WO2018101027A1 - Gas barrier film, and gas barrier film molding method - Google Patents

Gas barrier film, and gas barrier film molding method Download PDF

Info

Publication number
WO2018101027A1
WO2018101027A1 PCT/JP2017/040900 JP2017040900W WO2018101027A1 WO 2018101027 A1 WO2018101027 A1 WO 2018101027A1 JP 2017040900 W JP2017040900 W JP 2017040900W WO 2018101027 A1 WO2018101027 A1 WO 2018101027A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
barrier film
barrier layer
film
region
Prior art date
Application number
PCT/JP2017/040900
Other languages
French (fr)
Japanese (ja)
Inventor
森 孝博
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2018553752A priority Critical patent/JPWO2018101027A1/en
Publication of WO2018101027A1 publication Critical patent/WO2018101027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Definitions

  • the present invention relates to a gas barrier film having a gas barrier layer and a method for forming the gas barrier film.
  • a metal sealing As a sealing member of an organic electroluminescence (EL) element using a glass substrate, a metal sealing can having a curved surface having a flange shape formed on the outer four sides in a box shape with the side facing the substrate open. It is known (see Patent Document 1). Such a sealing can can be filled with a desiccant in the gap and can be easily designed to improve the durability of the element. On the other hand, since it is a metal, it has drawbacks such as being heavy, poor in flexibility, and being damaged when the metal surface comes into contact with the element when bent.
  • a gas barrier layer that can suppress the occurrence of cracks on a curved surface having a large curvature has been proposed (see Patent Document 2).
  • a plasma-deposited amorphous glass layer containing silicon, carbon, and hydrogen is formed on the film by a vapor deposition method.
  • the WVTR is as large as several g. For this reason, even if it can be molded into a shape having a curved surface, the barrier property is insufficient for application to sealing of electronic devices that require high barrier properties. Thus, a gas barrier film having a high barrier property and a curved surface is desired.
  • the present invention provides a gas barrier film having a high barrier property and a curved surface.
  • the gas barrier film of the present invention includes a base material and a gas barrier layer formed on the base material.
  • the gas barrier layer contains silicon, oxygen, and carbon, and when the composition of the gas barrier layer is expressed by SiOxCy, a region having a composition of y ⁇ 0.20 and a region having a composition of y> 1.40. Is less than 20 nm in the thickness direction.
  • the gas barrier film has a substantially flat region and a region having a cubic curved surface surrounded by the flat region, and a region having a cubic curved surface when the flat region is in contact with the flat plate. Are not in contact with the flat plate, and an average gap of 0.5 mm or more is formed between the region having the cubic curved surface and the flat plate.
  • a gas barrier film having a high barrier property and a curved surface can be provided.
  • FIG. 2 is a cross-sectional view taken along line AA of the gas barrier film shown in FIG. It is sectional drawing which shows the structure of a gas barrier film. It is a graph which shows the distribution curve of the silicon of a gas barrier layer, carbon, and oxygen. It is a graph which shows the distribution curve of C / Si ratio of a gas barrier layer, and O / Si ratio. It is a graph which shows the distribution curve of the silicon of a gas barrier layer, carbon, and oxygen. It is a graph which shows the distribution curve of C / Si ratio of a gas barrier layer, and O / Si ratio. It is an orthogonal coordinate showing the composition of SiOxCy which comprises a gas barrier layer.
  • FIG. 2 is a cross-sectional view taken along line AA of the gas barrier film shown in FIG.
  • WVTR water vapor permeability
  • FIG. 1 is a plan view of a gas barrier film.
  • FIG. 2 is a cross-sectional view taken along line AA of the gas barrier film 10 shown in FIG.
  • the gas barrier film 10 includes a base material 11 and a gas barrier layer 12 formed on one surface of the base material 11.
  • the gas barrier film 10 includes a substantially flat region (flat region) 13 and a region (curved region) 14 having a cubic curved surface surrounded by the flat region 13. Is provided. In the curved region, a concave portion is formed on one surface of the gas barrier film 10, and a convex portion is formed on the other surface.
  • the gas barrier layer 12 side is a surface having a concave portion
  • the base material 11 side is a surface having a convex portion.
  • FIG. 2 the position of the surface of the flat plate in contact with the gas barrier film 10 on the gas barrier layer 12 side (the surface side having the recesses) of the gas barrier film 10 is indicated by a broken line 20.
  • This flat plate is illustrated for explaining the shape of the gas barrier film 10 and is not included in the configuration of the gas barrier film 10.
  • the flat region 13 is provided on the peripheral side of the gas barrier film 10.
  • “substantially flat” means that, as shown in FIG. 2, the gas barrier film 10 is flat when the gas barrier layer 12 side (surface side having a recess) is in contact with a flat plate. It shows that the gap 15 between the region 13 and the surface of the flat plate (broken line 20) is 0.1 mm or less.
  • region 13 corresponds to the area
  • the curved surface region 14 is provided on the center side in the gas barrier film 10.
  • the gap 16 between the recess formed on one surface side and the surface of the flat plate (broken line 20) in contact with the gas barrier film 10 is 0.5 mm or more on average.
  • the gas barrier film 10 is defined by the shape of the surface side (gas barrier layer 12 side) where the concave portion is formed in the curved region 14. For this reason, it does not specifically limit about the shape by the side of the surface (base material 11 side) in which a convex part is formed. In general, the shape of the gas barrier layer 12 is also deformed following the deformation of the base material 11, so that the shape on the surface side (gas barrier layer 12 side) where the concave portion is formed in the curved region 14 and the convex portion are formed. The shape on the surface side (base material 11 side) to be applied substantially matches except for the deviation due to the thickness.
  • a method of forming into a shape having the curved region 14 can be considered.
  • the gas barrier layer 12 is directly formed on the base material 11 having the curved region 14
  • a gas barrier layer 12 is first formed on a flat substrate 11 to form a flat gas barrier film. 10 is produced. And the heat
  • the gas barrier layer 12 contains silicon, oxygen, and carbon. For this reason, it is possible to suppress the occurrence of defects in the gas barrier layer 12 even when the curved region 14 is molded into a shape having a cubic curved surface in which gaps of 0.5 mm or more are formed on average. For this reason, the gas barrier film 10 has a water vapor permeability (WVTR) of 0.1 (g / m 2 / day) measured under the conditions of 60 ° C., 90% RH and 2 hours even after the above-described molding process. The following can be achieved: Further, in the gas barrier film 10 after the molding process, a preferable water vapor permeability (WVTR) can be 1 ⁇ 10 ⁇ 2 (g / m 2 / day) or less.
  • WVTR water vapor permeability
  • the substrate 11 may be a laminate of a plurality of substrates.
  • the base material 11 may have a configuration in which the first base material 17 and the second base material 18 are bonded with an adhesive layer 19.
  • the gas barrier layer 12 is provided on one surface of the first base material 17, and the second base material 18 is provided on the other surface through the adhesive layer 19.
  • the structure of those other than this is the structure similar to the gas barrier film 10 of the above-mentioned FIG.1 and FIG.2.
  • the first base material 17 and the second base material 18 are preferably bonded so as to be peelable in the pressure-sensitive adhesive layer 19.
  • the adhesive layer 19 and the second substrate 18 are bonded so as to be peelable from the first substrate 17.
  • the second base material 18 functions as a protective film for the first base material 17.
  • the manufacturing process of the gas barrier film 10 or the manufacturing process of the electronic device to which the gas barrier film 10 is applied if the substrate disposed on the outermost surface is damaged such as scratches, the appearance of the electronic device is defective. Will occur. For this reason, it is preferable to provide a peelable protective film on the surface of the base material 11 in order to prevent the base material from being damaged during each manufacturing process.
  • the adhesive layer 19 and the second base material 18 are peeled from the first base material 17, thereby having the same configuration as the gas barrier film 10 shown in FIG. 1.
  • the first base material 17 shown in FIG. 3 corresponds to the base material 11 shown in FIG.
  • the thickness [X] of the first base material 17 and the second base material is 50 ⁇ m or more and 150 ⁇ m or less. Furthermore, [X] / [Y] is preferably 0.15 or more and 0.90 or less.
  • the thickness [X] of the first base material 17 and the thickness [Y] of the second base material 18 is 50 ⁇ m or more, the thickness becomes easy to handle in the formation of the gas barrier layer 12. Moreover, if the sum total of the thickness [X] of the 1st base material 17 and the thickness [Y] of the 2nd base material 18 is 150 micrometers or less, the base material 11 has sufficient softness
  • the thickness of the second base material 18 serving as the protective film is larger than the first base material 17 on which the gas barrier layer 12 is formed.
  • the first base material 17 when the first base material 17 is applied to an electronic device or the like, the first base material 17 remains as the gas barrier film 10, so that the degree of freedom in design is limited by the requirements of the electronic device or the like.
  • the second substrate 18 when the second substrate 18 is used as a protective film, the second substrate 18 is peeled off when the gas barrier film 10 is applied to an electronic device or the like. For this reason, the second base material 18 has a higher degree of design freedom than the first base material 17. Therefore, it is preferable that the mechanical strength required for the base material 11 when the gas barrier layer 12 is produced is secured on the second base material 18 side. Therefore, it is preferable that the thickness [Y] of the second base material 18 is larger than the thickness [Y] of the first base material 17 and the thickness [Y] of the second base material 18. / [Y] is preferably 0.15 or more and 0.90 or less.
  • the gas barrier layer 12 contains silicon, oxygen, and carbon. That is, the gas barrier layer 12 is represented by a composition of SiOxCy.
  • the value of x in SiOxCy is expressed as the oxygen content (O / Si) with respect to silicon, and the value of y is expressed as the carbon content (C / Si) with respect to silicon.
  • FIG. 4 shows a curve showing the distribution of the silicon atom content in the thickness direction of the gas barrier layer 12 (hereinafter referred to as a silicon distribution curve) and a curve showing the distribution of the carbon atom content in the thickness direction of the gas barrier layer 12
  • a graph of a carbon distribution curve) and a curve showing the distribution of the content of oxygen atoms in the thickness direction of the gas barrier layer 12 (hereinafter, oxygen distribution curve) are shown.
  • FIG. 5 shows a curve (hereinafter referred to as a C / Si ratio distribution curve) showing the distribution of the composition ratio (C / Si) of carbon to silicon in the thickness direction of the gas barrier layer 12, and the thickness direction of the gas barrier layer 12.
  • the graph of the curve (henceforth O / Si ratio distribution curve) which shows distribution of the composition ratio (O / Si) of oxygen with respect to silicon is shown.
  • the ratio of silicon is defined as 1 based on the composition formula of SiOxCy.
  • the content of each element in the thickness direction of the gas barrier layer 12 shown in FIG. 4 and the curve and maximum value indicating this content can be obtained by measurement of an XPS depth profile described later. Further, the composition ratio (C / Si) of carbon atoms to silicon atoms in the thickness direction of the gas barrier layer 12 shown in FIG. 5, the composition ratio of oxygen atoms (O / Si), and a curve or maximum representing this composition ratio The value can be calculated from the measured value of the XPS depth profile in FIG.
  • each distribution curve indicating the relationship between the distance (L) from the layer surface in the film thickness direction and the content of silicon atoms, carbon atoms, and oxygen atoms is , Continuously changing.
  • the C / Si ratio distribution curve showing the distance (L) from the layer surface in the film thickness direction and the ratio of carbon atoms to silicon atoms continuously changes.
  • the O / Si ratio distribution curve indicating the ratio of oxygen atoms to silicon atoms changes continuously.
  • the gas barrier film 10 has a maximum of four or more carbon distribution curves (requirement (1)). Furthermore, [film thickness / maximum value number] of the gas barrier layer 12 is 25 nm or less (requirement (2)). In the graph shown in FIG. 4, in the gas barrier layer having a thickness of about 55 nm, the carbon distribution curve has six maximum values indicated by arrows in the drawing. Therefore, [film thickness / maximum value number] is about 9 nm.
  • the number of maximum values and [film thickness / maximum number of values] can be arbitrarily adjusted by changing the film formation conditions of the gas-phase film-forming gas barrier layer using the vacuum plasma CVD method described later.
  • the distance between the adjacent maximum values can be reduced by increasing the conveyance speed of the base material in the vapor deposition gas barrier layer deposition.
  • the number of maximum values tends to increase in the gas barrier layer 12 having the same thickness.
  • the carbon distribution curve of the gas barrier layer 12 it can be considered as one region where the composition continuously changes between adjacent maximum values. For this reason, the gas barrier layer 12 has a region where the composition continuously changes in the thickness direction by the number of maximum values. Therefore, the configuration in which the carbon distribution curve has six or more maximum values has a plurality of regions with different composition ratios of silicon, oxygen, and carbon in the film thickness direction, and the plurality of regions are stacked in the film thickness direction. Indicates that Furthermore, in the carbon distribution curve of the gas barrier layer 12, as the number of local maximum values increases, there are more regions in the gas barrier layer 12 where the composition changes continuously.
  • a configuration in which the [film thickness / maximum value number] of the carbon distribution curve is 25 nm or less indicates the occurrence probability of the maximum value in the carbon distribution curve. For example, if [film thickness / number of local maximum values] is 25 nm, it indicates that there is one local maximum per 25 nm average in the thickness direction. By reducing the rate at which the maximum value occurs to 25 nm or less, the thickness of one region where the composition continuously changes can be reduced. That is, the gas barrier layer 12 can have the same configuration as a state in which thinner layers are stacked.
  • the average distance between adjacent maximum values is 25 nm or less, and there are six or more regions where the composition continuously changes in the thickness direction.
  • WVTR water vapor permeability
  • the gas barrier layer 12 By having the gas barrier layer 12 having a plurality of regions in which the composition continuously changes, it is possible to suppress the deterioration of the water vapor permeability (WVTR) of the gas barrier film 10 even after a molding process involving the formation of a cubic curved surface.
  • WVTR water vapor permeability
  • Etc. are not limited to the following description.
  • the gas barrier layer has a single layer structure
  • the crack when a crack occurs in one place in the gas barrier layer in the molding process of the gas barrier film, the crack propagates in the thickness direction, and the crack is in the thickness direction of the gas barrier layer. Easy to penetrate.
  • moisture and the like can easily pass through the crack, so that the water vapor permeability (WVTR) of the gas barrier film is deteriorated.
  • WVTR water vapor permeability
  • the gas barrier layer 12 has a plurality of regions where the composition changes continuously, a crack occurs in one place (one region) in the gas barrier layer 12, and the crack occurs in the thickness direction in the generated region. Even when the crack penetrates, the crack terminates in the other area, and the crack hardly propagates to the other area. Furthermore, since the gas barrier layer 12 has a plurality of regions laminated, the region where the crack has occurred is covered with another region. For this reason, the micro crack which generate
  • the gas barrier layer 12 has a plurality of regions in which the composition continuously changes in the thickness direction, thereby suppressing the deterioration of the water vapor permeability (WVTR) of the gas barrier film after forming processing accompanied by the formation of a cubic curved surface. can do.
  • WVTR water vapor permeability
  • the gas barrier layer 12 has a maximum value of four or more carbon distribution curves.
  • the number of layers in the region where the composition continuously changes is the number of maximum values of the carbon distribution curve plus one layer. Therefore, if the carbon distribution curve has four or more maximum values, the composition is continuous. 5 or more layers are provided. By providing five or more regions where the composition continuously changes, the effect of covering other regions with the region where the microcracks have occurred is easily exhibited, and the effect of preventing the penetration of cracks in the entire gas barrier layer 12 is achieved. It is easy to express.
  • the number of maximum values in the carbon distribution curve increases, the number of layers in the region where the composition continuously changes increases.
  • the number of maximum values in the carbon distribution curve is preferably as large as possible, and the number of maximum values in the carbon distribution curve is preferably 6 or more, more preferably 8 or more, and particularly preferably 12 or more.
  • FIGS. 6 and 7 show the distribution curves in the gas barrier layer when the maximum value of the carbon distribution curve is twelve.
  • the graphs shown in FIGS. 6 and 7 correspond to FIGS. 4 and 5 described above, and the details of the graphs are the same as those in FIGS. 4 and 5.
  • FIG. 6 is a graph showing a silicon distribution curve, a carbon distribution curve, and an oxygen distribution curve of the gas barrier layer 12.
  • FIG. 7 is a graph showing a C / Si ratio distribution curve and an O / Si ratio distribution curve of the gas barrier layer 12. In the graph shown in FIG. 7, the silicon ratio is defined as 1 based on the composition formula of SiOxCy.
  • the gas barrier film 10 of the example shown in FIGS. 6 and 7 has a carbon distribution curve having 12 maximum values indicated by arrows in the drawings in a gas barrier layer having a thickness of about 105 nm. For this reason, in the graph shown in FIG. 4, [film thickness / maximum value number] is about 9 nm. Accordingly, in the example shown in FIGS. 6 and 7 as well, the [film thickness / maximum value] of the gas barrier layer 12 required for the gas barrier film 10 is 25 nm or less, as in the examples shown in FIGS. Meet the provisions of
  • the thickness of the gas barrier layer 12 is constant, the smaller the thickness of the region where the composition changes continuously, the more regions are laminated. That is, the smaller the value [film thickness / maximum value] obtained by dividing the total thickness of the gas barrier layer 12 by the number of maximum values of the carbon distribution curve, the smaller the thickness of each region where the composition changes continuously. . Therefore, under the condition that the thickness of the gas barrier layer 12 is constant, the smaller the [film thickness / maximum value], the more regions can be stacked, and the region where the microcracks have occurred is replaced with other regions. It becomes easy to express the effect
  • the gas barrier layer 12 contains silicon, oxygen, and carbon, and is represented by a composition of SiOxCy.
  • the value of x in SiOxCy is expressed as the oxygen content (O / Si) with respect to silicon, and the value of y is expressed as the carbon content (C / Si) with respect to silicon.
  • the gas barrier layer 12 has a thickness of a region having a composition of y ⁇ 0.20 and a thickness of a region having a composition of y> 1.40 when the composition of the gas barrier layer 12 is expressed by SiOxCy. Is less than 20 nm.
  • the composition of y ⁇ 0.20 is a region with a low carbon ratio and a high oxygen ratio. That is, the gas barrier layer 12 has a composition close to SiO 2 . A region having a composition close to SiO 2 is easily cracked by elongation treatment. If a region having a composition of y ⁇ 0.20 exceeds 20 nm in the thickness direction, the crack generated in this region causes a crack. Difficult to propagate to other regions of different composition. For this reason, the barrier property of the gas barrier layer 12 tends to deteriorate.
  • the composition of y> 1.40 is a region where the oxygen ratio is small and the carbon ratio is large. That is, the gas barrier layer 12 becomes a composition close to SiC 2. Also in this composition, as in the region having a composition close to the above-mentioned SiO 2 , cracks are easily generated by the elongation treatment, and cracks are easily propagated to regions having different compositions, so that the barrier property of the gas barrier layer 12 is deteriorated. It's easy to do.
  • 8 to 11 show orthogonal coordinates in which the horizontal axis is x and the vertical axis is y in the composition of SiOxCy constituting the gas barrier layer 12.
  • 8 and 9 show (x, y) of the composition represented by SiOxCy for each thickness in the gas barrier layer 12 having the C / Si ratio distribution curve and the O / Si ratio distribution curve shown in FIG. ).
  • 10 and 11 show the composition (x) of SiOxCy for each thickness in the gas barrier layer 12 having the C / Si ratio distribution curve and the O / Si ratio distribution curve shown in FIG. , Y).
  • Each of (x, y) shown in FIGS. 8 to 11 is a thickness at a point indicated by a white triangle in the C / Si ratio distribution curve and the O / Si ratio distribution curve of FIGS. Represents the composition.
  • the gas barrier film 10 has a composition that falls within the range of 4 points of the following ABCD in the distribution of (x, y) for each thickness in the composition represented by SiOxCy. It is preferable to have 40 to 200 nm in the 12 thickness direction.
  • the gas barrier film 10 has a composition that falls within the range of 4 points of the following ABEF in the distribution of (x, y) for each thickness in the composition represented by SiOxCy, More preferably, the gas barrier layer 12 has a thickness of 40 nm or more and 200 nm or less in the thickness direction.
  • the gas barrier layer 12 preferably has a composition that falls within the range of 4 points of the ABCD, and particularly preferably has a composition that falls within the range of 4 points of the ABEF.
  • a narrow range surrounded by the four points ABCD in the vicinity of the SiC 2 —SiO 2 theoretical line is a preferable composition for the gas barrier layer 12 in terms of gas barrier properties, physical characteristics, and optical characteristics.
  • a narrower range surrounded by four points of ABEF is a particularly preferable composition for the gas barrier layer 12 in terms of gas barrier properties, physical characteristics, and optical characteristics.
  • the gas barrier layer 12 preferably has both a region where the C / Si has a composition of 0.95 or more and a region where the C / Si has a composition of 0.7 or less. Furthermore, the gas barrier layer 12 has both a region where the composition of C / Si is 0.95 or more and a region where the composition of C / Si is 0.7 or less, and 70% or more of the gas barrier layer 12. Is preferably included in any region where C / Si is 0.95 or more or C / Si is 0.7 or less, and all regions of the gas barrier layer 12 have a C / Si of 0. It is preferably included in any region of 95 or more or C / Si of 0.7 or less.
  • a region where the C / Si has a composition of 0.95 or more and a region where the C / Si has a composition of 0.7 or less are formed in the thickness direction. It is preferable that they are laminated. In particular, it is preferable that four or more regions each having a composition having a C / Si composition of 0.95 or more and a region having a composition having a C / Si composition of 0.7 or less are alternately stacked. As shown in the carbon distribution curve shown in FIG. 7, it is more preferable that six or more regions are alternately stacked.
  • the physical characteristics are different in regions having different compositions, and the conditions under which cracks are likely to occur in the regions are also different.
  • the composition of SiOxCy constituting the gas barrier layer 12 small atomic ratio of carbon, the atomic ratio of oxygen is increased, the composition of the gas barrier layer 12 approaches the composition of SiO 2, the physical properties of the gas barrier layer 12 Is brittle like glass and easily breaks.
  • the gas barrier layer 12 includes a composition having a large carbon atomic ratio and a C / Si ratio of 0.95 or more, it is possible to make it difficult for the gas barrier layer 12 to crack.
  • a region having a composition with a C / Si of 0.95 or more, a region with a composition with a small C / Si, and a region with a composition with a C / Si of 0.70 or less have different crack resistance.
  • a crack is likely to occur in either one of a region having a composition in which C / Si is 0.95 or more and a region having a composition in which C / Si is 0.70 or less.
  • cracks hardly occur in the other region. For this reason, when there are two or more regions having greatly different compositions in the gas barrier layer 12, regions having different crack resistances are stacked, and large cracks that penetrate the thickness direction of the gas barrier layer 12 at a time are formed.
  • the gas barrier layer 12 is preferably less contaminated with foreign matters such as particles.
  • foreign substances such as particles mixed during film formation are present inside the gas barrier layer 12
  • the gas barrier film 10 is molded to form a cubic curved surface and the gas barrier layer is stretched, stress is applied around the foreign substances. It is thought that this becomes the starting point for cracks to concentrate. Therefore, it is considered that the smaller the number of foreign matters per unit area of the gas barrier layer 12, the generation of cracks after the molding process accompanied by the formation of the cubic curved surface in the gas barrier film 10 is suppressed.
  • the number of protrusions with a height of 10 nm or more observed on the surface is preferably 100 pieces / mm 2 or less. If the number of protrusions is 100 / mm 2 or less, the crack resistance of the gas barrier layer 12 is not lowered, and the gas barrier property of the gas barrier film 10 is hardly lowered.
  • minute protrusions of about 10 nm are difficult to separate and detect due to the influence of the undulation component of the surface roughness (unevenness having a long wavelength). For this reason, the number of minute protrusions of 10 nm or more in the gas barrier layer 12 is defined by a value detected and counted by the following method.
  • the surface of the gas barrier layer 12 is measured using an optical interference type three-dimensional surface roughness measuring device (Veeco WYKO NT9300). And by this measurement, the three-dimensional surface roughness data of the gas barrier layer 12 are acquired.
  • the acquired three-dimensional surface roughness data is subjected to a process of removing a roughness waviness component by applying a high-pass filter having a wavelength of 10 ⁇ m.
  • protrusions having a height of 10 nm or more are counted when the maximum peak position when the data is displayed as a histogram is set to zero.
  • the counted number of protrusions is calculated as the number per mm 2 . More specifically, under the conditions of a measurement resolution of about 250 nm, it was measured and counted (0.114 mm 2 as the area) range 6 field of 159.2 ⁇ m ⁇ 119.3 ⁇ m, calculated as the number per 1 mm 2.
  • images 159.2 ⁇ m ⁇ 119.3 ⁇ m in which the three-dimensional surface roughness conversion data obtained by processing by the above method are displayed as histograms are shown in FIGS. 12 to 14, the color is displayed in white as the height increases from the reference position on the surface of the gas barrier layer 12.
  • FIG. 12 is an image of the surface obtained by the above processing for the gas barrier layer 12 having a number of protrusions of less than 10 / mm 2 .
  • FIG. 13 is an image of the surface obtained by the above-described treatment with respect to the gas barrier layer 12 having the number of protrusions of 50 pieces / mm 2 or more and less than 100 pieces / mm 2 .
  • FIG. 14 is an image of the surface obtained by the above processing for the gas barrier layer 12 having a number of protrusions of 200 pieces / mm 2 or more.
  • the number of protrusions is 50 / mm 2 or more and less than 100 / mm 2 and the number of protrusions is 200 / mm 2 or more, and the number of protrusions exceeding 10 nm in height increases. Every time, the number of white spots displayed in the image increases. Therefore, by detecting and counting with the above method, the number of minute protrusions of about 10 nm on the surface of the gas barrier layer 12 can be defined.
  • the gas barrier film of 2nd Embodiment is the structure similar to the gas barrier film of the above-mentioned 1st Embodiment except that the processing shape of a cubic curved surface differs. For this reason, in the following description, description is abbreviate
  • FIG. 15 and 16 show the configuration of the gas barrier film.
  • FIG. 15 is a plan view of the gas barrier film.
  • FIG. 16 is a cross-sectional view taken along line AA of the gas barrier film 70 shown in FIG.
  • the gas barrier film 70 includes a base material 11 and a gas barrier layer 12 formed on one surface of the base material 11 of the base material 11.
  • the gas barrier film 70 which consists of the base material 11 and the gas barrier layer 12 satisfy
  • the gas barrier film 70 includes a tertiary curved surface portion 76 on which a three-dimensional curved surface is formed, and a substantially flat surface disposed outside the tertiary curved surface portion 76. And a flat region 74 composed of a large region.
  • the gas barrier film 70 includes a flat region 74 disposed in the cubic curved surface portion 76, and the curved region is formed from the flat region 74 disposed in the cubic curved surface portion 76 and the cubic curved surface portion 76. 14 is formed.
  • the flat region 74 formed of a substantially flat region is a region that is in contact with the flat plate as a surface with substantially no gap.
  • the cubic curved surface portion 76 having a three-dimensional curved surface is a region in contact with the flat plate by a line or a point.
  • the gas barrier film 70 has a concave surface on one surface and a convex surface on the other surface.
  • the gas barrier layer 12 side is a surface having a concave portion
  • the base material 11 side is a surface having a convex portion.
  • the position of the surface of the flat plate in contact with the gas barrier film 70 on the gas barrier layer 12 side (the surface side having the recesses) of the gas barrier film 70 is indicated by a broken line 20. Further, in FIG. 16, the position of the surface of the flat plate in contact with the gas barrier film 70 on the base material 11 side (surface side having the convex portion) of the gas barrier film 70 is indicated by a broken line 21.
  • This flat plate is illustrated for explaining the shape of the gas barrier film 70 and is not included in the configuration of the gas barrier film 70.
  • the flat region 74 is provided in the gas barrier film 70 at the peripheral side and the central portion.
  • the flat portion around the frustoconical convex portion provided at the center of the gas barrier film 70 is a flat region 74 on the peripheral side.
  • the flat portion of the portion serving as the upper base of the truncated cone is a flat region 74 at the center of the gas barrier film 70.
  • substantially flat and substantially in contact with no gap means that, as shown in FIG. 16, the gas barrier layer 70 side (surface side having a recess) of the gas barrier film 70 is used.
  • the gap 15 between the flat plate surface (broken line 20) is 0.1 mm or less, and the base material 11 side (surface side having the convex portion) of the gas barrier film 70 is in contact with the flat plate.
  • the gap 22 between the surface of the flat plate (broken line 21) is 0.1 mm or less.
  • the flat region 74 on the peripheral side of the gas barrier film 70 corresponds to a region where a portion for taking out an electrode from the device region is formed when the gas barrier film 70 is applied to an electronic device or the like. For this reason, the configuration in which slight unevenness of 0.1 mm or less due to wiring or the like is formed also in the “substantially flat region”.
  • the flat region 74 provided on the center side of the cubic curved surface portion 76 is a recess formed on one surface side of the gas barrier film 70 and a flat plate in contact with the gas barrier film 70.
  • the gap 16 with the surface (broken line 20) is 0.5 mm or more on average.
  • the tertiary curved surface portion 76 is provided between the peripheral flat region 74 and the central flat region 74.
  • the part that becomes the hypotenuse of the side surface of the truncated cone is the tertiary curved surface portion 76 of the gas barrier film 70.
  • the tertiary curved surface portion 76 of the gas barrier film 70 is provided at 9% or more and 11% or less of the projected area of the entire region including the flat region 74 on the peripheral side, the tertiary curved surface portion 76, and the flat region 74 at the center. ing.
  • the projection area of the flat region 74 and the cubic curved surface portion 76 is not a projection area of the entire gas barrier film 70 but a specific area for measuring the gas barrier property in the gas barrier film 70.
  • the measurement area 73 is an area in a range that can be measured by the measurement apparatus, and is defined in accordance with the area obtained from the area ratio between the flat area 74 and the cubic curved surface portion 76. That is, the area of the measurement region 73 is defined so that the projected area of the cubic curved surface portion 76 is 9% or more and 11% or less of the projection area of the measurement region 73.
  • the gas barrier film 70 has a three-dimensional curved surface molded so that the measured area of the cubic curved surface portion 76 is 5% or more larger than the projected area of the cubic curved surface portion 76 described above.
  • the actual measurement area is an area assumed to be a state in which a processed surface having a curved surface is extended on a plane.
  • the flat region 74 and the tertiary curved surface portion 76 are either on the surface side where the concave portion is formed (gas barrier layer 12 side) or on the surface side where the convex portion is formed (base material 11 side). It is defined by the shape of In general, since the shape of the gas barrier layer 12 is also deformed following the deformation of the base material 11, the shape of the flat region 74 and the tertiary curved surface portion 76 is a surface on which a recess is formed except for deviation due to thickness. The shape on the side (gas barrier layer 12 side) and the shape on the surface side (base material 11 side) on which the convex portions are formed substantially coincide. For this reason, by defining the shape of one surface, the shape of the other surface is also defined.
  • a flat gas barrier film 70 is formed in order to suppress a decrease in gas barrier property, as in the first embodiment. After that, it is molded into a shape having a tertiary curved surface portion 76. In this method, film formation failure of the gas barrier layer 12 of the cubic curved surface portion 76 is unlikely to occur, so that even when the measured area of the cubic curved surface portion 76 is processed to a shape that is 5% or more larger than the projected area, The gas barrier film 70 in which the deterioration of the property is suppressed can be produced.
  • the gas barrier layer 12 contains silicon, oxygen, and carbon. For this reason, it is possible to suppress the occurrence of defects in the gas barrier layer 12 even when forming into a shape having a curved surface in which the measured area is 5% or more larger than the projected area.
  • the gas barrier film 70 includes both a flat gas barrier film [A] in a state before the curved surface processing is formed and a gas barrier film [B] in which the flat region 74 and the tertiary curved surface portion 76 are formed by molding.
  • WVTR water vapor transmission rate measured under the conditions of 38 ° C. and 100% RH for 2 hours is 0.1 (g / m 2 / day) or less.
  • the water vapor transmission rate (WVTR) in the measurement region 73 of the flat gas barrier film [A] in the state before forming the curved surface processing under the above conditions, and the gas barrier film [B after forming the cubic curved surface portion 76 into processing [B] ] In relation to the water vapor transmission rate (WVTR) in the measurement area 73 satisfies “(B water vapor transmission rate (WVTR) / [A] water vapor transmission rate (WVTR)) ⁇ 5”.
  • both the gas barrier film [A] before molding and the gas barrier film [B] after molding satisfy the water vapor transmission rate (WVTR) of 0.1 (g / m 2 / day) or less, the curved surface Both of the gas barrier films 70 have sufficient gas barrier properties before and after the forming process. For this reason, the gas barrier film 70 satisfying this condition has a sufficient gas barrier property.
  • WVTR water vapor transmission rate
  • the gas barrier film [B] after the molding process slightly deteriorates in water vapor permeability (WVTR) due to the elongation treatment of the gas barrier layer 12 accompanying the curved surface processing of the cubic curved surface portion 76.
  • WVTR water vapor permeability
  • WVTR water vapor permeability
  • each configuration of the gas barrier film 10 shown in FIGS. 1 to 3 and the gas barrier film 70 shown in FIGS. 15 to 16 will be described.
  • the following description is an example of a gas barrier film, and the structure of a gas barrier film is not limited to these.
  • the gas barrier film may have a configuration other than these.
  • the gas barrier films 10 and 70 have a base material 11 and a gas barrier layer 12, and the gas barrier layer contains silicon, oxygen, and carbon, and is surrounded by a substantially flat region and the flat region.
  • Other configurations are not limited as long as they have a region (curved surface region) having a cubic curved surface portion on which a three-dimensional curved surface is formed.
  • Examples of the base material 11 used for the gas barrier films 10 and 70 include a resin film.
  • the resin film is a film that can hold the gas barrier layer, the material, the thickness, and the like are not particularly limited, and can be appropriately selected according to the purpose of use.
  • As the resin film a conventionally known resin film can be used.
  • the base material 11 may be formed from a plurality of materials. Examples of the resin film include resin films described in paragraphs [0124] to [0136] of JP2013-226758A, paragraphs [0044] to [0047] of WO2013 / 002026, and the like. .
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • COP polycycloolefin
  • the base material 11 has little light absorption and small haze. For this reason, the base material 11 can be appropriately selected from resin films that are generally applied to optical films.
  • the base material 11 may be a resin film or a plurality of layers may be used alone or may be formed of a plurality of layers.
  • the first base material 17 and the second base material 18 may be bonded by an adhesive layer 19.
  • the resin film can be used.
  • the adhesive layer 19 the structure similar to the adhesive layer of the protective film mentioned later is applicable.
  • the substrate 11 is not limited to a single wafer shape and a roll shape, but a roll shape that can be handled by a roll-to-roll method is preferable from the viewpoint of productivity.
  • the thickness of the substrate 11 is not particularly limited, but is preferably about 5 to 500 ⁇ m.
  • the hard coat layer is preferably formed from a curable resin.
  • the curable resin include epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, vinyl benzyl resins and other thermosetting resins, ultraviolet curable urethane acrylate resins, and ultraviolet curable polyesters.
  • active energy ray curable resins such as acrylate resins, ultraviolet curable epoxy acrylate resins, ultraviolet curable polyol acrylate resins, and ultraviolet curable epoxy resins.
  • the hard coat layer has fine particles of inorganic compounds such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, or polymethyl methacrylate to adjust the scratch resistance, slipperiness and refractive index.
  • the hard coat layer may contain a silicone-based surfactant, a polyoxyether compound, and a fluorine-siloxane graft polymer.
  • Examples of the organic solvent contained in the coating solution for forming the hard coat layer include hydrocarbons (eg, toluene, xylene, etc.), alcohols (eg, methanol, ethanol, isopropanol, butanol, cyclohexanol, etc.). , Ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), esters (eg, methyl acetate, ethyl acetate, methyl lactate, etc.), glycol ethers, other organic solvents, or these Can be used as a mixture.
  • the content of the curable resin contained in the coating solution is, for example, 5 to 80% by mass.
  • the hard coat layer can be applied by a known wet coating method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method using the above coating solution.
  • the layer thickness of the coating solution is, for example, 0.1 to 30 ⁇ m.
  • surface treatment such as vacuum ultraviolet irradiation on the base material 11 in advance.
  • the coating film formed by applying the coating solution is irradiated with active energy rays such as ultraviolet rays to cure the resin.
  • active energy rays such as ultraviolet rays
  • a hard coat layer is formed.
  • the light source used for curing include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, and a xenon lamp.
  • the irradiation conditions are preferably in the range of 50 to 2000 mJ / cm 2 , for example.
  • the gas barrier layer 12 constituting the gas barrier films 10 and 70 is a layer having a barrier property and contains silicon, oxygen, and carbon, and four curves indicating the carbon content in the thickness direction of the gas barrier layer. It has the above maximum value, and satisfies the above-mentioned composition of the gas barrier layer and the carbon distribution curve.
  • the gas barrier layer 12 is preferably formed by vapor-phase film formation of an inorganic compound that can be applied by a roll-to-roll method, which will be described later.
  • the gas barrier layer 12 formed by vapor deposition of an inorganic compound includes an inorganic compound containing silicon, oxygen, and carbon.
  • the gas-phase film-forming gas barrier layer containing an inorganic compound may contain an element other than the inorganic compound as a secondary component.
  • the gas barrier property of the gas-phase film-forming gas barrier layer is preferably a water vapor transmission rate (WVTR) of 1 ⁇ 10 ⁇ 1 (g / m 2 / day) or less, preferably 1 ⁇ 10 ⁇ 2 (g / m 2 / day). day) or less.
  • the gas barrier film after the molding process preferably has a water vapor transmission rate (WVTR) of 1 ⁇ 10 ⁇ 2 (g / m 2 / day) or less.
  • the film thickness of the gas-phase film-forming gas barrier layer is not particularly limited, but is preferably 5 to 1000 nm. If it is such a range, it will be excellent in high gas barrier performance, bending tolerance, and cutting workability. Further, the vapor deposition gas barrier layer may be composed of two or more layers.
  • the vapor phase film forming method for forming the vapor phase film forming gas barrier layer is not particularly limited.
  • An existing thin film deposition technique can be used to form the vapor deposition gas barrier layer.
  • a conventionally known vapor deposition method such as a vapor deposition method, a reactive vapor deposition method, a sputtering method, a reactive sputtering method, or a chemical vapor deposition method can be used.
  • the gas barrier layer formed by these vapor deposition methods can be manufactured by applying known conditions.
  • a raw material gas containing a target thin film component is supplied onto a base material, and the film is deposited by a chemical reaction on the surface of the base material or in the gas phase.
  • CVD chemical Vapor Deposition
  • a method of generating plasma for the purpose of activating a chemical reaction such as a thermal CVD method, a catalytic chemical vapor deposition method, a photo CVD method, or a plasma CVD method (PECVD method) using plasma as an excitation source.
  • Known CVD methods such as a vacuum plasma CVD method and an atmospheric pressure plasma CVD method may be mentioned.
  • the PECVD method is a preferable method.
  • the vacuum plasma CVD method will be described in detail as a preferred method of the chemical vapor deposition method.
  • a gas-phase film-forming gas barrier layer obtained by a vacuum plasma CVD method can produce a target compound by selecting conditions such as a raw material metal compound, decomposition gas, decomposition temperature, input power, and the like.
  • the raw material compound it is preferable to use a compound containing silicon and a compound containing metal, such as a silicon compound, a titanium compound, and an aluminum compound. These raw material compounds may be used alone or in combination of two or more.
  • known compounds can be used as these silicon compounds, titanium compounds, and aluminum compounds.
  • known compounds include those described in paragraphs [0028] to [0031] of JP2013-063658A, paragraphs [0078] to [0081] of JP2013-047002A, and the like. it can.
  • silane, tetramethoxysilane, tetraethoxysilane, hexamethyldisiloxane, etc. are mentioned.
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide
  • examples thereof include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor.
  • the decomposition gas may be used by mixing with an inert gas such as argon gas or helium gas.
  • a desired vapor deposition gas barrier layer can be obtained by appropriately selecting a source gas containing a raw material compound and a decomposition gas.
  • FIG. 17 shows an example of a schematic diagram of an inter-roller discharge plasma CVD apparatus using a roll-to-roll method, which is applied to the vacuum plasma CVD method.
  • FIG. 17 is a schematic diagram showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used in the production of a gas phase deposition gas barrier layer is applied.
  • An inter-roller discharge plasma CVD apparatus (hereinafter also simply referred to as a plasma CVD apparatus) 50 to which a magnetic field shown in FIG. 17 is applied includes a feeding roller 51, a transport roller 52, a transport roller 54, a transport roller 55, and a transport roller 57.
  • Film roller 53 and film formation roller 56, film formation gas supply pipe 59, plasma generation power source 63, magnetic field generation device 61 and magnetic field generation device 62 installed inside film formation rollers 53 and 56, winding And a roller 58.
  • at least the film forming rollers 53 and 56, the film forming gas supply pipe 59, the plasma generating power source 63, and the magnetic field generating apparatuses 61 and 62 are not shown in the vacuum.
  • electrode drums connected to the plasma generating power source 63 are installed on the film forming rollers 53 and 56. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
  • each film forming roller generates plasma so that a pair of film forming rollers (film forming roller 53 and film forming roller 56) can function as a pair of counter electrodes.
  • the power supply 63 is connected. By supplying electric power to the pair of film forming rollers from the plasma generating power source 63, it is possible to discharge into the space between the film forming roller 53 and the film forming roller 56 and generate plasma.
  • the pair of film forming rollers 53 and 56 are preferably arranged so that their central axes are substantially parallel on the same plane. By arranging the pair of film forming rollers 53 and 56 in this manner, the film forming rate can be doubled and a film having the same structure can be formed.
  • a magnetic field generator 61 and a magnetic field generator 62 which are fixed so as not to rotate even when the film forming roller rotates, are provided.
  • known rollers can be used as appropriate, and those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently.
  • the feed roller 51 and the transport rollers 52, 54, 55, 57 used in such a plasma CVD manufacturing apparatus known rollers can be appropriately selected and used.
  • the winding roller 58 is not particularly limited as long as it can wind the substrate 60 on which the vapor-phase film-forming gas barrier layer is formed, and a known roller can be appropriately used.
  • the film forming gas supply pipe 59 one capable of supplying or discharging the source gas and the oxygen gas at a predetermined rate can be appropriately used.
  • the plasma generating power source 63 a conventionally known power source of a plasma generating apparatus can be used.
  • a power source AC power source or the like
  • it is more preferable that such a plasma generating power source 63 is one that can apply electric power in a range of 100 W to 10 kW and an AC frequency in a range of 50 Hz to 500 kHz.
  • the magnetic field generators 61 and 62 known magnetic field generators can be used as appropriate.
  • a desired gas barrier layer can be produced by appropriately adjusting the conveying speed of the resin substrate.
  • a film forming gas (raw material gas or the like) is supplied into the vacuum chamber, and plasma discharge is performed while a magnetic field is generated between the pair of film forming rollers 53 and 56.
  • a gas-phase film-forming gas barrier layer is formed on the surface of the base material 60 held by the film-forming roller 53 and on the surface of the base material 60 held by the film-forming roller 56 when the film gas (source gas or the like) is decomposed by plasma. Is formed.
  • the substrate 60 is conveyed by the feed roller 51, the conveyance rollers 52, 54, 55, 57, the take-up roller 58, the film formation rollers 53, 56, etc.
  • the gas-phase film-forming gas barrier layer can be formed by a continuous roll-type film forming process.
  • Deposition gas As a film forming gas used in the plasma chemical vapor deposition method, a source gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is the same as that of the organosilicon compound in the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the whole amount.
  • organosilicon compound containing at least silicon is preferable to use as the source gas constituting the film forming gas used for the production of the vapor phase film forming gas barrier layer.
  • organosilicon compound applicable to the production of the gas-phase film-forming gas barrier layer include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane Etc.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of handling in film formation and gas barrier properties of the obtained gas-phase film formation gas barrier layer. preferable.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the film forming gas can contain oxygen gas as a reaction gas in addition to the source gas.
  • Oxygen gas is a gas that reacts with a raw material gas to become an inorganic compound such as an oxide.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
  • a film forming gas contains a source gas containing an organosilicon compound containing silicon and an oxygen gas
  • the ratio of the source gas to the oxygen gas is such that the source gas and the oxygen gas are completely reacted. It is preferable that the oxygen gas ratio is not excessively larger than the theoretically required oxygen gas ratio.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 100 Pa.
  • the electric power applied to the electrode drum connected to the plasma generating power source 63 to discharge between the film forming rollers 53 and 56 is the raw material gas. It can be appropriately adjusted according to the type, the pressure in the vacuum chamber, and the like.
  • the power applied to the electrode drum is preferably in the range of 0.1 to 10 kW, for example. If the applied power is in such a range, no particles (illegal particles) are generated, and the amount of heat generated during film formation is within the control range. Thermal deformation of the material, performance deterioration due to heat, and generation of wrinkles during film formation can be suppressed.
  • the conveyance speed (line speed) of the substrate 60 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is within the range of 0.25 to 100 m / min. Preferably, it is more preferably in the range of 0.5 to 20 m / min. If the line speed is within the range, wrinkles due to the heat of the resin base material are not easily generated, and the thickness of the gas-phase film-forming gas barrier layer to be formed can be sufficiently controlled.
  • the average value of the carbon atom content ratio in the gas barrier layer can be determined by the following XPS depth profile measurement.
  • the silicon distribution curve, oxygen distribution curve, silicon distribution curve, etc. in the thickness direction of the gas barrier layer use both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon.
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon.
  • XPS depth profile measurement in which the composition of the surface is sequentially analyzed while exposing the inside of the sample.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time).
  • the etching time is generally correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
  • the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement is referred to as “distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer”.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 3 nm or less
  • X-ray photoelectron spectrometer Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific Irradiation
  • X-ray Single crystal spectroscopy AlK ⁇ X-ray spot and size: 800 ⁇ 400 ⁇ m oval
  • the carbon distribution curve is preferably substantially continuous.
  • the carbon distribution curve is substantially continuous, specifically, the distance from the surface of the gas barrier layer in the film thickness direction of at least one of the gas barrier layers calculated from the etching rate and the etching time ( x, unit: nm) and the atomic ratio of carbon (C, unit: at%) satisfy the condition represented by [(dC / dx) ⁇ 0.5].
  • the gas barrier layer contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements of the gas barrier layer.
  • the composition continuously changes in the layer thickness direction, and the carbon distribution curve among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy satisfies the requirement (1).
  • the gas barrier layer preferably has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region.
  • the carbon distribution curve in the layer has a plurality of extreme values.
  • the carbon distribution curve has a plurality of extreme values, sufficient gas barrier properties can be obtained even when the gas barrier layer is bent.
  • the extreme value of the above distribution curve is the maximum or minimum value of the atomic ratio of the element to the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer.
  • the maximum value is an inflection point at which the value of the atomic ratio of the element changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed, and 2 in the thickness direction from the position of the inflection point. It means that the atomic ratio value of the element at a position changed by ⁇ 20 nm decreases by 1 at% or more.
  • the minimum value is an inflection point at which the atomic ratio value of the element changes from decrease to increase when the distance from the surface of the gas barrier layer is changed, and the thickness direction from the position of the inflection point
  • the atomic ratio of the element at the position changed by 2 to 20 nm is increased by 1 at% or more. That is, the maximum value and the minimum value are points where the atomic ratio value of the element decreases or increases by 1 at% or more in any range when the position in the thickness direction is changed in the range of 2 to 20 nm.
  • the gas barrier layer is characterized by containing carbon atoms, silicon atoms, and oxygen atoms as constituent elements. Preferred embodiments of the ratio of each atom and the maximum and minimum values will be described below.
  • the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio in the carbon distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. .
  • the difference between the maximum value and the minimum value of the carbon atom ratio is set to 3 at% or more, sufficient gas barrier properties can be obtained when the manufactured gas barrier layer is bent.
  • the difference between the maximum value and the minimum value is 5 at% or more, sufficient gas barrier properties can be obtained even when the gas barrier layer is bent.
  • the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the oxygen distribution curve is preferably 3 at% or more, and more preferably 5 at% or more.
  • the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the silicon distribution curve is preferably less than 10 at%, and more preferably less than 5 at%. . If the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) is less than 10 at%, the gas barrier properties and mechanical strength of the gas barrier layer can be obtained.
  • the gas barrier layer is substantially uniform in the film surface direction (direction parallel to the surface of the gas barrier layer).
  • the gas barrier layer is substantially uniform in the film surface direction.
  • the XPS depth profile measurement indicates that the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon total distribution at any two measurement points on the film surface of the gas barrier layer.
  • the thickness of the gas barrier layer is preferably in the range of 5 to 1000 nm, more preferably in the range of 20 to 500 nm, and particularly preferably in the range of 40 to 300 nm. If the thickness of the gas barrier layer is within the range, the gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties are excellent, and good gas barrier properties can be obtained even in a bent state. Further, when the total thickness of the gas barrier layers is within the range, desired flatness can be realized in addition to the above effects.
  • a method for forming a gas barrier layer that simultaneously satisfies the requirements (1) and (2) is not particularly limited, and a known method can be used. From the viewpoint of forming a gas barrier layer whose element distribution is precisely controlled, discharge plasma chemistry having a discharge space between rollers to which a magnetic field is applied using the inter-roller discharge plasma CVD apparatus shown in FIG. It is preferable to use a vapor deposition method. For example, the method described in paragraphs [0049] to [0069] of International Publication No. 2012/046767 can be referred to.
  • an inter-roller discharge plasma processing apparatus to which a magnetic field is applied is used, the substrate is wound around a pair of film forming rollers, and the film is formed between the pair of film forming rollers. It is preferable to form the gas barrier layer by a plasma chemical vapor deposition method in which plasma discharge is performed while supplying a film gas. Further, when discharging while applying a magnetic field between the pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately.
  • the surface portion of the substrate existing on one film forming roller can be formed, and the surface portion of the substrate existing on the other film forming roller can be formed simultaneously. It becomes possible. That is, since the film formation efficiency can be doubled and a film having the same structure is formed, the extreme value of the carbon distribution curve can be doubled, and the above requirements (1) and (2) can be efficiently performed simultaneously. It is possible to form a gas barrier layer that fills.
  • the base material 11 for preparing the gas barrier films 10 and 70 having a flat shape is prepared.
  • a commercially available resin film capable of satisfying the above regulations is prepared.
  • the 2nd base material 18 is bonded together to the 1st base material 17 using the adhesive layer 19, and the base material 11 of a laminated structure is produced.
  • the base material 11 the first base material 17, the second base material 18, and the pressure-sensitive adhesive layer 19, the above-described materials and conventionally known materials can be applied.
  • the second base material 18 is prepared, and then the second base material 18 is prepared.
  • the pressure-sensitive adhesive layer 19 is formed on one surface of the film.
  • the 2nd base material 18 is bonded to the back surface side of the 1st base material 17 through the adhesive layer 19. As shown in FIG.
  • the bonding method of the 2nd base material 18 to the 1st base material 17 is not specifically limited, A conventionally well-known method is applicable.
  • an on-line method in which the gas barrier layer 12 described later is formed continuously with the bonding of the second base material 18. Moreover, the 2nd base material 18 is bonded to the 1st base material 17, and the base material 11 of the laminated structure which consists of the 1st base material 17, the adhesive layer 19, and the 2nd base material 18 is wound up with a winding shaft. After that, an off-line method in which the base material 11 having a laminated structure is unwound in a separate process and the gas barrier layer 12 is formed on the surface side of the first base material 17 may be used.
  • the gas barrier layer 12 is produced on the base material 11.
  • the gas barrier layer 12 may be produced as long as a film satisfying the above-described composition can be formed, and the above-described conventionally known method can be applied as a method for forming the gas barrier layer 12.
  • the gas barrier layer 12 is produced using an inter-roller discharge plasma CVD apparatus to which a magnetic field having a configuration shown in FIG. 17 is applied.
  • a substrate (mold) having a predetermined surface shape to be used for molding the gas barrier film 10 is prepared.
  • FIG. 18 the perspective view which shows schematic structure of a board
  • a substrate 30 shown in FIG. 18 includes a substantially flat portion (flat portion) 31 provided on the peripheral side and a convex portion 32 provided on the center side surrounded by the flat portion 31.
  • the portion where the flat portion 31 of the substrate 30 abuts becomes the flat region 13 of the gas barrier film 10.
  • the portion with which the convex portion 32 abuts becomes the curved region 14 of the gas barrier film 10.
  • substrate 30 needs to have the convex part 32 corresponding to the curved-surface area
  • the convex portion 32 has a quadrangular frustum shape provided with a predetermined height from the flat portion 31.
  • the height of the convex portion 32 becomes a gap 16 with the flat plate surface (broken line 20) in the curved region 14 of the gas barrier film 10.
  • the height of the convex part 32 in the substrate 30 is 0.5 mm or more higher than the flat part 31 on average.
  • the convex portion 32 has an inclined surface forming a side surface of the quadrangular pyramid with an angle of 15 ° to 45 ° with respect to the flat portion 31, and preferably 15 ° to 30 °. It is more preferable. Moreover, it is preferable that the corner
  • the curved region 14 of the gas barrier film 10 is formed into a shape having a cubic curved surface by the side surfaces of the quadrangular pyramid and the corners around the upper surface.
  • the gas barrier It is possible to suppress a decrease in gas barrier properties of the cubic curved surface portion due to the forming process of the conductive film 10.
  • the gas barrier layer 12 side of the gas barrier film 10 is disposed so as to face the substrate 30, and a buffer layer is interposed between the gas barrier layer 12 and the substrate 30.
  • the buffer layer is preferably a protective film, a pressure-sensitive adhesive layer, an adhesive layer, or the like.
  • Examples of the method for pressing the gas barrier film 10 having a flat shape against the substrate 30 include vacuum forming using a vacuum laminating apparatus and pressure forming using a mold having a recess corresponding to the shape of the substrate 30. It is done.
  • the application of heat to the gas barrier film 10 is preferably not less than the softening temperature of the substrate 11 and preferably less than the melting point of the substrate 11. By setting the heating temperature to be equal to or higher than the softening temperature, the gas barrier film 10 can be molded quickly.
  • the molding processing time of the gas barrier film 10 is not particularly limited, and can be arbitrarily set between several seconds to 60 minutes.
  • the gas barrier film 10 can be molded.
  • what is necessary is just to select suitably according to the shape etc. which are requested
  • the molding process conditions of the gas barrier film 10 can be arbitrarily adjusted according to the configuration of the gas barrier film 10.
  • the gas barrier film 70 has a curved surface area 14 composed of a cubic curved surface portion 76 and a flat region 74 disposed in the cubic curved surface portion 76, and a flat surface disposed outside the cubic curved surface portion 76.
  • a molding method for forming the region 74 will be described.
  • a substrate (mold) having a predetermined surface shape to be used for molding the gas barrier film 70 is prepared.
  • FIG. 19 the perspective view which shows schematic structure of a board
  • a substrate 80 shown in FIG. 19 includes a substantially flat portion (flat portion) 81 provided around the frustoconical convex portion disposed in the center of the substrate 80 and on the upper bottom portion of the truncated cone.
  • a curved surface processing part 82 is provided between the peripheral flat part 81 and the central flat part 81, which is provided on the hypotenuse of the truncated cone.
  • the portion where the flat portion 81 of the substrate 80 abuts becomes the flat region 74 of the gas barrier film 70.
  • the portion with which the curved surface processed portion 82 abuts becomes the tertiary curved surface portion 76 of the gas barrier film 70.
  • the curved surface processing portion 82 of the substrate 80 needs to have a shape corresponding to the tertiary curved surface portion 76 of the gas barrier film 70.
  • the curved surface processing portion 82 is a side surface of a truncated cone provided with a predetermined height from the flat portion 81 on the peripheral side, and the height of the truncated cone (curved surface processing portion 82) is the same.
  • the height of the frustoconical convex portion on the substrate 80 is preferably 0.5 mm or more higher than the flat portion 81 on the average.
  • the width of the truncated cone (curved surface processing portion 82) is the width of the cubic curved surface portion 76.
  • the width of the oblique side of the truncated cone shape on the substrate 80 is arbitrarily set according to the area of the cubic curved surface portion 76.
  • the curved surface processing portion 82 preferably has an angle of a slope forming the side surface of the truncated cone of 15 ° or more and 45 ° or less with respect to the flat portion 81 around the convex portion of the truncated cone shape. More preferably, the angle is 15 ° or more and 30 ° or less. Moreover, it is preferable that the corner
  • the cubic curved surface portion 76 of the gas barrier film 70 is formed into a shape having a curved surface by the corners of the upper base periphery and the side surface bottom portion of the truncated cone. For this reason, even if the cubic curved surface portion 76 having a curved surface is formed by setting the corners of the upper base periphery and side surface bottom portions of the truncated cone to the shapes within the above definition, the gas barrier film 70 is molded. It is possible to suppress a decrease in gas barrier properties of the tertiary curved surface portion.
  • the gas barrier layer 12 side of the gas barrier film 70 is disposed so as to face the substrate 80, and a buffer layer is interposed between the gas barrier layer 12 and the substrate 80.
  • the buffer layer is preferably a protective film, a pressure-sensitive adhesive layer, an adhesive layer, or the like.
  • Examples of the method for pressing the gas barrier film 70 having a flat shape against the substrate 80 include vacuum forming using a vacuum laminating apparatus and pressure forming using a mold having a recess corresponding to the shape of the substrate 80. It is done.
  • the application of heat to the gas barrier film 70 is preferably not less than the softening temperature of the substrate 11 and preferably less than the melting point of the substrate 11. By setting the heating temperature to be equal to or higher than the softening temperature, the gas barrier film 70 can be quickly formed.
  • the molding processing time of the gas barrier film 70 is not particularly limited, and can be arbitrarily set between several seconds to 60 minutes.
  • the gas barrier film 70 can be molded.
  • what is necessary is just to select suitably about the shape etc. of a board
  • the molding process conditions of the gas barrier film 70 can be arbitrarily adjusted according to the configuration of the gas barrier film 70.
  • the protective film includes a protective substrate and a pressure-sensitive adhesive layer for bonding the protective substrate onto the gas barrier layer 12 of the gas barrier films 10 and 70.
  • materials used for the protective substrate and the pressure-sensitive adhesive layer are not particularly limited.
  • the protective film may be provided not only on the gas barrier layer 12 of the gas barrier films 10 and 70 but also on the substrate 11 side of the gas barrier films 10 and 70.
  • the surface of the base material 11 can be protected by providing a protective film on the base material 11 side of the gas barrier films 10 and 70.
  • a self-adhesive coextrusion stretched multilayer film can be used as the protective film.
  • self-adhesive coextrusion stretched multilayer films include self-adhesive OPP films FSA-010M, FSA-020M, FSA-050M, FSA-100M, FSA-150M, and FSA-300M manufactured by Futamura Chemical Co., Ltd. FSA-010B or the like can be used.
  • the same resin film as the base material 11 of the gas barrier films 10 and 70 described above can be used. From the viewpoint of heat resistance and optical properties, it is preferable to use polypropylene (PP), polyethylene terephthalate (PET), or polyethylene naphthalate (PEN) as the protective substrate.
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the protective substrate may be a single resin film or a plurality of resin films, or may be formed of a plurality of layers.
  • the protective substrate is not limited to a single wafer shape and a roll shape, but a roll shape that can be handled by a roll-to-roll method is preferable from the viewpoint of productivity.
  • the thickness of the protective substrate is not particularly limited, but is preferably about 5 to 500 ⁇ m, and more preferably 25 to 150 ⁇ m. If the thickness of the protective substrate is 5 ⁇ m or more, the thickness becomes a sufficient thickness that is easy to handle. Moreover, if the thickness of a protective base material is 500 micrometers or less, it has sufficient softness
  • An adhesive layer is comprised including an adhesive.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is not particularly limited as long as the pressure-sensitive adhesive force required for the protective film can be obtained, and conventionally known materials can be used.
  • As the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer a pressure-sensitive pressure-sensitive adhesive is preferable.
  • the pressure sensitive adhesive has cohesive strength and elasticity, and can maintain stable adhesiveness for a long time. Moreover, when forming an adhesive layer, requirements, such as a heat
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer a material having excellent transparency is preferable.
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer include pressure-sensitive adhesives including epoxy resins, acrylic resins, rubber resins, urethane resins, vinyl ether resins, and silicon resins.
  • a solvent type, an emulsion type, and a hot melt type can be used as the form of the pressure-sensitive adhesive.
  • an acrylic pressure-sensitive adhesive is preferable from the viewpoints of durability, transparency, and ease of adjustment of pressure-sensitive adhesive properties.
  • the acrylic pressure-sensitive adhesive is obtained by adding an acrylic polymer having an acrylic acid alkyl ester as a main component and copolymerizing a polar monomer component thereto.
  • the alkyl acrylate ester is an alkyl ester of acrylic acid or methacrylic acid and is not particularly limited.
  • ethyl acrylate isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, (meth ) Pentyl acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, and the like.
  • Toyo Ink BPS5978 can be used.
  • an isocyanate-based, epoxy-based, or alidiline-based curing agent can be used as the curing agent for the acrylic pressure-sensitive adhesive.
  • an isocyanate curing agent it is preferable to use an aromatic system such as toluylene diisocyanate (TDI) in order to obtain a stable adhesive force even after long-term storage and to form a harder adhesive layer.
  • TDI toluylene diisocyanate
  • Toyo Ink BXX5134 can be used.
  • the addition amount of the curing agent is preferably 3% by mass to 9% by mass and more preferably 5% by mass to 7% by mass with respect to the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive component can be sufficiently cured, sufficient adhesive force can be secured, and after the protective film is peeled off from the gas barrier film 10, 70, the gas barrier film 10, The pressure-sensitive adhesive layer hardly remains on the 70 side.
  • the weight average molecular weight of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably 400,000 or more and 1.4 million or less. If the weight average molecular weight is a value within this range, the adhesive force is rarely excessive, and the adhesive force can be obtained within a necessary range. Furthermore, if it is the range of said weight average molecular weight, the residual of the adhesive layer to the gas barrier films 10 and 70 side after peeling can be prevented.
  • various additives can be used from the viewpoint of improving the physical properties of the pressure-sensitive adhesive layer.
  • natural resins such as rosin, modified rosin, rosin and modified rosin derivatives, polyterpene resins, terpene modified products, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, phenolic resins, alkyl- Tackifiers such as phenol-acetylene resins, coumarone-indene resins, vinyltoluene- ⁇ -methylstyrene copolymers, anti-aging agents, stabilizers, and softeners can be used as necessary. . Two or more of these may be used as necessary.
  • organic ultraviolet absorbers such as a benzophenone series and a benzotriazole series, can also be added to an adhesive.
  • the thickness of the pressure-sensitive adhesive layer is preferably 10 ⁇ m or more and 50 ⁇ m or less for easy handling of the protective film. If it is such a range, sufficient contact
  • the method for forming (coating) the pressure-sensitive adhesive layer on the surface of the protective substrate is not particularly limited.
  • the pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive on a protective substrate using a screen method, a gravure method, a mesh method, a bar coating method, or the like, and drying or curing.
  • An adhesive bond layer is a layer for protecting the surface of the gas barrier layer 12 of the gas barrier films 10 and 70 similarly to the above-mentioned protective film and adhesive layer.
  • the adhesive used as the adhesive layer is preferably one that can be adhesively cured from room temperature to 80 ° C.
  • the adhesive may be applied using a commercially available dispenser or screen printing.
  • the adhesive layer examples include photocurable or thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, moisture curable adhesives such as 2-cyanoacrylates, and epoxy.
  • Thermosetting or chemical curable (two-component mixed) adhesives such as hot-melt adhesives, hot-melt type polyamide-based, polyester-based, polyolefin-based adhesives, cationic-curing type UV-curable epoxy resin adhesives, etc. .
  • the base material 1 having a hard coat layer formed on both sides of the support was produced by the following method.
  • a hard coat coating solution HC1 in which the following materials were mixed was prepared.
  • Polymerizable binder SR368 manufactured by Sartomer 12.0 parts by mass
  • Polymerized binder Beam set 575 manufactured by Arakawa Chemical Co., Ltd. 22.0 parts by mass
  • Polymerization initiator Irgacure 651 manufactured by BASF Co.
  • Solvent Propylene glycol monomethyl ether 65 .0 parts by mass
  • HC1 was applied to one side of a support (PET film) so that the dry film thickness was 4 ⁇ m, dried, and then irradiated with ultraviolet rays under the condition of 500 mJ / cm 2. Cured and wound up.
  • a hard coat layer having a thickness of 4 ⁇ m is formed on the opposite surface of the support (PET film) in the same manner as described above, and further, a PET film (second substrate) having a thickness [Y] of 50 ⁇ m is formed.
  • the protective film provided with the slightly adhesive layer was bonded inline on the hard coat layer on the opposite side, and then wound up.
  • Substrate 2 As a support, prepared by Teijin DuPont Films Co., Ltd., a 23 ⁇ m-thick PET film having an easy-adhesion layer on both sides, KFL12W # 23 was prepared, and HC2 was used as a hard coat coating solution.
  • the base material 2 was produced by the method.
  • a base material 3 was prepared in the same manner as the base material 1 except that a 100 ⁇ m-thick PET film having an easy-adhesion layer on both sides and Lumirror U34 were prepared as a support.
  • the film forming conditions in the first film forming unit and the second film forming unit were set to any of the conditions C1 to C14 shown in Table 1 below. And in each film-forming part, the gas barrier layer was produced by applying one of the conditions of C1-C14. As common conditions for C1 to C14, the film formation effective width was converted to 1000 mm, the power supply frequency was 80 kHz, and the film formation roll temperature was 10 ° C.
  • the gas barrier layer in forming the gas barrier layer, an apparatus having two film forming units (a first film forming unit and a second film forming unit) is used, so that two layers each time the substrate is passed through the film forming apparatus.
  • the gas barrier layer is formed.
  • the first film formation transports the substrate from the first film formation unit to the second film formation unit (forward direction), and the second film formation starts from the second film formation unit.
  • the substrate was transported toward the first film forming unit (reverse direction).
  • the substrate in the odd-numbered film formation, the substrate is transported from the first film-forming unit to the second film-forming unit (forward direction), and in the even-numbered film formation, the first film-forming unit starts from the second film-forming unit.
  • the base material was conveyed toward the film part (reverse direction).
  • the base materials 1 to 3, the film formation conditions C1 to C14 and the number of film formations are selected from the combinations shown in Table 2 below to produce gas barrier films of samples 101 to 122, and further molded by the following method. processed.
  • SiO 2 was produced as a gas barrier layer by a conventional method using a roll-to-roll type sputtering film forming apparatus.
  • sputtering film formation a polycrystalline Si target was used as a target, and oxygen was introduced to adjust the composition to SiO 2 .
  • the film thickness was adjusted by adjusting the sputtering rate and the conveyance speed.
  • a metal substrate 30 having a flat portion 31 and a quadrangular pyramid-shaped convex portion 32 provided at the center of the flat portion 31 shown in FIG. 18 was prepared.
  • the upper surface of the convex portion 32 of the quadrangular pyramid is approximately 24 ⁇ 24 mm, and the angle of each hypotenuse of the quadrangular pyramid with respect to the flat portion 31 is 20 degrees.
  • the convex part 32 of the quadrangular pyramid is rounded around the upper surface with a radius of 0.5 mm.
  • five types of substrates 30 having different heights of the convex portions 32 of 0.2 mm, 0.6 mm, 0.8 mm, 1.0 mm, or 1.2 mm were prepared.
  • both sides of the gas barrier film were bonded using FSA-020M manufactured by Phutamura Chemical Co., Ltd. as a protective film to prepare a gas barrier film laminate.
  • the gas barrier film laminate is opposed to the substrate so that the gas barrier layer of the gas barrier film is on the substrate 30 side, the substrate 30 is heated to 100 ° C. using a vacuum laminating apparatus, and the molding processing time is 10 minutes. As described above, a gas barrier film was molded.
  • the XPS analysis was measured at 2.8 nm intervals in the thickness direction. Further, in determining the composition of SiOxCy constituting the gas barrier layer, the measurement points on the surface layer of the gas barrier layer were excluded because of the influence of the surface adsorbate. In addition, in the gas barrier layer, the thickness within the range of ABCD and ABEF described above is such that the composition immediately below the surface layer and the composition at the second measurement point from the surface layer are close because the film is continuously formed. The thickness was measured on the assumption that the composition of the second measurement point from the surface layer was continuously formed up to the surface position.
  • the surface of the gas barrier layer was measured using an optical interference type three-dimensional surface roughness measuring apparatus (WYKO NT9300 manufactured by Veeco) to obtain three-dimensional surface roughness data.
  • WYKO NT9300 manufactured by Veeco
  • the maximum when the data is displayed as a histogram When the peak height position was 0, protrusions having a height of 10 nm or more were counted and calculated as the number per mm 2 .
  • the number of protrusions of the obtained gas barrier layer was evaluated according to the following criteria (rank). Less than 5:10 pieces / mm 2 4:10 pieces / mm 2 or more, 50 / mm 2 less than 3:50 pieces / mm 2 or more, 100 / mm 2 less than 2: 100 pieces / mm 2 or more, 200 / Less than mm 2 1: 200 / mm 2 or more
  • the water vapor transmission rate (WVTR) was determined using the following Ca method evaluation. In the evaluation of each sample, when Ca was completely corroded at the time of storage for 2 hours, the water vapor transmission rate (WVTR) was set to 1.5 (g / m 2 / d) or more.
  • the shape of the quadrangular frustum-shaped convex portion 42 is the same as the shape of the substrate used for the molding process of the gas barrier film described above. That is, five types of glass substrates 40 each having a height of the convex portion 42 of 0.2 mm, 0.6 mm, 0.8 mm, 1.0 mm, or 1.2 mm were prepared.
  • calcium (Ca: corrosive metal) is vapor-deposited in the center of the convex portion 42 of the glass substrate 40 with an area of 20 mm ⁇ 20 mm using a vacuum evaporation apparatus JEE-400 manufactured by JEOL Ltd., and the thickness is 80 nm.
  • the Ca layer 43 was prepared.
  • the surface of the gas barrier layer was cleaned under a condition of 6 J / cm 2 using a UV cleaning device. Further, the gas barrier film was dried in a glove box.
  • a gas barrier film was bonded and sealed on the glass substrate 40 on which the Ca layer 43 was formed using an adhesive (manufactured by ThreeBond 1655) to prepare a Ca method evaluation sample.
  • the gas barrier film to which the adhesive was bonded was left in a glove box (GB) for one day and night in order to remove the moisture of the adhesive and the adsorbed water on the surface of the gas barrier film.
  • TB3124 (20 ⁇ m gap agent included) manufactured by ThreeBond Co., Ltd. as a sealing adhesive was applied to the flat portion 41 of the glass substrate 40 using a dispenser.
  • the sealing adhesive application position and application amount do not run on the Ca deposition part when the flat part around the molded gas barrier film is adhered and pressed to increase the adhesive thickness to 20 ⁇ m. And it adjusted so that it might not protrude from the circumference.
  • the Ca method evaluation sample was stored in an environment of 40 ° C. and 90% RH, and images of Ca corrosion state were taken under transmission conditions at regular intervals.
  • the amount of Ca corrosion was calculated from the concentration change of the Ca vapor deposition part, and WVTR was calculated under the condition that the evaluation area was 20 mm ⁇ 20 mm.
  • the gas barrier layer contains silicon, oxygen, and carbon, and y ⁇ 0.20 or y> 1.40 when represented by SiOxCy.
  • the sum of the thickness of the region having the composition is less than 20 nm. For this reason, even if it is molded into a shape having a gap of 0.5 mm or more in the bent region, the water vapor transmission rate (WVTR) is sufficiently low.
  • the water vapor permeability (WVTR) is 1 ⁇ 10 ⁇ 2 (g / m 2 / day) or less, and the gas barrier property is particularly good. This is because when the number of maximum values in the carbon distribution curve is large, the number of layers in the gas barrier layer where the composition continuously changes increases. This is probably because the fine cracks that were easily covered with other regions became difficult to penetrate the gas barrier layer.
  • the gas barrier films of Samples 101 to 113 have a composition that falls within the range of the above four points of ABCD in the distribution of (x, y) for each thickness in the composition represented by SiOxCy, in the thickness direction of the gas barrier layer. 40 nm to 200 nm.
  • the thickness of the composition within the range of the four points of ABEF described above was the same as the thickness of the composition within the range of the four points of ABCD.
  • the total thickness of regions having a composition of y ⁇ 0.20 or y> 1.40 in the composition of SiOxCy is more than 20 nm and 110 nm or more.
  • the thickness of the region having an extremely large oxygen ratio or carbon ratio is large, cracks are likely to occur, and cracks are likely to propagate to the entire gas barrier layer. it is conceivable that.
  • the gas barrier films of Samples 118 to 122 having a gas barrier layer of SiO 2 composition formed by sputtering film formation have a water vapor transmission rate (WVTR) of 1 ⁇ 10 ⁇ 1 (g / m 2 / day) or more. .
  • WVTR water vapor transmission rate
  • the gas barrier films of the sample 118 having a small gap of 0.2 mm in the bent region the water vapor permeability (WVTR) is 0.15 (g / m 2 / day), and the gas barrier properties of the samples 101 to 113 are as follows. Water vapor transmission rate (WVTR) is worse than film.
  • the gas barrier layer contains silicon, oxygen, and carbon, and y ⁇ 0.20 or y> 1.40 when represented by SiOxCy.
  • the sum of the thickness of the region having the composition is less than 20 nm.
  • the gas barrier films of Samples 201 to 206 have a composition that falls within the range of the four points of ABCD described above in the distribution of (x, y) for each thickness in the composition expressed by SiOxCy. 40 nm to 200 nm.
  • the thickness of the composition within the range of 4 points of the above-described ABEF was also the same as the thickness of the composition within the range of 4 points of ABCD. For this reason, even if it is molded into a shape having a gap of 0.5 mm or more in the bent region, the water vapor transmission rate (WVTR) is sufficiently low.
  • the gas barrier films of the sample 207 and the sample 208 have a SiOxCy composition in which the total thickness of regions having a composition of y ⁇ 0.20 or y> 1.40 exceeds 20 nm and is 122 nm or more. is there.
  • the thickness of the region having an extremely large oxygen ratio or carbon ratio is large, cracks are likely to occur, and cracks are likely to propagate to the entire gas barrier layer. it is conceivable that.
  • the gas barrier films of Samples 209 to 211 having a gas barrier layer of SiO 2 composition formed by sputtering film formation have a water vapor transmission rate (WVTR) of 1 ⁇ 10 ⁇ 1 (g / m 2 / day) or more. .
  • WVTR water vapor transmission rate
  • the gas barrier films of the sample 209 having a small gap of 0.2 mm in the bent region the water vapor permeability (WVTR) is 0.14 (g / m 2 / day), and the gas barrier properties of the samples 201 to 206 are as follows. Water vapor transmission rate (WVTR) is worse than film.
  • the base material 1 and the base material 2 were produced by the same method as in Example 1 described above. Further, in the same manner as in Example 1 described above, in the inter-roller discharge plasma CVD apparatus using the roll-to-roll method shown in FIG. The conditions of C14 were set.
  • a metal substrate 80 having a truncated cone-shaped convex portion formed at the center was prepared.
  • the convex shape of the truncated cone has a lower bottom radius of 56 mm and an upper bottom radius of 50 mm.
  • the height of the truncated cone is 1 mm
  • the width of the hypotenuse that becomes the side surface of the truncated cone is 3 mm.
  • the corner between the flat portion 81 and the curved surface processing portion 82 is rounded with a curvature radius of 0.5 mm.
  • the side surface of the truncated cone has a projected area of 499.5 mm 2 in a state where the corners are not rounded. This corresponds to about 10% of 5000 mm 2 which is a measurement area of Aquatran MODEL1 (manufactured by Mocon) used for water vapor permeability (WVTR) evaluation described later.
  • the side surface of this truncated cone has a ratio of projected area / measured area of 1.054. Even if the corners are rounded, these numbers are almost the same. Accordingly, when molding is performed using the substrate 80, the measured area of the curved surface area becomes 5% or more larger than the projected area.
  • both sides of the gas barrier film were bonded using FSA-020M manufactured by Phutamura Chemical Co., Ltd. as a protective film to prepare a gas barrier film laminate.
  • the gas barrier film laminate is made to face the substrate so that the gas barrier layer of the gas barrier film is on the substrate 80 side, the substrate 80 is heated to 100 ° C. using a vacuum laminating apparatus, and the molding processing time is 10 minutes. As described above, a gas barrier film was molded.
  • the surface protective film and the back surface protective film were peeled off from the gas barrier film.
  • Each gas barrier film was set in a measurement chamber of a water vapor transmission rate measuring device (trade name: Aquatran Model 1 manufactured by Mocon) so that the surface on which the gas barrier layer was formed was on the detection side of the device.
  • the gas barrier film was set so that the portion subjected to the cubic curved surface processing was approximately the center of the measurement chamber.
  • the water vapor permeability (WVTR) of the gas barrier film was measured in an atmosphere of 38 ° C. and 100% RH.
  • WVTR water vapor permeability
  • the gas barrier layer contains silicon, oxygen, and carbon, and the number of protrusions on the surface of the gas barrier layer is 100 pieces / mm 2 or less. For this reason, in the region of 10% of the projected area of the gas barrier film, the water vapor transmission rate (WVTR) is sufficient even after the molding process is performed to form a curved region where the measured area is 5% or more larger than the projected area. Very low.
  • the gas barrier films of Samples 301 to 309 have a composition that falls within the range of the above four points of ABCD in the distribution of (x, y) for each thickness in the composition represented by SiOxCy, in the thickness direction of the gas barrier layer. 40 nm to 200 nm.
  • the thickness of the composition within the range of the four points of ABEF described above was the same as the thickness of the composition within the range of the four points of ABCD.
  • the gas barrier film of the sample 308 has a sufficient gas barrier property with a water vapor transmission rate (WVTR) of 0.1 (g / m 2 / day) or less, but compared with the sample 301, the sample 302, and the like.
  • the gas barrier property with respect to the thickness is low. This is because the gas barrier film such as the sample 301 or the sample 302 has a C / Si ratio of 0.95 or more or 0.7 or less because the region having a composition of 90% or more is C / Si 0.95 or more or This is presumably because the gas barrier property is easier to improve than the sample 308 in which the region having a composition of 0.7 or less is less than 80%.
  • the gas barrier films of Samples 310 to 313 having a low evaluation of the number of surface protrusions of the gas barrier layer, and the gas barrier films of Samples 314 to 316 having a gas barrier layer having a SiO 2 composition formed by sputtering deposition are [B].
  • WVTR water vapor transmission rate
  • [B] water vapor permeability / [A] water vapor permeability is 5 or more.
  • the gas barrier films of Samples 301 to 309 have a total thickness of less than 20 nm with a region having a composition of y ⁇ 0.20 or y> 1.40 when expressed in SiOxCy.
  • the total thickness of regions having a composition of y ⁇ 0.20 or y> 1.40 exceeds 110 nm and is 110 nm or more in the composition of SiOxCy. .
  • the thickness of the region having an extremely large oxygen ratio or carbon ratio is large, cracks are likely to occur, and cracks are likely to propagate to the entire gas barrier layer. it is conceivable that.
  • the gas barrier layer contains silicon, oxygen, and carbon, and the number of protrusions on the surface is small, so that the measured area is 5% or more larger than the projected area in the area of 9 to 11% of the projected area. Even when this is performed, a gas barrier film with little deterioration of water vapor permeability can be realized. Furthermore, when the gas barrier layer is represented by SiOxCy, the total thickness of the regions having a composition of y ⁇ 0.20 or y> 1.40 is less than 20 nm, so that the gas barrier film is less deteriorated in water vapor permeability. Can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

When the composition of a gas barrier layer is represented by SiOxCy, the total of the region with a y<0.20 composition and the region with a y>1.40 composition of a gas barrier film is less than 20 nm in the thickness direction. Moreover, the gas barrier film has a region that is substantially flat and a region with a three-dimensionally curved surface surrounded by the flat region, and a 0.5 mm or greater average gap is formed between the region with the three-dimensionally curved surface and a flat plate.

Description

ガスバリア性フィルム、及び、ガスバリア性フィルムの成形加工方法Gas barrier film and method for molding gas barrier film
 本発明は、ガスバリア層を備えるガスバリア性フィルム、及び、ガスバリア性フィルムの成形加工方法に係わる。 The present invention relates to a gas barrier film having a gas barrier layer and a method for forming the gas barrier film.
 ガラス基板を用いた有機エレクトロルミネッセンス(EL)素子の封止部材として、基板に対向する側が開放された箱型形状で、外側四辺に形成されたフランジを有し、曲面を有する金属封止缶が知られている(特許文献1参照)。このような封止缶は、空隙に乾燥剤を充填することが可能であり、素子の耐久性を向上させる設計がしやすい。一方で、金属であるために、重い、可撓性に乏しい、曲げた際に金属面が素子と接触し破損する等の欠点を有している。 As a sealing member of an organic electroluminescence (EL) element using a glass substrate, a metal sealing can having a curved surface having a flange shape formed on the outer four sides in a box shape with the side facing the substrate open. It is known (see Patent Document 1). Such a sealing can can be filled with a desiccant in the gap and can be easily designed to improve the durability of the element. On the other hand, since it is a metal, it has drawbacks such as being heavy, poor in flexibility, and being damaged when the metal surface comes into contact with the element when bent.
 また、曲率が大きい曲面において、クラックの発生を抑制することが可能なガスバリア層が提案されている(特許文献2参照)。このガスバリア層は、ケイ素、炭素、及び水素を含むプラズマ蒸着非晶質ガラス層が、蒸着法によってフィルム上に形成されている。 Further, a gas barrier layer that can suppress the occurrence of cracks on a curved surface having a large curvature has been proposed (see Patent Document 2). In the gas barrier layer, a plasma-deposited amorphous glass layer containing silicon, carbon, and hydrogen is formed on the film by a vapor deposition method.
特開2003-272826号公報JP 2003-272826 A 特表2013-512257号公報Special table 2013-512257 gazette
 しかしながら、ガスバリア層としてプラズマ蒸着非晶質ガラス層を形成する方法では、ガスバリア層に有機成分が多く含有されるため、WVTRが数g程度と非常に大きい。このため、曲面を有する形状に成型できたとしても、高いバリア性が要求される電子デバイスの封止への適用には、バリア性が不十分である。
 このように、高いバリア性を有し、かつ、曲面を有するガスバリア性フィルムが望まれている。
However, in the method of forming a plasma-deposited amorphous glass layer as a gas barrier layer, since the organic component is contained in the gas barrier layer, the WVTR is as large as several g. For this reason, even if it can be molded into a shape having a curved surface, the barrier property is insufficient for application to sealing of electronic devices that require high barrier properties.
Thus, a gas barrier film having a high barrier property and a curved surface is desired.
 上述した問題の解決のため、本発明においては、高いバリア性を有し、曲面を有するガスバリア性フィルムを提供する。 In order to solve the above problems, the present invention provides a gas barrier film having a high barrier property and a curved surface.
 本発明のガスバリア性フィルムは、基材と、基材上に形成されたガスバリア層とを備える。そして、ガスバリア層が、ケイ素、酸素、及び、炭素を含有し、ガスバリア層の組成をSiOxCyで表した際に、y<0.20の組成を有する領域とy>1.40の組成を有する領域との合計が、厚さ方向に20nm未満である。さらに、ガスバリア性フィルムが、実質的に平坦な領域と、平坦な領域に囲まれた3次曲面を有する領域とを有し、平坦な領域を平板に接した際に、3次曲面を有する領域が平板と接触せず、3次曲面を有する領域と平板との間に平均0.5mm以上の間隙が形成される。 The gas barrier film of the present invention includes a base material and a gas barrier layer formed on the base material. The gas barrier layer contains silicon, oxygen, and carbon, and when the composition of the gas barrier layer is expressed by SiOxCy, a region having a composition of y <0.20 and a region having a composition of y> 1.40. Is less than 20 nm in the thickness direction. Further, the gas barrier film has a substantially flat region and a region having a cubic curved surface surrounded by the flat region, and a region having a cubic curved surface when the flat region is in contact with the flat plate. Are not in contact with the flat plate, and an average gap of 0.5 mm or more is formed between the region having the cubic curved surface and the flat plate.
 本発明によれば、高いバリア性を有し、曲面を有するガスバリア性フィルムを提供することができる。 According to the present invention, a gas barrier film having a high barrier property and a curved surface can be provided.
ガスバリア性フィルムの構成を示す平面図である。It is a top view which shows the structure of a gas barrier film. 図1に示すガスバリア性フィルムのA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA of the gas barrier film shown in FIG. ガスバリア性フィルムの構成を示す断面図である。It is sectional drawing which shows the structure of a gas barrier film. ガスバリア層のケイ素、炭素、酸素の分布曲線を示すグラフである。It is a graph which shows the distribution curve of the silicon of a gas barrier layer, carbon, and oxygen. ガスバリア層のC/Si比、O/Si比の分布曲線を示すグラフである。It is a graph which shows the distribution curve of C / Si ratio of a gas barrier layer, and O / Si ratio. ガスバリア層のケイ素、炭素、酸素の分布曲線を示すグラフである。It is a graph which shows the distribution curve of the silicon of a gas barrier layer, carbon, and oxygen. ガスバリア層のC/Si比、O/Si比の分布曲線を示すグラフである。It is a graph which shows the distribution curve of C / Si ratio of a gas barrier layer, and O / Si ratio. ガスバリア層を構成するSiOxCyの組成を表す直交座標である。It is an orthogonal coordinate showing the composition of SiOxCy which comprises a gas barrier layer. ガスバリア層を構成するSiOxCyの組成を表す直交座標である。It is an orthogonal coordinate showing the composition of SiOxCy which comprises a gas barrier layer. ガスバリア層を構成するSiOxCyの組成を表す直交座標である。It is an orthogonal coordinate showing the composition of SiOxCy which comprises a gas barrier layer. ガスバリア層を構成するSiOxCyの組成を表す直交座標である。It is an orthogonal coordinate showing the composition of SiOxCy which comprises a gas barrier layer. ガスバリア層の三次元表面粗さ変換データの高さを表示した画像である。It is the image which displayed the height of the three-dimensional surface roughness conversion data of a gas barrier layer. ガスバリア層の三次元表面粗さ変換データの高さを表示した画像である。It is the image which displayed the height of the three-dimensional surface roughness conversion data of a gas barrier layer. ガスバリア層の三次元表面粗さ変換データの高さを表示した画像である。It is the image which displayed the height of the three-dimensional surface roughness conversion data of a gas barrier layer. ガスバリア性フィルムの構成を示す平面図である。It is a top view which shows the structure of a gas barrier film. 図1に示すガスバリア性フィルムのA-A線断面図である。FIG. 2 is a cross-sectional view taken along line AA of the gas barrier film shown in FIG. ローラー間放電プラズマCVD装置の一例を示す模式図である。It is a schematic diagram which shows an example of the discharge plasma CVD apparatus between rollers. ガスバリア性フィルムの成型加工に用いる基板の構成を示す図である。It is a figure which shows the structure of the board | substrate used for the shaping | molding process of a gas barrier film. 実施例において水蒸気透過度(WVTR)を評価するための試料の構成を示す図である。It is a figure which shows the structure of the sample for evaluating water vapor permeability (WVTR) in an Example. ガスバリア性フィルムの成型加工に用いる基板の構成を示す図である。It is a figure which shows the structure of the board | substrate used for the shaping | molding process of a gas barrier film. 実施例における曲面領域の形状を示す図である。It is a figure which shows the shape of the curved surface area | region in an Example.
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.ガスバリア性フィルムの第1実施形態
2.ガスバリア性フィルムの第2実施形態
3.ガスバリア性フィルムの構成要素
4.ガスバリア性フィルムの成形加工方法
Hereinafter, although the example of the form for implementing this invention is demonstrated, this invention is not limited to the following examples.
The description will be given in the following order.
1. 1. First embodiment of gas barrier film 2. Second embodiment of gas barrier film 3. Components of gas barrier film Method for forming gas barrier film
〈1.ガスバリア性フィルムの第1実施形態〉
 以下、ガスバリア性フィルムの具体的な実施の形態について説明する。
<1. First Embodiment of Gas Barrier Film>
Hereinafter, specific embodiments of the gas barrier film will be described.
[ガスバリア性フィルムの構成]
 図1及び図2に、ガスバリア性フィルムの構成を示す。図1は、ガスバリア性フィルムの平面図である。図2は、図1に示すガスバリア性フィルム10のA-A線断面図である。
[Configuration of gas barrier film]
1 and 2 show the structure of the gas barrier film. FIG. 1 is a plan view of a gas barrier film. FIG. 2 is a cross-sectional view taken along line AA of the gas barrier film 10 shown in FIG.
 図1及び図2に示すように、ガスバリア性フィルム10は、基材11と、基材11の一方の面に形成されたガスバリア層12とを備える。なお、基材11とガスバリア層12とを備えるガスバリア性フィルム10は、後述する各構成及び条件を満たしていれば、その他の構成については特に限定されない。 1 and 2, the gas barrier film 10 includes a base material 11 and a gas barrier layer 12 formed on one surface of the base material 11. In addition, if the gas-barrier film 10 provided with the base material 11 and the gas barrier layer 12 satisfy | fills each structure and conditions mentioned later, it will not specifically limit about another structure.
 また、図1及び図2に示すように、ガスバリア性フィルム10は、実質的に平坦な領域(平坦領域)13と、平坦領域13に囲まれた3次曲面を有する領域(曲面領域)14とを備える。曲面領域は、ガスバリア性フィルム10の一方の面に凹部が形成され、他方の面に凸部が形成される。図2に示すガスバリア性フィルム10の曲面領域14では、ガスバリア層12側が凹部を有する面となり、基材11側が凸部を有する面である。 As shown in FIGS. 1 and 2, the gas barrier film 10 includes a substantially flat region (flat region) 13 and a region (curved region) 14 having a cubic curved surface surrounded by the flat region 13. Is provided. In the curved region, a concave portion is formed on one surface of the gas barrier film 10, and a convex portion is formed on the other surface. In the curved region 14 of the gas barrier film 10 shown in FIG. 2, the gas barrier layer 12 side is a surface having a concave portion, and the base material 11 side is a surface having a convex portion.
 また、図2では、ガスバリア性フィルム10のガスバリア層12側(凹部を有する面側)において、ガスバリア性フィルム10に接する平板の表面の位置を破線20で示している。なお、この平板はガスバリア性フィルム10の形状を説明するために図示するものであり、ガスバリア性フィルム10の構成には含まれない。 In FIG. 2, the position of the surface of the flat plate in contact with the gas barrier film 10 on the gas barrier layer 12 side (the surface side having the recesses) of the gas barrier film 10 is indicated by a broken line 20. This flat plate is illustrated for explaining the shape of the gas barrier film 10 and is not included in the configuration of the gas barrier film 10.
 平坦領域13は、ガスバリア性フィルム10において、周縁側に設けられている。ガスバリア性フィルム10の平坦領域13において、実質的に平坦とは、図2に示すように、ガスバリア性フィルム10のガスバリア層12側(凹部を有する面側)を、平板に接して際に、平坦領域13と平板の表面(破線20)との間隙15が0.1mm以下であることを示す。なお、平坦領域13は、ガスバリア性フィルム10を電子デバイス等に適用した際に、デバイス領域から電極を取り出す部分が形成される領域に該当する。このため、「実質的に平坦な領域」においても配線等に起因する0.1mm以下の僅かな凹凸が形成されている構成も含まれる。 The flat region 13 is provided on the peripheral side of the gas barrier film 10. In the flat region 13 of the gas barrier film 10, “substantially flat” means that, as shown in FIG. 2, the gas barrier film 10 is flat when the gas barrier layer 12 side (surface side having a recess) is in contact with a flat plate. It shows that the gap 15 between the region 13 and the surface of the flat plate (broken line 20) is 0.1 mm or less. In addition, the flat area | region 13 corresponds to the area | region in which the part which takes out an electrode from a device area | region is formed when the gas barrier film 10 is applied to an electronic device etc. For this reason, the configuration in which slight unevenness of 0.1 mm or less due to wiring or the like is formed also in the “substantially flat region”.
 曲面領域14は、ガスバリア性フィルム10において、中央側に設けられている。ガスバリア性フィルム10の曲面領域14において、一方の面側に形成される凹部と、ガスバリア性フィルム10に接する平板の表面(破線20)との間隙16は、平均0.5mm以上である。 The curved surface region 14 is provided on the center side in the gas barrier film 10. In the curved region 14 of the gas barrier film 10, the gap 16 between the recess formed on one surface side and the surface of the flat plate (broken line 20) in contact with the gas barrier film 10 is 0.5 mm or more on average.
 ガスバリア性フィルム10は、曲面領域14において凹部が形成される面側(ガスバリア層12側)の形状で規定される。このため、凸部が形成される面側(基材11側)の形状については特に限定されない。一般的には、基材11の変形に追従して、ガスバリア層12の形状も変形するため、曲面領域14において凹部が形成される面側(ガスバリア層12側)の形状と、凸部が形成される面側(基材11側)の形状とは、厚さによるずれを除き、ほぼ一致する。 The gas barrier film 10 is defined by the shape of the surface side (gas barrier layer 12 side) where the concave portion is formed in the curved region 14. For this reason, it does not specifically limit about the shape by the side of the surface (base material 11 side) in which a convex part is formed. In general, the shape of the gas barrier layer 12 is also deformed following the deformation of the base material 11, so that the shape on the surface side (gas barrier layer 12 side) where the concave portion is formed in the curved region 14 and the convex portion are formed. The shape on the surface side (base material 11 side) to be applied substantially matches except for the deviation due to the thickness.
 ガスバリア性フィルム10のような曲面領域14を有する形状を形成する方法としては、曲面領域14を有する基材11に直接ガスバリア層12を形成する方法、又は、平板のガスバリア性フィルム10を形成した後、曲面領域14を有する形状に成形加工する方法が考えられる。しかし、曲面領域14を有する基材11に直接ガスバリア層12を形成する方法では、曲面領域14における3次曲面へのガスバリア層12の被覆性に問題が有るため、3次曲面を有する領域においてガスバリア層12に成膜不良が発生しやすい。このため、曲面領域14を有する基材11に直接ガスバリア層12を形成する方法では、ガスバリア性フィルム10のガスバリア性の向上が困難である。 As a method of forming a shape having the curved region 14 like the gas barrier film 10, a method of directly forming the gas barrier layer 12 on the substrate 11 having the curved region 14, or after forming the flat gas barrier film 10. A method of forming into a shape having the curved region 14 can be considered. However, in the method in which the gas barrier layer 12 is directly formed on the base material 11 having the curved region 14, there is a problem in the coverage of the gas barrier layer 12 on the cubic surface in the curved region 14, and therefore the gas barrier is in the region having the cubic surface. Deposition failure tends to occur in the layer 12. For this reason, it is difficult to improve the gas barrier property of the gas barrier film 10 by the method of directly forming the gas barrier layer 12 on the base material 11 having the curved region 14.
 一方、平板のガスバリア性フィルム10を形成した後、曲面領域14を有する形状に成形加工する方法では、まず、平坦な基材11上にガスバリア層12を成膜して平坦な形状のガスバリア性フィルム10を作製する。そして、平坦な形状のガスバリア性フィルム10を、所定の表面形状を有する基板(金型)に押しつけた状態で、基材11の軟化温度以上、例えば80℃以上の熱を印加する。これにより、ガスバリア性フィルム10を、所定の形状に成形(塑性加工)する。このようなガスバリア性フィルム10を成形加工する方法では、上述の3次曲面を有する領域での成膜性の低下による、ガスバリア層12の成膜不良が発生しにくい。このため、曲面領域14において平均0.5mm以上の間隙が形成される形状においても、3次曲面部分のガスバリア性の低下を抑制可能な、ガスバリア性フィルム10を作製することができる。 On the other hand, in the method of forming a flat gas barrier film 10 and then forming it into a shape having a curved region 14, a gas barrier layer 12 is first formed on a flat substrate 11 to form a flat gas barrier film. 10 is produced. And the heat | fever more than the softening temperature of the base material 11, for example, 80 degreeC or more, is applied in the state which pressed the gas barrier film 10 of the flat shape on the board | substrate (metal mold | die) which has a predetermined surface shape. Thereby, the gas barrier film 10 is formed into a predetermined shape (plastic processing). In such a method of forming the gas barrier film 10, film formation defects of the gas barrier layer 12 are unlikely to occur due to the decrease in film formability in the region having the above-mentioned cubic curved surface. For this reason, even in a shape in which a gap of 0.5 mm or more is formed on the curved surface area 14 on average, the gas barrier film 10 capable of suppressing the deterioration of the gas barrier property of the tertiary curved surface portion can be produced.
 特に、ガスバリア性フィルム10は、ガスバリア層12がケイ素、酸素、及び、炭素を含有する。このため、曲面領域14に平均0.5mm以上の間隙が形成される3次曲面を有する形状に成形加工される場合においても、ガスバリア層12での不良発生を抑制することができる。このため、ガスバリア性フィルム10は、上述の成形加工後においても、60℃、90%RH、2時間の条件で測定した水蒸気透過度(WVTR)において、0.1(g/m/day)以下を達成することができる。また、成形加工後のガスバリア性フィルム10において、好ましい水蒸気透過度(WVTR)として、1×10-2(g/m/day)以下を実現することができる。 In particular, in the gas barrier film 10, the gas barrier layer 12 contains silicon, oxygen, and carbon. For this reason, it is possible to suppress the occurrence of defects in the gas barrier layer 12 even when the curved region 14 is molded into a shape having a cubic curved surface in which gaps of 0.5 mm or more are formed on average. For this reason, the gas barrier film 10 has a water vapor permeability (WVTR) of 0.1 (g / m 2 / day) measured under the conditions of 60 ° C., 90% RH and 2 hours even after the above-described molding process. The following can be achieved: Further, in the gas barrier film 10 after the molding process, a preferable water vapor permeability (WVTR) can be 1 × 10 −2 (g / m 2 / day) or less.
 また、ガスバリア性フィルム10において、基材11は、複数の基材の積層体であってもよい。例えば、図3に示すように、基材11は、第1基材17と第2基材18とが粘着剤層19で貼合された構成であってもよい。図3に示すガスバリア性フィルム10は、第1基材17の一方の面にガスバリア層12が設けられ、他方の面に粘着剤層19を介して、第2基材18が設けられている。なお、これ以外の構成は、上述の図1及び図2に記載のガスバリア性フィルム10と同様の構成である。 Further, in the gas barrier film 10, the substrate 11 may be a laminate of a plurality of substrates. For example, as shown in FIG. 3, the base material 11 may have a configuration in which the first base material 17 and the second base material 18 are bonded with an adhesive layer 19. In the gas barrier film 10 shown in FIG. 3, the gas barrier layer 12 is provided on one surface of the first base material 17, and the second base material 18 is provided on the other surface through the adhesive layer 19. In addition, the structure of those other than this is the structure similar to the gas barrier film 10 of the above-mentioned FIG.1 and FIG.2.
 さらに、基材11において、第1基材17と第2基材18とは、粘着剤層19において剥離可能なように貼合されていることが好ましい。例えば、第1基材17から、粘着剤層19と第2基材18とが剥離可能なように、貼合されていることが好ましい。 Furthermore, in the base material 11, the first base material 17 and the second base material 18 are preferably bonded so as to be peelable in the pressure-sensitive adhesive layer 19. For example, it is preferable that the adhesive layer 19 and the second substrate 18 are bonded so as to be peelable from the first substrate 17.
 粘着剤層19と第2基材18とが、第1基材17から剥離可能なように貼合されていることにより、第2基材18が第1基材17の保護フィルムとして機能する。ガスバリア性フィルム10の製造工程中や、ガスバリア性フィルム10を適用する電子デバイスの製造工程中において、最表面に配置される基材に傷等の損傷が発生すると、電子デバイス等の外観上の不良が発生してしまう。このため、上記各製造工程中において、基材の損傷を防ぐために、基材11の表面には剥離可能な保護フィルムを設けることが好ましい。 When the pressure-sensitive adhesive layer 19 and the second base material 18 are bonded so as to be peelable from the first base material 17, the second base material 18 functions as a protective film for the first base material 17. In the manufacturing process of the gas barrier film 10 or the manufacturing process of the electronic device to which the gas barrier film 10 is applied, if the substrate disposed on the outermost surface is damaged such as scratches, the appearance of the electronic device is defective. Will occur. For this reason, it is preferable to provide a peelable protective film on the surface of the base material 11 in order to prevent the base material from being damaged during each manufacturing process.
 図3に示すガスバリア性フィルム10において、第1基材17から、粘着剤層19と第2基材18とが剥離されることにより、図1に示すガスバリア性フィルム10と同様の構成となる。このとき、図3に示す第1基材17が、図1に示す基材11に対応する。 In the gas barrier film 10 shown in FIG. 3, the adhesive layer 19 and the second base material 18 are peeled from the first base material 17, thereby having the same configuration as the gas barrier film 10 shown in FIG. 1. At this time, the first base material 17 shown in FIG. 3 corresponds to the base material 11 shown in FIG.
 また、図3に示すような基材11が第1基材17と第2基材18との積層体である場合には、第1基材17の厚さ[X]と、第2基材18の厚さ[Y]との合計が、50μm以上150μm以下であることが好ましい。さらに、[X]/[Y]が0.15以上0.90以下であることが好ましい。 When the base material 11 as shown in FIG. 3 is a laminate of the first base material 17 and the second base material 18, the thickness [X] of the first base material 17 and the second base material It is preferable that the sum total with the thickness [Y] of 18 is 50 μm or more and 150 μm or less. Furthermore, [X] / [Y] is preferably 0.15 or more and 0.90 or less.
 第1基材17の厚さ[X]と第2基材18の厚さ[Y]との合計が、50μm以上であれば、ガスバリア層12の形成において、取り扱い易い十分な厚さとなる。また、第1基材17の厚さ[X]と第2基材18の厚さ[Y]との合計が、150μm以下であれば、基材11が十分な柔軟性を有し、成形加工における塑性加工を容易に行うことができる。 If the sum of the thickness [X] of the first base material 17 and the thickness [Y] of the second base material 18 is 50 μm or more, the thickness becomes easy to handle in the formation of the gas barrier layer 12. Moreover, if the sum total of the thickness [X] of the 1st base material 17 and the thickness [Y] of the 2nd base material 18 is 150 micrometers or less, the base material 11 has sufficient softness | flexibility, and a shaping | molding process The plastic working can be easily performed.
 また、ガスバリア層12が形成される第1基材17よりも、保護フィルムとなる第2基材18の厚さが大きい方が好ましい。一般的に、第1基材17は、電子デバイス等に適用される際に、ガスバリア性フィルム10として残存するため、電子デバイス等の要求により設計自由度が制限される。一方、第2基材18を保護フィルムとして用いる場合には、ガスバリア性フィルム10が電子デバイス等に適用される際に第2基材18は剥離される。このため、第2基材18の方が第1基材17よりも設計自由度が高い。従って、ガスバリア層12を作製する際に基材11に要求される機械的強度は、第2基材18側で確保することが好ましい。従って、第1基材17の厚さ[X]と第2基材18の厚さ[Y]とにおいて、第2基材18の厚さ[Y]の方が大きいことが好ましく、[X]/[Y]が0.15以上0.90以下であることが好ましい。 Further, it is preferable that the thickness of the second base material 18 serving as the protective film is larger than the first base material 17 on which the gas barrier layer 12 is formed. In general, when the first base material 17 is applied to an electronic device or the like, the first base material 17 remains as the gas barrier film 10, so that the degree of freedom in design is limited by the requirements of the electronic device or the like. On the other hand, when the second substrate 18 is used as a protective film, the second substrate 18 is peeled off when the gas barrier film 10 is applied to an electronic device or the like. For this reason, the second base material 18 has a higher degree of design freedom than the first base material 17. Therefore, it is preferable that the mechanical strength required for the base material 11 when the gas barrier layer 12 is produced is secured on the second base material 18 side. Therefore, it is preferable that the thickness [Y] of the second base material 18 is larger than the thickness [Y] of the first base material 17 and the thickness [Y] of the second base material 18. / [Y] is preferably 0.15 or more and 0.90 or less.
[ガスバリア層の組成、及び、炭素分布曲線]
 上述のガスバリア性フィルム10において、ガスバリア層12は、ケイ素、酸素、及び、炭素を含有する。すなわち、ガスバリア層12は、SiOxCyの組成で表される。そして、SiOxCyにおけるxの値はケイ素に対する酸素の含有量(O/Si)として表され、yの値はケイ素に対する炭素の含有量(C/Si)として表される。
[Composition of gas barrier layer and carbon distribution curve]
In the gas barrier film 10 described above, the gas barrier layer 12 contains silicon, oxygen, and carbon. That is, the gas barrier layer 12 is represented by a composition of SiOxCy. The value of x in SiOxCy is expressed as the oxygen content (O / Si) with respect to silicon, and the value of y is expressed as the carbon content (C / Si) with respect to silicon.
 図4に、ガスバリア層12の厚さ方向のケイ素原子の含有量の分布を示す曲線(以下、ケイ素分布曲線)と、ガスバリア層12の厚さ方向の炭素原子の含有量の分布を示す曲線(以下、炭素分布曲線)と、ガスバリア層12の厚さ方向の酸素原子の含有量の分布を示す曲線(以下、酸素分布曲線)のグラフを示す。 FIG. 4 shows a curve showing the distribution of the silicon atom content in the thickness direction of the gas barrier layer 12 (hereinafter referred to as a silicon distribution curve) and a curve showing the distribution of the carbon atom content in the thickness direction of the gas barrier layer 12 Hereinafter, a graph of a carbon distribution curve) and a curve showing the distribution of the content of oxygen atoms in the thickness direction of the gas barrier layer 12 (hereinafter, oxygen distribution curve) are shown.
 また、図5に、ガスバリア層12の厚さ方向のケイ素に対する炭素の組成比(C/Si)の分布を示す曲線(以下、C/Si比分布曲線)と、ガスバリア層12の厚さ方向のケイ素に対する酸素の組成比(O/Si)の分布を示す曲線(以下、O/Si比分布曲線)のグラフを示す。また、図5に示すグラフでは、ケイ素の比率をSiOxCyの組成式に基づいて1に規定している。 FIG. 5 shows a curve (hereinafter referred to as a C / Si ratio distribution curve) showing the distribution of the composition ratio (C / Si) of carbon to silicon in the thickness direction of the gas barrier layer 12, and the thickness direction of the gas barrier layer 12. The graph of the curve (henceforth O / Si ratio distribution curve) which shows distribution of the composition ratio (O / Si) of oxygen with respect to silicon is shown. In the graph shown in FIG. 5, the ratio of silicon is defined as 1 based on the composition formula of SiOxCy.
 なお、図4に示す、ガスバリア層12の厚さ方向の各元素の含有量、及び、この含有量を示す曲線や極大値については、後述するXPSデプスプロファイルの測定によって求めることができる。また、図5に示す、ガスバリア層12の厚さ方向のケイ素原子に対する炭素原子の組成比(C/Si)、酸素原子の組成比(O/Si)、及び、この組成比を示す曲線や極大値については、図4におけるXPSデプスプロファイルの測定値から算出することができる。 Note that the content of each element in the thickness direction of the gas barrier layer 12 shown in FIG. 4 and the curve and maximum value indicating this content can be obtained by measurement of an XPS depth profile described later. Further, the composition ratio (C / Si) of carbon atoms to silicon atoms in the thickness direction of the gas barrier layer 12 shown in FIG. 5, the composition ratio of oxygen atoms (O / Si), and a curve or maximum representing this composition ratio The value can be calculated from the measured value of the XPS depth profile in FIG.
 図4に示すように、ガスバリア層12は、ケイ素原子、炭素原子、及び、酸素原子の含有量が深さ方向に連続的に変化する。すなわち、図4に示すように、ガスバリア層12において、膜厚方向における層表面からの距離(L)と、ケイ素原子、炭素原子、及び、酸素原子の含有量との関係を示す各分布曲線が、連続的に変化する。 As shown in FIG. 4, in the gas barrier layer 12, the contents of silicon atoms, carbon atoms, and oxygen atoms continuously change in the depth direction. That is, as shown in FIG. 4, in the gas barrier layer 12, each distribution curve indicating the relationship between the distance (L) from the layer surface in the film thickness direction and the content of silicon atoms, carbon atoms, and oxygen atoms is , Continuously changing.
 また、図5に示すように、ガスバリア層12において、膜厚方向における層表面からの距離(L)とケイ素原子に対する炭素原子の比率とを示す、C/Si比分布曲線が、連続的に変化する。同様に、ケイ素原子に対する酸素原子の比率を示すO/Si比分布曲線が、連続的に変化する。 Further, as shown in FIG. 5, in the gas barrier layer 12, the C / Si ratio distribution curve showing the distance (L) from the layer surface in the film thickness direction and the ratio of carbon atoms to silicon atoms continuously changes. To do. Similarly, the O / Si ratio distribution curve indicating the ratio of oxygen atoms to silicon atoms changes continuously.
 ガスバリア性フィルム10は、炭素分布曲線が、4個以上の極大値を有する(要件(1))。さらに、ガスバリア層12の[膜厚/極大値数]が25nm以下である(要件(2))。図4に示すグラフでは、約55nmの厚さのガスバリア層において、炭素分布曲線が図面に矢印で示す6個の極大値を有する。このため[膜厚/極大値数]は約9nmである。 The gas barrier film 10 has a maximum of four or more carbon distribution curves (requirement (1)). Furthermore, [film thickness / maximum value number] of the gas barrier layer 12 is 25 nm or less (requirement (2)). In the graph shown in FIG. 4, in the gas barrier layer having a thickness of about 55 nm, the carbon distribution curve has six maximum values indicated by arrows in the drawing. Therefore, [film thickness / maximum value number] is about 9 nm.
 極大値の数と、[膜厚/極大値数]は、後述する真空プラズマCVD法を用いた気相成膜ガスバリア層の成膜条件を変更することにより、任意に調整することができる。例えば、気相成膜ガスバリア層の成膜において基材の搬送速度を上げることにより、隣接する極大値間の距離を小さくすることができる。また、気相成膜ガスバリア層の成膜速度を上げることにより、同じ厚さのガスバリア層12において極大値の数が多くなりやすい。 The number of maximum values and [film thickness / maximum number of values] can be arbitrarily adjusted by changing the film formation conditions of the gas-phase film-forming gas barrier layer using the vacuum plasma CVD method described later. For example, the distance between the adjacent maximum values can be reduced by increasing the conveyance speed of the base material in the vapor deposition gas barrier layer deposition. In addition, by increasing the deposition rate of the vapor deposition gas barrier layer, the number of maximum values tends to increase in the gas barrier layer 12 having the same thickness.
 ガスバリア層12の炭素分布曲線において、隣り合う極大値同士の間は、組成が連続して変化する1つの領域として考えられる。このため、ガスバリア層12は、極大値の数だけ、厚さ方向に組成が連続して変化する領域を有している。従って、炭素分布曲線が6個以上の極大値を有する構成は、ケイ素、酸素、及び、炭素の組成比の異なる領域を膜厚方向に複数有し、この複数の領域が膜厚方向に積層されていることを示す。さらに、ガスバリア層12の炭素分布曲線において、極大値の数が増えるほど、組成が連続して変化する1つの領域がガスバリア層12内に多く存在する。 In the carbon distribution curve of the gas barrier layer 12, it can be considered as one region where the composition continuously changes between adjacent maximum values. For this reason, the gas barrier layer 12 has a region where the composition continuously changes in the thickness direction by the number of maximum values. Therefore, the configuration in which the carbon distribution curve has six or more maximum values has a plurality of regions with different composition ratios of silicon, oxygen, and carbon in the film thickness direction, and the plurality of regions are stacked in the film thickness direction. Indicates that Furthermore, in the carbon distribution curve of the gas barrier layer 12, as the number of local maximum values increases, there are more regions in the gas barrier layer 12 where the composition changes continuously.
 また、ガスバリア層12において、炭素分布曲線の[膜厚/極大値数]が25nm以下の構成は、炭素分布曲線における極大値の発生確率を示している。例えば、[膜厚/極大値数]が25nmであれば、厚さ方向において、平均25nmあたりに1つの極大値を有することを示す。極大値が発生する割合を25nm以下と小さくすることにより、組成が連続して変化する1つの領域の厚さを、小さくすることができる。すなわち、ガスバリア層12をより薄い層が積層した状態と同様の構成とすることができる。 Further, in the gas barrier layer 12, a configuration in which the [film thickness / maximum value number] of the carbon distribution curve is 25 nm or less indicates the occurrence probability of the maximum value in the carbon distribution curve. For example, if [film thickness / number of local maximum values] is 25 nm, it indicates that there is one local maximum per 25 nm average in the thickness direction. By reducing the rate at which the maximum value occurs to 25 nm or less, the thickness of one region where the composition continuously changes can be reduced. That is, the gas barrier layer 12 can have the same configuration as a state in which thinner layers are stacked.
 ガスバリア層12において、隣り合う極大値と極大値との平均間隔が25nm以下であり、かつ、組成が連続して変化する領域が厚さ方向に6層以上存在することにより、ガスバリア性フィルム10に3次曲面を形成する成形加工において、ガスバリア層に伸長が加わっても、ガスバリア性フィルム10の水蒸気透過度(WVTR)の悪化を抑制することができる。 In the gas barrier layer 12, the average distance between adjacent maximum values is 25 nm or less, and there are six or more regions where the composition continuously changes in the thickness direction. In the molding process for forming the cubic curved surface, even if the gas barrier layer is stretched, the deterioration of the water vapor permeability (WVTR) of the gas barrier film 10 can be suppressed.
 ガスバリア層12が連続して組成が変化する複数の領域を有することにより、3次曲面の形成を伴う成形加工後においても、ガスバリア性フィルム10の水蒸気透過度(WVTR)の悪化を抑制することができる理由は、以下のように考えられる。なお、以下の説明は、ガスバリア層12の構成及び効果から導かれる、水蒸気透過度(WVTR)の悪化抑制のメカニズムに対する推測の1つであり、水蒸気透過度(WVTR)の悪化が抑制されるメカニズム等は以下の記載に限定されない。 By having the gas barrier layer 12 having a plurality of regions in which the composition continuously changes, it is possible to suppress the deterioration of the water vapor permeability (WVTR) of the gas barrier film 10 even after a molding process involving the formation of a cubic curved surface. The reason why it can be considered is as follows. In addition, the following description is one of the guesses with respect to the mechanism for suppressing the deterioration of water vapor permeability (WVTR), which is derived from the configuration and effect of the gas barrier layer 12, and the mechanism for suppressing the deterioration of water vapor permeability (WVTR). Etc. are not limited to the following description.
 例えば、ガスバリア層が単層構成である場合、ガスバリア性フィルムの成形加工において、ガスバリア層内の1箇所にクラックが発生すると、このクラックが厚さ方向に伝搬し、クラックがガスバリア層の厚さ方向に貫通しやすい。このように、クラックがガスバリア層の厚さ方向を貫通すると、このクラック内を水分等が容易に通過できるため、ガスバリア性フィルムの水蒸気透過度(WVTR)が悪化する。 For example, when the gas barrier layer has a single layer structure, when a crack occurs in one place in the gas barrier layer in the molding process of the gas barrier film, the crack propagates in the thickness direction, and the crack is in the thickness direction of the gas barrier layer. Easy to penetrate. Thus, when the crack penetrates the thickness direction of the gas barrier layer, moisture and the like can easily pass through the crack, so that the water vapor permeability (WVTR) of the gas barrier film is deteriorated.
 しかし、ガスバリア層12が、連続して組成が変化する領域を複数有すことにより、ガスバリア層12内の1箇所(1つの領域)にクラックが発生し、発生した領域内の厚さ方向にクラックが貫通した場合にも、クラックが他の領域までの間で終端し、他の領域にはクラックが伝搬しにくい。さらに、ガスバリア層12は複数の領域が積層されているため、クラックが発生した領域は他の領域によって被覆される。このため、ガスバリア層12内に発生した微小なクラック、及び、このクラックが発生した領域は、他の領域によって遮蔽される。すなわち、ガスバリア層12内に光学顕微鏡観察で検出されない程度の微小なクラックが発生しても、この微小なクラックが、ガスバリア層12の全体を貫通するほど成長せず、クラックが他の領域によってガスバリア層12内に封じ込められる。従って、ガスバリア層12が、組成が連続して変化する領域を厚さ方向に複数有することにより、3次曲面の形成を伴う成形加工後のガスバリア性フィルムの水蒸気透過度(WVTR)の悪化を抑制することができる。 However, since the gas barrier layer 12 has a plurality of regions where the composition changes continuously, a crack occurs in one place (one region) in the gas barrier layer 12, and the crack occurs in the thickness direction in the generated region. Even when the crack penetrates, the crack terminates in the other area, and the crack hardly propagates to the other area. Furthermore, since the gas barrier layer 12 has a plurality of regions laminated, the region where the crack has occurred is covered with another region. For this reason, the micro crack which generate | occur | produced in the gas barrier layer 12, and the area | region where this crack generate | occur | produced are shielded by another area | region. That is, even if a minute crack that cannot be detected by observation with an optical microscope is generated in the gas barrier layer 12, the minute crack does not grow so as to penetrate the entire gas barrier layer 12, and the crack may be caused by another region. Contained within layer 12. Therefore, the gas barrier layer 12 has a plurality of regions in which the composition continuously changes in the thickness direction, thereby suppressing the deterioration of the water vapor permeability (WVTR) of the gas barrier film after forming processing accompanied by the formation of a cubic curved surface. can do.
 ガスバリア層12は、炭素分布曲線が4個以上の極大値を有する。一般的には、組成が連続して変化する領域の層数は、炭素分布曲線の極大値の数+1層となるため、炭素分布曲線が4個以上の極大値を有すると、組成が連続して変化する領域が5層以上設けられる。組成が連続して変化する領域が5層以上設けられることにより、微小なクラックが発生した領域を他の領域が被覆する作用が発現しやすく、ガスバリア層12全体でのクラックの貫通を防ぐ効果を発現しやすい。 The gas barrier layer 12 has a maximum value of four or more carbon distribution curves. In general, the number of layers in the region where the composition continuously changes is the number of maximum values of the carbon distribution curve plus one layer. Therefore, if the carbon distribution curve has four or more maximum values, the composition is continuous. 5 or more layers are provided. By providing five or more regions where the composition continuously changes, the effect of covering other regions with the region where the microcracks have occurred is easily exhibited, and the effect of preventing the penetration of cracks in the entire gas barrier layer 12 is achieved. It is easy to express.
 また、炭素分布曲線の極大値の数が多いほど、組成が連続して変化する領域の積層数が増加する。ガスバリア層12は、多くの領域が積層された状態の方が、クラックが発生した領域を他の領域が被覆する作用が発現しやすい。このため、炭素分布曲線の極大値の数は、多いほど好ましく、炭素分布曲線の極大値の数は、6個以上が好ましく、8個以上がより好ましく、12個以上が特に好ましい。 Also, as the number of maximum values in the carbon distribution curve increases, the number of layers in the region where the composition continuously changes increases. When the gas barrier layer 12 is in a state where a large number of regions are laminated, the effect of covering the region where the crack has occurred with other regions is more likely to appear. For this reason, the number of maximum values in the carbon distribution curve is preferably as large as possible, and the number of maximum values in the carbon distribution curve is preferably 6 or more, more preferably 8 or more, and particularly preferably 12 or more.
 図6及び図7に、炭素分布曲線の極大値が12個の場合のガスバリア層における、各分布曲線を示す。なお、図6及び図7に示すグラフは、上述の図4及び図5に対応し、グラフの詳細については、図4及び図5と同様である。 6 and 7 show the distribution curves in the gas barrier layer when the maximum value of the carbon distribution curve is twelve. The graphs shown in FIGS. 6 and 7 correspond to FIGS. 4 and 5 described above, and the details of the graphs are the same as those in FIGS. 4 and 5.
 図6は、ガスバリア層12のケイ素分布曲線と、炭素分布曲線と、酸素分布曲線とを示すグラフである。また、図7は、ガスバリア層12のC/Si比分布曲線と、O/Si比分布曲線とを示すグラフである。図7に示すグラフでは、SiOxCyの組成式に基づいてケイ素の比率を1に規定している。 FIG. 6 is a graph showing a silicon distribution curve, a carbon distribution curve, and an oxygen distribution curve of the gas barrier layer 12. FIG. 7 is a graph showing a C / Si ratio distribution curve and an O / Si ratio distribution curve of the gas barrier layer 12. In the graph shown in FIG. 7, the silicon ratio is defined as 1 based on the composition formula of SiOxCy.
 図6及び図7に示す例のガスバリア性フィルム10は、約105nmの厚さのガスバリア層において、炭素分布曲線が図面に矢印で示す12個の極大値を有する。このため、図4に示すグラフでは、[膜厚/極大値数]は約9nmとなる。従って、図6及び図7に示す例も、上述の図4及び図5に示す例と同様に、ガスバリア性フィルム10に要求される、ガスバリア層12の[膜厚/極大値数]が25nm以下の規定を満たす。 The gas barrier film 10 of the example shown in FIGS. 6 and 7 has a carbon distribution curve having 12 maximum values indicated by arrows in the drawings in a gas barrier layer having a thickness of about 105 nm. For this reason, in the graph shown in FIG. 4, [film thickness / maximum value number] is about 9 nm. Accordingly, in the example shown in FIGS. 6 and 7 as well, the [film thickness / maximum value] of the gas barrier layer 12 required for the gas barrier film 10 is 25 nm or less, as in the examples shown in FIGS. Meet the provisions of
 さらに、ガスバリア層12の厚さが一定の条件では、組成が連続して変化する領域の厚さが小さいほど、より多くの領域が積層された状態となる。すなわち、ガスバリア層12全体の厚さを、炭素分布曲線の極大値の数で割った値[膜厚/極大値数]が小さくなるほど、組成が連続して変化する各領域の厚さが小さくなる。従って、ガスバリア層12の厚さが一定の条件においては、[膜厚/極大値数]が小さくなるほど、多くの領域を積層させることが可能となり、微小なクラックが発生した領域を他の領域が被覆する作用を発現しやすくなる。このため、ガスバリア層12の[膜厚/極大値数]は、15nm以下であることがより好ましい。 Furthermore, under the condition that the thickness of the gas barrier layer 12 is constant, the smaller the thickness of the region where the composition changes continuously, the more regions are laminated. That is, the smaller the value [film thickness / maximum value] obtained by dividing the total thickness of the gas barrier layer 12 by the number of maximum values of the carbon distribution curve, the smaller the thickness of each region where the composition changes continuously. . Therefore, under the condition that the thickness of the gas barrier layer 12 is constant, the smaller the [film thickness / maximum value], the more regions can be stacked, and the region where the microcracks have occurred is replaced with other regions. It becomes easy to express the effect | action to coat | cover. For this reason, the [film thickness / maximum value number] of the gas barrier layer 12 is more preferably 15 nm or less.
[ガスバリア層の組成式SiOxCy]
 ガスバリア層12は、上述のように、ケイ素、酸素、及び、炭素を含有し、SiOxCyの組成で表される。そして、SiOxCyにおけるxの値はケイ素に対する酸素の含有量(O/Si)として表され、yの値はケイ素に対する炭素の含有量(C/Si)として表される。
[Compositional formula of gas barrier layer SiOxCy]
As described above, the gas barrier layer 12 contains silicon, oxygen, and carbon, and is represented by a composition of SiOxCy. The value of x in SiOxCy is expressed as the oxygen content (O / Si) with respect to silicon, and the value of y is expressed as the carbon content (C / Si) with respect to silicon.
 ガスバリア性フィルム10においてガスバリア層12は、ガスバリア層12の組成をSiOxCyで表した際に、y<0.20の組成を有する領域の厚さと、y>1.40の組成を有する領域の厚さとの合計が、20nm未満である。 In the gas barrier film 10, the gas barrier layer 12 has a thickness of a region having a composition of y <0.20 and a thickness of a region having a composition of y> 1.40 when the composition of the gas barrier layer 12 is expressed by SiOxCy. Is less than 20 nm.
 y<0.20の組成は、炭素比率が少なく酸素比率が多い領域である。すなわちガスバリア層12が、SiOに近い組成となる。SiOに近い組成を有する領域は、伸長処理でクラックが入りやすく、y<0.20の組成を有する領域を厚さ方向に20nmを超えて有すると、この領域に生じるクラックが、クラックを生じにくい他の異なる組成の領域にまでも伝播しやすい。このため、ガスバリア層12のバリア性が劣化しやすい。 The composition of y <0.20 is a region with a low carbon ratio and a high oxygen ratio. That is, the gas barrier layer 12 has a composition close to SiO 2 . A region having a composition close to SiO 2 is easily cracked by elongation treatment. If a region having a composition of y <0.20 exceeds 20 nm in the thickness direction, the crack generated in this region causes a crack. Difficult to propagate to other regions of different composition. For this reason, the barrier property of the gas barrier layer 12 tends to deteriorate.
 また、y>1.40の組成は、酸素比率が少なく炭素比率が多い領域である。すなわち、ガスバリア層12が、SiCに近い組成となる。この組成についても、上述のSiOに近い組成を有する領域と同様に、伸長処理でクラックが入りやすく、他の異なる組成の領域にクラックが伝播しやすくなるため、ガスバリア層12のバリア性が劣化しやすい。 Moreover, the composition of y> 1.40 is a region where the oxygen ratio is small and the carbon ratio is large. That is, the gas barrier layer 12 becomes a composition close to SiC 2. Also in this composition, as in the region having a composition close to the above-mentioned SiO 2 , cracks are easily generated by the elongation treatment, and cracks are easily propagated to regions having different compositions, so that the barrier property of the gas barrier layer 12 is deteriorated. It's easy to do.
 また、図8~11に、ガスバリア層12を構成するSiOxCyの組成において、横軸をx、縦軸をyとした直交座標を示す。図8及び図9は、上述の図5に示すC/Si比分布曲線、及び、O/Si比分布曲線を有するガスバリア層12における、厚さ毎のSiOxCyで表される組成の(x,y)の座標を示す。また、図10及び図11は、上述の図7に示すC/Si比分布曲線、及び、O/Si比分布曲線を有するガスバリア層12における、厚さ毎のSiOxCyで表される組成の(x,y)の座標を示す。なお、図8~11に示す各(x,y)は、図5及び図7のC/Si比分布曲線、及び、O/Si比分布曲線において、白抜きの三角形で示す点における厚さでの組成を表している。 8 to 11 show orthogonal coordinates in which the horizontal axis is x and the vertical axis is y in the composition of SiOxCy constituting the gas barrier layer 12. 8 and 9 show (x, y) of the composition represented by SiOxCy for each thickness in the gas barrier layer 12 having the C / Si ratio distribution curve and the O / Si ratio distribution curve shown in FIG. ). 10 and 11 show the composition (x) of SiOxCy for each thickness in the gas barrier layer 12 having the C / Si ratio distribution curve and the O / Si ratio distribution curve shown in FIG. , Y). Each of (x, y) shown in FIGS. 8 to 11 is a thickness at a point indicated by a white triangle in the C / Si ratio distribution curve and the O / Si ratio distribution curve of FIGS. Represents the composition.
 ガスバリア性フィルム10は、図8及び図10に示すように、SiOxCyで表した組成において厚さ毎の(x,y)の分布において、下記ABCDの4点の範囲内となる組成を、ガスバリア層12の厚さ方向に40nm以上200nm以下有していることが好ましい。
 A(x=0.70、y=1.10)
 B(x=0.9、y=1.40)
 C(x=2.0、y=0.20)
 D(x=1.8、y=0.20)
As shown in FIG. 8 and FIG. 10, the gas barrier film 10 has a composition that falls within the range of 4 points of the following ABCD in the distribution of (x, y) for each thickness in the composition represented by SiOxCy. It is preferable to have 40 to 200 nm in the 12 thickness direction.
A (x = 0.70, y = 1.10)
B (x = 0.9, y = 1.40)
C (x = 2.0, y = 0.20)
D (x = 1.8, y = 0.20)
 さらに、ガスバリア性フィルム10は、図9及び図11に示すように、SiOxCyで表した組成において厚さ毎の(x,y)の分布において、下記ABEFの4点の範囲内となる組成を、ガスバリア層12の厚さ方向に40nm以上200nm以下有していることが、より好ましい。
 A(x=0.70、y=1.10)
 B(x=0.9、y=1.40)
 E(x=1.8、y=0.40)
 F(x=1.6、y=0.40)
Further, as shown in FIGS. 9 and 11, the gas barrier film 10 has a composition that falls within the range of 4 points of the following ABEF in the distribution of (x, y) for each thickness in the composition represented by SiOxCy, More preferably, the gas barrier layer 12 has a thickness of 40 nm or more and 200 nm or less in the thickness direction.
A (x = 0.70, y = 1.10)
B (x = 0.9, y = 1.40)
E (x = 1.8, y = 0.40)
F (x = 1.6, y = 0.40)
 さらに、ガスバリア層12の全てが、上記ABCDの4点の範囲内となる組成であることが好ましく、上記ABEFの4点の範囲内となる組成であることが特に好ましい。ガスバリア層12を構成するSiOxCyの組成は、図8~11に示す、SiC-SiO理論線に沿って分布しやすい傾向にある。また、SiOxCyの組成は、全体的に、SiC-SiO理論線よりも炭素の原子比が多い領域に分布しやすい傾向にある。そして、SiC-SiO理論線近傍の上記ABCDの4点で囲まれた狭い範囲内が、ガスバリア層12としてガスバリア性、物理的特性、及び、光学特性において好ましい組成である。さらに、ABEFの4点で囲まれたより狭い範囲内が、ガスバリア層12としてガスバリア性、物理的特性、及び、光学特性において特に好ましい組成である。 Furthermore, the gas barrier layer 12 preferably has a composition that falls within the range of 4 points of the ABCD, and particularly preferably has a composition that falls within the range of 4 points of the ABEF. The composition of SiOxCy constituting the gas barrier layer 12, shown in FIGS. 8-11, in the distribution prone along SiC 2 -SiO 2 theoretical line. Further, the composition of SiOxCy tends to be distributed in a region having a larger carbon atomic ratio than the SiC 2 —SiO 2 theoretical line as a whole. A narrow range surrounded by the four points ABCD in the vicinity of the SiC 2 —SiO 2 theoretical line is a preferable composition for the gas barrier layer 12 in terms of gas barrier properties, physical characteristics, and optical characteristics. Further, a narrower range surrounded by four points of ABEF is a particularly preferable composition for the gas barrier layer 12 in terms of gas barrier properties, physical characteristics, and optical characteristics.
 また、ガスバリア層12は、C/Siが0.95以上の組成となる領域と、C/Siが0.7以下の組成となる領域の両方を有することが好ましい。さらに、ガスバリア層12は、C/Siが0.95以上の組成となる領域と、C/Siが0.7以下の組成となる領域の両方を有し、且つ、ガスバリア層12の70%以上の領域が、C/Siが0.95以上、又は、C/Siが0.7以下のいずれかの領域に含まれることが好ましく、ガスバリア層12の全ての領域が、C/Siが0.95以上、又は、C/Siが0.7以下のいずれかの領域に含まれることが好ましい。 The gas barrier layer 12 preferably has both a region where the C / Si has a composition of 0.95 or more and a region where the C / Si has a composition of 0.7 or less. Furthermore, the gas barrier layer 12 has both a region where the composition of C / Si is 0.95 or more and a region where the composition of C / Si is 0.7 or less, and 70% or more of the gas barrier layer 12. Is preferably included in any region where C / Si is 0.95 or more or C / Si is 0.7 or less, and all regions of the gas barrier layer 12 have a C / Si of 0. It is preferably included in any region of 95 or more or C / Si of 0.7 or less.
 さらに、図4~7に示す炭素分布曲線のように、C/Siが0.95以上の組成となる領域と、C/Siが0.7以下の組成となる領域とが、厚さ方向において積層されていることが好ましい。特に、C/Siが0.95以上の組成となる領域と、C/Siが0.7以下の組成となる領域とが、交互に4つ以上積層されていることが好ましく、図6及び図7に示す炭素分布曲線のように、各領域が交互に6つ以上積層されていることがより好ましい。 Further, as shown in the carbon distribution curves shown in FIGS. 4 to 7, a region where the C / Si has a composition of 0.95 or more and a region where the C / Si has a composition of 0.7 or less are formed in the thickness direction. It is preferable that they are laminated. In particular, it is preferable that four or more regions each having a composition having a C / Si composition of 0.95 or more and a region having a composition having a C / Si composition of 0.7 or less are alternately stacked. As shown in the carbon distribution curve shown in FIG. 7, it is more preferable that six or more regions are alternately stacked.
 ガスバリア層12を構成するSiOxCyの組成において、組成が異なる領域では、それぞれ物理的な特性が異なるため、各領域におけるクラックが発生しやすい条件も異なる。例えば、ガスバリア層12を構成するSiOxCyの組成においては、炭素の原子比が小さく、酸素の原子比が大きくなると、ガスバリア層12の組成がSiOの組成に近づき、ガスバリア層12の物理的な特性がガラスのように脆く、割れやすくなりやすい。このため、炭素の原子比が大きい、C/Siが0.95以上の組成をガスバリア層12が含むことにより、ガスバリア層12にクラックを発生し難くすることができる。 In the composition of SiOxCy that constitutes the gas barrier layer 12, the physical characteristics are different in regions having different compositions, and the conditions under which cracks are likely to occur in the regions are also different. For example, in the composition of SiOxCy constituting the gas barrier layer 12, small atomic ratio of carbon, the atomic ratio of oxygen is increased, the composition of the gas barrier layer 12 approaches the composition of SiO 2, the physical properties of the gas barrier layer 12 Is brittle like glass and easily breaks. For this reason, when the gas barrier layer 12 includes a composition having a large carbon atomic ratio and a C / Si ratio of 0.95 or more, it is possible to make it difficult for the gas barrier layer 12 to crack.
 また、C/Siが0.95以上となる組成の領域ととともに、C/Siが小さい組成の領域、C/Siが0.70以下の組成の領域を含むことにより、異なる耐クラック性を有する領域が積層された構成となり、C/Siが0.95以上となる組成の領域と、C/Siが0.70以下の組成の領域とのいずれか一方の領域にクラックが発生しやすい条件においても、他方の領域にはクラックが発生しにくい。このため、ガスバリア層12に、大きく組成の異なる領域が2以上存在すると、異なる耐クラック性を有する領域が積層された構成となり、一度にガスバリア層12の厚さ方向を貫通するような大きなクラックの発生が抑制できる。従って、ガスバリア層12において、全ての領域が一度に破損することが無くなるため、上述のクラックが発生した領域が他の領域によって被覆され、クラックが他の領域によって遮蔽されてガスバリア層12内に封じ込められる効果がより得られやすい。 In addition, a region having a composition with a C / Si of 0.95 or more, a region with a composition with a small C / Si, and a region with a composition with a C / Si of 0.70 or less have different crack resistance. In a condition in which a region is laminated, a crack is likely to occur in either one of a region having a composition in which C / Si is 0.95 or more and a region having a composition in which C / Si is 0.70 or less. However, cracks hardly occur in the other region. For this reason, when there are two or more regions having greatly different compositions in the gas barrier layer 12, regions having different crack resistances are stacked, and large cracks that penetrate the thickness direction of the gas barrier layer 12 at a time are formed. Generation can be suppressed. Therefore, in the gas barrier layer 12, since all the regions are not damaged at once, the region where the crack is generated is covered with the other region, and the crack is shielded by the other region and enclosed in the gas barrier layer 12. It is easier to obtain the effect.
[突起]
 ガスバリア層12は、内部にパーティクル等の異物の混入が少ない方が好ましい。ガスバリア層12の内部に異物、例えば、成膜時に混入するパーティクル等が存在する場合、ガスバリア性フィルム10に3次曲面を形成する成形加工を行い、ガスバリア層に伸長が加わると、異物周囲に応力が集中して、クラックが発生する起点になると考えられる。従って、ガスバリア層12の単位面積あたりの異物数が少ない方が、ガスバリア性フィルム10に3次曲面の形成を伴う成形加工後のクラックの発生が抑制されると考えられる。
[Protrusions]
The gas barrier layer 12 is preferably less contaminated with foreign matters such as particles. When foreign substances such as particles mixed during film formation are present inside the gas barrier layer 12, when the gas barrier film 10 is molded to form a cubic curved surface and the gas barrier layer is stretched, stress is applied around the foreign substances. It is thought that this becomes the starting point for cracks to concentrate. Therefore, it is considered that the smaller the number of foreign matters per unit area of the gas barrier layer 12, the generation of cracks after the molding process accompanied by the formation of the cubic curved surface in the gas barrier film 10 is suppressed.
 しかしながら、ガスバリア層12の内部のパーティクル等の異物を直に観察、測定することは非常に難しい。しかし、ガスバリア層12の成膜時にパーティクル等の異物が取り込まれた場合、ガスバリア層12の膜厚よりも小さい異物であっても、その部分の成膜レートが高くなるため、ガスバリア層12の表面に微小な突起として検出されるようになる。すなわち、ガスバリア層12において、パーティクル等の異物が内部に封じ込められている箇所は、この異物に起因した突起が発生する。このため、ガスバリア層12の表面の突起を観察することにより、ガスバリア層12の内部のパーティクル等の異物の混入の様子を観察することができる。従って、ガスバリア層12の単位面積あたりの異物起因の突起数が少ない方が、ガスバリア性フィルム10を伸長した場合のクラックの発生が抑制されやすいと考えられる。 However, it is very difficult to directly observe and measure foreign matters such as particles inside the gas barrier layer 12. However, when foreign substances such as particles are taken in when forming the gas barrier layer 12, even if the foreign substance is smaller than the film thickness of the gas barrier layer 12, the film forming rate of the portion is increased. Are detected as minute protrusions. That is, in the gas barrier layer 12, protrusions due to the foreign matter are generated at a place where foreign matters such as particles are contained inside. For this reason, by observing the protrusions on the surface of the gas barrier layer 12, it is possible to observe the mixing of foreign matters such as particles inside the gas barrier layer 12. Therefore, it is considered that the generation of cracks when the gas barrier film 10 is stretched is more easily suppressed when the number of protrusions due to foreign matters per unit area of the gas barrier layer 12 is smaller.
 ガスバリア層12では、表面において観測される、高さが10nm以上の突起数が100個/mm以下であることが好ましい。突起数が100個/mm以下であれば、ガスバリア層12の耐クラック性が低下せず、ガスバリア性フィルム10のガスバリア性が低下しにくい。 In the gas barrier layer 12, the number of protrusions with a height of 10 nm or more observed on the surface is preferably 100 pieces / mm 2 or less. If the number of protrusions is 100 / mm 2 or less, the crack resistance of the gas barrier layer 12 is not lowered, and the gas barrier property of the gas barrier film 10 is hardly lowered.
 ガスバリア層12において、10nm程度の微小な突起は表面粗さのうねり成分(波長の長い凹凸)の影響で、分離検出することが困難である。このため、ガスバリア層12における10nm以上の微小な突起数は、下記の方法で検出及び計数される値で規定する。 In the gas barrier layer 12, minute protrusions of about 10 nm are difficult to separate and detect due to the influence of the undulation component of the surface roughness (unevenness having a long wavelength). For this reason, the number of minute protrusions of 10 nm or more in the gas barrier layer 12 is defined by a value detected and counted by the following method.
 まず、ガスバリア層12の表面を、光干渉方式の三次元表面粗さ測定装置(Veeco社製 WYKO NT9300)を用いて計測する。そして、この計測により、ガスバリア層12の三次元表面粗さデータを取得する。 First, the surface of the gas barrier layer 12 is measured using an optical interference type three-dimensional surface roughness measuring device (Veeco WYKO NT9300). And by this measurement, the three-dimensional surface roughness data of the gas barrier layer 12 are acquired.
 次に、取得した三次元表面粗さデータに対して波長10μmのハイパスフィルターをかけて粗さうねり成分を除去する処理を行う。この処理により得られるうねり成分が除去された三次元表面粗さ変換データにおいて、データをヒストグラム表示した際の最大のピーク位置を0としたときに、高さが10nm以上となる突起を計数する。そして、計数した突起数をmm当たりの個数として算出する。より具体的には、測定解像度約250nmの条件で、159.2μm×119.3μmの範囲6視野(面積として0.114mm)を測定及び計数し、1mm当たりの個数として算出する。 Next, the acquired three-dimensional surface roughness data is subjected to a process of removing a roughness waviness component by applying a high-pass filter having a wavelength of 10 μm. In the three-dimensional surface roughness conversion data from which the waviness component obtained by this process is removed, protrusions having a height of 10 nm or more are counted when the maximum peak position when the data is displayed as a histogram is set to zero. Then, the counted number of protrusions is calculated as the number per mm 2 . More specifically, under the conditions of a measurement resolution of about 250 nm, it was measured and counted (0.114 mm 2 as the area) range 6 field of 159.2μm × 119.3μm, calculated as the number per 1 mm 2.
 ガスバリア層12の表面状態について、上記方法で処理して得られた三次元表面粗さ変換データをヒストグラム表示した画像(159.2μm×119.3μm)を、図12~14に示す。図12~14では、ガスバリア層12の表面の基準となる位置から高さが大きくなる位置ほど、色が白く表示される。 Regarding the surface state of the gas barrier layer 12, images (159.2 μm × 119.3 μm) in which the three-dimensional surface roughness conversion data obtained by processing by the above method are displayed as histograms are shown in FIGS. 12 to 14, the color is displayed in white as the height increases from the reference position on the surface of the gas barrier layer 12.
 図12は、突起数が10個/mm未満のガスバリア層12について、上記処理により得られた表面の画像である。図13は、突起数が50個/mm以上100個/mm未満のガスバリア層12について、上記処理により得られた表面の画像である。図14は、突起数が200個/mm以上のガスバリア層12について、上記処理により得られた表面の画像である。 FIG. 12 is an image of the surface obtained by the above processing for the gas barrier layer 12 having a number of protrusions of less than 10 / mm 2 . FIG. 13 is an image of the surface obtained by the above-described treatment with respect to the gas barrier layer 12 having the number of protrusions of 50 pieces / mm 2 or more and less than 100 pieces / mm 2 . FIG. 14 is an image of the surface obtained by the above processing for the gas barrier layer 12 having a number of protrusions of 200 pieces / mm 2 or more.
 図12に示すように、突起数が10個/mm未満のガスバリア層12では、画像中に白点で表示される高さ10nmを超える突起が少ない。そして、図13及び図14に示すように、突起数が50個/mm以上100個/mm未満、及び、突起数が200個/mm以上と、高さ10nmを超える突起数が増える毎に、画像中に表示される白点の数が増えている。従って、上記方法で検出及び計数することにより、ガスバリア層12の表面の10nm程度の微小な突起数を規定することができる。 As shown in FIG. 12, in the gas barrier layer 12 having the number of protrusions of less than 10 / mm 2 , there are few protrusions exceeding a height of 10 nm displayed as white dots in the image. As shown in FIGS. 13 and 14, the number of protrusions is 50 / mm 2 or more and less than 100 / mm 2 and the number of protrusions is 200 / mm 2 or more, and the number of protrusions exceeding 10 nm in height increases. Every time, the number of white spots displayed in the image increases. Therefore, by detecting and counting with the above method, the number of minute protrusions of about 10 nm on the surface of the gas barrier layer 12 can be defined.
〈2.ガスバリア性フィルムの第2実施形態〉
 以下、ガスバリア性フィルムの第2実施形態について説明する。なお、第2実施形態のガスバリア性フィルムは、3次曲面の加工形状が異なることを除き、上述の第1実施形態のガスバリア性フィルムと同様の構成である。このため、以下の説明では、上述の第1実施形態のガスバリア性フィルムと同様の構成については説明を省略する。
<2. Second Embodiment of Gas Barrier Film>
Hereinafter, a second embodiment of the gas barrier film will be described. In addition, the gas barrier film of 2nd Embodiment is the structure similar to the gas barrier film of the above-mentioned 1st Embodiment except that the processing shape of a cubic curved surface differs. For this reason, in the following description, description is abbreviate | omitted about the structure similar to the gas barrier film of the above-mentioned 1st Embodiment.
[ガスバリア性フィルムの構成]
 図15及び図16に、ガスバリア性フィルムの構成を示す。図15は、ガスバリア性フィルムの平面図である。図16は、図15に示すガスバリア性フィルム70のA-A線断面図である。
[Configuration of gas barrier film]
15 and 16 show the configuration of the gas barrier film. FIG. 15 is a plan view of the gas barrier film. FIG. 16 is a cross-sectional view taken along line AA of the gas barrier film 70 shown in FIG.
 図15及び図16に示すように、ガスバリア性フィルム70は、基材11と、基材11の基材11の一方の面に形成されたガスバリア層12とを備える。なお、基材11とガスバリア層12とからなるガスバリア性フィルム70が後述する各構成及び条件を満たしていれば、その他の構成については特に限定されない。 15 and 16, the gas barrier film 70 includes a base material 11 and a gas barrier layer 12 formed on one surface of the base material 11 of the base material 11. In addition, if the gas barrier film 70 which consists of the base material 11 and the gas barrier layer 12 satisfy | fills each structure and conditions mentioned later, it will not specifically limit about another structure.
 また、図15及び図16に示すように、ガスバリア性フィルム70は、3次元的な曲面が形成された3次曲面部76と、この3次曲面部76の外側に配置された実質的に平坦な領域からなる平坦領域74とを備える。また、ガスバリア性フィルム70は、3次曲面部76内に配置された平坦領域74を備え、この3次曲面部76内に配置された平坦領域74と、3次曲面部76とから、曲面領域14が形成されている。ガスバリア性フィルム70において、実質的に平坦な領域からなる平坦領域74とは、平板に対して面として実質的に間隙なく接する領域である。これに対し、ガスバリア性フィルム70において、3次元的な曲面を有する3次曲面部76は、平板に対して線又は点で接する領域である。本形態においてガスバリア性フィルム70は、一方の面が凹面状となり、他方の面が凸面状となる。図16に示すガスバリア性フィルム70の曲面領域14では、ガスバリア層12側が凹部を有する面となり、基材11側が凸部を有する面である。 Further, as shown in FIGS. 15 and 16, the gas barrier film 70 includes a tertiary curved surface portion 76 on which a three-dimensional curved surface is formed, and a substantially flat surface disposed outside the tertiary curved surface portion 76. And a flat region 74 composed of a large region. The gas barrier film 70 includes a flat region 74 disposed in the cubic curved surface portion 76, and the curved region is formed from the flat region 74 disposed in the cubic curved surface portion 76 and the cubic curved surface portion 76. 14 is formed. In the gas barrier film 70, the flat region 74 formed of a substantially flat region is a region that is in contact with the flat plate as a surface with substantially no gap. On the other hand, in the gas barrier film 70, the cubic curved surface portion 76 having a three-dimensional curved surface is a region in contact with the flat plate by a line or a point. In this embodiment, the gas barrier film 70 has a concave surface on one surface and a convex surface on the other surface. In the curved region 14 of the gas barrier film 70 shown in FIG. 16, the gas barrier layer 12 side is a surface having a concave portion, and the base material 11 side is a surface having a convex portion.
 また、図16では、ガスバリア性フィルム70のガスバリア層12側(凹部を有する面側)において、ガスバリア性フィルム70に接する平板の表面の位置を破線20で示している。さらに、図16では、ガスバリア性フィルム70の基材11側(凸部を有する面側)において、ガスバリア性フィルム70に接する平板の表面の位置を破線21で示している。なお、この平板はガスバリア性フィルム70の形状を説明するために図示するものであり、ガスバリア性フィルム70の構成には含まれない。 In FIG. 16, the position of the surface of the flat plate in contact with the gas barrier film 70 on the gas barrier layer 12 side (the surface side having the recesses) of the gas barrier film 70 is indicated by a broken line 20. Further, in FIG. 16, the position of the surface of the flat plate in contact with the gas barrier film 70 on the base material 11 side (surface side having the convex portion) of the gas barrier film 70 is indicated by a broken line 21. This flat plate is illustrated for explaining the shape of the gas barrier film 70 and is not included in the configuration of the gas barrier film 70.
 平坦領域74は、ガスバリア性フィルム70において、周縁側と中央部とに設けられている。図15及び図16に示すガスバリア性フィルム70では、ガスバリア性フィルム70の中央に設けられた円錐台形状の凸部の周囲の平坦部が、周縁側の平坦領域74である。また、円錐台形状の凸部において、円錐台の上底となる部分の平坦部が、ガスバリア性フィルム70の中央部の平坦領域74である。ガスバリア性フィルム70の平坦領域74において、実質的に平坦、及び、実質的に間隙なく接するとは、図16に示すように、ガスバリア性フィルム70のガスバリア層12側(凹部を有する面側)を平板に接した際に、平板の表面(破線20)との間隙15が0.1mm以下であること、及び、ガスバリア性フィルム70の基材11側(凸部を有する面側)を平板に接した際に、平板の表面(破線21)との間隙22が0.1mm以下であること、のいずれかを満たす。 The flat region 74 is provided in the gas barrier film 70 at the peripheral side and the central portion. In the gas barrier film 70 shown in FIGS. 15 and 16, the flat portion around the frustoconical convex portion provided at the center of the gas barrier film 70 is a flat region 74 on the peripheral side. In addition, in the truncated cone-shaped convex portion, the flat portion of the portion serving as the upper base of the truncated cone is a flat region 74 at the center of the gas barrier film 70. In the flat region 74 of the gas barrier film 70, substantially flat and substantially in contact with no gap means that, as shown in FIG. 16, the gas barrier layer 70 side (surface side having a recess) of the gas barrier film 70 is used. When contacting the flat plate, the gap 15 between the flat plate surface (broken line 20) is 0.1 mm or less, and the base material 11 side (surface side having the convex portion) of the gas barrier film 70 is in contact with the flat plate. In this case, the gap 22 between the surface of the flat plate (broken line 21) is 0.1 mm or less.
 なお、ガスバリア性フィルム70の周縁側の平坦領域74は、ガスバリア性フィルム70を電子デバイス等に適用した際に、デバイス領域から電極を取り出す部分が形成される領域に該当する。このため、「実質的に平坦な領域」においても配線等に起因する0.1mm以下の僅かな凹凸が形成されている構成も含まれる。 The flat region 74 on the peripheral side of the gas barrier film 70 corresponds to a region where a portion for taking out an electrode from the device region is formed when the gas barrier film 70 is applied to an electronic device or the like. For this reason, the configuration in which slight unevenness of 0.1 mm or less due to wiring or the like is formed also in the “substantially flat region”.
 また、ガスバリア性フィルム70において、3次曲面部76の中央側に設けられている平坦領域74は、ガスバリア性フィルム70の一方の面側に形成される凹部と、ガスバリア性フィルム70に接する平板の表面(破線20)との間隙16が、平均0.5mm以上である。 Further, in the gas barrier film 70, the flat region 74 provided on the center side of the cubic curved surface portion 76 is a recess formed on one surface side of the gas barrier film 70 and a flat plate in contact with the gas barrier film 70. The gap 16 with the surface (broken line 20) is 0.5 mm or more on average.
 ガスバリア性フィルム70において、3次曲面部76は、周縁側の平坦領域74と中央部の平坦領域74との間に設けられている。図15及び図16に示すガスバリア性フィルム70では、円錐台形状の凸部において、円錐台側面の斜辺となる部分がガスバリア性フィルム70の3次曲面部76である。ガスバリア性フィルム70の3次曲面部76は、周縁側の平坦領域74と3次曲面部76と中央部の平坦領域74とを合わせた全領域の投影面積の9%以上11%以下で設けられている。 In the gas barrier film 70, the tertiary curved surface portion 76 is provided between the peripheral flat region 74 and the central flat region 74. In the gas barrier film 70 shown in FIG. 15 and FIG. 16, in the truncated cone-shaped convex portion, the part that becomes the hypotenuse of the side surface of the truncated cone is the tertiary curved surface portion 76 of the gas barrier film 70. The tertiary curved surface portion 76 of the gas barrier film 70 is provided at 9% or more and 11% or less of the projected area of the entire region including the flat region 74 on the peripheral side, the tertiary curved surface portion 76, and the flat region 74 at the center. ing.
 なお、上記規定において、平坦領域74及び3次曲面部76の投影面積は、ガスバリア性フィルム70全体の投影面積ではなく、ガスバリア性フィルム70においてガスバリア性を測定するための特定の面積で規定される測定領域73である。この測定領域73は、測定装置において測定可能な範囲の面積であり、上記平坦領域74と3次曲面部76との面積比率から求められる面積に合わせて規定される。すなわち、3次曲面部76の投影面積が測定領域73の投影面積の9%以上11%以下となるように、測定領域73の面積が規定される。 In the above definition, the projection area of the flat region 74 and the cubic curved surface portion 76 is not a projection area of the entire gas barrier film 70 but a specific area for measuring the gas barrier property in the gas barrier film 70. This is a measurement area 73. The measurement area 73 is an area in a range that can be measured by the measurement apparatus, and is defined in accordance with the area obtained from the area ratio between the flat area 74 and the cubic curved surface portion 76. That is, the area of the measurement region 73 is defined so that the projected area of the cubic curved surface portion 76 is 9% or more and 11% or less of the projection area of the measurement region 73.
 また、ガスバリア性フィルム70は、3次曲面部76の実測面積が、上述の3次曲面部76の投影面積よりも5%以上大きくなるように、3次元的な曲面が成形加工されている。なお、実測面積とは曲面を有する加工面を平面上に伸ばし置いた状態と仮定した面積である。 Further, the gas barrier film 70 has a three-dimensional curved surface molded so that the measured area of the cubic curved surface portion 76 is 5% or more larger than the projected area of the cubic curved surface portion 76 described above. The actual measurement area is an area assumed to be a state in which a processed surface having a curved surface is extended on a plane.
 ガスバリア性フィルム70において、平坦領域74及び3次曲面部76は、凹部が形成される面側(ガスバリア層12側)、又は、凸部が形成される面側(基材11側)のいずれかの形状で規定される。一般的には、基材11の変形に追従して、ガスバリア層12の形状も変形するため、平坦領域74及び3次曲面部76の形状は厚さによるずれを除き、凹部が形成される面側(ガスバリア層12側)の形状と、凸部が形成される面側(基材11側)の形状とがほぼ一致する。このため、一方の面の形状を規定することにより、他方の面の形状についても規定される。 In the gas barrier film 70, the flat region 74 and the tertiary curved surface portion 76 are either on the surface side where the concave portion is formed (gas barrier layer 12 side) or on the surface side where the convex portion is formed (base material 11 side). It is defined by the shape of In general, since the shape of the gas barrier layer 12 is also deformed following the deformation of the base material 11, the shape of the flat region 74 and the tertiary curved surface portion 76 is a surface on which a recess is formed except for deviation due to thickness. The shape on the side (gas barrier layer 12 side) and the shape on the surface side (base material 11 side) on which the convex portions are formed substantially coincide. For this reason, by defining the shape of one surface, the shape of the other surface is also defined.
[成形加工前後の水蒸気透過度]
 ガスバリア性フィルム70のような3次曲面部76を有する形状を形成する方法としては、上述の第1実施形態と同様に、ガスバリア性の低下を抑制するために、平板のガスバリア性フィルム70を形成した後、3次曲面部76を有する形状に成形加工する。この方法では、3次曲面部76のガスバリア層12の成膜不良が発生しにくいため、3次曲面部76の実測面積が投影面積よりも5%以上大きくなる形状に加工した場合にも、ガスバリア性の低下を抑制したガスバリア性フィルム70を作製することができる。
[Water vapor permeability before and after molding]
As a method of forming a shape having the third curved surface portion 76 such as the gas barrier film 70, a flat gas barrier film 70 is formed in order to suppress a decrease in gas barrier property, as in the first embodiment. After that, it is molded into a shape having a tertiary curved surface portion 76. In this method, film formation failure of the gas barrier layer 12 of the cubic curved surface portion 76 is unlikely to occur, so that even when the measured area of the cubic curved surface portion 76 is processed to a shape that is 5% or more larger than the projected area, The gas barrier film 70 in which the deterioration of the property is suppressed can be produced.
 特に、ガスバリア性フィルム70は、ガスバリア層12がケイ素、酸素、及び、炭素を含有する。このため、実測面積が投影面積よりも5%以上大きくなる曲面を有する形状に成形加工する場合にも、ガスバリア層12の不良発生を抑制することができる。 In particular, in the gas barrier film 70, the gas barrier layer 12 contains silicon, oxygen, and carbon. For this reason, it is possible to suppress the occurrence of defects in the gas barrier layer 12 even when forming into a shape having a curved surface in which the measured area is 5% or more larger than the projected area.
 ガスバリア性フィルム70は、曲面加工を形成する前の状態の平坦なガスバリア性フィルム[A]と、成形加工により平坦領域74と3次曲面部76とを形成したガスバリア性フィルム[B]とがともに、測定領域73において38℃、100%RH、2時間の条件で測定した水蒸気透過度(WVTR)が、0.1(g/m/day)以下である。
 さらに、上記条件における曲面加工を形成する前の状態の平坦なガスバリア性フィルム[A]の測定領域73における水蒸気透過度(WVTR)と、3次曲面部76を成形加工後のガスバリア性フィルム[B]の測定領域73における水蒸気透過度(WVTR)との関係が、「([B]の水蒸気透過度(WVTR)/[A]の水蒸気透過度(WVTR))<5」を満たす。
The gas barrier film 70 includes both a flat gas barrier film [A] in a state before the curved surface processing is formed and a gas barrier film [B] in which the flat region 74 and the tertiary curved surface portion 76 are formed by molding. In the measurement region 73, the water vapor transmission rate (WVTR) measured under the conditions of 38 ° C. and 100% RH for 2 hours is 0.1 (g / m 2 / day) or less.
Furthermore, the water vapor transmission rate (WVTR) in the measurement region 73 of the flat gas barrier film [A] in the state before forming the curved surface processing under the above conditions, and the gas barrier film [B after forming the cubic curved surface portion 76 into processing [B] ] In relation to the water vapor transmission rate (WVTR) in the measurement area 73 satisfies “(B water vapor transmission rate (WVTR) / [A] water vapor transmission rate (WVTR)) <5”.
 成形加工前のガスバリア性フィルム[A]と、成形加工後のガスバリア性フィルム[B]とが共に、水蒸気透過度(WVTR)0.1(g/m/day)以下を満たすことにより、曲面加工を形成する成形加工前後においてガスバリア性フィルム70が共に十分なガスバリア性を備える。このため、この条件を満たすガスバリア性フィルム70は、十分なガスバリア性を有していることになる。 When both the gas barrier film [A] before molding and the gas barrier film [B] after molding satisfy the water vapor transmission rate (WVTR) of 0.1 (g / m 2 / day) or less, the curved surface Both of the gas barrier films 70 have sufficient gas barrier properties before and after the forming process. For this reason, the gas barrier film 70 satisfying this condition has a sufficient gas barrier property.
 また、成形加工後のガスバリア性フィルム[B]は、3次曲面部76の曲面加工に伴うガスバリア層12の伸長処理により水蒸気透過度(WVTR)が僅かに悪化する。しかし、成形加工後のガスバリア性フィルム[B]の水蒸気透過度(WVTR)が、成形加工前のガスバリア性フィルム[A]の水蒸気透過度(WVTR)の5倍以下であれば、十分なガスバリア性を有している。このため、ガスバリア性フィルム70が、「([B]の水蒸気透過度(WVTR)/[A]の水蒸気透過度(WVTR))<5」を満たすことにより、曲面加工を施された後においても、十分なガスバリア性を有していることになる。 In addition, the gas barrier film [B] after the molding process slightly deteriorates in water vapor permeability (WVTR) due to the elongation treatment of the gas barrier layer 12 accompanying the curved surface processing of the cubic curved surface portion 76. However, if the water vapor permeability (WVTR) of the gas barrier film [B] after molding is 5 times or less than the water vapor permeability (WVTR) of the gas barrier film [A] before molding, sufficient gas barrier properties are obtained. have. For this reason, even after the gas barrier film 70 is subjected to curved surface processing by satisfying “([B] water vapor permeability (WVTR) / [A] water vapor permeability (WVTR)) <5”]. Therefore, it has a sufficient gas barrier property.
〈3.ガスバリア性フィルムの構成要素〉
 以下、上述の図1~3に示すガスバリア性フィルム10、及び、図15~16に示すガスバリア性フィルム70の各構成について説明する。なお、以下の説明は、ガスバリア性フィルムの一例であり、ガスバリア性フィルムの構成はこれらに限定されない。また、ガスバリア性フィルムは、これら以外の構成を有していてもよい。
<3. Components of Gas Barrier Film>
Hereinafter, each configuration of the gas barrier film 10 shown in FIGS. 1 to 3 and the gas barrier film 70 shown in FIGS. 15 to 16 will be described. In addition, the following description is an example of a gas barrier film, and the structure of a gas barrier film is not limited to these. Moreover, the gas barrier film may have a configuration other than these.
[ガスバリア性フィルム]
 ガスバリア性フィルム10,70は、基材11とガスバリア層12とを有し、ガスバリア層がケイ素、酸素、及び、炭素を含有し、実質的に平坦な領域と、この平坦な領域に囲まれた、3次元的な曲面が形成された3次曲面部を有する領域(曲面領域)を有していれば、その他の構成は限定されない。
[Gas barrier film]
The gas barrier films 10 and 70 have a base material 11 and a gas barrier layer 12, and the gas barrier layer contains silicon, oxygen, and carbon, and is surrounded by a substantially flat region and the flat region. Other configurations are not limited as long as they have a region (curved surface region) having a cubic curved surface portion on which a three-dimensional curved surface is formed.
[基材]
 ガスバリア性フィルム10,70に用いられる基材11としては、例えば、樹脂フィルム等が挙げられる。樹脂フィルムは、ガスバリア層を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。樹脂フィルムとしては、従来公知の樹脂フィルムを用いることができる。基材11は、複数の材料から形成されていてもよい。樹脂フィルムとしては、特開2013-226758号公報の段落[0124]~[0136]、国際公開第2013/002026号の段落[0044]~[0047]等に記載された樹脂フィルムを挙げることができる。
[Base material]
Examples of the base material 11 used for the gas barrier films 10 and 70 include a resin film. As long as the resin film is a film that can hold the gas barrier layer, the material, the thickness, and the like are not particularly limited, and can be appropriately selected according to the purpose of use. As the resin film, a conventionally known resin film can be used. The base material 11 may be formed from a plurality of materials. Examples of the resin film include resin films described in paragraphs [0124] to [0136] of JP2013-226758A, paragraphs [0044] to [0047] of WO2013 / 002026, and the like. .
 基材11として用いることができる樹脂フィルムのより好ましい具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリシクロオレフィン(COP)が挙げられる。 Specific examples of the resin film that can be used as the substrate 11 include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), and polycycloolefin (COP).
 基材11は、光の吸収が少なく、ヘイズが小さいことが好ましい。このため、基材11は、一般的に光学フィルムに適用される樹脂フィルムから、適宜選択して用いることができる。 It is preferable that the base material 11 has little light absorption and small haze. For this reason, the base material 11 can be appropriately selected from resin films that are generally applied to optical films.
 また、基材11は、樹脂フィルムが単独、又は、複数用いられていてもよく、複数の層から形成されていてもよい。例えば、図3に示すように、第1基材17と、第2基材18とが、粘着剤層19により貼合された構成であってもよい。第1基材17及び第2基材18としては、上記樹脂フィルムを用いることができる。また、粘着剤層19としては、後述する保護フィルムの粘着剤層と同様の構成を適用することができる。 In addition, the base material 11 may be a resin film or a plurality of layers may be used alone or may be formed of a plurality of layers. For example, as shown in FIG. 3, the first base material 17 and the second base material 18 may be bonded by an adhesive layer 19. As the first base material 17 and the second base material 18, the resin film can be used. Moreover, as the adhesive layer 19, the structure similar to the adhesive layer of the protective film mentioned later is applicable.
 基材11は、枚葉形状及びロール形状に限定されないが、生産性の観点からロールトゥロール方式でも対応できるロール形状が好ましい。また、基材11の厚さは、特に制限されないが、5~500μm程度が好ましい。 The substrate 11 is not limited to a single wafer shape and a roll shape, but a roll shape that can be handled by a roll-to-roll method is preferable from the viewpoint of productivity. The thickness of the substrate 11 is not particularly limited, but is preferably about 5 to 500 μm.
[ハードコート層]
 また、基材11は、両面にハードコート層が設けられた構成であってもよい。
 基材11が表面にハードコート層を有することにより、ガスバリア性フィルム10,70の耐久性や平滑性が向上する。ハードコート層は、硬化型樹脂から形成されていることが好ましい。硬化性樹脂としては、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の熱硬化型樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、紫外線硬化型エポキシ樹脂等の活性エネルギー線硬化型樹脂が挙げられる。
[Hard coat layer]
Moreover, the structure by which the hard-coat layer was provided in both surfaces may be sufficient as the base material 11. FIG.
When the base material 11 has a hard coat layer on the surface, durability and smoothness of the gas barrier films 10 and 70 are improved. The hard coat layer is preferably formed from a curable resin. Examples of the curable resin include epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, vinyl benzyl resins and other thermosetting resins, ultraviolet curable urethane acrylate resins, and ultraviolet curable polyesters. Examples thereof include active energy ray curable resins such as acrylate resins, ultraviolet curable epoxy acrylate resins, ultraviolet curable polyol acrylate resins, and ultraviolet curable epoxy resins.
 また、ハードコート層には、耐傷性、滑り性や屈折率を調整するために、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機化合物の微粒子、又は、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコーン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、ポリ弗化エチレン系樹脂粉末等の紫外線硬化性樹脂組成物を加えることができる。また、ハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。更にハードコート層は、シリコーン系界面活性剤、ポリオキシエーテル化合物、フッ素-シロキサングラフトポリマーを含有してもよい。 Also, the hard coat layer has fine particles of inorganic compounds such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, or polymethyl methacrylate to adjust the scratch resistance, slipperiness and refractive index. Acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicone resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder, Ultraviolet curable resin compositions such as polyamide resin powder, polyimide resin powder, and polyfluorinated ethylene resin powder can be added. Further, in order to increase the heat resistance of the hard coat layer, an antioxidant that does not suppress the photocuring reaction can be selected and used. Further, the hard coat layer may contain a silicone-based surfactant, a polyoxyether compound, and a fluorine-siloxane graft polymer.
 ハードコート層を形成するための塗布液に含有される有機溶媒としては、例えば、炭化水素類(例えば、トルエン、キシレン等)、アルコール類(例えば、メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エステル類(例えば、酢酸メチル、酢酸エチル、乳酸メチル等)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合して利用できる。また、塗布液に含有される硬化型樹脂含量は、例えば、5~80質量%である。 Examples of the organic solvent contained in the coating solution for forming the hard coat layer include hydrocarbons (eg, toluene, xylene, etc.), alcohols (eg, methanol, ethanol, isopropanol, butanol, cyclohexanol, etc.). , Ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), esters (eg, methyl acetate, ethyl acetate, methyl lactate, etc.), glycol ethers, other organic solvents, or these Can be used as a mixture. The content of the curable resin contained in the coating solution is, for example, 5 to 80% by mass.
 ハードコート層は、上記塗布液を用いて、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の湿式塗布方法で塗設することができる。塗布液の層厚としては、例えば0.1~30μmである。また、基材11に塗布液を塗布する前に、あらかじめ基材11に真空紫外線照射等の表面処理を行うことが好ましい。 The hard coat layer can be applied by a known wet coating method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method using the above coating solution. The layer thickness of the coating solution is, for example, 0.1 to 30 μm. In addition, before applying the coating solution to the base material 11, it is preferable to perform surface treatment such as vacuum ultraviolet irradiation on the base material 11 in advance.
 塗布液を塗布して形成した塗膜には、紫外線等の活性エネルギー線を照射して樹脂を硬化させる。これにより、ハードコート層を形成する。硬化に用いる光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等が挙げられる。照射条件は、例えば50~2000mJ/cmの範囲内が好ましい。 The coating film formed by applying the coating solution is irradiated with active energy rays such as ultraviolet rays to cure the resin. Thereby, a hard coat layer is formed. Examples of the light source used for curing include a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, and a xenon lamp. The irradiation conditions are preferably in the range of 50 to 2000 mJ / cm 2 , for example.
[ガスバリア層]
 ガスバリア性フィルム10,70を構成するガスバリア層12は、バリア性を有する層であり、ケイ素、酸素、及び、炭素を含有し、ガスバリア層の厚さ方向の炭素の含有量を示す曲線が4個以上の極大値を有し、上述のガスバリア層の組成、及び、炭素分布曲線の規定を満たす。ガスバリア層12は、後述する、ロールトゥロール方式の適用が可能な、無機化合物の気相成膜により形成されることが好ましい。
[Gas barrier layer]
The gas barrier layer 12 constituting the gas barrier films 10 and 70 is a layer having a barrier property and contains silicon, oxygen, and carbon, and four curves indicating the carbon content in the thickness direction of the gas barrier layer. It has the above maximum value, and satisfies the above-mentioned composition of the gas barrier layer and the carbon distribution curve. The gas barrier layer 12 is preferably formed by vapor-phase film formation of an inorganic compound that can be applied by a roll-to-roll method, which will be described later.
[ガスバリア層;気相成膜]
 無機化合物の気相製膜によって形成されるガスバリア層12(以下、気相成膜ガスバリア層ともいう)は、ケイ素、酸素、及び、炭素を含有する無機化合物を含む。無機化合物を含む気相成膜ガスバリア層は、副次的な成分として、上記の無機化合物以外の元素を含有してもよい。
[Gas barrier layer; vapor deposition]
The gas barrier layer 12 formed by vapor deposition of an inorganic compound (hereinafter also referred to as a vapor deposition gas barrier layer) includes an inorganic compound containing silicon, oxygen, and carbon. The gas-phase film-forming gas barrier layer containing an inorganic compound may contain an element other than the inorganic compound as a secondary component.
 気相成膜ガスバリア層のガスバリア性は、水蒸気透過率(WVTR)が、1×10-1(g/m/day)以下であることが好ましく、1×10-2(g/m/day)以下であることがより好ましい。また、成形加工後のガスバリア性フィルムにおいて、水蒸気透過度(WVTR)が、1×10-2(g/m/day)以下であることが好ましい。気相成膜ガスバリア層の膜厚は、特に制限されないが、5~1000nmであること好ましい。このような範囲であれば、高いガスバリア性能、折り曲げ耐性、断裁加工性に優れる。また、気相成膜ガスバリア層は2層以上で構成されてもよい。 The gas barrier property of the gas-phase film-forming gas barrier layer is preferably a water vapor transmission rate (WVTR) of 1 × 10 −1 (g / m 2 / day) or less, preferably 1 × 10 −2 (g / m 2 / day). day) or less. In addition, the gas barrier film after the molding process preferably has a water vapor transmission rate (WVTR) of 1 × 10 −2 (g / m 2 / day) or less. The film thickness of the gas-phase film-forming gas barrier layer is not particularly limited, but is preferably 5 to 1000 nm. If it is such a range, it will be excellent in high gas barrier performance, bending tolerance, and cutting workability. Further, the vapor deposition gas barrier layer may be composed of two or more layers.
 気相成膜ガスバリア層を形成するための気相製膜方法は、特に限定されない。気相成膜ガスバリア層の形成には、既存の薄膜堆積技術を利用することができる。例えば、従来公知の蒸着法、反応性蒸着法、スパッタ法、反応性スパッタ法、化学気相成長法等の気相製膜法を用いることができる。これらの気相成膜法によるガスバリア層は、公知の条件を適用して作製することができる。 The vapor phase film forming method for forming the vapor phase film forming gas barrier layer is not particularly limited. An existing thin film deposition technique can be used to form the vapor deposition gas barrier layer. For example, a conventionally known vapor deposition method such as a vapor deposition method, a reactive vapor deposition method, a sputtering method, a reactive sputtering method, or a chemical vapor deposition method can be used. The gas barrier layer formed by these vapor deposition methods can be manufactured by applying known conditions.
 例えば、化学気相成長法(Chemical Vapor Deposition:CVD)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面又は気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマを発生させる方法等があり、熱CVD法、触媒化学気相成長法、光CVD法、プラズマを励起源としたプラズマCVD法(PECVD法)である真空プラズマCVD法、大気圧プラズマCVD法等の公知のCVD法が挙げられる。特に、PECVD法が好ましい方法である。以下、化学気相成長法の好ましい手法として、真空プラズマCVD法について詳しく説明する。 For example, in the chemical vapor deposition (Chemical Vapor Deposition: CVD), a raw material gas containing a target thin film component is supplied onto a base material, and the film is deposited by a chemical reaction on the surface of the base material or in the gas phase. Is the method. In addition, there is a method of generating plasma for the purpose of activating a chemical reaction, such as a thermal CVD method, a catalytic chemical vapor deposition method, a photo CVD method, or a plasma CVD method (PECVD method) using plasma as an excitation source. Known CVD methods such as a vacuum plasma CVD method and an atmospheric pressure plasma CVD method may be mentioned. In particular, the PECVD method is a preferable method. Hereinafter, the vacuum plasma CVD method will be described in detail as a preferred method of the chemical vapor deposition method.
[真空プラズマCVD法]
 真空プラズマCVD法は、プラズマ源を搭載した真空容器に材料ガスを流入させ、電源からプラズマ源に電力供給することで真空容器内に放電プラズマを発生させ、プラズマで材料ガスを分解反応させ、生成された反応種を基材に堆積させる方法である。真空プラズマCVD法により得られる気相成膜ガスバリア層は、原材料である金属化合物、分解ガス、分解温度、投入電力等の条件を選ぶことで、目的の化合物を製造できる。
[Vacuum plasma CVD method]
In the vacuum plasma CVD method, material gas flows into a vacuum vessel equipped with a plasma source, power is supplied from the power source to the plasma source, discharge plasma is generated in the vacuum vessel, and the material gas is decomposed and reacted with the plasma. The reactive species deposited on the substrate. A gas-phase film-forming gas barrier layer obtained by a vacuum plasma CVD method can produce a target compound by selecting conditions such as a raw material metal compound, decomposition gas, decomposition temperature, input power, and the like.
 原材料の化合物としては、ケイ素化合物、チタン化合物、及び、アルミニウム化合物等のケイ素を含む化合物及び金属を含む化合物を用いることが好ましい。これら原材料の化合物は、単独でも又は2種以上組み合わせて用いてもよい。 As the raw material compound, it is preferable to use a compound containing silicon and a compound containing metal, such as a silicon compound, a titanium compound, and an aluminum compound. These raw material compounds may be used alone or in combination of two or more.
 これらの、ケイ素化合物、チタン化合物、及び、アルミニウム化合物として、従来公知の化合物を用いることができる。例えば、公知の化合物としては特開2013-063658号公報の段落[0028]~[0031]、特開2013-047002号公報の段落[0078]~[0081]等に記載された化合物を挙げることができる。好ましくは、シラン、テトラメトキシシラン、テトラエトキシシラン、ヘキサメチルジシロキサン、等が挙げられる。 Conventionally known compounds can be used as these silicon compounds, titanium compounds, and aluminum compounds. For example, known compounds include those described in paragraphs [0028] to [0031] of JP2013-063658A, paragraphs [0078] to [0081] of JP2013-047002A, and the like. it can. Preferably, silane, tetramethoxysilane, tetraethoxysilane, hexamethyldisiloxane, etc. are mentioned.
 また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、及び、水蒸気等が挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガス等の不活性ガスと混合して用いてもよい。原材料の化合物を含む原料ガスと、分解ガスを適宜選択することで所望の気相成膜ガスバリア層を得ることができる。 In addition, as a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide Examples thereof include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor. Further, the decomposition gas may be used by mixing with an inert gas such as argon gas or helium gas. A desired vapor deposition gas barrier layer can be obtained by appropriately selecting a source gas containing a raw material compound and a decomposition gas.
(真空プラズマCVD装置)
 以下、好適な形態である真空プラズマCVD法について具体的に説明する。図17に、真空プラズマCVD法に適用される、ロールトゥロール(Roll to Roll)方式を用いたローラー間放電プラズマCVD装置の模式図の一例を示す。
(Vacuum plasma CVD equipment)
Hereinafter, the vacuum plasma CVD method which is a preferable embodiment will be specifically described. FIG. 17 shows an example of a schematic diagram of an inter-roller discharge plasma CVD apparatus using a roll-to-roll method, which is applied to the vacuum plasma CVD method.
 上述のプラズマCVD法により気相成膜ガスバリア層を製造する際に用いる成膜装置として、図17に示す製造装置を用いた場合には、プラズマCVD法を利用しながら、ロールトゥロール方式で気相成膜ガスバリア層を製造することができる。以下、図17を参照しながら、気相成膜ガスバリア層の製造方法についてより詳細に説明する。なお、図17は、気相成膜ガスバリア層の製造において好適に利用することができる磁場を印加したローラー間放電プラズマCVD装置の一例を示す模式図である。 When the manufacturing apparatus shown in FIG. 17 is used as the film forming apparatus used when manufacturing the vapor-phase film forming gas barrier layer by the plasma CVD method, the roll-to-roll method is used while using the plasma CVD method. A phase-forming gas barrier layer can be produced. Hereinafter, with reference to FIG. 17, a method for producing a vapor deposition gas barrier layer will be described in more detail. FIG. 17 is a schematic diagram showing an example of an inter-roller discharge plasma CVD apparatus to which a magnetic field that can be suitably used in the production of a gas phase deposition gas barrier layer is applied.
 図17に示す磁場を印加したローラー間放電プラズマCVD装置(以下、単にプラズマCVD装置ともいう)50は、繰り出しローラー51と、搬送ローラー52、搬送ローラー54、搬送ローラー55及び搬送ローラー57と、成膜ローラー53及び成膜ローラー56と、成膜ガス供給管59と、プラズマ発生用電源63と、成膜ローラー53,56の内部に設置された磁場発生装置61及び磁場発生装置62と、巻取りローラー58とを備えている。また、このようなプラズマCVD製造装置においては、少なくとも成膜ローラー53,56と、成膜ガス供給管59と、プラズマ発生用電源63と、磁場発生装置61,62とが、図示を省略した真空チャンバー内に配置されている。また、図17においては、成膜ローラー53,56にプラズマ発生用電源63に接続された電極ドラムが設置される。更に、このようなプラズマCVD製造装置において、真空チャンバー(不図示)は、真空ポンプ(不図示)に接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。 An inter-roller discharge plasma CVD apparatus (hereinafter also simply referred to as a plasma CVD apparatus) 50 to which a magnetic field shown in FIG. 17 is applied includes a feeding roller 51, a transport roller 52, a transport roller 54, a transport roller 55, and a transport roller 57. Film roller 53 and film formation roller 56, film formation gas supply pipe 59, plasma generation power source 63, magnetic field generation device 61 and magnetic field generation device 62 installed inside film formation rollers 53 and 56, winding And a roller 58. In such a plasma CVD manufacturing apparatus, at least the film forming rollers 53 and 56, the film forming gas supply pipe 59, the plasma generating power source 63, and the magnetic field generating apparatuses 61 and 62 are not shown in the vacuum. Located in the chamber. In FIG. 17, electrode drums connected to the plasma generating power source 63 are installed on the film forming rollers 53 and 56. Further, in such a plasma CVD manufacturing apparatus, a vacuum chamber (not shown) is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by this vacuum pump. Yes.
 このようなプラズマCVD製造装置においては、一対の成膜ローラー(成膜ローラー53と成膜ローラー56)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源63に接続されている。対の成膜ローラーに、プラズマ発生用電源63から電力を供給することにより、成膜ローラー53と成膜ローラー56との間の空間に放電し、プラズマを発生させることができる。このようなプラズマCVD製造装置においては、一対の成膜ローラー53,56は、その中心軸が同一平面上において略平行となるように配置することが好ましい。このように一対の成膜ローラー53,56を配置することにより、成膜レートを倍にでき、かつ、同じ構造の膜を成膜できる。 In such a plasma CVD manufacturing apparatus, each film forming roller generates plasma so that a pair of film forming rollers (film forming roller 53 and film forming roller 56) can function as a pair of counter electrodes. The power supply 63 is connected. By supplying electric power to the pair of film forming rollers from the plasma generating power source 63, it is possible to discharge into the space between the film forming roller 53 and the film forming roller 56 and generate plasma. In such a plasma CVD manufacturing apparatus, the pair of film forming rollers 53 and 56 are preferably arranged so that their central axes are substantially parallel on the same plane. By arranging the pair of film forming rollers 53 and 56 in this manner, the film forming rate can be doubled and a film having the same structure can be formed.
 また、成膜ローラー53及び成膜ローラー56の内部には、成膜ローラーが回転しても回転しないように固定された、磁場発生装置61及び磁場発生装置62がそれぞれ設けられている。 Further, inside the film forming roller 53 and the film forming roller 56, a magnetic field generator 61 and a magnetic field generator 62, which are fixed so as not to rotate even when the film forming roller rotates, are provided.
 さらに、成膜ローラー53及び成膜ローラー56としては、適宜公知のローラーを用いることができ、より効率よく薄膜を形成することができる観点から、直径が同一のものを使うことが好ましい。また、このようなプラズマCVD製造装置に用いる繰り出しローラー51及び搬送ローラー52,54,55,57としては、公知のローラーを適宜選択して用いることができる。また、巻取りローラー58も、気相成膜ガスバリア層を形成した基材60を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 Furthermore, as the film forming roller 53 and the film forming roller 56, known rollers can be used as appropriate, and those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, as the feed roller 51 and the transport rollers 52, 54, 55, 57 used in such a plasma CVD manufacturing apparatus, known rollers can be appropriately selected and used. Further, the winding roller 58 is not particularly limited as long as it can wind the substrate 60 on which the vapor-phase film-forming gas barrier layer is formed, and a known roller can be appropriately used.
 成膜ガス供給管59としては、原料ガス及び酸素ガスを所定の速度で供給又は排出することが可能なものを適宜用いることができる。さらに、プラズマ発生用電源63としては、従来公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源63としては、効率よくプラズマCVD法を実施することが可能となることから、一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源63としては、印加電力を100W~10kWの範囲とすることができ、かつ交流の周波数を50Hz~500kHzの範囲とすることが可能なものであることがより好ましい。また、磁場発生装置61,62としては、適宜公知の磁場発生装置を用いることができる。 As the film forming gas supply pipe 59, one capable of supplying or discharging the source gas and the oxygen gas at a predetermined rate can be appropriately used. Further, as the plasma generating power source 63, a conventionally known power source of a plasma generating apparatus can be used. As such a plasma generation power source 63, since it is possible to efficiently perform the plasma CVD method, a power source (AC power source or the like) capable of alternately reversing the polarity of the pair of film forming rollers is used. It is preferable to use it. Further, it is more preferable that such a plasma generating power source 63 is one that can apply electric power in a range of 100 W to 10 kW and an AC frequency in a range of 50 Hz to 500 kHz. . As the magnetic field generators 61 and 62, known magnetic field generators can be used as appropriate.
 図17に示すプラズマCVD装置50を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、磁場発生装置の強度、真空チャンバー内の圧力(減圧度)、成膜ローラーの直径、樹脂基材の搬送速度等を適宜調整することにより、所望のガスバリア層を製造することができる。 Using the plasma CVD apparatus 50 shown in FIG. 17, for example, the type of source gas, the power of the electrode drum of the plasma generator, the strength of the magnetic field generator, the pressure in the vacuum chamber (decompression degree), the diameter of the film forming roller, A desired gas barrier layer can be produced by appropriately adjusting the conveying speed of the resin substrate.
 図17に示すプラズマCVD装置50において、成膜ガス(原料ガス等)を真空チャンバー内に供給し、一対の成膜ローラー53,56間に、磁場を発生させながらプラズマ放電を行うことにより、成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー53が保持する基材60の表面上、及び、成膜ローラー56が保持する基材60の表面上に、気相成膜ガスバリア層が形成される。なお、このような成膜に際しては、基材60が繰り出しローラー51、搬送ローラー52,54,55,57、巻取りローラー58、及び、成膜ローラー53,56等で搬送されることにより、ロールトゥロール方式の連続的な成膜プロセスで気相成膜ガスバリア層を形成することができる。 In the plasma CVD apparatus 50 shown in FIG. 17, a film forming gas (raw material gas or the like) is supplied into the vacuum chamber, and plasma discharge is performed while a magnetic field is generated between the pair of film forming rollers 53 and 56. A gas-phase film-forming gas barrier layer is formed on the surface of the base material 60 held by the film-forming roller 53 and on the surface of the base material 60 held by the film-forming roller 56 when the film gas (source gas or the like) is decomposed by plasma. Is formed. In such film formation, the substrate 60 is conveyed by the feed roller 51, the conveyance rollers 52, 54, 55, 57, the take-up roller 58, the film formation rollers 53, 56, etc. The gas-phase film-forming gas barrier layer can be formed by a continuous roll-type film forming process.
(成膜ガス)
 プラズマ化学気相成長法に用いる成膜ガスとしては、有機ケイ素化合物を含む原料ガスと酸素ガスとを用い、その成膜ガス中の酸素ガスの含有量は、成膜ガス中の有機ケイ素化合物の全量を完全酸化するために必要な理論酸素量以下であることが好ましい。
(Deposition gas)
As a film forming gas used in the plasma chemical vapor deposition method, a source gas containing an organosilicon compound and an oxygen gas are used, and the content of the oxygen gas in the film forming gas is the same as that of the organosilicon compound in the film forming gas. It is preferable that the amount is less than the theoretical oxygen amount necessary for complete oxidation of the whole amount.
 気相成膜ガスバリア層の作製に用いる成膜ガスを構成する原料ガスとしては、少なくともケイ素を含有する有機ケイ素化合物を用いることが好ましい。気相成膜ガスバリア層の作製に適用可能な有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン等が挙げられる。これらの有機ケイ素化合物の中でも、成膜での取り扱い、及び、得られる気相成膜ガスバリア層のガスバリア性等の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。 It is preferable to use an organosilicon compound containing at least silicon as the source gas constituting the film forming gas used for the production of the vapor phase film forming gas barrier layer. Examples of the organosilicon compound applicable to the production of the gas-phase film-forming gas barrier layer include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane Etc. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of handling in film formation and gas barrier properties of the obtained gas-phase film formation gas barrier layer. preferable. Moreover, these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
 また、成膜ガスは、原料ガスの他に反応ガスとして、酸素ガスを含有することができる。酸素ガスは、原料ガスと反応して酸化物等の無機化合物となるガスである。成膜ガスとしては、原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素ガスを用いることができる。 Further, the film forming gas can contain oxygen gas as a reaction gas in addition to the source gas. Oxygen gas is a gas that reacts with a raw material gas to become an inorganic compound such as an oxide. As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as a film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon, or hydrogen gas can be used.
 このような成膜ガスが、ケイ素を含有する有機ケイ素化合物を含む原料ガスと酸素ガスとを含有する場合、原料ガスと酸素ガスの比率としては、原料ガスと酸素ガスとを完全に反応させるために理論上必要となる酸素ガスの量の比率よりも、酸素ガスの比率を過剰にし過ぎないことが好ましい。これについては、例えば、国際公開第2012/046767号等の記載を参照することができる。 When such a film forming gas contains a source gas containing an organosilicon compound containing silicon and an oxygen gas, the ratio of the source gas to the oxygen gas is such that the source gas and the oxygen gas are completely reacted. It is preferable that the oxygen gas ratio is not excessively larger than the theoretically required oxygen gas ratio. About this, description, such as international publication 2012/046767, can be referred, for example.
(真空度)
 真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~100Paの範囲とすることが好ましい。
(Degree of vacuum)
The pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 100 Pa.
(ローラー成膜)
 図17に示すプラズマCVD装置50を用いたプラズマCVD法においては、成膜ローラー53,56間に放電するために、プラズマ発生用電源63に接続された電極ドラムに印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができる。電極ドラムに印加する電力としては、例えば、0.1~10kWの範囲内とすることが好ましい。このような範囲の印加電力であれば、パーティクル(不正粒子)の発生も見られず、成膜時に発生する熱量も制御範囲内であるため、成膜時の基材表面温度の上昇による樹脂基材の熱変形、熱による性能劣化や成膜時の皺の発生を抑制することができる。
(Roller film formation)
In the plasma CVD method using the plasma CVD apparatus 50 shown in FIG. 17, the electric power applied to the electrode drum connected to the plasma generating power source 63 to discharge between the film forming rollers 53 and 56 is the raw material gas. It can be appropriately adjusted according to the type, the pressure in the vacuum chamber, and the like. The power applied to the electrode drum is preferably in the range of 0.1 to 10 kW, for example. If the applied power is in such a range, no particles (illegal particles) are generated, and the amount of heat generated during film formation is within the control range. Thermal deformation of the material, performance deterioration due to heat, and generation of wrinkles during film formation can be suppressed.
 プラズマCVD装置50において、基材60の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲内とすることが好ましく、0.5~20m/minの範囲内とすることがより好ましい。ライン速度が範囲内であれば、樹脂基材の熱に起因する皺も発生し難く、形成される気相成膜ガスバリア層の厚さも十分に制御可能となる。 In the plasma CVD apparatus 50, the conveyance speed (line speed) of the substrate 60 can be adjusted as appropriate according to the type of source gas, the pressure in the vacuum chamber, etc., but is within the range of 0.25 to 100 m / min. Preferably, it is more preferably in the range of 0.5 to 20 m / min. If the line speed is within the range, wrinkles due to the heat of the resin base material are not easily generated, and the thickness of the gas-phase film-forming gas barrier layer to be formed can be sufficiently controlled.
[X線光電子分光法による深さ方向の元素分布測定]
 ガスバリア層内における炭素原子の含有比率の平均値は、以下のXPSデプスプロファイルの測定によって求めることができる。
[Measurement of element distribution in the depth direction by X-ray photoelectron spectroscopy]
The average value of the carbon atom content ratio in the gas barrier layer can be determined by the following XPS depth profile measurement.
 ガスバリア層の層厚方向におけるケイ素分布曲線、酸素分布曲線、及び、ケイ素分布曲線等は、X線光電子分光法(XPS:Xray Photoelectron Spectroscopy)の測定と、アルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面の組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間が、ガスバリア層の層厚方向におけるガスバリア層の表面からの距離におおむね相関する。このため、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される、ガスバリア層の表面からの距離を「ガスバリア層の層厚方向におけるガスバリア層の表面からの距離」として採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、以下の測定条件とすることが好ましい。 The silicon distribution curve, oxygen distribution curve, silicon distribution curve, etc. in the thickness direction of the gas barrier layer use both X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon. Thus, it can be created by so-called XPS depth profile measurement in which the composition of the surface is sequentially analyzed while exposing the inside of the sample. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In this way, in the element distribution curve having the horizontal axis as the etching time, the etching time is generally correlated with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer. For this reason, the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement is referred to as “distance from the surface of the gas barrier layer in the layer thickness direction of the gas barrier layer”. Can be adopted. Moreover, it is preferable to set it as the following measurement conditions as a sputtering method employ | adopted in such XPS depth profile measurement.
(測定条件)
 エッチングイオン種:アルゴン(Ar
 エッチング速度(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):3nm以下
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名"VG Theta Probe"
 照射X線:単結晶分光AlKα
 X線のスポット及びそのサイズ:800×400μmの楕円形
(Measurement condition)
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 3 nm or less X-ray photoelectron spectrometer: Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and size: 800 × 400 μm oval
 ガスバリア層において、炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、具体的には、エッチング速度とエッチング時間とから算出されるガスバリア層のうちの少なくとも1層の膜厚方向におけるガスバリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係が、[(dC/dx)≦0.5]で表される条件を満たすことをいう。 In the gas barrier layer, the carbon distribution curve is preferably substantially continuous. Here, the carbon distribution curve is substantially continuous, specifically, the distance from the surface of the gas barrier layer in the film thickness direction of at least one of the gas barrier layers calculated from the etching rate and the etching time ( x, unit: nm) and the atomic ratio of carbon (C, unit: at%) satisfy the condition represented by [(dC / dx) ≦ 0.5].
(ガスバリア層における炭素元素プロファイル)
 ガスバリア層は、ガスバリア層の構成元素として炭素原子、ケイ素原子及び酸素原子を含む。そして、層厚方向に組成が連続的に変化し、X線光電子分光法による深さ方向の元素分布測定に基づく各構成元素の分布曲線のうち、炭素分布曲線が、上記要件(1)を満たす。また、ガスバリア性と屈曲性とを両立させる観点から、ガスバリア層は、特定の領域において、炭素原子比率が濃度勾配を有して連続的に変化する構成を有することが好ましい。
(Carbon element profile in gas barrier layer)
The gas barrier layer contains carbon atoms, silicon atoms, and oxygen atoms as constituent elements of the gas barrier layer. The composition continuously changes in the layer thickness direction, and the carbon distribution curve among the distribution curves of the constituent elements based on the element distribution measurement in the depth direction by X-ray photoelectron spectroscopy satisfies the requirement (1). . From the viewpoint of achieving both gas barrier properties and flexibility, the gas barrier layer preferably has a configuration in which the carbon atom ratio continuously changes with a concentration gradient in a specific region.
 このような炭素原子分布プロファイルを有するガスバリア層は、層内における炭素分布曲線が複数の極値を有する。炭素分布曲線が複数の極値を有すると、ガスバリア層を屈曲させた場合にも、十分なガスバリア性が得られる。 In the gas barrier layer having such a carbon atom distribution profile, the carbon distribution curve in the layer has a plurality of extreme values. When the carbon distribution curve has a plurality of extreme values, sufficient gas barrier properties can be obtained even when the gas barrier layer is bent.
 なお、上記分布曲線の極値とは、ガスバリア層の厚さ方向において、ガスバリア層の表面からの距離に対する元素の原子比率の極大値又は極小値である。極大値とは、ガスバリア層の表面からの距離を変化させた場合に元素の原子比率の値が増加から減少に変わる変曲点であり、且つ、その変曲点の位置から厚さ方向に2~20nm変化させた位置の元素の原子比率の値が1at%以上減少する点のことをいう。また、極小値とは、ガスバリア層の表面からの距離を変化させた場合に元素の原子比の値が減少から増加に変わる変曲点であり、且つ、その変曲点の位置から厚さ方向に2~20nm変化させた位置の元素の原子比率の値が1at%以上増加する点のことをいう。すなわち、極大値及び極小値は、厚さ方向の位置を2~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が1at%以上減少又は増加する点である。 The extreme value of the above distribution curve is the maximum or minimum value of the atomic ratio of the element to the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer. The maximum value is an inflection point at which the value of the atomic ratio of the element changes from increasing to decreasing when the distance from the surface of the gas barrier layer is changed, and 2 in the thickness direction from the position of the inflection point. It means that the atomic ratio value of the element at a position changed by ˜20 nm decreases by 1 at% or more. The minimum value is an inflection point at which the atomic ratio value of the element changes from decrease to increase when the distance from the surface of the gas barrier layer is changed, and the thickness direction from the position of the inflection point In other words, the atomic ratio of the element at the position changed by 2 to 20 nm is increased by 1 at% or more. That is, the maximum value and the minimum value are points where the atomic ratio value of the element decreases or increases by 1 at% or more in any range when the position in the thickness direction is changed in the range of 2 to 20 nm.
(ガスバリア層における各元素プロファイル)
 ガスバリア層においては、構成元素として炭素原子、ケイ素原子及び酸素原子を含有することを特徴とするが、それぞれの原子の比率と、最大値及び最小値についての好ましい態様を、以下に説明する。
(Each element profile in the gas barrier layer)
The gas barrier layer is characterized by containing carbon atoms, silicon atoms, and oxygen atoms as constituent elements. Preferred embodiments of the ratio of each atom and the maximum and minimum values will be described below.
(炭素原子比率の最大値と最小値の関係)
 ガスバリア層では、炭素分布曲線における炭素原子比率の最大の極値(最大値)と最小の極値(最小値)の差が3at%以上であることが好ましく、5at%以上であることがより好ましい。炭素原子比率の最大値及び最小値の差を3at%以上とすることにより、作製したガスバリア層を屈曲させた際のガスバリア性が十分得られる。最大値及び最小値の差が5at%以上であれば、ガスバリア層を屈曲させた場合にも、十分なガスバリア性が得られる。
(Relationship between maximum and minimum carbon atom ratio)
In the gas barrier layer, the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) of the carbon atom ratio in the carbon distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. . By setting the difference between the maximum value and the minimum value of the carbon atom ratio to 3 at% or more, sufficient gas barrier properties can be obtained when the manufactured gas barrier layer is bent. When the difference between the maximum value and the minimum value is 5 at% or more, sufficient gas barrier properties can be obtained even when the gas barrier layer is bent.
(酸素原子比率の最大値と最小値の関係)
 ガスバリア層においては、酸素分布曲線における最大の極値(最大値)と最小の極値(最小値)の差の絶対値が3at%以上であることが好ましく、5at%以上であることがより好ましい。
(Relationship between maximum and minimum oxygen atom ratio)
In the gas barrier layer, the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the oxygen distribution curve is preferably 3 at% or more, and more preferably 5 at% or more. .
(ケイ素原子比率の最大値と最小値の関係)
 ガスバリア層においては、ケイ素分布曲線における最大の極値(最大値)と最小の極値(最小値)の差の絶対値が10at%未満であることが好ましく、5at%未満であることがより好ましい。最大の極値(最大値)と最小の極値(最小値)の差が10at%未満であれば、ガスバリア層のガスバリア性及び機械的強度が得られる。
(Relationship between maximum and minimum silicon atom ratio)
In the gas barrier layer, the absolute value of the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) in the silicon distribution curve is preferably less than 10 at%, and more preferably less than 5 at%. . If the difference between the maximum extreme value (maximum value) and the minimum extreme value (minimum value) is less than 10 at%, the gas barrier properties and mechanical strength of the gas barrier layer can be obtained.
 また、膜面全体の均一性やガスバリア性を向上させるためには、ガスバリア層が膜面方向(ガスバリア層の表面に平行な方向)で実質的に一様であることが好ましい。ガスバリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定によりガスバリア層の膜面の任意の2箇所の測定箇所について酸素分布曲線、炭素分布曲線、及び、酸素-炭素合計の分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比率の最大値及び最小値の差の絶対値が、互いに同じであるか、又は、5at%以内の差であることをいう。 In order to improve the uniformity of the entire film surface and the gas barrier property, it is preferable that the gas barrier layer is substantially uniform in the film surface direction (direction parallel to the surface of the gas barrier layer). The gas barrier layer is substantially uniform in the film surface direction. The XPS depth profile measurement indicates that the oxygen distribution curve, the carbon distribution curve, and the oxygen-carbon total distribution at any two measurement points on the film surface of the gas barrier layer. When a curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same, and the difference between the maximum value and the minimum value of the atomic ratio of carbon in each carbon distribution curve Are the same as each other or a difference within 5 at%.
 上記したガスバリア層のその他の構成については、国際公開第2012/046767号の段落[0025]~[0047]、特開2014-000782号公報の段落[0029]~[0040]等に記載された構成を適宜参照及び採用することができる。 Other configurations of the gas barrier layer described above are described in paragraphs [0025] to [0047] of International Publication No. 2012/046767, paragraphs [0029] to [0040] of JP 2014-000782 A, and the like. Can be referred to and adopted as appropriate.
(ガスバリア層の厚さ)
 ガスバリア層の厚さは、5~1000nmの範囲内であることが好ましく、20~500nmの範囲内であることより好ましく、40~300nmの範囲内であることが特に好ましい。ガスバリア層の厚さが範囲内であれば、酸素ガスバリア性、水蒸気バリア性等のガスバリア性に優れ、屈曲された状態でも良好なガスバリア性が得られる。さらに、ガスバリア層の厚さの合計値が範囲内であると、上記効果に加えて所望の平面性を実現することができる。
(Gas barrier layer thickness)
The thickness of the gas barrier layer is preferably in the range of 5 to 1000 nm, more preferably in the range of 20 to 500 nm, and particularly preferably in the range of 40 to 300 nm. If the thickness of the gas barrier layer is within the range, the gas barrier properties such as oxygen gas barrier properties and water vapor barrier properties are excellent, and good gas barrier properties can be obtained even in a bent state. Further, when the total thickness of the gas barrier layers is within the range, desired flatness can be realized in addition to the above effects.
(ガスバリア層の形成方法)
 上記要件(1)及び(2)を同時に満たすガスバリア層を形成する方法としては、特に限定されず公知の方法を用いることができる。緻密に元素分布が制御させたガスバリア層を形成することができる観点からは、上述の図17に示すローラー間放電プラズマCVD装置を用いて、磁場を印加したローラー間に放電空間を有する放電プラズマ化学気相成長法を用いることが好ましい。また、例えば、国際公開第2012/046767号の段落[0049]~[0069]等に記載の方法を参照することができる。
(Method for forming gas barrier layer)
A method for forming a gas barrier layer that simultaneously satisfies the requirements (1) and (2) is not particularly limited, and a known method can be used. From the viewpoint of forming a gas barrier layer whose element distribution is precisely controlled, discharge plasma chemistry having a discharge space between rollers to which a magnetic field is applied using the inter-roller discharge plasma CVD apparatus shown in FIG. It is preferable to use a vapor deposition method. For example, the method described in paragraphs [0049] to [0069] of International Publication No. 2012/046767 can be referred to.
 より詳しくは、図17に示すローラー間放電プラズマCVD装置において、磁場を印加したローラー間放電プラズマ処理装置を用い、基材を一対の成膜ローラーに巻き回し、この一対の成膜ローラー間に成膜ガスを供給しながらプラズマ放電する、プラズマ化学気相成長法でガスバリア層を形成することが好ましい。また、このように一対の成膜ローラー間に磁場を印加しながら放電する際には、一対の成膜ローラー間の極性を交互に反転させることが好ましい。このように、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を巻き回して、かかる一対の成膜ローラー間にプラズマ放電することにより、基材と成膜ローラーとの間の距離が変化し、プラズマ強度が変わることにより、炭素原子比率が、濃度勾配を有し、かつ層内で連続的に変化するガスバリア層を形成することが可能となる。 More specifically, in the inter-roller discharge plasma CVD apparatus shown in FIG. 17, an inter-roller discharge plasma processing apparatus to which a magnetic field is applied is used, the substrate is wound around a pair of film forming rollers, and the film is formed between the pair of film forming rollers. It is preferable to form the gas barrier layer by a plasma chemical vapor deposition method in which plasma discharge is performed while supplying a film gas. Further, when discharging while applying a magnetic field between the pair of film forming rollers, it is preferable to reverse the polarity between the pair of film forming rollers alternately. Thus, by using a pair of film forming rollers, winding the base material on the pair of film forming rollers, and performing plasma discharge between the pair of film forming rollers, the substrate and the film forming roller By changing the distance and the plasma intensity, it becomes possible to form a gas barrier layer in which the carbon atom ratio has a concentration gradient and continuously changes in the layer.
 また、成膜時に、一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、かつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となる。すなわち、成膜効率を倍にでき、且つ、同じ構造の膜が成膜されるため、炭素分布曲線の極値を倍増させることが可能となり、効率よく上記要件(1)及び(2)を同時に満たすガスバリア層を形成することが可能となる。 In addition, during film formation, the surface portion of the substrate existing on one film forming roller can be formed, and the surface portion of the substrate existing on the other film forming roller can be formed simultaneously. It becomes possible. That is, since the film formation efficiency can be doubled and a film having the same structure is formed, the extreme value of the carbon distribution curve can be doubled, and the above requirements (1) and (2) can be efficiently performed simultaneously. It is possible to form a gas barrier layer that fills.
〈4.ガスバリア性フィルムの成形加工方法〉
 次に、上述のガスバリア性フィルム10,70の成形加工方法について説明する。なお、以下の成型加工方法の説明では、図1~3に示すガスバリア性フィルム10,70の各構成及び符号を使用する。
<4. Gas barrier film molding method>
Next, a method for forming the above gas barrier films 10 and 70 will be described. In the following description of the molding method, the configurations and symbols of the gas barrier films 10 and 70 shown in FIGS. 1 to 3 are used.
[ガスバリア性フィルムの準備]
 次に、上述のガスバリア性フィルム10の成形加工方法について説明する。なお、以下の成型加工方法の説明では、図1~3、及び、図15~16に示すガスバリア性フィルム10,70の各構成及び符号を使用する。
 ガスバリア性フィルム10,70の成形加工においては、まず、平坦な基材11とガスバリア層12とからなる、平坦な形状のガスバリア性フィルム10,70を準備する。以下、平坦な形状のガスバリア性フィルム10を準備する一例について説明する。
[Preparation of gas barrier film]
Next, a method for forming the gas barrier film 10 will be described. In the following description of the molding method, the configurations and symbols of the gas barrier films 10 and 70 shown in FIGS. 1 to 3 and FIGS. 15 to 16 are used.
In the molding process of the gas barrier films 10 and 70, first, the flat gas barrier films 10 and 70 including the flat base material 11 and the gas barrier layer 12 are prepared. Hereinafter, an example of preparing the gas barrier film 10 having a flat shape will be described.
 まず、平坦な形状のガスバリア性フィルム10,70を作製するための基材11を準備する。基材11としては、上記規定を満たすことが可能な市販の樹脂フィルムを準備する。或いは、第1基材17に、粘着剤層19を用いて第2基材18を貼り合わせ、積層構造の基材11を作製する。基材11、第1基材17、第2基材18、及び、粘着剤層19としては、上述の材料や従来公知の材料を適用することができる。 First, the base material 11 for preparing the gas barrier films 10 and 70 having a flat shape is prepared. As the base material 11, a commercially available resin film capable of satisfying the above regulations is prepared. Or the 2nd base material 18 is bonded together to the 1st base material 17 using the adhesive layer 19, and the base material 11 of a laminated structure is produced. As the base material 11, the first base material 17, the second base material 18, and the pressure-sensitive adhesive layer 19, the above-described materials and conventionally known materials can be applied.
 また、第1基材17と粘着剤層19と第2基材18とからなる積層構造の基材11を作製する場合には、第2基材18を準備した後、この第2基材18の一方の面に粘着剤層19を形成する。また、第2基材18と粘着剤層19とが一体化した市販の粘着剤層付きの保護フィルムを準備してもよい。そして、第1基材17の裏面側に粘着剤層19を介して第2基材18を貼合する。第1基材17への第2基材18の貼合方法は特に限定されず、従来公知の方法を適用することができる。好ましくは、第2基材18の貼合と連続して後述するガスバリア層12の形成を行うオンライン方式を用いることが好ましい。また、第1基材17に第2基材18を貼合し、巻き取り軸で第1基材17と粘着剤層19と第2基材18とからなる積層構造の基材11を巻き取った後、別工程で積層構造の基材11を巻き出して、第1基材17の表面側にガスバリア層12の形成を行うオフライン方式であってもよい。 Further, when the base material 11 having a laminated structure including the first base material 17, the pressure-sensitive adhesive layer 19, and the second base material 18 is produced, the second base material 18 is prepared, and then the second base material 18 is prepared. The pressure-sensitive adhesive layer 19 is formed on one surface of the film. Moreover, you may prepare the commercially available protective film with an adhesive layer in which the 2nd base material 18 and the adhesive layer 19 were integrated. And the 2nd base material 18 is bonded to the back surface side of the 1st base material 17 through the adhesive layer 19. As shown in FIG. The bonding method of the 2nd base material 18 to the 1st base material 17 is not specifically limited, A conventionally well-known method is applicable. It is preferable to use an on-line method in which the gas barrier layer 12 described later is formed continuously with the bonding of the second base material 18. Moreover, the 2nd base material 18 is bonded to the 1st base material 17, and the base material 11 of the laminated structure which consists of the 1st base material 17, the adhesive layer 19, and the 2nd base material 18 is wound up with a winding shaft. After that, an off-line method in which the base material 11 having a laminated structure is unwound in a separate process and the gas barrier layer 12 is formed on the surface side of the first base material 17 may be used.
 上述の方法で基材11を準備した後、基材11上にガスバリア層12を作製する。ガスバリア層12の作製は、上述の組成を満たす膜を形成できればよく、ガスバリア層12の成膜方法は、上述の従来公知の方法を適用できる。好ましくは、図17に示す構成の磁場を印加したローラー間放電プラズマCVD装置を用いてガスバリア層12を作製する。 After preparing the base material 11 by the above method, the gas barrier layer 12 is produced on the base material 11. The gas barrier layer 12 may be produced as long as a film satisfying the above-described composition can be formed, and the above-described conventionally known method can be applied as a method for forming the gas barrier layer 12. Preferably, the gas barrier layer 12 is produced using an inter-roller discharge plasma CVD apparatus to which a magnetic field having a configuration shown in FIG. 17 is applied.
[ガスバリア性フィルムの成形加工(1)]
 次に、ガスバリア性フィルム10の成型加工に用いるための、所定の表面形状を有する基板(金型)を準備する。図18に、ガスバリア性フィルム10の成形加工に用いる、基板の概略構成を示す斜視図を示す。
[Formation of gas barrier film (1)]
Next, a substrate (mold) having a predetermined surface shape to be used for molding the gas barrier film 10 is prepared. In FIG. 18, the perspective view which shows schematic structure of a board | substrate used for the shaping | molding process of the gas barrier film 10 is shown.
 図18に示す基板30は、周縁側に設けられる実質的に平坦な部分(平坦部)31と、平坦部31に囲まれた中央側に設けられている凸部32とを備える。ガスバリア性フィルム10の成形加工では、基板30の平坦部31が当接する部分が、ガスバリア性フィルム10の平坦領域13となる。また、凸部32が当接する部分が、ガスバリア性フィルム10の曲面領域14となる。このため、基板30は、ガスバリア性フィルム10の曲面領域14に対応する凸部32を有している必要がある。 A substrate 30 shown in FIG. 18 includes a substantially flat portion (flat portion) 31 provided on the peripheral side and a convex portion 32 provided on the center side surrounded by the flat portion 31. In the molding process of the gas barrier film 10, the portion where the flat portion 31 of the substrate 30 abuts becomes the flat region 13 of the gas barrier film 10. Further, the portion with which the convex portion 32 abuts becomes the curved region 14 of the gas barrier film 10. For this reason, the board | substrate 30 needs to have the convex part 32 corresponding to the curved-surface area | region 14 of the gas barrier film 10. FIG.
 図18に示す基板30において凸部32は、平坦部31から所定の高さを有して設けられた、四角錐台の形状を有する。基板30において、凸部32の高さが、ガスバリア性フィルム10の曲面領域14における平板の表面(破線20)との間隙16となる。このため、基板30における凸部32の高さは、平坦部31から平均0.5mm以上高いことが好ましい。 In the substrate 30 shown in FIG. 18, the convex portion 32 has a quadrangular frustum shape provided with a predetermined height from the flat portion 31. In the substrate 30, the height of the convex portion 32 becomes a gap 16 with the flat plate surface (broken line 20) in the curved region 14 of the gas barrier film 10. For this reason, it is preferable that the height of the convex part 32 in the substrate 30 is 0.5 mm or more higher than the flat part 31 on average.
 また、基板30において、凸部32は、四角錐台の側面を形成する斜面の角度が、平坦部31に対して15°以上45°以下であることが好ましく、15°以上30°以下であることがより好ましい。また、四角錐台の上面周囲の角部が曲率半径0.5mm以上2mm以下程度で丸められていることが好ましい。四角錐台の側面及び上面周囲の角部により、ガスバリア性フィルム10の曲面領域14が3次曲面を有する形状に成形加工される。このため、四角錐台の側面及び上面周囲の角部を上記規定内の形状とすることにより、3次曲面を有する形状の曲面領域14に平均0.5mm以上の間隙を形成しても、ガスバリア性フィルム10の成形加工による、3次曲面部分のガスバリア性の低下を抑制することができる。 Further, in the substrate 30, the convex portion 32 has an inclined surface forming a side surface of the quadrangular pyramid with an angle of 15 ° to 45 ° with respect to the flat portion 31, and preferably 15 ° to 30 °. It is more preferable. Moreover, it is preferable that the corner | angular part around the upper surface of a quadrangular pyramid is rounded by the curvature radius of about 0.5 mm or more and 2 mm or less. The curved region 14 of the gas barrier film 10 is formed into a shape having a cubic curved surface by the side surfaces of the quadrangular pyramid and the corners around the upper surface. For this reason, even if gaps having an average of 0.5 mm or more are formed in the curved surface region 14 having a cubic curved surface by forming the side surfaces of the quadrangular pyramid and the corners around the upper surface within the above-mentioned definition, the gas barrier It is possible to suppress a decrease in gas barrier properties of the cubic curved surface portion due to the forming process of the conductive film 10.
 次に、準備した基板30に、平坦な形状のガスバリア性フィルム10を押しつけた状態で、ガスバリア性フィルム10に熱を印加する。このとき、ガスバリア性フィルム10のガスバリア層12側を基板30に対面させ、ガスバリア層12側と基板30とを当接させることが好ましい。 Next, heat is applied to the gas barrier film 10 with the gas barrier film 10 having a flat shape pressed against the prepared substrate 30. At this time, it is preferable that the gas barrier layer 12 side of the gas barrier film 10 face the substrate 30 and the gas barrier layer 12 side and the substrate 30 are brought into contact with each other.
 また、ガスバリア性フィルム10のガスバリア層12側を、基板30に対面させて配置し、ガスバリア層12と基板30との間に、緩衝層を介在させることが好ましい。緩衝層としては、保護フィルムや、粘着剤層、接着剤層等であることが好ましい。緩衝層を設けることにより、成形加工時のガスバリア層12の損傷、例えば傷の発生を抑制することができる。これにより、ガスバリア層12の損傷に起因するガスバリア性の低下を抑制することができる。 Further, it is preferable that the gas barrier layer 12 side of the gas barrier film 10 is disposed so as to face the substrate 30, and a buffer layer is interposed between the gas barrier layer 12 and the substrate 30. The buffer layer is preferably a protective film, a pressure-sensitive adhesive layer, an adhesive layer, or the like. By providing the buffer layer, damage to the gas barrier layer 12 during molding, for example, generation of scratches can be suppressed. Thereby, the fall of the gas barrier property resulting from the damage of the gas barrier layer 12 can be suppressed.
 基板30に対して、平坦な形状のガスバリア性フィルム10を押しつける方法としては、例えば真空ラミネート装置を用いた真空成形や、基板30の形状に対応する凹部を有する金型による加圧成形等が挙げられる。また、ガスバリア性フィルム10に対する熱の印加は、基材11の軟化温度以上とすることが好ましく、基材11の融点未満とすることが好ましい。加熱温度を、軟化温度以上とすることにより、ガスバリア性フィルム10の成形加工を速やかに行うことができる。ガスバリア性フィルム10の成形加工時間は特に限定されず、数秒から60分程度の間で任意に設定することができる。 Examples of the method for pressing the gas barrier film 10 having a flat shape against the substrate 30 include vacuum forming using a vacuum laminating apparatus and pressure forming using a mold having a recess corresponding to the shape of the substrate 30. It is done. The application of heat to the gas barrier film 10 is preferably not less than the softening temperature of the substrate 11 and preferably less than the melting point of the substrate 11. By setting the heating temperature to be equal to or higher than the softening temperature, the gas barrier film 10 can be molded quickly. The molding processing time of the gas barrier film 10 is not particularly limited, and can be arbitrarily set between several seconds to 60 minutes.
 以上の工程により、ガスバリア性フィルム10の成形加工が可能となる。なお、基板の形状等については、ガスバリア性フィルム10に要求される形状等に応じて、適宜選択すればよく、上記の形状には限定されない。また、ガスバリア性フィルム10の成形加工条件も、ガスバリア性フィルム10の構成に応じて任意に調整できる。 Through the above steps, the gas barrier film 10 can be molded. In addition, what is necessary is just to select suitably according to the shape etc. which are requested | required of the gas barrier film 10 about the shape of a board | substrate, and it is not limited to said shape. Moreover, the molding process conditions of the gas barrier film 10 can be arbitrarily adjusted according to the configuration of the gas barrier film 10.
[ガスバリア性フィルムの成形加工(2)]
 次に、ガスバリア性フィルム70に、3次曲面部76及びこの3次曲面部76内に配置された平坦領域74とからなる曲面領域14、並びに、3次曲面部76の外側に配置された平坦領域74を形成するための成型加工方法について説明する。まず、ガスバリア性フィルム70の成型加工に用いるための、所定の表面形状を有する基板(金型)を準備する。図19に、ガスバリア性フィルム70の成形加工に用いる、基板の概略構成を示す斜視図を示す。
[Formation of gas barrier film (2)]
Next, the gas barrier film 70 has a curved surface area 14 composed of a cubic curved surface portion 76 and a flat region 74 disposed in the cubic curved surface portion 76, and a flat surface disposed outside the cubic curved surface portion 76. A molding method for forming the region 74 will be described. First, a substrate (mold) having a predetermined surface shape to be used for molding the gas barrier film 70 is prepared. In FIG. 19, the perspective view which shows schematic structure of a board | substrate used for the shaping | molding process of the gas barrier film 70 is shown.
 図19に示す基板80は、基板80の中央に配置された円錐台形状の凸部の周囲、及び、円錐台の上底の部分に設けられる実質的に平坦な部分(平坦部)81と、周縁側の平坦部81と中央部の平坦部81との間で円錐台の斜辺となる部分に設けられる曲面加工部82とを備える。ガスバリア性フィルム70の成形加工では、基板80の平坦部81が当接する部分が、ガスバリア性フィルム70の平坦領域74となる。また、曲面加工部82が当接する部分が、ガスバリア性フィルム70の3次曲面部76となる。このため、基板80の曲面加工部82は、ガスバリア性フィルム70の3次曲面部76に対応する形状を有している必要がある。 A substrate 80 shown in FIG. 19 includes a substantially flat portion (flat portion) 81 provided around the frustoconical convex portion disposed in the center of the substrate 80 and on the upper bottom portion of the truncated cone. A curved surface processing part 82 is provided between the peripheral flat part 81 and the central flat part 81, which is provided on the hypotenuse of the truncated cone. In the molding process of the gas barrier film 70, the portion where the flat portion 81 of the substrate 80 abuts becomes the flat region 74 of the gas barrier film 70. Further, the portion with which the curved surface processed portion 82 abuts becomes the tertiary curved surface portion 76 of the gas barrier film 70. For this reason, the curved surface processing portion 82 of the substrate 80 needs to have a shape corresponding to the tertiary curved surface portion 76 of the gas barrier film 70.
 図19に示す基板80において曲面加工部82は、周縁側の平坦部81から所定の高さを有して設けられた円錐台の側面であり、円錐台(曲面加工部82)の高さが、ガスバリア性フィルム70の凸部における平板の表面(破線20)との間隙となる。基板80における円錐台形状の凸部の高さは、平坦部81から平均0.5mm以上高いことが好ましい。また、円錐台(曲面加工部82)の幅が、3次曲面部76の幅となる。基板80における円錐台形状の斜辺の幅は、3次曲面部76の面積に応じて任意に設定される。 In the substrate 80 shown in FIG. 19, the curved surface processing portion 82 is a side surface of a truncated cone provided with a predetermined height from the flat portion 81 on the peripheral side, and the height of the truncated cone (curved surface processing portion 82) is the same. The gap between the convex portion of the gas barrier film 70 and the surface of the flat plate (broken line 20). The height of the frustoconical convex portion on the substrate 80 is preferably 0.5 mm or more higher than the flat portion 81 on the average. The width of the truncated cone (curved surface processing portion 82) is the width of the cubic curved surface portion 76. The width of the oblique side of the truncated cone shape on the substrate 80 is arbitrarily set according to the area of the cubic curved surface portion 76.
 また、基板80において、曲面加工部82は、円錐台の側面を形成する斜面の角度が、円錐台形状の凸部の周囲の平坦部81に対して15°以上45°以下であることが好ましく、15°以上30°以下であることがより好ましい。また、円錐台の上底周囲及び側面底部の角部が曲率半径0.5mm以上2mm以下程度で丸められていることが好ましい。円錐台の上底周囲及び側面底部の角部により、ガスバリア性フィルム70の3次曲面部76が曲面を有する形状に成形加工される。このため、円錐台の上底周囲及び側面底部の角部を上記規定内の形状とすることにより、曲面を有する形状の3次曲面部76を形成しても、ガスバリア性フィルム70の成形加工による、3次曲面部分のガスバリア性の低下を抑制することができる。 Further, in the substrate 80, the curved surface processing portion 82 preferably has an angle of a slope forming the side surface of the truncated cone of 15 ° or more and 45 ° or less with respect to the flat portion 81 around the convex portion of the truncated cone shape. More preferably, the angle is 15 ° or more and 30 ° or less. Moreover, it is preferable that the corner | angular part of the upper base periphery and side face bottom part of a truncated cone is rounded by the curvature radius of about 0.5 mm or more and 2 mm or less. The cubic curved surface portion 76 of the gas barrier film 70 is formed into a shape having a curved surface by the corners of the upper base periphery and the side surface bottom portion of the truncated cone. For this reason, even if the cubic curved surface portion 76 having a curved surface is formed by setting the corners of the upper base periphery and side surface bottom portions of the truncated cone to the shapes within the above definition, the gas barrier film 70 is molded. It is possible to suppress a decrease in gas barrier properties of the tertiary curved surface portion.
 次に、上述のガスバリア性フィルムの成形加工(1)と同じ方法で、準備した基板80に、平坦な形状のガスバリア性フィルム70を押しつけた状態で、ガスバリア性フィルム70に熱を印加する。このとき、ガスバリア性フィルム70のガスバリア層12側を基板80に対面させ、ガスバリア層12側と基板80とを当接させることが好ましい。 Next, heat is applied to the gas barrier film 70 in a state where the gas barrier film 70 having a flat shape is pressed against the prepared substrate 80 by the same method as the molding process (1) of the gas barrier film described above. At this time, it is preferable that the gas barrier layer 12 side of the gas barrier film 70 face the substrate 80 and the gas barrier layer 12 side and the substrate 80 are brought into contact with each other.
 また、ガスバリア性フィルム70のガスバリア層12側を、基板80に対面させて配置し、ガスバリア層12と基板80との間に、緩衝層を介在させることが好ましい。緩衝層としては、保護フィルムや、粘着剤層、接着剤層等であることが好ましい。緩衝層を設けることにより、成形加工時のガスバリア層12の損傷、例えば傷の発生を抑制することができる。これにより、ガスバリア層12の損傷に起因するガスバリア性の低下を抑制することができる。 Further, it is preferable that the gas barrier layer 12 side of the gas barrier film 70 is disposed so as to face the substrate 80, and a buffer layer is interposed between the gas barrier layer 12 and the substrate 80. The buffer layer is preferably a protective film, a pressure-sensitive adhesive layer, an adhesive layer, or the like. By providing the buffer layer, damage to the gas barrier layer 12 during molding, for example, generation of scratches can be suppressed. Thereby, the fall of the gas barrier property resulting from the damage of the gas barrier layer 12 can be suppressed.
 基板80に対して、平坦な形状のガスバリア性フィルム70を押しつける方法としては、例えば真空ラミネート装置を用いた真空成形や、基板80の形状に対応する凹部を有する金型による加圧成形等が挙げられる。また、ガスバリア性フィルム70に対する熱の印加は、基材11の軟化温度以上とすることが好ましく、基材11の融点未満とすることが好ましい。加熱温度を、軟化温度以上とすることにより、ガスバリア性フィルム70の成形加工を速やかに行うことができる。ガスバリア性フィルム70の成形加工時間は特に限定されず、数秒から60分程度の間で任意に設定することができる。 Examples of the method for pressing the gas barrier film 70 having a flat shape against the substrate 80 include vacuum forming using a vacuum laminating apparatus and pressure forming using a mold having a recess corresponding to the shape of the substrate 80. It is done. The application of heat to the gas barrier film 70 is preferably not less than the softening temperature of the substrate 11 and preferably less than the melting point of the substrate 11. By setting the heating temperature to be equal to or higher than the softening temperature, the gas barrier film 70 can be quickly formed. The molding processing time of the gas barrier film 70 is not particularly limited, and can be arbitrarily set between several seconds to 60 minutes.
 以上の工程により、ガスバリア性フィルム70の成形加工が可能となる。なお、基板の形状等については、ガスバリア性フィルム70に要求される形状等に応じて、適宜選択すればよく、上記の形状には限定されない。また、ガスバリア性フィルム70の成形加工条件も、ガスバリア性フィルム70の構成に応じて任意に調整できる。 Through the above steps, the gas barrier film 70 can be molded. In addition, what is necessary is just to select suitably about the shape etc. of a board | substrate according to the shape etc. which are requested | required of the gas barrier film 70, and it is not limited to said shape. Moreover, the molding process conditions of the gas barrier film 70 can be arbitrarily adjusted according to the configuration of the gas barrier film 70.
[保護フィルム]
 保護フィルムは、保護基材と、保護基材をガスバリア性フィルム10,70のガスバリア層12上に貼合するための粘着剤層とを備える。保護フィルムは、粘着剤層においてガスバリア性フィルム10,70からの剥離が可能であれば、保護基材及び粘着剤層に用いられる材料は特に限定されない。
[Protective film]
The protective film includes a protective substrate and a pressure-sensitive adhesive layer for bonding the protective substrate onto the gas barrier layer 12 of the gas barrier films 10 and 70. As long as the protective film can be peeled off from the gas barrier films 10 and 70 in the pressure-sensitive adhesive layer, materials used for the protective substrate and the pressure-sensitive adhesive layer are not particularly limited.
 また、保護フィルムは、ガスバリア性フィルム10,70のガスバリア層12上だけでなく、ガスバリア性フィルム10,70の基材11側にも設けられていてもよい。ガスバリア性フィルム10,70の基材11側に保護フィルムを設けることにより、基材11の表面を保護することができる。 Further, the protective film may be provided not only on the gas barrier layer 12 of the gas barrier films 10 and 70 but also on the substrate 11 side of the gas barrier films 10 and 70. The surface of the base material 11 can be protected by providing a protective film on the base material 11 side of the gas barrier films 10 and 70.
 また、保護フィルムとしては、自己粘着性の共押出延伸多層フィルムを用いることもできる。このような自己粘着性の共押出延伸多層フィルムとしては、例えば、フタムラ化学社製の自己粘着性OPPフィルムFSA-010M、FSA-020M、FSA-050M、FSA-100M、FSA-150M、FSA-300M、FSA-010B等を用いることができる。 Also, as the protective film, a self-adhesive coextrusion stretched multilayer film can be used. Examples of such self-adhesive coextrusion stretched multilayer films include self-adhesive OPP films FSA-010M, FSA-020M, FSA-050M, FSA-100M, FSA-150M, and FSA-300M manufactured by Futamura Chemical Co., Ltd. FSA-010B or the like can be used.
[保護基材]
 保護基材としては、上述のガスバリア性フィルム10,70の基材11と同じ樹脂フィルムを使用することができる。耐熱性や、光学的な特性から、保護基材としては、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)を用いることが好ましい。
[Protective substrate]
As the protective base material, the same resin film as the base material 11 of the gas barrier films 10 and 70 described above can be used. From the viewpoint of heat resistance and optical properties, it is preferable to use polypropylene (PP), polyethylene terephthalate (PET), or polyethylene naphthalate (PEN) as the protective substrate.
 保護基材は、樹脂フィルムが単独、又は、複数用いられていてもよく、複数の層から形成されていてもよい。保護基材は、枚葉形状及びロール形状に限定されないが、生産性の観点からロールトゥロール方式でも対応できるロール形状が好ましい。 The protective substrate may be a single resin film or a plurality of resin films, or may be formed of a plurality of layers. The protective substrate is not limited to a single wafer shape and a roll shape, but a roll shape that can be handled by a roll-to-roll method is preferable from the viewpoint of productivity.
 保護基材の厚さは、特に制限されないが、5~500μm程度が好ましく、25μm~150μmがより好ましい。保護基材の厚さが5μm以上であれば、取り扱い易い十分な厚さとなる。また、保護基材の厚さが500μm以下であれば、十分な柔軟性を有し、搬送性やロールへの密着性が十分に得られる。 The thickness of the protective substrate is not particularly limited, but is preferably about 5 to 500 μm, and more preferably 25 to 150 μm. If the thickness of the protective substrate is 5 μm or more, the thickness becomes a sufficient thickness that is easy to handle. Moreover, if the thickness of a protective base material is 500 micrometers or less, it has sufficient softness | flexibility and sufficient transportability and adhesiveness to a roll are obtained.
[粘着剤層]
 粘着剤層は、粘着剤を含んで構成される。粘着剤層に用いられる粘着剤は、保護フィルムに要求される粘着力を得ることができれば特に限定されず、従来公知の材料を用いることができる。粘着剤層に使用される粘着剤としては、感圧粘着剤が好ましい。感圧粘着剤は、凝集力と弾性を有し、長時間にわたり安定した粘着性を維持できる。また、粘着剤層を形成する際に、熱や有機溶媒等の要件を必要とせず、圧力を加えるだけで保護フィルムをガスバリア性フィルム10,70に貼合することができる。
[Adhesive layer]
An adhesive layer is comprised including an adhesive. The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is not particularly limited as long as the pressure-sensitive adhesive force required for the protective film can be obtained, and conventionally known materials can be used. As the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer, a pressure-sensitive pressure-sensitive adhesive is preferable. The pressure sensitive adhesive has cohesive strength and elasticity, and can maintain stable adhesiveness for a long time. Moreover, when forming an adhesive layer, requirements, such as a heat | fever and an organic solvent, are not required, but a protective film can be bonded to the gas barrier films 10 and 70 only by applying a pressure.
 粘着剤層を形成するための粘着剤としては、透明性に優れる材料が好ましい。粘着剤層を形成するための粘着剤としては、例えば、エポキシ系樹脂、アクリル系樹脂、ゴム系樹脂、ウレタン系樹脂、ビニルエーテル系樹脂、及び、シリコン系樹脂等を含む粘着剤が挙げられる。粘着剤の形態としては、例えば、溶剤型、エマルション型、及び、ホットメルト型等を用いることができる。 As the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer, a material having excellent transparency is preferable. Examples of the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer include pressure-sensitive adhesives including epoxy resins, acrylic resins, rubber resins, urethane resins, vinyl ether resins, and silicon resins. As the form of the pressure-sensitive adhesive, for example, a solvent type, an emulsion type, and a hot melt type can be used.
 粘着剤層を形成するための粘着剤としては、アクリル系粘着剤が、耐久性、透明性、粘着特性の調整の容易さなどの面から好ましい。アクリル系粘着剤は、アクリル酸アルキルエステルを主成分とし、これに極性単量体成分を共重合したアクリル系ポリマーを加えたものである。上記アクリル酸アルキルエステルとはアクリル酸またはメタクリル酸のアルキルエステルであって、特に限定されるものではないが、例えば、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル等が挙げられる。具体的には、東洋インキ社製BPS5978を使用できる。 As the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer, an acrylic pressure-sensitive adhesive is preferable from the viewpoints of durability, transparency, and ease of adjustment of pressure-sensitive adhesive properties. The acrylic pressure-sensitive adhesive is obtained by adding an acrylic polymer having an acrylic acid alkyl ester as a main component and copolymerizing a polar monomer component thereto. The alkyl acrylate ester is an alkyl ester of acrylic acid or methacrylic acid and is not particularly limited. For example, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, (meth ) Pentyl acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, and the like. Specifically, Toyo Ink BPS5978 can be used.
 アクリル系粘着剤の硬化剤としては、例えば、イソシアネート系、エポキシ系、アリジリン系硬化剤が利用できる。イソシアネート系硬化剤としては、長期保存後も安定した粘着力を得るため、及び、より硬い粘着剤層を形成するために、トルイレンジイソシアネート(TDI)等の芳香族系を用いることが好ましい。具体的には、東洋インキ社製BXX5134を使用することができる。 As the curing agent for the acrylic pressure-sensitive adhesive, for example, an isocyanate-based, epoxy-based, or alidiline-based curing agent can be used. As the isocyanate curing agent, it is preferable to use an aromatic system such as toluylene diisocyanate (TDI) in order to obtain a stable adhesive force even after long-term storage and to form a harder adhesive layer. Specifically, Toyo Ink BXX5134 can be used.
 硬化剤の添加量は、粘着剤に対して3質量%~9質量%であることが好ましく、5質量%~7質量%であることがより好ましい。このような範囲であれば、粘着剤成分を十分に硬化させることができ、十分な接着力も確保することができるとともに、保護フィルムをガスバリア性フィルム10,70から剥離した後に、ガスバリア性フィルム10,70側に粘着剤層が残存しにくい。 The addition amount of the curing agent is preferably 3% by mass to 9% by mass and more preferably 5% by mass to 7% by mass with respect to the pressure-sensitive adhesive. Within such a range, the pressure-sensitive adhesive component can be sufficiently cured, sufficient adhesive force can be secured, and after the protective film is peeled off from the gas barrier film 10, 70, the gas barrier film 10, The pressure-sensitive adhesive layer hardly remains on the 70 side.
 粘着剤層を構成する粘着剤の重量平均分子量は、40万以上140万以下であることが好ましい。重量平均分子量がこの範囲内の値であれば、粘着力が過度になることが少なく、必要な範囲で粘着力を得ることができる。さらに、上記の重量平均分子量の範囲であれば、剥離後のガスバリア性フィルム10,70側への粘着剤層の残存を防止することができる。 The weight average molecular weight of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably 400,000 or more and 1.4 million or less. If the weight average molecular weight is a value within this range, the adhesive force is rarely excessive, and the adhesive force can be obtained within a necessary range. Furthermore, if it is the range of said weight average molecular weight, the residual of the adhesive layer to the gas barrier films 10 and 70 side after peeling can be prevented.
 また、粘着剤に含まれる上記樹脂類の他に、粘着剤層の物性向上の観点から、各種添加剤を用いることができる。例えば、ロジン等の天然樹脂、変性ロジン、ロジン及び変性ロジンの誘導体、ポリテルペン系樹脂、テルペン変性体、脂肪族系炭化水素樹脂、シクロペンタジエン系樹脂、芳香族系石油樹脂、フェノール系樹脂、アルキル-フェノール-アセチレン系樹脂、クマロン-インデン系樹脂、ビニルトルエン-α-メチルスチレン共重合体をはじめとする粘着付与剤、老化防止剤、安定剤、及び軟化剤等を必要に応じて用いることができる。これらは必要に応じて2種以上用いることもできる。また、耐光性を上げるために、粘着剤にベンゾフェノン系やベンゾトリアゾール系等の有機系紫外線吸収剤を添加することもできる。 In addition to the above resins contained in the pressure-sensitive adhesive, various additives can be used from the viewpoint of improving the physical properties of the pressure-sensitive adhesive layer. For example, natural resins such as rosin, modified rosin, rosin and modified rosin derivatives, polyterpene resins, terpene modified products, aliphatic hydrocarbon resins, cyclopentadiene resins, aromatic petroleum resins, phenolic resins, alkyl- Tackifiers such as phenol-acetylene resins, coumarone-indene resins, vinyltoluene-α-methylstyrene copolymers, anti-aging agents, stabilizers, and softeners can be used as necessary. . Two or more of these may be used as necessary. Moreover, in order to improve light resistance, organic ultraviolet absorbers, such as a benzophenone series and a benzotriazole series, can also be added to an adhesive.
 粘着剤層の厚さは、保護フィルムの取扱い易さから10μm以上50μm以下であることが好ましい。このような範囲であれば、保護フィルムとガスバリア性フィルム10,70とに十分な密着力を得ることができる。さらに、保護フィルムを剥離する際にも、ガスバリア性フィルム10,70に対して過度な力をかける必要がなく、ガスバリア性フィルム10,70の損傷を抑制することができる。 The thickness of the pressure-sensitive adhesive layer is preferably 10 μm or more and 50 μm or less for easy handling of the protective film. If it is such a range, sufficient contact | adhesion power can be acquired to a protective film and the gas- barrier film 10,70. Furthermore, when peeling off the protective film, it is not necessary to apply an excessive force to the gas barrier films 10 and 70, and damage to the gas barrier films 10 and 70 can be suppressed.
 粘着剤層を保護基材の表面に形成(塗工)する方法は特に限定されない。例えば、スクリーン法、グラビア法、メッシュ法、バー塗工法等を用いて、上記粘着剤を保護基材上に塗布し、乾燥又は硬化することにより、粘着剤層を形成することができる。 The method for forming (coating) the pressure-sensitive adhesive layer on the surface of the protective substrate is not particularly limited. For example, the pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive on a protective substrate using a screen method, a gravure method, a mesh method, a bar coating method, or the like, and drying or curing.
[接着剤層]
 接着剤層は、上述の保護フィルムや粘着剤層と同様に、ガスバリア性フィルム10,70のガスバリア層12の表面を保護するための層である。接着剤層として用いられる接着剤は、室温から80℃までに接着硬化できるものが好ましい。接着剤の塗布は、市販のディスペンサーを使ってよいし、スクリーン印刷によって行ってもよい。
[Adhesive layer]
An adhesive bond layer is a layer for protecting the surface of the gas barrier layer 12 of the gas barrier films 10 and 70 similarly to the above-mentioned protective film and adhesive layer. The adhesive used as the adhesive layer is preferably one that can be adhesively cured from room temperature to 80 ° C. The adhesive may be applied using a commercially available dispenser or screen printing.
 接着剤層としては、例えば、アクリル酸系オリゴマー、メタクリル酸系オリゴマー等の反応性ビニル基を有する光硬化型又は熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型接着剤、エポキシ系等の熱硬化型又は化学硬化型(二液混合)接着剤、ホットメルト型のポリアミド系、ポリエステル系、ポリオレフィン系等の接着剤、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤等が挙げられる。 Examples of the adhesive layer include photocurable or thermosetting adhesives having reactive vinyl groups such as acrylic acid oligomers and methacrylic acid oligomers, moisture curable adhesives such as 2-cyanoacrylates, and epoxy. Thermosetting or chemical curable (two-component mixed) adhesives such as hot-melt adhesives, hot-melt type polyamide-based, polyester-based, polyolefin-based adhesives, cationic-curing type UV-curable epoxy resin adhesives, etc. .
 実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[基材1の作製]
 下記の方法で支持体の両面にハードコート層が形成された基材1を作製した。
[Preparation of Substrate 1]
The base material 1 having a hard coat layer formed on both sides of the support was produced by the following method.
(支持体)
 帝人デュポンフィルム社製、両面に易接着層を有する厚さ[X]が50μmのPETフィルム、KFL12W#50(第1基材)を準備した。
(Support)
A Teijin DuPont Films company-made PET film having a thickness [X] of 50 μm and an easy-adhesion layer on both sides, KFL12W # 50 (first substrate) was prepared.
(ハードコート塗布液HC1の作製)
 下記の材料を混合した、ハードコート塗布液HC1を調整した。
 重合性バインダ:サートマー社製SR368 12.0質量部
 重合性バインダ:荒川化学社製ビームセット575 22.0質量部
 重合開始剤:BASF社製イルガキュア651 1.0質量部
 溶媒:プロピレングリコールモノメチルエーテル 65.0質量部
(Preparation of hard coat coating solution HC1)
A hard coat coating solution HC1 in which the following materials were mixed was prepared.
Polymerizable binder: SR368 manufactured by Sartomer 12.0 parts by mass Polymerized binder: Beam set 575 manufactured by Arakawa Chemical Co., Ltd. 22.0 parts by mass Polymerization initiator: Irgacure 651 manufactured by BASF Co. 1.0 parts by mass Solvent: Propylene glycol monomethyl ether 65 .0 parts by mass
(基材の作製)
 ロールトゥロール方式の塗布装置を用い、HC1を支持体(PETフィルム)の片面に乾燥膜厚が4μmとなるように塗布し、乾燥させた後、紫外線を500mJ/cmの条件で照射して硬化させて、巻き取った。次に、支持体(PETフィルム)の反対面に、上記と同様の方法で厚さ4μmのハードコート層を形成し、さらに、厚さ[Y]が50μmのPETフィルム(第2基材)に微粘着層を設けた保護フィルムを、反対面側のハードコート層上にインラインで貼合した後、巻き取った。
(Preparation of base material)
Using a roll-to-roll type coating apparatus, HC1 was applied to one side of a support (PET film) so that the dry film thickness was 4 μm, dried, and then irradiated with ultraviolet rays under the condition of 500 mJ / cm 2. Cured and wound up. Next, a hard coat layer having a thickness of 4 μm is formed on the opposite surface of the support (PET film) in the same manner as described above, and further, a PET film (second substrate) having a thickness [Y] of 50 μm is formed. The protective film provided with the slightly adhesive layer was bonded inline on the hard coat layer on the opposite side, and then wound up.
[基材2の作製]
 支持体として、帝人デュポンフィルム社製、両面に易接着層を有する23μm厚さのPETフィルム、KFL12W#23を準備し、ハードコート塗布液としてHC2を用いた以外は上述の基材1と同様の方法で基材2を作製した。
[Preparation of Substrate 2]
As a support, prepared by Teijin DuPont Films Co., Ltd., a 23 μm-thick PET film having an easy-adhesion layer on both sides, KFL12W # 23 was prepared, and HC2 was used as a hard coat coating solution. The base material 2 was produced by the method.
(ハードコート塗布液HC2の作製)
 重合性バインダ:新中村化学社製U-6LPA 20.0質量部
 重合性バインダ:新中村化学社製A-9550 10.0質量部
 反応型紫外線吸収剤:大塚化学社製RUVA-93 3.0質量部
 重合開始剤:BASF社製イルガキュア184 2.0質量部
 溶媒:メチルエチルケトン 20.0質量部
 溶媒:プロピレングリコールモノメチルエーテル 45.0質量部
(Preparation of hard coat coating solution HC2)
Polymerizable binder: 2-6 parts by mass of U-6LPA manufactured by Shin-Nakamura Chemical Co., Ltd. Polymerizable binder: A-9550 10.0 parts by mass of Shin-Nakamura Chemical Co., Ltd. Reactive UV absorber: RUVA-93 3.0 manufactured by Otsuka Chemical Co., Ltd. Mass parts Polymerization initiator: BASF Irgacure 184 2.0 parts by mass Solvent: Methyl ethyl ketone 20.0 parts by mass Solvent: Propylene glycol monomethyl ether 45.0 parts by mass
[基材3の作製]
 支持体として、東レ社製、両面に易接着層を有する100μm厚さのPETフィルム、ルミラーU34を準備した以外は、上述の基材1と同様の方法で基材3を作製した。
[Preparation of Substrate 3]
A base material 3 was prepared in the same manner as the base material 1 except that a 100 μm-thick PET film having an easy-adhesion layer on both sides and Lumirror U34 were prepared as a support.
[ガスバリア層の成膜条件]
 ガスバリア層は、上述の図17に示すロールトゥロール(Roll to Roll)方式を用いたローラー間放電プラズマCVD装置において、2つの成膜部(第1成膜部、第2成膜部)が連続で配置された装置(特開2015-131473号公報の図2参照)を用いて作製した。
[Gas barrier layer deposition conditions]
In the gas barrier layer, two film forming units (first film forming unit and second film forming unit) are continuous in the inter-roller discharge plasma CVD apparatus using the roll-to-roll method shown in FIG. (See FIG. 2 of JP-A-2015-131473).
 第1成膜部、及び、第2成膜部における成膜条件を、下記表1に示すC1~C14の条件のいずれかに設定した。そして、各成膜部において、C1~C14の条件のいずれかの条件を適用することにより、ガスバリア層を作製した。また、C1~C14に共通の条件として、成膜有効幅1000mm換算とし、電源周波数を80kHz、成膜ロールの温度を10℃とした。 The film forming conditions in the first film forming unit and the second film forming unit were set to any of the conditions C1 to C14 shown in Table 1 below. And in each film-forming part, the gas barrier layer was produced by applying one of the conditions of C1-C14. As common conditions for C1 to C14, the film formation effective width was converted to 1000 mm, the power supply frequency was 80 kHz, and the film formation roll temperature was 10 ° C.
 なお、ガスバリア層の成膜では、2つの成膜部(第1成膜部、第2成膜部)を有する装置を用いることにより、基材を成膜装置に1回通すごとに、2層のガスバリア層が成膜される。ガスバリア層の作製において、1回目の成膜は、第1成膜部から第2成膜部に向けて基材を搬送し(順方向)、2回目の成膜は、第2成膜部から第1成膜部に向けて基材を搬送した(逆方向)。同様に、奇数回目の成膜では、第1成膜部から第2成膜部に向けて基材を搬送し(順方向)、偶数回目の成膜では、第2成膜部から第1成膜部に向けて基材を搬送した(逆方向)。 Note that, in forming the gas barrier layer, an apparatus having two film forming units (a first film forming unit and a second film forming unit) is used, so that two layers each time the substrate is passed through the film forming apparatus. The gas barrier layer is formed. In the production of the gas barrier layer, the first film formation transports the substrate from the first film formation unit to the second film formation unit (forward direction), and the second film formation starts from the second film formation unit. The substrate was transported toward the first film forming unit (reverse direction). Similarly, in the odd-numbered film formation, the substrate is transported from the first film-forming unit to the second film-forming unit (forward direction), and in the even-numbered film formation, the first film-forming unit starts from the second film-forming unit. The base material was conveyed toward the film part (reverse direction).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〈試料101~122のガスバリア性フィルムの作製〉
 上記基材1~3と、上記成膜条件C1~C14及び成膜回数を、下記表2に示す組み合わせで選択し、試料101~122のガスバリア性フィルムを作製し、さらに、下記の方法で成型加工した。なお、試料118~122のガスバリア性フィルムでは、ガスバリア層として、ロールトゥロール方式のスパッタ製膜装置を用いて、常法により、SiOを作製した。スパッタ製膜では、ターゲットとして多結晶Siターゲットを用い、酸素を導入して、組成がSiOとなるように調整した。また、スパッタレートと搬送速度を調整することで、膜厚を調整した。
<Preparation of Gas Barrier Films of Samples 101 to 122>
The base materials 1 to 3, the film formation conditions C1 to C14 and the number of film formations are selected from the combinations shown in Table 2 below to produce gas barrier films of samples 101 to 122, and further molded by the following method. processed. In the gas barrier films of Samples 118 to 122, SiO 2 was produced as a gas barrier layer by a conventional method using a roll-to-roll type sputtering film forming apparatus. In sputtering film formation, a polycrystalline Si target was used as a target, and oxygen was introduced to adjust the composition to SiO 2 . Moreover, the film thickness was adjusted by adjusting the sputtering rate and the conveyance speed.
[ガスバリア性フィルムの成形加工]
 まず、図18に示す、平坦部31と、平坦部31の中央に設けられた四角錐台形状の凸部32とを有する金属製の基板30を準備した。基板30は、四角錐台の凸部32の上面が概略24×24mmであり、平坦部31に対する四角錐台の各斜辺の角度が20度である。四角錐台の凸部32は、上面周囲の角部を半径0.5mmで丸められている。また、金属製の基板30として、凸部32の高さが、0.2mm、0.6mm、0.8mm、1.0mm、又は、1.2mmでそれぞれ異なる5種類の基板30を準備した。
[Molding process of gas barrier film]
First, a metal substrate 30 having a flat portion 31 and a quadrangular pyramid-shaped convex portion 32 provided at the center of the flat portion 31 shown in FIG. 18 was prepared. In the substrate 30, the upper surface of the convex portion 32 of the quadrangular pyramid is approximately 24 × 24 mm, and the angle of each hypotenuse of the quadrangular pyramid with respect to the flat portion 31 is 20 degrees. The convex part 32 of the quadrangular pyramid is rounded around the upper surface with a radius of 0.5 mm. Further, as the metal substrate 30, five types of substrates 30 having different heights of the convex portions 32 of 0.2 mm, 0.6 mm, 0.8 mm, 1.0 mm, or 1.2 mm were prepared.
 次に、ガスバリア性フィルムの両面に、保護フィルムとしてフタムラ化学社製のFSA-020Mを用いて貼合し、ガスバリア性フィルム積層体を作製した。そして、ガスバリア性フィルムのガスバリア層が基板30側となるように、ガスバリア性フィルム積層体を基板に対面させ、真空ラミネート装置を用いて、基板30を100℃に加熱し、成型加工時間を10分間として、ガスバリア性フィルムを成型加工した。 Next, both sides of the gas barrier film were bonded using FSA-020M manufactured by Phutamura Chemical Co., Ltd. as a protective film to prepare a gas barrier film laminate. Then, the gas barrier film laminate is opposed to the substrate so that the gas barrier layer of the gas barrier film is on the substrate 30 side, the substrate 30 is heated to 100 ° C. using a vacuum laminating apparatus, and the molding processing time is 10 minutes. As described above, a gas barrier film was molded.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〈評価〉
 作製した試料101~122のガスバリア性フィルムに対し、下記の評価を行った。
<Evaluation>
The following evaluations were performed on the gas barrier films of the produced samples 101 to 122.
[ガスバリア層の膜厚]
 作製した試料101~122のガスバリア性フィルムにおいて、以下の集束イオンビーム(FIB)加工装置を用いて薄片を作製した後、切片の断面を透過型電子顕微鏡(Transmission Electron Microscope;TEM)で観察し、ガスバリア層の厚さを計測した。
(FIB加工)
 ・装置:SII製SMI2050
 ・加工イオン:(Ga 30kV)
 ・試料厚み:100nm~200nm
(TEM観察)
 ・装置:日本電子製JEM2000FX(加速電圧:200kV)
[Gas barrier layer thickness]
In the prepared gas barrier films of the samples 101 to 122, after the thin piece was prepared using the following focused ion beam (FIB) processing apparatus, the section of the section was observed with a transmission electron microscope (TEM), The thickness of the gas barrier layer was measured.
(FIB processing)
・ Apparatus: SII SMI2050
・ Processed ions: (Ga 30 kV)
Sample thickness: 100 nm to 200 nm
(TEM observation)
・ Device: JEOL JEM2000FX (acceleration voltage: 200kV)
[XPS分析]
 作製した試料101~117のガスバリア性フィルムのガスバリア層の厚さ方向の組成分布を、下記の光電子分光法(XPS)分析を用いて測定した。
[XPS analysis]
The composition distribution in the thickness direction of the gas barrier layer of the produced gas barrier films of Samples 101 to 117 was measured using the following photoelectron spectroscopy (XPS) analysis.
(XPS分析条件)
 ・装置:アルバックファイ製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・測定領域:Si2p、C1s、O1s
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO換算で、約2.8nmの厚さ分となるようにスパッタ時間を調整した。
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いた。
(XPS analysis conditions)
・ Equipment: ULVAC-PHI QUANTERASXM
・ X-ray source: Monochromatic Al-Kα
Measurement area: Si2p, C1s, O1s
・ Sputtering ion: Ar (2 keV)
Depth profile: repeats measurement after sputtering for a certain time. In one measurement, the sputtering time was adjusted so that the thickness was about 2.8 nm in terms of SiO 2 .
Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used.
 なお、XPS分析は厚さ方向に2.8nm間隔で測定した。また、ガスバリア層を構成するSiOxCyの組成の判定において、ガスバリア層の表層の測定点は、表面吸着物の影響があることから除外した。また、ガスバリア層において、上述のABCD及びABEFの範囲内の組成となる厚さについては、連続製膜していることから表層直下の組成と表層から2点目の測定点の組成とが近いと判断し、表層から2点目の測定点の組成が表面位置まで連続して形成されているものとして厚さを計測した。 The XPS analysis was measured at 2.8 nm intervals in the thickness direction. Further, in determining the composition of SiOxCy constituting the gas barrier layer, the measurement points on the surface layer of the gas barrier layer were excluded because of the influence of the surface adsorbate. In addition, in the gas barrier layer, the thickness within the range of ABCD and ABEF described above is such that the composition immediately below the surface layer and the composition at the second measurement point from the surface layer are close because the film is continuously formed. The thickness was measured on the assumption that the composition of the second measurement point from the surface layer was continuously formed up to the surface position.
[ガスバリア層の表面突起数]
 作製した試料101~122のガスバリア性フィルムのガスバリア層について、下記の方法でガスバリア層の表面の突起を検出、計数した。
[Number of surface protrusions of gas barrier layer]
For the gas barrier layers of the gas barrier films of the produced samples 101 to 122, protrusions on the surface of the gas barrier layer were detected and counted by the following method.
 まず、光干渉方式の三次元表面粗さ測定装置(Veeco社製 WYKO NT9300)を用いてガスバリア層の表面を計測し、三次元表面粗さデータを取得した。次に、取得した三次元表面粗さデータに波長10μmのハイパスフィルターをかけて得られた、三次元表面粗さ変換データ(粗さうねり成分を除去)において、データをヒストグラム表示した際の最大のピークの高さ位置を0としたときの、高さが10nm以上となる突起を計数し、mm当たりの個数として算出した。具体的には、測定解像度を約250nmとし、159.2μm×119.3μmの範囲6視野(面積として0.114mm)を測定・計数し、1mm当たりの個数として算出した。 First, the surface of the gas barrier layer was measured using an optical interference type three-dimensional surface roughness measuring apparatus (WYKO NT9300 manufactured by Veeco) to obtain three-dimensional surface roughness data. Next, in the three-dimensional surface roughness conversion data obtained by applying a high-pass filter having a wavelength of 10 μm to the acquired three-dimensional surface roughness data (removing the roughness waviness component), the maximum when the data is displayed as a histogram When the peak height position was 0, protrusions having a height of 10 nm or more were counted and calculated as the number per mm 2 . Specifically, the measurement resolution of about 250 nm, measured and counted (0.114 mm 2 as the area) range 6 field of 159.2μm × 119.3μm, was calculated as the number per 1 mm 2.
 得られたガスバリア層の突起数を、下記の基準(ランク)で評価した。
 5:10個/mm未満
 4:10個/mm以上、50個/mm未満
 3:50個/mm以上、100個/mm未満
 2:100個/mm以上、200個/mm未満
 1:200個/mm以上
The number of protrusions of the obtained gas barrier layer was evaluated according to the following criteria (rank).
Less than 5:10 pieces / mm 2 4:10 pieces / mm 2 or more, 50 / mm 2 less than 3:50 pieces / mm 2 or more, 100 / mm 2 less than 2: 100 pieces / mm 2 or more, 200 / Less than mm 2 1: 200 / mm 2 or more
[水蒸気透過度(WVTR)評価]
 作製した試料101~122のガスバリア性フィルムについて、下記のCa法評価を用いて、水蒸気透過度(WVTR)を求めた。なお、各試料の評価において、2時間保管時点でCaが完全に腐食した場合は、水蒸気透過度(WVTR)を1.5(g/m/d)以上とした。
[Evaluation of water vapor permeability (WVTR)]
For the gas barrier films of the produced samples 101 to 122, the water vapor transmission rate (WVTR) was determined using the following Ca method evaluation. In the evaluation of each sample, when Ca was completely corroded at the time of storage for 2 hours, the water vapor transmission rate (WVTR) was set to 1.5 (g / m 2 / d) or more.
(Ca法評価)
 図20に形状を示す、平坦部41の中央に四角錐台形状の凸部42が形成されたガラス基板40を準備した。四角錐台形状の凸部42の形状は、上述のガスバリア性フィルムの成形加工に用いた基板の形状と同様の形状とする。すなわち、凸部42の高さがそれぞれ0.2mm、0.6mm、0.8mm、1.0mm、又は、1.2mmの5種類のガラス基板40を準備した。
(Ca method evaluation)
A glass substrate 40 having a quadrangular pyramid-shaped convex portion 42 formed at the center of the flat portion 41, which is shown in FIG. 20, was prepared. The shape of the quadrangular frustum-shaped convex portion 42 is the same as the shape of the substrate used for the molding process of the gas barrier film described above. That is, five types of glass substrates 40 each having a height of the convex portion 42 of 0.2 mm, 0.6 mm, 0.8 mm, 1.0 mm, or 1.2 mm were prepared.
 そして、ガラス基板40の凸部42の中央に、20mm×20mmの面積で、日本電子(株)製真空蒸着装置JEE-400を用いてカルシウム(Ca:腐食性金属)を蒸着し、厚さ80nmのCa層43を作製した。 Then, calcium (Ca: corrosive metal) is vapor-deposited in the center of the convex portion 42 of the glass substrate 40 with an area of 20 mm × 20 mm using a vacuum evaporation apparatus JEE-400 manufactured by JEOL Ltd., and the thickness is 80 nm. The Ca layer 43 was prepared.
 次に、成型加工したガスバリア性フィルムから、ガスバリア層側の保護フィルムを剥離した後、UV洗浄装置を用いて6J/cmの条件でガスバリア層表面を洗浄した。さらに、ガスバリア性フィルムを、グローブボックス中で乾燥した。 Next, after peeling off the protective film on the gas barrier layer side from the molded gas barrier film, the surface of the gas barrier layer was cleaned under a condition of 6 J / cm 2 using a UV cleaning device. Further, the gas barrier film was dried in a glove box.
 次に、接着剤(スリーボンド製1655)を用いて、Ca層43を形成したガラス基板40上にガスバリア性フィルムを貼合して封止し、Ca法評価試料を作製した。なお、接着剤を貼合したガスバリアーフィルムは接着剤の水分及びガスバリアーフィルム表面の吸着水を除去するため1昼夜グローブボックス(GB)内に放置した。 Next, a gas barrier film was bonded and sealed on the glass substrate 40 on which the Ca layer 43 was formed using an adhesive (manufactured by ThreeBond 1655) to prepare a Ca method evaluation sample. The gas barrier film to which the adhesive was bonded was left in a glove box (GB) for one day and night in order to remove the moisture of the adhesive and the adsorbed water on the surface of the gas barrier film.
 グローブボックス中で、封止接着剤としてスリーボンド社製のTB3124(20μmギャップ剤入り)を、ディスペンサーを用いてガラス基板40の平坦部41に塗布した。封止接着剤の塗布位置、及び、塗布量は、成型加工したガスバリア性フィルムの周囲平坦部を接着し、押し付けて接着剤厚さを20μmに押しのばした際に、Ca蒸着部に乗り上げず、かつ、周囲からはみ出さないように調整した。 In the glove box, TB3124 (20 μm gap agent included) manufactured by ThreeBond Co., Ltd. as a sealing adhesive was applied to the flat portion 41 of the glass substrate 40 using a dispenser. The sealing adhesive application position and application amount do not run on the Ca deposition part when the flat part around the molded gas barrier film is adhered and pressed to increase the adhesive thickness to 20 μm. And it adjusted so that it might not protrude from the circumference.
 次に、ガスバリア性フィルム側から紫外線を照射した後、ホットプレート上で100℃60分間加熱して、接着剤を硬化させた。硬化後、ガスバリア層の反対面側の保護フィルムを剥離除去し、Ca法評価試料を作製した。成型加工したガスバリア性フィルムの成型部は、Ca蒸着面とは接触せず、平均間隙は成型加工時に設定した間隙を維持していた。 Next, after irradiating ultraviolet rays from the gas barrier film side, it was heated on a hot plate at 100 ° C. for 60 minutes to cure the adhesive. After curing, the protective film on the opposite side of the gas barrier layer was peeled off to produce a Ca method evaluation sample. The molded part of the gas barrier film that was molded was not in contact with the Ca vapor deposition surface, and the average gap maintained the gap set during the molding process.
 Ca法評価試料を40℃、90%RHの環境に保管し、一定時間ごとにCa腐食の状態を透過条件で画像撮影した。Ca蒸着部の濃度変化から、Ca腐食量を算出し、評価面積を20mm×20mmとした条件で、WVTRを算出した。 The Ca method evaluation sample was stored in an environment of 40 ° C. and 90% RH, and images of Ca corrosion state were taken under transmission conditions at regular intervals. The amount of Ca corrosion was calculated from the concentration change of the Ca vapor deposition part, and WVTR was calculated under the condition that the evaluation area was 20 mm × 20 mm.
 上記試料101~122のガスバリア性フィルムの各評価結果を下記表3に示す。 The evaluation results of the gas barrier films of the samples 101 to 122 are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料101~113のガスバリア性フィルムは、ガスバリア層が、ケイ素、酸素、及び、炭素を含有し、SiOxCyで表した際のy<0.20又はy>1.40の組成を有する領域の厚さとの合計が20nm未満である。このため、屈曲領域に0.5mm以上の間隙を有する形状に成形加工されていても、水蒸気透過度(WVTR)が十分に低い。 As shown in Table 3, in the gas barrier films of Samples 101 to 113, the gas barrier layer contains silicon, oxygen, and carbon, and y <0.20 or y> 1.40 when represented by SiOxCy. The sum of the thickness of the region having the composition is less than 20 nm. For this reason, even if it is molded into a shape having a gap of 0.5 mm or more in the bent region, the water vapor transmission rate (WVTR) is sufficiently low.
 なかでも、炭素分布曲線の極大値の数が12個以上の試料104~108、及び、試料113のガスバリア性フィルムでは、水蒸気透過度(WVTR)が、1×10-2(g/m/day)以下であり、ガスバリア性が特に良好である。これは、炭素分布曲線の極大値の数が多いと、ガスバリア層において組成が連続して変化する領域の積層数が多くなるため、成形加工の際に発生する伸長処理によって、1つの領域に発生した微細なクラックが他の領域によって被覆され易くなり、微細なクラックがガスバリア層を貫通しにくくなったためと考えられる。 In particular, in the samples 104 to 108 having the maximum number of carbon distribution curves of 12 or more and the gas barrier film of the sample 113, the water vapor permeability (WVTR) is 1 × 10 −2 (g / m 2 / day) or less, and the gas barrier property is particularly good. This is because when the number of maximum values in the carbon distribution curve is large, the number of layers in the gas barrier layer where the composition continuously changes increases. This is probably because the fine cracks that were easily covered with other regions became difficult to penetrate the gas barrier layer.
 また、試料101~113のガスバリア性フィルムは、SiOxCyで表した組成における厚さ毎の(x,y)の分布において、上述ABCDの4点の範囲内となる組成が、ガスバリア層の厚さ方向に40nm以上200nm以下有している。なお、試料101~113のガスバリア性フィルムにおいては、上述のABEFの4点の範囲内となる組成の厚さも、ABCDの4点の範囲内となる組成の厚さと同じであった。 In addition, the gas barrier films of Samples 101 to 113 have a composition that falls within the range of the above four points of ABCD in the distribution of (x, y) for each thickness in the composition represented by SiOxCy, in the thickness direction of the gas barrier layer. 40 nm to 200 nm. In the gas barrier films of Samples 101 to 113, the thickness of the composition within the range of the four points of ABEF described above was the same as the thickness of the composition within the range of the four points of ABCD.
 炭素分布曲線の極大値の数が12個以上の試料104~108、及び、試料113のガスバリア性フィルムのように、ガスバリア層が上述のABCDの4点の範囲内となる組成を有す厚さが大きいと、試料111のように、炭素分布曲線の極大値の数が12個であっても、ABCDの4点の範囲内となる組成の厚さが小さいガスバリア性フィルムよりも、水蒸気透過度(WVTR)が良好になる。 Thickness having a composition in which the gas barrier layer is within the range of 4 points of the above-mentioned ABCD as in the gas barrier film of the samples 104 to 108 and the sample 113 having the maximum value of the carbon distribution curve of 12 or more. Is larger than the gas barrier film having a small composition thickness within the range of 4 points of ABCD even if the number of maximum values of the carbon distribution curve is 12, as in Sample 111, (WVTR) is improved.
 一方、試料114~117のガスバリア性フィルムは、SiOxCyの組成において、y<0.20又はy>1.40の組成を有する領域の厚さの合計が20nmを超えて、110nm以上である。このように、酸素比率又は炭素比率が極端に多い領域の厚さが大きいと、クラックが発生しやすく、また、クラックがガスバリア層全体に伝搬しやすいため、伸長処理によって水蒸気透過度が大きく低下したと考えられる。 On the other hand, in the gas barrier film of Samples 114 to 117, the total thickness of regions having a composition of y <0.20 or y> 1.40 in the composition of SiOxCy is more than 20 nm and 110 nm or more. As described above, if the thickness of the region having an extremely large oxygen ratio or carbon ratio is large, cracks are likely to occur, and cracks are likely to propagate to the entire gas barrier layer. it is conceivable that.
 さらに、スパッタ成膜によって形成されたSiO組成のガスバリア層を有する試料118~122のガスバリア性フィルムは、水蒸気透過度(WVTR)が1×10-1(g/m/day)以上である。特に、屈曲領域の間隙が0.2mmと小さい試料118のガスバリア性フィルムにおいても、水蒸気透過度(WVTR)が0.15(g/m/day)であり、上記試料101~113のガスバリア性フィルムよりも水蒸気透過度(WVTR)が悪い。 Further, the gas barrier films of Samples 118 to 122 having a gas barrier layer of SiO 2 composition formed by sputtering film formation have a water vapor transmission rate (WVTR) of 1 × 10 −1 (g / m 2 / day) or more. . In particular, even in the gas barrier film of the sample 118 having a small gap of 0.2 mm in the bent region, the water vapor permeability (WVTR) is 0.15 (g / m 2 / day), and the gas barrier properties of the samples 101 to 113 are as follows. Water vapor transmission rate (WVTR) is worse than film.
〈試料201~211のガスバリア性フィルムの作製〉
 上記基材1~3と、上記成膜条件C1~C14及び成膜回数を、下記表4に示す組み合わせで選択し、試料201~211のガスバリア性フィルムを作製した。なお、試料209~211のガスバリア性フィルムでは、ガスバリア層として、ロールトゥロール方式のスパッタ製膜装置を用いて、常法により、SiOを作製した。スパッタ製膜では、ターゲットとして多結晶Siターゲットを用い、酸素を導入して、組成がSiOとなるように調整した。また、スパッタレートと搬送速度を調整することで、膜厚を調整した。
<Preparation of Gas Barrier Films for Samples 201 to 211>
The base materials 1 to 3, the film formation conditions C1 to C14, and the number of film formation times were selected from combinations shown in Table 4 below, and gas barrier films of Samples 201 to 211 were produced. In the gas barrier films of Samples 209 to 211, SiO 2 was prepared as a gas barrier layer by a conventional method using a roll-to-roll type sputtering film forming apparatus. In sputtering film formation, a polycrystalline Si target was used as a target, and oxygen was introduced to adjust the composition to SiO 2 . Moreover, the film thickness was adjusted by adjusting the sputtering rate and the conveyance speed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
〈評価〉
 作製した試料201~211のガスバリア性フィルムに対し、上記実施例1と同様の評価を行った。上記試料201~211のガスバリア性フィルムの各評価結果を下記表5に示す。
<Evaluation>
The gas barrier films of the produced samples 201 to 211 were evaluated in the same manner as in Example 1 above. The evaluation results of the gas barrier films of Samples 201 to 211 are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、試料201~206のガスバリア性フィルムは、ガスバリア層が、ケイ素、酸素、及び、炭素を含有し、SiOxCyで表した際のy<0.20又はy>1.40の組成を有する領域の厚さとの合計が20nm未満である。また、試料201~206のガスバリア性フィルムは、SiOxCyで表した組成における厚さ毎の(x,y)の分布において、上述ABCDの4点の範囲内となる組成が、ガスバリア層の厚さ方向に40nm以上200nm以下有している。なお、試料201~206のガスバリア性フィルムにおいては、上述のABEFの4点の範囲内となる組成の厚さも、ABCDの4点の範囲内となる組成の厚さと同じであった。このため、屈曲領域に0.5mm以上の間隙を有する形状に成形加工されていても、水蒸気透過度(WVTR)が十分に低い。 As shown in Table 5, in the gas barrier films of Samples 201 to 206, the gas barrier layer contains silicon, oxygen, and carbon, and y <0.20 or y> 1.40 when represented by SiOxCy. The sum of the thickness of the region having the composition is less than 20 nm. In addition, the gas barrier films of Samples 201 to 206 have a composition that falls within the range of the four points of ABCD described above in the distribution of (x, y) for each thickness in the composition expressed by SiOxCy. 40 nm to 200 nm. In the gas barrier films of Samples 201 to 206, the thickness of the composition within the range of 4 points of the above-described ABEF was also the same as the thickness of the composition within the range of 4 points of ABCD. For this reason, even if it is molded into a shape having a gap of 0.5 mm or more in the bent region, the water vapor transmission rate (WVTR) is sufficiently low.
 これに対し、試料207及び試料208のガスバリア性フィルムは、SiOxCyの組成において、y<0.20又はy>1.40の組成を有する領域の厚さの合計が20nmを超えて、122nm以上である。このように、酸素比率又は炭素比率が極端に多い領域の厚さが大きいと、クラックが発生しやすく、また、クラックがガスバリア層全体に伝搬しやすいため、伸長処理によって水蒸気透過度が大きく低下したと考えられる。 On the other hand, the gas barrier films of the sample 207 and the sample 208 have a SiOxCy composition in which the total thickness of regions having a composition of y <0.20 or y> 1.40 exceeds 20 nm and is 122 nm or more. is there. As described above, if the thickness of the region having an extremely large oxygen ratio or carbon ratio is large, cracks are likely to occur, and cracks are likely to propagate to the entire gas barrier layer. it is conceivable that.
 さらに、スパッタ成膜によって形成されたSiO組成のガスバリア層を有する試料209~211のガスバリア性フィルムは、水蒸気透過度(WVTR)が1×10-1(g/m/day)以上である。特に、屈曲領域の間隙が0.2mmと小さい試料209のガスバリア性フィルムにおいても、水蒸気透過度(WVTR)が0.14(g/m/day)であり、上記試料201~206のガスバリア性フィルムよりも水蒸気透過度(WVTR)が悪い。 Further, the gas barrier films of Samples 209 to 211 having a gas barrier layer of SiO 2 composition formed by sputtering film formation have a water vapor transmission rate (WVTR) of 1 × 10 −1 (g / m 2 / day) or more. . In particular, even in the gas barrier film of the sample 209 having a small gap of 0.2 mm in the bent region, the water vapor permeability (WVTR) is 0.14 (g / m 2 / day), and the gas barrier properties of the samples 201 to 206 are as follows. Water vapor transmission rate (WVTR) is worse than film.
 上述の実施例1と同様の方法で、基材1、及び、基材2を作製した。さらに、上述の実施例1と同様に、ガスバリア層の作製条件として、上述の図15に示すロールトゥロール(Roll to Roll)方式を用いたローラー間放電プラズマCVD装置において、上記表1に示すC1~C14の条件を設定した。 The base material 1 and the base material 2 were produced by the same method as in Example 1 described above. Further, in the same manner as in Example 1 described above, in the inter-roller discharge plasma CVD apparatus using the roll-to-roll method shown in FIG. The conditions of C14 were set.
〈試料301~316のガスバリア性フィルムの作製〉
 上記基材1~2、上記成膜条件C1~C14、及び、成膜回数を、下記表6に示す組み合わせで選択し、試料301~316のガスバリア性フィルムを作製し、さらに、下記の方法で成型加工した。なお、試料314~316のガスバリア性フィルムでは、ガスバリア層として、ロールトゥロール方式のスパッタ製膜装置を用いて、常法により、SiOを作製した。スパッタ製膜では、ターゲットとして多結晶Siターゲットを用い、酸素を導入して、組成がSiOとなるように調整した。また、スパッタレートと搬送速度を調整することで、膜厚を調整した。
<Preparation of Gas Barrier Film of Samples 301 to 316>
The base materials 1 and 2, the film formation conditions C1 to C14, and the number of film formations are selected from the combinations shown in Table 6 below to produce gas barrier films of samples 301 to 316, and the following method is used. Molded. In the gas barrier films of Samples 314 to 316, SiO 2 was produced as a gas barrier layer by a conventional method using a roll-to-roll type sputtering film forming apparatus. In sputtering film formation, a polycrystalline Si target was used as a target, and oxygen was introduced to adjust the composition to SiO 2 . Moreover, the film thickness was adjusted by adjusting the sputtering rate and the conveyance speed.
[ガスバリア性フィルムの成形加工]
 まず、図19に示す、中央に円錐台形状の凸部が形成された金属製の基板80を準備した。基板80において、円錐台の凸部の形状は、下底面の半径が56mmであり、上底面の半径が50mmである。さらに、図21に示すように、円錐台の高さが1mm、円錐台の側面となる斜辺の幅が3mmである。さらに、平坦部81と曲面加工部82との間の角部が曲率半径0.5mmで丸められている。この円錐台の側面は、角部が丸められていない状態として、投影面積が499.5mmとなる。これは、後述する水蒸気透過度(WVTR)評価に用いるアクアトランMODEL1(モコン社製)の測定面積である5000mmのほぼ10%に相当する。また同様に、この円錐台の側面は、投影面積/実測面積の比が1.054となる。角部が丸められても、これら数値はほぼ同じである。従って、この基板80を用いて成型加工を行うと、曲面領域の実測面積が投影面積よりも5%以上大きくなる。
[Molding process of gas barrier film]
First, as shown in FIG. 19, a metal substrate 80 having a truncated cone-shaped convex portion formed at the center was prepared. In the substrate 80, the convex shape of the truncated cone has a lower bottom radius of 56 mm and an upper bottom radius of 50 mm. Furthermore, as shown in FIG. 21, the height of the truncated cone is 1 mm, and the width of the hypotenuse that becomes the side surface of the truncated cone is 3 mm. Further, the corner between the flat portion 81 and the curved surface processing portion 82 is rounded with a curvature radius of 0.5 mm. The side surface of the truncated cone has a projected area of 499.5 mm 2 in a state where the corners are not rounded. This corresponds to about 10% of 5000 mm 2 which is a measurement area of Aquatran MODEL1 (manufactured by Mocon) used for water vapor permeability (WVTR) evaluation described later. Similarly, the side surface of this truncated cone has a ratio of projected area / measured area of 1.054. Even if the corners are rounded, these numbers are almost the same. Accordingly, when molding is performed using the substrate 80, the measured area of the curved surface area becomes 5% or more larger than the projected area.
 次に、ガスバリア性フィルムの両面に、保護フィルムとしてフタムラ化学社製のFSA-020Mを用いて貼合し、ガスバリア性フィルム積層体を作製した。そして、ガスバリア性フィルムのガスバリア層が基板80側となるように、ガスバリア性フィルム積層体を基板に対面させ、真空ラミネート装置を用いて、基板80を100℃に加熱し、成型加工時間を10分間として、ガスバリア性フィルムを成型加工した。 Next, both sides of the gas barrier film were bonded using FSA-020M manufactured by Phutamura Chemical Co., Ltd. as a protective film to prepare a gas barrier film laminate. Then, the gas barrier film laminate is made to face the substrate so that the gas barrier layer of the gas barrier film is on the substrate 80 side, the substrate 80 is heated to 100 ° C. using a vacuum laminating apparatus, and the molding processing time is 10 minutes. As described above, a gas barrier film was molded.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
〈評価〉
 作製した試料301~316のガスバリア性フィルムに対し、下記の評価を行った。
<Evaluation>
The following evaluations were performed on the gas barrier films of the produced samples 301 to 316.
[ガスバリア層の膜厚]
 作製した試料301~316のガスバリア性フィルムにおいて、上述の実施例1と同様の方法で、薄片を作製し、切片の断面を透過型電子顕微鏡(Transmission Electron Microscope;TEM)で観察し、ガスバリア層の厚さを計測した。
[Gas barrier layer thickness]
In the produced gas barrier films of Samples 301 to 316, a thin piece was produced in the same manner as in Example 1 described above, and the section of the section was observed with a transmission electron microscope (TEM). The thickness was measured.
[XPS分析]
 作製した試料301~316のガスバリア性フィルムのガスバリア層の厚さ方向の組成分布を、上述の実施例1と同様の方法の光電子分光法(XPS)分析を用いて測定した。
[XPS analysis]
The composition distribution in the thickness direction of the gas barrier layer of the gas barrier films of the produced samples 301 to 316 was measured using photoelectron spectroscopy (XPS) analysis in the same manner as in Example 1 described above.
[ガスバリア層の表面突起数]
 作製した試料301~316のガスバリア性フィルムのガスバリア層について、上述の実施例1と同様の方法で、ガスバリア層の表面の突起を検出、計数し、突起数を基準(ランク)で評価した。
[Number of surface protrusions of gas barrier layer]
With respect to the gas barrier layers of the produced gas barrier films of Samples 301 to 316, protrusions on the surface of the gas barrier layer were detected and counted in the same manner as in Example 1 above, and the number of protrusions was evaluated based on a standard (rank).
[水蒸気透過度(WVTR)評価]
 作製した試料301~316のガスバリア性フィルムにおいて、上述の成形加工後のガスバリア性フィルム[B]と、上述の成形加工を行う前の平坦なガスバリア性フィルムの試料[A]とについて、水蒸気透過度(WVTR)、及び、「[B]の水蒸気透過度(WVTR)/[A]の水蒸気透過度(WVTR)」を求めた。
[Evaluation of water vapor permeability (WVTR)]
In the produced gas barrier films of Samples 301 to 316, the water vapor permeability of the gas barrier film [B] after the above-described molding process and the sample [A] of the flat gas barrier film before the above-described molding process are obtained. (WVTR) and “[B] water vapor permeability (WVTR) / [A] water vapor permeability (WVTR)” were determined.
(水蒸気透過度の測定)
 ガスバリア性フィルムから、表面保護フィルム、及び、裏面保護フィルムを剥離した。そして、各ガスバリア性フィルムを、ガスバリア層を形成した面が装置の検出側となるように、水蒸気透過度測定装置(商品名:アクアトランMODEL1 モコン社製)の測定チャンバーにセットした。また、ガスバリア性フィルムは、三次曲面加工を施した部位が、測定チャンバーの略中央となるようにセットした。そして、38℃、100%RHの雰囲気下で、ガスバリア性フィルムの水蒸気透過度(WVTR)を測定した。なお、水蒸気透過度(WVTR)が2(g/m/day)を超えた場合は、2以上と評価した。
(Measurement of water vapor permeability)
The surface protective film and the back surface protective film were peeled off from the gas barrier film. Each gas barrier film was set in a measurement chamber of a water vapor transmission rate measuring device (trade name: Aquatran Model 1 manufactured by Mocon) so that the surface on which the gas barrier layer was formed was on the detection side of the device. In addition, the gas barrier film was set so that the portion subjected to the cubic curved surface processing was approximately the center of the measurement chamber. And the water vapor permeability (WVTR) of the gas barrier film was measured in an atmosphere of 38 ° C. and 100% RH. In addition, when water vapor permeability (WVTR) exceeded 2 (g / m < 2 > / day), it evaluated as 2 or more.
 上記試料301~316のガスバリア性フィルムの各評価結果を下記表7に示す。 The evaluation results of the gas barrier films of the samples 301 to 316 are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、試料301~309のガスバリア性フィルムは、ガスバリア層が、ケイ素、酸素、及び、炭素を含有し、ガスバリア層の表面の突起数が100個/mm以下である。このため、ガスバリア性フィルムの投影面積の10%の領域において、実測面積が投影面積よりも5%以上大きくなる曲面領域を形成する成形加工が行われた後も、水蒸気透過度(WVTR)が十分に低い。 As shown in Table 7, in the gas barrier films of Samples 301 to 309, the gas barrier layer contains silicon, oxygen, and carbon, and the number of protrusions on the surface of the gas barrier layer is 100 pieces / mm 2 or less. For this reason, in the region of 10% of the projected area of the gas barrier film, the water vapor transmission rate (WVTR) is sufficient even after the molding process is performed to form a curved region where the measured area is 5% or more larger than the projected area. Very low.
 なかでも、ガスバリア層の厚さが100nm以上であり、炭素分布曲線の極大値の数が12個以上の試料304、試料305、及び、試料309のガスバリア性フィルムでは、[A]及び[B]の水蒸気透過度(WVTR)が、共に1×10-2(g/m/day)以下であり、ガスバリア性が特に良好である。 Among them, in the gas barrier films of Sample 304, Sample 305, and Sample 309 in which the thickness of the gas barrier layer is 100 nm or more and the number of maximum values of the carbon distribution curve is 12 or more, [A] and [B] Both have water vapor permeability (WVTR) of 1 × 10 −2 (g / m 2 / day) or less, and gas barrier properties are particularly good.
 また、試料301~309のガスバリア性フィルムは、SiOxCyで表した組成における厚さ毎の(x,y)の分布において、上述ABCDの4点の範囲内となる組成が、ガスバリア層の厚さ方向に40nm以上200nm以下有している。なお、試料301~309のガスバリア性フィルムにおいては、上述のABEFの4点の範囲内となる組成の厚さも、ABCDの4点の範囲内となる組成の厚さと同じであった。 In addition, the gas barrier films of Samples 301 to 309 have a composition that falls within the range of the above four points of ABCD in the distribution of (x, y) for each thickness in the composition represented by SiOxCy, in the thickness direction of the gas barrier layer. 40 nm to 200 nm. In the gas barrier films of Samples 301 to 309, the thickness of the composition within the range of the four points of ABEF described above was the same as the thickness of the composition within the range of the four points of ABCD.
 一方、試料302や試料307のガスバリア性フィルムでは、[A]の水蒸気透過度(WVTR)が、1×10-2(g/m/day)以下であるものの、[B]の水蒸気透過度(WVTR)が、0.02(g/m/day)となるため、「[B]の水蒸気透過度/[A]の水蒸気透過度」が2.0又は2.2となる。これは、「[B]の水蒸気透過度/[A]の水蒸気透過度<5」を満たすものの、膜厚やABCD組成領域の厚さが近く、極大値の数が多い試料304の0.1よりも悪化している。 On the other hand, in the gas barrier films of Sample 302 and Sample 307, although [A] has a water vapor transmission rate (WVTR) of 1 × 10 −2 (g / m 2 / day) or less, [B] has a water vapor transmission rate. Since (WVTR) is 0.02 (g / m 2 / day), “[B] water vapor permeability / [A] water vapor permeability” is 2.0 or 2.2. Although this satisfies “water vapor permeability of [B] / water vapor permeability of [A] <5”, the film thickness and the thickness of the ABCD composition region are close to each other and 0.1 of the sample 304 having a large number of maximum values. It is worse than.
 これは、炭素分布曲線の極大値の数が多くなるほど、ガスバリア層において組成が連続して変化する領域の積層数が多くなるため、曲面を形成する成形加工の際に発生する伸長処理によって1つの領域に発生した微細なクラックが、他の領域によって被覆され易くなり、微細なクラックがガスバリア層を貫通しにくくなったためと考えられる。 This is because, as the number of maximum values of the carbon distribution curve increases, the number of layers in the gas barrier layer where the composition continuously changes increases. It is considered that the fine cracks generated in the region are easily covered with other regions, and the fine cracks are less likely to penetrate the gas barrier layer.
 また、試料308のガスバリア性フィルムは、水蒸気透過度(WVTR)が0.1(g/m/day)以下の十分なガスバリア性を有しているものの、試料301や試料302等に比べると、厚さに対するガスバリア性が低い。これは、試料301や試料302等のガスバリア性フィルムは、C/Siが0.95以上又は0.7以下の組成となる領域が90%以上であるため、C/Siが0.95以上又は0.7以下の組成となる領域が80%未満である試料308よりもガスバリア性が向上しやすいためと考えられる。 Further, the gas barrier film of the sample 308 has a sufficient gas barrier property with a water vapor transmission rate (WVTR) of 0.1 (g / m 2 / day) or less, but compared with the sample 301, the sample 302, and the like. The gas barrier property with respect to the thickness is low. This is because the gas barrier film such as the sample 301 or the sample 302 has a C / Si ratio of 0.95 or more or 0.7 or less because the region having a composition of 90% or more is C / Si 0.95 or more or This is presumably because the gas barrier property is easier to improve than the sample 308 in which the region having a composition of 0.7 or less is less than 80%.
 一方、ガスバリア層の表面突起数の評価が低い試料310~313のガスバリア性フィルム、及び、スパッタ成膜で形成したSiO組成のガスバリア層を有する試料314~316のガスバリア性フィルムは、[B]の水蒸気透過度(WVTR)が2(g/m/day)以上である。そして、「[B]の水蒸気透過度/[A]の水蒸気透過度」が5以上である。このように、突起数が多いガスバリア層や、SiO組成の単層のガスバリア層では、曲面を形成する成形加工の際に発生する伸長処理によって、ガスバリア層を貫通するクラックが容易に発生してしまうため、成形加工後のガスバリア性フィルムの水蒸気透過度が大きく悪化する。 On the other hand, the gas barrier films of Samples 310 to 313 having a low evaluation of the number of surface protrusions of the gas barrier layer, and the gas barrier films of Samples 314 to 316 having a gas barrier layer having a SiO 2 composition formed by sputtering deposition are [B]. Has a water vapor transmission rate (WVTR) of 2 (g / m 2 / day) or more. Further, “[B] water vapor permeability / [A] water vapor permeability” is 5 or more. As described above, in a gas barrier layer having a large number of protrusions or a single-layer gas barrier layer having a SiO 2 composition, cracks penetrating the gas barrier layer are easily generated by an elongation process that occurs during molding processing for forming a curved surface. Therefore, the water vapor permeability of the gas barrier film after the molding process is greatly deteriorated.
 さらに、試料301~309のガスバリア性フィルムは、SiOxCyで表した際のy<0.20又はy>1.40の組成を有する領域の厚さとの合計が20nm未満である。これに対し、試料310~313のガスバリア性フィルムは、SiOxCyの組成において、y<0.20又はy>1.40の組成を有する領域の厚さの合計が20nmを超えて、110nm以上である。このように、酸素比率又は炭素比率が極端に多い領域の厚さが大きいと、クラックが発生しやすく、また、クラックがガスバリア層全体に伝搬しやすいため、伸長処理によって水蒸気透過度が大きく低下したと考えられる。 Furthermore, the gas barrier films of Samples 301 to 309 have a total thickness of less than 20 nm with a region having a composition of y <0.20 or y> 1.40 when expressed in SiOxCy. On the other hand, in the gas barrier film of samples 310 to 313, the total thickness of regions having a composition of y <0.20 or y> 1.40 exceeds 110 nm and is 110 nm or more in the composition of SiOxCy. . As described above, if the thickness of the region having an extremely large oxygen ratio or carbon ratio is large, cracks are likely to occur, and cracks are likely to propagate to the entire gas barrier layer. it is conceivable that.
 従って、ガスバリア層が、ケイ素、酸素、及び、炭素を含有し、表面の突起数が少ないことにより、投影面積の9~11%の領域において実測面積が投影面積よりも5%以上大きくなる曲面加工を行った場合にも、水蒸気透過度の悪化が少ないガスバリア性フィルムを実現することができる。さらに、ガスバリア層をSiOxCyで表した際のy<0.20又はy>1.40の組成を有する領域の厚さの合計が20nm未満であることにより、水蒸気透過度の悪化が少ないガスバリア性フィルムを実現することができる。 Therefore, the gas barrier layer contains silicon, oxygen, and carbon, and the number of protrusions on the surface is small, so that the measured area is 5% or more larger than the projected area in the area of 9 to 11% of the projected area. Even when this is performed, a gas barrier film with little deterioration of water vapor permeability can be realized. Furthermore, when the gas barrier layer is represented by SiOxCy, the total thickness of the regions having a composition of y <0.20 or y> 1.40 is less than 20 nm, so that the gas barrier film is less deteriorated in water vapor permeability. Can be realized.
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。 The present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
 10,70・・・ガスバリア性フィルム、11,60・・・基材、12・・・ガスバリア層、13,74・・・平坦領域、14・・・曲面領域、15,16,22・・・間隙、17・・・第1基材、18・・・第2基材、19・・・粘着剤層、20,21・・・破線、30,80・・・基板、31,41,81・・・平坦部、32,42・・・凸部、40・・・ガラス基板、43・・・Ca層、50・・・プラズマCVD装置、51・・・繰り出しローラー、52,54,55,57・・・搬送ローラー、53,56・・・成膜ローラー、58・・・巻取りローラー、59・・・成膜ガス供給管、61,62・・・磁場発生装置、63・・・プラズマ発生用電源、73・・・測定領域、76・・・3次曲面部、82・・・曲面加工部 DESCRIPTION OF SYMBOLS 10,70 ... Gas barrier film, 11, 60 ... Base material, 12 ... Gas barrier layer, 13, 74 ... Flat region, 14 ... Curved region, 15, 16, 22 ... Gaps, 17 ... first substrate, 18 ... second substrate, 19 ... adhesive layer, 20, 21 ... broken line, 30,80 ... substrate, 31,41,81. ..Flat part, 32, 42 ... convex part, 40 ... glass substrate, 43 ... Ca layer, 50 ... plasma CVD apparatus, 51 ... feeding roller, 52, 54, 55, 57 ... Transfer rollers, 53, 56 ... Film forming rollers, 58 ... Winding rollers, 59 ... Film forming gas supply pipes, 61, 62 ... Magnetic field generators, 63 ... Plasma generation Power source, 73 ... measurement area, 76 ... cubic curved surface part, 82 ... curved surface processed part

Claims (16)

  1.  基材と、前記基材上に形成されたガスバリア層とを備えるガスバリア性フィルムであって、
     前記ガスバリア層が、ケイ素、酸素、及び、炭素を含有し、
     前記ガスバリア層の組成をSiOxCyで表した際に、y<0.20の組成を有する領域とy>1.40の組成を有する領域との合計が、厚さ方向に20nm未満であり、
     前記ガスバリア性フィルムが、実質的に平坦な領域と、前記平坦な領域に囲まれた3次曲面を有する領域と、を有し、
     前記平坦な領域を平板に接した際に、前記3次曲面を有する領域が前記平板と接触せず、前記3次曲面を有する領域と前記平板との間に平均0.5mm以上の間隙が形成される
     ガスバリア性フィルム。
    A gas barrier film comprising a substrate and a gas barrier layer formed on the substrate,
    The gas barrier layer contains silicon, oxygen, and carbon;
    When the composition of the gas barrier layer is represented by SiOxCy, the total of the region having a composition of y <0.20 and the region having a composition of y> 1.40 is less than 20 nm in the thickness direction,
    The gas barrier film has a substantially flat region and a region having a cubic curved surface surrounded by the flat region;
    When the flat region is in contact with a flat plate, the region having the cubic curved surface does not contact the flat plate, and an average gap of 0.5 mm or more is formed between the region having the cubic curved surface and the flat plate. Gas barrier film.
  2.  前記3次曲面を形成した前記ガスバリア性フィルム[B]と、前記ガスバリア性フィルム[B]に前記3次曲面を形成する前の状態の平坦なガスバリア性フィルム[A]とが、下記(1)と(2)の規定を全て満たす
     (1)[A]の水蒸気透過度(WVTR)、及び、[B]の水蒸気透過度(WVTR)が、0.1(g/m/day)以下である
     (2)([B]の水蒸気透過度(WVTR)/[A]の水蒸気透過度(WVTR))<5を満たす
     請求項1に記載のガスバリア性フィルム。
    The gas barrier film [B] on which the cubic curved surface is formed, and the flat gas barrier film [A] in a state before forming the cubic curved surface on the gas barrier film [B] are the following (1). And (2) (A) The water vapor transmission rate (WVTR) of [A] and the water vapor transmission rate (WVTR) of [B] are 0.1 (g / m 2 / day) or less. The gas barrier film according to claim 1, wherein (2) (water vapor permeability (WVTR) of [B] / water vapor permeability (WVTR) of [A]) <5 is satisfied.
  3.  前記3次曲面は、前記3次曲面の実測面積が投影面積よりも5%以上大きい請求項2に記載のガスバリア性フィルム。 The gas barrier film according to claim 2, wherein the cubic curved surface has a measured area of the cubic curved surface that is 5% or more larger than a projected area.
  4.  前記基材が、第1基材と第2基材との積層体であり、前記第1基材の前記ガスバリア層が形成された面と反対側の面に、剥離可能な状態で前記第2基材が貼合されている請求項1に記載のガスバリア性フィルム。 The base material is a laminate of a first base material and a second base material, and the second base material is peelable on a surface of the first base material opposite to the surface on which the gas barrier layer is formed. The gas barrier film according to claim 1, wherein a base material is bonded.
  5.  前記第1基材の厚さ[X]と前記第2基材の厚さ[Y]との合計が50μm以上150μm以下であり、[X]/[Y]が0.15以上0.90以下である請求項4に記載のガスバリア性フィルム。 The sum of the thickness [X] of the first base material and the thickness [Y] of the second base material is 50 μm or more and 150 μm or less, and [X] / [Y] is 0.15 or more and 0.90 or less. The gas barrier film according to claim 4.
  6.  前記ガスバリア層が気相成膜層である請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the gas barrier layer is a vapor deposition layer.
  7.  前記ガスバリア層が、ケイ素、酸素、及び、炭素を含有し、前記ガスバリア層の厚さ方向の炭素の含有量を示す曲線が、4個以上の極大値を有し、前記ガスバリア層の[膜厚/極大値数]が25nm以下であり請求項1に記載のガスバリア性フィルム。 The gas barrier layer contains silicon, oxygen, and carbon, and the curve indicating the carbon content in the thickness direction of the gas barrier layer has a maximum value of 4 or more, and the [film thickness of the gas barrier layer] 2. The gas barrier film according to claim 1, wherein the / maximum value number is 25 nm or less.
  8.  前記ガスバリア層の組成をSiOxCyで表した際に、横軸をx、縦軸をyとした座標上で、A(x=0.70、y=1.10)、B(x=0.9、y=1.40)、C(x=2.0、y=0.20)、D(x=1.8、y=0.20)の4点で囲まれた範囲内の組成を、厚さ方向に40nm以上200nm以下の範囲で有する
     請求項1に記載のガスバリア性フィルム。
    When the composition of the gas barrier layer is represented by SiOxCy, A (x = 0.70, y = 1.10), B (x = 0.9) on the coordinates where the horizontal axis is x and the vertical axis is y. , Y = 1.40), C (x = 2.0, y = 0.20), D (x = 1.8, y = 0.20). The gas barrier film according to claim 1, wherein the gas barrier film has a thickness in the range of 40 nm to 200 nm.
  9.  前記ガスバリア層が、C/Siが0.95以上の組成となる領域と、C/Siが0.7以下の組成となる領域の両方を有し、且つ、前記ガスバリア層に70%以上が、前記C/Siが0.95以上の組成となる領域、又は、前記C/Siが0.7以下の組成となる領域である請求項8に記載のガスバリア性フィルム。 The gas barrier layer has both a region where C / Si has a composition of 0.95 or more and a region where C / Si has a composition of 0.7 or less, and 70% or more of the gas barrier layer is The gas barrier film according to claim 8, which is a region where the C / Si has a composition of 0.95 or more, or a region where the C / Si has a composition of 0.7 or less.
  10.  前記ガスバリア層において、厚さ方向の炭素の含有量を示す曲線が、極大値を有し、かつ、極大値の数が6個以上である請求項8に記載のガスバリア性フィルム。 The gas barrier film according to claim 8, wherein in the gas barrier layer, the curve indicating the carbon content in the thickness direction has a maximum value, and the number of maximum values is 6 or more.
  11.  前記ガスバリア層の[膜厚/極大値数]が15nm以下である請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the film thickness / maximum value of the gas barrier layer is 15 nm or less.
  12.  前記ガスバリア層の表面において、高さが10nm以上の突起数が、100個/mm以下である請求項1に記載のガスバリア性フィルム。 2. The gas barrier film according to claim 1, wherein the number of protrusions having a height of 10 nm or more is 100 pieces / mm 2 or less on the surface of the gas barrier layer.
  13.  実質的に平坦な領域と、凹凸又は段差を有する領域とを有する基板に、ガスバリア性フィルムを押し付けて、
     前記基板に前記ガスバリア性フィルムを押しつけた状態で、前記ガスバリア性フィルムに80℃以上の熱を印加し、
     前記ガスバリア性フィルムに、実質的に平坦な領域と、前記平坦な領域を平板に接した際に前記平板との間に平均0.5mm以上の間隙が形成される、前記平坦な領域に囲まれた3次曲面を有する領域と、を形成する
     ガスバリア性フィルムの成形加工方法。
    A gas barrier film is pressed against a substrate having a substantially flat region and a region having irregularities or steps,
    In a state where the gas barrier film is pressed against the substrate, heat of 80 ° C. or more is applied to the gas barrier film,
    The gas barrier film is surrounded by a substantially flat region, and an average gap of 0.5 mm or more is formed between the flat plate when the flat region is in contact with the flat plate. And a region having a cubic curved surface. A method for forming a gas barrier film.
  14.  前記ガスバリア性フィルムのガスバリア層を前記基板側に対面させて、前記ガスバリア性フィルムを前記基板に押し付ける請求項13に記載のガスバリア性フィルムの成形加工方法。 The method for forming a gas barrier film according to claim 13, wherein the gas barrier layer of the gas barrier film faces the substrate and the gas barrier film is pressed against the substrate.
  15.  前記基板と、前記ガスバリア性フィルムとの間に、緩衝層を介在させる請求項13に記載のガスバリア性フィルムの成形加工方法。 The method for forming a gas barrier film according to claim 13, wherein a buffer layer is interposed between the substrate and the gas barrier film.
  16.  前記緩衝層が、粘着剤層、又は、接着剤層である請求項15に記載のガスバリア性フィルムの成形加工方法。 The method for molding a gas barrier film according to claim 15, wherein the buffer layer is a pressure-sensitive adhesive layer or an adhesive layer.
PCT/JP2017/040900 2016-11-30 2017-11-14 Gas barrier film, and gas barrier film molding method WO2018101027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018553752A JPWO2018101027A1 (en) 2016-11-30 2017-11-14 Gas barrier film and method for molding gas barrier film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016232645 2016-11-30
JP2016-232646 2016-11-30
JP2016232646 2016-11-30
JP2016-232645 2016-11-30

Publications (1)

Publication Number Publication Date
WO2018101027A1 true WO2018101027A1 (en) 2018-06-07

Family

ID=62242796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040900 WO2018101027A1 (en) 2016-11-30 2017-11-14 Gas barrier film, and gas barrier film molding method

Country Status (2)

Country Link
JP (1) JPWO2018101027A1 (en)
WO (1) WO2018101027A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282018A (en) * 1985-10-04 1987-04-15 Tsutsunaka Plast Kogyo Kk Thermoforming method for thermoplastic resin molded article
JPH09216654A (en) * 1996-02-09 1997-08-19 Sumitomo Bakelite Co Ltd Biodegradable press-through package with moistureproof property
JP2930722B2 (en) * 1992-06-16 1999-08-03 三共株式会社 Manufacturing method of package
JP2003205266A (en) * 2002-01-15 2003-07-22 Ribinahamani:Kk Resin-formed article having mirror finished surface and its manufacturing method
WO2007123006A1 (en) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. Gas barrier film, resin base for organic electroluminescent device, organic electroluminescent device using the same, and method for producing gas barrier film
JP2008087170A (en) * 2006-09-29 2008-04-17 Sumitomo Chemical Co Ltd Manufacturing method of thermoformed product
JP2010234718A (en) * 2009-03-31 2010-10-21 Mitsubishi Plastics Inc Gas barrier multilayered film, and bottom material for deep drawing package
JP2014083691A (en) * 2012-10-19 2014-05-12 Konica Minolta Inc Gas barrier film and method for manufacturing a gas barrier film
WO2014123201A1 (en) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
WO2015053189A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Gas barrier film and process for manufacturing same
JP2015206096A (en) * 2014-04-23 2015-11-19 コニカミノルタ株式会社 Gas barrier film and method of manufacturing the same
WO2016159206A1 (en) * 2015-04-03 2016-10-06 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282018A (en) * 1985-10-04 1987-04-15 Tsutsunaka Plast Kogyo Kk Thermoforming method for thermoplastic resin molded article
JP2930722B2 (en) * 1992-06-16 1999-08-03 三共株式会社 Manufacturing method of package
JPH09216654A (en) * 1996-02-09 1997-08-19 Sumitomo Bakelite Co Ltd Biodegradable press-through package with moistureproof property
JP2003205266A (en) * 2002-01-15 2003-07-22 Ribinahamani:Kk Resin-formed article having mirror finished surface and its manufacturing method
WO2007123006A1 (en) * 2006-04-21 2007-11-01 Konica Minolta Holdings, Inc. Gas barrier film, resin base for organic electroluminescent device, organic electroluminescent device using the same, and method for producing gas barrier film
JP2008087170A (en) * 2006-09-29 2008-04-17 Sumitomo Chemical Co Ltd Manufacturing method of thermoformed product
JP2010234718A (en) * 2009-03-31 2010-10-21 Mitsubishi Plastics Inc Gas barrier multilayered film, and bottom material for deep drawing package
JP2014083691A (en) * 2012-10-19 2014-05-12 Konica Minolta Inc Gas barrier film and method for manufacturing a gas barrier film
WO2014123201A1 (en) * 2013-02-08 2014-08-14 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same
WO2015053189A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Gas barrier film and process for manufacturing same
JP2015206096A (en) * 2014-04-23 2015-11-19 コニカミノルタ株式会社 Gas barrier film and method of manufacturing the same
WO2016159206A1 (en) * 2015-04-03 2016-10-06 コニカミノルタ株式会社 Gas barrier film and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2018101027A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6387625B2 (en) Method for producing gas barrier film
JP6638182B2 (en) Laminated films and flexible electronic devices
WO2018123724A1 (en) Gas barrier film and method for producing gas barrier film
WO2018168671A1 (en) Gas barrier coating, gas barrier film, method for producing gas barrier coating, and method for producing gas barrier film
JPWO2009150992A1 (en) Weather-resistant resin substrate and optical member
WO2018101026A1 (en) Gas barrier film
TW201801918A (en) Long gas barrier laminate
TWI745492B (en) Laminate and device including the same
JP2014088016A (en) Gas barrier film
JP6237473B2 (en) Method for producing gas barrier film
JP6885412B2 (en) Manufacturing method of functional film laminate and electronic device
WO2018101027A1 (en) Gas barrier film, and gas barrier film molding method
JP6744487B2 (en) Gas barrier film and method for producing gas barrier film
WO2015133620A1 (en) Gas barrier film
WO2009147928A1 (en) Heat shielding resin film and building construction member to which the film is bonded
JP6354302B2 (en) Gas barrier film
WO2014125877A1 (en) Gas barrier film
JP6874775B2 (en) Electronic device
JPWO2015053189A1 (en) Gas barrier film and method for producing the same
JP5999026B2 (en) GAS BARRIER FILM LAMINATE, GAS BARRIER FILM MANUFACTURING METHOD AND ITS MANUFACTURING DEVICE
WO2015137389A1 (en) Gas barrier film production method
TW201805160A (en) Gas barrier laminated body, member for electronic device, and electronic device
JP2015168238A (en) Method of producing composite laminated film
JP2018149703A (en) Functional film laminate, and defect inspection method of functional film
JP2018144283A (en) Method for producing functional film laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018553752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875951

Country of ref document: EP

Kind code of ref document: A1