WO2015163358A1 - Gas barrier film and manufacturing method thereof - Google Patents

Gas barrier film and manufacturing method thereof Download PDF

Info

Publication number
WO2015163358A1
WO2015163358A1 PCT/JP2015/062214 JP2015062214W WO2015163358A1 WO 2015163358 A1 WO2015163358 A1 WO 2015163358A1 JP 2015062214 W JP2015062214 W JP 2015062214W WO 2015163358 A1 WO2015163358 A1 WO 2015163358A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
gas
barrier layer
layer
Prior art date
Application number
PCT/JP2015/062214
Other languages
French (fr)
Japanese (ja)
Inventor
河村 朋紀
廣瀬 達也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016515177A priority Critical patent/JPWO2015163358A1/en
Publication of WO2015163358A1 publication Critical patent/WO2015163358A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same. More specifically, the present invention relates to a highly uniform gas barrier film having excellent gas barrier properties and a method for producing the same.
  • a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used to wrap articles in the fields of food, medicine, etc. Used for applications.
  • a gas barrier film By using the gas barrier film, it is possible to prevent deterioration of the article due to gas such as water vapor or oxygen.
  • gas barrier films that prevent permeation of water vapor, oxygen, and the like have been demanded to be applied to electronic devices such as organic electroluminescence (EL) elements and liquid crystal display (LCD) elements. Is being studied. In these electronic devices, a high gas barrier property, for example, a gas barrier property comparable to a glass substrate is required.
  • a CVD method (Chemical Vapor Deposition) is used as a method for producing a gas barrier film that is more flexible than a glass substrate.
  • a silicon oxide carbide (SiOC) film formed by a plasma chemical vapor deposition method improves gas barrier properties, flexibility, and impact resistance.
  • the gas barrier film described in Patent Document 1 does not have sufficient gas barrier properties.
  • a defect exists in the gas barrier film, a crack is generated by an external force such as bending, and the crack is formed on the entire film. It was difficult to maintain the bending resistance because the gas barrier property easily deteriorated due to the propagation.
  • a gas barrier film whose composition continuously changes in the thickness direction by plasma chemical vapor deposition is used. Manufacturing methods are mentioned.
  • the resistance to bending is improved by repeatedly changing the composition, but since the density of the gas barrier performance is extreme, if the dense part in the layer is destroyed at the defect starting point, the gas barrier property of the non-dense part is low. Therefore, the gas permeation points are concentrated at the end. As a result, local (dot-like) gas permeation cannot be suppressed, and when a device is sealed, a defect called a dark spot that is easily visible is detected in a short period of time.
  • the present invention has been made in view of the above-mentioned problems and situations, and a problem to be solved is to provide a gas barrier film having high uniformity and excellent gas barrier properties and a method for producing the same.
  • the present inventor in the process of examining the cause of the above problems, among the distribution curves of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer
  • the carbon distribution curve shown is a specific carbon atom between the position in the layer thickness direction corresponding to the first extreme value on the nearest side of the substrate and the gas barrier layer outermost surface (100%) starting from the position (0%)
  • the present inventors have found that a gas barrier film having a region satisfying the ratio can provide a highly uniform gas barrier film having excellent gas barrier properties and a method for producing the same, and have led to the present invention.
  • a gas barrier film containing a silicon oxide carbide on a substrate and having a gas barrier layer whose composition changes in the layer thickness direction Among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer, the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer, and carbon
  • the carbon distribution curve showing the relationship with the ratio of the number of carbon atoms to the total number of atoms (100 at%) of atoms, silicon atoms and oxygen atoms (carbon atom ratio) corresponds to the first extreme value on the nearest side of the substrate
  • the region satisfying the requirements defined in the following (1) to (3) exists between the position in the layer thickness direction to be started (0%) and the outermost surface (100%) of the gas barrier layer. Gas barrier film.
  • the average carbon atom ratio a (at%) in the region of 0% to 20% is 30 (at%) ⁇ a ⁇ 40 (at%) Meet.
  • the average carbon atom ratio c (at%) in the region of 80% or more and 100% or less is 0.1 ⁇ a (at%) ⁇ c ⁇ 0.5 ⁇ a (at%) Meet.
  • the average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is 0.5 ⁇ a (at%) ⁇ b ⁇ a (at%) And satisfy When the extreme value that has at least one extreme value in the same region and the maximum extreme value among the extreme values is the second extreme value, the carbon atom ratio d (at%) of the second extreme value is: a (at%) ⁇ d ⁇ 45 (at%) Meet.
  • the average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is 0.6 ⁇ a (at%) ⁇ b ⁇ 0.8 ⁇ a (at%)
  • a method for producing a gas barrier film according to item 1 or 2, wherein the gas barrier film is produced comprising transporting a substrate a plurality of times between opposing roller electrodes and forming a gas barrier layer having a different carbon atom ratio in the layer thickness direction by plasma CVD.
  • the composition of carbon atoms, silicon atoms, and oxygen atoms changes monotonously and continuously in the layer thickness direction.
  • a gas barrier film has a problem that the gas barrier property, particularly the gas barrier property for maintaining the performance of the electronic device in a high temperature and high humidity environment, is not sufficient. This is presumably because the atomic composition of carbon atoms, silicon atoms and oxygen atoms changes continuously in the depth direction, and there is little separation between a composition region having a high gas barrier property and a composition region advantageous for flexibility. For this reason, in the gas barrier film described in Patent Document 1, it is necessary to increase the thickness in order to improve the gas barrier property. As a result, the curl becomes large or the gas barrier property is deteriorated with respect to the bending operation. Another adverse effect arises, such as an increase in.
  • the composition of carbon atoms, silicon atoms, and oxygen atoms repeatedly and continuously changes in the layer thickness direction.
  • a gas barrier film has a plurality of highly organic regions in a partial region in the layer thickness direction, so that the gas barrier property in this region is low, and in particular, the organic EL element is sealed.
  • gas diffusion from the local defect point of the gas barrier layer becomes remarkable, and as a result, it is called a so-called dark spot, which is a point-like non-light emitting region There was a problem that defects were easily visible.
  • the gas barrier layer has a high carbon content SiOC film region having a low degree of oxidation near the substrate surface, and a low carbon content SiOC film region having a high degree of oxidation on the gas barrier layer surface side. And a high carbon content SiOC film region in a specific intermediate region of the gas barrier layer.
  • Sectional drawing which shows an example of the gas barrier film of this invention
  • the graph which shows an example of the carbon distribution curve of the gas barrier layer which concerns on this invention
  • the schematic diagram which shows an example of the manufacturing apparatus used for formation of the gas barrier layer which concerns on this invention
  • Sectional drawing which shows an example of the organic EL element which is an electronic device which used the gas barrier film of this invention as a sealing film
  • the gas barrier film of the present invention is a distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer, from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer.
  • the carbon distribution curve showing the relationship between the distance between the carbon atoms, the ratio of the number of carbon atoms to the total number of carbon atoms, silicon atoms, and oxygen atoms (100 at%) (carbon atom ratio)
  • a region satisfying a specific carbon atom ratio exists between the position in the layer thickness direction corresponding to the extreme value as a starting point (0%) and the outermost surface (100%) of the gas barrier layer.
  • the average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is 0.5 ⁇ a (at%) ⁇ b ⁇ a (at%). From the point of view 0.6 ⁇ a (at%) ⁇ b ⁇ 0.8 ⁇ a (at%) It is preferable to satisfy.
  • the aspect which forms a gas barrier layer from which a carbon atom ratio differs in a layer thickness direction is conveyed by plasma CVD method by conveying a base material several times between the roller electrodes which oppose.
  • the production method is preferably as a method for producing the gas barrier film of the present invention.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the gas barrier film 1 of the present invention is configured by laminating a gas barrier layer 3 on a substrate 2.
  • the gas barrier layer 2 contains silicon oxide carbide (SiOC), and its composition changes in the layer thickness direction.
  • the gas barrier layer according to the present invention includes the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy.
  • the carbon distribution curve showing the relationship with the ratio of carbon atoms to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%) (carbon atom ratio) has at least two extreme values. Furthermore, there is a region that satisfies the requirements defined in the following (1) to (3) in the layer thickness direction.
  • the extreme value means the maximum value of the atomic ratio of the element to the distance (L) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
  • the maximum value means that the value of the atomic ratio of the element (carbon, silicon or oxygen) changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed.
  • the position in the layer thickness direction corresponding to the extreme value M1 on the nearest side of the substrate is set as the starting point (0%), and the space between the starting point and the outermost surface of the gas barrier layer is equally divided into 100 ( That is, the outermost surface of the gas barrier layer is defined as 100%.)
  • Region A is in the range of 0% to 20%
  • region B is in the range of more than 20% and less than 80%, and is in the range of 80% to 100%.
  • the average carbon atom ratio a (at%) in the region A is 30 (at%) ⁇ a ⁇ 40 (at%) It is characterized by satisfying.
  • the region A has a high average carbon atom ratio, and thereby the gas barrier property of the gas barrier film can be ensured.
  • the average carbon atomic ratio a (at%) is lower than 30 at%, good gas barrier properties cannot be expressed.
  • the average carbon atomic ratio a (at%) is higher than 40 at%, bending or storage at high temperature and high humidity It is difficult to maintain sufficient durability.
  • the average carbon atom ratio c (at%) in the region C is 0.1 ⁇ a (at%) ⁇ c ⁇ 0.5 ⁇ a (at%) It is characterized by satisfying. Similar to the average carbon atom ratio a (at%) in the region A, when the average carbon atom ratio c (at%) is lower than 0.1 ⁇ a (at%), good gas barrier properties are exhibited. On the other hand, if it is higher than 0.5 ⁇ a (at%), it is difficult to bend or maintain sufficient durability under high temperature and high humidity storage.
  • the average carbon atom ratio b (at%) in the region B is 0.5 ⁇ a (at%) ⁇ b ⁇ a (at%)
  • the carbon atom ratio d (at%) of the extreme value that has at least one extreme value in the same region B and is the maximum of the extreme values is a (at%) ⁇ d ⁇ 45 (at%) It is characterized by satisfying.
  • the region B has two extreme values M2 and M3, and of these, the extreme value M2 is an extreme value that is the maximum of the extreme values.
  • the average carbon atom ratio b (at%) in the region B is lower than 0.5 ⁇ a (at%), or conversely higher than a (at%), the gas barrier property after bending is deteriorated. In addition, the transparency and flatness (curl) of the gas barrier film are liable to occur. In addition, when the extreme value M2 is lower than a (at%), it is difficult to suppress the occurrence of local defects before and after the bending test, and when it is higher than 45 at%, defects before the bending test are present. Although it can be suppressed, deterioration due to bending increases.
  • the average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is 0.6 ⁇ a (at%) ⁇ b ⁇ 0.8 ⁇ a (at%) It is preferable to satisfy.
  • the carbon atom ratio and the average carbon atom ratio in each region can be adjusted by adjusting the supply amount and the ratio of the source gas containing the organosilicon compound and the oxygen gas to be introduced into the discharge space in the plasma chemical vapor deposition method. It can be controlled by adjusting the temperature of the electrode and the amount of electric power applied to generate plasma discharge. In general, the average carbon atom ratio is increased by reducing the supply ratio of oxygen gas to the raw material gas containing the organosilicon compound, and the average carbon atom ratio is decreased by increasing the electrode temperature and the applied electric energy.
  • Carbon distribution curve (distance (L) from the gas barrier layer surface in the thickness direction of the gas barrier layer and the ratio of carbon atoms to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%) (carbon atom ratio) ), A silicon distribution curve (curve showing the relationship between the distance L and the ratio of silicon atoms to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%) (silicon atom ratio) ) And oxygen distribution curve (curve showing the relationship between the distance L and the ratio of the number of oxygen atoms (oxygen atom ratio) to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%)) is X-ray photoelectron spectroscopy.
  • XPS X-ray Photoelectron Spectroscopy
  • rare gas ion sputtering such as argon in combination
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the average carbon atom ratio (at%) in each region is a value obtained by averaging values measured at 5 nm intervals by etching in the depth direction by XPS depth profile measurement.
  • the layer thickness was arbitrarily measured at 10 locations by cross-sectional observation with a transmission electron microscope (TEM), and the average value was taken as the layer thickness of the gas barrier layer.
  • TEM transmission electron microscope
  • FIB processing SII SMI2050 Processed ion: Ga (30 kV) Sample thickness: 100-200 nm
  • Apparatus JEOL JEM2000FX (acceleration voltage: 200 kV)
  • the layer thickness of the gas barrier layer according to the present invention is preferably in the range of 50 to 500 nm, and more preferably in the range of 50 to 300 nm, from the viewpoint of achieving both thinning and gas barrier properties.
  • the gas barrier layer preferably has gas barrier properties.
  • having a gas barrier property means that only a gas barrier layer is laminated on a substrate, and a water vapor permeability (38 ° C., relative humidity 90) measured using a MOCON water vapor permeability measuring apparatus Aquatran manufactured by MOCON. % RH) is 0.1 g / (m 2 ⁇ day) or less, preferably 0.01 g / (m 2 ⁇ day) or less.
  • the gas barrier layer according to the present invention can be formed by a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”).
  • plasma CVD plasma chemical vapor deposition method
  • PECVD plasma-enhanced chemical vapor deposition
  • the plasma CVD method using the plasma CVD method in the atmospheric pressure or the atmospheric pressure described in the international publication 2006/033233, and the plasma CVD apparatus with a counter roller electrode is mentioned. .
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • a discharge plasma chemical vapor deposition method (with a roll-to-roll method) having a discharge space between rollers to which a magnetic field is applied is formed. It is preferable.
  • the discharge plasma chemical vapor deposition method it becomes possible to easily produce a gas barrier layer having an extreme value and in which the carbon atom ratio in each region is controlled within a certain range. A gas barrier film having an appropriate stress balance can be produced.
  • the discharge plasma chemical vapor deposition method the gas barrier layer can be densified and the gas barrier property can be improved.
  • a plasma discharge in a space between a plurality of film forming rollers it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers.
  • a pair of film forming rollers is used, and a substrate is provided for each of the pair of film forming rollers.
  • the base material here includes a form in which the base material is treated.
  • the film forming gas used in such a plasma CVD method preferably contains an organic silicon compound and oxygen, and the oxygen content in the film forming gas is the total amount of the organic silicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount required for complete oxidation.
  • the gas barrier film of the present invention preferably has a gas barrier layer formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • An apparatus that can be used when producing a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and a pair of film forming processes. It is preferable that the apparatus has a configuration capable of discharging between the rollers. For example, when the manufacturing apparatus shown in FIG. 3 is used, the apparatus is manufactured by a roll-to-roll method using the plasma CVD method. It is also possible.
  • FIG. 3 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing the gas barrier layer according to the present invention.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the 3 includes a feed roller 12, transport rollers 13 to 18, film forming rollers 19 and 20, a gas supply pipe 21, a plasma generating power source 22, and film forming rollers 19 and 20.
  • Magnetic field generators 23 and 24 and winding rollers 25 installed inside are provided.
  • at least the film forming rollers 19 and 20, the gas supply pipe 21, the plasma generating power source 22, and the magnetic field generating apparatuses 23 and 24 are provided in the film forming (vacuum) chamber 28.
  • the film forming chamber 28 is connected to a vacuum pump (not shown), and the pressure in the film forming chamber 28 can be appropriately adjusted by such a vacuum pump.
  • the feed roller 12 and the transport roller 13 are disposed in the transport system chamber 27, and the winding roller 25 and the transport roller 18 are disposed in the transport system chamber 29.
  • the transfer system chambers 27 and 29 and the film forming chamber 28 are connected via connecting portions 30 and 31, respectively.
  • the film forming chamber 28 and the transfer system chambers 27 and 29 may be physically separated by providing a vacuum gate valve in the connecting portions 30 and 31.
  • the vacuum gate valve for example, only the film forming chamber 28 can be a vacuum system, and the transfer system chambers 27 and 29 can be in the atmosphere. Further, by physically separating the film forming chamber 28 and the transfer system chambers 27 and 29, it is possible to suppress the transfer system chambers 27 and 29 from being contaminated by particles generated in the film forming chamber 28. .
  • each film-forming roller 19 and 20 is a power source for plasma generation so that the pair of film-forming rollers (film-forming rollers 19 and 20) can function as a pair of counter electrodes. 22 is connected. Therefore, in such a manufacturing apparatus 10, it is possible to discharge to the space between the film forming roller 19 and the film forming roller 20 by supplying power from the plasma generating power source 22. Plasma can be generated in the space between the film roller 19 and the film formation roller 20.
  • the material and design may be changed as appropriate so that the film-forming roller 19 and the film-forming roller 20 can also be used as electrodes.
  • the gas barrier layer 3 can be formed on the surface of the base material 2 (here, the base material includes a form in which the base material is treated) by a CVD method. It is possible to deposit a gas barrier layer component on the surface of the substrate 2 on the film forming roller 19 and further deposit a gas barrier layer component on the surface of the substrate 2 also on the film forming roller 20. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate 2.
  • magnetic field generators 23 and 24 fixed so as not to rotate even when the film forming rollers 19 and 20 rotate are provided, respectively.
  • the magnetic field generators 23 and 24 provided in the film forming rollers 19 and 20 are respectively a magnetic field generator 23 provided in one film forming roller 19 and a magnetic field generator 24 provided in the other film forming roller 20. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between each other and the magnetic field generators 23 and 24 form a substantially closed magnetic circuit.
  • the magnetic field generators 23 and 24 provided on the film forming rollers 19 and 20 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 23 and the other magnetic field generator 24 are It is preferable to arrange the magnetic poles so that the opposing magnetic poles have the same polarity.
  • each of the magnetic field generators 23 and 24 is opposed to the space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force oppose each other.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 2 is excellent in that the gas barrier layer 3 that is a vapor deposition film can be efficiently formed.
  • the tension on the substrate 2 in each of the film forming rollers 19 and 20 may all be the same, but only the tension in the film forming roller 19 or the film forming roller 20 may be increased.
  • the film forming rollers 19 and 20 known rollers can be used as appropriate. As such film forming rollers 19 and 20, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 19 and 20 is preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced.
  • each film-forming roller 19 and 20 may be provided with a nip roll, and by providing the nip roll, the adhesion of the base material 2 to the film-forming rollers 19 and 20 is improved. Thereby, heat exchange is efficiently performed between the base material 2 and the film forming rollers 19 and 20, and there is an advantage that film uniformity is improved and heat wrinkles are suppressed.
  • the base material 2 is disposed on a pair of film forming rollers (film forming rollers 19 and 20) so that the surfaces of the base material 2 face each other.
  • a pair of film-forming rollers film-forming rollers 19
  • plasma is generated by performing discharge in the facing space between the film-forming roller 19 and the film-forming roller 20.
  • the gas barrier layer component is deposited on the surface of the substrate 2 on the film forming roller 19 by the plasma CVD method, and further the gas barrier layer is formed on the film forming roller 20. Since components can be deposited, a gas barrier layer can be efficiently formed on the surface of the substrate 2.
  • the substrate width of the substrate 2 may be wider, narrower, or the same as the film forming roller width.
  • the film forming rollers 19 and 20 are not exposed, so that the film forming rollers 19 and 20 can be prevented from being contaminated by particles, the maintainability is improved, and performance is improved.
  • the base material width is narrower than the film forming roller width, there is an advantage that the effective width of the film to be formed is widened.
  • the positions of the discharge width (film formation space) on the film forming rollers 19 and 20 and the end of the base material are appropriately adjusted by appropriately selecting the base material width. Can do.
  • the substrate 2 may be heated before being transported to the film forming chamber 28.
  • the heating temperature is preferably equal to or higher than the glass transition temperature of the substrate.
  • the substrate shrinkage during film formation can be suppressed by heating the substrate and shrinking the substrate in advance.
  • the substrate temperature during film formation of the substrate 2 is not particularly limited, but is preferably in the range of 30 to 150 ° C. Such a substrate temperature depends on the temperature of the discharge space and the temperature of the film forming rollers 19 and 20.
  • the temperature of the film forming rollers 19 and 20 is preferably within a range of ⁇ 30 to 100 ° C. In order to adjust to such a roller temperature, the film forming rollers 19 and 20 may be appropriately heated and cooled. .
  • the take-up roller 25 is not particularly limited as long as it can take up the gas barrier film 1 in which the gas barrier layer 3 is formed on the substrate 2, and a known roller is appropriately used. Can do.
  • stepped rollers may be used.
  • the stepped roller is a transport roller in which only both ends of the roller are in contact with the base material 2, and for example, a stepped roller described in FIG. 2 of JP-A-2009-256709 can be used.
  • a stepped roller it can be conveyed to the surface of the gas barrier layer in a non-contact manner, and deterioration of the film due to contact can be suppressed.
  • the feed roller 12 and the take-up roller 25 may be a turret type.
  • the turret may be multiaxial with two or more axes, and may have a structure in which only some of the axes can be opened to the atmosphere.
  • gas supply pipe 21 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 21 serving as a gas supply means is preferably provided in one of the facing spaces (discharge region, film formation zone) between the film formation roller 19 and the film formation roller 20, and is a vacuum serving as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space. In this way, by providing the gas supply pipe 21 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 19 and the film formation roller 20. It is excellent in that the film formation efficiency can be improved.
  • the gas supply pipe 21 is provided on the center line between the film formation roller 19 and the film formation roller 20.
  • the present invention is not limited to this. You may shift
  • the gas supply pipe 21 is closer to one film formation roller and farther from the other film formation roller.
  • the film composition formed on the film forming roller 19 and the film composition formed on the film forming roller 20 become different, and the position of the gas supply pipe 21 may be appropriately shifted when it is desired to change the film quality.
  • the gas supply pipe 21 may be appropriately separated from or closer to the film forming roller on the center line (the arrangement position may be moved on the center line in the vertical direction).
  • the gas supply pipe 21 may be appropriately separated from or closer to the film forming roller on the center line (the arrangement position may be moved on the center line in the vertical direction).
  • particles can be prevented from adhering to the gas supply pipe 21 by moving the gas supply pipe 21 away from the center axis of the film forming roller and separating the gas supply pipe 21 from the discharge space.
  • the film forming rate can be improved by bringing the film closer to the discharge space on the central axis of the film forming roller.
  • FIG. 3 there is one gas supply pipe 21, but there may be a plurality of gas supply pipes 21, and different supply gases may be discharged from each nozzle.
  • the plasma generating power source 22 a known power source for a plasma generating apparatus can be used as appropriate.
  • a power source 22 for generating plasma supplies power to the film forming roller 19 and the film forming roller 20 connected thereto, and makes it possible to use them as a counter electrode for discharging.
  • a power source AC power source or the like
  • a plasma generating power source 22 is preferably capable of performing plasma CVD more efficiently, so that the applied power is preferably in the range of 100 W to 20 kW, and in the range of 100 W to 10 kW.
  • the AC frequency is preferably in the range of 50 Hz to 13.56 MHz, and more preferably in the range of 50 Hz to 500 kHz. Further, from the viewpoint of stabilizing the plasma process, a high frequency power source in which both the high frequency current wave and the voltage wave are sine waves may be used.
  • power is supplied to both the film forming rollers 19 and 20 by one plasma generating power source 22 (both film forming roller power supply), but is not limited to such a form.
  • the film roller may be supplied with power (one-side film formation roller power supply) and the other film formation roller may be grounded.
  • roller one-end power feeding from only one of the roller ends may be used, or roller both-end power feeding from both ends of the roller may be used. In the case of supplying a high frequency band, it is possible to supply both ends of the roller because uniform supply is possible.
  • two-frequency feeding may be performed in which different frequencies are applied, and one film-forming roller and the other film-forming roller may be applied even when two different frequencies are applied to one film-forming roller.
  • a different frequency may be applied.
  • the plasma emission intensity in the discharge space is monitored from the outside. If the desired emission intensity is not obtained, the distance between the magnetic fields (distance between the opposing rollers), the magnetic field intensity, and the applied power of the power source.
  • a feedback circuit that adjusts the power supply frequency, the amount of supplied gas, and the like to obtain a desired plasma emission intensity may be provided. By having such a feedback circuit, film formation / production can be stabilized.
  • the magnetic field generators 23 and 24 known magnetic field generators can be used as appropriate.
  • the base material 2 in addition to the base material used in the present invention, a material in which the gas barrier layer 3 is previously formed can be used. As described above, the thickness of the gas barrier layer 3 can be increased by using the substrate 2 in which the gas barrier layer 3 is previously formed.
  • a gas barrier layer containing carbon atoms, silicon atoms, and oxygen atoms can be formed using the manufacturing apparatus 10 shown in FIG.
  • the method for controlling the atomic ratio of the carbon atom content of the gas barrier layer is not particularly limited, but the ratio of raw materials used (supply ratio of oxygen and HMDSO described later), power, pressure, etc. By controlling, the atomic ratio of the carbon atom content can be controlled.
  • the pressure in the vacuum chamber (degree of vacuum) can be appropriately adjusted according to the type of the raw material gas, and is preferably about 0.5 to 50 Pa, and preferably within the range of 0.5 to 10 Pa. More preferred.
  • an electrode drum in this embodiment, the film forming roller 19 connected to the plasma generating power source 22 for discharging between the film forming roller 19 and the film forming roller 20.
  • the electric power to be applied can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, etc., and cannot be generally stated, but is 0.1 to 10 kW. It is preferable to be within the range. If the applied power is 0.1 kW (100 W) or more, the generation of particles can be sufficiently suppressed. It can suppress that the temperature of the base-material surface at the time rises. Therefore, it is excellent in that wrinkles can be prevented from occurring during film formation without causing the substrate to lose heat.
  • the conveyance speed (line speed) of the substrate 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. A range of 0.5 to 100 m / min is more preferable.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the gas barrier layer 3 can be appropriately selected and used according to the material of the gas barrier layer 3 to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • phenyltrimethoxysilane methyltriethoxy
  • Examples include silane and octamethylcyclotetrasiloxane.
  • hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting gas barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • organic compound gas containing carbon examples include methane, ethane, ethylene, and acetylene. Especially, since it can adjust to the film
  • a reactive gas may be used in addition to the source gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide can be appropriately selected and used.
  • the gas barrier layer 3 of the present embodiment contains oxygen, for example, oxygen and ozone can be used as the reactive gas, and oxygen is preferably used from the viewpoint of simplicity.
  • a reactive gas for forming a nitride may be used.
  • nitrogen or ammonia can be used.
  • a carrier gas may be used as necessary in order to supply the source gas into the film forming chamber 28.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, xenon, hydrogen, and nitrogen can be used.
  • the ratio of the raw material gas and the reactive gas is the amount of the reactive gas that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessively higher than the ratio. It is excellent in that excellent gas barrier properties and bending resistance can be obtained by the formed gas barrier layer 3 by not excessively increasing the ratio of the reaction gas.
  • the film-forming gas contains an organosilicon compound and oxygen, the amount is preferably less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film-forming gas.
  • a film containing hexamethyldisiloxane organic polysilazane, HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is used as a film forming gas, and silicon -Taking the case of forming an oxygen-based thin film as an example, the preferred ratio of the source gas to the reaction gas in the film-forming gas will be described in more detail.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, it becomes impossible to form the gas barrier layer 3 containing carbon. Therefore, when forming the gas barrier layer according to the present invention, the stoichiometric amount of oxygen is set to 1 mole of hexamethyldisiloxane so that the reaction of the reaction formula (1) does not proceed completely. The ratio is preferably less than 12 moles.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material is preferably a stoichiometric ratio of 12 times or less, more preferably 10 times or less.
  • the mole of oxygen relative to the mole amount (flow rate) of hexamethyldisiloxane in the deposition gas.
  • the lower limit of the amount (flow rate) is preferably more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably more than 0.5 times.
  • the maximum atomic ratio of the oxygen atom content to the total number of carbon atoms, silicon atoms, and oxygen atoms in the region near the base material of the gas barrier layer is relatively within a range of 30 to 45 at%.
  • the composition ratio of carbon atoms is relatively increased to form a dense region.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas when forming the film forming gas is preferably in the range of 1 to 10 times. More preferably, it is in the range of 1 to 6 times, and more preferably in the range of 1 to 3 times.
  • discharge is generated between a pair of film forming rollers (film forming rollers 19 and 20) while supplying a film forming gas (such as a source gas) into the film forming chamber 28.
  • a film forming gas such as a source gas
  • the film-forming gas raw material gas or the like
  • the first film-forming layer is formed on the surface of the base material 2 on the film-forming roller 19 and on the surface of the base material 2 on the film-forming roller 20. Is formed by plasma CVD.
  • a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 19 and 20, and the plasma is converged on the magnetic field.
  • the maximum value of the carbon distribution curve when the substrate 2 passes through the point A of the film forming roller 19 and the point B of the film forming roller 20, the maximum value of the carbon distribution curve The minimum value of the oxygen distribution curve is formed.
  • the substrate 2 passes through the points C1 and C2 of the film forming roller 19 and the points C3 and C4 of the film forming roller 20 the minimum value of the carbon distribution curve and the maximum value of the oxygen distribution curve are obtained. It is formed.
  • the distance between the extreme values of the gas barrier layer (the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at one extreme value of the carbon / oxygen distribution curve and the extreme value adjacent to the extreme value ( The absolute value of the difference of L) can be adjusted by the rotation speed of the film forming rollers 19 and 20 (conveying speed of the substrate 2).
  • the base material 2 is transported by the feed roller 12 and the film formation roller 19, respectively, so that the film is formed on the surface of the base material 2 by a roll-to-roll continuous film formation process. Then, the gas barrier layer 3 is formed.
  • the gas barrier layer according to the present invention is formed by a plasma CVD method using a plasma CVD apparatus (roll-to-roll method) having a counter roller electrode shown in FIG.
  • the film is formed a plurality of times while changing the conditions.
  • This is excellent in flexibility (flexibility), high gas barrier property under high temperature and high humidity, and mechanical strength when mass-produced using a plasma CVD apparatus (roll to roll method) having a counter roller electrode.
  • a gas barrier layer with few defects that reduce durability and gas barrier properties during conveyance from roll to roll can be efficiently produced.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce a gas barrier film that is required for durability against temperature changes used in solar cells, electronic parts, and the like.
  • a plastic film is used as the base material of the gas barrier film of the present invention.
  • the plastic film used is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer, and can be appropriately selected according to the purpose of use.
  • Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide resin.
  • Cellulose acylate resin Polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification
  • thermoplastic resins such as polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
  • the thickness of the plastic film used for the gas barrier film is not particularly limited because it is appropriately selected depending on the application, but is typically in the range of 1 to 800 ⁇ m, and preferably in the range of 10 to 200 ⁇ m.
  • These plastic films may have a functional layer such as a known transparent conductive layer or smooth layer used in conventional gas barrier films.
  • a functional layer in addition to those described above, those described in paragraphs 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
  • the base material using the above-described resins or the like may be an unstretched film or a stretched film.
  • the base material can be manufactured by a conventionally known general method.
  • an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion).
  • the constituent material and formation method of the anchor coat layer the materials, methods and the like disclosed in paragraphs 0229 to 0232 of JP2013-52561A are appropriately employed.
  • the gas barrier film of the present invention may have a smooth layer on the surface of the substrate having the gas barrier layer.
  • the smooth layer is used to flatten the rough surface of the substrate where protrusions are present, or to fill the unevenness and pinholes generated in the gas barrier layer with the protrusions present on the resin substrate.
  • the constituent material, forming method, surface roughness, layer thickness and the like of the smooth layer, materials, methods and the like disclosed in paragraphs 0233 to 0248 of JP2013-52561A are appropriately employed.
  • the gas barrier film of the present invention can further have a bleed-out preventing layer.
  • the bleed-out prevention layer is used for the purpose of suppressing a phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the resin base material to the surface and contaminate the contact surface. It is provided on the opposite surface of the substrate.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • the constituent material, formation method, layer thickness, and the like of the bleed-out prevention layer the materials, methods, and the like disclosed in paragraphs 0249 to 0262 of JP2013-52561A are appropriately employed.
  • the gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, and flexibility.
  • the gas barrier film of this invention is a gas barrier film used for electronic devices, such as a photoelectric conversion element (solar cell element), an organic EL element, and a liquid crystal display element, and an electronic device using this, an electronic device, etc. It can be used for various purposes such as packaging.
  • the electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side of the present invention.
  • the electronic element body a known electronic device body to which sealing by a gas barrier film can be applied can be used.
  • main bodies such as an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin-film transistor, a touch panel, are mentioned.
  • the electronic element body is preferably an organic EL element or a solar cell body.
  • FIG. 4 An example of the organic EL element which is an electronic device using the gas barrier film 1 of the present invention as a sealing film is shown in FIG.
  • the organic EL element 9 is formed on the gas barrier film 1, the transparent electrode 4 such as ITO formed on the gas barrier film 1, and the transparent electrode 4.
  • the organic EL element main body 5 and an opposing film 7 disposed via an adhesive layer 6 so as to cover the organic EL element main body 5 are provided. It can be said that the transparent electrode 4 forms a part of the organic EL element body 5.
  • a transparent electrode 4 and an organic EL element body 5 are formed on the surface of the gas barrier film 1 where the gas barrier layer 3 is formed.
  • the counter film 7 may be a gas barrier film of the present invention in addition to a metal film such as an aluminum foil.
  • a gas barrier film is used for the counter film 7, the surface on which the gas barrier layer is formed may be attached to the organic EL element body 5 with the adhesive layer 6.
  • Examples of constituent layers of the organic EL element body 5 (anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, cathode, etc.) and methods for producing them are disclosed in, for example, JP-A-2014-045101. Reference can be made to those described in paragraphs [0110] to [0159] of the publication.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7535 manufactured by JSR Corporation is used so that the layer thickness after drying becomes 3 ⁇ m.
  • the coating was cured at 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer.
  • this bleed-out prevention layer it was used as a resin substrate that was conditioned and stored for 96 hours in an environment of 35 ° C. under a reduced pressure of 5 Pa.
  • roller CVD method Formation of gas barrier layer: Roller CVD method
  • the surface of the resin substrate on which the bleed-out prevention layer is formed contacts the film forming roller.
  • the resin substrate is mounted on the apparatus, and among the following film formation conditions (plasma CVD conditions), the source gas, oxygen gas, the degree of vacuum in the vacuum chamber, and the power applied from the plasma generation power source are described.
  • a film was formed on the anchor coat layer so as to have a final layer thickness of 160 nm, and this was used as a gas barrier layer.
  • the film formation was repeated four times to form gas barrier layers having different carbon atom ratios in the layer thickness direction.
  • adjustment is performed mainly by increasing the supply amount of HMDSO in all the supply gases or decreasing the supply amount of oxygen gas, and the degree of vacuum in the vacuum chamber is adjusted to adjust the layer thickness. Increased or decreased.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisiloxane (HMDSO)): 100 to 400 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 400 to 2500 sccm Degree of vacuum in the vacuum chamber: 1.5 to 3.0 Pa Applied power from the power source for plasma generation: 1.0 to 4.0 kW Frequency of power source for plasma generation: 70 kHz Resin substrate transport speed: 12 m / min
  • the gas barrier layer thus formed was subjected to XPS depth profile measurement under the following conditions to obtain a carbon distribution curve, a silicon distribution curve, and an oxygen distribution curve with respect to the distance from the surface of the thin film layer in the layer thickness direction.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific Irradiation
  • X-ray Single crystal spectroscopy AlK ⁇ X-ray spot and its size: 800 ⁇ m ⁇ 400 ⁇ m oval
  • each of the produced gas barrier films was repeatedly bent 100 times at an angle of 180 degrees so as to have a radius of curvature of 10 mm.
  • JEOL Ltd., vacuum vapor deposition device JEE-400 vacuum vapor deposition device
  • the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • a UV-curable resin for sealing made by Nagase ChemteX
  • quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere
  • the cell for evaluation was produced by irradiating with ultraviolet rays.
  • the obtained sample (evaluation cell) sealed on both sides was stored at 60 ° C. and 90% RH under high temperature and high humidity for 120 hours, and then the corrosion point newly grown from the initial state of the Ca deposited layer was examined using an optical microscope. And observed according to the following evaluation rank.
  • the evaluation results are shown in Table 1.
  • a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample was stored under the same high temperature and high humidity conditions of 60 ° C. and 90% RH, and it was confirmed that no Ca corrosion point having a diameter exceeding 100 ⁇ m was generated even after 1000 hours.
  • the number of Ca corrosion points grown with a diameter of more than 100 ⁇ m per 25 cm 2 of the Ca deposition surface is 5: 0 or 1 location 4: 2 or more and 4 or less locations 3: 5 or more locations but 9 or less locations 2: 10 or more locations but 30 or less locations 1:30 locations Or has developed into a sheet of corrosion where the corrosion points are connected
  • each of the produced gas barrier films was repeatedly bent 100 times at an angle of 180 degrees so as to have a radius of curvature of 10 mm.
  • the gas barrier film of the present invention has a lower water vapor permeability and fewer local defects than the gas barrier film of the comparative example. Further, it can be seen that the gas barrier property after bending is small and the durability is high.
  • the present invention can be particularly suitably used for providing a gas barrier film having high uniformity and excellent gas barrier properties and a method for producing the same.

Abstract

The purpose of the present invention is to provide a gas barrier film with excellent and highly uniform gas barrier properties. This gas barrier film (1) is characterized in that, of the distribution curves of the constituent elements of the gas barrier film (3) based on the element distribution in the depth direction measured by X-ray photoelectron spectroscopy, the carbon distribution curve shows the relation between the distance from the surface of the gas barrier layer (3) in the layer thickness direction of the gas barrier layer (3) and the ratio (the carbon atomic ratio) of the number of carbon atoms to the total number (100at%) of carbon atoms, silicon atoms and oxygen atoms, and there is a region of the carbon distribution curve that satisfies a specific carbon atomic ratio between a start point (0%) in the position in the layer thickness direction corresponding to the first extreme value nearest to the substrate (2), and the topmost surface (100%) of the gas barrier layer (3).

Description

ガスバリアーフィルム及びその製造方法Gas barrier film and method for producing the same
 本発明は、ガスバリアーフィルム及びその製造方法に関する。より詳しくは、均一性の高いガスバリアー性に優れたガスバリアーフィルム及びその製造方法に関する。 The present invention relates to a gas barrier film and a method for producing the same. More specifically, the present invention relates to a highly uniform gas barrier film having excellent gas barrier properties and a method for producing the same.
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物を含む薄膜(ガスバリアー層)を形成したガスバリアーフィルムは、食品、医薬品等の分野で物品を包装する用途に用いられている。ガスバリアーフィルムを用いることによって、水蒸気や酸素等のガスによる物品の変質を防止することができる。 Conventionally, a gas barrier film in which a thin film (gas barrier layer) containing a metal oxide such as aluminum oxide, magnesium oxide, or silicon oxide is formed on the surface of a plastic substrate or film is used to wrap articles in the fields of food, medicine, etc. Used for applications. By using the gas barrier film, it is possible to prevent deterioration of the article due to gas such as water vapor or oxygen.
 近年、このような水蒸気や酸素等の透過を防ぐガスバリアーフィルムについて、有機エレクトロルミネッセンス(electroluminescence:EL)素子、液晶表示(Liquid Crystal Display:LCD)素子等の電子デバイスへの展開が要望され、多くの検討がなされている。これらの電子デバイスにおいては、高いガスバリアー性、例えば、ガラス基材に匹敵するガスバリアー性が要求される。 In recent years, gas barrier films that prevent permeation of water vapor, oxygen, and the like have been demanded to be applied to electronic devices such as organic electroluminescence (EL) elements and liquid crystal display (LCD) elements. Is being studied. In these electronic devices, a high gas barrier property, for example, a gas barrier property comparable to a glass substrate is required.
 ガラス基材よりも柔軟性に富むガスバリアーフィルムを製造する方法としては、例えば、CVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)が用いられる。 For example, a CVD method (Chemical Vapor Deposition) is used as a method for producing a gas barrier film that is more flexible than a glass substrate.
 例えば、特許文献1では、プラズマ化学気相成長法により形成された酸化炭化ケイ素(SiOC)膜により、ガスバリアー性やフレキシブル性、耐衝撃性が向上するとしている。
 しかしながら、特許文献1に記載されたガスバリアーフィルムのガスバリアー性は十分なものではなく、特にガスバリアーフィルム内に欠陥が存在すると、折り曲げなどの外力によりクラックが発生し、そのクラックが膜全体に伝播して著しいガスバリアー性の低下が生じやすくなっていたため、屈曲耐性を維持することが困難であった。
For example, in Patent Document 1, a silicon oxide carbide (SiOC) film formed by a plasma chemical vapor deposition method improves gas barrier properties, flexibility, and impact resistance.
However, the gas barrier film described in Patent Document 1 does not have sufficient gas barrier properties. In particular, when a defect exists in the gas barrier film, a crack is generated by an external force such as bending, and the crack is formed on the entire film. It was difficult to maintain the bending resistance because the gas barrier property easily deteriorated due to the propagation.
 同様に、ガラス基材よりも柔軟性に富むガスバリアーフィルムを製造する方法として、例えば、特許文献2では、プラズマ化学気相成長法により厚さ方向で組成が連続的に変化するガスバリアーフィルムの製造方法が挙げられている。
 この場合、組成を繰り返し変化させることで折り曲げによる耐性は向上するが、ガスバリアー性能の粗密が極端なため、層内の緻密部が欠陥起点で破壊されると非緻密部のガスバリアー性が低いゆえに、結局ガス透過点が一極集中してしまう。
 その結果、局部的(点状)なガス透過が抑制できず、デバイスを封止した場合には、ダークスポットと呼ばれる視認されやすい欠陥が短期間で検出されてしまう。
Similarly, as a method for producing a gas barrier film that is more flexible than a glass substrate, for example, in Patent Document 2, a gas barrier film whose composition continuously changes in the thickness direction by plasma chemical vapor deposition is used. Manufacturing methods are mentioned.
In this case, the resistance to bending is improved by repeatedly changing the composition, but since the density of the gas barrier performance is extreme, if the dense part in the layer is destroyed at the defect starting point, the gas barrier property of the non-dense part is low. Therefore, the gas permeation points are concentrated at the end.
As a result, local (dot-like) gas permeation cannot be suppressed, and when a device is sealed, a defect called a dark spot that is easily visible is detected in a short period of time.
特開2011-73430号公報JP 2011-73430 A 特許4690041号Patent 4690041
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、均一性の高いガスバリアー性に優れたガスバリアーフィルム及びその製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems and situations, and a problem to be solved is to provide a gas barrier film having high uniformity and excellent gas barrier properties and a method for producing the same.
 特に、各種電子デバイスを封止したときに、局部的な欠陥の発生を著しく低減し、ガスバリアー性に優れたガスバリアーフィルム及びその製造方法を提供することである。 Particularly, it is to provide a gas barrier film excellent in gas barrier properties and a method for producing the same, which significantly reduces the occurrence of local defects when various electronic devices are sealed.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、ガスバリアー層のX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、ガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離と、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線が、基材最近傍側にある第1極値に対応する層厚方向の位置を起点(0%)としてガスバリアー層最表面(100%)までの間に、特定の炭素原子比率を満たす領域が存在するガスバリアーフィルムにより、均一性の高いガスバリアー性に優れたガスバリアーフィルム及びその製造方法を提供できることを見出し、本発明に至った。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, among the distribution curves of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer The relationship between the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer and the ratio of the number of carbon atoms to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%) (carbon atom ratio) The carbon distribution curve shown is a specific carbon atom between the position in the layer thickness direction corresponding to the first extreme value on the nearest side of the substrate and the gas barrier layer outermost surface (100%) starting from the position (0%) The present inventors have found that a gas barrier film having a region satisfying the ratio can provide a highly uniform gas barrier film having excellent gas barrier properties and a method for producing the same, and have led to the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.基材上に、酸化炭化ケイ素を含有するとともに、その組成が層厚方向において変化するガスバリアー層を有するガスバリアーフィルムであって、
 前記ガスバリアー層のX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、前記ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線が、前記基材最近傍側にある第1極値に対応する層厚方向の位置を起点(0%)として前記ガスバリアー層最表面(100%)までの間に、下記(1)~(3)で規定される要件を満たす領域が存在することを特徴とするガスバリアーフィルム。
1. A gas barrier film containing a silicon oxide carbide on a substrate and having a gas barrier layer whose composition changes in the layer thickness direction,
Among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer, the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer, and carbon The carbon distribution curve showing the relationship with the ratio of the number of carbon atoms to the total number of atoms (100 at%) of atoms, silicon atoms and oxygen atoms (carbon atom ratio) corresponds to the first extreme value on the nearest side of the substrate The region satisfying the requirements defined in the following (1) to (3) exists between the position in the layer thickness direction to be started (0%) and the outermost surface (100%) of the gas barrier layer. Gas barrier film.
(1)0%以上20%以下の領域における平均炭素原子比率a(at%)が、
 30(at%)≦a≦40(at%)
を満たす。
(2)80%以上100%以下の領域における平均炭素原子比率c(at%)が、
 0.1×a(at%)≦c≦0.5×a(at%)
を満たす。
(3)20%超80%未満の領域における平均炭素原子比率b(at%)が、
 0.5×a(at%)<b<a(at%)
を満たし、かつ、
 同一領域内に少なくとも一つの極値を有し、前記極値のうち最大値となる極値を第2極値としたとき、前記第2極値の炭素原子比率d(at%)が、
 a(at%)≦d≦45(at%)
を満たす。
(1) The average carbon atom ratio a (at%) in the region of 0% to 20% is
30 (at%) ≦ a ≦ 40 (at%)
Meet.
(2) The average carbon atom ratio c (at%) in the region of 80% or more and 100% or less is
0.1 × a (at%) ≦ c ≦ 0.5 × a (at%)
Meet.
(3) The average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is
0.5 × a (at%) <b <a (at%)
And satisfy
When the extreme value that has at least one extreme value in the same region and the maximum extreme value among the extreme values is the second extreme value, the carbon atom ratio d (at%) of the second extreme value is:
a (at%) ≦ d ≦ 45 (at%)
Meet.
 2.20%超80%未満の領域における前記平均炭素原子比率b(at%)が、
 0.6×a(at%)≦b≦0.8×a(at%)
を満たすことを特徴とする第1項に記載のガスバリアーフィルム。
2. The average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is
0.6 × a (at%) ≦ b ≦ 0.8 × a (at%)
The gas barrier film according to item 1, which satisfies the following conditions.
 3.第1項又は第2項に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、
 基材を対向するローラー電極間に複数回搬送して、プラズマCVD法により、層厚方向に炭素原子比率の異なるガスバリアー層を形成することを特徴とするガスバリアーフィルムの製造方法。
3. A method for producing a gas barrier film according to item 1 or 2, wherein the gas barrier film is produced.
A method for producing a gas barrier film, comprising transporting a substrate a plurality of times between opposing roller electrodes and forming a gas barrier layer having a different carbon atom ratio in the layer thickness direction by plasma CVD.
 本発明の上記手段により、均一性の高いガスバリアー性に優れたガスバリアーフィルム及びその製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a gas barrier film excellent in gas barrier properties with high uniformity and a method for producing the same.
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 特許文献1に記載のガスバリアーフィルムは、層厚方向に炭素原子、ケイ素原子及び酸素原子の組成が、単調かつ連続的に変化する。このようなガスバリアーフィルムは、ガスバリアー性、特に、高温高湿環境下での電子デバイスの性能を維持するためのガスバリアー性が十分なものではないという問題があった。これは、深さ方向で炭素原子、ケイ素原子及び酸素原子の原子組成が連続変化し、ガスバリアー性の高い組成領域と柔軟性に有利な組成領域の分離が少ないためと推察される。このため、特許文献1に記載のガスバリアーフィルムにおいては、ガスバリアー性を向上させるため厚膜化する必要があり、その結果、カールが大きくなる、あるいは折り曲げ操作に対してのガスバリアー性の劣化が増長されるといった別の弊害が生じる。 In the gas barrier film described in Patent Document 1, the composition of carbon atoms, silicon atoms, and oxygen atoms changes monotonously and continuously in the layer thickness direction. Such a gas barrier film has a problem that the gas barrier property, particularly the gas barrier property for maintaining the performance of the electronic device in a high temperature and high humidity environment, is not sufficient. This is presumably because the atomic composition of carbon atoms, silicon atoms and oxygen atoms changes continuously in the depth direction, and there is little separation between a composition region having a high gas barrier property and a composition region advantageous for flexibility. For this reason, in the gas barrier film described in Patent Document 1, it is necessary to increase the thickness in order to improve the gas barrier property. As a result, the curl becomes large or the gas barrier property is deteriorated with respect to the bending operation. Another adverse effect arises, such as an increase in.
 特許文献2に記載のガスバリアーフィルムは、層厚方向に炭素原子、ケイ素原子及び酸素原子の組成が繰り返し連続的に変化する。この構造をとることで、折り曲げ操作に対しての耐久性を向上させることが容易になっている。しかしながら、このようなガスバリアーフィルムは、層厚方向の一部の領域において、有機性の高い領域を複数有することで、この領域内のガスバリアー性が低く、特に、有機EL素子を封止して高温高湿環境下での耐久性能を見た場合、ガスバリアー層の局部的な欠陥点からのガス拡散が顕著になり、その結果、点状の非発光領域である、いわゆるダークスポットと呼ばれる欠陥が視認されやすいという問題があった。 In the gas barrier film described in Patent Document 2, the composition of carbon atoms, silicon atoms, and oxygen atoms repeatedly and continuously changes in the layer thickness direction. By taking this structure, it is easy to improve the durability against the bending operation. However, such a gas barrier film has a plurality of highly organic regions in a partial region in the layer thickness direction, so that the gas barrier property in this region is low, and in particular, the organic EL element is sealed. When the durability performance under high temperature and high humidity environment is seen, gas diffusion from the local defect point of the gas barrier layer becomes remarkable, and as a result, it is called a so-called dark spot, which is a point-like non-light emitting region There was a problem that defects were easily visible.
 本発明のガスバリアーフィルムにおいては、ガスバリアー層が、基材表面近傍に酸化度が小さい高炭素含有量のSiOC膜領域、ガスバリアー層表面側に酸化度が大きい低炭素含有量のSiOC膜領域を有し、更に、ガスバリアー層の特定の中間領域に高炭素含有量のSiOC膜領域を有している。このような構成とすることで、フィルム内の応力バランスをとることが可能となり、均一性の高いガスバリアー性を発揮することが可能となり、更には、高温高湿度環境であっても高いガスバリアー性を発揮でき、屈曲後のガスバリアー性の劣化や局部的な欠陥からのガス拡散が起きることがなくなると考えられる。 In the gas barrier film of the present invention, the gas barrier layer has a high carbon content SiOC film region having a low degree of oxidation near the substrate surface, and a low carbon content SiOC film region having a high degree of oxidation on the gas barrier layer surface side. And a high carbon content SiOC film region in a specific intermediate region of the gas barrier layer. By adopting such a configuration, it becomes possible to balance the stress in the film, and to exhibit a highly uniform gas barrier property. Furthermore, even in a high-temperature and high-humidity environment, a high gas barrier can be obtained. It is considered that gas barrier property deterioration after bending and gas diffusion from local defects do not occur.
本発明のガスバリアーフィルムの一例を示す断面図Sectional drawing which shows an example of the gas barrier film of this invention 本発明に係るガスバリアー層の炭素分布曲線の一例を示すグラフThe graph which shows an example of the carbon distribution curve of the gas barrier layer which concerns on this invention 本発明に係るガスバリアー層の形成に用いられる製造装置の一例を示す模式図The schematic diagram which shows an example of the manufacturing apparatus used for formation of the gas barrier layer which concerns on this invention 本発明のガスバリアーフィルムを封止フィルムとして用いた電子デバイスである有機EL素子の一例を示す断面図Sectional drawing which shows an example of the organic EL element which is an electronic device which used the gas barrier film of this invention as a sealing film
 本発明のガスバリアーフィルムは、ガスバリアー層のX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、ガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離と、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線が、基材最近傍側にある第1極値に対応する層厚方向の位置を起点(0%)としてガスバリアー層最表面(100%)までの間に、特定の炭素原子比率を満たす領域が存在することを特徴とする。この特徴は、請求項1から請求項3までの請求項に係る発明に共通する技術的特徴である。 The gas barrier film of the present invention is a distribution curve of each constituent element based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer, from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer. The carbon distribution curve showing the relationship between the distance between the carbon atoms, the ratio of the number of carbon atoms to the total number of carbon atoms, silicon atoms, and oxygen atoms (100 at%) (carbon atom ratio) A region satisfying a specific carbon atom ratio exists between the position in the layer thickness direction corresponding to the extreme value as a starting point (0%) and the outermost surface (100%) of the gas barrier layer. This feature is a technical feature common to the inventions according to claims 1 to 3.
 本発明において、20%超80%未満の領域における平均炭素原子比率b(at%)は0.5×a(at%)<b<a(at%)であるが、本発明の効果発現の観点から、
 0.6×a(at%)≦b≦0.8×a(at%)
を満たすことが好ましい。
In the present invention, the average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is 0.5 × a (at%) <b <a (at%). From the point of view
0.6 × a (at%) ≦ b ≦ 0.8 × a (at%)
It is preferable to satisfy.
 また、本発明のガスバリアーフィルムの製造方法としては、基材を対向するローラー電極間に複数回搬送して、プラズマCVD法により、層厚方向に炭素原子比率の異なるガスバリアー層を形成する態様の製造方法であることが、本発明のガスバリアーフィルムを製造する方法として好ましい。 Moreover, as a manufacturing method of the gas barrier film of this invention, the aspect which forms a gas barrier layer from which a carbon atom ratio differs in a layer thickness direction is conveyed by plasma CVD method by conveying a base material several times between the roller electrodes which oppose. The production method is preferably as a method for producing the gas barrier film of the present invention.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
≪ガスバリアーフィルムの構成≫
 図1に示すとおり、本発明のガスバリアーフィルム1は、基材2上に、ガスバリアー層3が積層されて構成されている。
 ガスバリアー層2は、酸化炭化ケイ素(SiOC)を含有するとともに、その組成が層厚方向において変化している。
≪Composition of gas barrier film≫
As shown in FIG. 1, the gas barrier film 1 of the present invention is configured by laminating a gas barrier layer 3 on a substrate 2.
The gas barrier layer 2 contains silicon oxide carbide (SiOC), and its composition changes in the layer thickness direction.
≪ガスバリアー層(3)≫
 本発明に係るガスバリアー層は、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、ガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離と、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線が、少なくとも二つ以上の極値を有しており、更に、層厚方向に下記(1)~(3)で規定される要件を満たす領域が存在している。
 以下、図2を参照しながら、詳細に説明する。
≪Gas barrier layer (3) ≫
The gas barrier layer according to the present invention includes the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy. The carbon distribution curve showing the relationship with the ratio of carbon atoms to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%) (carbon atom ratio) has at least two extreme values. Furthermore, there is a region that satisfies the requirements defined in the following (1) to (3) in the layer thickness direction.
Hereinafter, it will be described in detail with reference to FIG.
 なお、本発明において極値とは、ガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離(L)に対する元素の原子比率の極大値のことをいう。
 ここで、極大値とは、ガスバリアー層の表面からの距離を変化させた場合に元素(炭素、ケイ素又は酸素)の原子比率の値が増加から減少に変わる点のことをいう。
In the present invention, the extreme value means the maximum value of the atomic ratio of the element to the distance (L) from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
Here, the maximum value means that the value of the atomic ratio of the element (carbon, silicon or oxygen) changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed.
 まず、ガスバリアー層中、基材最近傍側にある極値M1に対応する層厚方向の位置を起点(0%)として、当該起点とガスバリアー層最表面との間を100等分し(すなわち、ガスバリアー層最表面を100%とする。)、0%以上20%以下の範囲内を領域A、20%超80%未満の範囲内を領域B、80%以上100%以下の範囲内を領域Cとする。 First, in the gas barrier layer, the position in the layer thickness direction corresponding to the extreme value M1 on the nearest side of the substrate is set as the starting point (0%), and the space between the starting point and the outermost surface of the gas barrier layer is equally divided into 100 ( That is, the outermost surface of the gas barrier layer is defined as 100%.) Region A is in the range of 0% to 20%, region B is in the range of more than 20% and less than 80%, and is in the range of 80% to 100%. Is region C.
(1)領域Aにおいては、当該領域Aにおける平均炭素原子比率a(at%)が、
 30(at%)≦a≦40(at%)
を満たすことを特徴としている。
 領域Aは、高い平均炭素原子比率を有しており、これによりガスバリアーフィルムのガスバリアー性を確保することができる。平均炭素原子比率a(at%)が30at%より低い場合には、良好なガスバリアー性を発現することができず、反対に40at%よりも高い場合には、折り曲げや高温高湿保存下での十分な耐久性を維持することが困難となる。
(1) In the region A, the average carbon atom ratio a (at%) in the region A is
30 (at%) ≦ a ≦ 40 (at%)
It is characterized by satisfying.
The region A has a high average carbon atom ratio, and thereby the gas barrier property of the gas barrier film can be ensured. When the average carbon atomic ratio a (at%) is lower than 30 at%, good gas barrier properties cannot be expressed. On the other hand, when the average carbon atomic ratio a (at%) is higher than 40 at%, bending or storage at high temperature and high humidity It is difficult to maintain sufficient durability.
(2)領域Cにおいては、当該領域Cにおける平均炭素原子比率c(at%)が、
 0.1×a(at%)≦c≦0.5×a(at%)
を満たすことを特徴としている。
 領域Aにおける平均炭素原子比率a(at%)と同様に、平均炭素原子比率c(at%)が0.1×a(at%)よりも低い場合には、良好なガスバリアー性を発現することができず、反対に0.5×a(at%)よりも高い場合には折り曲げや、高温高湿保存下での十分な耐久性を維持することが困難となる。
(2) In the region C, the average carbon atom ratio c (at%) in the region C is
0.1 × a (at%) ≦ c ≦ 0.5 × a (at%)
It is characterized by satisfying.
Similar to the average carbon atom ratio a (at%) in the region A, when the average carbon atom ratio c (at%) is lower than 0.1 × a (at%), good gas barrier properties are exhibited. On the other hand, if it is higher than 0.5 × a (at%), it is difficult to bend or maintain sufficient durability under high temperature and high humidity storage.
(3)領域Bにおいては、当該領域Bにおける平均炭素原子比率b(at%)が、
 0.5×a(at%)<b<a(at%)
を満たし、かつ、同一領域B内に少なくとも一つの極値を有し、極値のうち最大値となる極値の炭素原子比率d(at%)が、
 a(at%)≦d≦45(at%)
を満たすことを特徴としている。
 図2に示した例においては、領域Bに二つの極値M2及びM3を有しており、このうち、極値M2が極値のうち最大値となる極値である。
 領域Bにおける平均炭素原子比率b(at%)が0.5×a(at%)よりも低い場合や、反対にa(at%)よりも高い場合には、折り曲げ後のガスバリアー性の劣化や、ガスバリアーフィルムの透明性の低下及び平坦性の低下(カール)が生じやすくなる。
 また、極値M2がa(at%)よりも低い場合には、折り曲げ試験前後の局部的な欠陥の発生を抑制することが困難となり、45at%よりも高い場合には折り曲げ試験前の欠陥が抑制できる反面、折り曲げによる劣化が大きくなる。
 20%超80%未満の領域における平均炭素原子比率b(at%)は、
 0.6×a(at%)≦b≦0.8×a(at%)
を満たすことが好ましい。
(3) In the region B, the average carbon atom ratio b (at%) in the region B is
0.5 × a (at%) <b <a (at%)
And the carbon atom ratio d (at%) of the extreme value that has at least one extreme value in the same region B and is the maximum of the extreme values is
a (at%) ≦ d ≦ 45 (at%)
It is characterized by satisfying.
In the example shown in FIG. 2, the region B has two extreme values M2 and M3, and of these, the extreme value M2 is an extreme value that is the maximum of the extreme values.
When the average carbon atom ratio b (at%) in the region B is lower than 0.5 × a (at%), or conversely higher than a (at%), the gas barrier property after bending is deteriorated. In addition, the transparency and flatness (curl) of the gas barrier film are liable to occur.
In addition, when the extreme value M2 is lower than a (at%), it is difficult to suppress the occurrence of local defects before and after the bending test, and when it is higher than 45 at%, defects before the bending test are present. Although it can be suppressed, deterioration due to bending increases.
The average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is
0.6 × a (at%) ≦ b ≦ 0.8 × a (at%)
It is preferable to satisfy.
 なお、各領域における炭素原子比率や平均炭素原子比率は、プラズマ化学気相成長法における、放電空間に投入する有機ケイ素化合物を含む原料ガスと酸素ガスとの供給量及びそれらの比率を調整したり、電極の温度やプラズマ放電を生成させるための印加電力量を調整したりとすることによって制御することができる。
 一般的には、有機ケイ素化合物を含む原料ガスに対する酸素ガスの供給比率を低下させることで平均炭素原子比率は大きくなり、電極温度や印加電力量を高くすることで平均炭素原子比率は小さくなる。
The carbon atom ratio and the average carbon atom ratio in each region can be adjusted by adjusting the supply amount and the ratio of the source gas containing the organosilicon compound and the oxygen gas to be introduced into the discharge space in the plasma chemical vapor deposition method. It can be controlled by adjusting the temperature of the electrode and the amount of electric power applied to generate plasma discharge.
In general, the average carbon atom ratio is increased by reducing the supply ratio of oxygen gas to the raw material gas containing the organosilicon compound, and the average carbon atom ratio is decreased by increasing the electrode temperature and the applied electric energy.
≪X線光電子分光法≫
 炭素分布曲線(ガスバリアー層の層厚方向におけるガスバリアー層表面からの距離(L)と、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対する炭素原子数の比率(炭素原子比率)との関係を示す曲線)、ケイ素分布曲線(距離Lと、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対するケイ素原子数の比率(ケイ素原子比率)との関係を示す曲線)及び酸素分布曲線(距離Lと、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対する酸素原子数の比率(酸素原子比率)との関係を示す曲線)は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比率(at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。
≪X-ray photoelectron spectroscopy≫
Carbon distribution curve (distance (L) from the gas barrier layer surface in the thickness direction of the gas barrier layer and the ratio of carbon atoms to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%) (carbon atom ratio) ), A silicon distribution curve (curve showing the relationship between the distance L and the ratio of silicon atoms to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%) (silicon atom ratio) ) And oxygen distribution curve (curve showing the relationship between the distance L and the ratio of the number of oxygen atoms (oxygen atom ratio) to the total number of carbon atoms, silicon atoms and oxygen atoms (100 at%)) is X-ray photoelectron spectroscopy. By using the X-ray Photoelectron Spectroscopy (XPS) measurement and rare gas ion sputtering such as argon in combination, Issued sequentially performing surface composition analysis while, it can be produced by so-called XPS depth profile measurement.
A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (at%) of each element and the horizontal axis as the etching time (sputtering time).
 なお、本発明において、各領域における平均炭素原子比率(at%)は、XPSデプスプロファイル測定で深さ方向にエッチングして5nm間隔で測定した値を平均化した値とする。 In the present invention, the average carbon atom ratio (at%) in each region is a value obtained by averaging values measured at 5 nm intervals by etching in the depth direction by XPS depth profile measurement.
≪ガスバリアー層の層厚の測定方法≫
 透過型電子顕微鏡(Transmission Electron Microscope:TEM)による断面観察により、層厚を任意に10箇所測定し、平均した値をガスバリアー層の層厚とした。
≪Measurement method of gas barrier layer thickness≫
The layer thickness was arbitrarily measured at 10 locations by cross-sectional observation with a transmission electron microscope (TEM), and the average value was taken as the layer thickness of the gas barrier layer.
(層厚方向の断面のTEM画像)
 断面TEM観察として、観察試料を以下の集束イオンビーム(Focused Ion Beam:FIB)加工装置により薄片作製後、TEM観察を行った。
(FIB加工)
 装置:SII製SMI2050
 加工イオン:Ga(30kV)
 試料厚さ:100~200nm
(TEM観察)
 装置:日本電子製JEM2000FX(加速電圧:200kV)
(TEM image of cross section in the layer thickness direction)
As a cross-sectional TEM observation, the observation sample was subjected to TEM observation after a thin piece was prepared by the following focused ion beam (FIB) processing apparatus.
(FIB processing)
Device: SII SMI2050
Processed ion: Ga (30 kV)
Sample thickness: 100-200 nm
(TEM observation)
Apparatus: JEOL JEM2000FX (acceleration voltage: 200 kV)
≪ガスバリアー層の層厚≫
 本発明に係るガスバリアー層の層厚は、薄膜化及びガスバリアー性の両立の観点から、50~500nmの範囲内であることが好ましく、50~300nmの範囲内であることがより好ましい。
≪Gas barrier layer thickness≫
The layer thickness of the gas barrier layer according to the present invention is preferably in the range of 50 to 500 nm, and more preferably in the range of 50 to 300 nm, from the viewpoint of achieving both thinning and gas barrier properties.
≪ガスバリアー層の水蒸気透過度≫
 ガスバリアー層は、ガスバリアー性を有することが好ましい。ここで、ガスバリアー性を有するとは、基材上にガスバリアー層のみを積層させ、MOCON社製のMOCON水蒸気透過率測定装置Aquatranを用いて測定された水蒸気透過度(38℃、相対湿度90%RH)が、0.1g/(m・day)以下であることを指し、0.01g/(m・day)以下であることが好ましい。
≪Water vapor permeability of gas barrier layer≫
The gas barrier layer preferably has gas barrier properties. Here, having a gas barrier property means that only a gas barrier layer is laminated on a substrate, and a water vapor permeability (38 ° C., relative humidity 90) measured using a MOCON water vapor permeability measuring apparatus Aquatran manufactured by MOCON. % RH) is 0.1 g / (m 2 · day) or less, preferably 0.01 g / (m 2 · day) or less.
≪ガスバリアー層の形成方法≫
 本発明に係るガスバリアー層は、プラズマ化学気相成長法(プラズマCVD、PECVD(plasma-enhanced chemical vapor deposition)、以下、単に「プラズマCVD法」とも称する。)により形成することができる。
≪Method of forming gas barrier layer≫
The gas barrier layer according to the present invention can be formed by a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”).
 プラズマCVD法としては、特に限定されないが、国際公開第2006/033233号に記載の大気圧又は大気圧近傍でのプラズマCVD法、対向ローラー電極を持つプラズマCVD装置を用いたプラズマCVD法が挙げられる。プラズマCVD法は、ペニング放電プラズマ方式のプラズマCVD法であってもよい。 Although it does not specifically limit as a plasma CVD method, The plasma CVD method using the plasma CVD method in the atmospheric pressure or the atmospheric pressure described in the international publication 2006/033233, and the plasma CVD apparatus with a counter roller electrode is mentioned. . The plasma CVD method may be a Penning discharge plasma type plasma CVD method.
 中でも、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する(ロール to ロール(roll to roll)方式の)放電プラズマ化学気相成長法により形成することが好ましい。上述したように、放電プラズマ化学気相成長法を用いることにより、極値を有し、かつ、各領域における炭素原子比率が一定範囲内に制御されたガスバリアー層を容易に作製可能となり、層内の応力バランスが適切なガスバリアーフィルムを作製することができる。さらに、放電プラズマ化学気相成長法を用いることにより、ガスバリアー層が緻密化し、ガスバリアー性を向上させることができる。 In particular, using a source gas containing an organic silicon compound and oxygen gas, a discharge plasma chemical vapor deposition method (with a roll-to-roll method) having a discharge space between rollers to which a magnetic field is applied is formed. It is preferable. As described above, by using the discharge plasma chemical vapor deposition method, it becomes possible to easily produce a gas barrier layer having an extreme value and in which the carbon atom ratio in each region is controlled within a certain range. A gas barrier film having an appropriate stress balance can be produced. Furthermore, by using the discharge plasma chemical vapor deposition method, the gas barrier layer can be densified and the gas barrier property can be improved.
 以下、有機ケイ素化合物を含む原料ガスと酸素ガスとを用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法により、本発明に係るガスバリアー層を形成する方法について説明する。 Hereinafter, a method for forming a gas barrier layer according to the present invention by a discharge plasma chemical vapor deposition method having a discharge space between rollers applied with a magnetic field using a source gas containing an organosilicon compound and oxygen gas will be described. To do.
 プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材(ここでいう基材には、基材が処理された形態も含む。)を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。
 このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できる。加えて、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にできる。
When generating plasma in the plasma CVD method, it is preferable to generate a plasma discharge in a space between a plurality of film forming rollers. A pair of film forming rollers is used, and a substrate is provided for each of the pair of film forming rollers. (It is more preferable that the base material here includes a form in which the base material is treated.) And discharge between a pair of film forming rollers to generate plasma.
In this way, by using a pair of film forming rollers, placing a base material on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller It is possible to form a film on the surface part of the base material existing on the other film, and simultaneously form the film on the surface part of the base material present on the other film forming roller, so that a thin film can be produced efficiently. In addition, the film formation rate can be doubled compared to a normal plasma CVD method that does not use a roller.
 また、このようにして一対の成膜ローラー間に放電する際には、一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, the film forming gas used in such a plasma CVD method preferably contains an organic silicon compound and oxygen, and the oxygen content in the film forming gas is the total amount of the organic silicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount required for complete oxidation.
 また、本発明のガスバリアーフィルムは、生産性の観点から、ロール to ロール方式で基材の表面上にガスバリアー層を形成させることが好ましい。また、このようなプラズマCVD法によりガスバリアー層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図3に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロール to ロール方式で製造することも可能となる。 In addition, the gas barrier film of the present invention preferably has a gas barrier layer formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity. An apparatus that can be used when producing a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and a pair of film forming processes. It is preferable that the apparatus has a configuration capable of discharging between the rollers. For example, when the manufacturing apparatus shown in FIG. 3 is used, the apparatus is manufactured by a roll-to-roll method using the plasma CVD method. It is also possible.
 以下、図3を参照しながら、本発明に係るガスバリアー層の形成方法について、より詳細に説明する。なお、図3は、本発明に係るガスバリアー層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, the method for forming a gas barrier layer according to the present invention will be described in more detail with reference to FIG. FIG. 3 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing the gas barrier layer according to the present invention. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図3に示す製造装置10は、送出しローラー12と、搬送ローラー13~18と、成膜ローラー19及び20と、ガス供給管21と、プラズマ発生用電源22と、成膜ローラー19及び20の内部にそれぞれ設置された磁場発生装置23及び24と、巻取りローラー25を備えている。また、このような製造装置10においては、少なくとも成膜ローラー19及び20と、ガス供給管21と、プラズマ発生用電源22と、磁場発生装置23及び24とが成膜(真空)チャンバー28内に配置されている。さらに、このような製造装置10において、成膜チャンバー28は図示を省略した真空ポンプに接続されており、かかる真空ポンプにより成膜チャンバー28内の圧力を適宜調整することが可能となっている。
 送出しローラー12及び搬送ローラー13は、搬送系チャンバー27内に配置され、巻取りローラー25及び搬送ローラー18は、搬送系チャンバー29内に配置されている。搬送系チャンバー27及び29と成膜チャンバー28とは、それぞれ連結部30及び31を介して接続されている。例えば、連結部30及び31に真空ゲートバルブを設けて成膜チャンバー28と搬送系チャンバー27及び29とを物理的に隔離してもよい。真空ゲートバルブを用いることによって、例えば、成膜チャンバー28内のみを真空系とし、搬送系チャンバー27及び29内は大気下とすることができる。また、成膜チャンバー28と搬送系チャンバー27及び29とを物理的に隔離することにより、成膜チャンバー28内で発生したパーティクルによって搬送系チャンバー27及び29が汚染されることを抑制することができる。
3 includes a feed roller 12, transport rollers 13 to 18, film forming rollers 19 and 20, a gas supply pipe 21, a plasma generating power source 22, and film forming rollers 19 and 20. Magnetic field generators 23 and 24 and winding rollers 25 installed inside are provided. Further, in such a manufacturing apparatus 10, at least the film forming rollers 19 and 20, the gas supply pipe 21, the plasma generating power source 22, and the magnetic field generating apparatuses 23 and 24 are provided in the film forming (vacuum) chamber 28. Has been placed. Further, in such a manufacturing apparatus 10, the film forming chamber 28 is connected to a vacuum pump (not shown), and the pressure in the film forming chamber 28 can be appropriately adjusted by such a vacuum pump.
The feed roller 12 and the transport roller 13 are disposed in the transport system chamber 27, and the winding roller 25 and the transport roller 18 are disposed in the transport system chamber 29. The transfer system chambers 27 and 29 and the film forming chamber 28 are connected via connecting portions 30 and 31, respectively. For example, the film forming chamber 28 and the transfer system chambers 27 and 29 may be physically separated by providing a vacuum gate valve in the connecting portions 30 and 31. By using the vacuum gate valve, for example, only the film forming chamber 28 can be a vacuum system, and the transfer system chambers 27 and 29 can be in the atmosphere. Further, by physically separating the film forming chamber 28 and the transfer system chambers 27 and 29, it is possible to suppress the transfer system chambers 27 and 29 from being contaminated by particles generated in the film forming chamber 28. .
 このような製造装置においては、一対の成膜ローラー(成膜ローラー19及び20)を一対の対向電極として機能させることが可能となるように、各成膜ローラー19及び20がそれぞれプラズマ発生用電源22に接続されている。そのため、このような製造装置10においては、プラズマ発生用電源22により電力を供給することにより、成膜ローラー19と成膜ローラー20との間の空間に放電することが可能であり、これにより成膜ローラー19と成膜ローラー20との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー19と成膜ローラー20とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。
 また、このような製造装置10においては、一対の成膜ローラー(成膜ローラー19及び20)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー19及び20)を配置することにより、ローラーを使用しない通常のプラズマCVD法と比較して成膜レートを倍にできる。
In such a manufacturing apparatus, each film-forming roller 19 and 20 is a power source for plasma generation so that the pair of film-forming rollers (film-forming rollers 19 and 20) can function as a pair of counter electrodes. 22 is connected. Therefore, in such a manufacturing apparatus 10, it is possible to discharge to the space between the film forming roller 19 and the film forming roller 20 by supplying power from the plasma generating power source 22. Plasma can be generated in the space between the film roller 19 and the film formation roller 20. In addition, when using the film-forming roller 19 and the film-forming roller 20 as electrodes as described above, the material and design may be changed as appropriate so that the film-forming roller 19 and the film-forming roller 20 can also be used as electrodes.
Moreover, in such a manufacturing apparatus 10, it is preferable to arrange | position a pair of film-forming roller (film-forming rollers 19 and 20) so that the central axis may become substantially parallel on the same plane. Thus, by arranging a pair of film forming rollers (film forming rollers 19 and 20), the film forming rate can be doubled as compared with a normal plasma CVD method that does not use a roller.
 このような製造装置10によれば、CVD法により基材2(ここでいう、基材には、基材が処理された形態も含む。)の表面上にガスバリアー層3を形成することが可能であり、成膜ローラー19上において基材2の表面上にガスバリアー層成分を堆積させつつ、更に成膜ローラー20上においても基材2の表面上にガスバリアー層成分を堆積させることもできるため、基材2の表面上にガスバリアー層を効率よく形成することができる。 According to such a manufacturing apparatus 10, the gas barrier layer 3 can be formed on the surface of the base material 2 (here, the base material includes a form in which the base material is treated) by a CVD method. It is possible to deposit a gas barrier layer component on the surface of the substrate 2 on the film forming roller 19 and further deposit a gas barrier layer component on the surface of the substrate 2 also on the film forming roller 20. Therefore, the gas barrier layer can be efficiently formed on the surface of the substrate 2.
 成膜ローラー19及び20の内部には、成膜ローラー19及び20が回転しても回転しないようにして固定された磁場発生装置23及び24がそれぞれ設けられている。 In the film forming rollers 19 and 20, magnetic field generators 23 and 24 fixed so as not to rotate even when the film forming rollers 19 and 20 rotate are provided, respectively.
 成膜ローラー19及び20にそれぞれ設けられた磁場発生装置23及び24は、一方の成膜ローラー19に設けられた磁場発生装置23と他方の成膜ローラー20に設けられた磁場発生装置24との間で磁力線がまたがらず、それぞれの磁場発生装置23及び24がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置23及び24を設けることにより、各成膜ローラー19及び20の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束されやすくなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 23 and 24 provided in the film forming rollers 19 and 20 are respectively a magnetic field generator 23 provided in one film forming roller 19 and a magnetic field generator 24 provided in the other film forming roller 20. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between each other and the magnetic field generators 23 and 24 form a substantially closed magnetic circuit. By providing such magnetic field generators 23 and 24, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell in the vicinity of the opposing surfaces of the film forming rollers 19 and 20, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー19及び20にそれぞれ設けられた磁場発生装置23及び24は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置23と他方の磁場発生装置24とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置23及び24を設けることにより、それぞれの磁場発生装置23及び24について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材2を用いて効率的に蒸着膜であるガスバリアー層3を形成することができる点で優れている。 The magnetic field generators 23 and 24 provided on the film forming rollers 19 and 20 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 23 and the other magnetic field generator 24 are It is preferable to arrange the magnetic poles so that the opposing magnetic poles have the same polarity. By providing such magnetic field generators 23 and 24, each of the magnetic field generators 23 and 24 is opposed to the space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force oppose each other. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 2 is excellent in that the gas barrier layer 3 that is a vapor deposition film can be efficiently formed.
 各成膜ローラー19及び20における基材2への張力は、全て同じであってもよいが、成膜ローラー19又は成膜ローラー20における張力のみ高くして成膜してもよい。成膜ローラー19及び20における基材2への張力を高くすることによって、基材2と成膜ローラー19及び20との密着性が向上し、熱交換が効率的に行われ、膜均一性が向上し、また、熱シワも抑制されるという利点がある。 The tension on the substrate 2 in each of the film forming rollers 19 and 20 may all be the same, but only the tension in the film forming roller 19 or the film forming roller 20 may be increased. By increasing the tension of the film forming rollers 19 and 20 to the base material 2, the adhesion between the base material 2 and the film forming rollers 19 and 20 is improved, heat exchange is efficiently performed, and film uniformity is improved. There is an advantage that heat wrinkles are also suppressed.
 成膜ローラー19及び20としては、適宜公知のローラーを用いることができる。このような成膜ローラー19及び20としては、より効率よく薄膜を形成させるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー19及び20の直径としては、放電条件、チャンバーのスペース等の観点から、直径が300~1000mmφの範囲内、特に300~700mmφの範囲内が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材2にかかることを回避できることから、基材2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。各成膜ローラー19及び20は、ニップロールを備えていてもよく、ニップロールを備えることで、基材2の成膜ローラー19及び20への密着性が向上する。これにより、基材2と成膜ローラー19及び20との間で熱交換が効率的に行われ、膜均一性が向上し、また、熱シワも抑制されるという利点がある。 As the film forming rollers 19 and 20, known rollers can be used as appropriate. As such film forming rollers 19 and 20, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 19 and 20 is preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space. Each film-forming roller 19 and 20 may be provided with a nip roll, and by providing the nip roll, the adhesion of the base material 2 to the film-forming rollers 19 and 20 is improved. Thereby, heat exchange is efficiently performed between the base material 2 and the film forming rollers 19 and 20, and there is an advantage that film uniformity is improved and heat wrinkles are suppressed.
 このような製造装置10においては、基材2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー19及び20)上に、基材2が配置されている。このようにして基材2を配置することにより、成膜ローラー19と成膜ローラー20との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー(成膜ローラー19及び20)間に存在する基材2のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置10によれば、プラズマCVD法により、成膜ローラー19上にて基材2の表面上にガスバリアー層成分を堆積させ、更に成膜ローラー20上にてガスバリアー層成分を堆積させることができるため、基材2の表面上にガスバリアー層を効率よく形成することが可能となる。 In such a manufacturing apparatus 10, the base material 2 is disposed on a pair of film forming rollers (film forming rollers 19 and 20) so that the surfaces of the base material 2 face each other. By disposing the base material 2 in this manner, a pair of film-forming rollers (film-forming rollers 19) is formed when plasma is generated by performing discharge in the facing space between the film-forming roller 19 and the film-forming roller 20. And 20) it is possible to simultaneously form the respective surfaces of the substrate 2 existing between them. That is, according to such a manufacturing apparatus 10, the gas barrier layer component is deposited on the surface of the substrate 2 on the film forming roller 19 by the plasma CVD method, and further the gas barrier layer is formed on the film forming roller 20. Since components can be deposited, a gas barrier layer can be efficiently formed on the surface of the substrate 2.
 基材2の基材幅は、成膜ローラー幅より広くてもよいし、狭くてもよいし、同一であってもよい。基材幅を成膜ローラー幅より広くすることによって、成膜ローラー19及び20が露出しないため、成膜ローラー19及び20がパーティクルによって汚染されることを抑制でき、メンテナンス性が向上し、性能が安定化するという利点がある。また、基材幅が成膜ローラー幅より狭いことによって、成膜される膜の有効幅が広がるという利点がある。同様に、膜形成の有効幅を考慮し、成膜ローラー19及び20上の放電幅(成膜空間)と、基材端部との位置は基材幅を適宜選択することによって適宜調整することができる。 The substrate width of the substrate 2 may be wider, narrower, or the same as the film forming roller width. By making the substrate width wider than the film forming roller width, the film forming rollers 19 and 20 are not exposed, so that the film forming rollers 19 and 20 can be prevented from being contaminated by particles, the maintainability is improved, and performance is improved. There is an advantage of stabilization. Further, since the base material width is narrower than the film forming roller width, there is an advantage that the effective width of the film to be formed is widened. Similarly, in consideration of the effective width of film formation, the positions of the discharge width (film formation space) on the film forming rollers 19 and 20 and the end of the base material are appropriately adjusted by appropriately selecting the base material width. Can do.
 また、基材2は、成膜チャンバー28に搬送される前に加熱されてもよい。加熱温度としては、基材のガラス転移温度以上であることが好ましい。基材を加熱して、予め基材を収縮させることによって、成膜中の基材収縮を抑制することができる。 Further, the substrate 2 may be heated before being transported to the film forming chamber 28. The heating temperature is preferably equal to or higher than the glass transition temperature of the substrate. The substrate shrinkage during film formation can be suppressed by heating the substrate and shrinking the substrate in advance.
 基材2の成膜時の基材温度は、特に限定されるものではないが、30~150℃の範囲内であることが好ましい。このような基材温度は、放電空間の温度及び成膜ローラー19及び20の温度に依存する。成膜ローラー19及び20の温度としては、-30~100℃の範囲内であることが好ましく、このようなローラー温度に調整するために、成膜ローラー19及び20を適宜加熱、冷却すればよい。 The substrate temperature during film formation of the substrate 2 is not particularly limited, but is preferably in the range of 30 to 150 ° C. Such a substrate temperature depends on the temperature of the discharge space and the temperature of the film forming rollers 19 and 20. The temperature of the film forming rollers 19 and 20 is preferably within a range of −30 to 100 ° C. In order to adjust to such a roller temperature, the film forming rollers 19 and 20 may be appropriately heated and cooled. .
 製造装置10に用いる送出しローラー12及び搬送ローラー13~18としては、適宜公知のローラーを用いることができる。また、巻取りローラー25としても、基材2上にガスバリアー層3を形成したガスバリアーフィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。搬送ローラー13~18としては、段付きローラーを用いてもよい。段付きローラーとは、ローラーの両端部のみが基材2と接触する搬送ローラーであり、例えば、特開2009-256709号公報の図2に記載の段付きローラーなどを用いることができる。段付きローラーを使用することによって、ガスバリアー層表面に非接触で搬送することができ、接触によるフィルムの劣化を抑制することができる。また、送出しローラー12や巻取りローラー25は、ターレット式であってもよい。ターレットは、2軸以上の多軸であってもよく、そのうち一部の軸のみを大気開放できる構造であってもよい。 As the feed roller 12 and the transport rollers 13 to 18 used in the manufacturing apparatus 10, known rollers can be appropriately used. Further, the take-up roller 25 is not particularly limited as long as it can take up the gas barrier film 1 in which the gas barrier layer 3 is formed on the substrate 2, and a known roller is appropriately used. Can do. As the transport rollers 13 to 18, stepped rollers may be used. The stepped roller is a transport roller in which only both ends of the roller are in contact with the base material 2, and for example, a stepped roller described in FIG. 2 of JP-A-2009-256709 can be used. By using a stepped roller, it can be conveyed to the surface of the gas barrier layer in a non-contact manner, and deterioration of the film due to contact can be suppressed. Further, the feed roller 12 and the take-up roller 25 may be a turret type. The turret may be multiaxial with two or more axes, and may have a structure in which only some of the axes can be opened to the atmosphere.
 また、ガス供給管21及び真空ポンプとしては、原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。 Further, as the gas supply pipe 21 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
 また、ガス供給手段であるガス供給管21は、成膜ローラー19と成膜ローラー20との間の対向空間(放電領域、成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず。)は、対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管21と、真空排気手段である真空ポンプを配置することにより、成膜ローラー19と成膜ローラー20との間の対向空間に効率よく成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 21 serving as a gas supply means is preferably provided in one of the facing spaces (discharge region, film formation zone) between the film formation roller 19 and the film formation roller 20, and is a vacuum serving as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. In this way, by providing the gas supply pipe 21 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 19 and the film formation roller 20. It is excellent in that the film formation efficiency can be improved.
 なお、図3においては、ガス供給管21は、成膜ローラー19と成膜ローラー20との間の中心線上に設けられているが、これに限定されず、例えば、成膜ローラー19と成膜ローラー20との間の中心線から、どちらか一方側にずれていてもよい(左右方向に中心線からずらしてもよい。)。ガス供給管21を成膜ローラー19と成膜ローラー20との間の中心線からずらすことによって、片方の成膜ローラーに近く、もう片方の成膜ローラーからは遠くなるため、原料ガスの供給が成膜ローラー19上で形成される膜組成と成膜ローラー20上で形成させる膜組成とが異なるようになり、膜質を変えたいときなどに適宜ガス供給管21の位置をずらせばよい。また、ガス供給管21は、適宜中心線上で成膜ローラーから離したり近づけたりしてもよい(上下方向に中心線上で配置位置を動かしてもよい。)。ガス供給管21を成膜ローラーの中心軸上で遠ざけ、放電空間からガス供給管21を離すことによって、ガス供給管21にパーティクルが付着することを抑制できるなどの利点があり、ガス供給管21を成膜ローラーの中心軸上で放電空間に近づけることによって成膜レートを向上させることができるなどの利点がある。
 図3において、ガス供給管21は一つであるが、ガス供給管21は複数あってもよく、各ノズルから異なる供給ガスを放出する形態であってもよい。
In FIG. 3, the gas supply pipe 21 is provided on the center line between the film formation roller 19 and the film formation roller 20. However, the present invention is not limited to this. You may shift | deviate to either one side from the centerline between the rollers 20, and you may shift | deviate from the centerline in the left-right direction. By shifting the gas supply pipe 21 from the center line between the film formation roller 19 and the film formation roller 20, the gas supply pipe 21 is closer to one film formation roller and farther from the other film formation roller. The film composition formed on the film forming roller 19 and the film composition formed on the film forming roller 20 become different, and the position of the gas supply pipe 21 may be appropriately shifted when it is desired to change the film quality. Further, the gas supply pipe 21 may be appropriately separated from or closer to the film forming roller on the center line (the arrangement position may be moved on the center line in the vertical direction). There is an advantage that particles can be prevented from adhering to the gas supply pipe 21 by moving the gas supply pipe 21 away from the center axis of the film forming roller and separating the gas supply pipe 21 from the discharge space. There is an advantage that the film forming rate can be improved by bringing the film closer to the discharge space on the central axis of the film forming roller.
In FIG. 3, there is one gas supply pipe 21, but there may be a plurality of gas supply pipes 21, and different supply gases may be discharged from each nozzle.
 さらに、プラズマ発生用電源22としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源22は、これに接続された成膜ローラー19と成膜ローラー20とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源22としては、より効率よくプラズマCVDを実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。
 また、このようなプラズマ発生用電源22としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~20kWの範囲内とすることが好ましく、100W~10kWの範囲内とすることがより好ましく、かつ交流の周波数を50Hz~13.56MHzの範囲内とすることが好ましく、50Hz~500kHzの範囲内とすることがより好ましい。
 また、プラズマプロセス安定化の点から、高周波電流波及び電圧波がどちらも正弦波となるような高周波電源を用いてもよい。
Further, as the plasma generating power source 22, a known power source for a plasma generating apparatus can be used as appropriate. Such a power source 22 for generating plasma supplies power to the film forming roller 19 and the film forming roller 20 connected thereto, and makes it possible to use them as a counter electrode for discharging. As such a plasma generation power source 22, since it is possible to perform plasma CVD more efficiently, a power source (AC power source or the like) that can alternately reverse the polarity of a pair of film forming rollers is used. It is preferable to use it.
Further, such a plasma generating power source 22 is preferably capable of performing plasma CVD more efficiently, so that the applied power is preferably in the range of 100 W to 20 kW, and in the range of 100 W to 10 kW. And the AC frequency is preferably in the range of 50 Hz to 13.56 MHz, and more preferably in the range of 50 Hz to 500 kHz.
Further, from the viewpoint of stabilizing the plasma process, a high frequency power source in which both the high frequency current wave and the voltage wave are sine waves may be used.
 図3においては、一つのプラズマ発生用電源22で成膜ローラー19及び20の双方に給電している(両成膜ローラー給電)が、このような形態に限定されるものではなく、一方の成膜ローラーに給電し(片側成膜ローラー給電)、他方の成膜ローラーをアースする形態であってもよい。
 また、成膜ローラーへの給電方法としては、ローラー端の一方のみから給電するローラー片端給電でもよいし、ローラーの両端から給電するローラー両端給電であってもよい。高周波帯を供給する場合には、均一な供給が可能となることから、ローラー両端給電であってもよい。
 また、給電方法としては、異なる周波数を印加する2周波給電を行ってもよく、一方の成膜ローラーに異なる2周波を印加する形態であっても、一方の成膜ローラーと他方の成膜ローラーとで異なる周波数を印加する形態であってもよい。このような2周波給電により、プラズマ密度が上がり、成膜速度を向上させることができる。
In FIG. 3, power is supplied to both the film forming rollers 19 and 20 by one plasma generating power source 22 (both film forming roller power supply), but is not limited to such a form. The film roller may be supplied with power (one-side film formation roller power supply) and the other film formation roller may be grounded.
Moreover, as a power feeding method to the film forming roller, roller one-end power feeding from only one of the roller ends may be used, or roller both-end power feeding from both ends of the roller may be used. In the case of supplying a high frequency band, it is possible to supply both ends of the roller because uniform supply is possible.
Further, as a feeding method, two-frequency feeding may be performed in which different frequencies are applied, and one film-forming roller and the other film-forming roller may be applied even when two different frequencies are applied to one film-forming roller. A different frequency may be applied. By such two-frequency power feeding, the plasma density can be increased and the film formation rate can be improved.
 また、図3には図示していないが、放電空間のプラズマ発光強度を外部からモニタリングし、所望の発光強度でない場合には、磁場間距離(対向ローラー間距離)、磁場強度、電源の印加電力、電源周波数、供給ガス量などを調整して所望のプラズマ発光強度とするフィードバック回路を有していてもよい。このようなフィードバック回路を有することによって、成膜/生産を安定にすることができる。 Although not shown in FIG. 3, the plasma emission intensity in the discharge space is monitored from the outside. If the desired emission intensity is not obtained, the distance between the magnetic fields (distance between the opposing rollers), the magnetic field intensity, and the applied power of the power source In addition, a feedback circuit that adjusts the power supply frequency, the amount of supplied gas, and the like to obtain a desired plasma emission intensity may be provided. By having such a feedback circuit, film formation / production can be stabilized.
 また、磁場発生装置23及び24としては、適宜公知の磁場発生装置を用いることができる。さらに、基材2としては、本発明で用いられる基材の他に、ガスバリアー層3をあらかじめ形成させたものを用いることができる。このように、基材2としてガスバリアー層3をあらかじめ形成させたものを用いることにより、ガスバリアー層3の層厚を厚くすることも可能である。 Also, as the magnetic field generators 23 and 24, known magnetic field generators can be used as appropriate. Furthermore, as the base material 2, in addition to the base material used in the present invention, a material in which the gas barrier layer 3 is previously formed can be used. As described above, the thickness of the gas barrier layer 3 can be increased by using the substrate 2 in which the gas barrier layer 3 is previously formed.
 このような図3に示す製造装置10を用いて、例えば、炭素原子、ケイ素原子及び酸素原子を含むガスバリアー層を形成することができる。この際、ガスバリアー層の炭素原子の含有量の原子比率を制御する方法は特に限定されるものではないが、用いられる原料の比率(酸素と後述するHMDSOとの供給比率)、電力、圧力などを制御することにより、炭素原子の含有量の原子比率を制御することができる。 For example, a gas barrier layer containing carbon atoms, silicon atoms, and oxygen atoms can be formed using the manufacturing apparatus 10 shown in FIG. At this time, the method for controlling the atomic ratio of the carbon atom content of the gas barrier layer is not particularly limited, but the ratio of raw materials used (supply ratio of oxygen and HMDSO described later), power, pressure, etc. By controlling, the atomic ratio of the carbon atom content can be controlled.
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができ、0.5~50Pa程度であることが好ましく、0.5~10Paの範囲内とすることがより好ましい。 The pressure in the vacuum chamber (degree of vacuum) can be appropriately adjusted according to the type of the raw material gas, and is preferably about 0.5 to 50 Pa, and preferably within the range of 0.5 to 10 Pa. More preferred.
 また、このようなプラズマCVD法において、成膜ローラー19と成膜ローラー20との間に放電するために、プラズマ発生用電源22に接続された電極ドラム(本実施形態においては、成膜ローラー19及び20に設置されている。)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概にいえるものでないが、0.1~10kWの範囲内とすることが好ましい。印加電力が0.1kW(100W)以上であれば、パーティクルが発生するのを十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため、基材が熱負けすることなく、成膜時にシワが発生するのを防止できる点で優れている。 Further, in such a plasma CVD method, an electrode drum (in this embodiment, the film forming roller 19) connected to the plasma generating power source 22 for discharging between the film forming roller 19 and the film forming roller 20. The electric power to be applied can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, etc., and cannot be generally stated, but is 0.1 to 10 kW. It is preferable to be within the range. If the applied power is 0.1 kW (100 W) or more, the generation of particles can be sufficiently suppressed. It can suppress that the temperature of the base-material surface at the time rises. Therefore, it is excellent in that wrinkles can be prevented from occurring during film formation without causing the substrate to lose heat.
 基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~100m/minの範囲内とすることがより好ましい。 The conveyance speed (line speed) of the substrate 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. A range of 0.5 to 100 m / min is more preferable.
 ガス供給管21から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスを単独又は2種以上を混合して用いることができる。ガスバリアー層3の形成に用いる成膜ガス中の原料ガスとしては、形成するガスバリアー層3の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られるガスバリアー層のガスバリアー性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でも、又は2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。中でも、本実施形態の膜組成に容易に調整できることから、原料ガスとして有機ケイ素化合物を含むことが好ましい。 As the film forming gas (raw material gas or the like) supplied from the gas supply pipe 21 to the facing space, a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more. The source gas in the film forming gas used for forming the gas barrier layer 3 can be appropriately selected and used according to the material of the gas barrier layer 3 to be formed. As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting gas barrier layer. These organosilicon compounds can be used alone or in combination of two or more. Examples of the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene. Especially, since it can adjust to the film | membrane composition of this embodiment easily, it is preferable that an organosilicon compound is included as source gas.
 また、成膜ガスとしては、原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、原料ガスと反応して酸化物等の無機化合物となるガスを適宜選択して使用することができる。本実施形態のガスバリアー層3は、酸素を含むことから、反応ガスとしては、例えば、酸素、オゾンを用いることができ、簡便性の観点から酸素を用いることが好ましい。また、その他、窒化物を形成するための反応ガスを用いてもよく、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でも、又は2種以上を組み合わせても使用することができ、例えば、酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the source gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide can be appropriately selected and used. Since the gas barrier layer 3 of the present embodiment contains oxygen, for example, oxygen and ozone can be used as the reactive gas, and oxygen is preferably used from the viewpoint of simplicity. In addition, a reactive gas for forming a nitride may be used. For example, nitrogen or ammonia can be used. These reaction gases can be used alone or in combination of two or more. For example, when forming an oxynitride, the reaction gas for forming an oxide and a nitride are formed. Can be used in combination with the reaction gas for
 成膜ガスとしては、原料ガスを成膜チャンバー28内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電ガスを用いてもよい。このようなキャリアガス及び放電ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス、水素及び窒素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the film forming chamber 28. Further, as a film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, xenon, hydrogen, and nitrogen can be used.
 このような成膜ガスが原料ガスと反応ガスを含有する場合、原料ガスと反応ガスとの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にしすぎないことが好ましい。反応ガスの比率を過剰にしすぎないことで、形成されるガスバリアー層3によって、優れたガスバリアー性や耐屈曲性を得ることができる点で優れている。また、成膜ガスが有機ケイ素化合物と酸素とを含有するものである場合には、成膜ガス中の有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film forming gas contains a raw material gas and a reactive gas, the ratio of the raw material gas and the reactive gas is the amount of the reactive gas that is theoretically necessary to completely react the raw material gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessively higher than the ratio. It is excellent in that excellent gas barrier properties and bending resistance can be obtained by the formed gas barrier layer 3 by not excessively increasing the ratio of the reaction gas. Moreover, when the film-forming gas contains an organosilicon compound and oxygen, the amount is preferably less than or equal to the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film-forming gas.
 以下、成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ポリシラザン、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)とを含有するものを用い、ケイ素-酸素系の薄膜を形成する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。 Hereinafter, a film containing hexamethyldisiloxane (organic polysilazane, HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is used as a film forming gas, and silicon -Taking the case of forming an oxygen-based thin film as an example, the preferred ratio of the source gas to the reaction gas in the film-forming gas will be described in more detail.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式(1)で表されるような反応が起こり、二酸化ケイ素が生成する。 A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system When the thin film is produced, a reaction represented by the following reaction formula (1) occurs by the film forming gas, and silicon dioxide is generated.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない。)ため、炭素を含有するガスバリアー層3を形成することができなくなってしまう。そのため、本発明に係るガスバリアー層を形成する際には、上記反応式(1)の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。
 なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある。)。
 そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍以下、より好ましくは10倍以下の量であることが好ましい。
In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, it becomes impossible to form the gas barrier layer 3 containing carbon. Therefore, when forming the gas barrier layer according to the present invention, the stoichiometric amount of oxygen is set to 1 mole of hexamethyldisiloxane so that the reaction of the reaction formula (1) does not proceed completely. The ratio is preferably less than 12 moles.
In the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material. (It may be about 20 times or more the molar amount (flow rate) of siloxane.)
Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane as a raw material is preferably a stoichiometric ratio of 12 times or less, more preferably 10 times or less.
 このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリアー層中に取り込まれる。なお、有機EL素子や太陽電池などのような透明性を必要とする電子デバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 By containing hexamethyldisiloxane and oxygen at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the gas barrier layer. From the viewpoint of use as a flexible substrate for electronic devices that require transparency such as organic EL elements and solar cells, the mole of oxygen relative to the mole amount (flow rate) of hexamethyldisiloxane in the deposition gas. The lower limit of the amount (flow rate) is preferably more than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably more than 0.5 times.
 なお、本実施形態では、ガスバリアー層の基材近傍領域における炭素原子、ケイ素原子及び酸素原子の総原子数に対する酸素原子の含有量の最大原子比率を、30~45at%の範囲内と比較的低い値に制御することで、相対的に炭素原子の組成比を高めて緻密な領域を形成することに特徴がある。
 このため、成膜ガスを成膜する際の成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、等倍~10倍の範囲内であることが好ましく、等倍~6倍の範囲内であることがより好ましく、等倍~3倍の範囲内であることが更に好ましい。
In the present embodiment, the maximum atomic ratio of the oxygen atom content to the total number of carbon atoms, silicon atoms, and oxygen atoms in the region near the base material of the gas barrier layer is relatively within a range of 30 to 45 at%. By controlling to a low value, the composition ratio of carbon atoms is relatively increased to form a dense region.
For this reason, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of hexamethyldisiloxane in the film forming gas when forming the film forming gas is preferably in the range of 1 to 10 times. More preferably, it is in the range of 1 to 6 times, and more preferably in the range of 1 to 3 times.
 図3に示す製造装置10を用いて、成膜ガス(原料ガス等)を成膜チャンバー28内に供給しつつ、一対の成膜ローラー(成膜ローラー19及び20)間に放電を発生させることにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー19上の基材2の表面上及び成膜ローラー20上の基材2の表面上に、第1回目の成膜層がプラズマCVD法により形成される。この際、成膜ローラー19及び20のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成されて、磁場にプラズマを収束させる。このプロセスを前述の条件の一つ又は複数を変化させた第2回目の成膜層、第3回目の成膜層と繰り返すことによって、層厚方向に各構成原子の組成が連続的に変化することとなる。 Using the manufacturing apparatus 10 shown in FIG. 3, discharge is generated between a pair of film forming rollers (film forming rollers 19 and 20) while supplying a film forming gas (such as a source gas) into the film forming chamber 28. Thus, the film-forming gas (raw material gas or the like) is decomposed by plasma, and the first film-forming layer is formed on the surface of the base material 2 on the film-forming roller 19 and on the surface of the base material 2 on the film-forming roller 20. Is formed by plasma CVD. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 19 and 20, and the plasma is converged on the magnetic field. By repeating this process with the second film-forming layer and the third film-forming layer in which one or more of the aforementioned conditions are changed, the composition of each constituent atom changes continuously in the layer thickness direction. It will be.
 具体的には、炭素分布曲線、ケイ素分布曲線及び酸素分布曲線において、基材2が成膜ローラー19のA地点及び成膜ローラー20のB地点を通過する際に、炭素分布曲線の極大値と酸素分布曲線の極小値とが形成される。これに対して、基材2が成膜ローラー19のC1及びC2地点、並びに成膜ローラー20のC3及びC4地点を通過する際に、炭素分布曲線の極小値と酸素分布曲線の極大値とが形成される。 Specifically, in the carbon distribution curve, the silicon distribution curve, and the oxygen distribution curve, when the substrate 2 passes through the point A of the film forming roller 19 and the point B of the film forming roller 20, the maximum value of the carbon distribution curve The minimum value of the oxygen distribution curve is formed. On the other hand, when the substrate 2 passes through the points C1 and C2 of the film forming roller 19 and the points C3 and C4 of the film forming roller 20, the minimum value of the carbon distribution curve and the maximum value of the oxygen distribution curve are obtained. It is formed.
 このような極値の存在は、膜内の炭素原子及び酸素原子の存在比が均一ではない層であることを示すものであり、部分的に炭素原子が少ない緻密性の低い部分が存在することで、層全体がフレキシブルな構造となり、屈曲に対する耐久性が向上する。 The existence of such an extreme value indicates that the abundance ratio of carbon atoms and oxygen atoms in the film is a non-uniform layer, and that there is a part with a low density with few carbon atoms. Thus, the entire layer has a flexible structure, and durability against bending is improved.
 また、ガスバリアー層の極値間の距離(炭素/酸素分布曲線の有する一つの極値及び該極値に隣接する極値におけるガスバリアー層の層厚方向におけるガスバリアー層の表面からの距離(L)の差の絶対値)は、成膜ローラー19及び20の回転速度(基材2の搬送速度)によって調節できる。なお、このような成膜に際しては、基材2が送出しローラー12や成膜ローラー19等によってそれぞれ搬送されることにより、ロール to ロール方式の連続的な成膜プロセスにより基材2の表面上にガスバリアー層3が形成される。 Also, the distance between the extreme values of the gas barrier layer (the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at one extreme value of the carbon / oxygen distribution curve and the extreme value adjacent to the extreme value ( The absolute value of the difference of L) can be adjusted by the rotation speed of the film forming rollers 19 and 20 (conveying speed of the substrate 2). In such film formation, the base material 2 is transported by the feed roller 12 and the film formation roller 19, respectively, so that the film is formed on the surface of the base material 2 by a roll-to-roll continuous film formation process. Then, the gas barrier layer 3 is formed.
 上記したように、本実施形態のより好ましい態様としては、本発明に係るガスバリアー層を、図3に示す対向ローラー電極を有するプラズマCVD装置(ロール to ロール方式)を用いたプラズマCVD法によって、好ましくは条件を変更しながら複数回成膜することを特徴とするものである。これは、対向ローラー電極を有するプラズマCVD装置(ロール to ロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、高温高湿下でのガスバリアー性が高く、機械的強度、特にロール to ロールでの搬送時の耐久性、ガスバリアー性を低下させる欠陥が少ないガスバリアー層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリアーフィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of the present embodiment, the gas barrier layer according to the present invention is formed by a plasma CVD method using a plasma CVD apparatus (roll-to-roll method) having a counter roller electrode shown in FIG. Preferably, the film is formed a plurality of times while changing the conditions. This is excellent in flexibility (flexibility), high gas barrier property under high temperature and high humidity, and mechanical strength when mass-produced using a plasma CVD apparatus (roll to roll method) having a counter roller electrode. This is because, in particular, a gas barrier layer with few defects that reduce durability and gas barrier properties during conveyance from roll to roll can be efficiently produced. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce a gas barrier film that is required for durability against temperature changes used in solar cells, electronic parts, and the like.
≪基材(2)≫
 本発明のガスバリアーフィルムの基材としては、プラスチックフィルムを用いる。用いられるプラスチックフィルムは、ガスバリアー層を保持できるフィルムであれば材質、厚さ等に特に制限はなく、使用目的等に応じて適宜選択することができる。
 プラスチックフィルムとしては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂等のフィルムが挙げられる。
≪Base material (2) ≫
A plastic film is used as the base material of the gas barrier film of the present invention. The plastic film used is not particularly limited in material, thickness and the like as long as it can hold the gas barrier layer, and can be appropriately selected according to the purpose of use.
Specific examples of the plastic film include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyetherimide resin. , Cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, alicyclic modification Examples include films of thermoplastic resins such as polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds.
 ガスバリアーフィルムに用いられるプラスチックフィルムの厚さは、用途によって適宜選択されるため特に制限はないが、典型的には1~800μmの範囲内であり、好ましくは10~200μmの範囲内である。これらのプラスチックフィルムは、従来のガスバリアーフィルムに用いられている公知の透明導電層や平滑層等の機能層を有していてもよい。機能層については、上述したもののほか、特開2006-289627号公報の段落0036~0038に記載されているものを好ましく採用できる。 The thickness of the plastic film used for the gas barrier film is not particularly limited because it is appropriately selected depending on the application, but is typically in the range of 1 to 800 μm, and preferably in the range of 10 to 200 μm. These plastic films may have a functional layer such as a known transparent conductive layer or smooth layer used in conventional gas barrier films. As the functional layer, in addition to those described above, those described in paragraphs 0036 to 0038 of JP-A-2006-289627 can be preferably employed.
 また、上記に挙げた樹脂等を用いた基材は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the base material using the above-described resins or the like may be an unstretched film or a stretched film.
 基材は、従来公知の一般的な方法により製造することが可能である。 The base material can be manufactured by a conventionally known general method.
 基材の両面、少なくともガスバリアー層を設ける側には、接着性向上のための公知の種々の処理、コロナ放電処理、火炎処理、酸化処理、プラズマ処理、平滑層の積層等を、必要に応じて組み合わせて行うことができる。 Various treatments known for improving adhesion, corona discharge treatment, flame treatment, oxidation treatment, plasma treatment, lamination of smooth layers, etc., as required, on both surfaces of the substrate, at least the side where the gas barrier layer is provided Can be combined.
≪アンカーコート層≫
 本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層を易接着層として形成してもよい。アンカーコート層の構成材料、形成方法等は、特開2013-52561号公報の段落0229~0232に開示される材料、方法等が適宜採用される。
≪Anchor coat layer≫
On the surface of the base material according to the present invention, an anchor coat layer may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion). As the constituent material and formation method of the anchor coat layer, the materials, methods and the like disclosed in paragraphs 0229 to 0232 of JP2013-52561A are appropriately employed.
≪平滑層≫
 本発明のガスバリアーフィルムは、基材のガスバリアー層を有する面に平滑層を有していてもよい。平滑層は、突起等が存在する基材の粗面を平坦化するために、あるいは、樹脂基材に存在する突起により、ガスバリアー層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。平滑層の構成材料、形成方法、表面粗さ、層厚等は、特開2013-52561号公報の段落0233~0248に開示される材料、方法等が適宜採用される。
≪Smooth layer≫
The gas barrier film of the present invention may have a smooth layer on the surface of the substrate having the gas barrier layer. The smooth layer is used to flatten the rough surface of the substrate where protrusions are present, or to fill the unevenness and pinholes generated in the gas barrier layer with the protrusions present on the resin substrate. Provided. As the constituent material, forming method, surface roughness, layer thickness and the like of the smooth layer, materials, methods and the like disclosed in paragraphs 0233 to 0248 of JP2013-52561A are appropriately employed.
≪ブリードアウト防止層≫
 本発明のガスバリアーフィルムは、ブリードアウト防止層を更に有することができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、樹脂基材中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。ブリードアウト防止層の構成材料、形成方法、層厚等は、特開2013-52561号公報の段落0249~0262に開示される材料、方法等が適宜採用される。
≪Bleed-out prevention layer≫
The gas barrier film of the present invention can further have a bleed-out preventing layer. The bleed-out prevention layer is used for the purpose of suppressing a phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the resin base material to the surface and contaminate the contact surface. It is provided on the opposite surface of the substrate. The bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function. As the constituent material, formation method, layer thickness, and the like of the bleed-out prevention layer, the materials, methods, and the like disclosed in paragraphs 0249 to 0262 of JP2013-52561A are appropriately employed.
≪電子デバイス≫
 上記したような本発明のガスバリアーフィルムは、優れたガスバリアー性、透明性、屈曲性を有する。このため、本発明のガスバリアーフィルムは、光電変換素子(太陽電池素子)、有機EL素子、液晶表示素子等の電子デバイスに用いられるガスバリアーフィルム及びこれを用いた電子デバイスや、電子デバイス等のパッケージなど、様々な用途に使用することができる。
≪Electronic device≫
The gas barrier film of the present invention as described above has excellent gas barrier properties, transparency, and flexibility. For this reason, the gas barrier film of this invention is a gas barrier film used for electronic devices, such as a photoelectric conversion element (solar cell element), an organic EL element, and a liquid crystal display element, and an electronic device using this, an electronic device, etc. It can be used for various purposes such as packaging.
≪電子素子本体≫
 電子素子本体は電子デバイスの本体であり、本発明のガスバリアーフィルム側に配置される。電子素子本体としては、ガスバリアーフィルムによる封止が適用されうる公知の電子デバイスの本体が使用できる。例えば、有機EL素子、太陽電池(PV)、液晶表示素子(LCD)、電子ペーパー、薄膜トランジスタ、タッチパネル等の本体が挙げられる。本発明の効果がより効率的に得られるという観点から、該電子素子本体は、有機EL素子又は太陽電池の本体であることが好ましい。これらの電子素子本体の構成についても、特に制限はなく、従来公知の構成を有しうる。
≪Electronic element body≫
The electronic element main body is the main body of the electronic device, and is disposed on the gas barrier film side of the present invention. As the electronic element body, a known electronic device body to which sealing by a gas barrier film can be applied can be used. For example, main bodies, such as an organic EL element, a solar cell (PV), a liquid crystal display element (LCD), electronic paper, a thin-film transistor, a touch panel, are mentioned. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic element body is preferably an organic EL element or a solar cell body. There is no restriction | limiting in particular also about the structure of these electronic element main bodies, It can have a conventionally well-known structure.
 以下、有機EL素子を例にとって、説明する。 Hereinafter, an organic EL element will be described as an example.
≪有機EL素子≫
 本発明のガスバリアーフィルム1を封止フィルムとして用いた電子機器である有機EL素子の一例を図4に示す。
 図4に示すように、有機EL素子9は、ガスバリアーフィルム1と、ガスバリアーフィルム1上に形成されたITOなどの透明電極4と、透明電極4を介してガスバリアーフィルム1上に形成された有機EL素子本体部5と、その有機EL素子本体部5を覆うように接着剤層6を介して配設された対向フィルム7等を備えている。なお、透明電極4は、有機EL素子本体部5の一部を成すともいえる。
 このガスバリアーフィルム1におけるガスバリアー層3が形成された面に、透明電極4と有機EL素子本体部5が形成されるようになっている。また、対向フィルム7は、アルミ箔などの金属フィルムのほか、本発明のガスバリアーフィルムを用いてもよい。対向フィルム7にガスバリアーフィルムを用いる場合、ガスバリアー層が形成された面を有機EL素子本体部5に向けて、接着剤層6によって貼付するようにすればよい。
≪Organic EL element≫
An example of the organic EL element which is an electronic device using the gas barrier film 1 of the present invention as a sealing film is shown in FIG.
As shown in FIG. 4, the organic EL element 9 is formed on the gas barrier film 1, the transparent electrode 4 such as ITO formed on the gas barrier film 1, and the transparent electrode 4. The organic EL element main body 5 and an opposing film 7 disposed via an adhesive layer 6 so as to cover the organic EL element main body 5 are provided. It can be said that the transparent electrode 4 forms a part of the organic EL element body 5.
A transparent electrode 4 and an organic EL element body 5 are formed on the surface of the gas barrier film 1 where the gas barrier layer 3 is formed. The counter film 7 may be a gas barrier film of the present invention in addition to a metal film such as an aluminum foil. When a gas barrier film is used for the counter film 7, the surface on which the gas barrier layer is formed may be attached to the organic EL element body 5 with the adhesive layer 6.
 有機EL素子本体部5の構成層(陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、陰極等)やその作製方法としては、例えば、特開2014-045101号公報の段落[0110]~[0159]等に記載のものを参考にすることができる。 Examples of constituent layers of the organic EL element body 5 (anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, cathode, etc.) and methods for producing them are disclosed in, for example, JP-A-2014-045101. Reference can be made to those described in paragraphs [0110] to [0159] of the publication.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
≪ガスバリアーフィルム1~20の作製≫
(樹脂基材の準備)
 シートロール状の樹脂基材として、熱可塑性樹脂支持体であって、両面に易接着加工された厚さ100μmのポリエチレンテレフタレートフィルム(東洋紡株式会社製、コスモシャインA4300、以下、PETと略記する。)を用いた。
<< Production of gas barrier films 1-20 >>
(Preparation of resin base material)
As a sheet roll-shaped resin base material, a polyethylene terephthalate film having a thickness of 100 μm, which is a thermoplastic resin support and easily bonded on both sides (Cosmo Shine A4300, manufactured by Toyobo Co., Ltd., hereinafter abbreviated as PET). Was used.
(アンカーコート層の形成)
 上記樹脂基材の片方の易接着面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標) Z7501を用い、乾燥後の層厚が3μmになるようにワイヤーバーで塗布した後、乾燥条件として、80℃で3分間の乾燥を行った。次いで、空気雰囲気下で高圧水銀ランプを使用し、硬化条件:1.0J/cmで硬化を行い、アンカーコート層を形成した。
(Formation of anchor coat layer)
Using a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7501 manufactured by JSR Corporation on one easy-adhesive surface side of the resin base material, a wire bar is formed so that the layer thickness after drying becomes 3 μm. Then, the coating was dried at 80 ° C. for 3 minutes as a drying condition. Next, using a high-pressure mercury lamp in an air atmosphere, curing was performed under curing conditions: 1.0 J / cm 2 to form an anchor coat layer.
(ブリードアウト防止層の形成)
 上記樹脂基材のもう一方の易接着面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標) Z7535を、乾燥後の層厚が3μmとなるようにワイヤーバーで塗布した後、80℃、3分で乾燥した後、空気雰囲気下で高圧水銀ランプを用い、硬化条件:1.0J/cmで硬化を行い、ブリードアウト防止層を形成した。このブリードアウト防止層を形成後、圧力5Paの減圧下、温度35℃の環境下で96時間保管して調湿した樹脂基材として用いた。
(Formation of bleed-out prevention layer)
On the other easy-adhesive surface side of the resin base material, a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) Z7535 manufactured by JSR Corporation is used so that the layer thickness after drying becomes 3 μm. After coating at 80 ° C. for 3 minutes, the coating was cured at 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form a bleed-out prevention layer. After forming this bleed-out prevention layer, it was used as a resin substrate that was conditioned and stored for 96 hours in an environment of 35 ° C. under a reduced pressure of 5 Pa.
(ガスバリアー層の形成:ローラーCVD法)
 図3に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す。)を用い、樹脂基材のブリードアウト防止層を形成した面が成膜ローラーと接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)のうち、原料ガス、酸素ガス、真空チャンバー内の真空度、及びプラズマ発生用電源からの印加電力を記載の範囲内で変化させて炭素原子比率が異なるようにして、複数回組み合わせることにより、アンカーコート層上に最終的な層厚が160nmとなるように成膜し、これをガスバリアー層とした。本実施例においては、4回成膜を繰り返して、層厚方向に炭素原子比率の異なるガスバリアー層を形成した。
 なお、炭素原子比率を高くするため、主として全供給ガス中のHMDSOの供給量を増やす、あるいは酸素ガスの供給量を減らすことで調整を行い、層厚の調整のために真空チャンバー内の真空度を増減した。
(Formation of gas barrier layer: Roller CVD method)
Using the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 3 is applied (hereinafter, this method is referred to as “roller CVD method”), the surface of the resin substrate on which the bleed-out prevention layer is formed contacts the film forming roller. In this way, the resin substrate is mounted on the apparatus, and among the following film formation conditions (plasma CVD conditions), the source gas, oxygen gas, the degree of vacuum in the vacuum chamber, and the power applied from the plasma generation power source are described. By changing the carbon atom ratio within a range of 2 and combining them a plurality of times, a film was formed on the anchor coat layer so as to have a final layer thickness of 160 nm, and this was used as a gas barrier layer. In this example, the film formation was repeated four times to form gas barrier layers having different carbon atom ratios in the layer thickness direction.
In order to increase the carbon atom ratio, adjustment is performed mainly by increasing the supply amount of HMDSO in all the supply gases or decreasing the supply amount of oxygen gas, and the degree of vacuum in the vacuum chamber is adjusted to adjust the layer thickness. Increased or decreased.
〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシロキサン(HMDSO))の供給量:100~400sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:400~2500sccm
 真空チャンバー内の真空度:1.5~3.0Pa
 プラズマ発生用電源からの印加電力:1.0~4.0kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:12m/min
<Plasma CVD conditions>
Feed rate of raw material gas (hexamethyldisiloxane (HMDSO)): 100 to 400 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 400 to 2500 sccm
Degree of vacuum in the vacuum chamber: 1.5 to 3.0 Pa
Applied power from the power source for plasma generation: 1.0 to 4.0 kW
Frequency of power source for plasma generation: 70 kHz
Resin substrate transport speed: 12 m / min
(元素分布プロファイルの測定)
 上記形成したガスバリアー層について、下記条件にてXPSデプスプロファイル測定を行い、層厚方向の薄膜層の表面からの距離に対する、炭素分布曲線、ケイ素分布曲線及び酸素分布曲線を得た。
(Measurement of element distribution profile)
The gas barrier layer thus formed was subjected to XPS depth profile measurement under the following conditions to obtain a carbon distribution curve, a silicon distribution curve, and an oxygen distribution curve with respect to the distance from the surface of the thin film layer in the layer thickness direction.
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名「VG Theta Probe」
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800μm×400μmの楕円形
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model “VG Theta Probe”, manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and its size: 800 μm × 400 μm oval
 以上のようにして測定した全層領域における炭素分布曲線、ケイ素分布曲線及び酸素分布曲線より、各元素組成における連続変化領域の有無、極値の有無を観察した。
 その結果、ガスバリアー層中の炭素原子比率が複数の極値を有しながら深さ方向に連続的に変化していることが確認された。
From the carbon distribution curve, silicon distribution curve, and oxygen distribution curve in the whole layer region measured as described above, the presence or absence of a continuous change region and the presence or absence of an extreme value in each elemental composition were observed.
As a result, it was confirmed that the carbon atom ratio in the gas barrier layer continuously changed in the depth direction while having a plurality of extreme values.
≪ガスバリアーフィルムの評価≫
<ガスバリアー性の評価>
(1)屈曲処理前の水蒸気透過度(WVTR)の測定
 作製した各ガスバリアーフィルムについて、MOCON社製のMOCON水蒸気透過率測定装置Aquatranを用いて、38℃、90%RHにおける水蒸気透過度を測定し、下記の評価ランクに従って、ガスバリアー性を評価した。
 評価結果を表1に示す。
≪Evaluation of gas barrier film≫
<Evaluation of gas barrier properties>
(1) Measurement of water vapor transmission rate (WVTR) before bending treatment About each produced gas barrier film, the water vapor transmission rate in 38 degreeC and 90% RH is measured using MOCON water vapor transmission rate measuring apparatus Aquatran made from MOCON. The gas barrier properties were evaluated according to the following evaluation rank.
The evaluation results are shown in Table 1.
 5:0.005g/(m・day)未満である
 4:0.005g/(m・day)以上0.010g/(m・day)未満である
 3:0.010g/(m・day)以上0.100g/(m・day)未満である
 2:0.100g/(m・day)以上0.500g/(m・day)未満である
 1:0.500g/(m・day)以上である
5: Less than 0.005 g / (m 2 · day) 4: 0.005 g / (m 2 · day) or more and less than 0.010 g / (m 2 · day) 3: 0.010 g / (m 2 · day) or more 0.100g / (m 2 · day) under a is 2: 0.100g / (m 2 · day) or more 0.500g / (m 2 · day) under a is 1: 0.500 g / ( m 2 · day) or more
(2)屈曲処理後の水蒸気透過度の測定(耐久性の評価)
 作製した各ガスバリアーフィルムについて、下記の屈曲処理を施した後、38℃、90%RHにおける水蒸気透過度を測定し、上記と同様の評価ランクに従って、ガスバリアー性を評価した。
 評価結果を表1に示す。
(2) Measurement of water vapor permeability after bending treatment (durability evaluation)
About each produced gas barrier film, after giving the following bending process, the water-vapor permeability in 38 degreeC and 90% RH was measured, and gas barrier property was evaluated according to the same evaluation rank as the above.
The evaluation results are shown in Table 1.
(屈曲処理)
 屈曲処理として、作製した各ガスバリアーフィルムについて、半径10mmの曲率になるように180度の角度で100回の屈曲を繰り返して行った。
(Bending treatment)
As the bending treatment, each of the produced gas barrier films was repeatedly bent 100 times at an angle of 180 degrees so as to have a radius of curvature of 10 mm.
<欠陥(腐食点)の検出>
(1)屈曲処理前の欠陥(腐食点)の検出
(水蒸気バリアー性評価用セルの作製)
 作製した各ガスバリアーフィルムのガスバリアー層面(最表面)に、真空蒸着装置(日本電子株式会社製、真空蒸着装置 JEE-400)を用い、ガスバリアーフィルム試料の蒸着させたい部分(1辺5cm角の正方形)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、カルシウム蒸着面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。
<Detection of defects (corrosion points)>
(1) Detection of defects (corrosion points) before bending treatment (production of water vapor barrier property evaluation cell)
Use a vacuum vapor deposition device (JEOL Ltd., vacuum vapor deposition device JEE-400) on the gas barrier layer surface (outermost surface) of each gas barrier film that was produced. (Except squares) were masked and metal calcium was deposited. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the calcium deposition surface. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
 得られた両面を封止した試料(評価用セル)を60℃、90%RHの高温高湿下で120時間保存した後、Ca蒸着層の初期状態から新たに成長した腐食点を光学顕微鏡を用いて観察し、下記の評価ランクに従って評価した。
 評価結果を表1に示す。
The obtained sample (evaluation cell) sealed on both sides was stored at 60 ° C. and 90% RH under high temperature and high humidity for 120 hours, and then the corrosion point newly grown from the initial state of the Ca deposited layer was examined using an optical microscope. And observed according to the following evaluation rank.
The evaluation results are shown in Table 1.
 なお、ガスバリアーフィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリアーフィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも直径が100μmを超えて成長したCa腐食点が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film sample as a comparative sample Was stored under the same high temperature and high humidity conditions of 60 ° C. and 90% RH, and it was confirmed that no Ca corrosion point having a diameter exceeding 100 μm was generated even after 1000 hours.
 Ca蒸着面25cm当たりの直径が100μmを超えて成長したCa腐食点の数が、
 5:0又は1か所である
 4:2か所以上4か所以下である
 3:5か所以上9か所以下である
 2:10か所以上30か所以下である
 1:30か所を超える、あるいは、腐食点が連結した面状の腐食に成長した
The number of Ca corrosion points grown with a diameter of more than 100 μm per 25 cm 2 of the Ca deposition surface is
5: 0 or 1 location 4: 2 or more and 4 or less locations 3: 5 or more locations but 9 or less locations 2: 10 or more locations but 30 or less locations 1:30 locations Or has developed into a sheet of corrosion where the corrosion points are connected
(2)屈曲処理後の欠陥(腐食点)の検出(耐久性の評価)
 作製した各ガスバリアーフィルムについて、下記の屈曲処理を施した後、上記と同様にして評価用セルを作製し、上記と同様の評価ランクに従って評価した。
 評価結果を表1に示す。
(2) Detection of defects (corrosion points) after bending treatment (durability evaluation)
About each produced gas barrier film, after giving the following bending process, the cell for evaluation was produced like the above, and it evaluated according to the same evaluation rank as the above.
The evaluation results are shown in Table 1.
(屈曲処理)
 屈曲処理として、作製した各ガスバリアーフィルムについて、半径10mmの曲率になるように180度の角度で100回の屈曲を繰り返して行った。
(Bending treatment)
As the bending treatment, each of the produced gas barrier films was repeatedly bent 100 times at an angle of 180 degrees so as to have a radius of curvature of 10 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記結果より、本発明のガスバリアーフィルムは、比較例のガスバリアーフィルムと比較して、水蒸気透過度が低く、局部的な欠陥の発生が少ない。さらには、屈曲した後のガスバリアー性の劣化が少なく、耐久性が高いことがわかる。 From the above results, the gas barrier film of the present invention has a lower water vapor permeability and fewer local defects than the gas barrier film of the comparative example. Further, it can be seen that the gas barrier property after bending is small and the durability is high.
 本発明は、均一性の高いガスバリアー性に優れたガスバリアーフィルム及びその製造方法を提供することに、特に好適に利用することができる。 The present invention can be particularly suitably used for providing a gas barrier film having high uniformity and excellent gas barrier properties and a method for producing the same.
1 ガスバリアーフィルム
2 基材
3 ガスバリアー層
4 透明電極
5 有機EL素子本体部
6 接着剤層
7 対向フィルム
9 有機EL素子
10 製造装置
12 送出しローラー
13~18 搬送ローラー
19、20 成膜ローラー
21 ガス供給管
22 プラズマ発生用電源
23、24 磁場発生装置
25 巻取りローラー、
27、29 搬送系チャンバー
28 成膜チャンバー
30、31 連結部
A~C 領域
M1~M3 極値
DESCRIPTION OF SYMBOLS 1 Gas barrier film 2 Base material 3 Gas barrier layer 4 Transparent electrode 5 Organic EL element main-body part 6 Adhesive layer 7 Opposite film 9 Organic EL element 10 Manufacturing apparatus 12 Delivery roller 13-18 Conveyance roller 19, 20 Film-forming roller 21 Gas supply pipe 22 Plasma generation power source 23, 24 Magnetic field generator 25 Winding roller,
27, 29 Transport system chamber 28 Deposition chamber 30, 31 Connecting part A to C Region M1 to M3 Extreme value

Claims (3)

  1.  基材上に、酸化炭化ケイ素を含有するとともに、その組成が層厚方向において変化するガスバリアー層を有するガスバリアーフィルムであって、
     前記ガスバリアー層のX線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、前記ガスバリアー層の層厚方向における前記ガスバリアー層の表面からの距離と、炭素原子、ケイ素原子及び酸素原子の総原子数(100at%)に対する炭素原子数の比率(炭素原子比率)との関係を示す炭素分布曲線が、前記基材最近傍側にある第1極値に対応する層厚方向の位置を起点(0%)として前記ガスバリアー層最表面(100%)までの間に、下記(1)~(3)で規定される要件を満たす領域が存在することを特徴とするガスバリアーフィルム。
    (1)0%以上20%以下の領域における平均炭素原子比率a(at%)が、
     30(at%)≦a≦40(at%)
    を満たす。
    (2)80%以上100%以下の領域における平均炭素原子比率c(at%)が、
     0.1×a(at%)≦c≦0.5×a(at%)
    を満たす。
    (3)20%超80%未満の領域における平均炭素原子比率b(at%)が、
     0.5×a(at%)<b<a(at%)
    を満たし、かつ、
     同一領域内に少なくとも一つの極値を有し、前記極値のうち最大値となる極値を第2極値としたとき、前記第2極値の炭素原子比率d(at%)が、
     a(at%)≦d≦45(at%)
    を満たす。
    A gas barrier film containing a silicon oxide carbide on a substrate and having a gas barrier layer whose composition changes in the layer thickness direction,
    Among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy of the gas barrier layer, the distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer, and carbon The carbon distribution curve showing the relationship with the ratio of the number of carbon atoms to the total number of atoms (100 at%) of atoms, silicon atoms and oxygen atoms (carbon atom ratio) corresponds to the first extreme value on the nearest side of the substrate The region satisfying the requirements defined in the following (1) to (3) exists between the position in the layer thickness direction to be started (0%) and the outermost surface (100%) of the gas barrier layer. Gas barrier film.
    (1) The average carbon atom ratio a (at%) in the region of 0% to 20% is
    30 (at%) ≦ a ≦ 40 (at%)
    Meet.
    (2) The average carbon atom ratio c (at%) in the region of 80% or more and 100% or less is
    0.1 × a (at%) ≦ c ≦ 0.5 × a (at%)
    Meet.
    (3) The average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is
    0.5 × a (at%) <b <a (at%)
    And satisfy
    When the extreme value that has at least one extreme value in the same region and the maximum extreme value among the extreme values is the second extreme value, the carbon atom ratio d (at%) of the second extreme value is:
    a (at%) ≦ d ≦ 45 (at%)
    Meet.
  2.  20%超80%未満の領域における前記平均炭素原子比率b(at%)が、
     0.6×a(at%)≦b≦0.8×a(at%)
    を満たすことを特徴とする請求項1に記載のガスバリアーフィルム。
    The average carbon atom ratio b (at%) in the region of more than 20% and less than 80% is
    0.6 × a (at%) ≦ b ≦ 0.8 × a (at%)
    The gas barrier film according to claim 1, wherein:
  3.  請求項1又は請求項2に記載のガスバリアーフィルムを製造するガスバリアーフィルムの製造方法であって、
     基材を対向するローラー電極間に複数回搬送して、プラズマCVD法により、層厚方向に炭素原子比率の異なるガスバリアー層を形成することを特徴とするガスバリアーフィルムの製造方法。
    A method for producing a gas barrier film according to claim 1 or 2, wherein the gas barrier film is produced.
    A method for producing a gas barrier film, comprising transporting a substrate a plurality of times between opposing roller electrodes and forming a gas barrier layer having a different carbon atom ratio in the layer thickness direction by plasma CVD.
PCT/JP2015/062214 2014-04-23 2015-04-22 Gas barrier film and manufacturing method thereof WO2015163358A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016515177A JPWO2015163358A1 (en) 2014-04-23 2015-04-22 Gas barrier film and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-088879 2014-04-23
JP2014088879 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015163358A1 true WO2015163358A1 (en) 2015-10-29

Family

ID=54332521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062214 WO2015163358A1 (en) 2014-04-23 2015-04-22 Gas barrier film and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JPWO2015163358A1 (en)
WO (1) WO2015163358A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200259118A1 (en) * 2017-08-25 2020-08-13 Sumitomo Chemical Company, Limited Laminated film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096616A1 (en) * 2007-02-05 2008-08-14 Konica Minolta Holdings, Inc. Transparent gas barrier film and method for producing the same
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film
WO2011102198A1 (en) * 2010-02-19 2011-08-25 リンテック株式会社 Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
JP2012096531A (en) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd Layered film
JP2014083691A (en) * 2012-10-19 2014-05-12 Konica Minolta Inc Gas barrier film and method for manufacturing a gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008096616A1 (en) * 2007-02-05 2008-08-14 Konica Minolta Holdings, Inc. Transparent gas barrier film and method for producing the same
WO2010117046A1 (en) * 2009-04-09 2010-10-14 住友化学株式会社 Gas-barrier multilayer film
WO2011102198A1 (en) * 2010-02-19 2011-08-25 リンテック株式会社 Transparent conductive film, process for producing same, and electronic device employing transparent conductive film
JP2012096531A (en) * 2010-10-08 2012-05-24 Sumitomo Chemical Co Ltd Layered film
JP2014083691A (en) * 2012-10-19 2014-05-12 Konica Minolta Inc Gas barrier film and method for manufacturing a gas barrier film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200259118A1 (en) * 2017-08-25 2020-08-13 Sumitomo Chemical Company, Limited Laminated film

Also Published As

Publication number Publication date
JPWO2015163358A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5513959B2 (en) Gas barrier laminated film
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
JP6332283B2 (en) Gas barrier film
TWI647110B (en) Method for manufacturing laminate
WO2014203892A1 (en) Gas barrier film and method for producing same
WO2015083681A1 (en) Gas barrier film and production method therefor
WO2015163358A1 (en) Gas barrier film and manufacturing method thereof
JP6569685B2 (en) Film forming apparatus and gas barrier film manufacturing method
JP6354302B2 (en) Gas barrier film
WO2016132901A1 (en) Gas barrier film and method for manufacturing same
JP5895855B2 (en) Method for producing gas barrier film
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
JP6897567B2 (en) Gas barrier film
WO2017104357A1 (en) Electrode for plasma cvd film formation apparatus, method for producing electrode, plasma cvd film formation apparatus, and method for producing functional film
JP6579098B2 (en) Method for producing gas barrier film
JP6288082B2 (en) Film forming apparatus, electrode roll, and gas barrier film manufacturing method
WO2016159206A1 (en) Gas barrier film and method for manufacturing same
JP6642587B2 (en) Plasma CVD film forming equipment
CN108349211B (en) Gas barrier film, lighting device, and display device
JP2022138914A (en) Method for producing gas barrier film and wound body of the same
WO2018003274A1 (en) Method for producing gas barrier film
WO2016185938A1 (en) Film laminate body, method for manufacturing same, and film-forming device
WO2016117625A1 (en) Manufacturing method and manufacturing apparatus for gas barrier film
JP2016141855A (en) Production apparatus and production method of functional film
WO2014109250A1 (en) Method for producing functional film, apparatus for producing functional film, and organic electroluminescent element provided with functional film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783013

Country of ref document: EP

Kind code of ref document: A1