds include HMDSO, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethoxysilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyl Examples include triethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, octamethylcyclotetrasiloxane, and hexamethyldisilazane.
  • organosilicon compounds HMDSO, 1,1,3,3-tetramethyldisiloxane, tetraethoxysilane, hexamethyldisilane are used from the viewpoint of characteristics such as handling of the compound and gas barrier properties of the obtained thin film layer. Silazane is particularly preferred. These raw materials such as organosilicon compounds can be used singly or in combination of two or more. Examples of the organoaluminum compound include trimethylaluminum.
  • a reactive gas can be used.
  • the reactive gases e.g., oxygen (O 2), ozone (O 3), nitrogen monoxide (NO), nitrous oxide (N 2 O), nitrogen dioxide (NO 2), hydrogen peroxide (H 2 Oxidizing gas such as O 2 ) and nitride forming gas such as nitrogen (N 2 ), ammonia (NH 3 ), hydrazine (N 2 H 4 ), dimethyl hydrazine (N 2 H 2 (CH 3 ) 2 ) Can be used.
  • These reactive gases can be used alone or in combination of two or more.
  • a carrier gas may be used as necessary for supplying the source gas into the vacuum chamber as a film forming gas.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, xenon, and the like can be used.
  • the reactive gas may be used as a discharge gas. Reactive gas and noble gas can be used alone or in combination of two or more.
  • film formation gas gas used for film formation
  • source gas reactive gas
  • carrier gas carrier gas
  • discharge gas discharge gas
  • the adhesion layer is preferably formed with a reactive gas mixture ratio higher than the reactive gas mixture ratio in the film forming gas when forming the gas barrier layer.
  • the mixing ratio of the reactive gas in the film forming gas when forming the adhesion layer is 1.2 to the mixing ratio of the reactive gas in the film forming gas when forming the gas barrier layer. It is preferably 4.0 times. More preferably, it is 1.5 to 3.0 times, and particularly preferably 1.8 to 2.7 times. When the ratio is 1.2 to 4.0 times, an adhesion layer having an appropriate elemental composition for expressing adhesion can be formed.
  • the pressure (degree of vacuum) in the vacuum chamber of the plasma CVD apparatus can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.1 Pa to 50 Pa.
  • the electric power applied for discharging can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.2 to 10 kW.
  • the applied power is equal to or higher than the lower limit, the reaction of the source gas is not insufficient and the barrier property is not lowered. As a result, wrinkles are not generated on the film formation target, and irregularities are not generated on the film surface and the appearance is not impaired.
  • the conveyance speed of the film formation target can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.1 to 50 m / min, preferably 0.3 to 20 m. / Min is more preferable.
  • the line speed is equal to or higher than the lower limit, wrinkles due to heat tend not to occur in the resin film being conveyed.
  • the line speed is equal to or lower than the upper limit, the thickness of the formed thin film layer does not become too thin.
  • the adhesion layer and the gas barrier layer contain an organic component.
  • an organic component for example, when a thin film is formed by a plasma CVD method from a film forming gas (a mixed gas of HMDSO as a source gas and oxygen gas as an oxidizing gas (also functioning as a discharge gas)) and a gas barrier layer is formed, the following reaction formula is obtained.
  • the formed film contains Cy (a trace amount of carbon component) as an organic component. (CH 3 ) 3 Si—O—Si (CH 3 ) 3 + O 2 ⁇ SiO x C y (1)
  • the adhesion layer and the gas barrier layer are formed by plasma CVD using HMDSO as a source gas and oxygen gas as an oxidizing gas
  • the adhesion layer satisfies a composition satisfying 1.8 ⁇ x ⁇ 2.2. It is preferable to contain a compound containing SiO x or containing a compound containing SiCy in the composition satisfying 0 ⁇ y ⁇ 0.15. More preferably, 1.7 ⁇ x ⁇ 2.1 or 0.02 ⁇ y ⁇ 0.13. An adhesion layer satisfying such a composition ratio is preferable because it exhibits excellent adhesion.
  • Gas barrier layer satisfies 1.1 ⁇ x ⁇ 1.9,0 ⁇ y ⁇ 0.9, preferably contains a compound containing a SiO x C y in the composition. More preferably, 1.3 ⁇ x ⁇ 1.7 and 0 ⁇ y ⁇ 0.7.
  • a gas barrier layer satisfying such a composition ratio is preferable because it exhibits excellent gas barrier properties.
  • FIG. 6 shows an XPS depth profile in which etching is started from the surface of the gas barrier layer of the adhesion layer and the gas barrier layer formed by plasma CVD using HMDSO as the source gas and oxygen gas as the oxidizing gas.
  • the horizontal axis represents the etching time (minutes), and the vertical axis represents the atomic number concentration (%).
  • the adhesion layer contains a compound containing SiO x in which the composition ratio changes within a range of 1.8 ⁇ x ⁇ 2.2, or the composition ratio is 0 ⁇ y ⁇ 0.15. comprising a compound containing SiC y varying in the range.
  • the gas barrier layer contains a compound containing SiO x C y whose composition ratio changes in the range of 1.1 ⁇ x ⁇ 1.9 and 0 ⁇ y ⁇ 0.9.
  • a gas barrier film laminate 10 ′ according to the second embodiment of the present invention is formed on at least one side of a resin film 11 as a substrate and the resin film 11, for example, as shown in FIG.
  • An organic film layer 12 is provided between the contact layer 13 and the contact layer 13.
  • Organic film layer 12 By providing an organic film layer on the gas barrier film laminate, the unevenness of the substrate surface is flattened, and curling of the gas barrier film laminate caused by residual stress generated during the film formation process of the adhesion layer and the gas barrier layer is suppressed. be able to. Therefore, the gas barrier film laminate can exhibit good processability. In addition, since cracks and film peeling due to curling are suppressed, good gas barrier properties can be maintained.
  • the thickness of the organic film layer is preferably 1 to 20 ⁇ m, more preferably 1.2 to 10 ⁇ m, still more preferably 2 to 8 ⁇ m.
  • the thickness is preferably 1 to 20 ⁇ m, more preferably 1.2 to 10 ⁇ m, still more preferably 2 to 8 ⁇ m.
  • the surface roughness of the organic film layer is preferably such that the arithmetic average roughness Sa is 5 nm or less, more preferably 3 nm or less, and even more preferably 2 nm or less.
  • the thickness is set to 5 nm or less, the adhesion layer and the gas barrier layer of the thin film laminated on the organic film layer can be uniformly treated, and the barrier property of the gas barrier film laminate is improved.
  • the organic film layer of the present invention is preferably a film obtained by photopolymerizing a photocurable resin composition.
  • the photocurable resin composition is preferably composed of a composition containing an acrylic resin.
  • the “photocurable resin composition” may be a composition that is photocured as a whole, and the photocurable resin does not necessarily have to be a main component.
  • Examples of the photocurable resin that is a precursor of the organic film layer include acrylic resins that can be cured by light such as ultraviolet irradiation.
  • examples thereof include resins having an unsaturated bond capable of radical polymerization, such as (meth) acrylate monomers, unsaturated polyester resins, polyester (meth) acrylate resins, epoxy (meth) acrylate resins, and urethane (meth) acrylate resins. .
  • These acrylic resins can be used alone or in admixture of two or more. Among them, polyester (meth) acrylate resin, urethane (meth) acrylate resin, (meth) acrylate monomer and the like alone or a mixture thereof are preferable.
  • an acrylic resin is used, an organic film layer excellent in transparency can be formed. Furthermore, an acrylic resin having photocurability is preferable because it has excellent curl prevention properties due to its hardness.
  • Examples of the (meth) acrylate monomer include compounds obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid.
  • the condensation product (unsaturated polyester) by esterification reaction of a polyhydric alcohol and unsaturated polybasic acid (and saturated polybasic acid as needed) was melt
  • the unsaturated polyester can be produced by polycondensation of an unsaturated acid such as maleic anhydride and a diol such as ethylene glycol.
  • a polybasic acid having a polymerizable unsaturated bond such as fumaric acid, maleic acid, and itaconic acid or its anhydride is used as an acid component, and ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1, 2 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane
  • Polyhydric alcohols such as 1,4-dimethanol, ethylene oxide adduct of bisphenol A and propylene oxide adduct of bisphenol A are reacted as alcohol components, and phthalic acid, isophthalic acid, terephthalic acid, Such as tetrahydrophthalic acid, adipic acid, sebacic acid Polymerizable not have an unsaturated bond
  • polyester (meth) acrylate resin (1) a terminal carboxyl group polyester obtained from a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol contains an ⁇ , ⁇ -unsaturated carboxylic ester group.
  • saturated polybasic acid used as a raw material for polyester (meth) acrylate examples include polybasic compounds having no polymerizable unsaturated bond such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, and sebacic acid. Examples thereof include acids or anhydrides thereof and polymerizable unsaturated polybasic acids such as fumaric acid, maleic acid and itaconic acid or anhydrides thereof. Further, the polyhydric alcohol component is the same as the unsaturated polyester.
  • the epoxy (meth) acrylate resin includes a polymerizable unsaturated bond formed by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid.
  • the vinyl ester is produced by a known method, and includes an epoxy (meth) acrylate obtained by reacting an epoxy resin with an unsaturated monobasic acid such as acrylic acid or methacrylic acid.
  • epoxy resins may be reacted with bisphenol (for example, A type) or dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.) to impart flexibility.
  • bisphenol for example, A type
  • dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.
  • examples of the epoxy resin as a raw material include bisphenol A diglycidyl ether and its high molecular weight homologues, novolak glycidyl ethers, and the like.
  • urethane (meth) acrylate resin for example, after reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, a hydroxyl group-containing (meth) acrylic compound and, if necessary, a hydroxyl group-containing allyl ether compound are reacted. And a radical-polymerizable unsaturated group-containing oligomer that can be obtained.
  • polyisocyanates include 2,4-tolylene diisocyanate and its isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, triphenyl.
  • Methane triisocyanate Bannock D-750, Crisbon NK (trade name; manufactured by DIC Corporation), Desmodur L (trade name; manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L (trade name; Nippon Polyurethane Industry Co., Ltd.) Manufactured), Takenate D102 (trade name; manufactured by Mitsui Takeda Chemical Co., Ltd.), Isonate 143L (trade name; manufactured by Mitsubishi Chemical Corporation), and the like.
  • the polyhydroxy compound include polyester polyol and polyether polyol.
  • glycerin-ethylene oxide adduct examples include oxide adducts.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, and 1,3-butane.
  • the hydroxyl group-containing (meth) acrylic compound is not particularly limited, but a hydroxyl group-containing (meth) acrylic acid ester is preferable, and specific examples thereof include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl.
  • (Meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) An acrylate etc. are mentioned.
  • the photocurable resin composition contains a photopolymerization initiator.
  • a photoinitiator if it is a compound which generate
  • Photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, -Benzyl-2-dimethylamino-1- (4-
  • the amount of the polymerization initiator used in the above addition polymerization is preferably about 0.01 to 10 mol% based on the total number of moles of monomers. These photopolymerization initiators can be used alone or in combination of two or more.
  • a chain transfer agent may be used.
  • the molecular weight can be appropriately controlled by using the chain transfer agent.
  • chain transfer agents include thio- ⁇ -naphthol, thiophenol, butyl mercaptan, ethyl thioglycolate, mercaptoethanol, mercaptoacetic acid, isopropyl mercaptan, t-butyl mercaptan, dodecanethiol, thiomalic acid, pentaerythritol tetra (3 -Mercaptans such as mercaptopropionate) and pentaerythritol tetra (3-mercaptoacetate); disulfides such as diphenyl disulfide, diethyl dithioglycolate and diethyl disulfide; and the like, toluene, methyl isobutyrate, Carbon tetrachloride, isopropylbenzene, dieth
  • Solvents used when preparing a coating solution in which a photocurable resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, ⁇ - or ⁇ - Terpenes such as terpineol, etc., ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Aromatic hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glyco
  • a coating solution in which a photocurable resin is dissolved or dispersed in a solvent improves the surface fluidity and leveling properties of the coated coating solution and prevents pinholes and defects in the coating film due to poor wetting and repelling.
  • Surface conditioning agents leveling agents, wettability improvers, surfactants, etc.
  • the surface conditioner include polysiloxane, polyacrylate and wax.
  • an additive such as an antifoaming agent for preventing the generation of bubbles in the coating solution may be used.
  • antifoaming agents include mineral oil compounds and polysiloxane compounds.
  • the method for forming the organic film layer is not particularly limited, but it is preferable to use a wet coating method (coating method) in order to uniformly coat the photocurable resin composition.
  • a wet coating method coating method
  • excellent surface smoothness can be obtained.
  • the coating methods when a small amount is prepared, a spin coating method capable of simple and uniform film formation is preferable. In the case of roll-to-roll, where productivity is important, gravure coating method, die coating method, reverse coating method, roll coating method, slit coating method, dipping method, spray coating method, kiss coating method, reverse kiss coating method, air A knife coating method, a curtain coating method, a rod coating method and the like are preferable.
  • the coating method can be appropriately selected from these methods according to the required film thickness, viscosity, curing conditions, and the like.
  • the applied coating solution can be dried with hot air or the like in an environment of room temperature to about 200 ° C.
  • a photoactive energy beam or an electron beam is irradiated and cured by an active energy beam source.
  • an active energy beam source there is no particular limitation as a photoactive energy ray source, depending on the nature of the photopolymerization initiator used, for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, a gas laser, a solid laser, An electron beam irradiation apparatus etc. are mentioned.
  • the drying furnace passage time for drying differs depending on the line speed, the type of coating liquid, the coating thickness, and the apparatus capacity (air volume, area, etc.). For example, 1 to 105 minutes can be mentioned. Similarly, the amount of irradiation for curing varies depending on the material and thickness. For example, when a high-pressure mercury lamp is used, about 200 to 700 mJ / cm 2 can be mentioned.
  • the surface (resin film surface, organic film layer surface, gas barrier layer surface) of the gas barrier film laminate of the present invention may be subjected to surface modification treatment such as corona treatment or plasma treatment for the purpose of improving adhesion.
  • the gas barrier film laminate of the present invention has, for example, an adhesion layer 13 and a gas barrier layer 14 on at least one surface of the resin film 11 (FIG. 1A). Or it has the organic film layer 12, the contact
  • the adhesion layer 13 and the gas barrier layer 14 are in contact with each other. More preferably, the resin film 11 and the organic film layer 12 are in contact with each other.
  • the order of the layers laminated on the resin film is resin film / adhesion layer / gas barrier layer or resin film / organic film layer / adhesion layer / gas barrier layer, and the adhesion layer is provided. It improves the adhesion of the gas barrier layer.
  • the gas barrier layer has a structure in which the gas barrier layer is laminated only on one side of the resin film. It is preferable because the weight can be reduced, the light transmittance can be improved, and the manufacturing process can be simplified.
  • the gas barrier film laminate of the present invention exhibits a high gas barrier property with a water vapor transmission rate (temperature: 40 ⁇ 0.5 ° C., relative humidity: 90 ⁇ 5% RH) of 0.005 g / m 2 / day or less. Unable to express less 0.001g / m 2 / day by optimizing the film forming conditions or the like, an organic film layer, the adhesion layer, by optimizing the thickness of the gas barrier layer, 0.0001 g / m 2 / Day or less is achieved.
  • the gas barrier film laminate of the present invention When used for a photoelectric element, an OLED element, an OPV element or the like, it is preferably composed only of a transparent material.
  • the total light transmittance measured according to the JIS 7105 method is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
  • an opaque gas barrier film laminate may be produced.
  • the gas barrier film laminate of the present invention suppresses as much as possible the internal stress that tends to curl in the use environment, and exhibits good anti-curl properties. Thereby, after manufacturing the said gas barrier film laminated body, when passing through other processes, such as an assembly process to a device, favorable workability is exhibited. Further, there is no crack or film peeling due to curling, and good gas barrier properties can be maintained.
  • the gas barrier film laminate of the present invention formed by laminating on a PET film having a thickness of 125 ⁇ m is cut into 100 mm ⁇ 100 mm, placed on a surface plate, and fixed using a height measuring instrument such as a ruler.
  • the curl height is preferably 15 mm or less, more preferably 10 mm or less. Especially preferably, it is 5 mm or less.
  • the “curl height” is an average of the heights of the four corners of a square film.
  • the gas barrier film laminate of the present invention can be used for applications that require blocking of various gases such as water vapor and oxygen. Particularly preferably, it can be usefully used for blocking various gases of an electronic element such as an OLED element or an OPV element.
  • a gas barrier film laminated body is transparent, when it uses for a photoelectric element like an OPV element, it can comprise so that sunlight reception may be performed from the gas barrier film laminated body side. Further, when used in an OLED element, light emission from the element is not hindered, so that the light emission efficiency is not deteriorated.
  • FIG. 2A shows a schematic diagram of an electronic component having the OLED element 22 in a solid sealing system.
  • An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on a glass substrate 21, and the OLED element 22 is entirely covered with a solid sealing agent 23.
  • the gas barrier film laminate 10 of the present application can be used in place of the glass substrate 21 as shown in FIG. Or as shown in FIG. 3, it is good also as a sandwich structure which pinched
  • FIG. 4A shows a schematic diagram of an electronic component having an OLED element with a conventional hollow structure.
  • An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on the glass substrate 21 and covered with a glass sealing material 28 that is present at a distance.
  • the glass substrate 21 and the glass sealing material 28 are bonded (sealed) with an adhesive 25 on both sides.
  • a getter 26 such as calcium oxide that adsorbs moisture is disposed inside the hollow, and is filled with N 2 gas 27.
  • the gas barrier film laminate 10 of the present application can be used as an alternative to the glass substrate 21 and the glass sealing material 28. 2 to 4, a gas barrier film laminate 10 ′ may be used in place of the gas barrier film laminate 10.
  • the gas barrier film laminate of the present application can be similarly used as an alternative to a glass substrate.
  • the gas barrier film laminate of the present invention when used as a transparent substrate for OLED elements, OPV elements, liquid crystal elements, etc., it is possible to meet the demands for weight reduction and size increase. Furthermore, roll-to-roll (feeding a substrate such as a resin film wound in a roll shape, processing the target substance on the surface of the substrate, etc., and then winding it up again to collect it In place of glass substrates that are heavy, easy to break, and difficult to increase in area. Can be satisfied.
  • film base materials such as transparent plastics have a problem that gas barrier properties are inferior to glass, but when the gas barrier film laminate of the present invention is used, for example, electronic components such as OLED elements and OPV elements When used as a material, the substrate having excellent gas barrier properties can prevent water (water vapor) or oxygen from permeating and degrading components constituting the device, thereby reducing performance.
  • the present invention mainly includes electronic elements such as organic electroluminescent elements (OLED elements) and display elements typified by liquid crystal elements, photoelectric elements typified by organic solar cell elements (OPV elements), or OLED elements.
  • OLED elements organic electroluminescent elements
  • It is a gas barrier film laminate that can be used for products such as lighting.
  • the gas barrier film laminate of the present invention is characterized by excellent gas barrier layer adhesion, good productivity, low curl, and good gas barrier properties.
  • the produced gas barrier film laminate was cut into a 10 cm square, attached to a stainless steel frame, stored at a temperature of 85 ° C. and a humidity of 85%, and the time until the gas barrier layer was peeled off (adhesion) was measured.
  • the method for measuring the water vapor transmission rate is not particularly limited, but metallic calcium is vapor-deposited on one side of the gas barrier film laminate, Ca is sealed with Al and wax, and the metallic Ca is corroded by moisture that has passed through the film. A method using the phenomenon was used. The water vapor transmission rate is calculated from the corrosion area and the time to reach the corrosion area. In the present invention, the evaluation was performed by the method described in Japanese Patent No. 3958235 and the following conditions.
  • Vapor deposition apparatus manufactured by Sanyu Electronics Co., Ltd., electron beam vacuum deposition apparatus SVC-700LEB Constant temperature and humidity chamber: Espec Co., Ltd., constant temperature and humidity chamber LHL-113 Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal for Ca sealing: Aluminum ( ⁇ 3-5mm, granular) Sealing material: mixture of paraffin (melting point 60-62 ° C) / beeswax (melting point 61-65 ° C) in a weight ratio of 1: 1 Observation device: Calcium corrosion observation device MFB-1000 manufactured by Mitsuwa Frontec Co., Ltd.
  • XPS X-ray photoelectron spectroscopy
  • Example 1 ⁇ Base material As a base material, a polyethylene terephthalate (PET) film (trade name “Cosmo Shine A4300” manufactured by Toyobo Co., Ltd.) wound in a roll shape with a thickness of 125 ⁇ m and a width of 550 mm, which is easily bonded on both sides. Using.
  • PET polyethylene terephthalate
  • the coating solution is applied on the substrate so that the average film thickness after drying is 5 ⁇ m, and then the temperature is 85 ° C and the air volume is Drying was performed at 20 m / second and a residence time in the drying furnace of 50 seconds. Thereafter, photocuring was performed at a dose of 300 mJ / cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere to form an organic film layer.
  • the adhesion layer was produced under the following conditions.
  • Source gas HMDSO (manufactured by AZMAX Co., Ltd., trade name “SIH6115.0”)
  • Supply amount 50sccm
  • Oxidizing gas Oxygen gas (manufactured by Suzuki Shokan Co., Ltd., high-purity oxygen, purity ⁇ 99.999%)
  • Supply amount 1000sccm
  • Pressure 3Pa Plasma power 1.3 kW
  • -Gas barrier layer deposition A gas barrier layer was deposited under the same plasma deposition apparatus and deposition conditions as those for the adhesion layer except that oxygen gas was changed to 500 SCCM under the deposition conditions in the plasma CVD method.
  • the laminated gas barrier layer has a SiO 2 equivalent film thickness of 560 nm.
  • the total SEM film thickness of the adhesion layer and the gas barrier layer is 861 nm.
  • PEN Polyethylene naphthalate
  • the laminated gas barrier layer has a SiO 2 equivalent film thickness of 590 nm.
  • the total SEM film thickness of the adhesion layer and the gas barrier layer is 946 nm.
  • the photocurable resin composition was prepared in the same manner as in the preparation of the coating solution, the organic film layer, and the gas barrier layer.
  • a base material a polyethylene terephthalate (PET) film (trade name “Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.) wound in a roll shape with a thickness of 125 ⁇ m and a width of 550 mm that is easily bonded on one side. Using.
  • PET polyethylene terephthalate
  • a gas barrier layer was formed under film conditions.
  • the laminated gas barrier layer has a SiO 2 equivalent film thickness of 690 nm.
  • the SEM film thickness is 926 nm.
  • the adhesion layer was not present, and the film thickness of the gas barrier layer was 690 nm in terms of SiO 2 , and the SEM film thickness was 926 nm.
  • Preparation of the coating solution of the photocurable resin composition and film formation of the organic film layer were produced in the same manner as in Example 1.
  • FIG. 6 shows an XPS depth profile of the first embodiment.
  • the etching time of 0 to about 28 minutes indicates the atomic number concentration of the gas barrier layer, and about 28 minutes to about 35 minutes indicates the atomic number concentration of the adhesion layer. After about 35 minutes, the atomic number concentration of the organic film layer is obtained.
  • FIG. 7 shows an XPS depth profile of the second embodiment. When the etching time is from 0 to about 26 minutes, the atomic number concentration of the gas barrier layer is shown, and from about 26 minutes to about 32 minutes, the atomic number concentration of the adhesion layer is shown. After about 32 minutes, the concentration is the number of atoms in the organic film layer.
  • FIG. 8 shows an XPS depth profile of Comparative Example 1.
  • the etching time from 0 to about 35 minutes is the atomic concentration of the gas barrier layer, and after about 35 minutes is the atomic concentration of the organic film layer.
  • FIG. 9 shows an XPS depth profile of Comparative Example 2. The etching time from 0 to about 45 minutes is the atomic concentration of the gas barrier layer, and after about 45 minutes is the atomic concentration of the organic film layer.
  • the present invention mainly relates to a gas barrier film laminate used for an electronic component having an electronic element such as an OLED element, an OPV element, or a liquid crystal element, and an electronic component including the gas barrier film laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 The purpose of the present invention is to obtain a gas barrier film laminate provided with a gas barrier film having satisfactory gas barrier properties, with which the cohesion of the gas barrier layer can be improved during formation of the gas barrier layer by a plasma CVD process. This gas barrier film laminate is provided with: a resin film (11) serving as a base material; a cohesive layer (13) formed on at least one surface side of the resin film (11), the cohesive layer (13) containing a compound the composition of which includes SiOx and which satisfies the expression 1.8 < x < 2.2, or a cohesive layer (13) containing a compound the composition of which includes SiCy and which satisfies the expression 0 < y < 0.15; and a gas barrier layer (14) formed over the cohesive layer (13), the gas barrier layer (14) containing a compound the composition of which includes SiOxCy, and which satisfies the expressions 1.1 ≦ x ≦ 1.9 and 0 ≦ y ≦ 1.9.

Description

ガスバリアフィルム積層体とそれを用いた電子部品Gas barrier film laminate and electronic component using the same
 本発明は、ガスバリアフィルム積層体に関する。特に、電子部品への水蒸気透過を有効に抑制でき、さらに層の剥がれが抑制されたガスバリアフィルム積層体に関する。 The present invention relates to a gas barrier film laminate. In particular, the present invention relates to a gas barrier film laminate in which water vapor permeation to electronic components can be effectively suppressed, and further, layer peeling is suppressed.
 従来から、有機エレクトロルミネッセンス素子(以下、OLED素子ともいう)、有機太陽電池素子(以下、OPV素子ともいう)、液晶素子などでは、基板にバリア性の高いガラスや、プラスチックフィルム上に無機フィラーを混合/分散した樹脂組成物膜または金属酸化物の薄膜を形成したガスバリアフィルム積層体が利用されてきた。
 しかし、多層で構成されたガスバリアフィルム積層体は、プラスチックフィルムと樹脂組成物膜または金属酸化物の薄膜との密着性が問題となる。
 引用文献1には、「基材及び基材の表面に設けられた、水分及び酸素の透過抵抗性であるバリア層を備える物品」(段落0007)が開示されており、さらに追加の層として、バリア層の基材への密着性を高める接着層(段落0025、図1)を設けることが開示されている。
Conventionally, in an organic electroluminescence element (hereinafter also referred to as an OLED element), an organic solar cell element (hereinafter also referred to as an OPV element), a liquid crystal element, etc., an inorganic filler is formed on a glass or plastic film having a high barrier property. A gas barrier film laminate in which a mixed / dispersed resin composition film or metal oxide thin film is formed has been used.
However, in a gas barrier film laminate composed of multiple layers, there is a problem of adhesion between a plastic film and a resin composition film or a metal oxide thin film.
Cited Document 1 discloses “an article including a base material and a barrier layer which is provided on the surface of the base material and has a moisture and oxygen permeation resistance” (paragraph 0007). Further, as an additional layer, It is disclosed to provide an adhesive layer (paragraph 0025, FIG. 1) that enhances the adhesion of the barrier layer to the substrate.
 ガスバリア層としての金属酸化物等の薄膜をプラスチックフィルムの表面上に成膜する方法としては、化学気相成長法、例えばプラズマ化学気相成長法(CVD)が知られている。しかし、プラズマCVD法は、成膜時に生じる急激な圧縮応力と、これに起因するカール発生が問題であり、ガスバリア層としての金属酸化物等の薄膜は、その密着性を向上させる必要があった。 As a method for forming a thin film of a metal oxide or the like as a gas barrier layer on the surface of a plastic film, a chemical vapor deposition method, for example, a plasma chemical vapor deposition method (CVD) is known. However, the plasma CVD method has a problem of abrupt compressive stress generated during film formation and curling due to this, and a thin film such as a metal oxide as a gas barrier layer needs to improve its adhesion. .
特開2004-160977号公報JP 2004-160977 A
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、有機金属化合物を原料として用いるプラズマCVD法によるガスバリア層の形成において、ガスバリア層の密着性を向上させること、かつ十分なガスバリア性を有するガスバリアフィルム積層体を提供することを課題とする。 The present invention has been made in view of the above-described problems of the prior art, and improves the adhesion of the gas barrier layer in the formation of a gas barrier layer by a plasma CVD method using an organometallic compound as a raw material, and a sufficient gas barrier. It is an object of the present invention to provide a gas barrier film laminate having properties.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、プラズマCVD法による成膜時に、成膜ガスの組成を変化させることにより密着層を形成でき、密着層を媒介してガスバリア層の密着性を向上させる(剥がれにくくする)ことができることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have been able to form an adhesion layer by changing the composition of the film forming gas during film formation by the plasma CVD method. It has been found that the adhesion of the layer can be improved (hardly peeled off), and the present invention has been completed.
 本発明の第1の態様に係るガスバリアフィルム積層体は、例えば図1(a)に示すように、基材となる樹脂フィルム11と;樹脂フィルム11の少なくとも片面側に成膜された、1.8<x<2.2を満たす、組成にSiOを含む化合物を含有する密着層13、または、0<y<0.15を満たす、組成にSiCを含む化合物を含有する密着層13と;密着層13の上に成膜された、1.1≦x≦1.9、0≦y≦0.9を満たす、組成にSiOを含む化合物を含有するガスバリア層14とを備える。なお、「片面側」とは、片面に接触または非接触で積層することをいう。「上に」とは接触して積層することをいう。「組成に~を含む化合物」とは、その組成中に~の部分を含む化合物であればよい。
 このように構成すると、密着層を媒介させてガスバリア層を他の層に強固に接着させることができる。
The gas barrier film laminate according to the first aspect of the present invention includes, for example, as shown in FIG. 1 (a), a resin film 11 as a base material; and a film formed on at least one side of the resin film 11. Adhesion layer 13 containing a compound containing SiO x in the composition satisfying 8 <x <2.2, or Adhesion layer 13 containing a compound containing SiC y in the composition satisfying 0 <y <0.15 ; was deposited on the adhesion layer 13, meet the 1.1 ≦ x ≦ 1.9,0 ≦ y ≦ 0.9, and a gas barrier layer 14 comprising a compound containing SiO x C y in the composition . Note that “single-sided” refers to stacking on one side with or without contact. “Up” refers to laminating in contact. The “compound containing ˜ in the composition” may be a compound containing ˜ in the composition.
If comprised in this way, a gas barrier layer can be firmly adhere | attached on another layer by mediating an adhesion layer.
 本発明の第2の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様に係るガスバリアフィルム積層体において、密着層13の厚みが、10~500nmである。
 このように構成すると、密着層は十分な密着性を発現し、密着層を挟む上下2層をより強固に接着させることができる。
In the gas barrier film laminate according to the second aspect of the present invention, in the gas barrier film laminate according to the first aspect of the present invention, the thickness of the adhesion layer 13 is 10 to 500 nm.
If comprised in this way, a contact | adherence layer will express sufficient adhesiveness, and upper and lower 2 layer which pinches | interposes a contact | adherence layer can be adhered more firmly.
 本発明の第3の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様または第2の態様に係るガスバリアフィルム積層体において、密着層13とガスバリア層14が、プラズマCVD法により連続的に成膜され、密着層13の成膜時の成膜ガス中の反応性ガスの割合が、ガスバリア層14の成膜時の成膜ガス中の反応性ガスの割合よりも多い。なお、「成膜ガス」とは、原料ガス、反応性ガス、キャリアガス、放電用ガス等の成膜時に使用するガスをいう。「原料ガス」とは、原料ガス単体で薄膜形成ができる、または、原料ガスと補助的なガスの組み合わせで薄膜形成ができるガスである。「反応性ガス」とは、単体ではガスバリア層や密着層などの薄膜形成を行うことのできない補助的なガスであり、例えば、原料化合物の酸化や窒化を行うためのガスである。
 このように構成すると、プラズマCVD法の成膜条件を変えることにより、密着層とガスバリア層との界面近傍の元素組成を変えることができ、ガスバリア層の密着性を改善することができる。また、反応性ガスの割合を変えるだけであり、密着層とガスバリア層を効率よく成膜することができ、生産性を向上させ生産コストを減少させることができる。さらに、密着層とガスバリア層は、プラズマCVD法により成膜されるため、緻密で柔軟な膜を形成できる。そのため、他の方法と比較して欠陥や剥離が生じ難く、ガスバリア層は高いガスバリア性を有することができる。
The gas barrier film laminate according to the third aspect of the present invention is the gas barrier film laminate according to the first aspect or the second aspect of the present invention, wherein the adhesion layer 13 and the gas barrier layer 14 are continuously formed by a plasma CVD method. The ratio of the reactive gas in the film forming gas when forming the adhesion layer 13 is larger than the ratio of the reactive gas in the film forming gas when forming the gas barrier layer 14. The “film formation gas” refers to a gas used during film formation, such as a source gas, a reactive gas, a carrier gas, and a discharge gas. The “source gas” is a gas that can form a thin film with a single source gas or a thin film with a combination of a source gas and an auxiliary gas. The “reactive gas” is an auxiliary gas that cannot form a thin film such as a gas barrier layer or an adhesion layer by itself, for example, a gas for oxidizing or nitriding a raw material compound.
If comprised in this way, the elemental composition of the interface vicinity of an adhesion layer and a gas barrier layer can be changed by changing the film-forming conditions of a plasma CVD method, and the adhesiveness of a gas barrier layer can be improved. Moreover, only the ratio of the reactive gas is changed, and the adhesion layer and the gas barrier layer can be formed efficiently, so that the productivity can be improved and the production cost can be reduced. Furthermore, since the adhesion layer and the gas barrier layer are formed by a plasma CVD method, a dense and flexible film can be formed. Therefore, defects and peeling are less likely to occur compared to other methods, and the gas barrier layer can have high gas barrier properties.
 本発明の第4の態様に係るガスバリアフィルム積層体は、上記本発明の第3の態様に係るガスバリアフィルム積層体において、密着層13の成膜時の成膜ガス中の反応性ガスの割合が、ガスバリア層14の成膜時の成膜ガス中の反応性ガスの割合の1.2~4.0倍である。
 このように構成すると、元素組成の適正な密着層を形成することができる。
The gas barrier film laminate according to the fourth aspect of the present invention is the gas barrier film laminate according to the third aspect of the present invention, wherein the ratio of the reactive gas in the deposition gas during the formation of the adhesion layer 13 is The ratio of the reactive gas in the film-forming gas when forming the gas barrier layer 14 is 1.2 to 4.0 times.
If comprised in this way, the contact | adherence layer with an appropriate elemental composition can be formed.
 本発明の第5の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第4の態様のいずれか1の態様に係るガスバリアフィルム積層体において、樹脂フィルム11が、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、またはこれらの混合物である樹脂を主成分としたフィルムである。なお、「主成分」とは、当該化合物を50重量%以上含むことをいう。
 このように構成すると、これらの樹脂フィルムはコストや入手の容易性が優れており好ましい。また、透明にする等の、用途に応じた樹脂を適宜選択することができる。
The gas barrier film laminate according to the fifth aspect of the present invention is the gas barrier film laminate according to any one of the first to fourth aspects of the present invention, wherein the resin film 11 is polyethylene terephthalate, It is a film mainly composed of a resin which is polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture thereof. The “main component” means containing 50% by weight or more of the compound.
If constituted in this way, these resin films are preferred because of their excellent cost and availability. Moreover, resin according to a use, such as making it transparent, can be selected suitably.
 本発明の第6の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第5の態様のいずれか1の態様に係るガスバリアフィルム積層体において、40℃、90%RHにおける水蒸気透過率が0.005g/m/day以下である。
 このように構成すると、ガスバリアフィルム積層体を、高いガスバリア性が求められるOLED素子やOPV素子のような電子素子に用いることができる。
The gas barrier film laminate according to the sixth aspect of the present invention is the gas barrier film laminate according to any one of the first to fifth aspects of the present invention, wherein water vapor at 40 ° C. and 90% RH is used. The transmittance is 0.005 g / m 2 / day or less.
If comprised in this way, a gas barrier film laminated body can be used for electronic elements, such as an OLED element and OPV element by which high gas barrier property is calculated | required.
 本発明の第7の態様に係るガスバリアフィルム積層体は、上記本発明の第1の態様~第6の態様のいずれか1の態様に係るガスバリアフィルム積層体において、例えば図1(b)に示すように、樹脂フィルム11と密着層13に挟まれた有機膜層12を備える。
 このように構成すると、有機膜層を設けることにより、有機膜層より下層(樹脂フィルム)の表面の凹凸を平坦化することができる。さらに、有機膜層は、密着層やガスバリア層の形成過程で生じる残留応力に起因したガスバリアフィルム積層体のカール発生を抑えることができる。
The gas barrier film laminate according to the seventh aspect of the present invention is the gas barrier film laminate according to any one of the first to sixth aspects of the present invention, for example, as shown in FIG. Thus, the organic film layer 12 sandwiched between the resin film 11 and the adhesion layer 13 is provided.
If comprised in this way, the unevenness | corrugation of the surface of a lower layer (resin film) from an organic film layer can be planarized by providing an organic film layer. Further, the organic film layer can suppress the curling of the gas barrier film laminate due to the residual stress generated in the formation process of the adhesion layer and the gas barrier layer.
 本発明の第8の態様に係るガスバリアフィルム積層体は、上記本発明の第7の態様に係るガスバリアフィルム積層体において、有機膜層12が、光硬化性樹脂組成物を光重合させて得られた層である。
 このように構成すると、光硬化性樹脂組成物を用いているため、有機膜層の製造が容易となり、生産効率を上げることができる。
The gas barrier film laminate according to the eighth aspect of the present invention is obtained by photopolymerizing the photocurable resin composition in the gas barrier film laminate according to the seventh aspect of the present invention. Layer.
If comprised in this way, since the photocurable resin composition is used, manufacture of an organic film layer becomes easy and production efficiency can be raised.
 本発明の第9の態様に係る電子部品は、例えば図2(b)に示すように、正負電極と前記正負電極に挟まれた有機材料とを有する電子素子22と;電子素子22を水蒸気から保護する、上記本発明の第1の態様~第8の態様のいずれか1の態様に係るガスバリアフィルム積層体10とを備える。「水蒸気から保護する」とは、典型的には電子素子を包囲することにより行い、電子素子の全体を包囲する場合の他、一部を包囲し他の保護体と併せて全体を包囲する場合をも含む。
 このように構成すると、ガスバリアフィルム積層体がガスバリア性に優れているため、水蒸気や酸素が電子素子内部に浸透して電子素子を構成する成分を劣化させ、性能を低下させるのを抑制することができる。
The electronic component according to the ninth aspect of the present invention includes, for example, an electronic element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes, as shown in FIG. The gas barrier film laminate 10 according to any one of the first to eighth aspects of the present invention to be protected is provided. “Protecting from water vapor” is typically performed by enclosing the electronic device, in addition to enclosing the entire electronic device, as well as enclosing the entire device together with other protective bodies. Is also included.
When configured in this way, the gas barrier film laminate is excellent in gas barrier properties, so that it is possible to prevent water vapor and oxygen from penetrating into the inside of the electronic element to deteriorate components constituting the electronic element and suppress performance from being deteriorated. it can.
 本発明の第10の態様に係る電子部品は、上記本発明の第9の態様に係る電子部品において、前記ガスバリアフィルム積層体が、透明であり、前記電子素子がOLED素子またはOPV素子である。「透明」とは、ガスバリアフィルム積層体が可視光線光を透過して、ガスバリアフィルム積層体の向う側が見通せる状態のことをいう。
 このように構成すると、OLED素子に用いた場合に、素子からの発光を妨げないため発光効率を劣化させることがない。また、OPV素子のような光電素子に用いた場合に、ガスバリアフィルム積層体の側から太陽光の受光を行うように構成できる。
The electronic component according to a tenth aspect of the present invention is the electronic component according to the ninth aspect of the present invention, wherein the gas barrier film laminate is transparent, and the electronic element is an OLED element or an OPV element. “Transparent” means a state in which the gas barrier film laminate transmits visible light and the opposite side of the gas barrier film laminate can be seen through.
If comprised in this way, when it uses for an OLED element, since the light emission from an element is not prevented, luminous efficiency is not deteriorated. Moreover, when it uses for a photoelectric element like an OPV element, it can comprise so that sunlight reception may be performed from the gas barrier film laminated body side.
 本発明により、プラズマCVD法により成膜されたガスバリア層の密着性を向上させるとともに、十分なガスバリア性を有するガスバリアフィルム積層体を提供することができる。さらに、そのガスバリアフィルム積層体を使用して、OLED素子やOPV素子などの電子素子を水蒸気の侵入から保護することができる。 According to the present invention, it is possible to improve the adhesion of a gas barrier layer formed by a plasma CVD method and provide a gas barrier film laminate having a sufficient gas barrier property. Furthermore, the gas barrier film laminate can be used to protect electronic elements such as OLED elements and OPV elements from intrusion of water vapor.
図1の(a)は、本発明の第1の実施の形態に係るガスバリアフィルム積層体10の概略図である。図1の(b)は、本発明の第2の実施の形態に係るガスバリアフィルム積層体10’の概略図である。(A) of FIG. 1 is the schematic of the gas barrier film laminated body 10 which concerns on the 1st Embodiment of this invention. FIG. 1B is a schematic view of a gas barrier film laminate 10 ′ according to the second embodiment of the present invention. 図2の(a)は、OLED素子を固体封止方式で有する電子部品の概略図である。図2の(b)は、代替として本発明のガスバリアフィルム積層体10を用いた電子部品の概略図である。(A) of FIG. 2 is the schematic of the electronic component which has an OLED element by a solid sealing system. FIG. 2B is a schematic view of an electronic component using the gas barrier film laminate 10 of the present invention as an alternative. 図3は、本発明のガスバリアフィルム積層体10を用いた他の電子部品の概略図である。FIG. 3 is a schematic view of another electronic component using the gas barrier film laminate 10 of the present invention. 図4の(a)は、OLED素子を従来の中空構造で有する電子部品の概略図である。図4の(b)は、代替として本発明のガスバリアフィルム積層体10を用いた電子部品の概略図である。FIG. 4A is a schematic view of an electronic component having an OLED element with a conventional hollow structure. FIG. 4B is a schematic view of an electronic component using the gas barrier film laminate 10 of the present invention as an alternative. 図5は、ロール・ツー・ロール方式の概略図である。FIG. 5 is a schematic view of a roll-to-roll system. 図6は、実施例1のXPSデプスプロファイルである。FIG. 6 is an XPS depth profile of the first embodiment. 図7は、実施例2のXPSデプスプロファイルである。FIG. 7 is an XPS depth profile of the second embodiment. 図8は、比較例1のXPSデプスプロファイルである。FIG. 8 is an XPS depth profile of Comparative Example 1. 図9は、比較例2のXPSデプスプロファイルである。FIG. 9 is an XPS depth profile of Comparative Example 2.
 この出願は、日本国で2014年6月13日に出願された特願2014-122794号に基づいており、その内容は本出願の内容として、その一部を形成する。本発明は以下の詳細な説明によりさらに完全に理解できるであろう。本発明のさらなる応用範囲は、以下の詳細な説明により明らかとなろう。しかしながら、詳細な説明および特定の実例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、本発明の精神と範囲内で、当業者にとって明らかであるからである。出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。 This application is based on Japanese Patent Application No. 2014-122794 filed on June 13, 2014 in Japan, the contents of which form part of the present application. The present invention will be more fully understood from the following detailed description. Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, the detailed description and specific examples are preferred embodiments of the present invention and are described for illustrative purposes only. From this detailed description, various changes and modifications will be apparent to those skilled in the art within the spirit and scope of the invention. The applicant does not intend to contribute any of the described embodiments to the public, and modifications and alternatives that may not be included in the scope of the claims within the scope of the claims are also subject to equivalence. As part of the invention.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において互いに同一または相当する部分には同一あるいは類似の符号を付し、重複した説明は省略する。また、本発明は、以下の実施の形態に制限されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same or similar reference numerals, and redundant description is omitted. Further, the present invention is not limited to the following embodiments.
[ガスバリアフィルム積層体10]
 本発明の第1の実施の形態に係るガスバリアフィルム積層体10は、例えば図1(a)に示すように、基材となる樹脂フィルム11と、樹脂フィルムの少なくとも片面側に成膜された密着層13と、密着層13上に成膜されたガスバリア層14を備える。
 なお、密着層13とガスバリア層14は、プラズマCVD法により連続的に成膜されることが好ましい。プラズマCVD法の成膜条件を変えることにより、密着層13とガスバリア層14との界面近傍の元素の組成を変えることができ、ガスバリア層の密着性を改善(剥がれにくく)できる。
[Gas barrier film laminate 10]
The gas barrier film laminate 10 according to the first exemplary embodiment of the present invention includes, as shown in FIG. 1A, for example, a resin film 11 serving as a base material and an adhesion formed on at least one side of the resin film. A layer 13 and a gas barrier layer 14 formed on the adhesion layer 13 are provided.
The adhesion layer 13 and the gas barrier layer 14 are preferably continuously formed by a plasma CVD method. By changing the film formation conditions of the plasma CVD method, the composition of elements in the vicinity of the interface between the adhesion layer 13 and the gas barrier layer 14 can be changed, and the adhesion of the gas barrier layer can be improved (hard to peel off).
[樹脂フィルム11]
 ガスバリアフィルム積層体10の基材となる樹脂フィルム11は、樹脂フィルム11に積層される各層を保持することができる有機材料で形成されたものであれば特に限定されるものではない。
[Resin film 11]
The resin film 11 serving as the base material of the gas barrier film laminate 10 is not particularly limited as long as it is formed of an organic material that can hold each layer laminated on the resin film 11.
 例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、シクロオレフィンポリマー、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、アクリル酸エステルポリマー、メタクリル酸エステルポリマー、ポリイミド、ポリエーテルイミド等の樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、JNC(株)製)、さらには前記プラスチックを2層以上積層して成る樹脂フィルムや、ガラスクロスに樹脂を含浸した複合フィルム等を挙げることができる。コストや入手の容易性の点で、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、またはこれらの混合物を主成分としたフィルムを好ましく用いることができる。 For example, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), nylon (Ny), cycloolefin polymer, aromatic polyamide, polyether ether ketone, polysulfone, polyether sulfone, acrylic ester polymer, methacrylic ester polymer, polyimide, polyetherimide, etc. Heat-resistant transparent film based on sesquioxane (product name: Sila-DEC, manufactured by JNC Co., Ltd.), resin film made by laminating two or more layers of the above plastic, The composite film of resin-impregnated glass cloth and the like. From the viewpoint of cost and availability, a film mainly composed of polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture thereof can be preferably used.
 樹脂フィルムの厚みは特に限定されないが、厚み20~500μmが好ましく、より好ましくは30~300μmである。厚みが20μm以上であると、基材としての剛性が不足してロール・ツー・ロールでの成膜の際に安定性が低下する、ということがない。また、500μm以下であると、屈曲性が低下すると共にコストupになる、ということを回避できる。 The thickness of the resin film is not particularly limited, but is preferably 20 to 500 μm, more preferably 30 to 300 μm. When the thickness is 20 μm or more, the rigidity as a base material is not sufficient, and stability does not decrease during film formation on a roll-to-roll basis. Further, when the thickness is 500 μm or less, it is possible to avoid that the flexibility is lowered and the cost is increased.
 さらに、樹脂フィルムが透明であると、樹脂フィルムに積層するガスバリア層等も透明であることにより、透明なガスバリアフィルム積層体とすることが可能となる。透明なガスバリアフィルム積層体は、OLED素子やOPV素子等の基板とすることができ好ましい。 Furthermore, if the resin film is transparent, the gas barrier layer and the like laminated on the resin film are also transparent, so that a transparent gas barrier film laminate can be obtained. A transparent gas barrier film laminate can be used as a substrate such as an OLED element or an OPV element.
[密着層13/ガスバリア層14]
 図1(a)に示すガスバリアフィルム積層体10が有する密着層13およびガスバリア層14は、プラズマCVD法により連続的に成膜することが生産性の観点から好ましい。
 図6に示すように、密着層13とガスバリア層14は、含有する化合物の組成比が変化した膜であり、例えば金属酸化物を主成分とする有機成分を含有する膜であってもよい。また、単独膜であっても複合膜であってもよい。なお、金属酸化物の替わりに金属窒化物、または金属酸化物と金属窒化物の混合物を主成分とする膜であってもよい。
 または、密着層13は、1.8<x<2.2を満たす、組成にSiOを含む化合物を含有する、または、0<y<0.15を満たす、組成にSiCyを含む化合物を含有する。組成にSiOを含む化合物としては、元素SiとOが繰り返し結合してSiOの組成を形成するもの、同様にSiO、SiO、SiO等の組成を形成するもの(0≦y、0≦z)、またはSiO等の分子の集合したもの、またはこれらの混合物を挙げることができる。SiCyについても同様である。密着層13は、組成にSiOを含む化合物、または、組成にSiCを含む化合物を主成分として含有することが好ましい。
 ガスバリア層14は、1.1≦x≦1.9、0≦y≦0.9を満たす、組成にSiOを含む化合物を含有する。ガスバリア層14は、組成にSiOを含む化合物を主成分として含有することが好ましい。
[Adhesion layer 13 / gas barrier layer 14]
It is preferable from the viewpoint of productivity that the adhesion layer 13 and the gas barrier layer 14 included in the gas barrier film laminate 10 illustrated in FIG. 1A are continuously formed by a plasma CVD method.
As shown in FIG. 6, the adhesion layer 13 and the gas barrier layer 14 are films in which the composition ratio of the compound to be contained is changed. For example, the adhesion layer 13 and the gas barrier layer 14 may be films containing an organic component whose main component is a metal oxide. Further, it may be a single film or a composite film. Note that a film mainly containing a metal nitride or a mixture of a metal oxide and a metal nitride may be used instead of the metal oxide.
Alternatively, the adhesion layer 13 contains a compound containing SiO x in the composition satisfying 1.8 <x <2.2, or containing a compound containing SiCy in the composition satisfying 0 <y <0.15. To do. As the compound containing SiO x on the composition, to form a composition of SiO x repeatedly bound elemental Si and O, Similarly SiO x C y, SiO x N y, a composition such as SiO x N y C z Examples of the material to be formed (0 ≦ y, 0 ≦ z), a group of molecules such as SiO 2 , or a mixture thereof. The same applies to SiCy. The adhesion layer 13 preferably contains, as a main component, a compound containing SiO x in the composition or a compound containing SiC y in the composition.
The gas barrier layer 14 contains a compound containing SiO x C y in the composition that satisfies 1.1 ≦ x ≦ 1.9 and 0 ≦ y ≦ 0.9. The gas barrier layer 14 preferably contains a compound containing SiO x C y as a main component.
 密着層の厚みは、SiO換算膜厚では10~500nmが好ましく、より好ましくは30~400nm、さらに好ましくは50~250nmである。10nm以上とすると十分な密着性を発現する。500nm以下とすると、ガスバリアフィルム積層体が厚くなりすぎることを回避できる。
 ガスバリア層の厚みは、SiO換算膜厚では0.2~2μmが好ましく、より好ましくは0.3~1.5μm、さらに好ましくは0.4~1.0μmとすると膜厚均一性が良好となり、ガスバリア性能に優れる。2μm以下にすると、屈曲によるクラックの発生を抑制することができる。
The thickness of the adhesion layer is preferably 10 to 500 nm, more preferably 30 to 400 nm, and still more preferably 50 to 250 nm in terms of the SiO 2 equivalent film thickness. When it is 10 nm or more, sufficient adhesion is expressed. When the thickness is 500 nm or less, the gas barrier film laminate can be prevented from becoming too thick.
The thickness of the gas barrier layer is preferably 0.2 to 2 μm in terms of SiO 2 thickness, more preferably 0.3 to 1.5 μm, and even more preferably 0.4 to 1.0 μm, resulting in good film thickness uniformity. Excellent gas barrier performance. When the thickness is 2 μm or less, generation of cracks due to bending can be suppressed.
 金属酸化物の薄膜をプラスチック基材等の表面上に成膜する方法としては、真空蒸着法、スパッタ法、イオンプレーティング法等の物理気相成長法(PVD)、熱化学気相成長法、プラズマ化学気相成長法等の化学気相成長法(CVD)がある。しかし、真空蒸着法は生産性の高いプロセスとして広く使われているが、ガスバリア性能が劣る。スパッタ法では緻密な皮膜を形成することができるが、成膜速度が低く十分な生産性を得ることができない。さらに、PVD法で形成した皮膜は無機質で脆いため、欠陥や剥離が生じ易く、高いバリア性を付与することができない。
 これらに対して、プラズマCVD法では、スパッタ法に比較して生産性の面で優位性があり、さらに真空蒸着法やスパッタ法に比較して良好なガスバリア性能を有する膜を形成できる。
As a method of forming a metal oxide thin film on the surface of a plastic substrate or the like, a physical vapor deposition method (PVD) such as a vacuum deposition method, a sputtering method, an ion plating method, a thermochemical vapor deposition method, There is chemical vapor deposition (CVD) such as plasma enhanced chemical vapor deposition. However, the vacuum deposition method is widely used as a highly productive process, but the gas barrier performance is inferior. Although a dense film can be formed by sputtering, the film formation rate is low and sufficient productivity cannot be obtained. Furthermore, since the film formed by the PVD method is inorganic and brittle, defects and peeling are likely to occur, and high barrier properties cannot be imparted.
On the other hand, the plasma CVD method has an advantage in terms of productivity as compared with the sputtering method, and can form a film having good gas barrier performance as compared with the vacuum evaporation method and the sputtering method.
 このように、密着層およびガスバリア層の成膜方法としては、プラズマCVD法を好ましく用いることができる。さらに好ましくは、生産性や品質の安定性などの面からロール・ツー・ロール式プラズマCVD法を用いることができる。
 なお、CVD(Chemical Vapor Deposition,化学蒸着)は、作製したい薄膜材料の構成元素を含む化合物の、1種類以上の原料ガスを成膜対象(例えば基板)上に供給し、気相または基板表面での化学反応により薄膜を作製する方法である。プラズマCVD法は、成膜ガスをプラズマ状態にし、活性なラジカルやイオンを生成させ、活性環境下で化学反応を行わせる方法である。また、ロール・ツー・ロールとは、図5に示すように、ロール状に巻いた成膜対象を送り出しロール31から送り出して、表面に目的物質を成膜・印刷し、再び別のロール(巻き取りロール32)に巻き取って回収する生産方法である。ローラ33はフィルムを搬送するためのものである。
Thus, the plasma CVD method can be preferably used as a method for forming the adhesion layer and the gas barrier layer. More preferably, a roll-to-roll type plasma CVD method can be used in terms of productivity and quality stability.
In CVD (Chemical Vapor Deposition), one or more source gases of a compound containing constituent elements of a thin film material to be manufactured are supplied onto a film formation target (for example, a substrate), and the vapor phase or the surface of the substrate is supplied. This is a method for producing a thin film by the chemical reaction. The plasma CVD method is a method in which a film forming gas is brought into a plasma state, active radicals and ions are generated, and a chemical reaction is performed in an active environment. In addition, as shown in FIG. 5, the roll-to-roll means that a film-forming target wound in a roll shape is sent out from a sending-out roll 31, and a target substance is formed and printed on the surface, and another roll (winding-up) is again made. This is a production method in which the take-up roll 32) is wound up and collected. The roller 33 is for conveying a film.
 プラズマCVD法による成膜装置としては種々のタイプがあるが、本発明の目的をそこなわない限り何ら制限されるものではない。
 例えば、特表2005-504880号公報には、成膜を行うフィルムを巻き掛けて搬送する一対の成膜ロールを備え、前記ロールをまたぐように磁場を形成するとともに、二つの成膜ロールが同じ極性になるように高周波電源に接続し、同時に数十から数百kHzの高周波電力を供給し、ロール間の対向空間(放電領域)でベニング放電を発生させてプラズマを閉じ込めると共に前記対向空間に酸素とヘキサメチルジシロキサン(HMDSO)などの原料ガスを供給し、放電領域の両側の成膜ロール上のフィルムに同時に成膜を行うものが記載されている。
There are various types of film forming apparatuses using the plasma CVD method, but the film forming apparatus is not limited as long as the object of the present invention is not impaired.
For example, Japanese Patent Publication No. 2005-504880 includes a pair of film forming rolls that wind and convey a film to be formed, forms a magnetic field across the rolls, and the two film forming rolls are the same. It is connected to a high-frequency power source so as to be polar, and simultaneously, high-frequency power of several tens to several hundreds of kHz is supplied, and Benning discharge is generated in the opposing space (discharge region) between the rolls to confine plasma and oxygen in the opposing space And a material gas such as hexamethyldisiloxane (HMDSO) is supplied to form a film on a film on a film forming roll on both sides of the discharge region at the same time.
 また、特許2587507号公報には、真空チャンバー内に対向して配置した一対の成膜ロール(金属ドラム)と、一方と他方の成膜ロールにそれぞれ一方と他方の電極を接続した交流電源と、成膜ロールの間の対向空間に配置され、成膜ロールに対向する面が解放された放電室と、前記放電室に接続されたモノマー(原料)ガス供給手段を有するプラズマCVD成膜装置が記載されている。 Japanese Patent No. 2587507 discloses a pair of film forming rolls (metal drums) arranged facing each other in a vacuum chamber, an AC power source in which one and the other electrode are connected to one and the other film forming rolls, respectively. A plasma CVD film forming apparatus having a discharge chamber disposed in an opposing space between film forming rolls and having a surface facing the film forming roll opened, and a monomer (raw material) gas supply means connected to the discharge chamber is described. Has been.
 さらに、特許4268195号公報には、減圧下において、対向して配置した成膜ロールに交流あるいは極性反転を伴うパルス電圧を印加し、対向配置された成膜ロールの間の対向空間(成膜ゾーン)にグロー放電を発生させ、成膜ロールの対向空間に面して巻き掛けた帯状の基材にプラズマCVDによる成膜を行う装置が記載されている。
 一例として、(株)神戸製鋼所製プラズマCVD装置(ロールコーターW35)などを好ましく用いることができる。
Further, in Japanese Patent No. 4268195, a pulse voltage accompanied by alternating current or polarity reversal is applied to the film forming rolls arranged to face each other under reduced pressure, and a facing space (film forming zone) between the film forming rolls arranged opposite to each other. ) Describes a device for generating a film by plasma CVD on a belt-like base material wound around facing a facing space of a film forming roll.
As an example, a plasma CVD apparatus (Roll coater W35) manufactured by Kobe Steel, Ltd. can be preferably used.
 密着層およびガスバリア層の主成分となる金属酸化物の例としては、酸化珪素、酸化アルミニウム、酸化チタン、酸化亜鉛等が挙げられる。金属窒化物の例としては、窒化珪素、窒化アルミニウム、窒化チタン、窒化亜鉛等が挙げられる。ガスバリアフィルム積層体に透明性が求められる用途においては、酸化珪素がより好ましい。 Examples of the metal oxide that is a main component of the adhesion layer and the gas barrier layer include silicon oxide, aluminum oxide, titanium oxide, and zinc oxide. Examples of the metal nitride include silicon nitride, aluminum nitride, titanium nitride, and zinc nitride. In applications where transparency is required for the gas barrier film laminate, silicon oxide is more preferable.
 密着層およびガスバリア層の形成に用いる原料ガスとしては、有機金属化合物が好ましく、例えば、珪素を含有する有機珪素化合物、アルミニウムを含有する有機アルミニウム化合物等を用いることができる。これら原料ガスの中でも、化合物の取り扱い性、および得られる密着層およびガスバリア層に柔軟性や高いガスバリア性を付与できる等の観点から、有機珪素化合物を用いることがより好ましい。
 有機珪素化合物としては、例えば、HMDSO、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメトキシシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、オクタメチルシクロテトラシロキサン、ヘキサメチルジシラザン等が挙げられる。
 これらの有機珪素化合物の中でも、化合物の取り扱い性、および得られる薄膜層のガスバリア性等の特性の観点から、HMDSO、1,1,3,3-テトラメチルジシロキサン、テトラエトキシシラン、ヘキサメチルジシラザンが特に好ましい。
 これらの有機珪素化合物等の原料は、1種を単独でまたは2種以上を組み合わせて使用することができる。
 有機アルミニウム化合物の例としては、トリメチルアルミニウムなどが挙げられる。
The source gas used for forming the adhesion layer and the gas barrier layer is preferably an organometallic compound. For example, an organosilicon compound containing silicon, an organoaluminum compound containing aluminum, or the like can be used. Among these source gases, it is more preferable to use an organosilicon compound from the viewpoints of handling properties of the compound and imparting flexibility and high gas barrier properties to the obtained adhesion layer and gas barrier layer.
Examples of organosilicon compounds include HMDSO, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethoxysilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyl Examples include triethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, octamethylcyclotetrasiloxane, and hexamethyldisilazane.
Among these organosilicon compounds, HMDSO, 1,1,3,3-tetramethyldisiloxane, tetraethoxysilane, hexamethyldisilane are used from the viewpoint of characteristics such as handling of the compound and gas barrier properties of the obtained thin film layer. Silazane is particularly preferred.
These raw materials such as organosilicon compounds can be used singly or in combination of two or more.
Examples of the organoaluminum compound include trimethylaluminum.
 前記原料ガスに加えて反応性ガスを用いることができる。反応性ガスとしては、例えば、酸素(O)、オゾン(O)、一酸化窒素(NO)、一酸化二窒素(NO)、二酸化窒素(NO)、過酸化水素(H)等の酸化性ガスや、窒素(N)、アンモニア(NH)、ヒドラジン(N)、ジメチルヒドラジン(N(CH)等の窒化物形成ガスを用いることができる。これらの反応性ガスは、1種を単独でまたは2種以上を組み合わせて使用することができる。 In addition to the source gas, a reactive gas can be used. The reactive gases, e.g., oxygen (O 2), ozone (O 3), nitrogen monoxide (NO), nitrous oxide (N 2 O), nitrogen dioxide (NO 2), hydrogen peroxide (H 2 Oxidizing gas such as O 2 ) and nitride forming gas such as nitrogen (N 2 ), ammonia (NH 3 ), hydrazine (N 2 H 4 ), dimethyl hydrazine (N 2 H 2 (CH 3 ) 2 ) Can be used. These reactive gases can be used alone or in combination of two or more.
 成膜のためのガスとして、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜のためのガスとして、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスなどを用いることができる。
 本発明では、上記反応性ガスを放電ガスとして用いてもよい。また反応性ガスと希ガスを、1種をそれぞれ単独でまたは2種以上を組み合わせて使用することができる。
A carrier gas may be used as necessary for supplying the source gas into the vacuum chamber as a film forming gas. Furthermore, as a gas for film formation, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, xenon, and the like can be used.
In the present invention, the reactive gas may be used as a discharge gas. Reactive gas and noble gas can be used alone or in combination of two or more.
 このような成膜のためのガス(原料ガス、反応性ガス、キャリアガス、放電用ガス等の成膜時に使用するガス)をまとめて「成膜ガス」と呼ぶ。 Such gas for film formation (gas used for film formation such as source gas, reactive gas, carrier gas, discharge gas, etc.) is collectively referred to as “film formation gas”.
 密着層は、ガスバリア層を成膜する際の成膜ガス中の反応性ガスの混合比率よりも多い反応性ガスの混合比率で成膜することが好ましい。具体的には、密着層を成膜する際の成膜ガス中の反応性ガスの混合比率を、ガスバリア層を成膜する際の成膜ガス中の反応性ガスの混合比率の1.2~4.0倍とすることが好ましい。より好ましくは1.5~3.0倍であり、特に好ましくは1.8~2.7倍である。1.2~4.0倍であると、密着性を発現するための適正な元素組成の密着層を形成することができる。 The adhesion layer is preferably formed with a reactive gas mixture ratio higher than the reactive gas mixture ratio in the film forming gas when forming the gas barrier layer. Specifically, the mixing ratio of the reactive gas in the film forming gas when forming the adhesion layer is 1.2 to the mixing ratio of the reactive gas in the film forming gas when forming the gas barrier layer. It is preferably 4.0 times. More preferably, it is 1.5 to 3.0 times, and particularly preferably 1.8 to 2.7 times. When the ratio is 1.2 to 4.0 times, an adhesion layer having an appropriate elemental composition for expressing adhesion can be formed.
 プラズマCVD装置の真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.1Pa~50Paの範囲とすることが好ましい。 The pressure (degree of vacuum) in the vacuum chamber of the plasma CVD apparatus can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.1 Pa to 50 Pa.
 放電するために印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.2~10kWの範囲とすることが好ましい。印加電力が前記下限以上では、原料ガスの反応が不十分でバリア性が低くなることがなく、前記上限以下であると、成膜時の成膜対象(例えば基材)表面の温度が上昇してしまい、成膜対象に皺が発生することや、フィルム表面に凹凸が発生して外観が損なわれるということがない。 The electric power applied for discharging can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.2 to 10 kW. When the applied power is equal to or higher than the lower limit, the reaction of the source gas is not insufficient and the barrier property is not lowered. As a result, wrinkles are not generated on the film formation target, and irregularities are not generated on the film surface and the appearance is not impaired.
 成膜対象の搬送速度は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.1~50m/minの範囲とすることが好ましく、0.3~20m/minの範囲とすることがより好ましい。ライン速度が前記下限以上では、搬送中の樹脂フィルムに熱に起因する皺が発生しにくくなる傾向にあり、前記上限以下であると、形成される薄膜層の厚みが薄くなりすぎることがない。 The conveyance speed of the film formation target can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.1 to 50 m / min, preferably 0.3 to 20 m. / Min is more preferable. When the line speed is equal to or higher than the lower limit, wrinkles due to heat tend not to occur in the resin film being conveyed. When the line speed is equal to or lower than the upper limit, the thickness of the formed thin film layer does not become too thin.
 密着層およびガスバリア層は、有機成分を含有する。例えば、成膜ガス(原料ガスとしてのHMDSOと酸化性ガスとしての酸素ガス(放電ガスとしても機能する)の混合ガス)からプラズマCVD法による薄膜形成を行い、ガスバリア層を形成すると、下記反応式(1)に記載のように、形成された膜には有機成分としてのCy(微量の炭素成分)が含まれる。
 (CH)Si-O-Si(CH) + O → SiO  (1)
The adhesion layer and the gas barrier layer contain an organic component. For example, when a thin film is formed by a plasma CVD method from a film forming gas (a mixed gas of HMDSO as a source gas and oxygen gas as an oxidizing gas (also functioning as a discharge gas)) and a gas barrier layer is formed, the following reaction formula is obtained. As described in (1), the formed film contains Cy (a trace amount of carbon component) as an organic component.
(CH 3 ) 3 Si—O—Si (CH 3 ) 3 + O 2 → SiO x C y (1)
 一例として、原料ガスとしてHMDSO、酸化性ガスとして酸素ガスを用いてプラズマCVD法により密着層とガスバリア層を成膜した場合、密着層は、1.8<x<2.2を満たす、組成にSiOを含む化合物を含有する、または、0<y<0.15を満たす、組成にSiCyを含む化合物を含有することが好ましい。より好ましくは、1.7<x<2.1、または、0.02<y<0.13である。このような組成比を満たす密着層は、優れた密着性を発現するため好ましい。
 ガスバリア層は、1.1≦x≦1.9、0≦y≦0.9を満たす、組成にSiOを含む化合物を含有することが好ましい。より好ましくは、1.3≦x≦1.7、0≦y≦0.7である。このような組成比を満たすガスバリア層は、優れたガスバリア性を示すため好ましい。
 参考として、図6に原料ガスとしてHMDSO、酸化性ガスとして酸素ガスを用いてプラズマCVD法により成膜された密着層とガスバリア層の、ガスバリア層の表面からエッチングを開始したXPSデプスプロファイルを示す。横軸はエッチング時間(分)であり、縦軸は原子数濃度(%)である。
 図6に示すように、密着層は、組成比が1.8<x<2.2の範囲で変化するSiOを含む化合物を含有する、または、組成比が0<y<0.15の範囲で変化するSiCを含む化合物を含有する。ガスバリア層は、組成比が1.1≦x≦1.9、0≦y≦0.9の範囲で変化するSiOを含む化合物を含有する。
As an example, when the adhesion layer and the gas barrier layer are formed by plasma CVD using HMDSO as a source gas and oxygen gas as an oxidizing gas, the adhesion layer satisfies a composition satisfying 1.8 <x <2.2. It is preferable to contain a compound containing SiO x or containing a compound containing SiCy in the composition satisfying 0 <y <0.15. More preferably, 1.7 <x <2.1 or 0.02 <y <0.13. An adhesion layer satisfying such a composition ratio is preferable because it exhibits excellent adhesion.
Gas barrier layer satisfies 1.1 ≦ x ≦ 1.9,0 ≦ y ≦ 0.9, preferably contains a compound containing a SiO x C y in the composition. More preferably, 1.3 ≦ x ≦ 1.7 and 0 ≦ y ≦ 0.7. A gas barrier layer satisfying such a composition ratio is preferable because it exhibits excellent gas barrier properties.
For reference, FIG. 6 shows an XPS depth profile in which etching is started from the surface of the gas barrier layer of the adhesion layer and the gas barrier layer formed by plasma CVD using HMDSO as the source gas and oxygen gas as the oxidizing gas. The horizontal axis represents the etching time (minutes), and the vertical axis represents the atomic number concentration (%).
As shown in FIG. 6, the adhesion layer contains a compound containing SiO x in which the composition ratio changes within a range of 1.8 <x <2.2, or the composition ratio is 0 <y <0.15. comprising a compound containing SiC y varying in the range. The gas barrier layer contains a compound containing SiO x C y whose composition ratio changes in the range of 1.1 ≦ x ≦ 1.9 and 0 ≦ y ≦ 0.9.
[ガスバリアフィルム積層体10’]
 本発明の第2の実施の形態に係るガスバリアフィルム積層体10’は、例えば図1(b)に示すように、基材となる樹脂フィルム11と、樹脂フィルム11の少なくとも片面側に成膜された密着層13との間に有機膜層12を備える。
[Gas barrier film laminate 10 ′]
A gas barrier film laminate 10 ′ according to the second embodiment of the present invention is formed on at least one side of a resin film 11 as a substrate and the resin film 11, for example, as shown in FIG. An organic film layer 12 is provided between the contact layer 13 and the contact layer 13.
[有機膜層12]
 ガスバリアフィルム積層体に有機膜層を設けることで、基材表面の凹凸を平坦化し、さらに、密着層およびガスバリア層の膜形成過程で発生する残留応力に起因したガスバリアフィルム積層体のカール発生を抑えることができる。そのため、ガスバリアフィルム積層体は良好な加工性を発揮することができる。また、カールに起因したクラックや膜剥がれも抑制されるため、良好なガスバリア性を維持することができる。
[Organic film layer 12]
By providing an organic film layer on the gas barrier film laminate, the unevenness of the substrate surface is flattened, and curling of the gas barrier film laminate caused by residual stress generated during the film formation process of the adhesion layer and the gas barrier layer is suppressed. be able to. Therefore, the gas barrier film laminate can exhibit good processability. In addition, since cracks and film peeling due to curling are suppressed, good gas barrier properties can be maintained.
 有機膜層の厚みは、1~20μmが好ましく、より好ましくは1.2~10μm、さらに好ましくは2~8μmである。1μm以上にすることにより、充分な平滑性の確保とカール発生を抑えることを可能とする。また、20μm以下にすることにより、折り曲げによる割れを防止し易くなるとともに、ガスバリアフィルム積層体の光学特性のバランスを調整し易くなる。 The thickness of the organic film layer is preferably 1 to 20 μm, more preferably 1.2 to 10 μm, still more preferably 2 to 8 μm. By setting the thickness to 1 μm or more, sufficient smoothness can be ensured and curling can be suppressed. Moreover, by setting it as 20 micrometers or less, while becoming easy to prevent the crack by bending, it becomes easy to adjust the balance of the optical characteristic of a gas barrier film laminated body.
 有機膜層の表面粗さは、算術平均粗さSaが5nm以下であることが好ましく、より好ましくは3nm以下、さらに好ましくは2nm以下である。5nm以下にすることにより、有機膜層上に積層する薄膜の密着層およびガスバリア層を均一に処理することが可能となりガスバリアフィルム積層体のバリア性が向上する。 The surface roughness of the organic film layer is preferably such that the arithmetic average roughness Sa is 5 nm or less, more preferably 3 nm or less, and even more preferably 2 nm or less. By setting the thickness to 5 nm or less, the adhesion layer and the gas barrier layer of the thin film laminated on the organic film layer can be uniformly treated, and the barrier property of the gas barrier film laminate is improved.
 本発明の有機膜層は、光硬化性樹脂組成物を光重合させて得られた膜であることが好ましい。光硬化性樹脂組成物は、アクリル系樹脂を含む組成物からなるものであることが好ましい。なお、「光硬化性樹脂組成物」は、全体として光硬化する組成物であればよく、必ずしも光硬化性樹脂が主成分である必要はない。 The organic film layer of the present invention is preferably a film obtained by photopolymerizing a photocurable resin composition. The photocurable resin composition is preferably composed of a composition containing an acrylic resin. The “photocurable resin composition” may be a composition that is photocured as a whole, and the photocurable resin does not necessarily have to be a main component.
 有機膜層の前駆体である光硬化性樹脂としては、紫外線照射などの光による硬化が可能なアクリル系樹脂が挙げられる。例えば(メタ)アクリレートモノマー、不飽和ポリエステル樹脂、ポリエステル(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂などのラジカル重合が可能な不飽和結合を有する樹脂を挙げることができる。これらアクリル系樹脂は単独でも、または2種類以上混合して使用することもできる。中でも、ポリエステル(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、(メタ)アクリレートモノマー等の単独またはこれらの混合物が好ましい。
 アクリル系樹脂を用いると、透明性に優れた有機膜層を形成することができる。さらに、光硬化性を有するアクリル系樹脂は、その硬さによりカール防止性に優れているため好ましい。
Examples of the photocurable resin that is a precursor of the organic film layer include acrylic resins that can be cured by light such as ultraviolet irradiation. Examples thereof include resins having an unsaturated bond capable of radical polymerization, such as (meth) acrylate monomers, unsaturated polyester resins, polyester (meth) acrylate resins, epoxy (meth) acrylate resins, and urethane (meth) acrylate resins. . These acrylic resins can be used alone or in admixture of two or more. Among them, polyester (meth) acrylate resin, urethane (meth) acrylate resin, (meth) acrylate monomer and the like alone or a mixture thereof are preferable.
When an acrylic resin is used, an organic film layer excellent in transparency can be formed. Furthermore, an acrylic resin having photocurability is preferable because it has excellent curl prevention properties due to its hardness.
 前記(メタ)アクリレートモノマーとしては、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物が挙げられる。例えば、ポリアルキレングリコールジ(メタ)アクリレート、エチレングリコール(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、ポリエチレンポリトリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられる。また、シルセスキオキサン骨格を有する化合物で、官能基に(メタ)アクリレート基を有する化合物も挙げられる。 Examples of the (meth) acrylate monomer include compounds obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid. For example, polyalkylene glycol di (meth) acrylate, ethylene glycol (meth) acrylate, propylene glycol (meth) acrylate, polyethylene polytrimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (Meth) acrylate, trimethylolpropane diethoxytri (meth) acrylate, trimethylolpropane triethoxytri (meth) acrylate, trimethylolpropanetetraethoxytri (meth) acrylate, trimethylolpropane pentaethoxytri (meth) acrylate, tetra Methylolmethane tetra (meth) acrylate, tetramethylolpropane tetra (meth) acrylate, pentaerythritol Tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate. Moreover, the compound which has a silsesquioxane skeleton and has a (meth) acrylate group in a functional group is also mentioned.
 前記不飽和ポリエステル樹脂としては、多価アルコールと不飽和多塩基酸(および必要に応じて飽和多塩基酸)とのエステル化反応による縮合生成物(不飽和ポリエステル)を、重合性モノマーに溶解したものが挙げられる。
 不飽和ポリエステルは、無水マレイン酸などの不飽和酸とエチレングリコールなどのジオールとを重縮合させて製造できる。具体的にはフマル酸、マレイン酸、イタコン酸などの重合性不飽和結合を有する多塩基酸またはその無水物を酸成分とし、これとエチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、シクロヘキサン-1,4-ジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物などの多価アルコールをアルコール成分として反応させ、また、必要に応じてフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバシン酸などの重合性不飽和結合を有していない多塩基酸またはその無水物も酸成分として加えて製造されるものが挙げられる。
As said unsaturated polyester resin, the condensation product (unsaturated polyester) by esterification reaction of a polyhydric alcohol and unsaturated polybasic acid (and saturated polybasic acid as needed) was melt | dissolved in the polymerizable monomer. Things.
The unsaturated polyester can be produced by polycondensation of an unsaturated acid such as maleic anhydride and a diol such as ethylene glycol. Specifically, a polybasic acid having a polymerizable unsaturated bond such as fumaric acid, maleic acid, and itaconic acid or its anhydride is used as an acid component, and ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1, 2 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2-methyl-1,3-propanediol, 2,2-dimethyl-1,3-propanediol, cyclohexane Polyhydric alcohols such as 1,4-dimethanol, ethylene oxide adduct of bisphenol A and propylene oxide adduct of bisphenol A are reacted as alcohol components, and phthalic acid, isophthalic acid, terephthalic acid, Such as tetrahydrophthalic acid, adipic acid, sebacic acid Polymerizable not have an unsaturated bond or a polybasic acid anhydrides may include those prepared by adding as an acid component.
 前記ポリエステル(メタ)アクリレート樹脂としては、(1)飽和多塩基酸および/または不飽和多塩基酸と多価アルコールから得られる末端カルボキシル基のポリエステルにα,β-不飽和カルボン酸エステル基を含有するエポキシ化合物を反応して得られる(メタ)アクリレート、(2)飽和多塩基酸および/または不飽和多塩基酸と多価アルコールから得られる末端カルボキシル基のポリエステルに水酸基含有アクリレートを反応させて得られる(メタ)アクリレート、(3)飽和多塩基酸および/または不飽和多塩基酸と多価アルコールから得られる末端水酸基のポリエステルに(メタ)アクリル酸を反応して得られる(メタ)アクリレートが挙げられる。
 ポリエステル(メタ)アクリレートの原料として用いられる飽和多塩基酸としては、例えばフタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、アジピン酸、セバチン酸などの重合性不飽和結合を有していない多塩基酸またはその無水物と、フマル酸、マレイン酸、イタコン酸などの重合性不飽和多塩基酸またはその無水物が挙げられる。さらに多価アルコール成分としては、前記不飽和ポリエステルと同様である。
As the polyester (meth) acrylate resin, (1) a terminal carboxyl group polyester obtained from a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol contains an α, β-unsaturated carboxylic ester group. (Meth) acrylate obtained by reacting an epoxy compound, (2) obtained by reacting a hydroxyl group-containing acrylate with a polyester having a terminal carboxyl group obtained from a saturated polybasic acid and / or unsaturated polybasic acid and a polyhydric alcohol (Meth) acrylates obtained, (3) (meth) acrylates obtained by reacting (meth) acrylic acid with polyesters of terminal hydroxyl groups obtained from saturated polybasic acids and / or unsaturated polybasic acids and polyhydric alcohols It is done.
Examples of the saturated polybasic acid used as a raw material for polyester (meth) acrylate include polybasic compounds having no polymerizable unsaturated bond such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, and sebacic acid. Examples thereof include acids or anhydrides thereof and polymerizable unsaturated polybasic acids such as fumaric acid, maleic acid and itaconic acid or anhydrides thereof. Further, the polyhydric alcohol component is the same as the unsaturated polyester.
 前記エポキシ(メタ)アクリレート樹脂としては、グリシジル基(エポキシ基)を有する化合物と、アクリル酸などの重合性不飽和結合を有するカルボキシル化合物のカルボキシル基との開環反応により生成する重合性不飽和結合を持った化合物(ビニルエステル)を、重合性モノマーに溶解したものが挙げられる。
 ビニルエステルとしては、公知の方法により製造されるものであり、エポキシ樹脂に不飽和一塩基酸、例えばアクリル酸またはメタクリル酸を反応させて得られるエポキシ(メタ)アクリレートが挙げられる。
 また、各種エポキシ樹脂をビスフェノール(例えばA型)またはアジピン酸、セバシン酸、ダイマー酸(ハリダイマー270S:ハリマ化成(株))などの二塩基酸で反応させ、可撓性を付与してもよい。
 原料としてのエポキシ樹脂としては、ビスフェノールAジグリシジルエーテルおよびその高分子量同族体、ノボラック型グリシジルエーテル類などが挙げられる。
The epoxy (meth) acrylate resin includes a polymerizable unsaturated bond formed by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid. A compound having a compound (vinyl ester) dissolved in a polymerizable monomer.
The vinyl ester is produced by a known method, and includes an epoxy (meth) acrylate obtained by reacting an epoxy resin with an unsaturated monobasic acid such as acrylic acid or methacrylic acid.
Further, various epoxy resins may be reacted with bisphenol (for example, A type) or dibasic acid such as adipic acid, sebacic acid, dimer acid (Haridimer 270S: Harima Kasei Co., Ltd.) to impart flexibility.
Examples of the epoxy resin as a raw material include bisphenol A diglycidyl ether and its high molecular weight homologues, novolak glycidyl ethers, and the like.
 前記ウレタン(メタ)アクリレート樹脂としては、例えば、ポリイソシアネートとポリヒドロキシ化合物あるいは多価アルコール類とを反応させた後、さらに水酸基含有(メタ)アクリル化合物および必要に応じて水酸基含有アリルエーテル化合物を反応させることによって得ることができるラジカル重合性不飽和基含有オリゴマーが挙げられる。
 ポリイソシアネートとしては、具体的には2,4-トリレンジイソシアネートおよびその異性体、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ナフタリンジイソシアネート、トリフェニルメタントリイソシアネート、バノックD-750、クリスボンNK(商品名;DIC(株)製)、デスモジュールL(商品名;住友バイエルウレタン(株)製)、コロネートL(商品名;日本ポリウレタン工業(株)製)、タケネートD102(商品名;三井武田ケミカル(株)製)、イソネート143L(商品名;三菱化学(株)製)などが挙げられる。
 ポリヒドロキシ化合物としては、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられる。具体的にはグリセリン-エチレンオキシド付加物、グリセリン-プロピレンオキシド付加物、グリセリン-テトラヒドロフラン付加物、グリセリン-エチレンオキシド-プロピレンオキシド付加物、トリメチロールプロパン-エチレンオキシド付加物、トリメチロールプロパン-プロピレンオキシド付加物、トリメチロールプロパン-テトラヒドロフラン付加物、トリメチロールプロパン-エチレンオキシド-プロピレンオキシド付加物、ジペンタエリスリトール-エチレンオキシド付加物、ジペンタエリスリトール-プロピレンオキシド付加物、ジペンタエリスリトール-テトラヒドロフラン付加物、ジペンタエリスリトール-エチレンオキシド-プロピレンオキシド付加物などが挙げられる。
 多価アルコール類としては、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、2-メチル-1,3-プロパンジオール、1,3-ブタンジオール、ビスフェノールAとプロピレンオキシドまたはエチレンオキシドとの付加物、1,2,3,4-テトラヒドロキシブタン、グリセリン、トリメチロールプロパン、1,2-シクロヘキサングリコール、1,3-シクロヘキサングリコール、1,4-シクロヘキサングリコール、パラキシレングリコール、ビシクロヘキシル-4,4-ジオール、2,6-デカリングリコール、2,7-デカリングリコールなどが挙げられる。
 水酸基含有(メタ)アクリル化合物としては、特に限定されるものではないが、水酸基含有(メタ)アクリル酸エステルが好ましく、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。
As the urethane (meth) acrylate resin, for example, after reacting a polyisocyanate with a polyhydroxy compound or a polyhydric alcohol, a hydroxyl group-containing (meth) acrylic compound and, if necessary, a hydroxyl group-containing allyl ether compound are reacted. And a radical-polymerizable unsaturated group-containing oligomer that can be obtained.
Specific examples of polyisocyanates include 2,4-tolylene diisocyanate and its isomers, diphenylmethane diisocyanate, hexamethylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate, naphthalene diisocyanate, triphenyl. Methane triisocyanate, Bannock D-750, Crisbon NK (trade name; manufactured by DIC Corporation), Desmodur L (trade name; manufactured by Sumitomo Bayer Urethane Co., Ltd.), Coronate L (trade name; Nippon Polyurethane Industry Co., Ltd.) Manufactured), Takenate D102 (trade name; manufactured by Mitsui Takeda Chemical Co., Ltd.), Isonate 143L (trade name; manufactured by Mitsubishi Chemical Corporation), and the like.
Examples of the polyhydroxy compound include polyester polyol and polyether polyol. Specifically, glycerin-ethylene oxide adduct, glycerin-propylene oxide adduct, glycerin-tetrahydrofuran adduct, glycerin-ethylene oxide-propylene oxide adduct, trimethylolpropane-ethylene oxide adduct, trimethylolpropane-propylene oxide adduct, tri Methylolpropane-tetrahydrofuran adduct, trimethylolpropane-ethylene oxide-propylene oxide adduct, dipentaerythritol-ethylene oxide adduct, dipentaerythritol-propylene oxide adduct, dipentaerythritol-tetrahydrofuran adduct, dipentaerythritol-ethylene oxide-propylene Examples include oxide adducts.
Specific examples of polyhydric alcohols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 2-methyl-1,3-propanediol, and 1,3-butane. Diol, adduct of bisphenol A and propylene oxide or ethylene oxide, 1,2,3,4-tetrahydroxybutane, glycerin, trimethylolpropane, 1,2-cyclohexane glycol, 1,3-cyclohexane glycol, 1,4- Examples include cyclohexane glycol, paraxylene glycol, bicyclohexyl-4,4-diol, 2,6-decalin glycol, and 2,7-decalin glycol.
The hydroxyl group-containing (meth) acrylic compound is not particularly limited, but a hydroxyl group-containing (meth) acrylic acid ester is preferable, and specific examples thereof include 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl. (Meth) acrylate, 3-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) An acrylate etc. are mentioned.
 光硬化性樹脂組成物は、光重合開始剤を含有する。光重合開始剤の具体例としては、紫外線や可視光線の照射によりラジカルを発生する化合物であれば特に限定しない。光重合開始剤として用いられる化合物としては、ベンゾフェノン、ミヒラーズケトン、4,4′-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4′-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1,4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4′-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′,4′-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2′-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4′-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2′-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4′-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3′-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2-クロロフェニル)-4,4′,5,5′-テトラキス(4-エトキシカルボニルフェニル)-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4-ジブロモフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、2,2′-ビス(2,4,6-トリクロロフェニル)-4,4′,5,5′-テトラフェニル-1,2′-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、などである。3,3′,4,4′-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3′,4,4′-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3′-ジ(メトキシカルボニル)-4,4′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4′-ジ(メトキシカルボニル)-4,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4′-ジ(メトキシカルボニル)-3,3′-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノンなどが好ましい。
 上記の付加重合において用いられる重合開始剤の量は、単量体の総モル数に対して約0.01~10mol%が好ましい。また、これら光重合開始剤は単独でも、または2種以上を混合しても使用することができる。
The photocurable resin composition contains a photopolymerization initiator. As a specific example of a photoinitiator, if it is a compound which generate | occur | produces a radical by irradiation of an ultraviolet-ray or visible light, it will not specifically limit. Compounds used as photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy -2-methylpropiophenone, 2-hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, isopropyl benzoin ether, isobutyl benzoin ether, 2,2-diethoxyacetophenone, 2,2 -Dimethoxy-2-phenylacetophenone, camphorquinone, benzanthrone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, -Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, 4,4'-di (t-butylperoxycarbonyl) Benzophenone, 3,4,4'-tri (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2- (4'-methoxystyryl) -4,6-bis (trichloromethyl) ) -S-triazine, 2- (3 ', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6- Bis (trichloromethyl) -s-triazine, 2- (2'-methoxystyryl) -4,6-bis (trichlorome ) -S-triazine, 2- (4'-pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pN, N-di (ethoxycarbonylmethyl)]-2 , 6-Di (trichloromethyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4 '-Methoxyphenyl) -s-triazine, 2- (p-dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis (7- Diethylaminocoumarin), 2- (o-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2' Bis (2-chlorophenyl) -4,4 ', 5,5'-tetrakis (4-ethoxycarbonylphenyl) -1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4, 4 ', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dibromophenyl) -4,4', 5,5'-tetraphenyl-1,2 '-Biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 3- (2-methyl- 2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9-n-dodecylcarbazole, 1-hydroxycyclohexyl phenyl ketone, bis (η5-2,4-cyclope) Tajien-1-yl) - bis (2,6-difluoro-3-(1H-pyrrol-1-yl) - phenyl) titanium, and the like. 3,3 ', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di (methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'-di (methoxy) Carbonyl) -3,3′-di (t-butylperoxycarbonyl) benzophenone is preferred.
The amount of the polymerization initiator used in the above addition polymerization is preferably about 0.01 to 10 mol% based on the total number of moles of monomers. These photopolymerization initiators can be used alone or in combination of two or more.
 前記付加重合において、連鎖移動剤を用いてもよい。連鎖移動剤を用いることで、分子量を適切に制御することができる。連鎖移動剤の例には、チオ-β-ナフトール、チオフェノール、ブチルメルカプタン、エチルチオグリコレート、メルカプトエタノール、メルカプト酢酸、イソプロピルメルカプタン、t-ブチルメルカプタン、ドデカンチオール、チオリンゴ酸、ペンタエリスリトールテトラ(3-メルカプトプロピオネート)、ペンタエリスリトールテトラ(3-メルカプトアセテート)などのメルカプタン類;ジフェニルジサルファイド、ジエチルジチオグリコレート、ジエチルジサルファイドなどのジサルファイド類;などのほか、トルエン、メチルイソブチレート、四塩化炭素、イソプロピルベンゼン、ジエチルケトン、クロロホルム、エチルベンゼン、塩化ブチル、s-ブチルアルコール、メチルエチルケトン、メチルイソブチルケトン、塩化プロピレン、メチルクロロホルム、t-ブチルベンゼン、ブチルアルコール、イソブチルアルコール、酢酸、酢酸エチル、アセトン、ジオキサン、四塩化エタン、クロロベンゼン、メチルシクロヘキサン、t-ブチルアルコール、ベンゼンなどが含まれる。特にメルカプト酢酸は、重合体の分子量を下げて、分子量分布を均一にさせ得る。これら連鎖移動剤は単独でも、または2種以上を混合しても使用することができる。 In the addition polymerization, a chain transfer agent may be used. The molecular weight can be appropriately controlled by using the chain transfer agent. Examples of chain transfer agents include thio-β-naphthol, thiophenol, butyl mercaptan, ethyl thioglycolate, mercaptoethanol, mercaptoacetic acid, isopropyl mercaptan, t-butyl mercaptan, dodecanethiol, thiomalic acid, pentaerythritol tetra (3 -Mercaptans such as mercaptopropionate) and pentaerythritol tetra (3-mercaptoacetate); disulfides such as diphenyl disulfide, diethyl dithioglycolate and diethyl disulfide; and the like, toluene, methyl isobutyrate, Carbon tetrachloride, isopropylbenzene, diethyl ketone, chloroform, ethylbenzene, butyl chloride, sec-butyl alcohol, methyl ethyl ketone, methyl isobutyl ketone, chloride Pyrene, methyl chloroform, t- butyl benzene, butyl alcohol, isobutyl alcohol, acetic acid, ethyl acetate, acetone, dioxane, tetrachloroethane, chlorobenzene, cyclohexane, t- butyl alcohol, benzene and the like. In particular, mercaptoacetic acid can lower the molecular weight of the polymer and make the molecular weight distribution uniform. These chain transfer agents can be used alone or in admixture of two or more.
 光硬化性樹脂を溶媒に溶解または分散させた塗布液を調製する際に使用する溶媒としては、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン、ジエチルケトン、2-ヘプタノン、4-ヘプタノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、セロソルブ、メチルセロソルブ、エチルセロソルブ、カルビトール、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、エチルカルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2-メトキシエチルアセテート、シクロヘキシルアセテート、2-エトキシエチルアセテート、3-メトキシブチルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、3-エトキシプロピオン酸エチル、安息香酸メチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。これら溶媒は単独でも、または2種以上を混合しても使用することができる。 Solvents used when preparing a coating solution in which a photocurable resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, n-propanol, isopropanol, ethylene glycol, propylene glycol, α- or β- Terpenes such as terpineol, etc., ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aroma such as toluene, xylene, tetramethylbenzene Aromatic hydrocarbons, cellosolve, methyl cellosolve, ethyl cellosolve, carbitol, methyl carbitol, ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether Ter, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether and other glycol ethers, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, carb Acetic esters such as tall acetate, ethyl carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-methoxyethyl acetate, cyclohexyl acetate, 2-ethoxyethyl acetate, 3-methoxybutyl acetate Diethylene glycol dialkyl ether, dipropy Glycol dialkyl ethers, ethyl 3-ethoxypropionate, methyl benzoate, N, N- dimethylacetamide, N, may be mentioned N- dimethylformamide. These solvents can be used alone or in admixture of two or more.
 光硬化性樹脂を溶媒に溶解または分散させた塗布液は、塗布した塗布液の表面流動性やレベリング性などを改善し、濡れ不良やハジキによる塗布膜のピンホールや欠陥の発生などを防止するための表面調整剤(レベリング剤、濡れ性改良剤、界面活性剤など)を含有してもよい。表面調整剤としては、ポリシロキサン、ポリアクリレートおよびワックス等が例示される。
 また、塗布液中への気泡の発生を防止するための消泡剤などの添加剤を使用してもよい。消泡剤としては、ミネラルオイル系化合物、ポリシロキサン系化合物などが例示される。
 さらに、必要に応じて可塑剤、紫外線吸収剤、酸化防止剤、シランカップリング剤等の添加剤を含有してもよい。
A coating solution in which a photocurable resin is dissolved or dispersed in a solvent improves the surface fluidity and leveling properties of the coated coating solution and prevents pinholes and defects in the coating film due to poor wetting and repelling. Surface conditioning agents (leveling agents, wettability improvers, surfactants, etc.) may be included. Examples of the surface conditioner include polysiloxane, polyacrylate and wax.
In addition, an additive such as an antifoaming agent for preventing the generation of bubbles in the coating solution may be used. Examples of antifoaming agents include mineral oil compounds and polysiloxane compounds.
Furthermore, you may contain additives, such as a plasticizer, a ultraviolet absorber, antioxidant, and a silane coupling agent, as needed.
 有機膜層の形成方法は特に制限はないが、光硬化性樹脂組成物を均一にコーティングするためにウェットコーティング法(塗布法)を用いることが好ましい。塗布法を用いることにより、優れた表面平滑性が得られる。塗布法のうち、少量を作成する場合には簡便で均質な成膜が可能であるスピンコート法が好ましい。生産性を重視するロール・ツー・ロールの場合には、グラビアコート法、ダイコート法、リバースコート法、ロールコート法、スリットコート法、ディッピング法、スプレーコート法、キスコート法、リバースキスコート法、エアーナイフコート法、カーテンコート法、ロッドコート法などが好ましい。塗布法は、これらの方法の中から必要とする膜厚、粘度や硬化条件等に応じて適宜選択することができる。 The method for forming the organic film layer is not particularly limited, but it is preferable to use a wet coating method (coating method) in order to uniformly coat the photocurable resin composition. By using the coating method, excellent surface smoothness can be obtained. Among the coating methods, when a small amount is prepared, a spin coating method capable of simple and uniform film formation is preferable. In the case of roll-to-roll, where productivity is important, gravure coating method, die coating method, reverse coating method, roll coating method, slit coating method, dipping method, spray coating method, kiss coating method, reverse kiss coating method, air A knife coating method, a curtain coating method, a rod coating method and the like are preferable. The coating method can be appropriately selected from these methods according to the required film thickness, viscosity, curing conditions, and the like.
 塗布された塗布液の乾燥は、室温~約200℃の環境下で熱風などにより行うことができる。塗布乾燥後に、活性エネルギー線源により、光活性エネルギー線または電子線を照射して硬化させる。光活性エネルギー線源としては特に制限はないが、用いる光重合開始剤の性質に応じて、例えば低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク、キセノンアーク、気体レーザー、固体レーザー、電子線照射装置などが挙げられる。
 乾燥のための乾燥炉通過時間は、ライン速度、および塗布液の種類や塗工厚み、および装置能力(風量・面積など)により異なる。例えば、1分~105分を挙げることができる。硬化のための照射量も同様に、材料や厚みにより異なる。例えば、高圧水銀灯を用いる場合には、200~700mJ/cm程度を挙げることができる。
The applied coating solution can be dried with hot air or the like in an environment of room temperature to about 200 ° C. After the coating and drying, a photoactive energy beam or an electron beam is irradiated and cured by an active energy beam source. Although there is no particular limitation as a photoactive energy ray source, depending on the nature of the photopolymerization initiator used, for example, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a carbon arc, a xenon arc, a gas laser, a solid laser, An electron beam irradiation apparatus etc. are mentioned.
The drying furnace passage time for drying differs depending on the line speed, the type of coating liquid, the coating thickness, and the apparatus capacity (air volume, area, etc.). For example, 1 to 105 minutes can be mentioned. Similarly, the amount of irradiation for curing varies depending on the material and thickness. For example, when a high-pressure mercury lamp is used, about 200 to 700 mJ / cm 2 can be mentioned.
 本発明のガスバリアフィルム積層体の表面(樹脂フィルム表面、有機膜層表面、ガスバリア層表面)には、密着性を向上する目的でコロナ処理、プラズマ処理等の表面改質処理を施してもよい。 The surface (resin film surface, organic film layer surface, gas barrier layer surface) of the gas barrier film laminate of the present invention may be subjected to surface modification treatment such as corona treatment or plasma treatment for the purpose of improving adhesion.
 本発明のガスバリアフィルム積層体は、例えば、樹脂フィルム11の少なくとも片面に密着層13とガスバリア層14を有する(図1(a))。または、樹脂フィルム11の少なくとも片面に有機膜層12と密着層13とガスバリア層14を有する(図1(b))。好ましくは、密着層13とガスバリア層14が接するものである。より好ましくは樹脂フィルム11と有機膜層12が接するものである。
 本発明のガスバリアフィルム積層体は、樹脂フィルムに積層された各層の順序を、樹脂フィルム/密着層/ガスバリア層、または樹脂フィルム/有機膜層/密着層/ガスバリア層とし、密着層を備えることでガスバリア層の密着性を向上させるものである。
 また、図1(a)(b)に示すように、ガスバリア層を樹脂フィルムの片面にのみに積層した構造とすることで、両面に積層した場合と比べて、ガスバリアフィルム積層体の薄膜化、軽量化、光線透過率の向上および製造プロセスの簡略化等を図ることができ好ましい。
The gas barrier film laminate of the present invention has, for example, an adhesion layer 13 and a gas barrier layer 14 on at least one surface of the resin film 11 (FIG. 1A). Or it has the organic film layer 12, the contact | adherence layer 13, and the gas barrier layer 14 in the at least single side | surface of the resin film 11 (FIG.1 (b)). Preferably, the adhesion layer 13 and the gas barrier layer 14 are in contact with each other. More preferably, the resin film 11 and the organic film layer 12 are in contact with each other.
In the gas barrier film laminate of the present invention, the order of the layers laminated on the resin film is resin film / adhesion layer / gas barrier layer or resin film / organic film layer / adhesion layer / gas barrier layer, and the adhesion layer is provided. It improves the adhesion of the gas barrier layer.
In addition, as shown in FIGS. 1 (a) and 1 (b), the gas barrier layer has a structure in which the gas barrier layer is laminated only on one side of the resin film. It is preferable because the weight can be reduced, the light transmittance can be improved, and the manufacturing process can be simplified.
 本発明のガスバリアフィルム積層体は、水蒸気透過率(温度:40±0.5℃、相対湿度:90±5%RH)が、0.005g/m/day以下の高いガスバリア性を発現する。成膜条件等を最適化することで0.001g/m/day以下を発現でき、さらに有機膜層、密着層、ガスバリア層の厚みなどを最適化することで、0.0001g/m/day以下が達成される。 The gas barrier film laminate of the present invention exhibits a high gas barrier property with a water vapor transmission rate (temperature: 40 ± 0.5 ° C., relative humidity: 90 ± 5% RH) of 0.005 g / m 2 / day or less. Unable to express less 0.001g / m 2 / day by optimizing the film forming conditions or the like, an organic film layer, the adhesion layer, by optimizing the thickness of the gas barrier layer, 0.0001 g / m 2 / Day or less is achieved.
 本発明のガスバリアフィルム積層体を、光電素子、OLED素子、またはOPV素子等に用いる場合には、好ましくは透明な材料のみにより構成される。JIS 7105法に従って測定した全光線透過率は、80%以上であることが好ましく、さらに好ましくは85%以上であり、特に好ましくは88%以上である。
 しかしながら、可視光線や紫外線の透過を遮断させたい場合や、透明性がそれほど要求されない場合は、不透明なガスバリアフィルム積層体として作製してもよい。
When the gas barrier film laminate of the present invention is used for a photoelectric element, an OLED element, an OPV element or the like, it is preferably composed only of a transparent material. The total light transmittance measured according to the JIS 7105 method is preferably 80% or more, more preferably 85% or more, and particularly preferably 88% or more.
However, when it is desired to block transmission of visible light or ultraviolet light, or when transparency is not so required, an opaque gas barrier film laminate may be produced.
 本発明のガスバリアフィルム積層体は、有機膜層を備えることにより、使用環境において発生するカールしようとする内部応力を極力抑えたものであり、良好なカール防止性が発揮される。これにより、当該ガスバリアフィルム積層体を製造した後、デバイスへの組み込み工程等、別工程を経る場合において、良好な加工性が発揮される。また、カールに起因したクラックや膜剥がれも無く、良好なガスバリア性を維持できる。
 例えば、厚み125μmのPETフィルム上に積層して形成した本発明のガスバリアフィルム積層体を、100mm×100mmに裁断して定盤上に載置し、定規などの高さ測定器を用いて、定盤表面からカールして反っている箇所の高さ(定盤表面からの距離)の平均値を「カール高さ」とすると、カール高さは15mm以下であることが好ましく、さらに好ましくは10mm以下であり、特に好ましくは5mm以下である。なお「カール高さ」とは、四角いフィルムの4隅の高さの平均である。
By providing the organic film layer, the gas barrier film laminate of the present invention suppresses as much as possible the internal stress that tends to curl in the use environment, and exhibits good anti-curl properties. Thereby, after manufacturing the said gas barrier film laminated body, when passing through other processes, such as an assembly process to a device, favorable workability is exhibited. Further, there is no crack or film peeling due to curling, and good gas barrier properties can be maintained.
For example, the gas barrier film laminate of the present invention formed by laminating on a PET film having a thickness of 125 μm is cut into 100 mm × 100 mm, placed on a surface plate, and fixed using a height measuring instrument such as a ruler. When the average value of the height of curled portions from the board surface (distance from the surface of the surface board) is “curl height”, the curl height is preferably 15 mm or less, more preferably 10 mm or less. Especially preferably, it is 5 mm or less. The “curl height” is an average of the heights of the four corners of a square film.
 本発明のガスバリアフィルム積層体は、水蒸気や酸素等の各種ガスの遮断を必要とする用途に用いることができる。特に好ましくは、OLED素子またはOPV素子等の電子素子の各種ガスの遮断に有用に用いることができる。また、ガスバリアフィルム積層体が透明である場合には、OPV素子のような光電素子に用いた場合に、ガスバリアフィルム積層体の側から太陽光の受光を行うように構成できる。また、OLED素子に用いた場合に、素子からの発光を妨げないため発光効率を劣化させることがない。 The gas barrier film laminate of the present invention can be used for applications that require blocking of various gases such as water vapor and oxygen. Particularly preferably, it can be usefully used for blocking various gases of an electronic element such as an OLED element or an OPV element. Moreover, when a gas barrier film laminated body is transparent, when it uses for a photoelectric element like an OPV element, it can comprise so that sunlight reception may be performed from the gas barrier film laminated body side. Further, when used in an OLED element, light emission from the element is not hindered, so that the light emission efficiency is not deteriorated.
 図2(a)にOLED素子22を固体封止方式で有する電子部品の概略図を示す。正負電極と当該正負電極に挟まれた有機材料とを有するOLED素子22がガラス基板21上に配置され、さらにOLED素子22はその全体を固体封止剤23で覆われている。このような構成の電子部品において、図2(b)に示すように、ガラス基板21の替わりに本願のガスバリアフィルム積層体10を用いることができる。
 または、図3に示すように、OLED素子22を本願のガスバリアフィルム積層体10で挟んだサンドイッチ構造としてもよい。その場合は、接着剤25によりガスバリアフィルム積層体10を接着させるとよい。
FIG. 2A shows a schematic diagram of an electronic component having the OLED element 22 in a solid sealing system. An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on a glass substrate 21, and the OLED element 22 is entirely covered with a solid sealing agent 23. In the electronic component having such a configuration, the gas barrier film laminate 10 of the present application can be used in place of the glass substrate 21 as shown in FIG.
Or as shown in FIG. 3, it is good also as a sandwich structure which pinched | interposed OLED element 22 with the gas barrier film laminated body 10 of this application. In that case, the gas barrier film laminate 10 may be adhered by the adhesive 25.
 図4(a)にOLED素子を従来の中空構造で有する電子部品の概略図を示す。正負電極と当該正負電極に挟まれた有機材料とを有するOLED素子22がガラス基板21上に配置され、離間して存在するガラス封止材28に覆われている。ガラス基板21とガラス封止材28は、両側を接着剤25で接着(封止)されている。中空内部には水分を吸着する酸化カルシウム等のゲッター26が配置され、Nガス27で満たされている。このような構成の従来から存在する電子部品において、図4(b)に示すように、ガラス基板21とガラス封止材28の代替として、本願のガスバリアフィルム積層体10を用いることもできる。
 図2~4では、ガスバリアフィルム積層体10に代えてガスバリアフィルム積層体10’を用いてもよい。
FIG. 4A shows a schematic diagram of an electronic component having an OLED element with a conventional hollow structure. An OLED element 22 having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes is disposed on the glass substrate 21 and covered with a glass sealing material 28 that is present at a distance. The glass substrate 21 and the glass sealing material 28 are bonded (sealed) with an adhesive 25 on both sides. A getter 26 such as calcium oxide that adsorbs moisture is disposed inside the hollow, and is filled with N 2 gas 27. In the conventional electronic component having such a configuration, as shown in FIG. 4B, the gas barrier film laminate 10 of the present application can be used as an alternative to the glass substrate 21 and the glass sealing material 28.
2 to 4, a gas barrier film laminate 10 ′ may be used in place of the gas barrier film laminate 10.
 正負電極と当該正負電極に挟まれた半導体材料とを有するOPV素子においても、同様にガラス基板の代替として本願のガスバリアフィルム積層体を用いることができる。 Also in an OPV element having positive and negative electrodes and a semiconductor material sandwiched between the positive and negative electrodes, the gas barrier film laminate of the present application can be similarly used as an alternative to a glass substrate.
 このように、OLED素子、OPV素子、液晶素子などへの透明基板として、本発明のガスバリアフィルム積層体を用いると、軽量化、大型化という要求に答えることができる。さらに、ロール・ツー・ロール(ロール状に巻いた樹脂フィルム等の基材を送り出して、基材の表面に目的物質を成膜する等の加工を行った後、再びロール状に巻き取って回収する方法)での生産が可能であること、形状の自由度が高いこと、曲面表示が可能であること等の高度な要求を、重くて割れやすく大面積化が困難なガラス基板に替わって、満たすことができる。
 なお、従来から透明プラスチック等のフィルム基材は、ガラスに比してガスバリア性が劣るという問題があるが、本発明のガスバリアフィルム積層体を用いると、例えば、OLED素子やOPV素子等の電子部品の材料として用いた場合、ガスバリア性に優れた基板として、水(水蒸気)や酸素が浸透してデバイスを構成する成分が劣化し、性能が低下することを抑制することができる。
As described above, when the gas barrier film laminate of the present invention is used as a transparent substrate for OLED elements, OPV elements, liquid crystal elements, etc., it is possible to meet the demands for weight reduction and size increase. Furthermore, roll-to-roll (feeding a substrate such as a resin film wound in a roll shape, processing the target substance on the surface of the substrate, etc., and then winding it up again to collect it In place of glass substrates that are heavy, easy to break, and difficult to increase in area. Can be satisfied.
Conventionally, film base materials such as transparent plastics have a problem that gas barrier properties are inferior to glass, but when the gas barrier film laminate of the present invention is used, for example, electronic components such as OLED elements and OPV elements When used as a material, the substrate having excellent gas barrier properties can prevent water (water vapor) or oxygen from permeating and degrading components constituting the device, thereby reducing performance.
 以上のとおり本発明は、主に有機エレクトロルミネッセンス素子(OLED素子)や液晶エレメントに代表される表示素子、有機太陽電池素子(OPV素子)に代表される光電素子などの電子素子、あるいはOLED素子を用いた照明等の製品に用いることができるガスバリアフィルム積層体である。本発明のガスバリアフィルム積層体は、ガスバリア層の密着性に優れ、生産性が良好でカールが少なく、ガスバリア特性が良好であることを特長とする。 As described above, the present invention mainly includes electronic elements such as organic electroluminescent elements (OLED elements) and display elements typified by liquid crystal elements, photoelectric elements typified by organic solar cell elements (OPV elements), or OLED elements. It is a gas barrier film laminate that can be used for products such as lighting. The gas barrier film laminate of the present invention is characterized by excellent gas barrier layer adhesion, good productivity, low curl, and good gas barrier properties.
 以下に本発明を、実施例を用いて詳細に説明する。しかし本発明は、以下の実施例に記載された内容に限定されるものではない。 Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the contents described in the following examples.
<ガスバリア層の膜厚測定>
 走査型電子顕微鏡(SEM)を用いて、下記条件にてガスバリアフィルム積層体の断層面観察を行い、密着層とガスバリア層合計の膜厚およびガスバリア層の膜厚を測定した。
・SEM観察
 装置:日立製作所製SU-70
 加速電圧:10kV
<Measurement of film thickness of gas barrier layer>
Using a scanning electron microscope (SEM), the tomographic plane of the gas barrier film laminate was observed under the following conditions, and the total thickness of the adhesion layer and the gas barrier layer and the thickness of the gas barrier layer were measured.
・ SEM observation equipment: SU-70 manufactured by Hitachi, Ltd.
Acceleration voltage: 10 kV
<密着性の測定>
 作製したガスバリアフィルム積層体を、10cm四方に切り取り、ステンレス性の枠に貼り付け、温度85℃、湿度85%で保管し、ガスバリア層が剥がれるまで(密着性)の時間を測定した。
<Measurement of adhesion>
The produced gas barrier film laminate was cut into a 10 cm square, attached to a stainless steel frame, stored at a temperature of 85 ° C. and a humidity of 85%, and the time until the gas barrier layer was peeled off (adhesion) was measured.
<水蒸気透過率(WVTR)の測定>
 水蒸気透過率の測定方法は特に限定するところではないが、ガスバリアフィルム積層体の片面に金属カルシウムを蒸着し、CaをAlおよび蝋で封止し該フィルムを透過した水分で金属Caが腐食される現象を利用する方法を用いた。腐食面積とそこに到達する時間から水蒸気透過率を算出する。本発明においては、特許第3958235号に記載された方法および以下に示す条件にて評価を行った。
・本発明評価に用いたCa法
 蒸着装置:サンユー電子(株)製、電子ビーム真空蒸着装置SVC-700LEB
 恒温恒湿器:エスペック(株)製、恒温恒湿器LHL-113
 水分と反応して腐食する金属:カルシウム(粒状)
 Ca封止用水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 封止材:パラフィン(融点60~62℃)/蜜蝋(融点61~65℃)の重量比1:1の混合物
 観察装置:(株)三ツワフロンテック製カルシウム腐食観察装置MFB-1000
<Measurement of water vapor transmission rate (WVTR)>
The method for measuring the water vapor transmission rate is not particularly limited, but metallic calcium is vapor-deposited on one side of the gas barrier film laminate, Ca is sealed with Al and wax, and the metallic Ca is corroded by moisture that has passed through the film. A method using the phenomenon was used. The water vapor transmission rate is calculated from the corrosion area and the time to reach the corrosion area. In the present invention, the evaluation was performed by the method described in Japanese Patent No. 3958235 and the following conditions.
-Ca method used for evaluation of the present invention Vapor deposition apparatus: manufactured by Sanyu Electronics Co., Ltd., electron beam vacuum deposition apparatus SVC-700LEB
Constant temperature and humidity chamber: Espec Co., Ltd., constant temperature and humidity chamber LHL-113
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal for Ca sealing: Aluminum (φ3-5mm, granular)
Sealing material: mixture of paraffin (melting point 60-62 ° C) / beeswax (melting point 61-65 ° C) in a weight ratio of 1: 1 Observation device: Calcium corrosion observation device MFB-1000 manufactured by Mitsuwa Frontec Co., Ltd.
<X線光電子分光法(XPS)の測定>
 得られたガスバリアフィルム積層体について、下記条件にてXPSデプスプロファイル測定を行い、珪素分布曲線、酸素分布曲線、炭素分布曲線、およびエッチング時間からSiO換算膜厚を得た。
 装置:PHI Quantera SXM (ULVAC-PHI社製)
 照射X線:単色化AlKα
 X線ビーム径・出力:直径100μm,15KV,25W
 アルゴンエッチング分析:エッチングレート20nm/min.(SiO換算)
<Measurement of X-ray photoelectron spectroscopy (XPS)>
The obtained gas barrier film laminate, carried out XPS depth profile measurement under the following conditions to obtain a silicon distribution curve, oxygen distribution curve, the carbon distribution curve, and the SiO 2 equivalent thickness from the etching time.
Equipment: PHI Quantera SXM (ULVAC-PHI)
Irradiation X-ray: Monochromatic AlKα
X-ray beam diameter and output: Diameter 100 μm, 15 KV, 25 W
Argon etching analysis: Etching rate 20 nm / min. (SiO 2 conversion)
<実施例1>
・基材
 基材として、両面に易接着加工された厚さ125μm、幅550mmのロール状に巻き取られたポリエチレンテレフタレート(PET)フィルム(東洋紡(株)製、商品名「コスモシャインA4300」)を用いた。
<Example 1>
・ Base material As a base material, a polyethylene terephthalate (PET) film (trade name “Cosmo Shine A4300” manufactured by Toyobo Co., Ltd.) wound in a roll shape with a thickness of 125 μm and a width of 550 mm, which is easily bonded on both sides. Using.
・光硬化性樹脂組成物の塗布液の調製
 ユニディックV-6841(商品名、(メタ)アクリル酸エステルポリマー/アクリレートモノマー/メチルイソブチルケトン=25~35重量部/25~35重量部/35~45重量部の混合物、DIC(株)製UV硬化型コーティング剤):55重量部
 メチルエチルケトン(和光純薬工業(株)製溶剤):43重量部
 IC184(商品名、BASF社製光重合開始剤):2重量部
を調製した。
Preparation of coating solution for photocurable resin composition Unidic V-6841 (trade name, (meth) acrylate polymer / acrylate monomer / methyl isobutyl ketone = 25 to 35 parts by weight / 25 to 35 parts by weight / 35 to 45 parts by weight of a mixture, DIC Corporation UV curable coating agent): 55 parts by weight Methyl ethyl ketone (Wako Pure Chemical Industries, Ltd. solvent): 43 parts by weight IC184 (trade name, photopolymerization initiator manufactured by BASF) : 2 parts by weight were prepared.
・有機膜層の成膜
 ロール・ツー・ロール式グラビアコーターを用いて、上記基材上に、上記塗布液を乾燥後の平均膜厚が5μmになるように塗布した後、温度85℃、風量20m/秒、乾燥炉内滞留時間50秒で乾燥した。その後、窒素雰囲気下で高圧水銀ランプを用いて、照射量300mJ/cmで光硬化を行い、有機膜層を成膜した。
-Deposition of organic film layer Using a roll-to-roll gravure coater, the coating solution is applied on the substrate so that the average film thickness after drying is 5 µm, and then the temperature is 85 ° C and the air volume is Drying was performed at 20 m / second and a residence time in the drying furnace of 50 seconds. Thereafter, photocuring was performed at a dose of 300 mJ / cm 2 using a high-pressure mercury lamp in a nitrogen atmosphere to form an organic film layer.
・密着層の成膜
 前記、有機膜層を処理した基材の表面に、ロール・ツー・ロールで成膜可能な(株)神戸製鋼所製プラズマCVD装置(型番W35型)PE-CVDを用いて、密着層を成膜した。
 以下に示す条件にて、放電電極間にプラズマを発生させ、この放電領域に、成膜ガス(原料ガスとしてのHMDSOと酸化性ガスとしての酸素ガス(放電ガスとしても機能する)の混合ガス)を供給して、特開2012-81632記載の方法にてプラズマCVD法による薄膜成膜を行い、SiO換算膜厚140nmの密着層を得た。
 密着層は以下の条件で作製した。
 原料ガス:HMDSO(アズマックス(株)製、商品名「SIH6115.0」)
 供給量50sccm
 酸化性ガス:酸素ガス(鈴木商館(株)製高純度酸素、純度≧99.999%)
 供給量1000sccm
 圧力3Pa
 プラズマ電力1.3kW
 基材搬送速度1.0m/min.
・ Formation of adhesion layer Using the plasma CVD apparatus (model number W35 type) PE-CVD manufactured by Kobe Steel Co., Ltd., which can be formed by roll-to-roll on the surface of the base material treated with the organic film layer. Thus, an adhesion layer was formed.
Under the conditions shown below, plasma is generated between the discharge electrodes, and in this discharge region, a film forming gas (mixed gas of HMDSO as a source gas and oxygen gas as an oxidizing gas (also functions as a discharge gas)) Was supplied, and a thin film was formed by a plasma CVD method according to the method described in JP-A-2012-81632 to obtain an adhesion layer having a SiO 2 equivalent film thickness of 140 nm.
The adhesion layer was produced under the following conditions.
Source gas: HMDSO (manufactured by AZMAX Co., Ltd., trade name “SIH6115.0”)
Supply amount 50sccm
Oxidizing gas: Oxygen gas (manufactured by Suzuki Shokan Co., Ltd., high-purity oxygen, purity ≧ 99.999%)
Supply amount 1000sccm
Pressure 3Pa
Plasma power 1.3 kW
Substrate conveyance speed 1.0 m / min.
・ガスバリア層の成膜
 プラズマCVD法での成膜条件で酸素ガスを500SCCMとした以外は、密着層の成膜と同様のプラズマ成膜装置、成膜条件でガスバリア層を成膜した。
 積層したガスバリア層のSiO換算膜厚は560nmである。
 密着層とガスバリア層を合計したSEM膜厚は861nmである。
<実施例2>
・基材
 基材として、片面に易接着加工された厚さ125μm、幅550mmのロール状に巻き取られたポリエチレンナフタレート(PEN)フィルム(帝人デュポンフィルム(株)製、商品名「Q65HA」)を用いた。
 これ以外は、実施例1の光硬化性樹脂組成物の塗布液の調製、有機膜層の成膜、密着層の成膜、ガスバリア層の成膜と同様に作製した。
 積層したガスバリア層のSiO換算膜厚は590nmである。
 密着層とガスバリア層を合計したSEM膜厚は946nmである。
-Gas barrier layer deposition A gas barrier layer was deposited under the same plasma deposition apparatus and deposition conditions as those for the adhesion layer except that oxygen gas was changed to 500 SCCM under the deposition conditions in the plasma CVD method.
The laminated gas barrier layer has a SiO 2 equivalent film thickness of 560 nm.
The total SEM film thickness of the adhesion layer and the gas barrier layer is 861 nm.
<Example 2>
-Base material Polyethylene naphthalate (PEN) film (trade name “Q65HA”, manufactured by Teijin DuPont Films, Inc.) rolled into a roll with a thickness of 125 μm and a width of 550 mm that is easily bonded to one side as a base material Was used.
Other than this, it was produced in the same manner as the preparation of the coating solution of the photocurable resin composition of Example 1, the formation of the organic film layer, the formation of the adhesion layer, and the formation of the gas barrier layer.
The laminated gas barrier layer has a SiO 2 equivalent film thickness of 590 nm.
The total SEM film thickness of the adhesion layer and the gas barrier layer is 946 nm.
<比較例1>
 比較例1は、密着層は存在せず、ガスバリア層の膜厚が、SiO換算膜厚で700nmであり、SEM膜厚で917nmになるように処理した以外は、実施例1の基材、光硬化性樹脂組成物の塗布液の調製、有機膜層の成膜、ガスバリア層の成膜と同様に作製した。
<比較例2>
・基材
 基材として、片面に易接着加工された厚さ125μm、幅550mmのロール状に巻き取られたポリエチレンテレフタレート(PET)フィルム(東洋紡(株)製、商品名「コスモシャインA4100」)を用いた。
・ガスバリア層の成膜
 上記基材上に、プラズマCVD法での成膜条件でプラズマ電力を0.9kWとした以外は、実施例1のガスバリア層の成膜と同様のプラズマ成膜装置、成膜条件でガスバリア層を成膜した。
 積層したガスバリア層のSiO換算膜厚は690nmである。
 SEM膜厚は926nmである。
 比較例2は、密着層は存在せず、ガスバリア層の膜厚がSiO換算膜厚で690nmであり、SEM膜厚で926nmになるように処理した。光硬化性樹脂組成物の塗布液の調製、有機膜層の成膜は実施例1と同様に作製した。
<Comparative Example 1>
Comparative Example 1, the adhesion layer is not present, the thickness of the gas barrier layer is a 700nm of SiO 2 equivalent thickness, except treated so as to 917nm by SEM film thickness, substrate of Example 1, The photocurable resin composition was prepared in the same manner as in the preparation of the coating solution, the organic film layer, and the gas barrier layer.
<Comparative example 2>
-Base material As a base material, a polyethylene terephthalate (PET) film (trade name “Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.) wound in a roll shape with a thickness of 125 μm and a width of 550 mm that is easily bonded on one side. Using.
-Gas barrier layer film formation A plasma film formation apparatus and film formation similar to those of the gas barrier layer of Example 1 except that the plasma power was set to 0.9 kW under the film formation conditions by the plasma CVD method on the substrate. A gas barrier layer was formed under film conditions.
The laminated gas barrier layer has a SiO 2 equivalent film thickness of 690 nm.
The SEM film thickness is 926 nm.
In Comparative Example 2, the adhesion layer was not present, and the film thickness of the gas barrier layer was 690 nm in terms of SiO 2 , and the SEM film thickness was 926 nm. Preparation of the coating solution of the photocurable resin composition and film formation of the organic film layer were produced in the same manner as in Example 1.
 図6に、実施例1のXPSデプスプロファイルを示す。エッチング時間が0~約28分まではガスバリア層の原子数濃度を示し、約28分~約35分は密着層の原子数濃度を示している。約35分以降は有機膜層の原子数濃度である。
 図7に、実施例2のXPSデプスプロファイルを示す。エッチング時間が0~約26分まではガスバリア層の原子数濃度を示し、約26分~約32分は密着層の原子数濃度を示している。約32分以降は有機膜層の原子数濃度である。
 図8に、比較例1のXPSデプスプロファイルを示す。エッチング時間が0~約35分まではガスバリア層の原子数濃度であり、約35分以降は有機膜層の原子数濃度となる。
 図9に、比較例2のXPSデプスプロファイルを示す。エッチング時間が0~約45分まではガスバリア層の原子数濃度であり、約45分以降は有機膜層の原子数濃度となる。
FIG. 6 shows an XPS depth profile of the first embodiment. The etching time of 0 to about 28 minutes indicates the atomic number concentration of the gas barrier layer, and about 28 minutes to about 35 minutes indicates the atomic number concentration of the adhesion layer. After about 35 minutes, the atomic number concentration of the organic film layer is obtained.
FIG. 7 shows an XPS depth profile of the second embodiment. When the etching time is from 0 to about 26 minutes, the atomic number concentration of the gas barrier layer is shown, and from about 26 minutes to about 32 minutes, the atomic number concentration of the adhesion layer is shown. After about 32 minutes, the concentration is the number of atoms in the organic film layer.
FIG. 8 shows an XPS depth profile of Comparative Example 1. The etching time from 0 to about 35 minutes is the atomic concentration of the gas barrier layer, and after about 35 minutes is the atomic concentration of the organic film layer.
FIG. 9 shows an XPS depth profile of Comparative Example 2. The etching time from 0 to about 45 minutes is the atomic concentration of the gas barrier layer, and after about 45 minutes is the atomic concentration of the organic film layer.
 以下に測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明のガスバリアフィルム積層体は高いバリア性を有すると同時に、ガスバリア層が比較例1、2と比べ優れた密着性を示していることがわかる。
The measurement results are shown below.
Figure JPOXMLDOC01-appb-T000001
As is apparent from Table 1, it can be seen that the gas barrier film laminate of the present invention has high barrier properties, and at the same time, the gas barrier layer exhibits excellent adhesion compared to Comparative Examples 1 and 2.
 本発明は、主にOLED素子、OPV素子、液晶素子等の電子素子を有する電子部品に用いられるガスバリアフィルム積層体、および該ガスバリアフィルム積層体を備える電子部品に関する。 The present invention mainly relates to a gas barrier film laminate used for an electronic component having an electronic element such as an OLED element, an OPV element, or a liquid crystal element, and an electronic component including the gas barrier film laminate.
 本明細書中で引用する刊行物、特許出願および特許を含むすべての文献を、各文献を個々に具体的に示し、参照して組み込むのと、また、その内容のすべてをここで述べるのと同じ限度で、ここで参照して組み込む。 All publications, including publications, patent applications and patents cited herein are specifically incorporated by reference with reference to each reference individually, and the entire contents thereof are described herein. To the same extent, reference here is incorporated.
 本発明の説明に関連して(特に以下の請求項に関連して)用いられる名詞および同様な指示語の使用は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、単数および複数の両方に及ぶものと解釈される。語句「備える」、「有する」、「含む」および「包含する」は、特に断りのない限り、オープンエンドターム(すなわち「~を含むが限定しない」という意味)として解釈される。本明細書中の数値範囲の具陳は、本明細書中で特に指摘しない限り、単にその範囲内に該当する各値を個々に言及するための略記法としての役割を果たすことだけを意図しており、各値は、本明細書中で個々に列挙されたかのように、明細書に組み込まれる。本明細書中で説明されるすべての方法は、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、あらゆる適切な順番で行うことができる。本明細書中で使用するあらゆる例または例示的な言い回し(例えば「など」)は、特に主張しない限り、単に本発明をよりよく説明することだけを意図し、本発明の範囲に対する制限を設けるものではない。明細書中のいかなる言い回しも、本発明の実施に不可欠である、請求項に記載されていない要素を示すものとは解釈されないものとする。 The use of nouns and similar directives used in connection with the description of the invention (especially in connection with the claims below) is not specifically pointed out herein or clearly contradicted by context. , And construed to cover both singular and plural. The phrases “comprising”, “having”, “including” and “including” are to be interpreted as open-ended terms (ie, including but not limited to) unless otherwise specified. The use of numerical ranges in this specification is intended only to serve as a shorthand for referring individually to each value falling within that range, unless otherwise indicated herein. Each value is incorporated into the specification as if it were individually listed herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. Any examples or exemplary phrases used herein (eg, “etc.”) are intended only to better describe the invention, unless otherwise stated, and to limit the scope of the invention. is not. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
 本明細書中では、本発明を実施するため本発明者が知っている最良の形態を含め、本発明の好ましい実施の形態について説明している。当業者にとっては、上記説明を読んだ上で、これらの好ましい実施の形態の変形が明らかとなろう。本発明者は、熟練者が適宜このような変形を適用することを予期しており、本明細書中で具体的に説明される以外の方法で本発明が実施されることを予定している。従って本発明は、準拠法で許されているように、本明細書に添付された請求項に記載の内容の変更および均等物をすべて含む。さらに、本明細書中で特に指摘したり、明らかに文脈と矛盾したりしない限り、すべての変形における上記要素のいずれの組み合わせも本発明に包含される。 In this specification, preferred embodiments of the present invention are described, including the best mode known to the inventors for carrying out the invention. Variations of these preferred embodiments will become apparent to those skilled in the art after reading the above description. The inventor anticipates that skilled artisans will apply such variations as appropriate and intends to implement the invention in ways other than those specifically described herein. . Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
10、10’  ガスバリアフィルム積層体
11  樹脂フィルム
12  有機膜層
13  密着層
14  ガスバリア層
21  ガラス基板
22  電子素子、OLED素子
23  固体封止剤
25  接着剤
26  ゲッター
27  Nガス
28  ガラス封止材
31  送り出しロール
32  巻き取りロール
33  ローラ
 
10, 10 ′ Gas barrier film laminate 11 Resin film 12 Organic film layer 13 Adhesion layer 14 Gas barrier layer 21 Glass substrate 22 Electronic element, OLED element 23 Solid sealant 25 Adhesive 26 Getter 27 N 2 gas 28 Glass sealant 31 Feeding roll 32 Winding roll 33 Roller

Claims (10)

  1.  基材となる樹脂フィルムと;
     前記樹脂フィルムの少なくとも片面側に成膜された、1.8<x<2.2を満たす、組成にSiOを含む化合物を含有する密着層、または、0<y<0.15を満たす、組成にSiCを含む化合物を含有する密着層と;
     前記密着層の上に成膜された、1.1≦x≦1.9、0≦y≦0.9を満たす、組成にSiOを含む化合物を含有するガスバリア層とを備える;
     ガスバリアフィルム積層体。
    A resin film as a substrate;
    Formed on at least one side of the resin film, satisfying 1.8 <x <2.2, an adhesion layer containing a compound containing SiO x in the composition, or satisfying 0 <y <0.15, An adhesion layer containing a compound containing SiC y in the composition;
    Said deposited on the adhesion layer, satisfy 1.1 ≦ x ≦ 1.9,0 ≦ y ≦ 0.9, and a gas barrier layer containing a compound containing SiO x C y in the composition;
    Gas barrier film laminate.
  2.  前記密着層の厚みが、10~500nmである、
     請求項1に記載のガスバリアフィルム積層体。
    The adhesion layer has a thickness of 10 to 500 nm.
    The gas barrier film laminate according to claim 1.
  3.  前記密着層と前記ガスバリア層が、プラズマCVD法により連続的に成膜され、
     前記密着層の成膜時の成膜ガス中の反応性ガスの割合が、前記ガスバリア層の成膜時の成膜ガス中の反応性ガスの割合よりも多い、
     請求項1または請求項2に記載のガスバリアフィルム積層体。
    The adhesion layer and the gas barrier layer are continuously formed by a plasma CVD method,
    The ratio of the reactive gas in the film forming gas at the time of forming the adhesion layer is larger than the ratio of the reactive gas in the film forming gas at the time of forming the gas barrier layer.
    The gas barrier film laminate according to claim 1 or 2.
  4.  前記密着層の成膜時の成膜ガス中の反応性ガスの割合が、前記ガスバリア層の成膜時の成膜ガス中の反応性ガスの割合の1.2~4.0倍である、
     請求項3に記載のガスバリアフィルム積層体。
    The ratio of the reactive gas in the film forming gas at the time of forming the adhesion layer is 1.2 to 4.0 times the ratio of the reactive gas in the film forming gas at the time of forming the gas barrier layer.
    The gas barrier film laminate according to claim 3.
  5.  前記樹脂フィルムが、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリカーボネート、ポリイミド、またはこれらの混合物である樹脂を主成分としたフィルムである、
     請求項1~4のいずれか1項に記載のガスバリアフィルム積層体。
    The resin film is a film mainly composed of a resin that is polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polycarbonate, polyimide, or a mixture thereof.
    The gas barrier film laminate according to any one of claims 1 to 4.
  6.  40℃、90%RHにおける水蒸気透過率が0.005g/m/day以下である、
     請求項1~5のいずれか1項に記載のガスバリアフィルム積層体。
    The water vapor transmission rate at 40 ° C. and 90% RH is 0.005 g / m 2 / day or less,
    The gas barrier film laminate according to any one of claims 1 to 5.
  7.  前記樹脂フィルムと前記密着層に挟まれた有機膜層を備える;
     請求項1~6のいずれか1項に記載のガスバリアフィルム積層体。
    An organic film layer sandwiched between the resin film and the adhesion layer;
    The gas barrier film laminate according to any one of claims 1 to 6.
  8.  前記有機膜層が、光硬化性樹脂組成物を光重合させて得られた層である、
     請求項7に記載のガスバリアフィルム積層体。
    The organic film layer is a layer obtained by photopolymerizing a photocurable resin composition.
    The gas barrier film laminate according to claim 7.
  9.  正負電極と前記正負電極に挟まれた有機材料とを有する電子素子と;
     前記電子素子を水蒸気から保護する、請求項1~8のいずれか1項に記載のガスバリアフィルム積層体とを備える;
     電子部品。
    An electronic device having positive and negative electrodes and an organic material sandwiched between the positive and negative electrodes;
    The gas barrier film laminate according to any one of claims 1 to 8, which protects the electronic element from water vapor;
    Electronic components.
  10.  前記ガスバリアフィルム積層体が、透明であり、
     前記電子素子が、OLED素子またはOPV素子である、
     請求項9に記載の電子部品。
     
    The gas barrier film laminate is transparent,
    The electronic element is an OLED element or an OPV element;
    The electronic component according to claim 9.
PCT/JP2015/066934 2014-06-13 2015-06-11 Gas barrier film laminate and electronic component employing same WO2015190572A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016527871A JPWO2015190572A1 (en) 2014-06-13 2015-06-11 Gas barrier film laminate and electronic component using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-122794 2014-06-13
JP2014122794 2014-06-13

Publications (1)

Publication Number Publication Date
WO2015190572A1 true WO2015190572A1 (en) 2015-12-17

Family

ID=54833658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066934 WO2015190572A1 (en) 2014-06-13 2015-06-11 Gas barrier film laminate and electronic component employing same

Country Status (3)

Country Link
JP (1) JPWO2015190572A1 (en)
TW (1) TW201601914A (en)
WO (1) WO2015190572A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138823A1 (en) * 2017-01-26 2018-08-02 シャープ株式会社 Oled panel, method for manufacturing oled panel, and device for manufacturing oled panel
CN109154081A (en) * 2016-09-06 2019-01-04 株式会社丽光 Transparent high screened film and the high shielding laminate for having used it
WO2023181489A1 (en) * 2022-03-25 2023-09-28 富士フイルム株式会社 Laminate and method for producing laminate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290560A (en) * 2004-04-05 2005-10-20 Schott Ag Composite material having improved chemical resistance
WO2010093041A1 (en) * 2009-02-16 2010-08-19 三菱樹脂株式会社 Process for producing multilayered gas-barrier film
JP2012193449A (en) * 2011-03-01 2012-10-11 Toppan Printing Co Ltd Gas barrier film, and method and device for producing the same
WO2013011872A1 (en) * 2011-07-15 2013-01-24 コニカミノルタホールディングス株式会社 Gas barrier film and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290560A (en) * 2004-04-05 2005-10-20 Schott Ag Composite material having improved chemical resistance
WO2010093041A1 (en) * 2009-02-16 2010-08-19 三菱樹脂株式会社 Process for producing multilayered gas-barrier film
JP2012193449A (en) * 2011-03-01 2012-10-11 Toppan Printing Co Ltd Gas barrier film, and method and device for producing the same
WO2013011872A1 (en) * 2011-07-15 2013-01-24 コニカミノルタホールディングス株式会社 Gas barrier film and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109154081A (en) * 2016-09-06 2019-01-04 株式会社丽光 Transparent high screened film and the high shielding laminate for having used it
CN109154081B (en) * 2016-09-06 2020-12-08 株式会社丽光 Transparent high-barrier film and high-barrier laminate using same
WO2018138823A1 (en) * 2017-01-26 2018-08-02 シャープ株式会社 Oled panel, method for manufacturing oled panel, and device for manufacturing oled panel
CN110226361A (en) * 2017-01-26 2019-09-10 夏普株式会社 Oled panel, the manufacturing method of oled panel, the manufacturing device of oled panel
WO2023181489A1 (en) * 2022-03-25 2023-09-28 富士フイルム株式会社 Laminate and method for producing laminate

Also Published As

Publication number Publication date
JPWO2015190572A1 (en) 2017-04-20
TW201601914A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
JP5929775B2 (en) Gas barrier film, method for producing the same, and electronic device including the gas barrier film
JP4589128B2 (en) Gas barrier film that prevents bending
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
WO2013011872A1 (en) Gas barrier film and method for producing same
JP6398986B2 (en) Gas barrier film
JP6424671B2 (en) Gas barrier film laminate and electronic component using the same
JP5983454B2 (en) Gas barrier film
WO2014178332A1 (en) Gas barrier film and method for producing same
WO2016043141A1 (en) Gas barrier film
WO2015190572A1 (en) Gas barrier film laminate and electronic component employing same
WO2015115510A1 (en) Gas-barrier film and method for manufacturing same
WO2015186434A1 (en) Gas barrier film
WO2014103756A1 (en) Gas-barrier film
JP2014141055A (en) Gas barrier film
JP6409258B2 (en) Gas barrier film laminate and electronic component using the same
WO2014097997A1 (en) Electronic device
WO2015083706A1 (en) Gas barrier film and method for producing same
JP5895855B2 (en) Method for producing gas barrier film
JP6354302B2 (en) Gas barrier film
WO2014125877A1 (en) Gas barrier film
KR102355268B1 (en) Gas barrier film
WO2015029732A1 (en) Gas barrier film and process for manufacturing gas barrier film
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
JP2015168238A (en) Method of producing composite laminated film
JP2015047790A (en) Gas barrier film and electronic device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807529

Country of ref document: EP

Kind code of ref document: A1