WO2016159206A1 - Gas barrier film and method for manufacturing same - Google Patents

Gas barrier film and method for manufacturing same Download PDF

Info

Publication number
WO2016159206A1
WO2016159206A1 PCT/JP2016/060602 JP2016060602W WO2016159206A1 WO 2016159206 A1 WO2016159206 A1 WO 2016159206A1 JP 2016060602 W JP2016060602 W JP 2016060602W WO 2016159206 A1 WO2016159206 A1 WO 2016159206A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
barrier layer
carbon
barrier film
Prior art date
Application number
PCT/JP2016/060602
Other languages
French (fr)
Japanese (ja)
Inventor
廣瀬 達也
和喜 田地
千明 門馬
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017510168A priority Critical patent/JPWO2016159206A1/en
Publication of WO2016159206A1 publication Critical patent/WO2016159206A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same, and more particularly to a gas barrier film excellent in gas barrier performance, bending resistance and adhesion and a method for producing the same.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film prevents deterioration due to various gases such as water vapor and oxygen. Therefore, it is used in applications for packaging articles that require shutoff of various gases.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film prevents deterioration due to various gases such as water vapor and oxygen. Therefore, it is used in applications for packaging articles that require shutoff of various gases.
  • it is used for sealing electronic devices such as solar cells, liquid crystal display elements, organic electroluminescence elements (hereinafter also referred to as organic EL elements). Has also been used.
  • a film having a gas barrier layer formed on a substrate such as a film by a plasma chemical vapor deposition method (hereinafter also referred to as a plasma CVD method (CVD: Chemical Vapor Deposition)),
  • a plasma CVD method Chemical Vapor Deposition
  • a gas barrier performance and bending resistance are formed by forming a composition film in which the ratio of carbon amount to oxygen amount (C / O) continuously changes in the thickness direction of the gas barrier layer. It is known that a gas barrier layer that can satisfy both of these requirements can be formed (see, for example, Patent Document 4).
  • Such a barrier film can form a dense film by converging plasma with a magnetic field, and can continuously change the carbon / oxygen content in the gas barrier layer. In this case, a decrease in gas barrier properties is suppressed.
  • adhesion and bending resistance after holding in a high temperature and high humidity environment are not sufficient.
  • JP 2009-255040 A Japanese Patent No. 3511325 JP 2012-106421 A JP 2012-96531 A
  • the present invention has been made in view of the above problems and situations, and a solution to that problem is to provide a gas barrier film excellent in gas barrier performance, bending resistance and adhesion, and a method for producing the same.
  • the present inventor in the process of examining the cause of the above problems, the carbon / oxygen distribution curve in which the ratio between the carbon amount and the oxygen amount in the gas barrier layer is plotted in the thickness direction is thick.
  • the carbon / oxygen distribution curve in which the ratio between the carbon amount and the oxygen amount in the gas barrier layer is plotted in the thickness direction is thick.
  • it has many maximum values, and by shortening the interval between adjacent maximum values, gas barrier performance, bending resistance and adhesion are improved.
  • the inventors have found that an excellent gas barrier film can be obtained, and have reached the present invention.
  • a gas barrier film having a gas barrier layer on a flexible substrate The gas barrier film satisfies the following requirements (1) and (2).
  • the gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements.
  • a carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer The ratio (n / d) to the thickness (d) is 0.10 / nm or more.
  • the gas barrier film is produced by a plasma chemical vapor deposition method using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates at least a magnetic field. Manufacturing method.
  • the flexible substrate is transported while being brought into contact with each of the pair of film forming rollers, the film forming gas is supplied between the pair of film forming rollers in the film forming chamber, and Performing a plasma discharge while removing moisture and forming a gas barrier layer on the substrate;
  • the apparatus used for the plasma enhanced chemical vapor deposition method can converge the plasma near the counter roller electrode by using a magnetic field, and as a result, a dense gas barrier layer can be formed.
  • the apparatus Since the apparatus has a structure having a magnetic field generating member having an N pole and an S pole in each of a pair of opposed roller electrodes, a region having a strong and weak plasma discharge intensity exists between the pair of opposed roller electrodes due to the magnetic field. And the composition of the gas barrier layer can be continuously changed depending on the region.
  • the carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer
  • the thickness of each region (oxygen-rich layer) containing a large amount of oxygen that is considered to be weak against stress can be reduced.
  • the oxygen-rich layer is sandwiched between regions containing a large amount of carbon (carbon-rich layer) when the oxygen-rich layer is thin, it is considered that cracks are less likely to occur due to stress. In addition, it is considered that the resistance to the stress generated by the thermal deformation of the substrate when stored in a high temperature and high humidity environment is similarly increased and the durability is improved.
  • Example of configuration of gas barrier film of the present invention Another example of the structure of the gas barrier film of the present invention An example of the distribution curve of carbon, nitrogen, oxygen and silicon atoms in the thickness direction according to the XPS depth profile of the gas barrier layer according to the present invention An example of the carbon / oxygen distribution curve in the thickness direction according to the XPS depth profile of the gas barrier layer according to the present invention Schematic showing an example of gas barrier film manufacturing equipment Enlarged view of film formation space of gas barrier film manufacturing equipment
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer on a flexible substrate, and the gas barrier layer satisfies the requirements (1) and (2).
  • This feature is a technical feature common to the inventions according to claims 1 to 9.
  • 80% or more of the interval between adjacent maximum values is preferably in the range of 2 to 15 nm from the viewpoint of the effect of the present invention.
  • all the intervals between adjacent maximum values are in the range of 2 to 15 nm.
  • the manufacturing method is an embodiment in which the plasma is generated by plasma chemical vapor deposition using plasma generated in this manner.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the gas barrier film of the present invention is a gas barrier film having a gas barrier layer on a flexible substrate,
  • the gas barrier layer satisfies the following requirements (1) and (2).
  • the gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements.
  • a carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer
  • the ratio (n / d) to the thickness (d) is 0.10 / nm or more.
  • Plastruction chemical vapor deposition method using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member for generating a magnetic field is simply referred to as “plasma CVD method between roller electrodes” in the present application. Or, more simply, “plasma CVD method”.
  • the ratio of the carbon amount to the total amount of silicon, oxygen, and carbon which is measured by the XPS depth profile described later, is expressed as “carbon atom ratio (at%)”, the ratio of the oxygen amount to the total amount of silicon, oxygen, and carbon. Is referred to as “oxygen atomic ratio (at%)”, and the ratio of the amount of silicon to the total amount of silicon, oxygen and carbon is referred to as “silicon atomic ratio (at%)”. In any case, the total amount of silicon, oxygen and carbon is 100 at%.
  • the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is specifically profiled by a carbon / oxygen distribution curve.
  • the carbon / oxygen distribution curve refers to a continuous distribution curve in which the distance (L) from the surface of the gas barrier layer according to the present invention is plotted on the horizontal axis and the ratio of the carbon amount to the oxygen content is plotted on the vertical axis.
  • Measurement of the silicon content, oxygen content, and carbon content with respect to the distance (L) from the gas barrier layer surface is performed by the element distribution measurement in the depth direction (hereinafter also referred to as XPS depth profile) by the following X-ray photoelectron spectroscopy. Can do.
  • XPS depth profile The amount of silicon, the amount of oxygen, and the amount of carbon of the gas barrier layer according to the present invention can be measured by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be obtained by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while being exposed.
  • XPS depth profile measurement in which surface composition analysis is sequentially performed while being exposed.
  • the vertical axis is the atomic ratio (at%) of each element, or the ratio of the carbon amount to the oxygen amount, and the horizontal axis Can be created as the etching time (sputtering time).
  • the etching time is generally correlated with the distance (L) in the layer thickness direction from the surface of the gas barrier layer according to the present invention.
  • the layer thickness (nm) in terms of SiO 2 is used as the distance (L) in the layer thickness direction from the surface of the gas barrier layer.
  • the layer thickness (nm) in terms of SiO 2 is also referred to as the sputter depth (nm).
  • the distribution curve representing the atomic ratio (at%) of each element and the ratio of carbon amount to oxygen amount (C / O) are determined by measuring the silicon amount, oxygen amount, and carbon amount under the following measurement conditions. Created.
  • Etching ion species Argon (Ar + ) Etching rate (equivalent to SiO 2 thermal oxide film): 0.01 nm / sec
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ m ⁇ 400 ⁇ m oval.
  • the maximum value in the present invention can be obtained from a curve obtained by measuring the carbon / oxygen distribution curve in the layer thickness direction measured by the above-mentioned XPS depth profile and plotting the above-mentioned SiO 2 equivalent layer thickness every 1 nm. .
  • each maximum value is calculated from the SiO 2 equivalent layer thickness (sputter depth (nm)) from the surface of the gas barrier layer according to the present invention.
  • the interval between adjacent maximum values refers to the present invention in the thickness direction of the gas barrier layer according to the present invention between one maximum value of the carbon / oxygen distribution curve and the maximum value adjacent to the maximum value. It refers to the absolute value of the difference in distance (L) from the surface of the gas barrier layer (hereinafter also simply referred to as “interval between maximum values”).
  • the “maximum value” in the carbon / oxygen distribution curve refers to the maximum value of C / O (carbon content / oxygen content) in the carbon / oxygen distribution curve.
  • the maximum value in the carbon / oxygen distribution curve means that the value of the atomic ratio of the carbon amount to the oxygen amount changes from increasing to decreasing when the distance from the surface of the gas barrier layer according to the present invention is changed.
  • the carbon / oxygen distribution curve in the layer thickness direction measured by the above-described evaluation method is measured by sputtering at the above-described etching rate, and the composition is about 0.20 nm within 1 nm as the SiO 2 equivalent layer thickness. Is measured 5 times. It is obtained from a carbon / oxygen distribution curve in which the average value of the five times is plotted.
  • FIG. 1A shows an example.
  • the gas barrier film 10 a is a gas barrier film in which the gas barrier layer 3 is laminated on the substrate 1.
  • providing the smooth layer 2 as an organic layer between the base material 1 and the gas barrier layer 3 improves the adhesion between the base material and the gas barrier layer, or the unevenness of the base material interface is a thin layer. This is a preferred embodiment in order to make it difficult to affect a certain gas barrier layer.
  • the gas barrier film 10b of this invention which is another aspect is equipped with the smooth layer 2 on the resin base material 1, as shown to FIG. 1B, for example, and the gas barrier layer 3 is laminated
  • a second gas barrier layer 5 containing a metal oxide may be laminated on the gas barrier layer 3.
  • An overcoat layer 6 may be laminated on the second gas barrier layer 5.
  • the gas barrier layer according to the present invention is characterized in that the gas barrier layer satisfies the following requirements (1) and (2).
  • the gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements.
  • a carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer
  • the ratio (n / d) to the thickness (d) is 0.10 / nm or more.
  • the thickness of the gas barrier layer according to the present invention is not particularly limited. In order to improve the gas barrier performance while making it difficult to cause defects, it can be in the range of 20 to 1000 nm. In the present invention, in order to increase the number of maximum values in the carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction, the gas barrier layer is formed once.
  • the hit layer thickness is preferably in the range of 10 to 100 nm, and more preferably in the range of 20 to 40 nm. Thus, by reducing the layer thickness per film formation process and performing the film formation process a plurality of times, the number of local maximum values per unit layer thickness in the thickness direction of the gas barrier layer can be increased.
  • per film forming process means that in the film forming apparatus that performs plasma CVD including the counter roller electrode, a flexible base material passes through each of the pair of counter roller electrodes to form a gas barrier layer. This process is referred to as “one film formation process”.
  • the gas barrier layer according to the present invention may have a laminated structure including a plurality of sublayers.
  • the number of sublayers is preferably 2 to 30.
  • each sublayer may have the same composition or a different composition.
  • the “gas barrier property” as used in the present invention is, for example, a water vapor transmission rate measured by a method according to JIS K 7129-1992, or an oxygen transmission rate measured by a method according to JIS K 7126-1987. Indicated. In general, if the water vapor transmission rate is 1 g / (m 2 ⁇ day) or less or the oxygen transmission rate is 1 mL / (m 2 ⁇ day ⁇ atm) or less, it is said to have gas barrier properties. Furthermore, if the water vapor transmission rate is less than 5 ⁇ 10 ⁇ 3 g / (m 2 ⁇ day), it is said to have high gas barrier properties, and can be used for electronic devices such as organic EL, electronic paper, solar cells, and LCDs. .
  • the gas barrier layer according to the present invention is characterized by containing silicon, oxygen, and carbon as constituent elements as the requirement (1).
  • carbon is present in addition to silicon and oxygen.
  • gas barrier properties can be imparted by the presence of silicon and oxygen, and bending resistance can be imparted to the gas barrier layer by the presence of carbon.
  • the gas barrier layer according to the present invention includes a silicon distribution curve indicating a relationship between a distance (L) from the surface of the gas barrier layer according to the present invention in the thickness direction of the gas barrier layer according to the present invention and a silicon atomic ratio, L
  • L silicon atomic ratio
  • the region has an order magnitude relationship represented by the following formula (A) or the following formula (B).
  • Formula (A) (carbon atom ratio) ⁇ (silicon atom ratio) ⁇ (oxygen atom ratio)
  • Formula (B) (oxygen atom ratio) ⁇ (silicon atom ratio) ⁇ (carbon atom ratio)
  • at least 80% or more of the thickness of the gas barrier layer according to the present invention does not have to be continuous in the gas barrier layer, and only needs to satisfy the above-described relationship at a portion of 80% or more. .
  • the relationship between the oxygen atom ratio, the silicon atom ratio, and the carbon atom ratio is more preferably satisfied in a region of at least 90% or more (upper limit: 100%) of the thickness of the gas barrier layer, and at least 93 More preferably, it is satisfied in an area of at least% (upper limit: 100%).
  • the atomic ratio satisfies C ⁇ Si ⁇ O, and the order magnitude relationship represented by the formula (A) is satisfied. Is preferred. By satisfying such conditions, the obtained gas barrier film has sufficient gas barrier properties and bending resistance.
  • the silicon atom ratio in the gas barrier layer is preferably in the range of 25 to 45 at%, and more preferably in the range of 30 to 40 at%.
  • the oxygen atom ratio in the gas barrier layer according to the present invention is preferably in the range of 20 to 67 at%, more preferably in the range of 25 to 67 at%.
  • the carbon atom ratio in the layer is preferably in the range of 3 to 50 at%, more preferably in the range of 3 to 40 at%.
  • the total amount of carbon and oxygen atoms with respect to the thickness direction of the gas barrier layer according to the present invention is preferably substantially constant.
  • the gas barrier layer according to the present invention exhibits moderate bending resistance, and the generation of cracks when the gas barrier film is bent can be more effectively suppressed / prevented.
  • the absolute value of the difference between the maximum and minimum total oxygen and carbon atomic ratios in the distribution curve (hereinafter also simply referred to as “OC max ⁇ OC min difference”) is less than 5 at%.
  • the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of the OC max -OC min difference since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
  • the gas barrier layer according to the present invention is in the direction of the film surface (on the surface of the gas barrier layer according to the present invention). It is preferably substantially uniform in the (parallel direction).
  • the gas barrier layer according to the present invention is substantially uniform in the film surface direction means that the oxygen distribution at any two measurement points on the film surface of the gas barrier layer according to the present invention by XPS depth profile measurement.
  • the number of local maximum values of the carbon distribution curve obtained at any two measurement locations is the same, and each carbon distribution curve
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is the same as each other or within 5 at%.
  • the carbon distribution curve is substantially continuous.
  • substantially continuous carbon distribution curve means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time. In the relationship between the distance from the surface in the thickness direction of the gas barrier layer (x, unit: nm) and the atomic ratio of carbon (C, unit: at%), the condition represented by the following formula (1) Satisfying.
  • the method for forming a gas barrier layer according to the present invention includes a plasma chemical vapor deposition method (plasma CVD method) using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member for generating a magnetic field. Preferably it is formed.
  • plasma CVD method plasma chemical vapor deposition method
  • the gas barrier layer As a material of the gas barrier layer according to the present invention, it is a material having a function of suppressing the ingress of gas such as water and oxygen causing deterioration of the performance of the electronic device in which the gas barrier film is used.
  • Inorganic silicon compounds such as silicon oxide, silicon oxynitride, silicon dioxide, and silicon nitride, organic silicon compounds, and the like can be used.
  • the gas barrier layer is preferably formed by oxidizing or nitriding a gas in which an organosilicon compound is vaporized.
  • a carbon / oxygen distribution curve obtained by plotting a value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer in the thickness direction has a maximum value, and the maximum The ratio (n / d) between the number of values (n) and the thickness (d) of the gas barrier layer is 0.10 / nm or more.
  • the carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer
  • the maximum value is large, the thickness of each oxygen-rich layer that is considered to be weak against stress can be reduced.
  • the oxygen-rich layer is sandwiched between the carbon-rich layers while the oxygen-rich layer is thin, it is considered that cracks are unlikely to occur due to stress.
  • the resistance to the stress generated by the thermal deformation of the base material when stored in a high temperature and high humidity environment is similarly increased and the durability is improved.
  • the maximum value per unit layer thickness is large. Therefore, in the carbon / oxygen distribution curve, the interval between the maximum values is preferably narrow. That is, in the carbon / oxygen distribution curve, it is preferable that 80% or more of the interval between adjacent maximum values is in the range of 2 to 15 nm.
  • the interface side of the base material is a trace amount of water held by the base material (herein, the base material includes a form in which the base material is processed or has an organic layer on the base material).
  • the base material includes a form in which the base material is processed or has an organic layer on the base material.
  • it may be released into the plasma discharge space to promote the oxidation of the film, impair the continuous gradient of the composition of carbon and oxygen, and widen the interval between the maximum values in the carbon / oxygen distribution curve. It has been found that the bending resistance is deteriorated as the carbon amount is reduced. For this reason, in particular, in the carbon / oxygen distribution curve in the gas barrier film within a distance range from the interface of the substrate to 30 nm, all the intervals between the adjacent maximum values are in the range of 2 to 15 nm. Is preferred.
  • 80% or more of the interval between the adjacent maximum values is in the range of 2 to 5 nm, and more preferably, in the carbon / oxygen distribution curve, All of the intervals between adjacent maxima are in the range of 2-5 nm.
  • the layer thickness can be controlled by the following method.
  • the amount of raw material to be introduced For example, if the amount of an organosilicon compound described later is increased, the amount of raw material decomposed in the plasma space increases, and thus the layer thickness increases.
  • the maximum value in the carbon / oxygen distribution curve is usually (number of passes ⁇ 2), and the number of maximum values is dominated by the number of passes through two rollers regardless of the layer thickness. Therefore, the ratio (n / d) between the number of maximum values (n) in the barrier layer and the thickness (d) of the gas barrier layer can be controlled by appropriately controlling the above (i) to (iv). it can. Specifically, a gas barrier having many local maximum values in a carbon / oxygen distribution curve by reducing the thickness of a layer formed by a single film formation process and passing through the discharge space of the plasma CVD many times. A layer can be formed. Note that the number of maximum values can also be adjusted by changing conditions such as a reactive atmosphere in the deposition chamber.
  • the interval between the maximum values may be wide.
  • a region in which a certain amount of carbon is distributed in the thickness direction of the layer is necessary, but in order to form the gas barrier layer, film formation is performed at a higher substrate transport speed,
  • film formation is performed under conditions that increase productivity, such as increasing the temperature of the film formation roller, a region with a reduced carbon distribution is likely to be formed in a specific range on the side in contact with the substrate interface due to the influence of moisture described above. It is believed that there is. In particular, this phenomenon is likely to occur in the first film formation process in the formation of a multilayer film by plasma CVD.
  • the influence of such moisture is particularly large in the vicinity of the interface of the base material that greatly affects the adhesion between the base material and the gas barrier layer, and thus the gas barrier within a distance range from the base material interface to 30 nm. In the layer, it is effective and preferable to shorten the interval between the maximum values in the carbon / oxygen distribution curve.
  • the “substrate interface” as used in the present invention plots XPS depth profile data from the gas barrier layer surface in the depth direction in the silicon atomic ratio (at%) profile and the carbon atomic ratio (at%) profile. Then, a point P where the silicon atomic ratio changes by ⁇ 0.5 at% / nm or more and the carbon atomic ratio changes by +1.0 at% or more is defined as “substrate interface”.
  • the surface of the sample is irradiated with X-rays under vacuum, and the kinetic energy of photoelectrons emitted from the surface into the vacuum by the photoelectric effect is observed to obtain information on the elemental composition and chemical state of the surface.
  • X-rays reach not only the film but also the base material, and are affected by this, so that there is a compositionally mixed transition region. It is difficult to specify a clear position as an interface. Therefore, the “base material interface” as used in the present invention is a transition region in which both the gas barrier layer component and the base material component are detected, and the point P which is the above change point is the “base material interface”. Defined.
  • FIG. 2A and FIG. 2B are examples of the distribution curve and carbon / oxygen distribution curve of each element in the thickness direction according to the XPS depth profile of the gas barrier layer according to the present invention.
  • FIG. 2A shows XPS depth profiles of carbon, nitrogen, oxygen and silicon atoms.
  • FIG. 2B shows a carbon / oxygen distribution curve.
  • the ratio (atomic%) of the carbon amount to the oxygen amount on the vertical axis is simply expressed as a C / O ratio.
  • the horizontal axis represents the sputter depth (thickness) from the barrier layer surface.
  • the point P where the silicon atom ratio changes by ⁇ 0.5 at% / nm or more and the carbon atom ratio changes by +1.0 at% or more is the sputter depth of 115.6 nm.
  • To 30 nm corresponds to a range of sputter depth of 85.6 to 115.6 nm.
  • the carbon / oxygen distribution curve has many local maximum values, and the interval between the local maximum values in the gas barrier layer is narrow.
  • the carbon amount is distributed within a range of 10 to 30 at% as a carbon atom ratio within a distance range of 30 nm from the substrate interface.
  • ⁇ Method for producing gas barrier layer >>
  • the method for producing a gas barrier film of the present invention has high productivity, plasma chemical vapor deposition using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates at least a magnetic field. It is preferable to manufacture by the method (plasma CVD method).
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • a pair of film forming rollers function as a pair of counter electrodes. Is preferred.
  • a pair of film-forming rollers is used, and a base material is used for each of the pair of film-forming rollers (herein, the base material includes a form in which the base material is processed or has an organic layer on the base material). It is more preferable that a plasma is generated by disposing and discharging between a pair of film forming rollers.
  • the film formation rate can be doubled compared to the normal plasma CVD method without using a roller, and a film with almost the same structure can be formed, so that the maximum value in the carbon distribution curve can be at least doubled. It becomes.
  • the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation.
  • the gas barrier layer according to the present invention is preferably a layer formed by a continuous film forming process.
  • the gas barrier film according to the present invention is preferably formed from the viewpoint of productivity by forming the gas barrier layer according to the present invention on the surface of the substrate by a roll-to-roll method.
  • An apparatus that can be used when forming a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source. It is preferable that the apparatus has a configuration capable of discharging between the film rollers. For example, when the manufacturing apparatus shown in FIG. 3 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
  • FIG. 3 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing the gas barrier layer according to the present invention.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the method for producing a gas barrier film for producing the gas barrier film of the present invention is as follows: A step of feeding the belt-shaped flexible base material from the feed roller and transporting it with the transport roller; The flexible substrate is transported while being brought into contact with each of the pair of film forming rollers, the film forming gas is supplied between the pair of film forming rollers in the film forming chamber, and Performing a plasma discharge while removing moisture and forming a gas barrier layer on the substrate; And a step of winding the gas barrier film having the gas barrier layer formed on the flexible substrate with a winding roller while transporting the gas barrier film with a transporting roller. preferable.
  • the conveyance speed of the flexible substrate is 20 m / min or more.
  • the plasma CVD manufacturing apparatus 30 shown in FIG. 3 sends out the base material 1, a delivery roller 31, delivery chambers 32 to 36, a chamber A having a feeding / conveying process, film formation rollers 40 and 41, and gas supply A chamber B having a film formation process (synthetic process) having a tube 44, a plasma generation power source 52, magnetic field generators 42 and 43 installed inside the film formation rollers 40 and 41, and transfer rollers 37, 38 and 39. It is also a film chamber, and is a plasma CVD apparatus comprising three chambers of a C chamber having a winding process, which includes transport rollers 45 and 46 and a winding roller 47. Each room is independent, and it is preferable to have a device (not shown) that can individually control the pressure and temperature. The temperature of each chamber is measured by a commercially available temperature monitor 49-51.
  • the film forming rollers 40 and 41, the gas supply pipe 44, the plasma generating power source 52, and the magnetic field generating apparatuses 42 and 43 are arranged in a vacuum chamber (not shown). Yes. Further, in such a manufacturing apparatus 30, the vacuum chamber is connected to a vacuum pump (not shown), and the atmospheric pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • a coiled pipe 53 of a cryocoil through which a cooling medium circulates is installed at least in the B chamber (film formation chamber).
  • transport rollers 33 and 34 have a heating means, function as a heating roller, and have a temperature adjustment device 48 that performs temperature adjustment is also preferable.
  • cryocoil which is a preferred embodiment of the method for producing a gas barrier film of the present invention, will be described.
  • the cryocoil is a low-temperature exhaust means composed of a low-temperature condensing source, a cooler that cools the cooling medium circulating through the low-temperature condensing source, and a coiled pipe that circulates the cooling medium. It is a device that can exhaust.
  • a cooled refrigerant By circulating a cooled refrigerant through a coiled pipe installed in the vacuum layer, the gas in the vacuum layer can be discharged by freezing the surface of the pipe. For example, water vapor is frozen and trapped, the partial pressure of water in the vacuum layer can be greatly reduced, and the exhaust speed can be increased.
  • Fluorocarbon refrigerant or mixed refrigerant, liquid nitrogen or liquid helium can be used as the cooling medium.
  • the cryocoil can be installed in combination with other evacuation means such as a vacuum pump or as a switchable structure.
  • the installation location of the coiled piping of the cryocoil can be installed near the unwinding location of the roll when used in a roll-to-roll vacuum device. This is because the resin base material retains a large amount of moisture that has permeated in the air itself, and when it is unwound in a vacuum, it releases a large amount of water and greatly deteriorates the degree of vacuum in the vacuum layer. Also, when the moisture enters the film formation process space, it acts as a plasma impurity, changes the plasma, acts as an oxidant, oxidizes the film, and so the desired film cannot be obtained. You can also Preferably, it is installed in at least B room (film formation room), more preferably, both B room and A room, more preferably cryocoil is installed in A, B and C rooms. It is that you are.
  • the base material since moisture is released from the base material, it is preferable to install a coiled pipe in the vicinity of the base material being transported. Furthermore, in order to prevent frozen water and the like from peeling off from the coiled pipe and adhering to the base material, it is more preferable to install it below the passage portion of the base material. When the peeled water or the like is placed on the base material, a normal film is not formed there, and the barrier performance is deteriorated.
  • Stainless steel and copper are mainly used for coiled piping.
  • the water exhaust speed can be adjusted by extending the length of the coiled pipe.
  • As the cooler for example, an apparatus described in JP2011-62600A or JP2013-53848 can be used.
  • the transport rollers 33 and 34 have heating means and function as heating rollers.
  • the heat treatment is preferably performed at a temperature of 10 ° C. or higher than the temperature of the film forming roller, preferably 70 ° C. or higher, and 80 ° C. or higher, in order to obtain the desired effect of the treatment. It is more preferable to heat. Further, from the viewpoint of preventing deformation of the base material and the like, it is preferable to carry out at a temperature below the glass transition temperature of the base material.
  • the glass transition temperature (Tg) refers to a temperature measured at a heating rate of 10 ° C./min by a differential scanning calorimetry method based on JIS K7121, for example, a thermomechanical analyzer (TMA: Thermo Mechanical Analysis) or the like. It can be detected by measuring in the range of 30 to 290 ° C. with an apparatus.
  • TMA thermomechanical analyzer
  • the organic layer can be heated at a temperature higher than the lowest glass transition temperature of the substance constituting the organic layer. Therefore, it is preferable to heat the base material or the organic layer at a temperature lower than the lowest glass transition temperature.
  • the conditions for the heat treatment can be appropriately changed.
  • the heating temperature is preferably 70 ° C. to (the lowest glass transition temperature of the material constituting the base material or the organic layer) for 1 second.
  • the intended purpose can be achieved if it is performed within a range of about 10 minutes.
  • the heat treatment time may be a long time if the heating temperature is low, or a short time if the temperature is high.
  • the heat treatment method includes a hot plate, hot air treatment, infrared irradiation method, radiant heat method and the like, and is not particularly limited, but it is convenient and preferable to use the heating roller shown in FIG. Although a pair of heating rollers is illustrated as the heating rollers 33 and 34 in FIG. 3, a plurality of pairs of heating rollers may be used.
  • the heating rollers 33 and 34 are controlled by the temperature adjusting device 48 so as to keep the temperature in a predetermined temperature range.
  • the temperature adjusting device 48 is preferably a device capable of controlling the temperature in the range of 50 to 200 ° C.
  • each film-forming roller is for plasma generation so that a pair of film-forming rollers (film-forming roller 40 and film-forming roller 41) can function as a pair of counter electrodes.
  • a power source 52 is connected. Therefore, in such a manufacturing apparatus 30, it is possible to discharge to the space between the film formation roller 40 and the film formation roller 41 by supplying electric power from the plasma generation power source 52. Plasma can be generated in the space between the film roller 40 and the film formation roller 41. In this way, when the film forming roller 40 and the film forming roller 41 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • the film-forming rollers 40 and 41 it is preferable to arrange
  • the film forming rate can be doubled compared with a normal plasma CVD method that does not use a roller, and the structure is the same. Since a film can be formed, the maximum value in the carbon distribution curve can be at least doubled.
  • the surface of the base material 1 here, the base material includes a form in which the base material is processed or has an organic layer on the base material
  • the gas barrier layer 3 according to the present invention is formed on the film forming roller 41 while depositing the gas barrier layer component according to the present invention on the surface of the substrate 1 on the film forming roller 40. Since the gas barrier layer component according to the present invention can also be deposited on the surface of the substrate 1, the gas barrier layer can be efficiently formed on the surface of the substrate 1.
  • magnetic field generators 42 and 43 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 42 and 43 provided on the film forming roller 40 and the film forming roller 41, respectively, are a magnetic field generating device 42 provided on one film forming roller 40 and a magnetic field generating device provided on the other film forming roller 41. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between 43 and the magnetic field generators 42 and 43 form a substantially closed magnetic circuit.
  • By providing such magnetic field generators 42 and 43 it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surface of each of the film forming rollers 40 and 41, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 42 and 43 provided on the film forming roller 40 and the film forming roller 41 respectively have racetrack-like magnetic poles that are long in the roller axis direction, and one magnetic field generating device 42 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 43 have the same polarity.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 1 is excellent in that the gas barrier layer 3 according to the present invention, which is a vapor deposition film, can be efficiently formed.
  • the film forming roller 40 and the film forming roller 41 known rollers can be appropriately used. As such film forming rollers 40 and 41, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. Further, the diameters of the film forming rollers 40 and 41 are preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated, and it is possible to avoid applying the total amount of plasma discharge to the substrate 1 in a short time. It is preferable because damage to the material 1 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the temperature of the film forming roller affects the formation rate of the gas barrier layer, but is preferably in the range of 40 to 60 ° C. from the viewpoint of preventing heat loss of the substrate and generation of wrinkles.
  • rollers As the feed roller 31 and the transport rollers 32, 35, 36, 37, 38, 39, 45, and 46 used in such a manufacturing apparatus, known rollers can be appropriately used. Further, the winding roller 47 is not particularly limited as long as it can wind the gas barrier film 10 in which the gas barrier layer 3 according to the present invention is formed on the substrate 1, and is appropriately known. A roller can be used.
  • gas supply pipe 44 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 44 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 40 and the film formation roller 41, and is a vacuum as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space.
  • the gas supply pipe 44 as the gas supply means and the vacuum pump as the vacuum exhaust means are arranged to efficiently supply the film formation gas to the facing space between the film formation roller 40 and the film formation roller 41. It is excellent in that the film formation efficiency can be improved.
  • the plasma generating power source 52 a known power source of a plasma generating apparatus can be used as appropriate.
  • a plasma generating power supply 52 supplies power to the film forming roller 40 and the film forming roller 41 connected thereto, and makes it possible to use them as a counter electrode for discharging.
  • Such a plasma generating power source 52 can perform plasma CVD more efficiently, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used.
  • the plasma generating power source 52 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 42 and 43 known magnetic field generators can be used as appropriate.
  • the base material 1 in addition to the base material used in the present invention, a material in which the gas barrier layer 3 according to the present invention is formed in advance can be used. As described above, by using the substrate 1 in which the gas barrier layer 3 according to the present invention is formed in advance, the thickness of the gas barrier layer 3 according to the present invention can be increased.
  • the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the transport of the film (base material) can be produced by appropriately adjusting the speed.
  • FIG. 4 is an enlarged view of a film formation space for performing plasma CVD. That is, using the manufacturing apparatus 30 shown in FIG. 3, a discharge is generated between the pair of film forming rollers (film forming rollers 40 and 41) while supplying a film forming gas (such as a raw material gas) into the vacuum chamber.
  • a film forming gas such as a raw material gas
  • the film-forming gas is decomposed by plasma, and the gas barrier according to the present invention is formed on the surface of the substrate 1 on the film-forming roller 40 and on the surface of the substrate 1 on the film-forming roller 41.
  • Layer 3 is formed by plasma CVD.
  • a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axis of the film forming rollers 40 and 41, and the plasma is converged on the magnetic field.
  • the maximum value of the carbon / oxygen distribution curve is obtained in the gas barrier layer according to the present invention. It is formed.
  • the substrate 1 passes through the points C1 and C2 of the film forming roller 40 and the points C3 and C4 of the film forming roller 41 in FIG. A local minimum is formed. For this reason, two local maximum values are usually generated for the two film forming rollers.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the gas barrier layer 3 according to the present invention can be appropriately selected and used depending on the material of the gas barrier layer 3 according to the present invention to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • phenyltrimethoxysilane methyltriethoxy
  • Examples include silane and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of the handleability of the compound and the gas barrier properties of the resulting barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • organic compound gas containing carbon examples include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the gas barrier layer 3 according to the present invention.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • a carrier gas and a discharge gas known ones can be used as appropriate, for example, a rare gas such as helium, argon, neon, xenon, hydrogen, or nitrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount.
  • the gas barrier layer 3 according to the present invention to be formed is excellent in that excellent gas barrier properties and bending resistance can be obtained by not excessively increasing the ratio of the reaction gas.
  • the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 50 Pa.
  • an electrode drum connected to the plasma generating power source 52 (in this embodiment, the film forming roller 40).
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed. On the other hand, if the applied power is 10 kW or less, the amount of heat generated at the time of film formation can be suppressed. An increase in the interface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the interval between the maximum values is narrowed by increasing the conveying speed of the base material for the purpose of improving productivity, and high gas barrier properties and bending. Resistance is maintained. For this reason, when the conveyance speed of a base material is quick, the effect of this invention becomes more remarkable. That is, the preferred production method of the present invention forms a gas barrier layer according to the present invention containing silicon, oxygen and carbon by conveying a substrate to a plasma CVD apparatus having a counter roller electrode at a conveyance speed of 5 m / min or more. It is preferable to do.
  • a more preferable embodiment includes a step of forming a gas barrier layer according to the present invention containing silicon, oxygen and carbon by conveying the substrate to a plasma CVD apparatus having a counter roller electrode at a conveyance speed of 20 m / min or more.
  • the upper limit of the line speed is not particularly limited, and is preferably faster from the viewpoint of productivity. However, if it is 100 m / min or less, it is excellent in that a sufficient thickness can be secured as a gas barrier layer. Yes.
  • the gas barrier layer according to the present invention is formed by the plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roller electrode shown in FIG. It is characterized by forming a film.
  • This is excellent in bending resistance and adhesion when mass-produced using a plasma CVD apparatus having a counter roller electrode (roll-to-roll method), and particularly in durability during conveyance by roll-to-roll and gas barrier properties. This is because it is possible to efficiently produce a gas barrier layer in which both are compatible.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce a gas barrier film that is required for durability against temperature changes used in solar cells, electronic parts, and the like.
  • the gas barrier film of the present invention usually uses a plastic film as a flexible substrate.
  • the term “flexibility” as used herein refers to a base material that does not crack even when wound around a ⁇ (diameter) 50 mm roll, and more preferably a base material that can be wound around a ⁇ 30 mm roll.
  • the plastic film used is not particularly limited as long as it is a film capable of holding a gas barrier laminate, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide.
  • Resin cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring
  • thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the base material is preferably made of a heat-resistant material.
  • Polyolefin for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.
  • polyarylate PAr: 210 ° C
  • polyethersulfone PES: 220 ° C
  • polysulfone PSF: 190 ° C
  • cycloolefin copolymer COC: Compound described in JP-A No. 2001-150584: 162 ° C.
  • polyimide for example, Neoprim (registered trademark): 260 ° C.
  • the plastic film of the present invention can be used as a device such as an organic EL element
  • the plastic film is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more.
  • the light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
  • the thickness of the plastic film used for the gas barrier film of the present invention is not particularly limited because it is appropriately selected depending on the use, but is typically 1 to 800 ⁇ m, preferably 10 to 200 ⁇ m.
  • These plastic films may have functional layers such as a transparent conductive layer and a smooth layer.
  • As the functional layer in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the gas barrier layer is provided, may be polished to improve smoothness.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • the base material and gas barrier layer according to the present invention may be separately provided with an organic layer containing an organic compound as long as the effects of the present invention are not impaired.
  • an organic layer is provided in advance on at least one surface of the base material, and that the organic layer further contains inorganic particles, It is preferable from the viewpoint of improving the adhesion to the substrate.
  • the gas barrier layer of the present invention is formed on a substrate on which the organic layer is formed in advance, the gas barrier layer is formed after the moisture contained in the organic layer is vaporized and desorbed by heat treatment.
  • a manufacturing method for forming a film it is possible to form a gas barrier layer without the influence of moisture.
  • the organic layer as used in the present invention is synonymous with a functional layer containing an organic compound, and is preferably each functional layer listed below.
  • the gas barrier film of the present invention may have a curable resin layer (generally also referred to as a hard coat layer) formed by curing a curable resin on a substrate.
  • the curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material with an active energy ray such as ultraviolet ray to be cured is heated.
  • the thermosetting resin etc. which are obtained by curing by the above method.
  • Such a curable resin layer is at least one of (1) smoothing the interface of the substrate, (2) relaxing the stress of the upper layer to be laminated, and (3) improving the adhesion between the substrate and the upper layer. Has one function. For this reason, the curable resin layer may also be used as a smooth layer and an anchor coat layer (easy adhesion layer) described later.
  • the active energy ray-curable material examples include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene
  • examples thereof include compositions containing polyfunctional acrylate monomers such as glycol acrylate and glycerol methacrylate.
  • OPSTAR registered trademark
  • JSR Corporation JSR Corporation. It is also possible to use any mixture of the above-mentioned compositions, and an active energy ray-curable material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no restriction in particular.
  • composition containing the active energy ray-curable material contains a photopolymerization initiator.
  • thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, Unicom manufactured by DIC, Inc. Dick (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra high heat resistance epoxy resin), silicone resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd.
  • thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohydride Down resins.
  • the method for forming the curable resin layer is not particularly limited, but a coating solution containing a curable material is applied to a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method or other wet coating method, or a vapor deposition method.
  • a coating solution containing a curable material is applied to a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method or other wet coating method, or a vapor deposition method.
  • active energy rays such as visible rays, infrared rays, ultraviolet rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, electron rays and / or heating are performed.
  • a method of forming the film by curing is preferred.
  • an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a metal halide lamp or the like is preferably used to irradiate ultraviolet rays in a wavelength region of 100 to 400 nm, more preferably 200 to 400 nm.
  • a method of irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator can be used.
  • the curable resin layer can contain additives such as a thermoplastic resin, an antioxidant, an ultraviolet absorber, and a plasticizer as necessary in addition to the above-described materials.
  • additives such as a thermoplastic resin, an antioxidant, an ultraviolet absorber, and a plasticizer as necessary in addition to the above-described materials.
  • an appropriate resin or additive may be used for improving the film formability and preventing the film from generating pinholes.
  • the curable resin layer contains inorganic particles that are matting agents.
  • the adhesion between the gas barrier layer and the substrate can be improved.
  • the OH groups and H 2 O are adsorbed in a hydrogen bond state, and the amount of water that can be held by the substrate itself is increased.
  • the vaporization and desorption of moisture due to heating is promoted, so that the influence of moisture can be reduced in the film forming process.
  • inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable.
  • inorganic particles one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
  • the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 100 parts by mass of the solid content of the hard coating agent. It is preferable that they are mixed in a proportion of 18 parts by mass or less, more preferably 16 parts by mass or less.
  • the thickness of the curable resin layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • a gas barrier film has a smooth layer in the surface which has a gas barrier layer of a base material.
  • the smooth layer is provided in order to flatten the rough surface of the substrate on which protrusions and the like exist.
  • Such a smooth layer is basically formed by curing an active energy ray curable material or a thermosetting material.
  • the smooth layer may basically have the same material and configuration as the curable resin layer as long as it has the above-described function.
  • Examples of the active energy ray-curable material and thermosetting material used in the smooth layer, examples of the matting agent, and the method of forming the smooth layer are the same as those described in the column of the curable resin layer above, so here Then, explanation is omitted.
  • the thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 ⁇ m.
  • the smooth layer may be used as the following anchor coat layer.
  • An anchor coat layer may be formed on the substrate interface according to the present invention as an easy-adhesion layer for the purpose of improving adhesion (adhesion) with the gas barrier layer.
  • the anchor coat agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, and alkyl titanate. 1 or 2 or more types can be used in combination.
  • a commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
  • the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
  • a commercially available base material with an easy-adhesion layer may be used.
  • the anchor coat layer can also be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • a bleed-out prevention layer can be provided.
  • the purpose of the bleed-out prevention layer is to suppress the phenomenon in which unreacted oligomers migrate from the film base material to the surface when the film having the curable resin layer / smooth layer is heated and contaminate the contact surface.
  • the bleed-out prevention layer may basically have the same configuration as the curable resin layer / smooth layer as long as it has this function.
  • the hard coat agent that can be included in the bleed-out prevention layer includes a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated in the molecule. Examples thereof include monounsaturated organic compounds having a group.
  • examples of the polyunsaturated organic compound include ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate.
  • examples of the monounsaturated organic compound include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and the like.
  • the matting agent described in the cured resin layer may be contained.
  • the matting agent inorganic particles having an average particle diameter of about 0.1 to 5 ⁇ m are preferable, which improves the slipperiness of the gas barrier film.
  • the bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator and the like as other components of the hard coat agent and the matting agent.
  • the bleed-out prevention layer as described above is prepared as a coating solution by using a hard coat agent and other components as required, and appropriately preparing a coating solution by using a diluent solvent as necessary.
  • After coating by a conventionally known coating method it can be formed by irradiating with ionizing radiation and curing.
  • irradiating with ionizing radiation ultraviolet rays emitted from an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, etc. are preferably irradiated in a wavelength region of 100 to 400 nm, more preferably 200 to 400 nm.
  • the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator.
  • the thickness of the bleed-out preventing layer in the present invention is 1 to 10 ⁇ m, preferably 2 to 7 ⁇ m. By making it 1 ⁇ m or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 ⁇ m or less, it becomes easy to adjust the balance of optical properties of the smooth film, and the curable resin layer / smooth layer is transparent. When it is provided on one surface of the polymer film, curling of the gas barrier film can be easily suppressed.
  • a layer having gas barrier properties can be further provided as a second gas barrier layer on the gas barrier layer according to the present invention.
  • the second gas barrier layer may be a layer in which two or more first gas barrier layers are stacked, and is not limited. Among them, it is also preferable to provide a coating film of a polysilazane-containing liquid of a coating method and to provide a second gas barrier layer that is formed by irradiating vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less and performing a modification treatment. .
  • VUV light vacuum ultraviolet light
  • the coating film of the polysilazane-containing liquid in the coating method can take a conventionally known configuration. For example, paragraphs [0134] to [0183] of JP2013-180520A, JP2013-123895A This is the configuration described in paragraphs [0042] to [0065].
  • the thickness of the second gas barrier layer is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
  • An overcoat layer may be formed on the second gas barrier layer used in the present invention in order to further improve the bending resistance.
  • an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. Can do.
  • These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. It is preferable to apply a light irradiation treatment or a heat treatment to the layer formed by coating from the organic resin composition coating solution to be cured.
  • the gas barrier film of the present invention has excellent gas barrier properties, bending resistance and adhesion.
  • the gas barrier film of the present invention is a gas barrier film used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various purposes such as an electronic device using the same.
  • Example 1 Production of gas barrier film 1> (Flexible substrate) As a flexible substrate, a 1 m wide hard coat film G1STB manufactured by Kimoto Co., Ltd. (PET film thickness 50 ⁇ m, no matting agent: described as PET with CHC in the table) was used.
  • the base material was set as it was on the delivery roller of the film forming apparatus of FIG. Then, after the degree of vacuum reached 5 ⁇ 10 ⁇ 3 Pa, the heating rollers 33 and 34 were set to 60 ° C. Then, the base material was conveyed at the conveyance speed of the following film-forming conditions, the base material was conveyed to the film-forming chamber (B room), and film-forming was implemented on the following plasma conditions. The time until the degree of vacuum reached 5 ⁇ 10 ⁇ 3 Pa was 3 hours, and the time until the heating roller reached a predetermined temperature was 0.5 hours.
  • ⁇ Film formation condition 2> -Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic Centimeter per Minute) ⁇ Supply amount of oxygen gas (O 2 ): 500 sccm ⁇ Degree of vacuum in the vacuum chamber: 1.5 Pa ⁇ Applied power from the power source for plasma generation: 2.0 kW ⁇ Power supply frequency for plasma generation: 80 kHz -Film conveyance speed: 40 m / min-Film-forming roller diameter: 300 mm ⁇ -Number of times TR passes: 4 times-Heating roller temperature: 60 ° C ⁇ Film roller temperature: 60 °C ⁇ Example 4: Production of gas barrier film 4> In production of the gas barrier film 1, a gas barrier film 4 was produced in the same manner as the gas barrier film 1 except that the plasma film formation conditions were as follows.
  • the carbon / oxygen distribution curve in the layer thickness direction measured by the above-described evaluation method is measured by sputtering at the above-mentioned etching rate, and the composition is measured 5 times for every about 0.20 nm within 1 nm as the SiO 2 equivalent layer thickness. .
  • the average value of the five times was obtained from the plotted carbon / oxygen distribution curve, and the number of points at which the value of the atomic ratio of the carbon amount to the oxygen amount changed from increasing to decreasing was determined.
  • the thickness of the gas barrier layer was determined by observation with a transmission microscope (TEM).
  • ⁇ Gas barrier property evaluation method> The permeated water amount of each gas barrier film was measured according to the following measurement method, and the water vapor barrier property was evaluated according to the following criteria.
  • Vapor deposition device JEOL Ltd., vacuum vapor deposition device JEE-400 Constant temperature and humidity oven: Yamato Humidic Chamber IG47M Metal that reacts with water and corrodes: Calcium (granular) Water vapor impermeable metal: Aluminum ( ⁇ 3-5mm, granular) (Preparation of water vapor barrier property evaluation cell)
  • a vacuum vapor deposition device vacuum vapor deposition device JEE-400, manufactured by JEOL Ltd.
  • a portion (12 mm ⁇ 12 mm) to be vapor deposited on the gas barrier film sample Other than 9 places were masked to deposit metal calcium (granular) (deposition layer thickness 80 nm).
  • metal aluminum ( ⁇ 3 to 5 mm, granular), which is a water vapor impermeable metal, was deposited on the entire surface of one side of the sheet from another metal deposition source.
  • metal aluminum ⁇ 3 to 5 mm, granular
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • the amount of water permeated into the cell was calculated from the corrosion amount of metallic calcium.
  • a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was stored under high temperature and high humidity at 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
  • the permeated water amount (g / (m 2 ⁇ day); “WVTR”) of each gas barrier film measured as described above was evaluated according to the following criteria. Three or more are good as a gas barrier film.
  • the gas barrier films 1 to 4 of the present invention are all excellent in bending resistance and adhesion as compared with the comparative gas barrier films 5 and 6.
  • the gas barrier film 2 in which the intervals between all extreme values are in the range of 2 to 15 nm, and the gas barrier film 4 in which the intervals of all the maximum values are all in the range of 2 to 5 nm are further resistant to bending. It turns out that it is excellent in adhesiveness.
  • the gas barrier film of the present invention is excellent in gas barrier performance, bending resistance and adhesion, and is used for packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various applications such as a gas barrier film used for electronic devices such as the above and an electronic device using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention addresses the problem of providing: a gas barrier film having exceptional gas barrier performance, bending resistance, and adhesiveness; and a method for manufacturing the same. This gas barrier film has a gas barrier layer on a flexible substrate, wherein the gas barrier film is characterized in that the gas barrier layer satisfies conditions (1) and (2) below. (1) The gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements. (2) The carbon/oxygen distribution curve, in which the value of the proportion of the amount of carbon in the gas barrier layer with respect to the amount of oxygen in the gas barrier layer is plotted along the thickness direction, has maximal values; and the ratio of the number of maximal values and the thickness of the gas barrier layer is 0.10/nm or higher.

Description

ガスバリアーフィルム及びその製造方法Gas barrier film and method for producing the same
 本発明は、ガスバリアーフィルム及びその製造方法に関し、より詳しくは、ガスバリアー性能、屈曲耐性及び密着性に優れたガスバリアーフィルム及びその製造方法に関する。 The present invention relates to a gas barrier film and a method for producing the same, and more particularly to a gas barrier film excellent in gas barrier performance, bending resistance and adhesion and a method for producing the same.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む薄膜(ガスバリアー層)を形成したガスバリアーフィルムは、水蒸気や酸素等の各種ガスによる変質を防止するため、各種ガスの遮断を必要とする物品を包装する用途で用いられている。また、上記包装用途以外にも、各種ガスによる変質を防止するために、太陽電池、液晶表示素子、有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)等の電子デバイスを封止する用途にも使用されている。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film prevents deterioration due to various gases such as water vapor and oxygen. Therefore, it is used in applications for packaging articles that require shutoff of various gases. In addition to the packaging applications described above, in order to prevent alteration due to various gases, it is used for sealing electronic devices such as solar cells, liquid crystal display elements, organic electroluminescence elements (hereinafter also referred to as organic EL elements). Has also been used.
 このようなガスバリアーフィルムとして、プラズマ化学気相成長法(以下、プラズマCVD法(CVD:Chemical Vapor Deposition)ともいう。)によりフィルムなどの基材上に形成されたガスバリアー層を有するものや、ポリシラザンを主成分とする塗布液を基材上に塗布した後に改質処理を施して形成されたガスバリアー層を有するもの、又はそれらを併用したものが知られている(例えば、特許文献1~3参照。)。 As such a gas barrier film, a film having a gas barrier layer formed on a substrate such as a film by a plasma chemical vapor deposition method (hereinafter also referred to as a plasma CVD method (CVD: Chemical Vapor Deposition)), Known are those having a gas barrier layer formed by applying a modification treatment after applying a coating solution containing polysilazane as a main component on a substrate, or those using them in combination (for example, Patent Documents 1 to 4). 3).
 また、ガスバリアー層として、炭素量と酸素量の比率(C/O)が、ガスバリアー層の厚さ方向で連続的に変化している組成膜を形成することで、ガスバリアー性能と屈曲耐性を両立できるガスバリアー層を形成できることが知られている(例えば、特許文献4参照。)。 Moreover, as a gas barrier layer, a gas barrier performance and bending resistance are formed by forming a composition film in which the ratio of carbon amount to oxygen amount (C / O) continuously changes in the thickness direction of the gas barrier layer. It is known that a gas barrier layer that can satisfy both of these requirements can be formed (see, for example, Patent Document 4).
 このようなバリアーフィルムは、磁場でプラズマを収束させることによって緻密な膜を形成でき、かつ、ガスバリアー層中の炭素/酸素の含有量を連続的に変化させることができるため、フィルムを屈曲させた場合のガスバリアー性の低下が抑制される。しかしながら、これら先行技術文献に記載の方法では、高温高湿環境に保持後の密着性や屈曲耐性が十分ではなかった。 Such a barrier film can form a dense film by converging plasma with a magnetic field, and can continuously change the carbon / oxygen content in the gas barrier layer. In this case, a decrease in gas barrier properties is suppressed. However, in the methods described in these prior art documents, adhesion and bending resistance after holding in a high temperature and high humidity environment are not sufficient.
特開2009-255040号公報JP 2009-255040 A 特許第3511325号公報Japanese Patent No. 3511325 特開2012-106421号公報JP 2012-106421 A 特開2012-96531号公報JP 2012-96531 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、ガスバリアー性能、屈曲耐性及び密着性に優れたガスバリアーフィルム及びその製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to that problem is to provide a gas barrier film excellent in gas barrier performance, bending resistance and adhesion, and a method for producing the same.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ガスバリアー層中の炭素量と酸素量との比を厚さ方向にプロットした炭素/酸素分布曲線が厚さ方向に連続的に変化している組成膜を形成するだけでなく、多くの極大値を有し、隣接する極大値間の間隔を短くすることにより、ガスバリアー性能、屈曲耐性及び密着性に優れるガスバリアーフィルムが得られることを見いだし本発明に至った。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, the carbon / oxygen distribution curve in which the ratio between the carbon amount and the oxygen amount in the gas barrier layer is plotted in the thickness direction is thick. In addition to forming a composition film that continuously changes in the vertical direction, it has many maximum values, and by shortening the interval between adjacent maximum values, gas barrier performance, bending resistance and adhesion are improved. The inventors have found that an excellent gas barrier film can be obtained, and have reached the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.可撓性基材上にガスバリアー層を有するガスバリアーフィルムであって、
当該ガスバリアー層が、下記要件(1)及び(2)を満たすことを特徴とするガスバリアーフィルム。
(1)前記ガスバリアー層が、少なくともケイ素、酸素及び炭素を構成元素として含有する。
(2)前記ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線が極大値を有し、前記極大値の数(n)と前記ガスバリアー層の厚さ(d)との比率(n/d)が0.10/nm以上である。
1. A gas barrier film having a gas barrier layer on a flexible substrate,
The gas barrier film satisfies the following requirements (1) and (2).
(1) The gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements.
(2) A carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer The ratio (n / d) to the thickness (d) is 0.10 / nm or more.
 2.前記炭素/酸素分布曲線において、隣接する極大値間の間隔の80%以上が、2~15nmの範囲内であることを特徴とする第1項に記載のガスバリアーフィルム。 2. 2. The gas barrier film as set forth in claim 1, wherein 80% or more of the interval between adjacent maximum values in the carbon / oxygen distribution curve is in the range of 2 to 15 nm.
 3.前記基材の界面から30nmまでの距離範囲内の前記ガスバリアーフィルムにおける前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~15nmの範囲内であることを特徴とする第1項に記載のガスバリアーフィルム。 3. In the carbon / oxygen distribution curve in the gas barrier film within a distance range of 30 nm from the interface of the base material, all the intervals between the adjacent maximum values are in the range of 2 to 15 nm. The gas barrier film according to item 1.
 4.前記ガスバリアー層において、前記隣接する極大値間の間隔の全てが、2~15nmの範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載のガスバリアーフィルム。 4. 4. The gas barrier film according to any one of claims 1 to 3, wherein in the gas barrier layer, all of the intervals between the adjacent maximum values are within a range of 2 to 15 nm. .
 5.前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の80%以上が、2~5nmの範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載のガスバリアーフィルム。 5. 5. The carbon / oxygen distribution curve according to any one of items 1 to 4, wherein 80% or more of the interval between the adjacent maximum values is within a range of 2 to 5 nm. Gas barrier film.
 6.前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~5nmの範囲内であることを特徴とする第1項から第5項までのいずれか一項に記載のガスバリアーフィルム。 6. 6. The gas according to any one of items 1 to 5, wherein in the carbon / oxygen distribution curve, all of the intervals between the adjacent maximum values are within a range of 2 to 5 nm. Barrier film.
 7.第1項から第6項までのいずれか一項に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、
 前記ガスバリアー層を、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により製造することを特徴とするガスバリアーフィルムの製造方法。
7). It is a manufacturing method of the gas barrier film which manufactures the gas barrier film according to any one of items 1 to 6,
The gas barrier film is produced by a plasma chemical vapor deposition method using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates at least a magnetic field. Manufacturing method.
 8.帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程と、
 前記可撓性基材を、一対の成膜ローラーのそれぞれに接触させながら搬送を行い、成膜室内で、当該一対の成膜ローラー間に成膜ガスを供給しながら、かつ、成膜室内の水分を除去しながらプラズマ放電を行い、前記基材上にガスバリアー層を形成する工程と、
 前記ガスバリアー層を可撓性基材上に形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程と、を含むことを特徴とする第7項に記載のガスバリアーフィルムの製造方法。
8). A step of feeding the belt-shaped flexible base material from the feed roller and transporting it with the transport roller;
The flexible substrate is transported while being brought into contact with each of the pair of film forming rollers, the film forming gas is supplied between the pair of film forming rollers in the film forming chamber, and Performing a plasma discharge while removing moisture and forming a gas barrier layer on the substrate;
A step of winding the gas barrier film having the gas barrier layer formed on the flexible substrate with a winding roller while transporting the gas barrier film with a transport roller. Production method.
 9.前記可撓性基材の搬送速度が、20m/分以上であることを特徴とする第7項又は第8項に記載のガスバリアーフィルムの製造方法。 9. The method for producing a gas barrier film according to item 7 or 8, wherein a conveyance speed of the flexible substrate is 20 m / min or more.
 本発明の上記手段により、ガスバリアー性能、屈曲耐性及び密着性に優れたガスバリアーフィルム及びその製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a gas barrier film excellent in gas barrier performance, bending resistance and adhesion and a method for producing the same.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 プラズマ化学気相成長法に用いられる装置は、磁場を利用することで対向ローラー電極近傍にプラズマを収束させることができ、その結果、緻密なガスバリアー層を形成することが可能である。 The apparatus used for the plasma enhanced chemical vapor deposition method can converge the plasma near the counter roller electrode by using a magnetic field, and as a result, a dense gas barrier layer can be formed.
 当該装置は一対の対向ローラー電極内のそれぞれにN極とS極を有する磁場発生部材を有する構造であるため、磁場により一対の対向ローラー電極間においてプラズマ放電強度に強弱を有する領域を存在させることができ、当該領域によってガスバリアー層の組成を連続的に変化させることができるという特徴がある。 Since the apparatus has a structure having a magnetic field generating member having an N pole and an S pole in each of a pair of opposed roller electrodes, a region having a strong and weak plasma discharge intensity exists between the pair of opposed roller electrodes due to the magnetic field. And the composition of the gas barrier layer can be continuously changed depending on the region.
 本発明では、ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線が極大値を有し、極大値の数(n)と前記ガスバリアー層の厚さ(d)との比率(n/d)が0.10/nm以上である。n/d=0.10/nm以上であるということは、ガスバリアー層の単位層厚あたりの極大値が多いことを意味している。極大値が多いと、応力に弱いと考えられる酸素を多く含有する領域(酸素リッチ層)のそれぞれの厚さを薄くすることができる。かつ、酸素リッチ層の厚さが薄い状態で酸素リッチ層が炭素を多く含有する領域(炭素リッチ層)に挟まれるため、応力に対してクラックが発生しにくくなると考えられる。また、高温高湿環境下に保管されたときに基材の熱変形によって発生する応力に対しても、同様に強くなり耐久性が向上するものと考えられる。 In the present invention, the carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer The ratio (n / d) to the thickness (d) is 0.10 / nm or more. That n / d = 0.10 / nm or more means that the maximum value per unit layer thickness of the gas barrier layer is large. When the maximum value is large, the thickness of each region (oxygen-rich layer) containing a large amount of oxygen that is considered to be weak against stress can be reduced. In addition, since the oxygen-rich layer is sandwiched between regions containing a large amount of carbon (carbon-rich layer) when the oxygen-rich layer is thin, it is considered that cracks are less likely to occur due to stress. In addition, it is considered that the resistance to the stress generated by the thermal deformation of the substrate when stored in a high temperature and high humidity environment is similarly increased and the durability is improved.
本発明のガスバリアーフィルムの構成の一例Example of configuration of gas barrier film of the present invention 本発明のガスバリアーフィルムの構成の他の一例Another example of the structure of the gas barrier film of the present invention 本発明に係るガスバリアー層のXPSデプスプロファイルによる厚さ方向の炭素、窒素、酸素及びケイ素原子の分布曲線の一例An example of the distribution curve of carbon, nitrogen, oxygen and silicon atoms in the thickness direction according to the XPS depth profile of the gas barrier layer according to the present invention 本発明に係るガスバリアー層のXPSデプスプロファイルによる厚さ方向の炭素/酸素分布曲線の一例An example of the carbon / oxygen distribution curve in the thickness direction according to the XPS depth profile of the gas barrier layer according to the present invention ガスバリアーフィルムの製造装置の一例を示す概略図Schematic showing an example of gas barrier film manufacturing equipment ガスバリアーフィルムの製造装置の成膜空間の拡大図Enlarged view of film formation space of gas barrier film manufacturing equipment
 本発明のガスバリアーフィルムは、可撓性基材上にガスバリアー層を有するガスバリアーフィルムであって、当該ガスバリアー層が、前記要件(1)及び(2)を満たすことを特徴とする。この特徴は、請求項1から請求項9までの請求項に係る発明に共通する技術的特徴である。 The gas barrier film of the present invention is a gas barrier film having a gas barrier layer on a flexible substrate, and the gas barrier layer satisfies the requirements (1) and (2). This feature is a technical feature common to the inventions according to claims 1 to 9.
 さらに、炭素/酸素分布曲線において、隣接する極大値間の間隔の80%以上が、2~15nmの範囲内であることが、本発明の効果発現の観点から好ましい。 Furthermore, in the carbon / oxygen distribution curve, 80% or more of the interval between adjacent maximum values is preferably in the range of 2 to 15 nm from the viewpoint of the effect of the present invention.
 また、基材の界面から30nmまでの距離範囲内の前記ガスバリアーフィルムにおける前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~15nmの範囲内であることが好ましい。 Further, in the carbon / oxygen distribution curve in the gas barrier film within the distance range from the interface of the substrate to 30 nm, it is preferable that all the intervals between the adjacent maximum values are in the range of 2 to 15 nm. .
 本発明の実施態様としては、本発明の効果発現の観点から、隣接する極大値間の間隔の全てが、2~15nmの範囲内であることが好ましい。また、前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の80%以上が、2~5nmの範囲内であることが好ましい。 As an embodiment of the present invention, from the viewpoint of the effect of the present invention, it is preferable that all the intervals between adjacent maximum values are in the range of 2 to 15 nm. In the carbon / oxygen distribution curve, it is preferable that 80% or more of the interval between the adjacent maximum values is in the range of 2 to 5 nm.
 さらに、本発明においては、前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~5nmの範囲内であることが好ましい。これにより、屈曲耐性と密着性がさらに向上する。 Furthermore, in the present invention, in the carbon / oxygen distribution curve, it is preferable that all the intervals between the adjacent maximum values are in the range of 2 to 5 nm. Thereby, bending tolerance and adhesiveness further improve.
 また、本発明のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法としては、生産性が高いことから、ガスバリアー層を、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により製造する態様の製造方法であることが好ましい。 In addition, as a gas barrier film manufacturing method for manufacturing the gas barrier film of the present invention, since the productivity is high, a voltage is applied between the opposed roller electrodes having a magnetic field generating member that generates at least a magnetic field in the gas barrier layer. It is preferable that the manufacturing method is an embodiment in which the plasma is generated by plasma chemical vapor deposition using plasma generated in this manner.
 さらに、本発明のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法としては、帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程と、前記可撓性基材を、一対の成膜ローラーのそれぞれに接触させながら搬送を行い、成膜室内で、当該一対の成膜ローラー間に成膜ガスを供給しながら、かつ、成膜室内の水分を除去しながらプラズマ放電を行い、前記基材上にガスバリアー層を形成する工程と、前記ガスバリアー層を可撓性基材上に形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程と、を含む態様の製造方法であることが、好ましい。また、可撓性基材の搬送速度が、20m/分以上であることが好ましい。 Furthermore, as a method for producing a gas barrier film for producing a gas barrier film of the present invention, a step of feeding a belt-like flexible base material from a feed roller and transporting it with a transport roller; The film is conveyed while being in contact with each of the film forming rollers, and plasma discharge is performed in the film forming chamber while supplying a film forming gas between the pair of film forming rollers and removing moisture in the film forming chamber. And a step of forming a gas barrier layer on the base material, and a step of winding the gas barrier film having the gas barrier layer formed on a flexible base material with a winding roller while transporting the gas barrier film with a transport roller. It is preferable that it is the manufacturing method of an aspect. Moreover, it is preferable that the conveyance speed of a flexible base material is 20 m / min or more.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪本発明のガスバリアーフィルムの概要≫
 本発明のガスバリアーフィルムは、可撓性基材上にガスバリアー層を有するガスバリアーフィルムであって、
当該ガスバリアー層が、下記要件(1)及び(2)を満たすことを特徴とする。
(1)前記ガスバリアー層が、少なくともケイ素、酸素及び炭素を構成元素として含有する。
(2)前記ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線が極大値を有し、前記極大値の数(n)と前記ガスバリアー層の厚さ(d)との比率(n/d)が0.10/nm以上である。
<< Outline of Gas Barrier Film of the Present Invention >>
The gas barrier film of the present invention is a gas barrier film having a gas barrier layer on a flexible substrate,
The gas barrier layer satisfies the following requirements (1) and (2).
(1) The gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements.
(2) A carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer The ratio (n / d) to the thickness (d) is 0.10 / nm or more.
 なお、前記「磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法」を、本願では簡単に「ローラー電極間プラズマCVD法」、又はさらに簡単に「プラズマCVD法」という場合がある。 The “plasma chemical vapor deposition method using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member for generating a magnetic field” is simply referred to as “plasma CVD method between roller electrodes” in the present application. Or, more simply, “plasma CVD method”.
 また、後述するXPSデプスプロファイルによって測定される、ケイ素、酸素及び炭素の合計量に対する炭素量の比率を、「炭素原子比率(at%)」、ケイ素、酸素及び炭素の合計量に対する酸素量の比率を「酸素原子比率(at%)」、及びケイ素、酸素及び炭素の合計量に対するケイ素量の比率を「ケイ素原子比率(at%)」という。いずれも、ケイ素、酸素及び炭素の合計量は100at%である。 Further, the ratio of the carbon amount to the total amount of silicon, oxygen, and carbon, which is measured by the XPS depth profile described later, is expressed as “carbon atom ratio (at%)”, the ratio of the oxygen amount to the total amount of silicon, oxygen, and carbon. Is referred to as “oxygen atomic ratio (at%)”, and the ratio of the amount of silicon to the total amount of silicon, oxygen and carbon is referred to as “silicon atomic ratio (at%)”. In any case, the total amount of silicon, oxygen and carbon is 100 at%.
 ここで、前記ガスバリアー層中の酸素量に対する炭素量の比の値は、具体的には炭素/酸素分布曲線によってプロファイルされる。当該炭素/酸素分布曲線は、本発明に係るガスバリアー層表面からの距離(L)を横軸に、含有する酸素量に対する炭素量の比率を縦軸にプロットした連続した分布曲線をいう。 Here, the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is specifically profiled by a carbon / oxygen distribution curve. The carbon / oxygen distribution curve refers to a continuous distribution curve in which the distance (L) from the surface of the gas barrier layer according to the present invention is plotted on the horizontal axis and the ratio of the carbon amount to the oxygen content is plotted on the vertical axis.
 ガスバリアー層表面からの距離(L)に対するケイ素量、酸素量及び炭素量の測定は、下記X線光電子分光法による深さ方向の元素分布測定(以下、XPSデプスプロファイルともいう。)によって行うことができる。 Measurement of the silicon content, oxygen content, and carbon content with respect to the distance (L) from the gas barrier layer surface is performed by the element distribution measurement in the depth direction (hereinafter also referred to as XPS depth profile) by the following X-ray photoelectron spectroscopy. Can do.
 ≪X線光電子分光法:XPSデプスプロファイルについて≫
 本発明に係るガスバリアー層のケイ素量、酸素量及び炭素量は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により得ることができる。このようなXPSデプスプロファイル測定により得られる各元素の分布曲線及び炭素/酸素分布曲線は、例えば、縦軸を各元素の原子比率(at%)、又は酸素量に対する炭素量の比とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は本発明に係るガスバリアー層表面から層厚方向における距離(L)におおむね相関することから、「本発明に係るガスバリアー層表面から層厚方向における距離(L)」として、SiO換算の層厚(nm)を用いる。XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリアー層表面からの距離(すなわち、SiO換算の層厚(nm)=(エッチング時間(sec)×エッチング速度(nm/sec))を採用することができる。本発明では、SiO換算の層厚(nm)はスパッタ深さ(nm)ともいう。
≪X-ray photoelectron spectroscopy: XPS depth profile≫
The amount of silicon, the amount of oxygen, and the amount of carbon of the gas barrier layer according to the present invention can be measured by combining X-ray photoelectron spectroscopy (XPS) measurement with rare gas ion sputtering such as argon. It can be obtained by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while being exposed. In the distribution curve and carbon / oxygen distribution curve of each element obtained by such XPS depth profile measurement, for example, the vertical axis is the atomic ratio (at%) of each element, or the ratio of the carbon amount to the oxygen amount, and the horizontal axis Can be created as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time, the etching time is generally correlated with the distance (L) in the layer thickness direction from the surface of the gas barrier layer according to the present invention. As the distance (L) in the layer thickness direction from the surface of the gas barrier layer, the layer thickness (nm) in terms of SiO 2 is used. The distance from the gas barrier layer surface calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement (ie, SiO 2 equivalent layer thickness (nm) = (etching time (sec) × etching rate) (Nm / sec)) In the present invention, the layer thickness (nm) in terms of SiO 2 is also referred to as the sputter depth (nm).
 本発明では、各元素の原子比率(at%)を表す分布曲線、及び酸素量に対する炭素量の比率(C/O)は、下記測定条件にてケイ素量、酸素量、及び炭素量を測定して作成した。 In the present invention, the distribution curve representing the atomic ratio (at%) of each element and the ratio of carbon amount to oxygen amount (C / O) are determined by measuring the silicon amount, oxygen amount, and carbon amount under the following measurement conditions. Created.
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.01nm/sec
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800μm×400μmの楕円形。
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate (equivalent to SiO 2 thermal oxide film): 0.01 nm / sec
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 μm × 400 μm oval.
 ここで本発明における極大値は、前述のXPSデプスプロファイルで測定された層厚方向の炭素/酸素分布曲線を測定し、前述したSiO換算層厚で1nmごとにプロットした曲線から求めることができる。 Here, the maximum value in the present invention can be obtained from a curve obtained by measuring the carbon / oxygen distribution curve in the layer thickness direction measured by the above-mentioned XPS depth profile and plotting the above-mentioned SiO 2 equivalent layer thickness every 1 nm. .
 各極大値の位置は、本発明に係るガスバリアー層の表面からのSiO換算層厚(スパッタ深さ(nm))から算出される。なお、隣接する極大値間の間隔とは、炭素/酸素分布曲線の有する一つの極大値及び該極大値に隣接する極大値間における本発明に係るガスバリアー層の層厚方向における本発明に係るガスバリアー層の表面からの距離(L)の差の絶対値(以下、単に「極大値間の間隔」とも称する)を指す。また、炭素/酸素分布曲線における「極大値」とは、炭素/酸素分布曲線における、C/O(炭素量/酸素量)の極大値のことをいう。炭素/酸素分布曲線における極大値とは、本発明に係るガスバリアー層の表面からの距離を変化させた場合に酸素量に対する炭素量の原子比率の値が増加から減少に変わる点でのことをいう。具体的には、前述の評価方法で測定された層厚方向の炭素/酸素分布曲線を前述のエッチングレートでスパッタし測定し、SiO換算層厚で1nm内で、約0.20nmごとに組成を5回測定する。その5回の平均値をプロットした炭素/酸素分布曲線から求められる。例えば0.2m、0.4nm、0.6nm、0.8nm、1nmで測定し、平均値を0.6nm位置の値としてプロットした炭素/酸素分布曲線から求めることができる。 The position of each maximum value is calculated from the SiO 2 equivalent layer thickness (sputter depth (nm)) from the surface of the gas barrier layer according to the present invention. Note that the interval between adjacent maximum values refers to the present invention in the thickness direction of the gas barrier layer according to the present invention between one maximum value of the carbon / oxygen distribution curve and the maximum value adjacent to the maximum value. It refers to the absolute value of the difference in distance (L) from the surface of the gas barrier layer (hereinafter also simply referred to as “interval between maximum values”). The “maximum value” in the carbon / oxygen distribution curve refers to the maximum value of C / O (carbon content / oxygen content) in the carbon / oxygen distribution curve. The maximum value in the carbon / oxygen distribution curve means that the value of the atomic ratio of the carbon amount to the oxygen amount changes from increasing to decreasing when the distance from the surface of the gas barrier layer according to the present invention is changed. Say. Specifically, the carbon / oxygen distribution curve in the layer thickness direction measured by the above-described evaluation method is measured by sputtering at the above-described etching rate, and the composition is about 0.20 nm within 1 nm as the SiO 2 equivalent layer thickness. Is measured 5 times. It is obtained from a carbon / oxygen distribution curve in which the average value of the five times is plotted. For example, it can be determined from a carbon / oxygen distribution curve that is measured at 0.2 m, 0.4 nm, 0.6 nm, 0.8 nm, and 1 nm and the average value is plotted as the value at the 0.6 nm position.
 <本発明のガスバリアーフィルムの構成>
 本発明のガスバリアーフィルムの構成は特に限定されるものではないが、図1Aに一例を示す。ガスバリアーフィルム10aは、基材1の上に、ガスバリアー層3が積層されてなるガスバリアーフィルムである。その際、基材1とガスバリアー層3の間に、有機層として平滑層2を設けることは、基材とガスバリアー層との密着性を向上したり、基材界面の凹凸を薄層であるガスバリアー層に影響させにくくするため、好ましい態様である。
<Configuration of gas barrier film of the present invention>
Although the structure of the gas barrier film of this invention is not specifically limited, FIG. 1A shows an example. The gas barrier film 10 a is a gas barrier film in which the gas barrier layer 3 is laminated on the substrate 1. In that case, providing the smooth layer 2 as an organic layer between the base material 1 and the gas barrier layer 3 improves the adhesion between the base material and the gas barrier layer, or the unevenness of the base material interface is a thin layer. This is a preferred embodiment in order to make it difficult to affect a certain gas barrier layer.
 また、別の態様である本発明のガスバリアーフィルム10bは、例えば、図1Bに示すように、樹脂基材1の上に平滑層2を備え、その平滑層2上にガスバリアー層3が積層され、さらに樹脂基材1の当該ガスバリアー層3を有する面とは反対側の面に、ブリードアウト防止層4を設けることも好ましい。さらに、当該ガスバリアー層3上には、金属酸化物を含む第2のガスバリアー層5が積層されていてもよい。また、第2のガスバリアー層5上にはオーバーコート層6が積層されていてもよい。 Moreover, the gas barrier film 10b of this invention which is another aspect is equipped with the smooth layer 2 on the resin base material 1, as shown to FIG. 1B, for example, and the gas barrier layer 3 is laminated | stacked on the smooth layer 2 In addition, it is also preferable to provide a bleed-out prevention layer 4 on the surface of the resin substrate 1 opposite to the surface having the gas barrier layer 3. Furthermore, a second gas barrier layer 5 containing a metal oxide may be laminated on the gas barrier layer 3. An overcoat layer 6 may be laminated on the second gas barrier layer 5.
 <ガスバリアー層>
 本発明に係るガスバリアー層は、当該ガスバリアー層が、下記要件(1)及び(2)を満たすことを特徴とする。
(1)前記ガスバリアー層が、少なくともケイ素、酸素及び炭素を構成元素として含有する。
(2)前記ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線が極大値を有し、前記極大値の数(n)と前記ガスバリアー層の厚さ(d)との比率(n/d)が0.10/nm以上である。
<Gas barrier layer>
The gas barrier layer according to the present invention is characterized in that the gas barrier layer satisfies the following requirements (1) and (2).
(1) The gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements.
(2) A carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer The ratio (n / d) to the thickness (d) is 0.10 / nm or more.
 本発明に係るガスバリアー層の厚さは、特に限定されない。ガスバリアー性能を向上させ、一方で、欠陥を生じにくくするために、20~1000nmの範囲内とすることができる。本発明では、ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線における極大値の数を多くするために、ガスバリアー層の成膜処理1回当たりの層厚は、10~100nmの範囲であることが好ましく、20~40nmの範囲内であることが、より好ましい。このように成膜処理1回当たりの層厚を薄くして、複数回成膜処理することにより、ガスバリアー層の厚さ方向における単位層厚あたりの極大値の数を増やすことができる。 The thickness of the gas barrier layer according to the present invention is not particularly limited. In order to improve the gas barrier performance while making it difficult to cause defects, it can be in the range of 20 to 1000 nm. In the present invention, in order to increase the number of maximum values in the carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction, the gas barrier layer is formed once. The hit layer thickness is preferably in the range of 10 to 100 nm, and more preferably in the range of 20 to 40 nm. Thus, by reducing the layer thickness per film formation process and performing the film formation process a plurality of times, the number of local maximum values per unit layer thickness in the thickness direction of the gas barrier layer can be increased.
 なお、「成膜処理1回当たり」とは、前記対向ローラー電極を具備するプラズマCVDを行う成膜装置において、一対の対向ローラー電極それぞれを可撓性基材が通過し、ガスバリアー層が形成される処理を「1回の成膜処理」という。 In addition, “per film forming process” means that in the film forming apparatus that performs plasma CVD including the counter roller electrode, a flexible base material passes through each of the pair of counter roller electrodes to form a gas barrier layer. This process is referred to as “one film formation process”.
 ここで、本発明に係るガスバリアー層の厚さの測定方法としては、透過型顕微鏡(TEM)観察による層厚測定法を採用する。本発明に係るガスバリアー層は、複数のサブレイヤーからなる積層構造であってもよい。この場合サブレイヤーの層数は、2~30層であることが好ましい。また、各サブレイヤーが同じ組成であっても異なる組成であってもよい。 Here, as a method for measuring the thickness of the gas barrier layer according to the present invention, a layer thickness measuring method by observation with a transmission microscope (TEM) is adopted. The gas barrier layer according to the present invention may have a laminated structure including a plurality of sublayers. In this case, the number of sublayers is preferably 2 to 30. Moreover, each sublayer may have the same composition or a different composition.
 なお、本発明でいう「ガスバリアー性」とは、例えばJIS K 7129-1992に準拠した方法で測定された水蒸気透過率や、JIS K 7126-1987に準拠した方法で測定された酸素透過率で示される。一般的には水蒸気透過率が1g/(m・day)以下又は酸素透過率が1mL/(m・day・atm)以下であればガスバリアー性を有するといわれる。さらに水蒸気透過率が5×10-3g/(m・day)未満であれば高ガスバリアー性を有するといわれ、有機ELや電子ペーパー、太陽電池、LCD等の電子デバイスに用いることができる。 The “gas barrier property” as used in the present invention is, for example, a water vapor transmission rate measured by a method according to JIS K 7129-1992, or an oxygen transmission rate measured by a method according to JIS K 7126-1987. Indicated. In general, if the water vapor transmission rate is 1 g / (m 2 · day) or less or the oxygen transmission rate is 1 mL / (m 2 · day · atm) or less, it is said to have gas barrier properties. Furthermore, if the water vapor transmission rate is less than 5 × 10 −3 g / (m 2 · day), it is said to have high gas barrier properties, and can be used for electronic devices such as organic EL, electronic paper, solar cells, and LCDs. .
 次に、要件(1)及び要件(2)について詳細に説明する。 Next, requirement (1) and requirement (2) will be described in detail.
 [要件(1)]
 本発明に係るガスバリアー層は、要件(1)としてケイ素、酸素、及び炭素を構成元素として含有することが特徴である。
[Requirement (1)]
The gas barrier layer according to the present invention is characterized by containing silicon, oxygen, and carbon as constituent elements as the requirement (1).
 本発明に係るガスバリアー層には、ケイ素及び酸素に加えて炭素が存在する。このうち、ケイ素及び酸素を存在させることによってガスバリアー性を付与でき、炭素を存在させることによってガスバリアー層に屈曲耐性を付与することができる。 In the gas barrier layer according to the present invention, carbon is present in addition to silicon and oxygen. Among these, gas barrier properties can be imparted by the presence of silicon and oxygen, and bending resistance can be imparted to the gas barrier layer by the presence of carbon.
 本発明に係るガスバリアー層は、本発明に係るガスバリアー層の厚さ方向における本発明に係るガスバリアー層表面からの距離(L)と、ケイ素原子比率との関係を示すケイ素分布曲線、Lと酸素原子比率との関係を示す酸素分布曲線、並びにLと炭素原子比率との関係を示す炭素分布曲線において、本発明に係るガスバリアー層の厚さの80%以上(上限:100%)の領域で、下記式(A)又は下記式(B)で表される序列の大小関係を有することが好ましい。 The gas barrier layer according to the present invention includes a silicon distribution curve indicating a relationship between a distance (L) from the surface of the gas barrier layer according to the present invention in the thickness direction of the gas barrier layer according to the present invention and a silicon atomic ratio, L In the oxygen distribution curve showing the relationship between the oxygen atom ratio and the carbon distribution curve showing the relationship between the L and carbon atom ratio, which is 80% or more (upper limit: 100%) of the thickness of the gas barrier layer according to the present invention. It is preferable that the region has an order magnitude relationship represented by the following formula (A) or the following formula (B).
 式(A) (炭素原子比率)<(ケイ素原子比率)<(酸素原子比率)
 式(B) (酸素原子比率)<(ケイ素原子比率)<(炭素原子比率)
 ここで、本発明に係るガスバリアー層の厚さの少なくとも80%以上とは、ガスバリアー層中で連続していなくてもよく、単に80%以上の部分で上記した関係を満たしていればよい。
Formula (A) (carbon atom ratio) <(silicon atom ratio) <(oxygen atom ratio)
Formula (B) (oxygen atom ratio) <(silicon atom ratio) <(carbon atom ratio)
Here, at least 80% or more of the thickness of the gas barrier layer according to the present invention does not have to be continuous in the gas barrier layer, and only needs to satisfy the above-described relationship at a portion of 80% or more. .
 上記分布曲線において、酸素原子比率、ケイ素原子比率及び炭素原子比率の関係は、ガスバリアー層の層厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがさらに好ましい。また、本発明に係るガスバリアー層の厚さの80%以上(上限:100%)の領域で、原子比率がC<Si<O、式(A)で表される序列の大小関係を満たすことが好ましい。このような条件となることで、得られるガスバリアーフィルムのガスバリアー性や屈曲耐性が十分となる。 In the above distribution curve, the relationship between the oxygen atom ratio, the silicon atom ratio, and the carbon atom ratio is more preferably satisfied in a region of at least 90% or more (upper limit: 100%) of the thickness of the gas barrier layer, and at least 93 More preferably, it is satisfied in an area of at least% (upper limit: 100%). In addition, in the region of 80% or more (upper limit: 100%) of the thickness of the gas barrier layer according to the present invention, the atomic ratio satisfies C <Si <O, and the order magnitude relationship represented by the formula (A) is satisfied. Is preferred. By satisfying such conditions, the obtained gas barrier film has sufficient gas barrier properties and bending resistance.
 ガスバリアー層中におけるケイ素原子比率は、25~45at%の範囲であることが好ましく、30~40at%の範囲であることがより好ましい。また、前記本発明に係るガスバリアー層中における酸素原子比率は、20~67at%の範囲であることが好ましく、25~67at%の範囲であることがより好ましい。さらに、前記層中における炭素原子比率は、3~50at%の範囲であることが好ましく、3~40at%の範囲であることがより好ましい。 The silicon atom ratio in the gas barrier layer is preferably in the range of 25 to 45 at%, and more preferably in the range of 30 to 40 at%. The oxygen atom ratio in the gas barrier layer according to the present invention is preferably in the range of 20 to 67 at%, more preferably in the range of 25 to 67 at%. Furthermore, the carbon atom ratio in the layer is preferably in the range of 3 to 50 at%, more preferably in the range of 3 to 40 at%.
 また、本発明において、本発明に係るガスバリアー層の厚さ方向に対する炭素及び酸素原子の合計量はほぼ一定であることが好ましい。これにより、本発明に係るガスバリアー層は適度な屈曲耐性を発揮し、ガスバリアーフィルムの屈曲時のクラック発生をより有効に抑制・防止されうる。より具体的には、本発明に係るガスバリアー層の厚さ方向における該ガスバリアー層の表面からの距離(L)と、酸素及び炭素の合計量の比率(酸素及び炭素原子比率)との関係を示す分布曲線において、該分布曲線における酸素及び炭素の原子比率の合計の最大値及び最小値の差の絶対値(以下、単に「OCmax-OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリアーフィルムのガスバリアー性がより向上する。なお、OCmax-OCmin差の下限は、OCmax-OCmin差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。 In the present invention, the total amount of carbon and oxygen atoms with respect to the thickness direction of the gas barrier layer according to the present invention is preferably substantially constant. Thereby, the gas barrier layer according to the present invention exhibits moderate bending resistance, and the generation of cracks when the gas barrier film is bent can be more effectively suppressed / prevented. More specifically, the relationship between the distance (L) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer according to the present invention and the ratio of the total amount of oxygen and carbon (oxygen and carbon atom ratio). The absolute value of the difference between the maximum and minimum total oxygen and carbon atomic ratios in the distribution curve (hereinafter also simply referred to as “OC max −OC min difference”) is less than 5 at%. Is preferably less than 4 at%, more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved. The lower limit of the OC max -OC min difference, since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
 膜面全体において均一でかつ優れたガスバリアー性を有する本発明に係るガスバリアー層を形成するという観点から、本発明に係るガスバリアー層が膜面方向(本発明に係るガスバリアー層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、本発明に係るガスバリアー層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により本発明に係るガスバリアー層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線及び前記酸素/炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極大値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか若しくは5at%以内の差であることをいう。 From the viewpoint of forming a gas barrier layer according to the present invention that is uniform over the entire film surface and has excellent gas barrier properties, the gas barrier layer according to the present invention is in the direction of the film surface (on the surface of the gas barrier layer according to the present invention). It is preferably substantially uniform in the (parallel direction). Here, the gas barrier layer according to the present invention is substantially uniform in the film surface direction means that the oxygen distribution at any two measurement points on the film surface of the gas barrier layer according to the present invention by XPS depth profile measurement. When the curve, the carbon distribution curve, and the oxygen / carbon distribution curve are created, the number of local maximum values of the carbon distribution curve obtained at any two measurement locations is the same, and each carbon distribution curve The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is the same as each other or within 5 at%.
 さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比率が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出されるガスバリアー層の厚さ方向の表面からの距離(x、単位:nm)と、炭素の原子比率(C、単位:at%)との関係において、下記式(1)で表される条件を満たすことをいう。 Furthermore, in the present invention, it is preferable that the carbon distribution curve is substantially continuous. Here, “substantially continuous carbon distribution curve” means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, the carbon distribution curve is calculated from the etching rate and the etching time. In the relationship between the distance from the surface in the thickness direction of the gas barrier layer (x, unit: nm) and the atomic ratio of carbon (C, unit: at%), the condition represented by the following formula (1) Satisfying.
  式1  (dC/dx)≦10
 本発明に係るガスバリアー層の形成方法は、磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法(プラズマCVD法)により形成されることが好ましい。
Formula 1 (dC / dx) ≦ 10
The method for forming a gas barrier layer according to the present invention includes a plasma chemical vapor deposition method (plasma CVD method) using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member for generating a magnetic field. Preferably it is formed.
 本発明に係るガスバリアー層の材料としては、ガスバリアーフィルムが用いられた電子デバイスの性能劣化をもたらす水、酸素等のガスの浸入を抑制する機能を有する材料であり、ケイ素化合物として、例えば、酸化ケイ素、酸窒化ケイ素、二酸化ケイ素、窒化ケイ素等の無機ケイ素化合物、有機ケイ素化合物等を用いることができる。 As a material of the gas barrier layer according to the present invention, it is a material having a function of suppressing the ingress of gas such as water and oxygen causing deterioration of the performance of the electronic device in which the gas barrier film is used. Inorganic silicon compounds such as silicon oxide, silicon oxynitride, silicon dioxide, and silicon nitride, organic silicon compounds, and the like can be used.
 中でも、ガスバリアー層は、有機ケイ素化合物が気化されたガスを酸化又は窒化させて形成されていることが好ましい。 In particular, the gas barrier layer is preferably formed by oxidizing or nitriding a gas in which an organosilicon compound is vaporized.
 [要件(2)]
 本発明に係るガスバリアー層は、要件(2)として、ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線が極大値を有し、前記極大値の数(n)と前記ガスバリアー層の厚さ(d)との比率(n/d)が0.10/nm以上であることを特徴とする。
[Requirement (2)]
In the gas barrier layer according to the present invention, as a requirement (2), a carbon / oxygen distribution curve obtained by plotting a value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer in the thickness direction has a maximum value, and the maximum The ratio (n / d) between the number of values (n) and the thickness (d) of the gas barrier layer is 0.10 / nm or more.
 本発明では、ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線が極大値を有し、極大値の数(n)と前記ガスバリアー層の厚さ(d)との比率(n/d)が0.10/nm以上である。n/d=0.10/nm以上であるということは、単位層厚あたりの極大値が多いことを意味している。極大値が多いと、応力に弱いと考えられる酸素リッチ層のそれぞれの層厚を薄くすることができる。かつ、酸素リッチ層の厚さが薄い状態で酸素リッチ層が炭素リッチ層に挟まれるため、応力に対してクラックが発生しにくいと考えられる。また、高温高湿環境下に保管されたときに基材の熱変形のよって発生する応力に対しても、同様に強くなり耐久性が向上するものと考えられる。 In the present invention, the carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer The ratio (n / d) to the thickness (d) is 0.10 / nm or more. That n / d = 0.10 / nm or more means that the maximum value per unit layer thickness is large. When the maximum value is large, the thickness of each oxygen-rich layer that is considered to be weak against stress can be reduced. In addition, since the oxygen-rich layer is sandwiched between the carbon-rich layers while the oxygen-rich layer is thin, it is considered that cracks are unlikely to occur due to stress. In addition, it is considered that the resistance to the stress generated by the thermal deformation of the base material when stored in a high temperature and high humidity environment is similarly increased and the durability is improved.
 このように、前記炭素/酸素分布曲線において、単位層厚あたりの極大値が多いことが好ましいことから、前記炭素/酸素分布曲線において、極大値間の間隔は狭い方が好ましい。すなわち、前記炭素/酸素分布曲線において、隣接する極大値間の間隔の80%以上が、2~15nmの範囲内であることが好ましい。 Thus, in the carbon / oxygen distribution curve, it is preferable that the maximum value per unit layer thickness is large. Therefore, in the carbon / oxygen distribution curve, the interval between the maximum values is preferably narrow. That is, in the carbon / oxygen distribution curve, it is preferable that 80% or more of the interval between adjacent maximum values is in the range of 2 to 15 nm.
 また、基材の界面側は、基材(ここでいう、基材には、基材が処理された、又は基材上に有機層を有する形態も含む。)が保持している微量な水分が、プラズマ放電空間に放出されて、膜の酸化を促進させ、炭素量及び酸素量の連続的な組成の傾斜を損ない、炭素/酸素分布曲線において、極大値間の間隔が広くなる場合があり、炭素量減少に伴う屈曲耐性の劣化を発生させることが分かってきた。このため特に、基材の界面から30nmまでの距離範囲内の前記ガスバリアーフィルムにおける前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~15nmの範囲内であることが好ましい。 In addition, the interface side of the base material is a trace amount of water held by the base material (herein, the base material includes a form in which the base material is processed or has an organic layer on the base material). However, it may be released into the plasma discharge space to promote the oxidation of the film, impair the continuous gradient of the composition of carbon and oxygen, and widen the interval between the maximum values in the carbon / oxygen distribution curve. It has been found that the bending resistance is deteriorated as the carbon amount is reduced. For this reason, in particular, in the carbon / oxygen distribution curve in the gas barrier film within a distance range from the interface of the substrate to 30 nm, all the intervals between the adjacent maximum values are in the range of 2 to 15 nm. Is preferred.
 より好ましくは、炭素/酸素分布曲線において、前記隣接する極大値間の間隔の80%以上が、2~5nmの範囲内であることであり、さらに好ましくは、前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~5nmの範囲内である。 More preferably, in the carbon / oxygen distribution curve, 80% or more of the interval between the adjacent maximum values is in the range of 2 to 5 nm, and more preferably, in the carbon / oxygen distribution curve, All of the intervals between adjacent maxima are in the range of 2-5 nm.
 単位層厚あたりの極大値を多くするためには、バリアー層の層厚と極大値の数を制御する必要がある。 In order to increase the maximum value per unit layer thickness, it is necessary to control the thickness of the barrier layer and the number of maximum values.
 プラズマCVDによりガスバリアー層を形成する際、ガスバリアー層の層厚の制御が重要となる。層厚の制御は具体的には以下の方法で行うことができる。 When forming a gas barrier layer by plasma CVD, it is important to control the thickness of the gas barrier layer. Specifically, the layer thickness can be controlled by the following method.
 (i)投入する原料量
 例えば、後述する有機ケイ素化合物の量を増やせば、プラズマ空間で分解される原料量が増えるので、層厚が増える。
(I) The amount of raw material to be introduced For example, if the amount of an organosilicon compound described later is increased, the amount of raw material decomposed in the plasma space increases, and thus the layer thickness increases.
 (ii)基材の搬送速度
 単位時間当たりの1回のプラズマ空間を通過する時間が変わり、遅いほど、プラズマ空間を通過する時間が長くなるため、層厚が増える。
(Ii) Substrate transport speed The time for passing through one plasma space per unit time changes, and the slower the time, the longer the time for passing through the plasma space, so the layer thickness increases.
 (iii)基材の幅
 投入原料量を同じ100sccmで供給しても、基材幅により成膜される厚さが異なり、1m幅に100sccm流すのと0.1m幅に流すのでは、0.1m幅の方が10倍厚くなる。
(Iii) Width of base material Even if the input raw material amount is supplied at the same 100 sccm, the thickness of the film formed differs depending on the width of the base material. The 1m width is 10 times thicker.
 (iv)プラズマCVDの放電空間を通過する回数
 通過する回数を増やせば、そのパス数に比例して層厚が増える。本発明では、二つの成膜ローラー(対抗するローラー)を1回通過(1回の成膜処理)で1回と数える。
(Iv) Number of passes through the plasma CVD discharge space If the number of passes is increased, the layer thickness increases in proportion to the number of passes. In the present invention, two film forming rollers (counter rollers) are counted as one pass (one film forming process).
 炭素/酸素分布曲線における極大値は、通常(通過回数×2)となり、極大値の数は層厚に関係なく、二つのローラーを通過した回数が支配的な要因である。したがって、上記(i)~(iv)を適宜制御して、バリアー層中の極大値の数(n)とガスバリアー層の厚さ(d)との比率(n/d)を制御することができる。具体的には、一回の成膜処理で形成する層の厚さを薄くして、多数回プラズマCVDの放電空間を通過することで、炭素/酸素分布曲線において多くの極大値を有するガスバリアー層を形成することができる。なお、成膜室内の反応性の雰囲気等の条件変化によっても極大値の数を調整できる。 The maximum value in the carbon / oxygen distribution curve is usually (number of passes × 2), and the number of maximum values is dominated by the number of passes through two rollers regardless of the layer thickness. Therefore, the ratio (n / d) between the number of maximum values (n) in the barrier layer and the thickness (d) of the gas barrier layer can be controlled by appropriately controlling the above (i) to (iv). it can. Specifically, a gas barrier having many local maximum values in a carbon / oxygen distribution curve by reducing the thickness of a layer formed by a single film formation process and passing through the discharge space of the plasma CVD many times. A layer can be formed. Note that the number of maximum values can also be adjusted by changing conditions such as a reactive atmosphere in the deposition chamber.
 例えば、前述したように、基材が保持している微量な水分が、プラズマ放電空間に放出されて、膜の酸化を促進させ、炭素量及び酸素量の連続的な組成の傾斜を損ない、炭素/酸素分布曲線において、極大値間の間隔が広くなる場合がある。ガスバリアー層内では、層の厚さ方向に一定量の範囲の炭素が分布する領域が必要であるが、ガスバリアー層を形成するのに、基材の搬送速度を速めて成膜したり、成膜ローラーの温度を上げる等の生産性を高める条件で成膜すると、前述の水分の影響によって基材界面に接する側の特定の範囲において炭素の分布が低減した領域が形成されやすくなるためであると考えられる。特にプラズマCVDにおける多層膜の形成における1回目の成膜処理でこの現象が出やすい。 For example, as described above, a small amount of water held by the base material is released into the plasma discharge space, promotes oxidation of the film, impairs the continuous compositional gradient of carbon content and oxygen content, carbon / In the oxygen distribution curve, the interval between the maximum values may be wide. In the gas barrier layer, a region in which a certain amount of carbon is distributed in the thickness direction of the layer is necessary, but in order to form the gas barrier layer, film formation is performed at a higher substrate transport speed, When film formation is performed under conditions that increase productivity, such as increasing the temperature of the film formation roller, a region with a reduced carbon distribution is likely to be formed in a specific range on the side in contact with the substrate interface due to the influence of moisture described above. It is believed that there is. In particular, this phenomenon is likely to occur in the first film formation process in the formation of a multilayer film by plasma CVD.
 このため、成膜時に水分の影響をなくすことが好ましい。水分を除去するためには、従来の単なる真空引きでの水分の除去のみでは効果が小さいことから、例えば、加熱処理することによって、基材からの水分の気化、脱離を促進することや、冷却媒体を循環させるクライオコイルを用いて水分を凍結させて、成膜室内の水分を除去することが好ましい。より好ましくは、冷却媒体を循環させるクライオコイルを用いて水分を凍結させて、成膜室内の水分を除去する方法である。 For this reason, it is preferable to eliminate the influence of moisture during film formation. In order to remove moisture, since removal of moisture by conventional simple evacuation has little effect, for example, heat treatment promotes vaporization and desorption of moisture from the substrate, It is preferable to freeze the moisture using a cryocoil that circulates the cooling medium to remove the moisture in the film formation chamber. More preferably, the moisture is frozen by using a cryocoil that circulates the cooling medium to remove the moisture in the deposition chamber.
 水分の影響がなければ、極大値の間隔が大きくなることがなく、結果的に応力に強いと考えられる炭素リッチ層が形成できるため、屈曲耐性を向上させることができる。 If there is no influence of moisture, the interval between the maximum values does not increase, and as a result, a carbon-rich layer considered to be resistant to stress can be formed, so that bending resistance can be improved.
 このような水分の影響は、特に、基材とガスバリアー層との密着性に大きく影響する基材の界面近傍で影響が大きいので、基材界面からから30nmまでの距離範囲内の前記ガスバリアー層において、炭素/酸素分布曲線における極大値間の間隔を短くすることが効果的であり好ましい。 The influence of such moisture is particularly large in the vicinity of the interface of the base material that greatly affects the adhesion between the base material and the gas barrier layer, and thus the gas barrier within a distance range from the base material interface to 30 nm. In the layer, it is effective and preferable to shorten the interval between the maximum values in the carbon / oxygen distribution curve.
 ここで、本発明でいう「基材界面」とは、ケイ素原子比率(at%)プロファイル及び炭素原子比率(at%)プロファイルにおいて、ガスバリアー層表面から深さ方向にXPSデプスプロファイルのデータをプロットしたときに、ケイ素原子比率が-0.5at%/nm以上変化し、かつ炭素原子比率が+1.0at%以上変化する点Pを「基材界面」と定義する。 Here, the “substrate interface” as used in the present invention plots XPS depth profile data from the gas barrier layer surface in the depth direction in the silicon atomic ratio (at%) profile and the carbon atomic ratio (at%) profile. Then, a point P where the silicon atomic ratio changes by −0.5 at% / nm or more and the carbon atomic ratio changes by +1.0 at% or more is defined as “substrate interface”.
 これは、XPSデプスプロファイルにて組成分析を行う際、測定の性質上、本発明に係るガスバリアー層と、基材又は基材上に形成されたハードコート層等の有機層との界面で、必ず両方の組成が混在する遷移領域が存在することによる。 This is an interface between the gas barrier layer according to the present invention and an organic layer such as a hard coat layer formed on the base material or the base material due to the nature of the measurement when performing composition analysis with the XPS depth profile. This is because there is always a transition region in which both compositions are mixed.
 XPSデプスプロファイル測定は、真空下で試料表面にX線を照射し、光電効果により表面から真空中に放出される光電子の運動エネルギーを観測することにより、その表面の元素組成や化学状態に関する情報を得ることができるものであるが、当該X線照射時に界面近傍では、膜だけでなく、基材にもX線が到達してしまい、その影響を受けることにより、組成的に混在する遷移領域が存在し、界面として明確な位置を特定するのは困難である。したがって、本発明でいう「基材界面」とは、ガスバリアー層の成分と基材の成分との両方検出される遷移領域内であって、上記変化点である点Pを「基材界面」と定義した。 In XPS depth profile measurement, the surface of the sample is irradiated with X-rays under vacuum, and the kinetic energy of photoelectrons emitted from the surface into the vacuum by the photoelectric effect is observed to obtain information on the elemental composition and chemical state of the surface. Although it can be obtained, in the vicinity of the interface at the time of the X-ray irradiation, X-rays reach not only the film but also the base material, and are affected by this, so that there is a compositionally mixed transition region. It is difficult to specify a clear position as an interface. Therefore, the “base material interface” as used in the present invention is a transition region in which both the gas barrier layer component and the base material component are detected, and the point P which is the above change point is the “base material interface”. Defined.
 例えば、図2A及び図2Bは、本発明に係るガスバリアー層のXPSデプスプロファイルによる厚さ方向の各元素の分布曲線及び炭素/酸素分布曲線の一例である。図2Aは炭素、窒素、酸素及びケイ素原子のXPSデプスプロファイルを示している。図2Bは炭素/酸素分布曲線を示している。図2Bでは縦軸の酸素量に対する炭素量の比率(原子%)をC/O比と簡略して記載した。横軸はバリアー層表面からのスパッタ深さ(厚さ)を表している。 For example, FIG. 2A and FIG. 2B are examples of the distribution curve and carbon / oxygen distribution curve of each element in the thickness direction according to the XPS depth profile of the gas barrier layer according to the present invention. FIG. 2A shows XPS depth profiles of carbon, nitrogen, oxygen and silicon atoms. FIG. 2B shows a carbon / oxygen distribution curve. In FIG. 2B, the ratio (atomic%) of the carbon amount to the oxygen amount on the vertical axis is simply expressed as a C / O ratio. The horizontal axis represents the sputter depth (thickness) from the barrier layer surface.
 このXPSデプスプロファイルにより、ケイ素原子比率が-0.5at%/nm以上変化し、かつ炭素原子比率が+1.0at%以上変化する点Pはスパッタ深さ115.6nmであるので、当該基材界面から30nmの距離範囲Sは、スパッタ深さ85.6~115.6nmの範囲が該当する。 According to this XPS depth profile, the point P where the silicon atom ratio changes by −0.5 at% / nm or more and the carbon atom ratio changes by +1.0 at% or more is the sputter depth of 115.6 nm. To 30 nm corresponds to a range of sputter depth of 85.6 to 115.6 nm.
 また、炭素/酸素分布曲線が、数多くの極大値を有し、ガスバリアー層における極大値間の間隔が狭いことが分かる。 Also, it can be seen that the carbon / oxygen distribution curve has many local maximum values, and the interval between the local maximum values in the gas barrier layer is narrow.
 また、基材界面から30nmの距離範囲内において、炭素量が炭素原子比率として10~30at%の範囲内で分布している領域が存在することが、屈曲耐性を向上する観点から好ましい。 In addition, it is preferable from the viewpoint of improving the bending resistance that there is a region in which the carbon amount is distributed within a range of 10 to 30 at% as a carbon atom ratio within a distance range of 30 nm from the substrate interface.
 《ガスバリアー層の製造方法》
 以下、本発明に係るガスバリアー層を形成する製造方法を説明する。本発明のガスバリアーフィルムの製造方法は、生産性が高いことから、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法(プラズマCVD法)により製造することが好ましい。なお、当該プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。
<< Method for producing gas barrier layer >>
Hereinafter, a manufacturing method for forming a gas barrier layer according to the present invention will be described. Since the method for producing a gas barrier film of the present invention has high productivity, plasma chemical vapor deposition using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates at least a magnetic field. It is preferable to manufacture by the method (plasma CVD method). The plasma CVD method may be a Penning discharge plasma type plasma CVD method.
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、具体的には、一対の成膜ローラーを一対の対向電極として機能させることが好ましい。一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材(ここでいう、基材には、基材が処理された、又は基材上に有機層を有する形態も含む。)を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できる。加えて、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、ほぼ同じ構造の膜を成膜できるので前記炭素分布曲線における極大値を少なくとも倍増させることが可能となる。 When generating plasma in the plasma CVD method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers. Specifically, a pair of film forming rollers function as a pair of counter electrodes. Is preferred. A pair of film-forming rollers is used, and a base material is used for each of the pair of film-forming rollers (herein, the base material includes a form in which the base material is processed or has an organic layer on the base material). It is more preferable that a plasma is generated by disposing and discharging between a pair of film forming rollers. In this way, by using a pair of film forming rollers, placing a base material on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller It is possible to form a film on the surface part of the base material existing on the other film, and simultaneously form the film on the surface part of the base material present on the other film forming roller, so that a thin film can be produced efficiently. In addition, the film formation rate can be doubled compared to the normal plasma CVD method without using a roller, and a film with almost the same structure can be formed, so that the maximum value in the carbon distribution curve can be at least doubled. It becomes.
 また、このようにして一対の成膜ローラー間に放電する際には、一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリアーフィルムにおいては、本発明に係るガスバリアー層が連続的な成膜プロセスにより形成された層であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation. In the gas barrier film of the present invention, the gas barrier layer according to the present invention is preferably a layer formed by a continuous film forming process.
 また、本発明に係るガスバリアーフィルムは、生産性の観点から、ロールtoロール方式で基材の表面上に本発明に係るガスバリアー層を形成させることが好ましい。また、このようなプラズマCVD法によりガスバリアー層を形成する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図3に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールtoロール方式で製造することも可能となる。 The gas barrier film according to the present invention is preferably formed from the viewpoint of productivity by forming the gas barrier layer according to the present invention on the surface of the substrate by a roll-to-roll method. An apparatus that can be used when forming a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source. It is preferable that the apparatus has a configuration capable of discharging between the film rollers. For example, when the manufacturing apparatus shown in FIG. 3 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
 以下、図3を参照しながら、本発明に係るガスバリアー層の形成方法について、より詳細に説明する。なお、図3は、本発明に係るガスバリアー層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, the method for forming a gas barrier layer according to the present invention will be described in more detail with reference to FIG. FIG. 3 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing the gas barrier layer according to the present invention. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 本発明のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法は、
帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程と、
 前記可撓性基材を、一対の成膜ローラーのそれぞれに接触させながら搬送を行い、成膜室内で、当該一対の成膜ローラー間に成膜ガスを供給しながら、かつ、成膜室内の水分を除去しながらプラズマ放電を行い、前記基材上にガスバリアー層を形成する工程と、
 前記ガスバリアー層を可撓性基材上に形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程と、を含むことを特徴とするガスバリアーフィルムの製造方法であることが好ましい。
The method for producing a gas barrier film for producing the gas barrier film of the present invention is as follows:
A step of feeding the belt-shaped flexible base material from the feed roller and transporting it with the transport roller;
The flexible substrate is transported while being brought into contact with each of the pair of film forming rollers, the film forming gas is supplied between the pair of film forming rollers in the film forming chamber, and Performing a plasma discharge while removing moisture and forming a gas barrier layer on the substrate;
And a step of winding the gas barrier film having the gas barrier layer formed on the flexible substrate with a winding roller while transporting the gas barrier film with a transporting roller. preferable.
 より好ましくは、可撓性基材の搬送速度が、20m/分以上であることである。 More preferably, the conveyance speed of the flexible substrate is 20 m / min or more.
 図3に示すプラズマCVD製造装置30は、基材1を送り出す、送り出しローラー31と、搬送ローラー32から36を有する、繰り出し/搬送工程を有するA室と、成膜ローラー40、41と、ガス供給管44と、プラズマ発生用電源52と、成膜ローラー40及び41の内部に設置された磁場発生装置42、43と、搬送ローラー37、38、39を有する、成膜工程を有するB室(成膜室ともいう。)と、搬送ローラー45、46と巻取りローラー47とを備えている、巻取り工程を有するC室の3室よりなるプラズマCVD装置である。それぞれの部屋は独立しており、個別に気圧及び温度を制御できる装置(不図示)を有することが好ましい。それぞれの各室の温度は市販の温度モニター49~51で計測される。 The plasma CVD manufacturing apparatus 30 shown in FIG. 3 sends out the base material 1, a delivery roller 31, delivery chambers 32 to 36, a chamber A having a feeding / conveying process, film formation rollers 40 and 41, and gas supply A chamber B having a film formation process (synthetic process) having a tube 44, a plasma generation power source 52, magnetic field generators 42 and 43 installed inside the film formation rollers 40 and 41, and transfer rollers 37, 38 and 39. It is also a film chamber, and is a plasma CVD apparatus comprising three chambers of a C chamber having a winding process, which includes transport rollers 45 and 46 and a winding roller 47. Each room is independent, and it is preferable to have a device (not shown) that can individually control the pressure and temperature. The temperature of each chamber is measured by a commercially available temperature monitor 49-51.
 例えば、このような製造装置においては、成膜ローラー40、41と、ガス供給管44と、プラズマ発生用電源52と、磁場発生装置42、43とが図示を省略した真空チャンバー内に配置されている。さらに、このような製造装置30において前記真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の気圧を適宜調整することが可能となっている。 For example, in such a manufacturing apparatus, the film forming rollers 40 and 41, the gas supply pipe 44, the plasma generating power source 52, and the magnetic field generating apparatuses 42 and 43 are arranged in a vacuum chamber (not shown). Yes. Further, in such a manufacturing apparatus 30, the vacuum chamber is connected to a vacuum pump (not shown), and the atmospheric pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 前述した、水分の影響を除くために、少なくともB室(成膜室)には、冷却媒体が循環するクライオコイルのコイル状配管53が設置されていることが好ましい。 In order to eliminate the influence of moisture described above, it is preferable that a coiled pipe 53 of a cryocoil through which a cooling medium circulates is installed at least in the B chamber (film formation chamber).
 また、搬送ローラー33、34が加熱手段を有し、加熱ローラーとして機能し、温度調整を行う温度調整装置48を有する態様も好ましい。 Also, an aspect in which the transport rollers 33 and 34 have a heating means, function as a heating roller, and have a temperature adjustment device 48 that performs temperature adjustment is also preferable.
 最初に、本発明のガスバリアーフィルムの製造方法の好ましい態様である、クライオコイルについて説明する。 First, a cryocoil, which is a preferred embodiment of the method for producing a gas barrier film of the present invention, will be described.
 クライオコイルとは、低温凝縮源及び低温凝縮源を循環する冷却媒体を冷却する冷却器と冷却媒体を循環させるコイル状配管とで構成される低温排気手段であり、真空槽のガスを凍結トラップ(排気)することができる装置である。真空層内に設置されたコイル状配管に、冷やされた冷媒を循環させることで、真空層内のガスを該配管の表面に凍結させることにより排出できる。例えば、水蒸気が凍結トラップされ、真空層内の水の分圧を大きく低減することができ、排気速度を上げることができる。 The cryocoil is a low-temperature exhaust means composed of a low-temperature condensing source, a cooler that cools the cooling medium circulating through the low-temperature condensing source, and a coiled pipe that circulates the cooling medium. It is a device that can exhaust. By circulating a cooled refrigerant through a coiled pipe installed in the vacuum layer, the gas in the vacuum layer can be discharged by freezing the surface of the pipe. For example, water vapor is frozen and trapped, the partial pressure of water in the vacuum layer can be greatly reduced, and the exhaust speed can be increased.
 冷却媒体にはフロン系冷媒又は混合冷媒、液体窒素若しくは液体ヘリウムを用いることができる。さらに、クライオコイルは、他の真空ポンプ等の排気手段を組み合わせて、又は切り替え可能な構造として設置することもできる。 Fluorocarbon refrigerant or mixed refrigerant, liquid nitrogen or liquid helium can be used as the cooling medium. Furthermore, the cryocoil can be installed in combination with other evacuation means such as a vacuum pump or as a switchable structure.
 クライオコイルのコイル状配管の設置場所は、ロールtoロールの真空装置で用いる場合は、ロールの巻出し個所の近くに設置することができる。樹脂基材は基材自身が大気中で浸透した水分を多く保持しており、真空下で巻き出されると、多くの水分を放出し、真空層内の真空度を大きく劣化させるためである。また、その水分は成膜プロセス空間に侵入すると、プラズマの不純物として働き、プラズマを変化させる、酸化剤として働き、膜を酸化させるなど所望の膜が得られなくなるため、成膜プロセスの近傍に設置することもできる。好ましくは少なくともB室(成膜室)内に設置置されていることであり、より好ましくは、B室とA室の両方に、さらに好ましくはクライオコイルがA、B及びC室に設置されていることである。 The installation location of the coiled piping of the cryocoil can be installed near the unwinding location of the roll when used in a roll-to-roll vacuum device. This is because the resin base material retains a large amount of moisture that has permeated in the air itself, and when it is unwound in a vacuum, it releases a large amount of water and greatly deteriorates the degree of vacuum in the vacuum layer. Also, when the moisture enters the film formation process space, it acts as a plasma impurity, changes the plasma, acts as an oxidant, oxidizes the film, and so the desired film cannot be obtained. You can also Preferably, it is installed in at least B room (film formation room), more preferably, both B room and A room, more preferably cryocoil is installed in A, B and C rooms. It is that you are.
 また、基材から水分が放出されることから、基材が搬送される近傍にコイル状配管を設置することが好ましい。更に、凍結した水等が、コイル状配管から剥がれ落ち、基材に付着することを防ぐため、基材の通過個所の下側に設置することがより好ましい。剥がれ落ちた水等が、基材に載ると、そこに正常な膜が形成されず、バリアー性能を劣化させる。 Further, since moisture is released from the base material, it is preferable to install a coiled pipe in the vicinity of the base material being transported. Furthermore, in order to prevent frozen water and the like from peeling off from the coiled pipe and adhering to the base material, it is more preferable to install it below the passage portion of the base material. When the peeled water or the like is placed on the base material, a normal film is not formed there, and the barrier performance is deteriorated.
 コイル状配管は主にステンレスや銅が用いられる。コイル状配管の長さを延長させることで水分排気速度の調整を行うこともできる。冷却器には、例えば、特開2011-62600や特開2013-53848に記載の装置を用いることができる。 Stainless steel and copper are mainly used for coiled piping. The water exhaust speed can be adjusted by extending the length of the coiled pipe. As the cooler, for example, an apparatus described in JP2011-62600A or JP2013-53848 can be used.
 次に加熱処理について説明する。具体的には、搬送ローラー33、34が加熱手段を有し、加熱ローラーとして機能する。 Next, the heat treatment will be described. Specifically, the transport rollers 33 and 34 have heating means and function as heating rollers.
 加熱処理は、処理による所期の効果を得る上で、基材を成膜ローラーの温度より10℃以上の温度で加熱することが好ましく、70℃以上で加熱することが好ましく、80℃以上で加熱することが、より好ましい。また、基材等の変形等を防止する観点からは、基材のガラス転移点温度の温度以下で行うことが好ましい。 The heat treatment is preferably performed at a temperature of 10 ° C. or higher than the temperature of the film forming roller, preferably 70 ° C. or higher, and 80 ° C. or higher, in order to obtain the desired effect of the treatment. It is more preferable to heat. Further, from the viewpoint of preventing deformation of the base material and the like, it is preferable to carry out at a temperature below the glass transition temperature of the base material.
 ここで、ガラス転移温度(Tg)は、JIS K7121に基づく示差走査熱量分析法により昇温速度10℃/minで測定された温度をいい、例えば熱機械分析装置(TMA:Thermo Mechanical Analysis)等の装置により30~290℃の範囲で測定することによって検出することができる。 Here, the glass transition temperature (Tg) refers to a temperature measured at a heating rate of 10 ° C./min by a differential scanning calorimetry method based on JIS K7121, for example, a thermomechanical analyzer (TMA: Thermo Mechanical Analysis) or the like. It can be detected by measuring in the range of 30 to 290 ° C. with an apparatus.
 また、基材のガラス転移点温度以下で加熱した場合でも、基材に有機層が形成されている場合は、有機層を構成する物質の一番低いガラス転移温度より高い温度で加熱すると有機層を構成する物質が変質するため、前記基材又は前記有機層を構成する物質の中で一番低いガラス転移温度以下で加熱することが好ましい。 In addition, even when heated below the glass transition temperature of the substrate, if an organic layer is formed on the substrate, the organic layer can be heated at a temperature higher than the lowest glass transition temperature of the substance constituting the organic layer. Therefore, it is preferable to heat the base material or the organic layer at a temperature lower than the lowest glass transition temperature.
 加熱処理の条件は適宜変更可能であり、例えば、加熱温度が好ましくは70℃~(基材剤又は有機層を構成する物質の一番低いガラス転移点温度)の範囲内の温度で、1秒~10分程度の範囲内で行えば所期の目的は達成することができる。加熱処理時間は加熱温度が低温であれば長時間とし、逆に高温であれば短時間でも足りる。 The conditions for the heat treatment can be appropriately changed. For example, the heating temperature is preferably 70 ° C. to (the lowest glass transition temperature of the material constituting the base material or the organic layer) for 1 second. The intended purpose can be achieved if it is performed within a range of about 10 minutes. The heat treatment time may be a long time if the heating temperature is low, or a short time if the temperature is high.
 加熱処理の方法としては、ホットプレート、温風処理、赤外線照射方式、輻射熱方式等が挙げられ、特に限定されるものではないが、図3に示す加熱ローラーを用いることが、簡便であり好ましい。図3では加熱ローラー33、34として一対の加熱ローラーを図示したが、さらに複数の対になった加熱ローラーを用いてもよい。 The heat treatment method includes a hot plate, hot air treatment, infrared irradiation method, radiant heat method and the like, and is not particularly limited, but it is convenient and preferable to use the heating roller shown in FIG. Although a pair of heating rollers is illustrated as the heating rollers 33 and 34 in FIG. 3, a plurality of pairs of heating rollers may be used.
 また、加熱ローラー33、34は、温度調整装置48によって温度を所定の温度範囲に保持するように制御するようになっている。温度調整装置48は、50~200℃の範囲に温度制御が可能な装置であることが好ましい。 Further, the heating rollers 33 and 34 are controlled by the temperature adjusting device 48 so as to keep the temperature in a predetermined temperature range. The temperature adjusting device 48 is preferably a device capable of controlling the temperature in the range of 50 to 200 ° C.
 次いで、本発明に係るガスバリアー層を形成するB室について説明する。 Next, the B chamber in which the gas barrier layer according to the present invention is formed will be described.
 図3で示す製造装置においては、一対の成膜ローラー(成膜ローラー40及び成膜ローラー41)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源52に接続されている。そのため、このような製造装置30においては、プラズマ発生用電源52により電力を供給することにより、成膜ローラー40と成膜ローラー41との間の空間に放電することが可能であり、これにより成膜ローラー40と成膜ローラー41との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー40と成膜ローラー41とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー40及び41)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー40及び41)を配置することにより、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極大値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材1(ここでいう、基材には、基材が処理された、又は基材上に有機層を有する形態も含む。)の表面上に本発明に係るガスバリアー層3を形成することが可能であり、成膜ローラー40上において基材1の表面上に本発明に係るガスバリアー層成分を堆積させつつ、さらに成膜ローラー41上においても基材1の表面上に本発明に係るガスバリアー層成分を堆積させることもできるため、基材1の表面上にガスバリアー層を効率良く形成することができる。 In the manufacturing apparatus shown in FIG. 3, each film-forming roller is for plasma generation so that a pair of film-forming rollers (film-forming roller 40 and film-forming roller 41) can function as a pair of counter electrodes. A power source 52 is connected. Therefore, in such a manufacturing apparatus 30, it is possible to discharge to the space between the film formation roller 40 and the film formation roller 41 by supplying electric power from the plasma generation power source 52. Plasma can be generated in the space between the film roller 40 and the film formation roller 41. In this way, when the film forming roller 40 and the film forming roller 41 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes. Moreover, in such a manufacturing apparatus, it is preferable to arrange | position a pair of film-forming rollers (film-forming rollers 40 and 41) so that the central axis may become substantially parallel on the same plane. In this way, by arranging a pair of film forming rollers (film forming rollers 40 and 41), the film forming rate can be doubled compared with a normal plasma CVD method that does not use a roller, and the structure is the same. Since a film can be formed, the maximum value in the carbon distribution curve can be at least doubled. And according to such a manufacturing apparatus, the surface of the base material 1 (here, the base material includes a form in which the base material is processed or has an organic layer on the base material) by a CVD method. It is possible to form the gas barrier layer 3 according to the present invention on the film forming roller 41 while depositing the gas barrier layer component according to the present invention on the surface of the substrate 1 on the film forming roller 40. Since the gas barrier layer component according to the present invention can also be deposited on the surface of the substrate 1, the gas barrier layer can be efficiently formed on the surface of the substrate 1.
 成膜ローラー40及び成膜ローラー41の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置42及び43がそれぞれ設けられている。 In the film forming roller 40 and the film forming roller 41, magnetic field generators 42 and 43 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
 成膜ローラー40及び成膜ローラー41にそれぞれ設けられた磁場発生装置42及び43は、一方の成膜ローラー40に設けられた磁場発生装置42と他方の成膜ローラー41に設けられた磁場発生装置43の間で磁力線がまたがらず、それぞれの磁場発生装置42、43がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置42、43を設けることにより、各成膜ローラー40、41の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 42 and 43 provided on the film forming roller 40 and the film forming roller 41, respectively, are a magnetic field generating device 42 provided on one film forming roller 40 and a magnetic field generating device provided on the other film forming roller 41. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between 43 and the magnetic field generators 42 and 43 form a substantially closed magnetic circuit. By providing such magnetic field generators 42 and 43, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surface of each of the film forming rollers 40 and 41, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー40及び成膜ローラー41にそれぞれ設けられた磁場発生装置42及び43は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置42と他方の磁場発生装置43とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置42、43を設けることにより、それぞれの磁場発生装置42、43について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができるため、ローラー幅方向に沿って巻き掛けられた幅広の基材1を用いて効率的に蒸着膜である本発明に係るガスバリアー層3を形成することができる点で優れている。 The magnetic field generators 42 and 43 provided on the film forming roller 40 and the film forming roller 41 respectively have racetrack-like magnetic poles that are long in the roller axis direction, and one magnetic field generating device 42 and the other magnetic field generating device. It is preferable to arrange the magnetic poles so that the magnetic poles facing 43 have the same polarity. By providing such magnetic field generators 42 and 43, the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 42 and 43 are opposed. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 1 is excellent in that the gas barrier layer 3 according to the present invention, which is a vapor deposition film, can be efficiently formed.
 成膜ローラー40及び成膜ローラー41としては適宜公知のローラーを用いることができる。このような成膜ローラー40及び41としては、より効率良く薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー40及び41の直径としては、放電条件、チャンバーのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材1にかかることを回避できることから、基材1へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 As the film forming roller 40 and the film forming roller 41, known rollers can be appropriately used. As such film forming rollers 40 and 41, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. Further, the diameters of the film forming rollers 40 and 41 are preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity is not deteriorated, and it is possible to avoid applying the total amount of plasma discharge to the substrate 1 in a short time. It is preferable because damage to the material 1 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
 成膜ローラーの温度は、ガスバリアー層の形成速度に影響するが、基材の熱負けや皺の発生を防止する観点から、40~60℃の範囲であることが好ましい。 The temperature of the film forming roller affects the formation rate of the gas barrier layer, but is preferably in the range of 40 to 60 ° C. from the viewpoint of preventing heat loss of the substrate and generation of wrinkles.
 このような製造装置に用いる送り出しローラー31及び搬送ローラー32、35、36、37、38、39、45、46としては適宜公知のローラーを用いることができる。また、巻取りローラー47としても、基材1上に本発明に係るガスバリアー層3を形成したガスバリアーフィルム10を巻取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller 31 and the transport rollers 32, 35, 36, 37, 38, 39, 45, and 46 used in such a manufacturing apparatus, known rollers can be appropriately used. Further, the winding roller 47 is not particularly limited as long as it can wind the gas barrier film 10 in which the gas barrier layer 3 according to the present invention is formed on the substrate 1, and is appropriately known. A roller can be used.
 また、ガス供給管44及び真空ポンプとしては、原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。 Further, as the gas supply pipe 44 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
 また、ガス供給手段であるガス供給管44は、成膜ローラー40と成膜ローラー41との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管44と、真空排気手段である真空ポンプを配置することにより、成膜ローラー40と成膜ローラー41との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 44 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 40 and the film formation roller 41, and is a vacuum as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. As described above, the gas supply pipe 44 as the gas supply means and the vacuum pump as the vacuum exhaust means are arranged to efficiently supply the film formation gas to the facing space between the film formation roller 40 and the film formation roller 41. It is excellent in that the film formation efficiency can be improved.
 さらに、プラズマ発生用電源52としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源52は、これに接続された成膜ローラー40と成膜ローラー41とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源52としては、より効率良くプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源52としては、より効率良くプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置42、43としては適宜公知の磁場発生装置を用いることができる。さらに、基材1としては、本発明で用いられる基材の他に、本発明に係るガスバリアー層3を予め形成させたものを用いることができる。このように、基材1として本発明に係るガスバリアー層3をあらかじめ形成させたものを用いることにより、本発明に係るガスバリアー層3の層厚を厚くすることも可能である。 Further, as the plasma generating power source 52, a known power source of a plasma generating apparatus can be used as appropriate. Such a plasma generating power supply 52 supplies power to the film forming roller 40 and the film forming roller 41 connected thereto, and makes it possible to use them as a counter electrode for discharging. Such a plasma generating power source 52 can perform plasma CVD more efficiently, so that the polarity of the pair of film forming rollers can be alternately reversed (AC power source or the like). Is preferably used. In addition, since the plasma generating power source 52 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this. As the magnetic field generators 42 and 43, known magnetic field generators can be used as appropriate. Furthermore, as the base material 1, in addition to the base material used in the present invention, a material in which the gas barrier layer 3 according to the present invention is formed in advance can be used. As described above, by using the substrate 1 in which the gas barrier layer 3 according to the present invention is formed in advance, the thickness of the gas barrier layer 3 according to the present invention can be increased.
 このような図3に示す製造装置30を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ローラーの直径、並びにフィルム(基材)の搬送速度を適宜調整することにより、本発明に係るガスバリアー層を製造することができる。 Using such a manufacturing apparatus 30 shown in FIG. 3, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the transport of the film (base material) The gas barrier layer according to the present invention can be produced by appropriately adjusting the speed.
 図4はプラズマCVDを行う成膜空間の拡大図である。すなわち、図3に示す製造装置30を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラー(成膜ローラー40及び41)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー40上の基材1の表面上及び成膜ローラー41上の基材1の表面上に、本発明に係るガスバリアー層3がプラズマCVD法により形成される。この際、成膜ローラー40、41のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を形成して、磁場にプラズマを収束させる。このため、基材1が、図4中の成膜ローラー40のA地点及び成膜ローラー41のB地点を通過する際に、本発明に係るガスバリアー層で炭素/酸素分布曲線の極大値が形成される。これに対して、基材1が、図4中の成膜ローラー40のC1及びC2地点、並びに成膜ローラー41のC3及びC4地点を通過する際に、ガスバリアー層で炭素/酸素分布曲線の極小値が形成される。このため、二つの成膜ローラーに対して、通常、二つの極大値が生成する。 FIG. 4 is an enlarged view of a film formation space for performing plasma CVD. That is, using the manufacturing apparatus 30 shown in FIG. 3, a discharge is generated between the pair of film forming rollers (film forming rollers 40 and 41) while supplying a film forming gas (such as a raw material gas) into the vacuum chamber. Thus, the film-forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier according to the present invention is formed on the surface of the substrate 1 on the film-forming roller 40 and on the surface of the substrate 1 on the film-forming roller 41. Layer 3 is formed by plasma CVD. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axis of the film forming rollers 40 and 41, and the plasma is converged on the magnetic field. For this reason, when the base material 1 passes through the point A of the film forming roller 40 and the point B of the film forming roller 41 in FIG. 4, the maximum value of the carbon / oxygen distribution curve is obtained in the gas barrier layer according to the present invention. It is formed. On the other hand, when the substrate 1 passes through the points C1 and C2 of the film forming roller 40 and the points C3 and C4 of the film forming roller 41 in FIG. A local minimum is formed. For this reason, two local maximum values are usually generated for the two film forming rollers.
 前記ガス供給管44から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独又は2種以上を混合して用いることができる。本発明に係るガスバリアー層3の形成に用いる前記成膜ガス中の原料ガスとしては、形成する本発明に係るガスバリアー層3の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取扱い性及び得られるバリアー層のガスバリアー等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でも又は2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、本発明に係るガスバリアー層3の種類に応じて適切な原料ガスが選択される。 As the film forming gas (raw material gas or the like) supplied from the gas supply pipe 44 to the facing space, a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more. The source gas in the film forming gas used for forming the gas barrier layer 3 according to the present invention can be appropriately selected and used depending on the material of the gas barrier layer 3 according to the present invention to be formed. As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of the handleability of the compound and the gas barrier properties of the resulting barrier layer. These organosilicon compounds can be used alone or in combination of two or more. Examples of the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene. As these organosilicon compound gas and organic compound gas, an appropriate source gas is selected according to the type of the gas barrier layer 3 according to the present invention.
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でも又は2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the raw material gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
 前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電ガスを用いてもよい。このようなキャリアガス及び放電ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス、水素又は窒素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such a carrier gas and a discharge gas, known ones can be used as appropriate, for example, a rare gas such as helium, argon, neon, xenon, hydrogen, or nitrogen can be used.
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成される本発明に係るガスバリアー層3によって、優れたガスバリアー性や屈曲耐性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film-forming gas contains a source gas and a reactive gas, the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. The gas barrier layer 3 according to the present invention to be formed is excellent in that excellent gas barrier properties and bending resistance can be obtained by not excessively increasing the ratio of the reaction gas. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
 また、真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~50Paの範囲とすることが好ましい。 Further, the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 50 Pa.
 また、このようなプラズマCVD法において、成膜ローラー40と成膜ローラー41との間に放電するために、プラズマ発生用電源52に接続された電極ドラム(本実施形態においては、成膜ローラー40及び41に設置されている)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルの発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材界面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 In such a plasma CVD method, in order to discharge between the film forming roller 40 and the film forming roller 41, an electrode drum connected to the plasma generating power source 52 (in this embodiment, the film forming roller 40). The power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed. On the other hand, if the applied power is 10 kW or less, the amount of heat generated at the time of film formation can be suppressed. An increase in the interface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
 本発明では、図3のような対向ローラー電極を持つプラズマCVD装置において、生産性を高める目的で基材の搬送速度を速くすることで、極大値間の間隔を狭め、高いガスバリアー性と屈曲耐性が維持される。このため、基材の搬送速度が速い場合に本願発明の効果がより顕著となる。すなわち、本発明の好適な製造方法は、基材を搬送速度5m/分以上で対向ローラー電極を持つプラズマCVD装置に搬送してケイ素、酸素及び炭素を含有する本発明に係るガスバリアー層を形成することが好ましい。より好ましい形態は、基材を搬送速度20m/分以上で対向ローラー電極を持つプラズマCVD装置に搬送してケイ素、酸素及び炭素を含有する本発明に係るガスバリアー層を形成する段階を含む。なお、ライン速度の上限は特に限定されず、生産性の観点からは速い方が好ましいが、100m/分以下であれば、ガスバリアー層として十分な厚さを確保することができる点で優れている。 In the present invention, in the plasma CVD apparatus having the counter roller electrode as shown in FIG. 3, the interval between the maximum values is narrowed by increasing the conveying speed of the base material for the purpose of improving productivity, and high gas barrier properties and bending. Resistance is maintained. For this reason, when the conveyance speed of a base material is quick, the effect of this invention becomes more remarkable. That is, the preferred production method of the present invention forms a gas barrier layer according to the present invention containing silicon, oxygen and carbon by conveying a substrate to a plasma CVD apparatus having a counter roller electrode at a conveyance speed of 5 m / min or more. It is preferable to do. A more preferable embodiment includes a step of forming a gas barrier layer according to the present invention containing silicon, oxygen and carbon by conveying the substrate to a plasma CVD apparatus having a counter roller electrode at a conveyance speed of 20 m / min or more. The upper limit of the line speed is not particularly limited, and is preferably faster from the viewpoint of productivity. However, if it is 100 m / min or less, it is excellent in that a sufficient thickness can be secured as a gas barrier layer. Yes.
 上記したように、本実施形態のより好ましい態様としては、本発明に係るガスバリアー層を、図3に示す対向ローラー電極を有するプラズマCVD装置(ロールtoロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ローラー電極を有するプラズマCVD装置(ロールtoロール方式)を用いて量産する場合に、屈曲耐性及び密着性に優れ、特にロールtoロールでの搬送時の耐久性と、ガスバリアー性とが両立するガスバリアー層を効率良く製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリアーフィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, the gas barrier layer according to the present invention is formed by the plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roller electrode shown in FIG. It is characterized by forming a film. This is excellent in bending resistance and adhesion when mass-produced using a plasma CVD apparatus having a counter roller electrode (roll-to-roll method), and particularly in durability during conveyance by roll-to-roll and gas barrier properties. This is because it is possible to efficiently produce a gas barrier layer in which both are compatible. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce a gas barrier film that is required for durability against temperature changes used in solar cells, electronic parts, and the like.
 <可撓性基材>
 本発明のガスバリアーフィルムは、通常、可撓性基材として、プラスチックフィルムを用いる。ここでいう「可撓性」とは、φ(直径)50mmロールに巻き付けても割れ等が生じることのない基材をいい、より好ましくはφ30mmロールに巻き付け可能な基材をいう。
<Flexible substrate>
The gas barrier film of the present invention usually uses a plastic film as a flexible substrate. The term “flexibility” as used herein refers to a base material that does not crack even when wound around a φ (diameter) 50 mm roll, and more preferably a base material that can be wound around a φ30 mm roll.
 用いられるプラスチックフィルムは、ガスバリアー性積層体を保持できるフィルムであれば材質、厚さ等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。 The plastic film used is not particularly limited as long as it is a film capable of holding a gas barrier laminate, and can be appropriately selected according to the purpose of use. Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide. Resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring-modified polycarbonate resin, alicyclic ring Examples thereof include thermoplastic resins such as modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
 本発明のガスバリアーフィルムを有機EL素子等のデバイスの基板として使用する場合は、基材は耐熱性を有する素材からなることが好ましい。 When the gas barrier film of the present invention is used as a substrate for a device such as an organic EL element, the base material is preferably made of a heat-resistant material.
 基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001-150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF-PC:特開2000-227603号公報に記載の化合物:225℃)、脂環変性ポリカーボネート(IP-PC:特開2000-227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002-80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。特に、透明性を求める場合には脂環式ポレオレフィン等を使用するのが好ましい。 The Tg and linear expansion coefficient of the substrate can be adjusted by additives. More preferable specific examples of the thermoplastic resin that can be used as the substrate include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic. Polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Ltd.), fluorene ring-modified polycarbonate (BCF-PC: JP In 2000-227603 Listed compound: 225 ° C.), alicyclic modified polycarbonate (IP-PC: compound described in JP 2000-227603 A: 205 ° C.), acryloyl compound (compound described in JP 2002-80616 A: 300 ° C.) And the like) (Tg is shown in parentheses). In particular, when transparency is required, it is preferable to use an alicyclic polyolefin or the like.
 本発明のガスバリアーフィルムは有機EL素子等のデバイスとして利用されうることから、プラスチックフィルムは透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。 Since the gas barrier film of the present invention can be used as a device such as an organic EL element, the plastic film is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.
 本発明のガスバリアーフィルムに用いられるプラスチックフィルムの厚さは、用途によって適宜選択されるため特に制限がないが、典型的には1~800μmであり、好ましくは10~200μmである。これらのプラスチックフィルムは、透明導電層、平滑層等の機能層を有していても良い。機能層については、上述したもののほか、特開2006-289627号公報の段落番号0036~0038に記載されているものを好ましく採用できる。 The thickness of the plastic film used for the gas barrier film of the present invention is not particularly limited because it is appropriately selected depending on the use, but is typically 1 to 800 μm, preferably 10 to 200 μm. These plastic films may have functional layers such as a transparent conductive layer and a smooth layer. As the functional layer, in addition to those described above, those described in paragraph numbers 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくとも、ガスバリアー層を設ける側を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the gas barrier layer is provided, may be polished to improve smoothness.
 また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the base material using the above-described resins or the like may be an unstretched film or a stretched film.
 基材の両面、少なくとも本発明に係るガスバリアー層を設ける側には、接着性向上のための公知の種々の処理、コロナ放電処理、火炎処理、酸化処理、プラズマ処理、若しくは平滑層の積層等を、必要に応じて組み合わせて行うことができる。 Various known treatments for improving adhesion, corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, lamination of smooth layers, etc. on both sides of the substrate, at least on the side where the gas barrier layer according to the present invention is provided Can be performed in combination as necessary.
 <有機層>
 本発明に係る基材やガスバリアー層には、本発明の効果を損なわない範囲で別途有機化合物を含有する有機層を設けてもよい。例えば、ガスバリアー層を形成する前に、基材の少なくとも一方の面に、あらかじめ有機層が設けられていることが好ましく、さらに当該有機層が、無機粒子を含有することが、ガスバリアー層と基材との密着性を向上する観点から好ましい。
<Organic layer>
The base material and gas barrier layer according to the present invention may be separately provided with an organic layer containing an organic compound as long as the effects of the present invention are not impaired. For example, before forming the gas barrier layer, it is preferable that an organic layer is provided in advance on at least one surface of the base material, and that the organic layer further contains inorganic particles, It is preferable from the viewpoint of improving the adhesion to the substrate.
 本発明のガスバリアーフィルムは、当該有機層があらかじめ形成されている基材にガスバリアー層を形成したとしても、当該有機層に含まれる水分を加熱処理により気化、脱離してから、ガスバリアー層を成膜する製造方法を採用することにより、水分の影響のないガスバリアー層形成が可能である。 Even if the gas barrier layer of the present invention is formed on a substrate on which the organic layer is formed in advance, the gas barrier layer is formed after the moisture contained in the organic layer is vaporized and desorbed by heat treatment. By adopting a manufacturing method for forming a film, it is possible to form a gas barrier layer without the influence of moisture.
 本発明でいう有機層とは、有機化合物を含有する機能層と同義であり、下記に挙げる各機能層であることが好ましい。 The organic layer as used in the present invention is synonymous with a functional layer containing an organic compound, and is preferably each functional layer listed below.
 〈硬化性樹脂層〉
 本発明のガスバリアーフィルムは、基材上に、硬化性樹脂を硬化させて形成されてなる硬化性樹脂層(一般に、ハードコート層ともいう。)を有していてもよい。硬化性樹脂としては特に制限されず、活性エネルギー線硬化性材料等に対して紫外線等の活性エネルギー線を照射し硬化させて得られる活性エネルギー線硬化性樹脂や、熱硬化性材料を加熱することにより硬化して得られる熱硬化性樹脂等が挙げられる。該硬化性樹脂は、単独でも又は2種以上組み合わせて用いてもよい。
<Curable resin layer>
The gas barrier film of the present invention may have a curable resin layer (generally also referred to as a hard coat layer) formed by curing a curable resin on a substrate. The curable resin is not particularly limited, and the active energy ray curable resin or the thermosetting material obtained by irradiating the active energy ray curable material with an active energy ray such as ultraviolet ray to be cured is heated. The thermosetting resin etc. which are obtained by curing by the above method. These curable resins may be used alone or in combination of two or more.
 かような硬化性樹脂層は、(1)基材界面を平滑にする、(2)積層される上層の応力を緩和する、(3)基材と上層との接着性を高める、の少なくとも一つの機能を有する。このため、該硬化性樹脂層は、後述の、平滑層、アンカーコート層(易接着層)と兼用されてもよい。 Such a curable resin layer is at least one of (1) smoothing the interface of the substrate, (2) relaxing the stress of the upper layer to be laminated, and (3) improving the adhesion between the substrate and the upper layer. Has one function. For this reason, the curable resin layer may also be used as a smooth layer and an anchor coat layer (easy adhesion layer) described later.
 活性エネルギー線硬化性材料としては、例えば、アクリレート化合物を含有する組成物、アクリレート化合物とチオール基を含有するメルカプト化合物とを含有する組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを含有する組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズ(シリカ微粒子に重合性不飽和基を有する有機化合物を結合させてなる化合物)を用いることができる。また、上記のような組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している活性エネルギー線硬化性材料であれば特に制限はない。 Examples of the active energy ray-curable material include a composition containing an acrylate compound, a composition containing an acrylate compound and a mercapto compound containing a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, polyether acrylate, polyethylene Examples thereof include compositions containing polyfunctional acrylate monomers such as glycol acrylate and glycerol methacrylate. Specifically, it is possible to use a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series (compound formed by bonding an organic compound having a polymerizable unsaturated group to silica fine particles) manufactured by JSR Corporation. it can. It is also possible to use any mixture of the above-mentioned compositions, and an active energy ray-curable material containing a reactive monomer having at least one photopolymerizable unsaturated bond in the molecule. If there is no restriction in particular.
 活性エネルギー線硬化性材料を含む組成物は、光重合開始剤を含有することが好ましい。 It is preferable that the composition containing the active energy ray-curable material contains a photopolymerization initiator.
 熱硬化性材料としては、具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、アデカ社製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製のシリコーン樹脂 X-12-2400(商品名)、日東紡績株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、ポリアミドアミン-エピクロルヒドリン樹脂等が挙げられる。 Specific examples of thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, Unicom manufactured by DIC, Inc. Dick (registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra high heat resistance epoxy resin), silicone resin X-12-2400 (trade name) manufactured by Shin-Etsu Chemical Co., Ltd., Nittobo Co., Ltd. Inorganic / organic nanocomposite material SSG coated, thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin, polyamidoamine-epichlorohydride Down resins.
 硬化性樹脂層の形成方法は、特に制限はないが、硬化性材料を含む塗布液をスピンコーティング法、スプレー法、ブレードコーティング法、ディップ法、グラビア印刷法等のウエットコーティング法、又は蒸着法等のドライコーティング法により塗布し塗膜を形成した後、可視光線、赤外線、紫外線、X線、α線、β線、γ線、電子線等の活性エネルギー線の照射及び/又は加熱により、前記塗膜を硬化させて形成する方法が好ましい。活性エネルギー線を照射する方法としては、例えば超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等を用い好ましくは100~400nm、より好ましくは200~400nmの波長領域の紫外線を照射する、又は、走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射する方法が挙げられる。 The method for forming the curable resin layer is not particularly limited, but a coating solution containing a curable material is applied to a spin coating method, a spray method, a blade coating method, a dipping method, a gravure printing method or other wet coating method, or a vapor deposition method. After applying the dry coating method to form a coating film, irradiation with active energy rays such as visible rays, infrared rays, ultraviolet rays, X-rays, α rays, β rays, γ rays, electron rays and / or heating are performed. A method of forming the film by curing is preferred. As a method of irradiating active energy rays, for example, an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a metal halide lamp or the like is preferably used to irradiate ultraviolet rays in a wavelength region of 100 to 400 nm, more preferably 200 to 400 nm. Alternatively, a method of irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator can be used.
 硬化性樹脂層は、上述の材料に加えて、必要に応じて、熱可塑性樹脂や酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を含有することができる。また、成膜性向上及び膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 The curable resin layer can contain additives such as a thermoplastic resin, an antioxidant, an ultraviolet absorber, and a plasticizer as necessary in addition to the above-described materials. In addition, an appropriate resin or additive may be used for improving the film formability and preventing the film from generating pinholes.
 硬化性樹脂層には、マット剤である無機粒子を含有することも好ましい。マット剤を含有することで、ガスバリアー層と基材との密着性を向上することができる。前述のとおり、無機粒子の表面にOH基があるために、そのOH基とHOが水素結合の状態で吸着し、基材自体が保持できる水分量が増加するが、本発明に係る加熱処理を行うことにより、加熱による水分の気化、脱離を促進するため、成膜工程内においては、水分の影響を低減することができる。 It is also preferable that the curable resin layer contains inorganic particles that are matting agents. By containing the matting agent, the adhesion between the gas barrier layer and the substrate can be improved. As described above, since there are OH groups on the surface of the inorganic particles, the OH groups and H 2 O are adsorbed in a hydrogen bond state, and the amount of water that can be held by the substrate itself is increased. By performing the treatment, the vaporization and desorption of moisture due to heating is promoted, so that the influence of moisture can be reduced in the film forming process.
 マット剤としては、平均粒子径が0.1~5μm程度の無機粒子が好ましい。このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種又は2種以上を併せて使用することができる。 As the matting agent, inorganic particles having an average particle diameter of about 0.1 to 5 μm are preferable. As such inorganic particles, one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
 ここで、無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが好ましい。 Here, the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 100 parts by mass of the solid content of the hard coating agent. It is preferable that they are mixed in a proportion of 18 parts by mass or less, more preferably 16 parts by mass or less.
 硬化性樹脂層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。 The thickness of the curable resin layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 〈平滑層〉
 ガスバリアーフィルムは、基材のガスバリアー層を有する面に平滑層を有することが好ましい。平滑層は突起等が存在する基材の粗面を平坦化するために設けられる。このような平滑層は、基本的には、活性エネルギー線硬化性材料又は熱硬化性材料等を硬化させて形成される。平滑層は、上記のような機能を有していれば、基本的に上記の硬化性樹脂層と同じ材料、及び構成をとっても構わない。
<Smooth layer>
It is preferable that a gas barrier film has a smooth layer in the surface which has a gas barrier layer of a base material. The smooth layer is provided in order to flatten the rough surface of the substrate on which protrusions and the like exist. Such a smooth layer is basically formed by curing an active energy ray curable material or a thermosetting material. The smooth layer may basically have the same material and configuration as the curable resin layer as long as it has the above-described function.
 平滑層に用いられる活性エネルギー線硬化性材料及び熱硬化性材料の例、マット剤の例及び平滑層の形成方法は、上記の硬化性樹脂層の欄で説明したものと同様であるので、ここでは説明を省略する。 Examples of the active energy ray-curable material and thermosetting material used in the smooth layer, examples of the matting agent, and the method of forming the smooth layer are the same as those described in the column of the curable resin layer above, so here Then, explanation is omitted.
 平滑層の厚さとしては、特に制限されないが、0.1~10μmの範囲が好ましい。 The thickness of the smooth layer is not particularly limited, but is preferably in the range of 0.1 to 10 μm.
 なお、該平滑層は、下記アンカーコート層として用いてもよい。 The smooth layer may be used as the following anchor coat layer.
 〈アンカーコート層〉
 本発明に係る基材界面には、ガスバリアー層との接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコーン樹脂、及びアルキルチタネート等を、1又は2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)を用いることができる。
<Anchor coat layer>
An anchor coat layer may be formed on the substrate interface according to the present invention as an easy-adhesion layer for the purpose of improving adhesion (adhesion) with the gas barrier layer. Examples of the anchor coat agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, and alkyl titanate. 1 or 2 or more types can be used in combination. A commercially available product may be used as the anchor coating agent. Specifically, a siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., “X-12-2400” 3% isopropyl alcohol solution) can be used.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5g/m(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。 Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, and the like, and is coated by drying and removing the solvent, diluent, etc. Can do. The application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state). A commercially available base material with an easy-adhesion layer may be used.
 アンカーコート層は、物理蒸着法又は化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。 The anchor coat layer can also be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.
 〈ブリードアウト防止層〉
 本発明のガスバリアーフィルムにおいては、ブリードアウト防止層を設けることができる。ブリードアウト防止層は、硬化性樹脂層/平滑層を有するフィルムを加熱した際に、フィルム基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、硬化性樹脂層/平滑層を有する基材の面とは反対側の面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に硬化性樹脂層/平滑層と同じ構成をとっても構わない。
<Bleed-out prevention layer>
In the gas barrier film of the present invention, a bleed-out prevention layer can be provided. The purpose of the bleed-out prevention layer is to suppress the phenomenon in which unreacted oligomers migrate from the film base material to the surface when the film having the curable resin layer / smooth layer is heated and contaminate the contact surface. Thus, it is provided on the surface opposite to the surface of the substrate having the curable resin layer / smooth layer. The bleed-out prevention layer may basically have the same configuration as the curable resin layer / smooth layer as long as it has this function.
 ブリードアウト防止層に含ませることが可能な、ハードコート剤としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、又は分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。 The hard coat agent that can be included in the bleed-out prevention layer includes a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or one polymerizable unsaturated in the molecule. Examples thereof include monounsaturated organic compounds having a group.
 ここで、多価不飽和有機化合物としては、例え、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート等が挙げられる。 Here, examples of the polyunsaturated organic compound include ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate.
 また、単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等が挙げられる。 In addition, examples of the monounsaturated organic compound include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and the like.
 その他の添加剤として、硬化樹脂層で説明したマット剤を含有してもよい。マット剤としては、平均粒子径が0.1~5μm程度の無機粒子が好ましく、ガスバリアーフィルムの滑り性を向上する。 As other additives, the matting agent described in the cured resin layer may be contained. As the matting agent, inorganic particles having an average particle diameter of about 0.1 to 5 μm are preferable, which improves the slipperiness of the gas barrier film.
 また、ブリードアウト防止層には、ハードコート剤及びマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。 In addition, the bleed-out prevention layer may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator and the like as other components of the hard coat agent and the matting agent.
 以上のようなブリードアウト防止層は、ハードコート剤、及び必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、塗布液をフィルム基材界面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。なお、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプ等から発せられる好ましくは100~400nm、より好ましくは200~400nmの波長領域の紫外線を照射する、又は走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。 The bleed-out prevention layer as described above is prepared as a coating solution by using a hard coat agent and other components as required, and appropriately preparing a coating solution by using a diluent solvent as necessary. After coating by a conventionally known coating method, it can be formed by irradiating with ionizing radiation and curing. As a method of irradiating with ionizing radiation, ultraviolet rays emitted from an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, etc. are preferably irradiated in a wavelength region of 100 to 400 nm, more preferably 200 to 400 nm. Alternatively, the irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a scanning or curtain type electron beam accelerator.
 本発明におけるブリードアウト防止層の厚さとしては、1~10μm、好ましくは2~7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにしやすくなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整しやすくなるとともに、硬化性樹脂層/平滑層を透明高分子フィルムの一方の面に設けた場合におけるガスバリアーフィルムのカールを抑えやすくすることができるようになる。 The thickness of the bleed-out preventing layer in the present invention is 1 to 10 μm, preferably 2 to 7 μm. By making it 1 μm or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 μm or less, it becomes easy to adjust the balance of optical properties of the smooth film, and the curable resin layer / smooth layer is transparent. When it is provided on one surface of the polymer film, curling of the gas barrier film can be easily suppressed.
 〈第2のガスバリアー層〉
 本発明において、本発明に係るガスバリアー層の上に、第2のガスバリアー層として、ガスバリアー性を有する層をさらに設けることができる。当該第2のガスバリアー層としては、第1のガスバリアー層を2層以上積層した層でもよく、限定されない。その中でも、塗布方式のポリシラザン含有液の塗膜を設け、波長200nm以下の真空紫外光(VUV光)を照射して改質処理することにより形成される第2のガスバリアー層を設けることも好ましい。上記第2のガスバリアー層を前記CVD法で設けたガスバリアー層の上に設けることにより、ガスバリアー層に残存する微小な欠陥を、上部からポリシラザンのガスバリアー成分で埋めることができ、更なるガスバリアー性と屈曲耐性を向上できるので、好ましい。塗布方式のポリシラザン含有液の塗膜については、従来公知の構成を取ることができるが、例えば、特開2013-180520号公報の段落〔0134〕~〔0183〕、特開2013-123895号公報の段落〔0042〕~〔0065〕等に記載の構成である。
<Second gas barrier layer>
In the present invention, a layer having gas barrier properties can be further provided as a second gas barrier layer on the gas barrier layer according to the present invention. The second gas barrier layer may be a layer in which two or more first gas barrier layers are stacked, and is not limited. Among them, it is also preferable to provide a coating film of a polysilazane-containing liquid of a coating method and to provide a second gas barrier layer that is formed by irradiating vacuum ultraviolet light (VUV light) having a wavelength of 200 nm or less and performing a modification treatment. . By providing the second gas barrier layer on the gas barrier layer provided by the CVD method, minute defects remaining in the gas barrier layer can be filled with the gas barrier component of polysilazane from above, and further Since gas barrier property and bending resistance can be improved, it is preferable. The coating film of the polysilazane-containing liquid in the coating method can take a conventionally known configuration. For example, paragraphs [0134] to [0183] of JP2013-180520A, JP2013-123895A This is the configuration described in paragraphs [0042] to [0065].
 第2のガスバリアー層の厚さは、1~500nmの範囲が好ましい、より好ましくは10~300nmの範囲である。 The thickness of the second gas barrier layer is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 300 nm.
 〈オーバーコート層〉
 本発明に用いられる第2のガスバリアー層の上には屈曲耐性をさらに改善するのに、オーバーコート層を形成しても良い。オーバーコート層に用いられる有機物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。これらの有機樹脂若しくは有機無機複合樹脂は重合性基や架橋性基を有することが好ましく、これらの有機樹脂若しくは有機無機複合樹脂を含有し、必要に応じて重合開始剤や架橋剤等を含有する有機樹脂組成物塗布液から塗布形成した層に、光照射処理や熱処理を加えて硬化させることが好ましい。
<Overcoat layer>
An overcoat layer may be formed on the second gas barrier layer used in the present invention in order to further improve the bending resistance. As the organic substance used for the overcoat layer, an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. Can do. These organic resins or organic-inorganic composite resins preferably have a polymerizable group or a crosslinkable group, contain these organic resins or organic-inorganic composite resins, and contain a polymerization initiator, a crosslinking agent, etc. as necessary. It is preferable to apply a light irradiation treatment or a heat treatment to the layer formed by coating from the organic resin composition coating solution to be cured.
 <電子デバイス>
 上記のように本発明のガスバリアーフィルムは、優れたガスバリアー性、屈曲耐性及び密着性を有する。このため、本発明のガスバリアーフィルムは、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリアーフィルム及びこれを用いた電子デバイスなど、様々な用途に使用することができる。
<Electronic device>
As described above, the gas barrier film of the present invention has excellent gas barrier properties, bending resistance and adhesion. For this reason, the gas barrier film of the present invention is a gas barrier film used for electronic devices such as packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various purposes such as an electronic device using the same.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 <実施例1:ガスバリアーフィルム1の作製>
 (可撓性基材)
 可撓性基材として、1m幅の株式会社きもと製ハードコートフィルムG1STB(PETフィルム 厚さ50μm、マット剤無し:表ではCHC付PETと記載した)を用いた。
<Example 1: Production of gas barrier film 1>
(Flexible substrate)
As a flexible substrate, a 1 m wide hard coat film G1STB manufactured by Kimoto Co., Ltd. (PET film thickness 50 μm, no matting agent: described as PET with CHC in the table) was used.
 (本発明に係るガスバリアー層の形成)
 図3に示す真空プラズマCVD装置を用いて、下記成膜条件にて上記可撓性基材上に本発明に係るガスバリアー層を形成して、ガスバリアーフィルム1を作製した。
(Formation of gas barrier layer according to the present invention)
Using the vacuum plasma CVD apparatus shown in FIG. 3, the gas barrier layer according to the present invention was formed on the flexible base material under the following film forming conditions to produce a gas barrier film 1.
 [加熱処理(脱ガス)条件]
 図3の成膜装置の送り出しローラーに基材を元巻きのままセットし、A室の真空引きをした。そして、真空度が5×10-3Paに達してから、加熱ローラー33、34を60℃に設定した。その後、基材を以下の成膜条件の搬送速度で搬送し、成膜室(B室)に基材を搬送し、以下のプラズマ条件で成膜を実施した。なお、真空度が5×10-3Paに達するまでの時間は3時間、加熱ローラーが所定の温度になるまでの時間は0.5時間であった。
[Heat treatment (degassing) conditions]
The base material was set as it was on the delivery roller of the film forming apparatus of FIG. Then, after the degree of vacuum reached 5 × 10 −3 Pa, the heating rollers 33 and 34 were set to 60 ° C. Then, the base material was conveyed at the conveyance speed of the following film-forming conditions, the base material was conveyed to the film-forming chamber (B room), and film-forming was implemented on the following plasma conditions. The time until the degree of vacuum reached 5 × 10 −3 Pa was 3 hours, and the time until the heating roller reached a predetermined temperature was 0.5 hours.
 [クライオコイル条件]
 TMP(ターボ分子ポンプ)と併用して、A、B及びC室に設置したクライオコイルのコイル状配管に冷却器で-120℃まで冷却したフロン系混合冷媒を、加熱処理中、及び以下プラズマ成膜中、循環させ、真空層内の水分のコールドトラップを行った。
[Cryocoil conditions]
Combined with TMP (turbo molecular pump), a CFC-based mixed refrigerant cooled to -120 ° C with a cooler on the coiled piping of the cryocoil installed in the A, B and C chambers during the heat treatment It was circulated in the membrane and a cold trap of moisture in the vacuum layer was performed.
 [プラズマ成膜条件]
 〈成膜条件〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:20m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数(対極する二つのローラーセットの通過回数):6回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 <実施例2:ガスバリアーフィルム2の作製>
 ガスバリアーフィルム1の作製において、プラズマ成膜条件を以下のようにした以外はガスバリアーフィルム1と同様にしてガスバリアーフィルム2を作製した。
[Plasma deposition conditions]
<Film formation conditions>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film transport speed: 20 m / min-Film-forming roller diameter: 300 mmφ
-Number of times TR passes (number of times the two opposite roller sets pass): 6 times-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
<Example 2: Production of gas barrier film 2>
In production of the gas barrier film 1, a gas barrier film 2 was produced in the same manner as the gas barrier film 1 except that the plasma film formation conditions were as follows.
 [プラズマ成膜条件]
 以下の成膜条件1でガスバリアー層を形成した後に、連続して成膜条件2で追加のガスバリアー層を形成した。
[Plasma deposition conditions]
After the gas barrier layer was formed under the following film formation condition 1, an additional gas barrier layer was continuously formed under the film formation condition 2.
 〈成膜条件1〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:5m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数:1回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 〈成膜条件2〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:20m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数:2回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 <実施例3:ガスバリアーフィルム3の作製>
 ガスバリアーフィルム2の作製において、プラズマ成膜条件2を以下のようにした以外はガスバリアーフィルム2と同様にしてガスバリアーフィルム3を作製した。
<Film formation condition 1>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film conveyance speed: 5 m / min-Film-forming roller diameter: 300 mmφ
-Number of times TR passes: 1-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
<Film formation condition 2>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film transport speed: 20 m / min-Film-forming roller diameter: 300 mmφ
-Number of times TR passes: 2-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
<Example 3: Production of gas barrier film 3>
In the production of the gas barrier film 2, a gas barrier film 3 was produced in the same manner as the gas barrier film 2 except that the plasma film formation condition 2 was as follows.
 〈成膜条件2〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:40m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数:4回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 <実施例4:ガスバリアーフィルム4の作製>
 ガスバリアーフィルム1の作製において、プラズマ成膜条件を以下のようにした以外はガスバリアーフィルム1と同様にしてガスバリアーフィルム4を作製した。
<Film formation condition 2>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film conveyance speed: 40 m / min-Film-forming roller diameter: 300 mmφ
-Number of times TR passes: 4 times-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
<Example 4: Production of gas barrier film 4>
In production of the gas barrier film 1, a gas barrier film 4 was produced in the same manner as the gas barrier film 1 except that the plasma film formation conditions were as follows.
 〈成膜条件〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:40m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数:12回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 <比較例1:ガスバリアーフィルム5の作製>
 ガスバリアーフィルム1の作製において、プラズマ成膜条件を以下のように変えた以外はガスバリアーフィルム1と同様にして、ガスバリアーフィルム5を作製した。
<Film formation conditions>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film conveyance speed: 40 m / min-Film-forming roller diameter: 300 mmφ
-Number of times TR passes: 12 times-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
<Comparative Example 1: Production of gas barrier film 5>
In the production of the gas barrier film 1, a gas barrier film 5 was produced in the same manner as the gas barrier film 1 except that the plasma film forming conditions were changed as follows.
 [プラズマ成膜条件]
 〈成膜条件〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:6.67m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数:2回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 <比較例2:ガスバリアーフィルム6の作製>
 ガスバリアーフィルム1の作製において、プラズマ成膜条件を以下のように変えた以外は同様にして、ガスバリアーフィルム6を作成した。
[Plasma deposition conditions]
<Film formation conditions>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
Film transport speed: 6.67 m / min Film forming roller diameter: 300 mmφ
-Number of times TR passes: 2-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
<Comparative Example 2: Production of gas barrier film 6>
A gas barrier film 6 was prepared in the same manner as in the preparation of the gas barrier film 1 except that the plasma film formation conditions were changed as follows.
 [プラズマ成膜条件]
 〈成膜条件1〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:20m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数:4回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 〈成膜条件2〉
 ・原料ガス(HMDSO)の供給量:200sccm(Standard Cubic
 Centimeter per Minute)
 ・酸素ガス(O)の供給量:500sccm
 ・真空チャンバー内の真空度:1.5Pa
 ・プラズマ発生用電源からの印加電力:2.0kW
 ・プラズマ発生用電源の周波数:80kHz
 ・フィルムの搬送速度:5m/分
 ・成膜ローラー直径:300mmφ
 ・TR通過回数:1回
 ・加熱ローラー温度:60℃
 ・成膜ローラー温度:60℃
 ≪評価方法≫
 〈XPSデプスプロファイル測定〉
 [測定条件]
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.01nm/sec
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800μm×400μmの楕円形。
[Plasma deposition conditions]
<Film formation condition 1>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film transport speed: 20 m / min-Film-forming roller diameter: 300 mmφ
-Number of times TR passes: 4 times-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
<Film formation condition 2>
-Supply amount of source gas (HMDSO): 200 sccm (Standard Cubic
Centimeter per Minute)
・ Supply amount of oxygen gas (O 2 ): 500 sccm
・ Degree of vacuum in the vacuum chamber: 1.5 Pa
・ Applied power from the power source for plasma generation: 2.0 kW
・ Power supply frequency for plasma generation: 80 kHz
-Film conveyance speed: 5 m / min-Film-forming roller diameter: 300 mmφ
-Number of times TR passes: 1-Heating roller temperature: 60 ° C
・ Film roller temperature: 60 ℃
≪Evaluation method≫
<XPS depth profile measurement>
[Measurement condition]
Etching ion species: Argon (Ar + )
Etching rate (equivalent to SiO 2 thermal oxide film): 0.01 nm / sec
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 μm × 400 μm oval.
 こうして評価したデータを基にガスバリアー層の表面からのスパッタ深さに連動する距離(nm)を横軸に、炭素/酸素分布曲線を求めた。 Based on the data thus evaluated, a carbon / oxygen distribution curve was obtained with the distance (nm) linked to the sputtering depth from the surface of the gas barrier layer as the horizontal axis.
 〈極大値の数〉
 前述の評価方法で測定された層厚方向の炭素/酸素分布曲線を前述のエッチングレートでスパッタし測定し、SiO換算層厚で1nm内で、約0.20nmごとに組成を5回測定する。その5回の平均値をプロットした炭素/酸素分布曲線から求め、酸素量に対する炭素量の原子比率の値が増加から減少に変わる点の数を求めた。
<Number of local maxima>
The carbon / oxygen distribution curve in the layer thickness direction measured by the above-described evaluation method is measured by sputtering at the above-mentioned etching rate, and the composition is measured 5 times for every about 0.20 nm within 1 nm as the SiO 2 equivalent layer thickness. . The average value of the five times was obtained from the plotted carbon / oxygen distribution curve, and the number of points at which the value of the atomic ratio of the carbon amount to the oxygen amount changed from increasing to decreasing was determined.
 また、各々の極大値間の間隔(nm)を測定した。各々の極値間の間隔は比較的そろっていたので、表1では極大値間の間隔の最大値を記載した。 Also, the interval (nm) between each maximum value was measured. Since the intervals between the extreme values were relatively uniform, Table 1 lists the maximum values of the intervals between the maximum values.
 ガスバリアー層の厚さは、透過型顕微鏡(TEM)観察により求めた。 The thickness of the gas barrier layer was determined by observation with a transmission microscope (TEM).
 〈ガスバリアー性評価方法〉
 以下の測定方法に従って、各ガスバリアーフィルムの透過水分量を測定し、下記の基準に従って、水蒸気バリアー性を評価した。
<Gas barrier property evaluation method>
The permeated water amount of each gas barrier film was measured according to the following measurement method, and the water vapor barrier property was evaluated according to the following criteria.
 (装置)
 蒸着装置:日本電子株式会社製、真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリアー性評価用セルの作製)
 ガスバリアーフィルム1~6のそれぞれに対し、ガスバリアー層面に、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用い、ガスバリアーフィルム試料の蒸着させたい部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウム(粒状)を蒸着させた(蒸着層厚80nm)。その後、真空状態のままマスクを取り去り、シート片側全面に水蒸気不透過性の金属である金属アルミニウム(φ3~5mm、粒状)をもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。
(apparatus)
Vapor deposition device: JEOL Ltd., vacuum vapor deposition device JEE-400
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation cell)
For each of the gas barrier films 1 to 6, on the gas barrier layer surface, using a vacuum vapor deposition device (vacuum vapor deposition device JEE-400, manufactured by JEOL Ltd.), a portion (12 mm × 12 mm) to be vapor deposited on the gas barrier film sample Other than 9 places were masked to deposit metal calcium (granular) (deposition layer thickness 80 nm). Thereafter, the mask was removed in a vacuum state, and metal aluminum (φ3 to 5 mm, granular), which is a water vapor impermeable metal, was deposited on the entire surface of one side of the sheet from another metal deposition source. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
 得られた両面を封止した試料を、特開2005-283561号公報に記載のガスバリアー性評価方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。 Based on the gas barrier property evaluation method described in Japanese Patent Application Laid-Open No. 2005-283561, the amount of water permeated into the cell was calculated from the corrosion amount of metallic calcium.
 なお、ガスバリアーフィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリアーフィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under high temperature and high humidity at 60 ° C. and 90% RH, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 以上により測定された各ガスバリアーフィルムの透過水分量(g/(m・day);「WVTR」)を下記基準によって評価した。3以上がガスバリアーフィルムとして良好である。 The permeated water amount (g / (m 2 · day); “WVTR”) of each gas barrier film measured as described above was evaluated according to the following criteria. Three or more are good as a gas barrier film.
 (ランク評価)
 5:5×10-4g/(m・day)未満
 4:5×10-4g/(m・day)以上、1×10-3g/(m・day)未満
 3:1×10-3g/(m・day)以上、5×10-3g/(m・day)未満
 2:5×10-3g/(m・day)以上、1×10-2g/(m・day)未満
 1:1×10-2g/(m・day)以上
 〈屈曲耐性の評価〉
 ガスバリアーフィルムについて、屈曲後のガスバリアー性を評価してこれを屈曲耐性の指標とした。あらかじめ、半径10mmの曲率になるように、180度の角度で100回屈曲を繰り返し処理したガスバリアーフィルム1~6のそれぞれに対し、前記水蒸気透過率(WVTR)を測定し屈曲耐性の評価を行った。
(Rank evaluation)
Less than 5: 5 × 10 −4 g / (m 2 · day) 4: 5 × 10 −4 g / (m 2 · day) or more and less than 1 × 10 −3 g / (m 2 · day) 3: 1 × 10 −3 g / (m 2 · day) or more and less than 5 × 10 −3 g / (m 2 · day) 2: 5 × 10 −3 g / (m 2 · day) or more, 1 × 10 −2 Less than g / (m 2 · day) 1: 1 × 10 −2 g / (m 2 · day) or more <Evaluation of bending resistance>
For the gas barrier film, the gas barrier property after bending was evaluated and used as an index of bending resistance. The water vapor transmission rate (WVTR) was measured for each of the gas barrier films 1 to 6 which had been repeatedly bent 100 times at an angle of 180 degrees so that the curvature was 10 mm in advance, and the bending resistance was evaluated. It was.
 〈密着性の評価〉
 上記屈曲耐性を評価したガスバリアーフィルムを10cm×10cmの正方形の試料にロールカッターを用いて断裁し、下記の基準に従って外観を評価した。3以上が実用上許容内である。
<Evaluation of adhesion>
The gas barrier film whose bending resistance was evaluated was cut into a 10 cm × 10 cm square sample using a roll cutter, and the appearance was evaluated according to the following criteria. 3 or more is practically acceptable.
 5:クラック及び膜剥がれなし
 4:膜剥がれが1%未満、クラックなし
 3:膜剥がれが1%以上5%未満、クラックなし
 2:膜剥がれが5%以上10%未満、全面にクラックあり
 1:膜剥がれが10%以上、全面にクラックあり
 以上のガスバリアーフィルムの構成及び、上記評価結果を表1に示す。
5: No crack or film peeling 4: Film peeling less than 1%, no crack 3: Film peeling 1% or more but less than 5%, no crack 2: Film peeling 5% or more but less than 10%, cracks on the entire surface 1: Table 1 shows the structure of the above gas barrier film and the above evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明のガスバリアーフィルム1~4は、いずれも比較のガスバリアーフィルム5及び6と比べ、屈曲耐性と密着性に優れている。中でも、全ての極値間の間隔が2~15nmの範囲内であるガスバリアーフィルム2、及び全ての極大値時間の間隔が全て2~5nmの範囲内であるガスバリアーフィルム4はさらに屈曲耐性と密着性に優れていることが分かる。 From the results shown in Table 1, the gas barrier films 1 to 4 of the present invention are all excellent in bending resistance and adhesion as compared with the comparative gas barrier films 5 and 6. Among them, the gas barrier film 2 in which the intervals between all extreme values are in the range of 2 to 15 nm, and the gas barrier film 4 in which the intervals of all the maximum values are all in the range of 2 to 5 nm are further resistant to bending. It turns out that it is excellent in adhesiveness.
 本発明のガスバリアーフィルムは、ガスバリアー性能、屈曲耐性及び密着性に優れており、電子デバイス等のパッケージ、光電変換素子(太陽電池素子)や有機エレクトロルミネッセンス(EL)素子、液晶表示素子等の等の電子デバイスに用いられるガスバリアーフィルム及びこれを用いた電子デバイスなど、様々な用途に使用することができる。 The gas barrier film of the present invention is excellent in gas barrier performance, bending resistance and adhesion, and is used for packages such as electronic devices, photoelectric conversion elements (solar cell elements), organic electroluminescence (EL) elements, liquid crystal display elements, and the like. It can be used for various applications such as a gas barrier film used for electronic devices such as the above and an electronic device using the same.
 1 基材
 2 平滑層
 3 ガスバリアー層
 4 ブリードアウト防止層
 5 第2のガスバリアー層
 6 オーバーコート層
 10a、10b ガスバリアーフィルム
 30 プラズマCVD製造装置
 31 送り出しローラー
 32、35、36、37、38、39、45、46 搬送ローラー
 33、34 加熱ローラー
 40、41 成膜ローラー
 42、43、磁場発生装置
 44 ガス供給管
 47 巻取りローラー
 48 温調装置
 49、50、51 ターボ分子ポンプ
 52 プラズマ発生用電源
 53 クライオコイルのコイル状配管
DESCRIPTION OF SYMBOLS 1 Base material 2 Smooth layer 3 Gas barrier layer 4 Bleed-out prevention layer 5 2nd gas barrier layer 6 Overcoat layer 10a, 10b Gas barrier film 30 Plasma CVD manufacturing apparatus 31 Delivery roller 32, 35, 36, 37, 38, 39, 45, 46 Conveying roller 33, 34 Heating roller 40, 41 Film forming roller 42, 43, Magnetic field generator 44 Gas supply pipe 47 Winding roller 48 Temperature controller 49, 50, 51 Turbo molecular pump 52 Power source for plasma generation 53 Coiled piping of cryocoil

Claims (9)

  1.  可撓性基材上にガスバリアー層を有するガスバリアーフィルムであって、
     当該ガスバリアー層が、下記要件(1)及び(2)を満たすことを特徴とするガスバリアーフィルム。
    (1)前記ガスバリアー層が、少なくともケイ素、酸素及び炭素を構成元素として含有する。
    (2)前記ガスバリアー層中の酸素量に対する炭素量の比の値を厚さ方向にプロットした炭素/酸素分布曲線が極大値を有し、前記極大値の数(n)と前記ガスバリアー層の厚さ(d)との比率(n/d)が0.10/nm以上である。
    A gas barrier film having a gas barrier layer on a flexible substrate,
    The gas barrier film satisfies the following requirements (1) and (2).
    (1) The gas barrier layer contains at least silicon, oxygen, and carbon as constituent elements.
    (2) A carbon / oxygen distribution curve in which the value of the ratio of the carbon amount to the oxygen amount in the gas barrier layer is plotted in the thickness direction has a maximum value, and the number (n) of the maximum values and the gas barrier layer The ratio (n / d) to the thickness (d) is 0.10 / nm or more.
  2.  前記炭素/酸素分布曲線において、隣接する極大値間の間隔の80%以上が、2~15nmの範囲内であることを特徴とする請求項1に記載のガスバリアーフィルム。 The gas barrier film according to claim 1, wherein 80% or more of the interval between adjacent maximum values in the carbon / oxygen distribution curve is in the range of 2 to 15 nm.
  3.  前記基材の界面から30nmまでの距離範囲内の前記ガスバリアーフィルムにおける前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~15nmの範囲内であることを特徴とする請求項1に記載のガスバリアーフィルム。 In the carbon / oxygen distribution curve in the gas barrier film within a distance range of 30 nm from the interface of the base material, all the intervals between the adjacent maximum values are in the range of 2 to 15 nm. The gas barrier film according to claim 1.
  4.  前記ガスバリアー層において、前記隣接する極大値間の間隔の全てが、2~15nmの範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載のガスバリアーフィルム。 The gas barrier film according to any one of claims 1 to 3, wherein in the gas barrier layer, all of the intervals between the adjacent maximum values are within a range of 2 to 15 nm. .
  5.  前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の80%以上が、2~5nmの範囲内であることを特徴とする請求項1から請求項4までのいずれか一項に記載のガスバリアーフィルム。 5. The carbon / oxygen distribution curve according to claim 1, wherein 80% or more of the interval between the adjacent maximum values is within a range of 2 to 5 nm. Gas barrier film.
  6.  前記炭素/酸素分布曲線において、前記隣接する極大値間の間隔の全てが、2~5nmの範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載のガスバリアーフィルム。 6. The gas according to claim 1, wherein in the carbon / oxygen distribution curve, all of the intervals between the adjacent maximum values are within a range of 2 to 5 nm. Barrier film.
  7.  請求項1から請求項6までのいずれか一項に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、
     前記ガスバリアー層を、少なくとも磁場を発生させる磁場発生部材を有する対向ローラー電極間に電圧を印加して発生させたプラズマを用いたプラズマ化学気相成長法により製造することを特徴とするガスバリアーフィルムの製造方法。
    It is a manufacturing method of the gas barrier film which manufactures the gas barrier film according to any one of claims 1 to 6,
    The gas barrier film is produced by a plasma chemical vapor deposition method using plasma generated by applying a voltage between opposed roller electrodes having a magnetic field generating member that generates at least a magnetic field. Manufacturing method.
  8.  帯状の可撓性基材を送り出しローラーから繰り出して搬送ローラーで搬送する工程と、
     前記可撓性基材を、一対の成膜ローラーのそれぞれに接触させながら搬送を行い、成膜室内で、当該一対の成膜ローラー間に成膜ガスを供給しながら、かつ、成膜室内の水分を除去しながらプラズマ放電を行い、前記基材上にガスバリアー層を形成する工程と、
     前記ガスバリアー層を可撓性基材上に形成したガスバリアーフィルムを搬送ローラーで搬送しながら巻取りローラーで巻取る工程と、を含むことを特徴とする請求項7に記載のガスバリアーフィルムの製造方法。
    A step of feeding the belt-shaped flexible base material from the feed roller and transporting it with the transport roller;
    The flexible substrate is transported while being brought into contact with each of the pair of film forming rollers, the film forming gas is supplied between the pair of film forming rollers in the film forming chamber, and Performing a plasma discharge while removing moisture and forming a gas barrier layer on the substrate;
    The gas barrier film according to claim 7, further comprising a step of winding the gas barrier film having the gas barrier layer formed on the flexible base material with a winding roller while transporting the gas barrier film with a transport roller. Production method.
  9.  前記可撓性基材の搬送速度が、20m/分以上であることを特徴とする請求項7又は請求項8に記載のガスバリアーフィルムの製造方法。 The method for producing a gas barrier film according to claim 7 or 8, wherein a conveying speed of the flexible substrate is 20 m / min or more.
PCT/JP2016/060602 2015-04-03 2016-03-31 Gas barrier film and method for manufacturing same WO2016159206A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017510168A JPWO2016159206A1 (en) 2015-04-03 2016-03-31 Gas barrier film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015076444 2015-04-03
JP2015-076444 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016159206A1 true WO2016159206A1 (en) 2016-10-06

Family

ID=57004369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060602 WO2016159206A1 (en) 2015-04-03 2016-03-31 Gas barrier film and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2016159206A1 (en)
WO (1) WO2016159206A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101027A1 (en) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 Gas barrier film, and gas barrier film molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123201A1 (en) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
WO2014203892A1 (en) * 2013-06-20 2014-12-24 コニカミノルタ株式会社 Gas barrier film and method for producing same
WO2015053189A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Gas barrier film and process for manufacturing same
JP2016097500A (en) * 2014-11-18 2016-05-30 コニカミノルタ株式会社 Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123201A1 (en) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
WO2014203892A1 (en) * 2013-06-20 2014-12-24 コニカミノルタ株式会社 Gas barrier film and method for producing same
WO2015053189A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Gas barrier film and process for manufacturing same
JP2016097500A (en) * 2014-11-18 2016-05-30 コニカミノルタ株式会社 Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101027A1 (en) * 2016-11-30 2018-06-07 コニカミノルタ株式会社 Gas barrier film, and gas barrier film molding method

Also Published As

Publication number Publication date
JPWO2016159206A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
TWI647110B (en) Method for manufacturing laminate
JP5730235B2 (en) Gas barrier film and method for producing gas barrier film
JP6398986B2 (en) Gas barrier film
WO2015115510A1 (en) Gas-barrier film and method for manufacturing same
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
WO2015083706A1 (en) Gas barrier film and method for producing same
WO2016159206A1 (en) Gas barrier film and method for manufacturing same
JP2014141055A (en) Gas barrier film
WO2015083681A1 (en) Gas barrier film and production method therefor
JP2016097500A (en) Gas barrier film, method for producing the same and base material for plasma chemical vapor deposition method
WO2014097997A1 (en) Electronic device
JP6354302B2 (en) Gas barrier film
JP5895855B2 (en) Method for producing gas barrier film
WO2014125877A1 (en) Gas barrier film
JPWO2016132901A1 (en) Gas barrier film and method for producing the same
JP6983040B2 (en) Gas barrier film and devices containing it
JP6888623B2 (en) Manufacturing method of gas barrier film
WO2015163358A1 (en) Gas barrier film and manufacturing method thereof
JP2015168238A (en) Method of producing composite laminated film
JPWO2016152488A1 (en) Gas barrier film
CN108349210B (en) Gas barrier film
WO2015141741A1 (en) Electronic device
JP6579098B2 (en) Method for producing gas barrier film
JP6288082B2 (en) Film forming apparatus, electrode roll, and gas barrier film manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773086

Country of ref document: EP

Kind code of ref document: A1