WO2021106636A1 - Laminated film production method - Google Patents

Laminated film production method Download PDF

Info

Publication number
WO2021106636A1
WO2021106636A1 PCT/JP2020/042464 JP2020042464W WO2021106636A1 WO 2021106636 A1 WO2021106636 A1 WO 2021106636A1 JP 2020042464 W JP2020042464 W JP 2020042464W WO 2021106636 A1 WO2021106636 A1 WO 2021106636A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
inorganic thin
layer
thin film
base material
Prior art date
Application number
PCT/JP2020/042464
Other languages
French (fr)
Japanese (ja)
Inventor
美保 大関
山下 恭弘
花岡 秀典
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2021106636A1 publication Critical patent/WO2021106636A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Definitions

  • One embodiment of the present invention relates to a method for producing a laminated film by a plasma chemical vapor deposition method (plasma CVD method).
  • plasma CVD method plasma chemical vapor deposition method
  • the laminated film imparted with gas barrier properties can be suitably used as a packaging container suitable for filling and packaging articles such as foods and drinks, cosmetics, and detergents.
  • a laminated film has been proposed in which a plastic film or the like is used as a base material and a thin film layer such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide is laminated on one surface of the base material.
  • Patent Document 1 is characterized in that a gas barrier film (thin film layer) is formed by a plasma CVD method using a raw material gas of an organosilicon compound and a reaction gas such as nitrogen gas as raw materials. The manufacturing method of is disclosed.
  • the laminated film wound in a roll shape may have a winding deviation or a foreign matter defect may occur.
  • an object of one embodiment of the present invention is to provide a method for producing a laminated film capable of suppressing the occurrence of unwinding and foreign matter defects.
  • the present inventor measured the absolute value of the amount of charge on the surface of the substrate at the time of unwinding in the atmosphere in the method for producing a laminated film in the plasma chemical vapor deposition method. It was found that the above purpose can be achieved by adjusting the absolute value of the amount of charge on the surface of the inorganic thin film layer from the formation of the inorganic thin film layer to 1.5 kV or less, sometimes by adjusting the value to 2.0 kV or more. , The present invention has been completed. That is, one embodiment of the present invention includes the following aspects.
  • a method for producing a laminated film containing a base material and one or more inorganic thin film layers formed on at least one surface of the base material by using a plasma chemical vapor deposition method is a step (I) of unwinding a roll-shaped base material from a feeding roll, supplying a reaction gas and a raw material gas between a pair of film forming rolls, and a group conveyed by plasma discharge generated between the rolls. It includes a step (II) of forming an inorganic thin film layer on at least one side of the material to obtain a laminated film, and a step (III) of winding the laminated film with a take-up roll.
  • the absolute value of the charge amount on the surface of the base material at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and in the steps (II) and (III) after the formation of the inorganic thin film layer.
  • the method, wherein the absolute value of the amount of charge on the surface of the inorganic thin film layer up to the time of winding is 1.5 kV or less when measured under vacuum.
  • the inorganic thin film layer contains at least silicon atoms, oxygen atoms and carbon atoms.
  • One embodiment of the present invention is a method of producing a laminated film containing a base material and one or more inorganic thin film layers formed on at least one surface of the base material by using a plasma chemical vapor deposition method.
  • the reaction gas and the raw material gas are supplied between the pair of film forming rolls in the step (I) of unwinding the roll-shaped base material from the feeding rolls, and the roll-shaped base material is conveyed by plasma discharge generated between the rolls.
  • This includes a step (II) of forming an inorganic thin film layer on at least one side of the base material to obtain a laminated film, and a step (III) of winding the laminated film with a take-up roll.
  • step (I) the absolute value of the amount of charge on the surface of the base material at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and step (II).
  • step (III) the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is 1.5 kV or less when measured under vacuum.
  • step (I) when the absolute value of the amount of charge on the surface of the base material when the roll-shaped base material is unwound is 2.0 kV or more when measured in the atmosphere, the roll-shaped base material has a roll-like base material. It has been found that since the surface is unwound while having high adhesion to each other, unwinding is unlikely to occur at the time of unwinding, and as a result, the occurrence of unwinding of the laminated film wound by the winding roll can be suppressed. ..
  • the film formation is performed under vacuum, it is usual to measure the amount of charge under vacuum.
  • the present inventor measured and examined the amount of charge at the time of unwinding in an atmosphere that is not normally performed, and found that there is a correlation with unwinding. Furthermore, the present inventor in the steps (II) and (III), the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is 1.5 kV or less when measured under vacuum. It was also found that, in that case, foreign matter is hard to adhere and the occurrence of foreign matter defects can be suppressed.
  • Step (I) is a step of unwinding the roll-shaped base material fixed to the delivery roll from the delivery roll.
  • the absolute value of the amount of charge on the surface of the base material when the roll-shaped base material is unwound is 2.0 kV or more when measured in the atmosphere, so that unwinding occurs. Can be suppressed.
  • the absolute value of the amount of charge at the time of unwinding is preferably 3.0 kV or more, more preferably 4.0 kV or more, still more preferably 5.0 kV or more, still more preferably 6.0 kV or more when measured in the atmosphere. , Especially preferably 7.0 kV or more.
  • the upper limit of the absolute value of the charge amount at the time of unwinding is preferably 20 kV or less, more preferably 15 kV or less, and further preferably 10 kV or less.
  • the amount of charge (under the atmosphere) at the time of unwinding can be measured using an electrostatic potential monitoring device, for example, by the method described in Examples. Further, the charge amount at the time of unwinding indicates the charge amount immediately after unwinding by the unwinding roll (also referred to as immediately after the unwinding roll), and within 5 seconds after unwinding or after unwinding using the above device. It is obtained by measuring at a place within a transport distance of 10 cm. Further, since the film formation by the plasma CVD method is usually performed under vacuum, the inorganic thin film layer can be formed after measuring the amount of charge at the time of unwinding under the atmosphere.
  • the amount of charge at the time of unwinding is the take-up tension at the time of making the unwinding base material (roll-shaped base material), the transport speed (or unwinding speed) at the time of unwinding the base material; the material or type of the base material; the roll shape. It can be adjusted by appropriately changing the area where the base materials are in contact with each other on the surface of the base material (hereinafter, also referred to as the contact area). For example, by increasing the take-up tension when creating the unwinding base material, increasing the transport speed (or unwinding speed) and contact area, and configuring both sides of the base material with different materials, the charge amount can be increased. Absolute values tend to increase.
  • the contact area is the material, type, or surface of the layer arranged on one surface and the other surface of the base material. It may be adjusted appropriately depending on the roughness and the like.
  • the base material is a base material capable of holding an inorganic thin film layer.
  • the substrate preferably contains at least a flexible film.
  • the flexible film is a resin film containing at least one kind of resin as a resin component, and is preferably a transparent flexible film.
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclic polyolefins; polyamide resins; Polycarbonate resin; polystyrene resin; polyvinyl alcohol resin; saponified product of ethylene-vinyl acetate copolymer; polyacrylonitrile resin; acetal resin; polyimide resin; polyether sulfide (PES) can be mentioned.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclic polyolefins
  • polyamide resins Polycarbonate resin
  • polystyrene resin polyvinyl alcohol resin
  • saponified product of ethylene-vinyl acetate copolymer polyacrylonitrile resin
  • acetal resin polyimide resin
  • the flexible film may be an unstretched resin film, or the unstretched resin film may be uniaxially stretched, tenter-type sequential biaxially stretched, tenter-type simultaneous biaxially stretched, tubular-type simultaneous biaxially stretched, or the like.
  • a stretched resin film may be stretched by a known method in the flow direction of the resin film (MD direction) and / or in the direction perpendicular to the flow direction of the resin film (TD direction).
  • the flexible film may be a laminate in which two or more layers of the above-mentioned resin films are laminated.
  • the thickness of the flexible film may be appropriately set in consideration of stability during manufacturing of the laminated film, but is 5 ⁇ m or more from the viewpoint of easy unwinding and easy adjustment of the charge amount at the time of unwinding. , More preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 150 ⁇ m or less.
  • the thickness of the flexible film can be measured with a film thickness meter, for example, by the method described in Examples.
  • the substrate may include a primer layer.
  • the primer layer is preferably formed on at least one surface of the flexible film, and particularly the substrate. It is more preferable to have a primer layer on one outermost layer and another layer, for example, an organic layer described later, on the other outermost layer of the base material. This is because the primer layer often functions as an adhesive layer and often has a large surface roughness, so that the contact area between the surface of the primer layer and the surface of the organic layer (preferably the flattening layer) can be increased.
  • the primer layer can improve the adhesion between the flexible film and the organic layer.
  • the primer layer functions as a protective layer of the laminated film. It also has the function of improving slipperiness during manufacturing and preventing blocking.
  • the primer layer preferably contains at least one selected from urethane resin, acrylic resin, polyester resin, epoxy resin, melamine resin and amino resin.
  • the primer layer preferably contains a polyester resin as a main component from the viewpoint of easily adjusting the heat resistance and the amount of charge of the laminated film.
  • the primer layer can contain additives in addition to the above resin.
  • a known additive can be used for forming the primer layer, for example, silica particles, alumina particles, calcium carbonate particles, magnesium carbonate particles, barium sulfate particles, aluminum hydroxide particles, titanium dioxide particles. , Zirconium oxide particles, clay, talc and other inorganic particles.
  • silica particles are preferable from the viewpoint of easily adjusting the heat resistance and the amount of charge of the laminated film.
  • the average primary particle size of the silica particles that can be contained in the primer layer is preferably 5 nm or more, more preferably 10 nm or more, further preferably 15 nm or more, particularly preferably 20 nm or more, preferably 100 nm or less, and more preferably 80 nm or less. It is more preferably 60 nm or less, and particularly preferably 40 nm or less.
  • the average primary particle size of the silica particles is in the above range, the aggregation of the silica particles can be suppressed, and the transparency and heat resistance of the laminated film can be improved. In addition, it is easy to adjust the amount of charge and suppress winding misalignment.
  • the slipperiness of the laminated film during production can be further improved and blocking can be effectively prevented.
  • the average primary particle size of the silica particles can be measured by the BET method or TEM observation of the particle cross section.
  • the content of the silica particles is preferably 1 to 50% by mass, more preferably 1.5, based on the mass of the primer layer, from the viewpoint of heat resistance and transparency of the laminated film and from the viewpoint of easily adjusting the charge amount. It is ⁇ 40% by mass, more preferably 2 to 30% by mass.
  • the thickness of the primer layer is preferably 1 ⁇ m or less, more preferably 500 nm or less, still more preferably 500 nm or less, from the viewpoint of easily improving the heat resistance of the laminated film, the adhesion between the primer layer and the organic layer, and easily adjusting the amount of charge. It is 200 nm or less, preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more.
  • the thickness of the primer layer can be measured with a film thickness meter. When the laminated film contains two or more primer layers, the thickness of each primer layer may be the same or different.
  • the primer layer can be obtained by applying a resin composition containing a resin, a solvent and, if necessary, an additive to a flexible film or the like, and drying the coating film to form a film.
  • the order in which the primer layers are formed is not particularly limited.
  • the solvent is not particularly limited as long as it can dissolve the resin, and is, for example, an alcohol solvent such as methanol, ethanol, 2-propanol, 1-butanol, 2-butanol; diethyl ether, diisopropyl ether, tetrahydrofuran, 1 , 4-Dioxane, propylene glycol monomethyl ether and other ether solvents; acetone, 2-butanone, methyl isobutyl ketone and other ketone solvents; N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2- Aprotonic polar solvents such as pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide; ester solvents such as methyl acetate, ethyl acetate, n-butyl acetate; nitrile solvents such as acetonitrile and benzonitrile; n-pentane, Hydro
  • Examples of the method for drying the coating film include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method, and heat drying can be preferably used.
  • the drying temperature is usually about 50 to 350 ° C.
  • the drying time is usually about 30 to 300 seconds, although it depends on the type of resin and solvent.
  • a primer layer may be formed on at least one surface of the flexible film, but a commercially available film having primer layers on both sides of the flexible film, for example, "Theonex” manufactured by Teijin Film Solutions Co., Ltd. (Registered trademark) ”etc. may be used.
  • the primer layer may be a single layer or a multilayer of two or more layers. When two or more primer layers are included, each primer layer may be a layer having the same composition or a layer having a different composition.
  • the surface roughness of the primer layer is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more.
  • a primer layer is provided on one outermost layer of the base material, and another layer, for example, an organic layer described later (preferably a flattening layer) is provided on the other outermost layer.
  • the contact area can be increased when the above is provided. Therefore, it is easy to adjust the absolute value of the charge amount at the time of unwinding to 2.0 kV or more, and it is easy to suppress unwinding.
  • the upper limit of the surface roughness of the primer layer is preferably 5 nm or less. The surface roughness can be measured by observing the primer layer with a white interference microscope and forming interference fringes according to the unevenness of the sample surface.
  • the base material may include an organic layer.
  • the base material is formed on the flexible film and at least one side of the flexible film. It is preferable to include the above-mentioned organic layer, and it is more preferable to have a primer layer on one outermost layer of the base material and an organic layer on the other outermost layer of the base material. Further, from the viewpoint of ensuring the adhesion between the primer layer and the organic layer in addition to adjusting the charge amount at the time of unwinding, the primer layers are provided on both sides of the base material, and the organic layer is provided on one of the primer layers. Is preferable.
  • the organic layer may be a layer having a function as a flattening layer, a layer having a function as an anti-blocking layer, or a layer having both of these functions. Further, from the viewpoint of ensuring slipperiness during film transport and easily adjusting the amount of charge, the organic layer is preferably an anti-blocking layer, and the gas barrier property is stabilized by homogenizing the inorganic thin film layer, and during film transport.
  • the organic layer is preferably a flattened layer from the viewpoint of ensuring the slipperiness of the film and easily adjusting the amount of charge.
  • both organic layers may be anti-blocking layers or flattening layers, one organic layer being an anti-blocking layer and the other organic layer.
  • the organic layer may be a single layer or a multilayer of two or more layers, and when two or more organic layers are formed, even if the plurality of organic layers have the same composition, they have different compositions. Layer may be.
  • the organic layer is appropriately made into a flattening layer or an anti-blocking layer, or an organic layer, depending on the material and surface roughness of the other outermost layer.
  • Compounds and additives that form the above can be selected.
  • the thickness of the organic layer may be appropriately adjusted according to the intended use, but is preferably 0.1 ⁇ m or more from the viewpoint of easily improving the surface hardness and bending resistance of the laminated film and easily adjusting the amount of charge. It is preferably 0.5 ⁇ m or more, more preferably 0.7 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less, still more preferably 8 ⁇ m or less.
  • each organic layer has a thickness in the above range, and the thickness of each organic layer may be the same or different.
  • the thickness of the organic layer can be measured by a film thickness meter, for example, by the method described in Examples.
  • the organic layer can be formed, for example, by applying a composition containing a photocurable compound having a polymerizable functional group to the surface of a flexible film, a primer layer, or the like and curing the composition.
  • a composition containing a photocurable compound having a polymerizable functional group examples include an ultraviolet or electron beam curable compound, and such a compound has one or more polymerizable functional groups in the molecule.
  • the compound include compounds having a polymerizable functional group such as a (meth) acryloyl group, a vinyl group, a styryl group and an allyl group.
  • the composition for forming the organic layer may contain one kind of photocurable compound, or may contain two or more kinds of photocurable compounds. You may.
  • the photocurable compound having a polymerizable functional group contained in the composition for forming an organic layer the photocurable compound is polymerized to form an organic layer containing a polymer of the photocurable compound.
  • the reaction rate of the polymerizable functional group of the photocurable compound having the polymerizable functional group in the organic layer is preferably 70% or more, more preferably 75% or more, still more preferably 80% from the viewpoint of easily improving the appearance quality. That is all.
  • the upper limit of the reaction rate is not particularly limited, but is preferably 95% or less, more preferably 90% or less, from the viewpoint of easily improving the appearance quality. When the reaction rate is equal to or higher than the above lower limit, it tends to be colorless and transparent. Further, when the reaction rate is not more than the above upper limit, it is easy to improve the bending resistance.
  • the reaction rate increases as the polymerization reaction of the photocurable compound having a polymerizable functional group proceeds, for example, when the photocurable compound is an ultraviolet curable compound, the intensity of the ultraviolet rays to be irradiated may be increased. It can be increased by lengthening the irradiation time. By adjusting the curing conditions as described above, the reaction rate can be kept within the above range.
  • the reaction rate is a coating film before curing obtained by applying the composition for forming an organic layer to the surface of a flexible film or a primer layer and drying it if necessary, and a coating film after curing.
  • the infrared absorption spectrum of the film can be measured from the surface of the coating film using a total reflection type FT-IR, and can be measured from the amount of change in the intensity of the peak derived from the polymerizable functional group.
  • the polymerizable functional group is a (meth) acryloyl group
  • C C as the reaction rate of the polymerization increases.
  • the intensity of the peak derived from the double bond decreases.
  • the intensity of the infrared absorption peak in the range of 1700 - 1800 cm -1 and I d, I c and I d is the equation (2): 0.05 ⁇ I d / I c ⁇ 1.0 (2) It is preferable to satisfy.
  • the infrared absorption peak in the range of 1000 to 1100 cm -1 is present in the compound and the polymer contained in the organic layer (for example, the photocurable compound having a polymerizable functional group and / or the polymer thereof).
  • the peak intensity ratio ( Id / I c ) is preferably 0.05 or more, more preferably 0.10 or more, still more preferably 0.20 or more.
  • the peak intensity ratio ( Id / I c ) is equal to or greater than the above lower limit, the uniformity of the organic layer is likely to be improved.
  • the peak intensity ratio ( Id / I c ) is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less. When the ratio of peak intensities ( Id / I c ) is not more than the above upper limit, it is easy to improve the adhesion of the organic layer.
  • the hardness of the organic layer is increased by the presence of a certain amount or more of siloxane-derived Si—O—Si bonds in the compounds and polymers contained in the organic layer. It is considered that this is because it is moderately reduced.
  • the infrared absorption spectrum of the organic layer can be measured by a Fourier transform infrared spectrophotometer (FT / IR-460Plus manufactured by JASCO Corporation) equipped with an ATR attachment (PIKE MIRacle).
  • the photocurable compound contained in the composition for forming an organic layer is a compound that starts polymerization by ultraviolet rays or the like and progresses to cure to become a resin which is a polymer.
  • the photocurable compound is preferably a compound having a (meth) acryloyl group from the viewpoint of curing efficiency.
  • the compound having a (meth) acryloyl group may be a monofunctional monomer or oligomer, or may be a polyfunctional monomer or oligomer.
  • “(meth) acryloyl” means acryloyl and / or methacryloyl
  • "(meth) acrylic” means acrylic and / or methacrylic.
  • Examples of the compound having a (meth) acryloyl group include (meth) acrylic compounds, and specifically, alkyl (meth) acrylate, urethane (meth) acrylate, ester (meth) acrylate, epoxy (meth) acrylate, and the like.
  • the polymer and copolymer thereof and the like can be mentioned. Specifically, methyl (meth) acrylate, butyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth).
  • the photocurable compound contained in the composition for forming an organic layer may be, for example, in place of the compound having a (meth) acryloyl group or in addition to the compound having a (meth) acryloyl group, for example, metetramethoxysilane.
  • Tetraethoxysilane methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxysilane, isobutyltrimethoxysilane, cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltri It preferably contains ethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diisopropyldimethoxysilane, trimethylethoxysilane, triphenylethoxysilane and the like. Alkoxysilanes other than these may be used.
  • Examples of the photocurable compound other than the photocurable compound having a polymerizable functional group described above include polyester resin, isocyanate resin, ethylene vinyl alcohol resin, vinyl-modified resin, epoxy resin, phenol resin, urea melamine resin, etc. by polymerization. Examples thereof include monomers or oligomers that serve as styrene resins and resins such as alkyl titanates.
  • the composition for forming an organic layer may contain the inorganic particles described in the ⁇ Primer layer> section, preferably silica particles.
  • the average primary particle size of the silica particles contained in the composition for forming an organic layer is preferably 5 to 100 nm, more preferably 5 to 75 nm.
  • the content of the inorganic particles is preferably 20 to 90%, more preferably 40 to 85%, based on the mass of the solid content of the composition for forming the organic layer.
  • the solid content of the composition for forming an organic layer means a component excluding volatile components such as a solvent contained in the composition for forming an organic layer.
  • the composition for forming an organic layer may contain a photopolymerization initiator from the viewpoint of curability of the organic layer.
  • the content of the photopolymerization initiator is preferably 2 to 15%, more preferably 3 to 11%, based on the mass of the solid content of the composition for forming the organic layer, from the viewpoint of enhancing the curability of the organic layer. Is.
  • the composition for forming an organic layer may contain a solvent from the viewpoint of coatability.
  • a solvent capable of dissolving the compound can be appropriately selected depending on the type of the photocurable compound having a polymerizable functional group, and examples thereof include the solvent described in the ⁇ Primer layer> section.
  • the solvent may be used alone or in combination of two or more.
  • the inorganic particles In addition to the photocurable compound having a polymerizable functional group, the inorganic particles, the photopolymerization initiator and the solvent, if necessary, a thermal polymerization initiator, an antioxidant, an ultraviolet absorber, a plasticizer, and leveling. Additives such as agents and curl inhibitors may be included.
  • a composition for forming an organic layer (photocurable composition) containing a photocurable compound is applied to the surface of a flexible film, a primer layer, or the like, and after drying if necessary.
  • the photocurable compound can be cured and formed by irradiating with ultraviolet rays or electron beams.
  • Examples of the coating method include the same method as the method of coating the primer layer.
  • the organic layer When the organic layer has a function as a flattening layer, the organic layer is a (meth) acrylate resin, a polyester resin, an isocyanate resin, an ethylene vinyl alcohol resin, a vinyl-modified resin, an epoxy resin, a phenol resin, a urea melamine resin, or a styrene resin. , And alkyl titanates and the like may be contained.
  • the organic layer may contain one kind or a combination of two or more kinds of these resins.
  • the flattening layer is subjected to a rigid pendulum type physical property tester (for example, RPT-3000W manufactured by A & D Co., Ltd.) to determine the temperature of the elastic modulus of the surface of the flattening layer.
  • a rigid pendulum type physical property tester for example, RPT-3000W manufactured by A & D Co., Ltd.
  • the temperature at which the elastic modulus of the surface of the flattening layer decreases by 50% or more is 150 ° C. or higher.
  • the surface roughness of the organic layer is preferably 3 nm or less, more preferably 2 nm or less, and further preferably 1 nm or less.
  • the surface roughness of the flattening layer is not more than the above upper limit, the defects of the inorganic thin film layer are reduced, and the gas barrier property is further enhanced.
  • the contact area can be increased, whereby the absolute value of the charge amount at the time of unwinding can be increased. Is easy to adjust to 2.0 kV or more.
  • the lower limit of the surface roughness of the organic layer is preferably 0.01 nm or more, more preferably 0.1 nm or more.
  • the surface roughness of the flattening layer is at least the above lower limit, the adhesion to the inorganic thin film layer is improved, and there is an effect of preventing problems such as peeling between the inorganic thin film layer and the organic layer.
  • the surface roughness is measured by observing the flattening layer with a white interference microscope and forming interference fringes according to the unevenness of the sample surface.
  • the organic layer has a function as an anti-blocking layer, it is particularly preferable that the organic layer contains the above-mentioned inorganic particles.
  • the thickness of the base material may be appropriately set in consideration of stability in manufacturing the laminated film, etc., but from the viewpoint of facilitating the transfer of the base material in vacuum and the ease of unwinding, the charge amount is adjusted. From the viewpoint of easy easiness, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, preferably 550 ⁇ m or less, more preferably 250 ⁇ m or less, still more preferably 200 ⁇ m or less.
  • the thickness of the base material can be measured with a film thickness meter, for example, by the method described in Examples.
  • the base material is preferably a long base material, and the length thereof is not particularly limited, but is preferably 100 m or more, more preferably 150 m or more, still more preferably 200 m or more, and particularly preferably 300 m or more. Is 5000 m or less, more preferably 4000 m or less, still more preferably 3000 m or less, and particularly preferably 2500 m or less.
  • the absolute value of the charge amount at the time of unwinding and the absolute value of the charge amount at the time of winding after the formation of the inorganic thin film layer are adjusted within a predetermined range, and therefore, the above lower limit or more.
  • the width of the base material is not particularly limited, and is preferably 50 mm or more, more preferably 100 mm or more, further preferably 150 mm or more, preferably 5000 mm or less, more preferably 4000 mm or less, still more preferably 3000 mm or less. ..
  • the length of the long base material indicates the size in the longitudinal direction, and the width of the long base material indicates the size in the lateral direction (direction orthogonal to the longitudinal direction).
  • the take-up tension at the time of preparing the unwinding base material is preferably 20 N / m or more, more preferably 35 N / m or more, still more preferably 50 N / m or more, and preferably 500 N / m or less. , More preferably 400 N / m or less, still more preferably 250 N / m or less.
  • the winding tension is at least the above lower limit, it is easy to adjust the absolute value of the measured value of the amount of charge at the time of unwinding in the atmosphere to 2.0 kV or more, and it is easy to suppress winding misalignment.
  • the take-up tension (N / m) indicates the tension (unit: N) applied in the longitudinal direction with respect to the base material width (unit: m), and the base material width indicates the length of the base material in the lateral direction. ..
  • the tension applied in the longitudinal direction is measured by, for example, a tension meter and can be controlled by using a tension controller.
  • the unwinding speed of the base material may be preferably 0.1 to 100 m / min, more preferably 0.3 to 20 m / min, and the unwinding speed of the base material is particularly preferable. Is 1.2 m / min or more, more preferably 1.5 m / min or more, still more preferably 2.0 m / min or more, still more preferably 2.5 m / min or more, when unwinding in the atmosphere. It is easy to adjust the absolute value of the measured value of the charge amount to 2.0 kV or more, and it is easy to suppress winding misalignment.
  • step (I) the unwound base material is transported to a pair of film forming rolls by a transport roll or the like.
  • step (II) a reaction gas and a raw material gas are supplied between the pair of film forming rolls, and an inorganic thin film layer is formed on at least one side of the conveyed base material by plasma discharge generated between the rolls. This is the process of obtaining a laminated film.
  • the base material preferably contains a flexible film, and in addition to the flexible film, a primer layer and / or an organic layer can be optionally contained. Therefore, the inorganic thin film layer is formed on the flexible film when the base material contains only the flexible film; preferably on the primer layer when the base material contains the primer layer; the base material. When contains an organic layer, it is preferably formed on the organic layer.
  • the film forming roll has a function of generating a discharge plasma of a film forming gas between a pair of film forming rolls.
  • a pair of film forming rolls may be connected to a plasma generation power source so as to supply power between the film forming rolls and function as a pair of counter powers for plasma discharge.
  • the plasma generation power source makes it possible to generate discharge plasma between the film forming rolls, and more specifically, in the space between the film forming rolls.
  • a known power source can be used as appropriate, and plasma CVD can be performed more efficiently. Therefore, an AC power source or the like capable of alternately reversing the polarities of a pair of film forming rolls. It is preferable to use.
  • a medium frequency for example 50 Hz to 500 kHz, preferably 1 kHz to 300 kHz, more preferably 1 kHz to 200 kHz, can be supplied between the pair of film forming rolls.
  • the applied power can be 100 W to 10 kW, preferably 100 W to 5 kW.
  • the applied power is not less than the above lower limit, the generation of particles can be suppressed, and when it is not more than the above upper limit, damage to the film forming roll due to the generation of an excessive amount of heat can be suppressed.
  • a fixed magnetic field forming device inside the pair of film forming rolls so that the film forming rolls do not rotate even if they rotate.
  • a magnetic field can be applied to a pair of film forming rolls, and an inorganic thin film layer can be formed at the same time on the surface of the base material arranged on each film forming roll, so that the film forming rate can be doubled. ..
  • the magnetic field forming device a known one may be used as appropriate.
  • the pressure for generating the discharge plasma between the pair of film forming rolls can be appropriately selected depending on the type of the raw material gas and the like, and is preferably 0.1 to 50 Pa, more preferably 0.1 to 30 Pa.
  • the pressure in the space is preferably 0.1 to 10 Pa, more preferably 0.1 Pa to 8.0 Pa.
  • a known roll can be appropriately used as the film-forming roll, but from the viewpoint of forming the inorganic thin film layer more efficiently, it is preferable that the pair of film-forming rolls have the same diameter, and the diameter of the film-forming roll is discharged. From the viewpoint of conditions and the like, it is preferably 5 to 30 cm. It is preferable that the pair of film forming rolls are arranged so that their central axes are substantially parallel, particularly parallel, on the same plane. By arranging in this way, the inorganic thin film layer can be formed at the same time on the surface of the base material arranged on each film forming roll, so that the film forming rate can be doubled and the inorganic thin film layer having the same structure can be formed. Is.
  • the inorganic thin film layer can be efficiently formed. You can also do it.
  • the transport speed of the base material transported by the film forming roll or the like is usually the same as the unwinding speed.
  • the transport speed is at least the above lower limit, the generation of wrinkles due to heat on the base material can be suppressed, and when it is at least the above upper limit, the thickness of the inorganic thin film layer can be suppressed from becoming too thin. ..
  • Examples of the raw material gas include an organosilicon compound containing a silicon atom and a carbon atom.
  • organosilicon compounds include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, and the like.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of the handleability of the compound and the gas barrier property of the obtained laminated film.
  • the raw material gas one kind of these organosilicon compounds may be used alone, or two or more kinds may be used in combination.
  • the reaction gas contains oxygen.
  • Oxygen can react with the raw material gas to form an inorganic compound such as an oxide.
  • the reaction gas may contain other gases capable of forming oxides or nitrides. Examples of other gases for forming oxides include ozone and the like.
  • as another gas for forming a nitride for example, nitrogen, ammonia and the like can be mentioned. These gases can be used alone or in combination of two or more.
  • a reaction gas for forming an oxide and a reaction gas for forming a nitride are used in combination. be able to.
  • the flow rate ratio of the raw material gas and the reaction gas can be appropriately adjusted according to the atomic number ratio (also referred to as atomic ratio) of the inorganic material to be formed.
  • the film-forming gas may contain a carrier gas, if necessary, in order to supply these gases between the pair of film-forming rolls. Further, the film-forming gas may contain a discharge gas, if necessary, in order to generate a plasma discharge.
  • the carrier gas and the discharge gas known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, and xenon, and hydrogen can be used.
  • the raw material gas, the reaction gas, the carrier gas, and the discharge gas are collectively referred to as a film-forming gas.
  • the flow rate of the raw material gas is preferably 10 to 1000 sccm, more preferably 20 to 500 sccm, and further preferably 30 to 300 sccm based on 0 ° C. and 1 atm.
  • the flow rate of the reaction gas is preferably 10 to 10000 sccm, more preferably 100 to 5000 sccm, and more preferably 200 to 1000 sccm based on 0 ° C. and 1 atm.
  • the inorganic thin film layer formed by the production method of one embodiment of the present invention can easily improve gas barrier properties (particularly water vapor barrier properties) and bending resistance, and can easily reduce the amount of charge after forming the inorganic thin film layer.
  • Silicon atom (Si), oxygen atom (O), and carbon atom (C) are preferably contained at least.
  • the inorganic thin film layer may be mainly composed of a compound whose general formula is represented by SiO x Cy.
  • X and Y each independently represent a positive number less than 2.
  • the main component means that the content of the component is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more with respect to the mass of all the components of the material.
  • Inorganic thin layer may contain one kind of compound represented by the general formula SiO x C y, may contain a general formula SiO x C y 2 or more compounds represented by.
  • X and / or Y in the general formula may be a constant value or may change in the film thickness direction of the inorganic thin film layer.
  • the inorganic thin film layer contains elements other than silicon atom, oxygen atom and carbon atom, for example, one or more atoms of hydrogen atom, nitrogen atom, boron atom, aluminum atom, phosphorus atom, sulfur atom, fluorine atom and chlorine atom. It may be contained.
  • the inorganic thin film layer has high density when the average atomic number ratio of carbon atoms (C) to silicon atoms (Si) in the inorganic thin film layer is represented by C / Si.
  • the range of C / Si preferably satisfies the formula (3). 0.02 ⁇ C / Si ⁇ 0.50 (3)
  • C / Si is more preferably in the range of 0.03 ⁇ C / Si ⁇ 0.45, further preferably in the range of 0.04 ⁇ C / Si ⁇ 0.40, and 0. It is particularly preferable that the range is 05 ⁇ C / Si ⁇ 0.35.
  • the inorganic thin film layer has high density when the average number of atoms ratio of oxygen atom (O) to silicon atom (Si) in the inorganic thin film layer is represented by O / Si, and fine voids, cracks, etc.
  • the range of 1.50 ⁇ O / Si ⁇ 1.98 is preferable, the range of 1.55 ⁇ O / Si ⁇ 1.97 is more preferable, and 1.60 ⁇ O. It is more preferably in the range of / Si ⁇ 1.96, and particularly preferably in the range of 1.65 ⁇ O / Si ⁇ 1.95.
  • the average atomic number ratios C / Si and O / Si were measured in XPS depth profile under the following conditions, and from the obtained distribution curves of silicon atoms, oxygen atoms, and carbon atoms, the averages in the thickness direction of each atom were obtained. After determining the atomic concentration, it can be calculated from the average atomic concentration, for example, by the method described in Examples.
  • the peak intensity ratio I 2 / I 1 calculated from infrared spectroscopy is the relative ratio of Si—CH 3 to Si—O—Si in the inorganic thin film layer. It is thought to represent. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (4) has high density and easily reduces defects such as fine voids and cracks, and thus easily enhances gas barrier properties and impact resistance.
  • the peak intensity ratio I 4 / I 3 is more preferably in the range of 0.02 ⁇ I 4 / I 3 ⁇ 0.04 from the viewpoint of easily maintaining the high density of the inorganic thin film layer.
  • the laminated film produced by one embodiment of the present invention becomes moderately slippery and blocking is easily reduced. If the peak intensity ratio I 4 / I 3 is too large, it means that there is too much SiC, and in this case, the flexibility tends to be poor and slipperiness tends to occur. Further, if the peak intensity ratio I 4 / I 3 is too small, the flexibility tends to decrease due to the amount of Si—C being too small.
  • the infrared spectroscopic measurement of the surface of the inorganic thin film layer can be measured by a Fourier transform infrared spectrophotometer equipped with an ATR attachment using a germanium crystal on the prism.
  • the peak intensity ratio I 5 / I 3 calculated from infrared spectroscopy (ATR method) is considered to represent the relative ratio of Si—C, Si—O, etc. to Si—O—Si in the inorganic thin film layer. .. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (5) is likely to have high bending resistance and impact resistance because carbon is introduced while maintaining high density.
  • the peak intensity ratio I 5 / I 3 is preferably in the range of 0.25 ⁇ I 5 / I 3 ⁇ 0.50, preferably 0.30 ⁇ I, from the viewpoint of maintaining a balance between the compactness and the bending resistance of the inorganic thin film layer. The range of 3 / I 1 ⁇ 0.45 is more preferable.
  • the inorganic thin film layer when subjected infrared spectrometry the inorganic thin film layer surface (ATR method), a peak exists in the 770 ⁇ 830 cm -1 intensity (I 5), present in the 870 ⁇ 910 cm -1 It is preferable that the intensity ratio with the peak intensity (I 6) satisfies the formula (6). 0.70 ⁇ I 6 / I 5 ⁇ 1.00 (6)
  • the peak intensity ratio I 6 / I 5 calculated from infrared spectroscopic measurement (ATR method) is considered to represent the ratio of peaks related to Si—C in the inorganic thin film layer. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (6) is likely to have high bending resistance and impact resistance because carbon is introduced while maintaining high density.
  • the range of the peak intensity ratio I 6 / I 5 the range of 0.70 ⁇ I 6 / I 5 ⁇ 1.00 is preferable, and 0.80 from the viewpoint of maintaining the balance between the compactness and the bending resistance of the inorganic thin film layer.
  • the range of ⁇ I 6 / I 5 ⁇ 0.95 is more preferable.
  • the inorganic thin film layer may be a single layer or a multilayer of two or more layers. Further, an inorganic thin film layer may be provided on both surfaces of the base material.
  • each layer may be a layer having the same composition or a layer having a different composition, but from the viewpoint of easily improving the gas barrier property and heat resistance of the laminated film. Therefore, it is preferable that the layers have the same composition.
  • the example may be carried out by a plurality of passes described later.
  • the thickness of the inorganic thin film layer is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 50 nm, from the viewpoint of easily improving gas barrier properties and bending resistance and easily reducing the amount of charge after forming the inorganic thin film layer. As described above, it is particularly preferably 100 nm or more, preferably 3000 nm or less, more preferably 2000 nm or less, and further preferably 1000 nm or less. When there are two or more or a plurality of inorganic thin film layers, the thickness of each layer may be the same or different.
  • the inorganic thin film layer can preferably have a high average density of 1.8 g / cm 3 or more.
  • the "average density" of the inorganic thin film layer is the number of silicon atoms, the number of carbon atoms, the number of oxygen atoms obtained by the Rutherford Backscattering Spectrometry (RBS), and the hydrogen forward scattering method (Hydrogen Forward).
  • the weight of the inorganic thin film layer in the measurement range is calculated from the number of hydrogen atoms obtained by scattering Spectrometry (HFS), and divided by the volume of the inorganic thin film layer in the measurement range (the product of the ion beam irradiation area and the film thickness). It is required by doing.
  • the average density of the inorganic thin film layer is at least the above lower limit, the density is high and the structure is preferable because defects such as fine voids and cracks can be easily reduced.
  • the average density of the inorganic thin film layers is preferably less than 2.22 g / cm 3.
  • the inorganic thin film layer contains at least silicon atoms (Si), oxygen atoms (O), and carbon atoms (C), from the surface of the inorganic thin film layer in the film thickness direction of the inorganic thin film layer.
  • the curve showing the relationship between the distances and the atomic number ratio of silicon atoms at each distance is called a silicon distribution curve.
  • the surface of the inorganic thin film layer refers to a surface that becomes the surface of the laminated film produced by one embodiment of the present invention.
  • a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic number ratio of oxygen atoms at each distance is called an oxygen distribution curve.
  • a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic number ratio of carbon atoms at each distance is called a carbon distribution curve.
  • the atomic number ratio of silicon atom, the atomic number ratio of oxygen atom, and the atomic number ratio of carbon atom mean the ratio of the number of atoms to the total number of silicon atom, oxygen atom, and carbon atom contained in the inorganic thin film layer. ..
  • the ratio of the number of carbon atoms to the total number of silicon atoms, oxygen atoms, and carbon atoms contained in the inorganic thin film layer from the viewpoint of suppressing the decrease in gas barrier property due to bending and easily reducing the amount of charge after forming the inorganic thin film layer.
  • the inorganic thin film layer continuously changes in a region of 90% or more in the film thickness direction.
  • the fact that the atomic number ratio of the carbon atoms changes continuously in the film thickness direction of the inorganic thin film layer means that, for example, in the carbon distribution curve described above, the atomic number ratio of carbon changes discontinuously as described later. It means that it does not include a part.
  • the carbon distribution curve of the inorganic thin film layer has eight or more extreme values from the viewpoint of bending resistance and gas barrier property of the laminated film.
  • the silicon distribution curve, oxygen distribution curve and carbon distribution curve of the inorganic thin film layer satisfy the following conditions (i) and (ii) from the viewpoint of bending resistance and gas barrier property of the laminated film.
  • the condition represented by the following formula (7) is satisfied in a region where the atomic number ratio of silicon, the atomic number ratio of oxygen, and the atomic number ratio of carbon are 90% or more in the film thickness direction of the inorganic thin film layer. ,as well as, (Atomic number ratio of oxygen)> (Atomic number ratio of silicon)> (Atomic number ratio of carbon) (7)
  • the carbon distribution curve preferably has at least one, more preferably eight or more extreme values. Have.
  • the carbon distribution curve of the inorganic thin film layer is preferably substantially continuous.
  • the fact that the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic number ratio of carbon changes discontinuously.
  • the formula (8) is satisfied when the distance from the surface of the inorganic thin film layer in the film thickness direction is x [nm] and the atomic number ratio of carbon is C.
  • the carbon distribution curve of the inorganic thin film layer preferably has at least one extreme value, and more preferably has eight or more extreme values.
  • the extreme value here is the maximum value or the minimum value of the atomic number ratio of each element with respect to the distance from the surface of the inorganic thin film layer in the film thickness direction.
  • the extreme value is at the point where the atomic number ratio of the element changes from increase to decrease or the atomic number ratio of the element changes from decrease to increase when the distance from the surface of the inorganic thin film layer in the film thickness direction is changed. It is the value of the atomic number ratio.
  • the extreme value can be obtained, for example, based on the atomic number ratio measured at a plurality of measurement positions in the film thickness direction.
  • the interval in the film thickness direction is set to, for example, 20 nm or less.
  • the measurement results at three or more different measurement positions are compared, and the measurement results increase or decrease. It can be obtained by finding the position where it turns to or the position where it turns from decrease to increase.
  • the position showing the extremum can also be obtained, for example, by differentiating the approximate curve obtained from the discrete data group.
  • the section where the atomic number ratio monotonically increases or decreases monotonically from the position showing the extreme value is, for example, 20 nm or more
  • the atomic number ratio at the position moved by 20 nm in the film thickness direction from the position showing the extreme value and the pole is, for example, 0.03 or more.
  • the inorganic thin film layer formed so as to satisfy the condition that the carbon distribution curve preferably has at least one, more preferably eight or more extreme values has gas permeation after bending with respect to the gas permeability before bending.
  • the amount of increase in the rate is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained.
  • the inorganic thin film layer is formed so that the number of extreme values of the carbon distribution curve is two or more, the amount of increase is smaller than that of the case where the number of extreme values of the carbon distribution curve is one. ..
  • the inorganic thin film layer is formed so that the number of extreme values of the carbon distribution curve is three or more, the amount of increase is larger than that of the case where the number of extreme values of the carbon distribution curve is two. Less.
  • the carbon distribution curve has two or more extrema, the distance from the surface of the inorganic thin film layer in the film thickness direction at the position showing the first extremum and the second extremum adjacent to the first extremum.
  • the absolute value of the difference from the distance from the surface of the inorganic thin film layer in the film thickness direction of the position showing the value is preferably in the range of 1 nm to 200 nm, and more preferably in the range of 1 nm to 100 nm.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic number ratio of carbon in the carbon distribution curve of the inorganic thin film layer is larger than 0.01.
  • the amount of increase in the gas permeability after bending with respect to the gas permeability before bending is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic number ratio of carbon is 0.02 or more, the above effect is high, and when it is 0.03 or more, the above effect is further high.
  • the absolute value is preferably less than 0.05 (less than 5 at%), more preferably less than 0.04 (less than 4 at%), and less than 0.03 (3 at%). Less than) is particularly preferable.
  • the total atomic number ratio is preferably less than 0.05 (less than 5 at%), more preferably less than 0.04 (less than 4 at%), and less than 0.03 (less than 0.03). It is particularly preferable that it is less than 3 at%).
  • the gas barrier property of the inorganic thin film layer can be improved.
  • the substantially uniform composition means the number of extreme values existing in the film thickness direction at any two points on the surface of the inorganic thin film layer in the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve. Is the same, and the absolute value of the difference between the maximum value and the minimum value of the atomic number ratio of carbon in each carbon distribution curve is the same as each other or the difference is within 0.05.
  • the inorganic thin film layer formed so as to satisfy the above conditions can exhibit the gas barrier property required for a flexible electronic device using, for example, an organic electro-luminescence element.
  • the choices include, for example, the film-forming gas exemplified above; the flow rate range of the reaction gas and the source gas; and the pressure range, applied power range, frequency range and film transfer when generating the discharge plasma described above. It can be adjusted by appropriately selecting from the speed range and the like.
  • the obtained inorganic thin film layer contains at least silicon atoms, oxygen atoms, and carbon atoms
  • a preferable method for adjusting the raw material gas and the reaction gas will be described below.
  • SiO 2 and SiO x Cy (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2) are produced by the decomposition reaction of the raw material gas containing the organosilicon compound containing silicon atoms and carbon atoms with the reaction gas. It may be generated to form an inorganic thin film layer.
  • the ratio of the raw material gas and the reaction gas supplied to the space between the pair of film forming rolls is a reaction theoretically required to completely react the raw material gas and the reaction gas (completely oxidize the raw material gas).
  • the gas ratio it is preferable not to exceed the gas ratio. This is because when the organosilicon compound contained in the raw material gas is completely oxidized, a SiO 2 layer is formed and the SiO x Cy layer is not formed, that is, the unoxidized carbon atom in the organosilicon compound is formed. This is because it is not incorporated into the inorganic thin film layer, which is disadvantageous from the viewpoint of gas barrier property. On the other hand, if the ratio of the reaction gas is too small, unoxidized carbon atoms may be excessively incorporated into the inorganic thin film layer, and the transparency of the inorganic thin film layer may decrease.
  • the flow rate ratio of the volume flow V 1 of the volume flow V 2 and the raw material gas in the reaction gas to be supplied between the pair of deposition rolls (V 2 / V 1) is the organosilicon compound contained in the raw material gas
  • the minimum flow rate ratio (V 02 / V 01 ) of the volumetric flow rate V 02 of the reaction gas and the volume flow rate V 01 of the raw material gas, which is necessary for complete oxidation of the gas is P 0
  • it is preferably 0.98 P 0 to It is 0.20P 0 , more preferably 0.95P 0 to 0.25P 0 , and even more preferably 0.90P 0 to 0.30P 0 .
  • the flow rate ratio V 2 / V 1 is not more than the above upper limit, the decrease in transparency due to the excess carbon atom derived from the organic silane compound can be effectively suppressed in the inorganic thin film layer, and the flow rate ratio V 2 / V 1 can be effectively suppressed.
  • the flow rate ratio V 2 / V 1 can be effectively suppressed.
  • the flow rate ratio V 2 / V 1 can be effectively suppressed.
  • the flow rate ratio V 2 / V 1 is greater than or equal to the above lower limit, it is possible to effectively suppress a decrease in gas barrier property due to a small amount of carbon atoms derived from the organic silane compound in the inorganic thin film layer.
  • the minimum flow rate ratio P 0 (V 02 / V 01 ) is obtained as follows.
  • HMDSO hexamethyldisiloxane
  • oxygen is used as the reaction gas
  • the reaction according to the following reaction formula (I): (CH 3 ) 3 Si—O—Si (CH 3 ) 3 + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2 (I) occurs, and SiO 2 is produced.
  • a known gas supply pipe or the like may be used to supply the film-forming gas to the space between the pair of rolls.
  • the laminated film obtained by forming the inorganic thin film layer in step (II) is conveyed to the take-up roll by a conveying roll or the like.
  • Step (III) is a step of winding the laminated film obtained in the step (II) with a take-up roll.
  • the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until winding is preferably 1.4 kV or less, more preferably 1.2 kV or less, still more preferably 1 when measured under vacuum. It is 0.0 kV or less. When the absolute value of the amount of charge is not more than the above upper limit, it is easier to suppress the occurrence of foreign matter defects.
  • the amount of charge (under vacuum) after the formation of the inorganic thin film layer until the time of winding can be measured using an electrostatic potential monitoring device and a vacuum-compatible electrostatic potential sensor, and can be measured, for example, by the method described in Examples.
  • the amount of charge from the formation of the inorganic thin film layer to the time of winding is from immediately after the formation of the inorganic thin film layer (immediately after the second film forming roll of the pair of film forming rolls) to immediately before winding with the winding roll (immediately after the winding film forming roll).
  • Indicates the amount of charge also referred to as immediately before the take-up roll
  • further measurement points may be appropriately provided between these measurement points.
  • the high amount of charge at the time of unwinding is due to the transfer by the conductive transfer roll and the film forming roll; the passage through the plasma space where many positive charges or negative charges exist; the formation of an inorganic thin film layer on the substrate, etc. Movement and the like occur and are reduced. Therefore, the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding can be adjusted to 1.5 kV or less, preferably by appropriately changing the production conditions within the range shown above.
  • the manufacturing method according to one embodiment of the present invention may be carried out in one pass or in a plurality of passes.
  • 1 pass means a series of operations from unwinding a base material having a certain length, forming an inorganic thin film layer, and winding the laminated film having a certain length.
  • the plurality of passes means that the laminated film is manufactured in two or more passes.
  • the inorganic thin film layer is further formed by the discharge plasma on the surface of the inorganic thin film layer formed on the base material, two or more inorganic thin film layers are formed on at least one surface of the base material.
  • the step (I) of unwinding the base material that is, the predetermined charge amount at the time of unwinding may be satisfied in the first pass.
  • unwinding is likely to occur when unwinding a base material on which an inorganic thin film layer is not formed, and if the amount of charge at unwinding in step (I) satisfies a predetermined range, unwinding will occur even after the second pass. Can be suppressed.
  • the predetermined charge amount may be satisfied at least in the first pass, but from the viewpoint of more easily suppressing the occurrence of foreign matter defects. It is preferable that the predetermined charge amount is satisfied even after the second pass.
  • the absolute value of the amount of charge (in the atmosphere) at the time of unwinding may be 2.0 kV or more.
  • step (I) the absolute value of the amount of charge on the surface of the base material at the time of unwinding is controlled to 2.0 kV or more when measured in the atmosphere
  • step (II) and step (III) the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is controlled to 1.5 kV or less when measured under vacuum.
  • the step (I) the amount of charge on the surface of the base material at the time of unwinding is measured in the atmosphere, and the absolute value of the amount of charge is 2.
  • step (II) and (III) the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer and before winding is measured under vacuum.
  • the absolute value of the charge amount is controlled (or adjusted) so as to be 1.5 kV or less.
  • FIG. 1 is a schematic view showing an example of a manufacturing apparatus used in one embodiment of the present invention, and is a schematic diagram of an apparatus for forming an inorganic thin film layer by a plasma chemical vapor deposition method.
  • FIG. 1 the dimensions and ratios of each component are appropriately adjusted in order to make the drawings easier to see. Therefore, the dimensions, ratio, and the like can be changed as appropriate.
  • the manufacturing apparatus 10 shown in FIG. 1 includes a feeding roll 11, a winding roll 12, a transport roll 13 to 18, a first film forming roll 25, a second film forming roll 26, a gas supply pipe 19, a plasma generation power supply 20, and an electrode. It has 21, an electrode 22, a magnetic field forming device 23 installed inside the first film forming roll 25, and a magnetic field forming device 24 installed inside the second film forming roll 26.
  • At least the first film forming roll 25, the second film forming roll 26, the gas supply pipe 19, the magnetic field forming device 23, and the magnetic field forming device 24 are not shown when manufacturing the laminated film. Is placed in the vacuum chamber of. This vacuum chamber is connected to a vacuum pump (not shown). The pressure inside the vacuum chamber is adjusted by the operation of the vacuum pump.
  • Discharge plasma can be generated, and plasma CVD film formation can be performed by a continuous film formation process using the generated discharge plasma.
  • the feeding roll 11 is arranged with the base material 29 before film formation wound up, that is, in the state of a roll-shaped base material.
  • the roll-shaped base material 29 is unwound from the delivery roll 11 in the longitudinal direction.
  • the unwinding speed is preferably 1.2 m / min or more from the viewpoint of making it easy to adjust the absolute value of the charge amount at the time of unwinding to 2.0 kV or more.
  • the amount of charge at the time of unwinding can be measured at the measurement position 101 immediately after the feeding roll by an electrostatic potential monitoring device (not shown).
  • the measurement position 101 is a position within 5 seconds after unwinding, or a position within a transport distance of 10 cm after unwinding.
  • the measurement is performed when the base material 29 is unwound from the delivery roll 11 in the atmosphere.
  • the base material 29 is transferred to the first film forming roll 25 by the transfer rolls 13 and 14.
  • the absolute value of the amount of charge at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and the occurrence of unwinding of the obtained laminated film can be suppressed.
  • step (II) the reaction gas and the raw material gas are supplied between the pair of film forming rolls 25 and 26, and the plasma discharge generated between the rolls causes the inorganic material to be transferred to at least one side of the base material 29. A thin film layer is formed to obtain a laminated film. Details of step (II) are shown below.
  • the first film-forming roll 25 and the second film-forming roll 26 are made of a conductive material, and each of them conveys the base material 29 while rotating.
  • the first film forming roll 25 and the second film forming roll 26 extend in parallel and are arranged to face each other.
  • the first film forming roll 25 and the second film forming roll 26 preferably have the same diameter, and have a diameter of 5 cm to 30 cm.
  • the first film forming roll 25 and the second film forming roll 26 are insulated from each other and connected to a common plasma generation power source 20.
  • an AC voltage is applied from the plasma generation power source 20
  • an electric field is formed in the space 27 between the first film forming roll 25 and the second film forming roll 26.
  • the applied power of the plasma generation power supply 20 is preferably 100 W to 10 kW, and the AC frequency is preferably 50 Hz to 500 kHz.
  • the magnetic field forming device 23 and the magnetic field forming device 24 are members that form a magnetic field in the space 27, and are housed inside the first film forming roll 25 and the second film forming roll 26.
  • the magnetic field forming device 23 and the magnetic field forming device 24 are fixed so as not to rotate together with the first film forming roll 25 and the second forming film roll 26 (that is, the posture relative to the vacuum chamber does not change). ..
  • the magnetic field forming device 23 and the magnetic field forming device 24 are formed around the central magnets 23a and 24a extending in the same direction as the extending direction of the first film forming roll 25 and the second film forming roll 26 and around the central magnets 23a and 24a. While surrounding, it has an annular outer magnets 23b and 24b that are arranged so as to extend in the same direction as the extending direction of the first film forming roll 25 and the second film forming roll 26.
  • the magnetic field lines (magnetic fields) connecting the central magnet 23a and the external magnet 23b form an endless tunnel.
  • the magnetic field lines connecting the central magnet 24a and the external magnet 24b form an endless tunnel.
  • the discharge plasma of the film-forming gas is generated by the magnetron discharge in which the magnetic field lines and the electric field formed between the first film-forming roll 25 and the second film-forming roll 26 intersect. That is, as will be described in detail later, the space 27 is used as a film forming space for performing plasma CVD film formation, and the surface of the base material 29 that does not come into contact with the first film forming roll 25 and the second film forming roll 26 (film formation). On the surface), an inorganic thin film layer in which the film-forming gas is deposited via the plasma state is formed.
  • a gas supply pipe 19 for supplying a film-forming gas 28 containing a plasma CVD raw material gas and a reaction gas is provided in the space 27.
  • the gas supply pipe 19 has a tubular shape extending in the same direction as the extending direction of the first film forming roll 25 and the second film forming roll 26, and the space 27 is provided through openings provided at a plurality of locations. 28 is supplied with the film-forming gas 28.
  • an arrow indicates how the film-forming gas 28 is supplied from the gas supply pipe 19 toward the space 27.
  • the film-forming gas may include the carrier gas and the discharge gas.
  • the pressure in the vacuum chamber degree of vacuum
  • the electric power of the electrode drum of the plasma generator is preferably 100 W to 10 kW.
  • the transport speed (line speed) of the base material 29 is usually the same as the unwinding speed, and is preferably 1.2 m / min or more.
  • the film is formed on the base material 29 as follows. That is, an inorganic thin film layer is formed on the surface of the base material 29. First, before film formation, it is advisable to perform a pretreatment so that the outgas generated from the base material 29 is sufficiently reduced.
  • Examples of the method for reducing the amount of outgas generated from the base material 29 include vacuum drying, heat drying, drying by a combination thereof, and drying by natural drying. Regardless of the drying method, in order to accelerate the drying of the inside of the base material 29 wound in a roll shape, the roll is repeatedly rewound (unwinding and winding) during drying, and the entire base material 29 is taken up. Is preferably exposed to a dry environment.
  • Vacuum drying is performed by placing the base material 29 in a pressure-resistant vacuum container and evacuating the inside of the vacuum container using a decompressor such as a vacuum pump to create a vacuum.
  • the pressure in the vacuum vessel during vacuum drying is preferably 1000 Pa or less, more preferably 100 Pa or less, and even more preferably 10 Pa or less.
  • Exhaust in the vacuum vessel may be performed continuously by continuously operating the decompressor, or intermittently by operating the decompressor intermittently while controlling the internal pressure so as not to exceed a certain level. It may be done in.
  • the drying time is preferably at least 8 hours or more, more preferably 1 week or more, and further preferably 1 month or more.
  • Heat drying is performed by exposing the base material 29 to an environment of room temperature or higher.
  • the heating temperature is preferably room temperature or higher and 200 ° C. or lower, and more preferably room temperature or higher and 150 ° C. or lower.
  • the base material 29 may be deformed, or defects may occur due to elution of, for example, an oligomer component from the base material 29 and precipitation on the surface.
  • the drying time can be appropriately selected depending on the heating temperature and the heating means used.
  • the heating means may be any as long as it can heat the base material 29 to room temperature or higher and 200 ° C. or lower under normal pressure.
  • an infrared heating device is a device that heats an object by radiating infrared rays from an infrared generating means.
  • the microwave heating device is a device that heats an object by irradiating a microwave from a microwave generating means.
  • the heating drum is a device that heats the surface of the drum and brings the object into contact with the surface of the drum to heat the drum surface by heat conduction from the contact portion.
  • Natural drying is performed by arranging the base material 29 in a low humidity atmosphere and allowing dry gas (dry air, dry nitrogen) to pass through to maintain a low humidity atmosphere.
  • dry gas dry air, dry nitrogen
  • the drying time is preferably 8 hours or more, more preferably 1 week or more, and further preferably 1 month or more. These dryings may be performed separately before mounting the base material 29 on the manufacturing apparatus, or may be performed in the manufacturing apparatus after mounting the base material 29 on the manufacturing apparatus.
  • the roll to be passed may be provided with a heater, and the roll may be heated by using the roll as the above-mentioned heating drum.
  • Another method of reducing the outgas from the base material 29 is to form an inorganic film on the surface of the base material 29 in advance.
  • the method for forming an inorganic film include a physical film forming method such as vacuum vapor deposition (heat vapor deposition), electron beam (EB) vapor deposition, sputtering, and ion plating.
  • the inorganic film may be formed by a chemical deposition method such as thermal CVD, plasma CVD, or atmospheric pressure CVD.
  • the influence of outgas may be further reduced by subjecting the base material 29 having an inorganic film formed on the surface to a drying treatment by the above-mentioned drying method.
  • a vacuum chamber (not shown) is used as a reduced pressure environment, and an electric field is generated in the space 27 by applying it to the first film forming roll 25 and the second film forming roll 26.
  • the magnetic field forming device 23 and the magnetic field forming device 24 form the above-mentioned non-terminal tunnel-shaped magnetic field, the magnetic field and the electrons emitted into the space 27 are generated by introducing the film-forming gas.
  • a discharge plasma of a donut-shaped film-forming gas is formed along the tunnel. Since this discharge plasma can be generated at a low pressure of around several Pa, the temperature inside the vacuum chamber can be set to around room temperature.
  • the "complete oxidation reaction of an organosilicon compound containing a silicon atom and a carbon atom” means that the reaction between the organosilicon compound and oxygen proceeds, and the organosilicon compound has the above-mentioned reaction formula ( It means that it is oxidatively decomposed into SiO 2 , water and carbon dioxide as shown in I).
  • incomplete oxidation reaction of an organosilicon compound containing a silicon atom and a carbon atom means SiOxCy in which the organosilicon compound does not undergo a complete oxidation reaction and contains carbon in the structure instead of SiO 2. It means that the reaction is such that (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2) occurs.
  • the first film forming roll 25 and the second film forming roll 26 since the discharge plasma is formed in a donut shape on the surfaces of the first film forming roll 25 and the second film forming roll 26, the first film forming roll 25 and the second film forming roll 26 The base material 29 transported on the surface alternately passes through the space in which the high-intensity discharge plasma is formed and the space in which the low-intensity discharge plasma is formed. Therefore, on the surface of the base material 29 that passes through the surfaces of the first film forming roll 25 and the second film forming roll 26, a layer containing a large amount of SiO 2 generated by the complete oxidation reaction (referred to as Ha1 layer or Ha2 layer).
  • Ha1 layer or Ha2 layer a layer containing a large amount of SiO 2 generated by the complete oxidation reaction
  • a layer containing a large amount of SiOxCy (referred to as an H b1 layer or an H b2 layer) generated by an incomplete oxidation reaction is sandwiched and formed therein.
  • high-temperature secondary electrons are prevented from flowing into the base material 29 due to the action of the magnetic field, so that high power can be applied while keeping the temperature of the base material 29 low, and high-speed film formation is achieved. Will be done.
  • the film deposition mainly occurs only on the film-forming surface of the base material 29, and the film-forming roll is covered with the base material 29 to prevent stains, so that stable film formation can be performed for a long time.
  • the laminated film produced has at least an HA layer and an HB layer.
  • the HB layer after forming the HA layer on the base material side.
  • the HB layer it is preferable to form the HA layer at a temperature higher than the temperature of the film surface at the time of formation.
  • a method of controlling the temperature of the film surface 1. 2. Reduce the pressure during film formation in the vacuum chamber. 2. Increase the applied power from the plasma generation power supply. 3. Reduce the flow rate of the raw material gas (and the flow rate of the reaction gas). 4. Reduce the transport speed of the base material. Raise the temperature of the film forming roll itself, 6. For example, lowering the frequency of the power source for plasma generation at the time of film formation.
  • One of these conditions 1 to 6 may be selected, the other conditions may be fixed, and the selected conditions may be optimized so that the temperature becomes appropriate at the time of film formation. Two or three or more of these conditions may be changed to optimize the film formation so that the temperature becomes appropriate at the time of film formation. It is preferable to optimize conditions 1 to 4 and 6 within the above range.
  • the surface temperature of the first film forming roll 25 and the second film forming roll 26 is preferably ⁇ 10 to 80 ° C.
  • the laminated film in which the inorganic thin film layer is formed on the surface of the base material 29 is conveyed by the conveying rolls 17 and 18, and is wound into a roll by the winding roll 12.
  • step (II) and step (III) the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is 1.5 kV or less when measured under vacuum. It is possible to prevent foreign matter from adhering to the surface of the laminated film and effectively suppress the occurrence of foreign matter defects.
  • the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is measured at the measurement position 102 immediately after the second film forming roll by the electrostatic potential monitoring device and the vacuum-compatible electrostatic potential sensor (not shown). It can be measured at the measurement position 103 immediately before the take-up roll.
  • the measurement position 102 is a position within 5 seconds after passing through the second film forming roll 26 or within a transport distance of 10 cm after passing through the second film forming roll 26.
  • the measurement position 103 is a position within 5 seconds before the start of winding with the take-up roll 12 or within a transport distance of 10 cm until the start of winding.
  • the operation from the start to the stop of plasma generation is performed once or more, that is, in one pass or more.
  • a base material 29 of a certain length is unwound, and an inorganic thin film layer is formed when passing through a pair of film forming rolls 25 and 26.
  • the operation of filming and winding with the take-up roll 12 is one pass.
  • the film is sent out from the winding roll 12 in which the film having the inorganic thin film layer formed on the base material 29 is wound in the first pass, and the film is conveyed by the conveying rolls 18 to 16.
  • the inorganic thin film layer can be made into multiple layers by performing the film formation in a plurality of passes. In such a case, even when the inorganic thin film layer having the same thickness is formed, the transport speed can be increased, so that thermal damage to the base material can be suppressed. As described above, the predetermined charge amount may be satisfied in the step (I) of unwinding the base material, that is, in the first pass.
  • the predetermined charge amount may be satisfied at least in the first pass, but from the viewpoint of more easily suppressing the occurrence of foreign matter defects. It is preferable that the predetermined charge amount is satisfied even after the second pass.
  • the amount of charge from the formation of the inorganic thin film layer in the steps (II) and (III) to the time of winding is the measurement position on one side, that is, based on the film forming roll.
  • the measurement may be performed at the measurement position 102 and the measurement position 103, and the measurement can be performed on both sides by providing the corresponding measurement positions on the other side.
  • the base material 29 is the same as the base material described in the above [base material] section, and the inorganic thin film layer is described in the section [step (II)]. It is similar to the inorganic thin film layer of.
  • the laminated film obtained by the production method of one embodiment of the present invention includes the base material and one or more layers of the inorganic thin film formed on at least one surface of the base material.
  • the substrate may include the primer layer and / or the organic layer in addition to the flexible film.
  • the laminated film obtained by the production method of one embodiment of the present invention has an absolute value of the amount of charge on the surface of the base material at the time of unwinding of 2.0 kV or more when measured in the atmosphere in step (I).
  • steps (II) and (III) the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until winding is 1.5 kV or less when measured under vacuum, so that the winding shift occurs.
  • FIG. 2 shows an example of the layer structure of the laminated film obtained by the production method of one embodiment of the present invention, but the present invention is not limited to this aspect.
  • the laminated film 1 can be manufactured by, for example, the manufacturing apparatus shown in FIG. 1, and the inorganic thin film layer 2 is formed (or laminated) on the base material 6 having the flexible film 5, the primer layer 4, and the organic layer 3 in this order. ) Is a film.
  • the dimensions and ratios of each component are appropriately adjusted in order to make the drawings easier to see. Therefore, the dimensions, ratio, and the like can be changed as appropriate.
  • the laminated film obtained by one embodiment of the present invention is preferably a gas barrier film. Since the gas barrier film is excellent in gas barrier property, particularly water vapor barrier property, the water vapor permeability is small.
  • the water vapor permeability of the gas barrier film is preferably 5 ⁇ 10 -2 g / m 2 / day or less, more preferably 1 ⁇ 10 -2 g / m 2 / day or less, and further preferably 5 ⁇ 10 -3 g. It is less than / m 2 / day.
  • the gas barrier property can be improved.
  • the lower limit of the water vapor permeability of the gas barrier film is usually 0 g / m 2 / day or more.
  • the water vapor permeability can be measured by a Ca corrosion test method based on ISO / WD 15106-7 (Annex C), for example, by the method described in Examples.
  • the laminated film may have other layers between each layer or between the outermost layers, if necessary.
  • Other layers include, for example, an easy-slip layer, a hard coat layer, a transparent conductive film layer, a color filter layer, an easy-adhesion layer, a curl adjustment layer, a stress relaxation layer, a heat-resistant layer, an abrasion-resistant layer, a pressing-resistant layer, a protective layer, and the like. Can be mentioned.
  • the thickness of the laminated film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, preferably 600 ⁇ m or less, from the viewpoint of gas barrier property, bending resistance, durability, surface hardness, etc. of the laminated film. It is more preferably 300 ⁇ m or less, still more preferably 250 ⁇ m or less.
  • the thickness (film thickness) of the laminated film can be measured with a film thickness meter.
  • the laminated film is preferably a long film, and the length and width thereof can be selected from the same range as the length and width of the base material, respectively.
  • the absolute value of the charge amount at the time of unwinding and the absolute value of the charge amount at the time of winding after the formation of the inorganic thin film layer are adjusted within a predetermined range, and thus are equal to or higher than the above lower limit. Even with a long base material, it is possible to effectively suppress the occurrence of unwinding and foreign matter defects.
  • X-ray photoelectron spectroscopy measurement of the surface of the inorganic thin film layer The atomic number ratio of the surface of the inorganic thin film layer of the laminated film obtained in the examples was measured by X-ray photoelectron spectroscopy (“QuantaraSXM” manufactured by ULVAC-PHI Co., Ltd.) according to the following XPS depth profile.
  • An AlK ⁇ ray (1486.6 eV, X-ray spot 100 ⁇ m) was used as the X-ray source, and a neutralizing electron gun (1 eV) and a low-speed Ar ion gun (10 V) were used for charge correction at the time of measurement.
  • Infrared spectroscopic measurement of the surface of the inorganic thin film layer was performed by a Fourier transform infrared spectrophotometer equipped with an ATR attachment (PIKE MIRacle) using a germanium crystal for the prism (JASCO Corporation). Manufactured by FT / IR-460Plus).
  • an inorganic thin film layer was laminated on the surface of the base material on the organic layer side using the manufacturing apparatus shown in FIG. Specifically, as shown in FIG. 1, after the base material 29 is attached to the delivery roll 10 and the inside of the vacuum chamber is reduced to 1 ⁇ 10 -3 Pa or less, the pressure around the exhaust port in the vacuum chamber is increased. A film-forming gas 28 containing hexamethyldisiloxane (HMDSO) as a raw material gas and an oxygen gas (which also functions as a discharge gas) as a reaction gas is supplied to the film-forming space 27 so as to be 1 Pa. The exhaust volume was adjusted.
  • HMDSO hexamethyldisiloxane
  • the pair of film forming rolls 25 and 26 are electrodes connected to the plasma generation power supply 20, and the transfer was performed while the base material was brought into close contact with the surface of the electrodes. Further, in the pair of film forming rolls 25 and 26 (electrodes), magnetic field forming devices 23 and 24 are arranged inside the electrodes so that the magnetic flux density is high on the electrodes and the surface of the base material, and the magnetic fields cause the plasma when plasma is generated. The plasma was densely constrained on the electrodes and substrate.
  • ⁇ Film formation condition 1> Supply amount of raw material gas: 50 sccm (Standard Cubic Centimeter per Minute, 0 ° C, 1 atm standard) Oxygen gas supply: 500 sccm Vacuum degree in vacuum chamber: 1Pa Power applied from the plasma generation power supply: 0.4 kW Frequency of power supply for plasma generation: 70kHz Film transport speed; 3.0 m / min Number of passes: 28 times
  • Example 1 Flexible film with primer layers on both sides (manufactured by Teijin Film Solution Co., Ltd., trade name "Theonex (registered trademark)", biaxially stretched polyethylene naphthalate film, Q65HWA, thickness 100 ⁇ m, length 500 m, width 350 mm, both sides An organic layer forming composition (Nippon Kako Paint Co., Ltd., "TOMAX FA-3292”) is applied to one side of the (easy-adhesive treatment) by a gravure coating method, dried at 100 ° C. for 1 minute, and then high-pressure mercury.
  • Theonex registered trademark
  • Q65HWA biaxially stretched polyethylene naphthalate film
  • the composition for forming an organic layer contains 8.1% by mass of ethyl acetate as a solvent, 52.1% by mass of propylene glycol monomethyl ether, 10 to 20% by mass of UV-curable oligomer as a solid content, and silica particles (average).
  • the UV curable oligomer is a photocurable compound having a (meth) acryloyl group as a polymerizable functional group.
  • the winding base material was prepared with the tension (unit: N) applied in the longitudinal direction with respect to the base material width (unit: m), that is, the winding tension (N / m) being 90 N / m. The tension applied in the longitudinal direction was measured with a tension meter.
  • An inorganic thin film layer was laminated on the surface of the base material thus obtained on the organic layer side according to the method for producing an inorganic thin film layer to obtain a laminated film A.
  • the thickness of the inorganic thin film layer of the obtained laminated film A was 700 nm, and the length of the laminated film A was 500 m and the width was 350 mm.
  • the water vapor permeability under the conditions of a temperature of 40 ° C. and a humidity of 90% RH was 5.0 ⁇ 10-5 g / (m 2 ⁇ day).
  • the ratio of the number of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer was the thickness of the inorganic thin film layer. It changed continuously in the region of 90% or more in the direction, and in that region, the order of oxygen, silicon, and carbon was from the one with the largest atomic number ratio.
  • the average atomic number ratio C / Si was 0.30, and the average atomic number ratio O / Si was 1.73.
  • Example 1 During the production of the laminated films of Example 1 and Comparative Example 1, the charge amount of the laminated films was measured according to the above method. The results obtained are shown in Table 1. Further, with respect to the laminated films obtained in Example 1 and Comparative Example 1, the unwinding of the laminated film and the appearance were evaluated according to the above method. The results obtained are shown in Table 1.
  • Example 1 the absolute value of the amount of charge on the surface of the base material at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and an inorganic thin film layer is formed. After that, the absolute value of the amount of charge on the surface of the inorganic thin film layer until winding is adjusted to 1.5 kV or less when measured under vacuum, so that the resulting laminated film is prevented from unwinding and foreign matter defects. It was confirmed that it would be done. On the other hand, in Comparative Example 1, since the absolute value of the amount of charge on the surface of the base material at the time of unwinding was less than 2.0 kV when measured in the atmosphere, it was confirmed that unwinding occurred.

Abstract

An embodiment of the present invention provides a laminated film with which it is possible to suppress winding displacement and defects caused by foreign matter. This method uses plasma-enhanced chemical vapor deposition to produce a laminated film including a substrate, and at least one inorganic thin-film layer formed on at least one surface of the substrate. Said method comprises: a step (I) in which a rolled substrate is advanced so as to unwind from a roller; a step (II) in which a reaction gas and a feedstock gas are supplied to between a pair of film-forming rollers, and an inorganic thin-film layer is formed on at least one side of the transported substrate as a result of plasma discharge generated between the rollers so as to obtain a laminated film; and a step (III) in which the laminated film is wound up by a winding roller. In step (I), the absolute value of the electric charge amount of the substrate surface during said unwinding is 2.0 kV or more when measured in the atmosphere. In steps (II) and (III), after formation of the inorganic thin-film layer and until said film is wound up, the absolute value of the electric charge amount of the inorganic thin-film layer surface is 1.5 kV or less when measured in a vacuum.

Description

積層フィルムの製造方法Laminated film manufacturing method
 本発明の一実施態様は、プラズマ化学気相成長法(プラズマCVD法)による積層フィルムの製造方法に関する。 One embodiment of the present invention relates to a method for producing a laminated film by a plasma chemical vapor deposition method (plasma CVD method).
 ガスバリア性を付与した積層フィルムは、飲食品、化粧品、洗剤等の物品の充填包装に適する包装用容器として好適に用いることができる。近年、プラスチックフィルム等を基材とし、基材の一方の表面に、酸化珪素、窒化珪素、酸窒化珪素、酸化アルミニウムなどの薄膜層を積層してなる積層フィルムが提案されている。例えば、特許文献1には、有機ケイ素化合物の原料ガス、及び窒素ガス等の反応ガスを原料として用いて、プラズマCVD法によって、ガスバリア膜(薄膜層)を成膜することを特徴とするガスバリア膜の製造方法が開示されている。 The laminated film imparted with gas barrier properties can be suitably used as a packaging container suitable for filling and packaging articles such as foods and drinks, cosmetics, and detergents. In recent years, a laminated film has been proposed in which a plastic film or the like is used as a base material and a thin film layer such as silicon oxide, silicon nitride, silicon oxynitride, or aluminum oxide is laminated on one surface of the base material. For example, Patent Document 1 is characterized in that a gas barrier film (thin film layer) is formed by a plasma CVD method using a raw material gas of an organosilicon compound and a reaction gas such as nitrogen gas as raw materials. The manufacturing method of is disclosed.
特開2010-222690号公報Japanese Unexamined Patent Publication No. 2010-222690
 しかし、本発明者の検討によれば、従来の方法では、ロール状に巻き取った積層フィルムに巻きずれがある場合や、異物欠陥が生じる場合があることがわかった。 However, according to the study of the present inventor, it has been found that, in the conventional method, the laminated film wound in a roll shape may have a winding deviation or a foreign matter defect may occur.
 従って、本発明の一実施態様の目的は、巻きずれ及び異物欠陥の発生を抑制できる積層フィルムの製造方法を提供することにある。 Therefore, an object of one embodiment of the present invention is to provide a method for producing a laminated film capable of suppressing the occurrence of unwinding and foreign matter defects.
 本発明者は、上記課題を解決するために鋭意検討した結果、プラズマ化学気相成長法における積層フィルムの製造方法において、巻き出し時の基材表面における帯電量の絶対値を大気下で測定したときに2.0kV以上に調整し、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値を1.5kV以下に調整すれば、上記目的が達成されることを見出し、本発明を完成するに至った。すなわち、本発明の一実施態様には、以下の態様が含まれる。 As a result of diligent studies to solve the above problems, the present inventor measured the absolute value of the amount of charge on the surface of the substrate at the time of unwinding in the atmosphere in the method for producing a laminated film in the plasma chemical vapor deposition method. It was found that the above purpose can be achieved by adjusting the absolute value of the amount of charge on the surface of the inorganic thin film layer from the formation of the inorganic thin film layer to 1.5 kV or less, sometimes by adjusting the value to 2.0 kV or more. , The present invention has been completed. That is, one embodiment of the present invention includes the following aspects.
[1]プラズマ化学気相成長法を用いて、基材と、該基材の少なくとも一方の面に形成された1層以上の無機薄膜層とを含む積層フィルムを製造する方法であって、該方法は、ロール状基材を送り出しロールから巻き出す工程(I)、一対の成膜ロール間に、反応ガスと原料ガスとを供給し、該ロール間に発生させるプラズマ放電により、搬送された基材の少なくとも一方の側に無機薄膜層を形成して積層フィルムを得る工程(II)、及び、該積層フィルムを巻取りロールにより巻き取る工程(III)を含み、
 工程(I)において、巻き出し時の基材表面における帯電量の絶対値は、大気下で測定したときに2.0kV以上であり、工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値は、真空下で測定したときに1.5kV以下である、方法。
[2]前記無機薄膜層は、珪素原子、酸素原子及び炭素原子を少なくとも含有する、[1]に記載の方法。
[3]前記無機薄膜層に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子の原子数比は、無機薄膜層の膜厚方向における90%以上の領域において、連続的に変化する、[1]又は[2]に記載の方法。
[4]前記基材は、可撓性フィルムと、該可撓性フィルムの少なくとも一方の側に形成された有機層とを含む、[1]~[3]のいずれかに記載の方法。
[5]前記積層フィルムは、ガスバリア性フィルムである、[1]~[4]のいずれかに記載の方法。
[1] A method for producing a laminated film containing a base material and one or more inorganic thin film layers formed on at least one surface of the base material by using a plasma chemical vapor deposition method. The method is a step (I) of unwinding a roll-shaped base material from a feeding roll, supplying a reaction gas and a raw material gas between a pair of film forming rolls, and a group conveyed by plasma discharge generated between the rolls. It includes a step (II) of forming an inorganic thin film layer on at least one side of the material to obtain a laminated film, and a step (III) of winding the laminated film with a take-up roll.
In the step (I), the absolute value of the charge amount on the surface of the base material at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and in the steps (II) and (III) after the formation of the inorganic thin film layer. The method, wherein the absolute value of the amount of charge on the surface of the inorganic thin film layer up to the time of winding is 1.5 kV or less when measured under vacuum.
[2] The method according to [1], wherein the inorganic thin film layer contains at least silicon atoms, oxygen atoms and carbon atoms.
[3] The atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer changes continuously in a region of 90% or more in the film thickness direction of the inorganic thin film layer. , [1] or [2].
[4] The method according to any one of [1] to [3], wherein the substrate comprises a flexible film and an organic layer formed on at least one side of the flexible film.
[5] The method according to any one of [1] to [4], wherein the laminated film is a gas barrier film.
 本発明の一実施態様の製造方法によれば、得られる積層フィルムの巻きずれ及び異物欠陥の発生を抑制できる。 According to the manufacturing method of one embodiment of the present invention, it is possible to suppress the unwinding of the obtained laminated film and the occurrence of foreign matter defects.
本発明の一実施態様に用いられる製造装置の一例を示す概略図である。It is the schematic which shows an example of the manufacturing apparatus used in one Embodiment of this invention. 本発明の一実施態様の製造方法により得られる積層フィルムの層構成の一例を示す概略図である。It is the schematic which shows an example of the layer structure of the laminated film obtained by the manufacturing method of one Embodiment of this invention.
 本発明の一実施態様は、プラズマ化学気相成長法を用いて、基材と、該基材の少なくとも一方の面に形成された1層以上の無機薄膜層とを含む積層フィルムを製造する方法である。該方法は、ロール状基材を送り出しロールから巻き出す工程(I)、一対の成膜ロール間に、反応ガスと原料ガスとを供給し、該ロール間に発生させるプラズマ放電により、搬送された基材の少なくとも一方の側に無機薄膜層を形成して積層フィルムを得る工程(II)、及び、該積層フィルムを巻取りロールにより巻き取る工程(III)を含む。 One embodiment of the present invention is a method of producing a laminated film containing a base material and one or more inorganic thin film layers formed on at least one surface of the base material by using a plasma chemical vapor deposition method. Is. In the method, the reaction gas and the raw material gas are supplied between the pair of film forming rolls in the step (I) of unwinding the roll-shaped base material from the feeding rolls, and the roll-shaped base material is conveyed by plasma discharge generated between the rolls. This includes a step (II) of forming an inorganic thin film layer on at least one side of the base material to obtain a laminated film, and a step (III) of winding the laminated film with a take-up roll.
 本発明の一実施態様は、工程(I)において、巻き出し時の基材表面における帯電量の絶対値が、大気下で測定したときに2.0kV以上であること、並びに、工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値が、真空下で測定したときに1.5kV以下であることを特徴とする。 In one embodiment of the present invention, in step (I), the absolute value of the amount of charge on the surface of the base material at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and step (II). In (III), the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is 1.5 kV or less when measured under vacuum.
 本発明者は、工程(I)において、ロール状基材の巻き出し時の基材表面における帯電量の絶対値が大気下で測定したときに2.0kV以上であると、ロール状基材がその表面で互いに高い密着性を有しつつ、巻き出されるため、巻き出し時に巻きずれが生じにくく、結果として、巻取りロールで巻き取られた積層フィルムの巻きずれの発生を抑制できることを見出した。ここで、成膜は真空下で行うため、真空下での帯電量を測定するのが通常である。しかし、理由は定かではないが、大幅なバラツキ等が発生することに起因して真空下における巻き出し時の帯電量と巻きずれには相関性がなかった。本発明者は、意外なことに、通常行わない大気下において巻き出し時の帯電量を測定し、検討したところ、巻きずれとの間に相関性があることを見出した。さらに、本発明者は、工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値が真空下で測定したときに1.5kV以下であると、異物が付着しにくく、異物欠陥の発生を抑制できることも見出した。 According to the present inventor, in step (I), when the absolute value of the amount of charge on the surface of the base material when the roll-shaped base material is unwound is 2.0 kV or more when measured in the atmosphere, the roll-shaped base material has a roll-like base material. It has been found that since the surface is unwound while having high adhesion to each other, unwinding is unlikely to occur at the time of unwinding, and as a result, the occurrence of unwinding of the laminated film wound by the winding roll can be suppressed. .. Here, since the film formation is performed under vacuum, it is usual to measure the amount of charge under vacuum. However, although the reason is not clear, there was no correlation between the amount of charge at the time of unwinding under vacuum and the unwinding due to the occurrence of large variations and the like. Surprisingly, the present inventor measured and examined the amount of charge at the time of unwinding in an atmosphere that is not normally performed, and found that there is a correlation with unwinding. Furthermore, the present inventor in the steps (II) and (III), the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is 1.5 kV or less when measured under vacuum. It was also found that, in that case, foreign matter is hard to adhere and the occurrence of foreign matter defects can be suppressed.
〔工程(I)〕
 工程(I)は、送り出しロールに固定されたロール状基材を送り出しロールから巻き出す工程である。本発明の一実施態様では、上記の通り、ロール状基材の巻き出し時の基材表面における帯電量の絶対値が大気下で測定したときに2.0kV以上であるため、巻きずれの発生を抑制できる。
[Step (I)]
Step (I) is a step of unwinding the roll-shaped base material fixed to the delivery roll from the delivery roll. In one embodiment of the present invention, as described above, the absolute value of the amount of charge on the surface of the base material when the roll-shaped base material is unwound is 2.0 kV or more when measured in the atmosphere, so that unwinding occurs. Can be suppressed.
 巻き出し時の帯電量の絶対値は、大気下で測定したときに、好ましくは3.0kV以上、より好ましくは4.0kV以上、さらに好ましくは5.0kV以上、さらにより好ましくは6.0kV以上、特に好ましくは7.0kV以上である。帯電量の絶対値が上記の下限以上であると、巻きずれの発生をより抑制しやすい。また、巻き出し時の帯電量の絶対値の上限は、好ましくは20kV以下、より好ましくは15kV以下、さらに好ましくは10kV以下である。巻き出し時の帯電量(大気下)は、静電電位監視装置を用いて測定でき、例えば実施例に記載の方法により測定できる。また、巻き出し時の帯電量は、送り出しロールにより巻き出した直後(送り出しロール直後ともいう)の帯電量を示し、上記装置を用いて、巻き出してから5秒以内、又は巻き出してからの搬送距離10cm以内の箇所で測定して得られるものである。また、通常、プラズマCVD法による成膜は、真空下により行うため、大気下により巻き出し時の帯電量を測定した後、真空下にしてから無機薄膜層の成膜を行うことができる。 The absolute value of the amount of charge at the time of unwinding is preferably 3.0 kV or more, more preferably 4.0 kV or more, still more preferably 5.0 kV or more, still more preferably 6.0 kV or more when measured in the atmosphere. , Especially preferably 7.0 kV or more. When the absolute value of the amount of charge is at least the above lower limit, it is easier to suppress the occurrence of unwinding. The upper limit of the absolute value of the charge amount at the time of unwinding is preferably 20 kV or less, more preferably 15 kV or less, and further preferably 10 kV or less. The amount of charge (under the atmosphere) at the time of unwinding can be measured using an electrostatic potential monitoring device, for example, by the method described in Examples. Further, the charge amount at the time of unwinding indicates the charge amount immediately after unwinding by the unwinding roll (also referred to as immediately after the unwinding roll), and within 5 seconds after unwinding or after unwinding using the above device. It is obtained by measuring at a place within a transport distance of 10 cm. Further, since the film formation by the plasma CVD method is usually performed under vacuum, the inorganic thin film layer can be formed after measuring the amount of charge at the time of unwinding under the atmosphere.
 巻き出し時の帯電量は、巻き出し用基材(ロール状基材)作成時の巻取り張力、基材巻き出し時の搬送速度(又は巻き出し速度);基材の材質又は種類;ロール状基材が、基材表面で互いに接触している面積(以下、接触面積ともいう)などを適宜変更することにより調整できる。例えば、巻き出し用基材作成時の巻取り張力を高めること、搬送速度(又は巻き出し速度)や接触面積を大きくすること、基材の両面を異なる材質で構成することなどにより、帯電量の絶対値が増加する傾向がある。なお、ロール状基材は、基材の一方の面と他方の面とで接触しているため、接触面積は基材の一方の面と他方の面に配置される層の材質又は種類や表面粗さ等により、適宜調整すればよい。 The amount of charge at the time of unwinding is the take-up tension at the time of making the unwinding base material (roll-shaped base material), the transport speed (or unwinding speed) at the time of unwinding the base material; the material or type of the base material; the roll shape. It can be adjusted by appropriately changing the area where the base materials are in contact with each other on the surface of the base material (hereinafter, also referred to as the contact area). For example, by increasing the take-up tension when creating the unwinding base material, increasing the transport speed (or unwinding speed) and contact area, and configuring both sides of the base material with different materials, the charge amount can be increased. Absolute values tend to increase. Since the roll-shaped base material is in contact with one surface of the base material and the other surface, the contact area is the material, type, or surface of the layer arranged on one surface and the other surface of the base material. It may be adjusted appropriately depending on the roughness and the like.
 [基材]
 基材は、無機薄膜層を保持することができる基材である。
 <可撓性フィルム>
 基材は、少なくとも可撓性フィルムを含むことが好ましい。可撓性フィルムは、樹脂成分として少なくとも1種の樹脂を含む樹脂フィルムであり、透明な可撓性フィルムであることが好ましい。
[Base material]
The base material is a base material capable of holding an inorganic thin film layer.
<Flexible film>
The substrate preferably contains at least a flexible film. The flexible film is a resin film containing at least one kind of resin as a resin component, and is preferably a transparent flexible film.
 可撓性フィルムに用いられる樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチレン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリアクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;ポリエーテルサルファイド(PES)が挙げられる。可撓性フィルムとして、上記樹脂の1種を使用してもよいし、2種以上の樹脂を組み合せて使用してもよい。これらの中でも、耐熱性、透明性及び寸法安定性の観点から、ポリエステル系樹脂又はポリオレフィン系樹脂が好ましく、ポリエステル系樹脂であるPET又はPENがより好ましく、PENがさらに好ましい。 Examples of the resin used for the flexible film include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin resins such as polyethylene (PE), polypropylene (PP) and cyclic polyolefins; polyamide resins; Polycarbonate resin; polystyrene resin; polyvinyl alcohol resin; saponified product of ethylene-vinyl acetate copolymer; polyacrylonitrile resin; acetal resin; polyimide resin; polyether sulfide (PES) can be mentioned. As the flexible film, one of the above resins may be used, or two or more kinds of resins may be used in combination. Among these, a polyester resin or a polyolefin resin is preferable, a polyester resin PET or PEN is more preferable, and a PEN is further preferable, from the viewpoint of heat resistance, transparency, and dimensional stability.
 可撓性フィルムは、未延伸の樹脂フィルムであってもよいし、未延伸の樹脂フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、樹脂フィルムの流れ方向(MD方向)、及び/又は、樹脂フィルムの流れ方向と直角方向(TD方向)に延伸した延伸樹脂フィルムであってもよい。可撓性フィルムは、上述した樹脂フィルムを2層以上積層した積層体であってもよい。 The flexible film may be an unstretched resin film, or the unstretched resin film may be uniaxially stretched, tenter-type sequential biaxially stretched, tenter-type simultaneous biaxially stretched, tubular-type simultaneous biaxially stretched, or the like. A stretched resin film may be stretched by a known method in the flow direction of the resin film (MD direction) and / or in the direction perpendicular to the flow direction of the resin film (TD direction). The flexible film may be a laminate in which two or more layers of the above-mentioned resin films are laminated.
 可撓性フィルムの厚みは、積層フィルムを製造する際の安定性等を考慮して適宜設定してよいが、巻き出しが容易で、巻き出し時の帯電量を調整しやすい観点から、5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、好ましくは500μm以下、より好ましくは200μm以下、さらに好ましくは150μm以下である。
なお、可撓性フィルムの厚みは、膜厚計により測定でき、例えば実施例に記載の方法により測定できる。
The thickness of the flexible film may be appropriately set in consideration of stability during manufacturing of the laminated film, but is 5 μm or more from the viewpoint of easy unwinding and easy adjustment of the charge amount at the time of unwinding. , More preferably 10 μm or more, still more preferably 15 μm or more, preferably 500 μm or less, more preferably 200 μm or less, still more preferably 150 μm or less.
The thickness of the flexible film can be measured with a film thickness meter, for example, by the method described in Examples.
 <プライマー層>
 基材は、プライマー層を含んでいてもよい。巻き出し時の帯電量の絶対値を2.0kV以上に調整しやすく、巻きずれを抑制しやすい観点から、プライマー層は可撓性フィルムの少なくとも一方の面に形成することが好ましく、特に基材の一方の最外層にプライマー層を有し、かつ該基材の他方の最外層に他の層、例えば後述の有機層を有することがより好ましい。これは、プライマー層は接着層として機能する場合が多く、面粗さが大きい場合が多いため、プライマー層表面と有機層(好ましくは平坦化層)表面との接触面積を大きくできるためである。また、基材が可撓性フィルム、プライマー層及び有機層の順に積層されている場合、プライマー層により、可撓性フィルムと有機層との密着性を向上し得る。さらに、無機薄膜層を形成した側と反対側の可撓性フィルムの面にプライマー層を形成し、かつプライマー層が最外層である場合、該プライマー層は、積層フィルムの保護層として機能するとともに、製造時の滑り性を向上させ、かつブロッキングを防止する機能も果たす。
<Primer layer>
The substrate may include a primer layer. From the viewpoint that the absolute value of the charge amount at the time of unwinding can be easily adjusted to 2.0 kV or more and the unwinding can be easily suppressed, the primer layer is preferably formed on at least one surface of the flexible film, and particularly the substrate. It is more preferable to have a primer layer on one outermost layer and another layer, for example, an organic layer described later, on the other outermost layer of the base material. This is because the primer layer often functions as an adhesive layer and often has a large surface roughness, so that the contact area between the surface of the primer layer and the surface of the organic layer (preferably the flattening layer) can be increased. Further, when the base material is laminated in the order of the flexible film, the primer layer and the organic layer, the primer layer can improve the adhesion between the flexible film and the organic layer. Further, when a primer layer is formed on the surface of the flexible film opposite to the side on which the inorganic thin film layer is formed and the primer layer is the outermost layer, the primer layer functions as a protective layer of the laminated film. It also has the function of improving slipperiness during manufacturing and preventing blocking.
 プライマー層は、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、メラミン樹脂及びアミノ樹脂から選択される少なくとも1種を含んでなることが好ましい。
これらの中でも、積層フィルムの耐熱性及び帯電量を調整しやすい観点から、プライマー層は、主成分としてポリエステル樹脂を含有することが好ましい。
The primer layer preferably contains at least one selected from urethane resin, acrylic resin, polyester resin, epoxy resin, melamine resin and amino resin.
Among these, the primer layer preferably contains a polyester resin as a main component from the viewpoint of easily adjusting the heat resistance and the amount of charge of the laminated film.
 プライマー層は、上記樹脂以外に添加剤を含むことができる。添加剤としては、プライマー層を形成するために公知の添加剤を用いることができ、例えば、シリカ粒子、アルミナ粒子、炭酸カルシウム粒子、炭酸マグネシウム粒子、硫酸バリウム粒子、水酸化アルミニウム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、クレイ、タルク等の無機粒子が挙げられる。これらの中でも、積層フィルムの耐熱性及び帯電量を調整しやすい観点から、シリカ粒子が好ましい。 The primer layer can contain additives in addition to the above resin. As the additive, a known additive can be used for forming the primer layer, for example, silica particles, alumina particles, calcium carbonate particles, magnesium carbonate particles, barium sulfate particles, aluminum hydroxide particles, titanium dioxide particles. , Zirconium oxide particles, clay, talc and other inorganic particles. Among these, silica particles are preferable from the viewpoint of easily adjusting the heat resistance and the amount of charge of the laminated film.
 プライマー層に含み得るシリカ粒子の平均一次粒子径は、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは15nm以上、特に好ましくは20nm以上であり、好ましくは100nm以下、より好ましくは80nm以下、さらに好ましくは60nm以下、特に好ましくは40nm以下である。シリカ粒子の平均一次粒子径が上記範囲であると、シリカ粒子の凝集を抑制し、積層フィルムの透明性及び耐熱性を向上し得る。また、帯電量を調整しやすく、巻きずれを抑制しやすい。さらに、最外層がプライマー層である場合、製造時における積層フィルムの滑り性をより向上させ、かつブロッキングを有効に防止し得る。なお、シリカ粒子の平均一次粒子径は、BET法や粒子断面のTEM観察により測定できる。 The average primary particle size of the silica particles that can be contained in the primer layer is preferably 5 nm or more, more preferably 10 nm or more, further preferably 15 nm or more, particularly preferably 20 nm or more, preferably 100 nm or less, and more preferably 80 nm or less. It is more preferably 60 nm or less, and particularly preferably 40 nm or less. When the average primary particle size of the silica particles is in the above range, the aggregation of the silica particles can be suppressed, and the transparency and heat resistance of the laminated film can be improved. In addition, it is easy to adjust the amount of charge and suppress winding misalignment. Further, when the outermost layer is a primer layer, the slipperiness of the laminated film during production can be further improved and blocking can be effectively prevented. The average primary particle size of the silica particles can be measured by the BET method or TEM observation of the particle cross section.
 シリカ粒子の含有量は、積層フィルムの耐熱性及び透明性の観点、並びに帯電量を調整しやすい観点から、プライマー層の質量に対して、好ましくは1~50質量%、より好ましくは1.5~40質量%、さらに好ましくは2~30質量%である。 The content of the silica particles is preferably 1 to 50% by mass, more preferably 1.5, based on the mass of the primer layer, from the viewpoint of heat resistance and transparency of the laminated film and from the viewpoint of easily adjusting the charge amount. It is ~ 40% by mass, more preferably 2 to 30% by mass.
 プライマー層の厚みは、積層フィルムの耐熱性及びプライマー層と有機層との密着性を向上しやすく、かつ帯電量を調整しやすい観点から、好ましくは1μm以下、より好ましくは500nm以下、さらに好ましくは200nm以下であり、好ましくは10nm以上、より好ましくは20nm以上、さらに好ましくは30nm以上である。なお、プライマー層の厚みは膜厚計によって測定できる。積層フィルムがプライマー層を2層以上含む場合、各プライマー層の厚みは同一又は異なっていてもよい。 The thickness of the primer layer is preferably 1 μm or less, more preferably 500 nm or less, still more preferably 500 nm or less, from the viewpoint of easily improving the heat resistance of the laminated film, the adhesion between the primer layer and the organic layer, and easily adjusting the amount of charge. It is 200 nm or less, preferably 10 nm or more, more preferably 20 nm or more, and further preferably 30 nm or more. The thickness of the primer layer can be measured with a film thickness meter. When the laminated film contains two or more primer layers, the thickness of each primer layer may be the same or different.
 プライマー層は、樹脂及び溶剤、並びに必要に応じて添加剤を含む樹脂組成物を可撓性フィルム等に塗布し、塗膜を乾燥することで成膜して得ることができる。プライマー層を形成する順は特に限定されない。 The primer layer can be obtained by applying a resin composition containing a resin, a solvent and, if necessary, an additive to a flexible film or the like, and drying the coating film to form a film. The order in which the primer layers are formed is not particularly limited.
 溶剤としては、前記樹脂を溶解可能なものであれば特に限定されず、例えばメタノール、エタノール、2-プロパノール、1-ブタノール、2-ブタノール等のアルコール系溶剤;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン、プロピレングリコールモノメチルエーテル等のエーテル系溶剤;アセトン、2-ブタノン、メチルイソブチルケトン等のケトン系溶剤;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶剤;酢酸メチル、酢酸エチル、酢酸n-ブチル等のエステル系溶剤;アセトニトリル、ベンゾニトリル等のニトリル系溶剤;n-ペンタン、n-ヘキサン、n-ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶剤;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水素溶剤;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、モノクロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素溶剤等が挙げられる。溶剤は単独又は二種以上組み合わせて使用できる。 The solvent is not particularly limited as long as it can dissolve the resin, and is, for example, an alcohol solvent such as methanol, ethanol, 2-propanol, 1-butanol, 2-butanol; diethyl ether, diisopropyl ether, tetrahydrofuran, 1 , 4-Dioxane, propylene glycol monomethyl ether and other ether solvents; acetone, 2-butanone, methyl isobutyl ketone and other ketone solvents; N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2- Aprotonic polar solvents such as pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide; ester solvents such as methyl acetate, ethyl acetate, n-butyl acetate; nitrile solvents such as acetonitrile and benzonitrile; n-pentane, Hydrocarbon solvents such as n-hexane, n-heptane, octane, cyclohexane, methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylen; methylene chloride, chloroform, carbon tetrachloride, 1,2-dichloroethane, Examples thereof include halogenated hydrocarbon solvents such as monochlorobenzene and dichlorobenzene. The solvent can be used alone or in combination of two or more.
 プライマー層を可撓性フィルム等に塗布する方法としては、従来用いられる種々の塗布方法、例えば、スプレー塗布、スピン塗布、バーコート、カーテンコート、浸漬法、エアーナイフ法、スライド塗布、ホッパー塗布、リバースロール塗布、グラビア塗布、エクストリュージョン塗布等の方法が挙げられる。 As a method of applying the primer layer to a flexible film or the like, various conventionally used application methods such as spray coating, spin coating, bar coating, curtain coating, dipping method, air knife method, slide coating, hopper coating, etc. Methods such as reverse roll coating, gravure coating, and extraction coating can be mentioned.
 塗膜を乾燥する方法としては、例えば自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法が挙げられるが、加熱乾燥を好適に使用できる。乾燥温度は、樹脂や溶剤の種類にもよるが、通常50~350℃程度であり、乾燥時間は、通常30~300秒程度である。 Examples of the method for drying the coating film include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method, and heat drying can be preferably used. The drying temperature is usually about 50 to 350 ° C., and the drying time is usually about 30 to 300 seconds, although it depends on the type of resin and solvent.
 上記のように、例えば可撓性フィルムの少なくとも一方の面にプライマー層を形成してもよいが、可撓性フィルムの両面にプライマー層を有する市販のフィルム、例えば帝人フィルムソリューション社製の「テオネックス(登録商標)」等を使用してもよい。 As described above, for example, a primer layer may be formed on at least one surface of the flexible film, but a commercially available film having primer layers on both sides of the flexible film, for example, "Theonex" manufactured by Teijin Film Solutions Co., Ltd. (Registered trademark) ”etc. may be used.
 プライマー層は、単層であっても、2層以上の多層であってもよい。また、プライマー層を2層以上含む場合、各プライマー層は、同じ組成からなる層であっても、異なる組成からなる層であってもよい。 The primer layer may be a single layer or a multilayer of two or more layers. When two or more primer layers are included, each primer layer may be a layer having the same composition or a layer having a different composition.
 プライマー層の面粗さは、好ましくは1nm以上、より好ましくは1.5nm以上、さらに好ましくは2nm以上である。プライマー層の面粗さが上記の下限以上であると、例えば基材の一方の最外層にプライマー層を設け、他方の最外層に他の層、例えば後述の有機層(好ましくは平坦化層)を設けた場合に、接触面積を大きくできる。そのため、巻き出し時の帯電量の絶対値を2.0kV以上に調整しやすく、巻きずれを抑制しやすい。また、プライマー層の面粗さの上限は、好ましくは5nm以下である。面粗さは、プライマー層を白色干渉顕微鏡で観察し、サンプル表面の凹凸に応じて、干渉縞が形成されることにより測定することができる。 The surface roughness of the primer layer is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more. When the surface roughness of the primer layer is equal to or higher than the above lower limit, for example, a primer layer is provided on one outermost layer of the base material, and another layer, for example, an organic layer described later (preferably a flattening layer) is provided on the other outermost layer. The contact area can be increased when the above is provided. Therefore, it is easy to adjust the absolute value of the charge amount at the time of unwinding to 2.0 kV or more, and it is easy to suppress unwinding. The upper limit of the surface roughness of the primer layer is preferably 5 nm or less. The surface roughness can be measured by observing the primer layer with a white interference microscope and forming interference fringes according to the unevenness of the sample surface.
 <有機層>
 基材は、有機層を含んでいてもよい。巻き出し時の帯電量の絶対値を2.0kV以上に調整しやすく、巻きずれを抑制しやすい観点から、基材は、可撓性フィルムと、該可撓性フィルムの少なくとも一方の側に形成された有機層とを含むことが好ましく、基材の一方の最外層にプライマー層を有し、かつ基材の他方の最外層に有機層を有することがより好ましい。また、巻き出し時の帯電量調整に加え、プライマー層と有機層との密着性を担保する観点からは、基材の両面にプライマー層を有し、片方のプライマー層上に有機層を有することが好ましい。
<Organic layer>
The base material may include an organic layer. From the viewpoint that the absolute value of the charge amount at the time of unwinding can be easily adjusted to 2.0 kV or more and the unwinding can be easily suppressed, the base material is formed on the flexible film and at least one side of the flexible film. It is preferable to include the above-mentioned organic layer, and it is more preferable to have a primer layer on one outermost layer of the base material and an organic layer on the other outermost layer of the base material. Further, from the viewpoint of ensuring the adhesion between the primer layer and the organic layer in addition to adjusting the charge amount at the time of unwinding, the primer layers are provided on both sides of the base material, and the organic layer is provided on one of the primer layers. Is preferable.
 有機層は、平坦化層としての機能を有する層であってもよいし、アンチブロッキング層としての機能を有する層であってもよいし、これらの両方の機能を有する層であってもよい。また、フィルム搬送時の滑り性確保、及び帯電量を調整しやすい観点から、有機層がアンチブロッキング層であることが好ましく、また、無機薄膜層の均質化によるガスバリア性の安定化、フィルム搬送時の滑り性確保、及び帯電量を調整しやすい観点から、有機層は平坦化層であることが好ましい。可撓性フィルムの両側に有機層を形成する場合、両方の有機層のいずれもがアンチブロッキング層又は平坦化層であってもよく、一方の有機層がアンチブロッキング層で、他方の有機層が平坦化層であってもよい。また、有機層は単層でもよいし、2層以上の多層であってもよく、有機層を2つ以上形成する場合、複数の有機層は同じ組成からなる層であっても、異なる組成からなる層であってもよい。 The organic layer may be a layer having a function as a flattening layer, a layer having a function as an anti-blocking layer, or a layer having both of these functions. Further, from the viewpoint of ensuring slipperiness during film transport and easily adjusting the amount of charge, the organic layer is preferably an anti-blocking layer, and the gas barrier property is stabilized by homogenizing the inorganic thin film layer, and during film transport. The organic layer is preferably a flattened layer from the viewpoint of ensuring the slipperiness of the film and easily adjusting the amount of charge. When forming organic layers on both sides of a flexible film, both organic layers may be anti-blocking layers or flattening layers, one organic layer being an anti-blocking layer and the other organic layer. It may be a flattening layer. Further, the organic layer may be a single layer or a multilayer of two or more layers, and when two or more organic layers are formed, even if the plurality of organic layers have the same composition, they have different compositions. Layer may be.
 基材の一方の最外層に有機層を有する場合、他方の最外層にある層の材質や表面粗さ等に応じて適宜、有機層を平坦化層もしくはアンチブロッキング層にするか、又は有機層を形成する化合物や添加剤等を選択できる。 When one outermost layer of the base material has an organic layer, the organic layer is appropriately made into a flattening layer or an anti-blocking layer, or an organic layer, depending on the material and surface roughness of the other outermost layer. Compounds and additives that form the above can be selected.
 有機層の厚みは、用途に応じて適宜調整してよいが、積層フィルムの表面硬度や耐屈曲性を向上しやすい観点、及び帯電量を調整しやすい観点から、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは0.7μm以上であり、好ましくは10μm以下、より好ましくは9μm以下、さらに好ましくは8μm以下である。積層フィルムが2つ以上の有機層を有する場合、各有機層が上記範囲の厚みを有することが好ましく、各有機層における厚みは同一又は異なっていてもよい。有機層の厚みは、膜厚計によって測定することができ、例えば実施例に記載の方法により測定できる。 The thickness of the organic layer may be appropriately adjusted according to the intended use, but is preferably 0.1 μm or more from the viewpoint of easily improving the surface hardness and bending resistance of the laminated film and easily adjusting the amount of charge. It is preferably 0.5 μm or more, more preferably 0.7 μm or more, preferably 10 μm or less, more preferably 9 μm or less, still more preferably 8 μm or less. When the laminated film has two or more organic layers, it is preferable that each organic layer has a thickness in the above range, and the thickness of each organic layer may be the same or different. The thickness of the organic layer can be measured by a film thickness meter, for example, by the method described in Examples.
 有機層は、例えば、重合性官能基を有する光硬化性化合物を含む組成物を、可撓性フィルム又はプライマー層等の表面に塗布し、硬化することにより形成することができる。有機層を形成するための組成物に含まれる光硬化性化合物としては、紫外線又は電子線硬化性の化合物が挙げられ、このような化合物としては、重合性官能基を分子内に1個以上有する化合物、例えば、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性官能基を有する化合物が挙げられる。有機層を形成するための組成物(以下、有機層形成用組成物という場合がある)は、1種類の光硬化性化合物を含有してもよいし、2種以上の光硬化性化合物を含有してもよい。有機層形成用組成物に含まれる重合性官能基を有する光硬化性化合物を硬化させることにより、光硬化性化合物が重合して、光硬化性化合物の重合物を含む有機層が形成される。 The organic layer can be formed, for example, by applying a composition containing a photocurable compound having a polymerizable functional group to the surface of a flexible film, a primer layer, or the like and curing the composition. Examples of the photocurable compound contained in the composition for forming the organic layer include an ultraviolet or electron beam curable compound, and such a compound has one or more polymerizable functional groups in the molecule. Examples of the compound include compounds having a polymerizable functional group such as a (meth) acryloyl group, a vinyl group, a styryl group and an allyl group. The composition for forming the organic layer (hereinafter, may be referred to as the composition for forming the organic layer) may contain one kind of photocurable compound, or may contain two or more kinds of photocurable compounds. You may. By curing the photocurable compound having a polymerizable functional group contained in the composition for forming an organic layer, the photocurable compound is polymerized to form an organic layer containing a polymer of the photocurable compound.
 有機層における該重合性官能基を有する光硬化性化合物の重合性官能基の反応率は、外観品質を高めやすい観点から、好ましくは70%以上、より好ましくは75%以上、さらに好ましくは80%以上である。前記反応率の上限は特に限定されないが、外観品質を高めやすい観点から、好ましくは95%以下、より好ましくは90%以下である。反応率が上記の下限以上である場合、無色透明化しやすい。また、反応率が上記の上限以下である場合、耐屈曲性を向上させやすい。反応率は、重合性官能基を有する光硬化性化合物の重合反応が進むにつれて高くなるため、例えば光硬化性化合物が紫外線硬化性化合物である場合には、照射する紫外線の強度を高くしたり、照射時間を長くしたりすることにより、高めることができる。上記のような硬化条件を調整することにより、反応率を上記の範囲内にすることができる。 The reaction rate of the polymerizable functional group of the photocurable compound having the polymerizable functional group in the organic layer is preferably 70% or more, more preferably 75% or more, still more preferably 80% from the viewpoint of easily improving the appearance quality. That is all. The upper limit of the reaction rate is not particularly limited, but is preferably 95% or less, more preferably 90% or less, from the viewpoint of easily improving the appearance quality. When the reaction rate is equal to or higher than the above lower limit, it tends to be colorless and transparent. Further, when the reaction rate is not more than the above upper limit, it is easy to improve the bending resistance. Since the reaction rate increases as the polymerization reaction of the photocurable compound having a polymerizable functional group proceeds, for example, when the photocurable compound is an ultraviolet curable compound, the intensity of the ultraviolet rays to be irradiated may be increased. It can be increased by lengthening the irradiation time. By adjusting the curing conditions as described above, the reaction rate can be kept within the above range.
 反応率は、有機層形成用組成物を可撓性フィルム又はプライマー層等の表面に塗布し、必要に応じて乾燥させて得た硬化前の塗膜、及び、該塗膜を硬化後の塗膜について、塗膜表面から全反射型FT-IRを用いて赤外吸収スペクトルを測定し、重合性官能基に由来するピークの強度の変化量から測定することができる。例えば、重合性官能基が(メタ)アクリロイル基である場合、(メタ)アクリロイル基中のC=C二重結合部分が重合に関与する基であり、重合の反応率が高くなるにつれてC=C二重結合に由来するピークの強度が低下する。一方、(メタ)アクリロイル基中のC=O二重結合部分は重合に関与せず、C=O二重結合に由来するピークの強度は重合前後で変化しない。そのため、硬化前の塗膜について測定した赤外吸収スペクトルにおける(メタ)アクリロイル基中のC=O二重結合に由来するピークの強度(ICO1)に対するC=C二重結合に由来するピークの強度(ICC1)の割合(ICC1/ICO1)と、硬化後の塗膜について測定した赤外吸収スペクトルにおける(メタ)アクリロイル基中のC=O二重結合に由来するピークの強度(ICO2)に対するC=C二重結合に由来するピークの強度(ICC2)の割合(ICC2/ICO2)とを比較することで、反応率を算出することができる。この場合、反応率は、式(1):
反応率[%]=[1-(ICC2/ICO2)/(ICC1/ICO1)]×100  (1)
により算出される。なお、C=C二重結合に由来する赤外吸収ピークは通常1350~1450cm-1の範囲、例えば1400cm-1付近に観察され、C=O二重結合に由来する赤外吸収ピークは通常1700~1800cm-1の範囲、例えば1700cm-1付近に観察される。
The reaction rate is a coating film before curing obtained by applying the composition for forming an organic layer to the surface of a flexible film or a primer layer and drying it if necessary, and a coating film after curing. The infrared absorption spectrum of the film can be measured from the surface of the coating film using a total reflection type FT-IR, and can be measured from the amount of change in the intensity of the peak derived from the polymerizable functional group. For example, when the polymerizable functional group is a (meth) acryloyl group, the C = C double bond moiety in the (meth) acryloyl group is a group involved in the polymerization, and C = C as the reaction rate of the polymerization increases. The intensity of the peak derived from the double bond decreases. On the other hand, the C = O double bond portion in the (meth) acryloyl group does not participate in the polymerization, and the intensity of the peak derived from the C = O double bond does not change before and after the polymerization. Therefore, the peak derived from the C = C double bond with respect to the intensity (ICO1 ) of the peak derived from the C = O double bond in the (meth) acryloyl group in the infrared absorption spectrum measured for the coating film before curing. Percentage of intensity ( ICC1 ) (ICC1 / ICO1 ) and intensity of peak derived from C = O double bond in (meth) acryloyl group in infrared absorption spectrum measured for cured coating (I) The reaction rate can be calculated by comparing the ratio of the peak intensity (ICC2 ) derived from the C = C double bond to CO2 ) (ICC2 / I CO2). In this case, the reaction rate is calculated by the formula (1) :.
Reaction rate [%] = [1- (I CC2 / I CO2 ) / (I CC1 / I CO1 )] x 100 (1)
Is calculated by. Incidentally, C = infrared absorption peak derived from C double bonds in the range of usually 1350 ~ 1450 cm -1, are observed in the vicinity of example 1400 cm -1, infrared absorption peak is usually 1700 derived from the C = O double bond It is observed in the range of ~ 1800 cm -1 , for example, around 1700 cm -1.
 有機層の赤外吸収スペクトルにおける1000~1100cm-1の範囲の赤外吸収ピークの強度をIとし、1700~1800cm-1の範囲の赤外吸収ピークの強度をIとすると、I及びIは式(2):
0.05≦I/I≦1.0     (2)
を満たすことが好ましい。ここで、1000~1100cm-1の範囲の赤外吸収ピークは、有機層に含まれる化合物及び重合物(例えば、重合性官能基を有する光硬化性化合物及び/又はその重合物)中に存在するシロキサン由来のSi-O-Si結合に由来する赤外吸収ピークであり、1700~1800cm-1の範囲の赤外吸収ピークは、有機層に含まれる化合物及び重合物(例えば、重合性官能基を有する光硬化性化合物及び/又はその重合物)中に存在するC=O二重結合に由来する赤外吸収ピークであると考えられる。
そして、これらのピークの強度の比(I/I)は、有機層中のシロキサン由来のSi-O-Si結合に対するC=O二重結合の相対的な割合を表すと考えられる。ピークの強度の比(I/I)が上記所定の範囲である場合、有機層の均一性を高めやすいと共に、層間の密着性、特に高湿環境下での密着性を高めやすくなる。ピークの強度の比(I/I)は、好ましくは0.05以上、より好ましくは0.10以上、さらに好ましくは0.20以上である。ピーク強度の比(I/I)が上記の下限以上である場合、有機層の均一性を高めやすい。これは、本発明は後述するメカニズムに何ら限定されないが、有機層に含まれる化合物及び重合物中に存在するシロキサン由来のSi-O-Si結合が多くなりすぎると有機層中に凝集物が生じ、層が脆化する場合があり、このような凝集物の生成を低減しやすくなるためであると考えられる。ピークの強度の比(I/I)は、好ましくは1.0以下、より好ましくは0.8以下、さらに好ましくは0.5以下である。ピーク強度の比(I/I)が上記の上限以下である場合、有機層の密着性を高めやすい。これは、本発明は後述するメカニズムに何ら限定されないが、有機層に含まれる化合物及び重合物中にシロキサン由来のSi-O-Si結合が一定量以上存在することにより、有機層の硬さが適度に低減されるためであると考えられる。有機層の赤外吸収スペクトルは、ATRアタッチメント(PIKE MIRacle)を備えたフーリエ変換型赤外分光光度計(日本分光製、FT/IR-460Plus)により測定できる。
When the 1000 to intensity of the infrared absorption peak in the range of 1100 cm -1 in the infrared absorption spectrum of the organic layer and I c, the intensity of the infrared absorption peak in the range of 1700 - 1800 cm -1 and I d, I c and I d is the equation (2):
0.05 ≤ I d / I c ≤ 1.0 (2)
It is preferable to satisfy. Here, the infrared absorption peak in the range of 1000 to 1100 cm -1 is present in the compound and the polymer contained in the organic layer (for example, the photocurable compound having a polymerizable functional group and / or the polymer thereof). Infrared absorption peaks derived from Si—O—Si bonds derived from siloxane, and infrared absorption peaks in the range of 1700 to 1800 cm -1 are compounds and polymers contained in the organic layer (for example, polymerizable functional groups). It is considered that the infrared absorption peak is derived from the C = O double bond present in the photocurable compound and / or its polymer).
The ratio of the intensities of these peaks ( Id / I c ) is considered to represent the relative ratio of the C = O double bond to the siloxane-derived Si—O—Si bond in the organic layer. If the ratio of the intensity of peak (I d / I c) is within the above predetermined range, the easily enhance the uniformity of the organic layer, adhesion between the layers, made especially easily improving the adhesion under high humidity environment. The peak intensity ratio ( Id / I c ) is preferably 0.05 or more, more preferably 0.10 or more, still more preferably 0.20 or more. When the peak intensity ratio ( Id / I c ) is equal to or greater than the above lower limit, the uniformity of the organic layer is likely to be improved. This is not limited to the mechanism described later in the present invention, but if the amount of siloxane-derived Si—O—Si bonds present in the compound and polymer contained in the organic layer becomes too large, aggregates are generated in the organic layer. It is considered that this is because the layer may be embrittled and the formation of such agglomerates can be easily reduced. The peak intensity ratio ( Id / I c ) is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less. When the ratio of peak intensities ( Id / I c ) is not more than the above upper limit, it is easy to improve the adhesion of the organic layer. This is not limited to the mechanism described later in the present invention, but the hardness of the organic layer is increased by the presence of a certain amount or more of siloxane-derived Si—O—Si bonds in the compounds and polymers contained in the organic layer. It is considered that this is because it is moderately reduced. The infrared absorption spectrum of the organic layer can be measured by a Fourier transform infrared spectrophotometer (FT / IR-460Plus manufactured by JASCO Corporation) equipped with an ATR attachment (PIKE MIRacle).
 有機層形成用組成物に含まれる光硬化性化合物は、紫外線等により重合が開始し、硬化が進行して重合物である樹脂となる化合物である。光硬化性化合物は、硬化効率の観点から、好ましくは(メタ)アクリロイル基を有する化合物である。(メタ)アクリロイル基を有する化合物は、単官能のモノマー又はオリゴマーであってもよいし、多官能のモノマー又はオリゴマーであってもよい。なお、本明細書において、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを表し、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを表す。 The photocurable compound contained in the composition for forming an organic layer is a compound that starts polymerization by ultraviolet rays or the like and progresses to cure to become a resin which is a polymer. The photocurable compound is preferably a compound having a (meth) acryloyl group from the viewpoint of curing efficiency. The compound having a (meth) acryloyl group may be a monofunctional monomer or oligomer, or may be a polyfunctional monomer or oligomer. In the present specification, "(meth) acryloyl" means acryloyl and / or methacryloyl, and "(meth) acrylic" means acrylic and / or methacrylic.
 (メタ)アクリロイル基を有する化合物としては、(メタ)アクリル系化合物が挙げられ、具体的には、アルキル(メタ)アクリレート、ウレタン(メタ)アクリレート、エステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ならびに、その重合体及び共重合体等が挙げられる。具体的には、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、及びペンタエリスリトールトリ(メタ)アクリレート、並びにその重合体及び共重合体等が挙げられる。 Examples of the compound having a (meth) acryloyl group include (meth) acrylic compounds, and specifically, alkyl (meth) acrylate, urethane (meth) acrylate, ester (meth) acrylate, epoxy (meth) acrylate, and the like. In addition, the polymer and copolymer thereof and the like can be mentioned. Specifically, methyl (meth) acrylate, butyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth). ) Acrylate, neopentyl glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and pentaerythritol tri (meth) acrylate, and their polymers. And copolymers and the like.
 有機層形成用組成物に含まれる光硬化性化合物は、上記(メタ)アクリロイル基を有する化合物に代えて、又は、上記(メタ)アクリロイル基を有する化合物に加えて、例えば、メテトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジイソプロピルジメトキシシラン、トリメチルエトキシシラン、及びトリフェニルエトキシシラン等を含有することが好ましい。これら以外のアルコキシシランを用いてもよい。 The photocurable compound contained in the composition for forming an organic layer may be, for example, in place of the compound having a (meth) acryloyl group or in addition to the compound having a (meth) acryloyl group, for example, metetramethoxysilane. Tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxysilane, isobutyltrimethoxysilane, cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltri It preferably contains ethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diisopropyldimethoxysilane, trimethylethoxysilane, triphenylethoxysilane and the like. Alkoxysilanes other than these may be used.
 上記に述べた重合性官能基を有する光硬化性化合物以外の光硬化性化合物としては、重合によりポリエステル樹脂、イソシアネート樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、フェノール樹脂、尿素メラミン樹脂、スチレン樹脂、及びアルキルチタネート等の樹脂となる、モノマー又はオリゴマーが挙げられる。 Examples of the photocurable compound other than the photocurable compound having a polymerizable functional group described above include polyester resin, isocyanate resin, ethylene vinyl alcohol resin, vinyl-modified resin, epoxy resin, phenol resin, urea melamine resin, etc. by polymerization. Examples thereof include monomers or oligomers that serve as styrene resins and resins such as alkyl titanates.
 有機層形成用組成物は、<プライマー層>の項に記載の無機粒子、好ましくはシリカ粒子を含むことができる。有機層形成用組成物に含まれるシリカ粒子の平均一次粒子径は、好ましくは5~100nm、より好ましくは5~75nmである。無機粒子を含有すると、積層フィルムの耐熱性を向上しやすく、かつ帯電量を調整しやすい。 The composition for forming an organic layer may contain the inorganic particles described in the <Primer layer> section, preferably silica particles. The average primary particle size of the silica particles contained in the composition for forming an organic layer is preferably 5 to 100 nm, more preferably 5 to 75 nm. When inorganic particles are contained, the heat resistance of the laminated film can be easily improved and the amount of charge can be easily adjusted.
 無機粒子、好ましくはシリカ粒子の含有量は、有機層形成用組成物の固形分の質量に対して、好ましくは20~90%であり、より好ましくは40~85%である。無機粒子の含有量が上記範囲であると、積層フィルムの耐熱性を向上しやすく、かつ帯電量を調整しやすい。なお、有機層形成用組成物の固形分とは、有機層形成用組成物に含まれる溶剤等の揮発性成分を除いた成分を意味する。 The content of the inorganic particles, preferably the silica particles, is preferably 20 to 90%, more preferably 40 to 85%, based on the mass of the solid content of the composition for forming the organic layer. When the content of the inorganic particles is in the above range, the heat resistance of the laminated film can be easily improved and the charge amount can be easily adjusted. The solid content of the composition for forming an organic layer means a component excluding volatile components such as a solvent contained in the composition for forming an organic layer.
 有機層形成用組成物は、有機層の硬化性の観点から、光重合開始剤を含んでいてよい。
光重合開始剤の含有量は、有機層の硬化性を高める観点から、有機層形成用組成物の固形分の質量に対して、好ましくは2~15%であり、より好ましくは3~11%である。
The composition for forming an organic layer may contain a photopolymerization initiator from the viewpoint of curability of the organic layer.
The content of the photopolymerization initiator is preferably 2 to 15%, more preferably 3 to 11%, based on the mass of the solid content of the composition for forming the organic layer, from the viewpoint of enhancing the curability of the organic layer. Is.
 有機層形成用組成物は、塗布性の観点から、溶剤を含んでいてよい。溶剤としては、重合性官能基を有する光硬化性化合物の種類に応じて、該化合物を溶解可能なものを適宜選択でき、例えば、<プライマー層>の項に記載の溶剤等が挙げられる。溶剤は単独又は二種以上組み合わせて使用してよい。 The composition for forming an organic layer may contain a solvent from the viewpoint of coatability. As the solvent, a solvent capable of dissolving the compound can be appropriately selected depending on the type of the photocurable compound having a polymerizable functional group, and examples thereof include the solvent described in the <Primer layer> section. The solvent may be used alone or in combination of two or more.
 前記重合性官能基を有する光硬化性化合物、前記無機粒子、前記光重合開始剤及び前記溶剤の他に、必要に応じて、熱重合開始剤、酸化防止剤、紫外線吸収剤、可塑剤、レベリング剤、カール抑制剤等の添加剤を含んでもよい。 In addition to the photocurable compound having a polymerizable functional group, the inorganic particles, the photopolymerization initiator and the solvent, if necessary, a thermal polymerization initiator, an antioxidant, an ultraviolet absorber, a plasticizer, and leveling. Additives such as agents and curl inhibitors may be included.
 有機層は、上記の通り、例えば、光硬化性化合物を含む有機層形成用組成物(光硬化性組成物)を可撓性フィルム又はプライマー層等の表面に塗布し、必要に応じて乾燥後、紫外線もしくは電子線を照射することにより、光硬化性化合物を硬化させて形成することができる。 As described above, for the organic layer, for example, a composition for forming an organic layer (photocurable composition) containing a photocurable compound is applied to the surface of a flexible film, a primer layer, or the like, and after drying if necessary. , The photocurable compound can be cured and formed by irradiating with ultraviolet rays or electron beams.
 塗布方法としては、上記プライマー層を塗布する方法と同様の方法が挙げられる。 Examples of the coating method include the same method as the method of coating the primer layer.
 有機層が平坦化層としての機能を有する場合、有機層は、(メタ)アクリレート樹脂、ポリエステル樹脂、イソシアネート樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、フェノール樹脂、尿素メラミン樹脂、スチレン樹脂、及びアルキルチタネート等を含有してよい。有機層はこれらの樹脂を1種類又は2種以上を組み合わせて含有してもよい。 When the organic layer has a function as a flattening layer, the organic layer is a (meth) acrylate resin, a polyester resin, an isocyanate resin, an ethylene vinyl alcohol resin, a vinyl-modified resin, an epoxy resin, a phenol resin, a urea melamine resin, or a styrene resin. , And alkyl titanates and the like may be contained. The organic layer may contain one kind or a combination of two or more kinds of these resins.
 有機層が平坦化層としての機能を有する場合、平坦化層は、剛体振り子型物性試験機(例えばエー・アンド・デイ株式会社製RPT-3000W等)により前記平坦化層表面の弾性率の温度変化を評価した場合、前記平坦化層表面の弾性率が50%以上低下する温度が150℃以上であることが好ましい。 When the organic layer has a function as a flattening layer, the flattening layer is subjected to a rigid pendulum type physical property tester (for example, RPT-3000W manufactured by A & D Co., Ltd.) to determine the temperature of the elastic modulus of the surface of the flattening layer. When the change is evaluated, it is preferable that the temperature at which the elastic modulus of the surface of the flattening layer decreases by 50% or more is 150 ° C. or higher.
 有機層が平坦化層としての機能を有する場合、有機層の面粗さは、好ましくは3nm以下、より好ましくは2nm以下、さらに好ましくは1nm以下である。平坦化層の面粗さが上記の上限以下であると、無機薄膜層の欠陥が少なくなり、ガスバリア性がより高められる効果がある。また、例えば基材の一方の最外層に平坦化層としての有機層を設け、他方の側にプライマー層を設けた場合に、接触面積を大きくでき、これにより巻き出し時の帯電量の絶対値を2.0kV以上に調整しやすい。有機層の面粗さの下限は、好ましくは0.01nm以上、より好ましくは0.1nm以上である。平坦化層の面粗さが上記の下限以上であると、無機薄膜層との密着性が上がり、無機薄膜層と有機層の間での剥離などの問題を防止する効果がある。なお、面粗さは、平坦化層を白色干渉顕微鏡で観察し、サンプル表面の凹凸に応じて、干渉縞が形成されることにより測定される。 When the organic layer has a function as a flattening layer, the surface roughness of the organic layer is preferably 3 nm or less, more preferably 2 nm or less, and further preferably 1 nm or less. When the surface roughness of the flattening layer is not more than the above upper limit, the defects of the inorganic thin film layer are reduced, and the gas barrier property is further enhanced. Further, for example, when an organic layer as a flattening layer is provided on one outermost layer of the base material and a primer layer is provided on the other side, the contact area can be increased, whereby the absolute value of the charge amount at the time of unwinding can be increased. Is easy to adjust to 2.0 kV or more. The lower limit of the surface roughness of the organic layer is preferably 0.01 nm or more, more preferably 0.1 nm or more. When the surface roughness of the flattening layer is at least the above lower limit, the adhesion to the inorganic thin film layer is improved, and there is an effect of preventing problems such as peeling between the inorganic thin film layer and the organic layer. The surface roughness is measured by observing the flattening layer with a white interference microscope and forming interference fringes according to the unevenness of the sample surface.
 有機層がアンチブロッキング層としての機能を有する場合、有機層は、特に上記に述べた無機粒子を含有することが好ましい。 When the organic layer has a function as an anti-blocking layer, it is particularly preferable that the organic layer contains the above-mentioned inorganic particles.
 基材の厚みは、積層フィルムを製造する際の安定性等を考慮して適宜設定してよいが、真空中における基材の搬送を容易にし易い観点、及び巻き出しが容易で帯電量を調整しやすい観点から、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、好ましくは550μm以下、より好ましくは250μm以下、さらに好ましくは200μm以下である。なお、基材の厚みは、膜厚計により測定でき、例えば実施例に記載の方法により測定できる。 The thickness of the base material may be appropriately set in consideration of stability in manufacturing the laminated film, etc., but from the viewpoint of facilitating the transfer of the base material in vacuum and the ease of unwinding, the charge amount is adjusted. From the viewpoint of easy easiness, it is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 15 μm or more, preferably 550 μm or less, more preferably 250 μm or less, still more preferably 200 μm or less. The thickness of the base material can be measured with a film thickness meter, for example, by the method described in Examples.
 基材は、長尺基材であることが好ましく、その長さは、特に限定されないが、好ましくは100m以上、より好ましくは150m以上、さらに好ましくは200m以上、特に好ましくは300m以上であり、好ましくは5000m以下、より好ましくは4000m以下、さらに好ましくは3000m以下、特に好ましくは2500m以下である。本発明の一実施態様では、巻き出し時の帯電量の絶対値、及び無機薄膜層形成後、巻取り時までの帯電量の絶対値が所定範囲に調整されているため、上記の下限以上の長尺基材であっても巻きずれ及び異物欠陥の発生を有効に抑制できる。また、基材の幅は、特に限定されず、好ましくは50mm以上、より好ましくは100mm以上、さらに好ましくは150mm以上であり、好ましくは5000mm以下、より好ましくは4000mm以下、さらに好ましくは3000mm以下である。なお、長尺基材の長さとは、長手方向の大きさを示し、長尺基材の幅とは、短手方向(長手方向に直交する方向)の大きさを示す。 The base material is preferably a long base material, and the length thereof is not particularly limited, but is preferably 100 m or more, more preferably 150 m or more, still more preferably 200 m or more, and particularly preferably 300 m or more. Is 5000 m or less, more preferably 4000 m or less, still more preferably 3000 m or less, and particularly preferably 2500 m or less. In one embodiment of the present invention, the absolute value of the charge amount at the time of unwinding and the absolute value of the charge amount at the time of winding after the formation of the inorganic thin film layer are adjusted within a predetermined range, and therefore, the above lower limit or more. Even with a long base material, it is possible to effectively suppress the occurrence of unwinding and foreign matter defects. The width of the base material is not particularly limited, and is preferably 50 mm or more, more preferably 100 mm or more, further preferably 150 mm or more, preferably 5000 mm or less, more preferably 4000 mm or less, still more preferably 3000 mm or less. .. The length of the long base material indicates the size in the longitudinal direction, and the width of the long base material indicates the size in the lateral direction (direction orthogonal to the longitudinal direction).
 工程(I)において、巻き出し用基材作成時の巻取り張力は、好ましくは20N/m以上、より好ましくは35N/m以上、さらに好ましくは50N/m以上であり、好ましくは500N/m以下、より好ましくは400N/m以下、さらに好ましくは250N/m以下である。巻取り張力が上記の下限以上であると、大気下での巻き出し時の帯電量の測定値の絶対値を2.0kV以上に調整しやすく、巻きずれを抑制しやすい。また、巻取り張力が上記の上限以下であると、フィルムに巻取り時のダメージを与えることなく巻き出し用基材を作成することができる。なお、巻取り張力(N/m)は、基材幅(単位:m)に対する長手方向にかかる張力(単位:N)を示し、該基材幅は基材の短手方向の長さを示す。長手方向にかかる張力は、例えばテンションメーターにより測定され、テンションコントローラーを用いて制御できる。 In step (I), the take-up tension at the time of preparing the unwinding base material is preferably 20 N / m or more, more preferably 35 N / m or more, still more preferably 50 N / m or more, and preferably 500 N / m or less. , More preferably 400 N / m or less, still more preferably 250 N / m or less. When the winding tension is at least the above lower limit, it is easy to adjust the absolute value of the measured value of the amount of charge at the time of unwinding in the atmosphere to 2.0 kV or more, and it is easy to suppress winding misalignment. Further, when the winding tension is not more than the above upper limit, the unwinding base material can be produced without damaging the film at the time of winding. The take-up tension (N / m) indicates the tension (unit: N) applied in the longitudinal direction with respect to the base material width (unit: m), and the base material width indicates the length of the base material in the lateral direction. .. The tension applied in the longitudinal direction is measured by, for example, a tension meter and can be controlled by using a tension controller.
 工程(I)において、基材の巻き出し速度は、好ましくは0.1~100m/分、より好ましくは0.3~20m/分であってもよく、特に基材の巻き出し速度が、好ましくは1.2m/分以上、より好ましくは1.5m/分以上、さらに好ましくは2.0m/分以上、さらにより好ましくは2.5m/分以上であると、大気下での巻き出し時の帯電量の測定値の絶対値を2.0kV以上に調整しやすく、巻きずれを抑制しやすい。 In the step (I), the unwinding speed of the base material may be preferably 0.1 to 100 m / min, more preferably 0.3 to 20 m / min, and the unwinding speed of the base material is particularly preferable. Is 1.2 m / min or more, more preferably 1.5 m / min or more, still more preferably 2.0 m / min or more, still more preferably 2.5 m / min or more, when unwinding in the atmosphere. It is easy to adjust the absolute value of the measured value of the charge amount to 2.0 kV or more, and it is easy to suppress winding misalignment.
 工程(I)において、巻き出した基材は搬送ロール等により一対の成膜ロールに搬送される。 In step (I), the unwound base material is transported to a pair of film forming rolls by a transport roll or the like.
〔工程(II)〕
 工程(II)は、一対の成膜ロール間に、反応ガスと原料ガスとを供給し、該ロール間に発生させるプラズマ放電により、搬送された基材の少なくとも一方の側に無機薄膜層を形成して積層フィルムを得る工程である。
[Process (II)]
In step (II), a reaction gas and a raw material gas are supplied between the pair of film forming rolls, and an inorganic thin film layer is formed on at least one side of the conveyed base material by plasma discharge generated between the rolls. This is the process of obtaining a laminated film.
 前記基材は、上記の通り、好ましくは可撓性フィルムを含み、該可撓性フィルムに加え、任意にプライマー層及び/又は有機層を含むことができる。そのため、無機薄膜層は、基材が可撓性フィルムのみを含む場合には可撓性フィルム上に形成され;基材がプライマー層を含む場合は、好ましくはプライマー層上に形成され;基材が有機層を含む場合は、好ましくは有機層上に形成される。 As described above, the base material preferably contains a flexible film, and in addition to the flexible film, a primer layer and / or an organic layer can be optionally contained. Therefore, the inorganic thin film layer is formed on the flexible film when the base material contains only the flexible film; preferably on the primer layer when the base material contains the primer layer; the base material. When contains an organic layer, it is preferably formed on the organic layer.
 成膜ロールは、一対の成膜ロール間に成膜ガスの放電プラズマを発生させる機能を有するものである。このような一対の成膜ロールは、成膜ロール間に電力を供給し、プラズマ放電のための一対の対抗電力として機能するように、プラズマ発生用電源に接続されていてよい。プラズマ発生用電源により、成膜ロール間、より詳細には成膜ロール間の空間に放電プラズマを発生させることが可能となる。プラズマ発生用電源としては、適宜公知のものを用いることができ、より効率的にプラズマCVDを実施可能となることから、一対の成膜ロールの極性を交互に反転させることが可能な交流電源等を利用することが好ましい。一対の成膜ロール間に、中周波数、例えば50Hz~500kHz、好ましくは1kHz~300kHz、より好ましくは1kHz~200kHzの電力を供給することができる。中周波数が上記範囲であると、過剰の熱量の発生による成膜ロールの損傷を抑制することができる。印加電力は100W~10kW、好ましくは100W~5kWとすることができる。印加電力が、上記の下限以上であると、パーティクルの発生を抑制でき、また上記の上限以下であると、過剰の熱量の発生による成膜ロールの損傷を抑制することができる。 The film forming roll has a function of generating a discharge plasma of a film forming gas between a pair of film forming rolls. Such a pair of film forming rolls may be connected to a plasma generation power source so as to supply power between the film forming rolls and function as a pair of counter powers for plasma discharge. The plasma generation power source makes it possible to generate discharge plasma between the film forming rolls, and more specifically, in the space between the film forming rolls. As the power source for plasma generation, a known power source can be used as appropriate, and plasma CVD can be performed more efficiently. Therefore, an AC power source or the like capable of alternately reversing the polarities of a pair of film forming rolls. It is preferable to use. A medium frequency, for example 50 Hz to 500 kHz, preferably 1 kHz to 300 kHz, more preferably 1 kHz to 200 kHz, can be supplied between the pair of film forming rolls. When the medium frequency is in the above range, damage to the film forming roll due to the generation of an excessive amount of heat can be suppressed. The applied power can be 100 W to 10 kW, preferably 100 W to 5 kW. When the applied power is not less than the above lower limit, the generation of particles can be suppressed, and when it is not more than the above upper limit, damage to the film forming roll due to the generation of an excessive amount of heat can be suppressed.
 一対の成膜ロールの内部に、成膜ロールが回転しても回転しないように固定された磁場形成装置をそれぞれ設けることが好ましい。磁場形成装置により、一対の成膜ロールに磁場を印加することができ、それぞれの成膜ロールに配置された基材の表面に、同時に無機薄膜層を形成できるため、成膜レートを倍にできる。磁場形成装置は適宜公知のものを用いてよい。 It is preferable to provide a fixed magnetic field forming device inside the pair of film forming rolls so that the film forming rolls do not rotate even if they rotate. With the magnetic field forming device, a magnetic field can be applied to a pair of film forming rolls, and an inorganic thin film layer can be formed at the same time on the surface of the base material arranged on each film forming roll, so that the film forming rate can be doubled. .. As the magnetic field forming device, a known one may be used as appropriate.
 一対の成膜ロール間において、放電プラズマを発生させる圧力は、原料ガスの種類等に応じて適宜選択でき、好ましくは0.1~50Pa、より好ましくは0.1~30Paである。低圧CVD法とする場合には、該空間の圧力は、好ましくは0.1~10Pa、より好ましくは0.1Pa~8.0Paである。 The pressure for generating the discharge plasma between the pair of film forming rolls can be appropriately selected depending on the type of the raw material gas and the like, and is preferably 0.1 to 50 Pa, more preferably 0.1 to 30 Pa. In the case of the low pressure CVD method, the pressure in the space is preferably 0.1 to 10 Pa, more preferably 0.1 Pa to 8.0 Pa.
 成膜ロールは適宜公知のロールを用いることができるが、より効率良く無機薄膜層を形成するという観点から、一対の成膜ロールの直径が同一のものが好ましく、成膜ロールの直径は、放電条件等の観点から、好ましくは5~30cmである。一対の成膜ロールはその中心軸が同一平面上において略平行、特に平行となるように配置されるのが好ましい。
このように配置することで、それぞれの成膜ロールに配置された基材の表面に、同時に無機薄膜層を形成できるため、成膜レートを倍にでき、かつ同じ構造の無機薄膜層を形成可能である。さらに、一方の成膜ロールにおいて、基材の表面に無機薄膜層を堆積させ、他方の成膜ロールにおいて、さらに無機薄膜層を堆積させることが可能であることから、無機薄膜層を効率良く形成することもできる。
A known roll can be appropriately used as the film-forming roll, but from the viewpoint of forming the inorganic thin film layer more efficiently, it is preferable that the pair of film-forming rolls have the same diameter, and the diameter of the film-forming roll is discharged. From the viewpoint of conditions and the like, it is preferably 5 to 30 cm. It is preferable that the pair of film forming rolls are arranged so that their central axes are substantially parallel, particularly parallel, on the same plane.
By arranging in this way, the inorganic thin film layer can be formed at the same time on the surface of the base material arranged on each film forming roll, so that the film forming rate can be doubled and the inorganic thin film layer having the same structure can be formed. Is. Further, since it is possible to deposit an inorganic thin film layer on the surface of the base material on one film forming roll and further deposit an inorganic thin film layer on the other film forming roll, the inorganic thin film layer can be efficiently formed. You can also do it.
 成膜ロール等により搬送される基材の搬送速度は、通常、上記巻き出し速度と同じである。搬送速度が上記の下限以上であると、基材における熱に起因する皺の発生を抑制でき、また上記の上限以下であると、無機薄膜層の厚みが薄くなりすぎるのを抑制することができる。 The transport speed of the base material transported by the film forming roll or the like is usually the same as the unwinding speed. When the transport speed is at least the above lower limit, the generation of wrinkles due to heat on the base material can be suppressed, and when it is at least the above upper limit, the thickness of the inorganic thin film layer can be suppressed from becoming too thin. ..
 原料ガスとしては、例えば珪素原子及び炭素原子を含有する有機ケイ素化合物が挙げられる。有機ケイ素化合物の具体例としては、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサン、(メトキシメチル)トリメチルシラン、(エトキシメチル)トリメチルシラン、(メトキシエチル)トリメチルシランなどが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性及び得られる積層フィルムのガスバリア性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。原料ガスとして、これらの有機ケイ素化合物の1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。 Examples of the raw material gas include an organosilicon compound containing a silicon atom and a carbon atom. Specific examples of organosilicon compounds include hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, and the like. Propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane, (methoxymethyl) trimethylsilane, (ethoxymethyl) ) Trimethylsilane, (methoxyethyl) trimethylsilane and the like. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of the handleability of the compound and the gas barrier property of the obtained laminated film. As the raw material gas, one kind of these organosilicon compounds may be used alone, or two or more kinds may be used in combination.
 反応ガスは酸素を含む。酸素は上記原料ガスと反応して酸化物等の無機化合物を形成できる。反応ガスは、酸化物又は窒化物を形成できる他のガスを含んでいてもよい。酸化物を形成するための他のガスとしては、例えばオゾン等が挙げられる。また、窒化物を形成するための他のガスとしては、例えば窒素、アンモニア等が挙げられる。これらのガスは単独又は2種以上組み合わせて使用でき、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組合せて使用することができる。原料ガスと反応ガスの流量比は、成膜する無機材料の原子数比(原子比ともいう)に応じて適宜調節できる。 The reaction gas contains oxygen. Oxygen can react with the raw material gas to form an inorganic compound such as an oxide. The reaction gas may contain other gases capable of forming oxides or nitrides. Examples of other gases for forming oxides include ozone and the like. Moreover, as another gas for forming a nitride, for example, nitrogen, ammonia and the like can be mentioned. These gases can be used alone or in combination of two or more. For example, in the case of forming an oxynitride, a reaction gas for forming an oxide and a reaction gas for forming a nitride are used in combination. be able to. The flow rate ratio of the raw material gas and the reaction gas can be appropriately adjusted according to the atomic number ratio (also referred to as atomic ratio) of the inorganic material to be formed.
 成膜ガスには、原料ガス及び反応ガスの他、これらのガスを一対の成膜ロール間に供給するために、必要に応じて、キャリアガスを含んでいてもよい。また、成膜ガスは、プラズマ放電を発生させるために、必要に応じて、放電用ガスを含んでいてもよい。キャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス、水素を用いることができる。なお、本明細書においては、原料ガス、反応ガス、キャリアガス及び放電用ガスを総称して成膜ガスと称する。 In addition to the raw material gas and the reaction gas, the film-forming gas may contain a carrier gas, if necessary, in order to supply these gases between the pair of film-forming rolls. Further, the film-forming gas may contain a discharge gas, if necessary, in order to generate a plasma discharge. As the carrier gas and the discharge gas, known ones can be used as appropriate, and for example, rare gases such as helium, argon, neon, and xenon, and hydrogen can be used. In this specification, the raw material gas, the reaction gas, the carrier gas, and the discharge gas are collectively referred to as a film-forming gas.
 原料ガスの流量は、0℃1気圧基準において、好ましくは10~1000sccm、より好ましくは20~500sccm、さらに好ましくは30~300sccmである。反応ガスの流量は、0℃1気圧基準において、好ましくは10~10000sccm、より好ましくは100~5000sccm、より好ましくは200~1000sccmである。 The flow rate of the raw material gas is preferably 10 to 1000 sccm, more preferably 20 to 500 sccm, and further preferably 30 to 300 sccm based on 0 ° C. and 1 atm. The flow rate of the reaction gas is preferably 10 to 10000 sccm, more preferably 100 to 5000 sccm, and more preferably 200 to 1000 sccm based on 0 ° C. and 1 atm.
 本発明の一実施態様の製造方法により形成される無機薄膜層は、ガスバリア性(特に水蒸気バリア性)及び耐屈曲性を向上しやすく、かつ無機薄膜層形成後の帯電量を低減しやすい観点から、珪素原子(Si)、酸素原子(O)、及び炭素原子(C)を少なくとも含有することが好ましい。 The inorganic thin film layer formed by the production method of one embodiment of the present invention can easily improve gas barrier properties (particularly water vapor barrier properties) and bending resistance, and can easily reduce the amount of charge after forming the inorganic thin film layer. , Silicon atom (Si), oxygen atom (O), and carbon atom (C) are preferably contained at least.
 この場合、無機薄膜層は、一般式がSiOで表される化合物が主成分であることができる。式中、X及びYは、それぞれ独立に、2未満の正の数を表す。ここで、「主成分である」とは、材質の全成分の質量に対してその成分の含有量が50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上であることをいう。無機薄膜層は一般式SiOで表される1種類の化合物を含有してもよいし、一般式SiOで表される2種以上の化合物を含有してもよい。前記一般式におけるX及び/又はYは、無機薄膜層の膜厚方向において一定の値でもよいし、変化していてもよい。 In this case, the inorganic thin film layer may be mainly composed of a compound whose general formula is represented by SiO x Cy. In the formula, X and Y each independently represent a positive number less than 2. Here, "the main component" means that the content of the component is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more with respect to the mass of all the components of the material. Say. Inorganic thin layer may contain one kind of compound represented by the general formula SiO x C y, may contain a general formula SiO x C y 2 or more compounds represented by. X and / or Y in the general formula may be a constant value or may change in the film thickness direction of the inorganic thin film layer.
 さらに無機薄膜層は珪素原子、酸素原子及び炭素原子以外の元素、例えば、水素原子、窒素原子、ホウ素原子、アルミニウム原子、リン原子、イオウ原子、フッ素原子及び塩素原子のうちの一以上の原子を含有していてもよい。 Further, the inorganic thin film layer contains elements other than silicon atom, oxygen atom and carbon atom, for example, one or more atoms of hydrogen atom, nitrogen atom, boron atom, aluminum atom, phosphorus atom, sulfur atom, fluorine atom and chlorine atom. It may be contained.
 本発明の一実施態様では、無機薄膜層は、無機薄膜層中の珪素原子(Si)に対する炭素原子(C)の平均原子数比をC/Siで表した場合に、緻密性を高くし、微細な空隙やクラック等の欠陥を少なくする観点から、C/Siの範囲は式(3)を満たすことが好ましい。
0.02<C/Si<0.50   (3)
 C/Siは、同様の観点から、0.03<C/Si<0.45の範囲にあるとより好ましく、0.04<C/Si<0.40の範囲にあるとさらに好ましく、0.05<C/Si<0.35の範囲にあると特に好ましい。
In one embodiment of the present invention, the inorganic thin film layer has high density when the average atomic number ratio of carbon atoms (C) to silicon atoms (Si) in the inorganic thin film layer is represented by C / Si. From the viewpoint of reducing defects such as fine voids and cracks, the range of C / Si preferably satisfies the formula (3).
0.02 <C / Si <0.50 (3)
From the same viewpoint, C / Si is more preferably in the range of 0.03 <C / Si <0.45, further preferably in the range of 0.04 <C / Si <0.40, and 0. It is particularly preferable that the range is 05 <C / Si <0.35.
 また、無機薄膜層は、無機薄膜層中の珪素原子(Si)に対する酸素原子(O)の平均原子数比をO/Siで表した場合に、緻密性を高くし、微細な空隙やクラック等の欠陥を少なくする観点から、1.50<O/Si<1.98の範囲にあると好ましく、1.55<O/Si<1.97の範囲にあるとより好ましく、1.60<O/Si<1.96の範囲にあるとさらに好ましく、1.65<O/Si<1.95の範囲にあると特に好ましい。 Further, the inorganic thin film layer has high density when the average number of atoms ratio of oxygen atom (O) to silicon atom (Si) in the inorganic thin film layer is represented by O / Si, and fine voids, cracks, etc. From the viewpoint of reducing the number of defects, the range of 1.50 <O / Si <1.98 is preferable, the range of 1.55 <O / Si <1.97 is more preferable, and 1.60 <O. It is more preferably in the range of / Si <1.96, and particularly preferably in the range of 1.65 <O / Si <1.95.
 なお、平均原子数比C/Si及びO/Siは、下記条件にてXPSデプスプロファイル測定を行い、得られた珪素原子、酸素原子及び炭素原子の分布曲線から、それぞれの原子の厚み方向における平均原子濃度を求めた後、平均原子濃度から算出でき、例えば実施例に記載の方法により算出できる。
 <XPSデプスプロファイル測定>
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.027nm/sec
 スパッタ時間:0.5min
 X線光電子分光装置を使用
 照射X線:単結晶分光AlKα(1486.6eV)
 X線のスポット及びそのサイズ:100μm
 検出器:Pass Energy 69eV,Step size 0.125eV
 帯電補正:中和電子銃(1eV)、低速Arイオン銃(10V)
The average atomic number ratios C / Si and O / Si were measured in XPS depth profile under the following conditions, and from the obtained distribution curves of silicon atoms, oxygen atoms, and carbon atoms, the averages in the thickness direction of each atom were obtained. After determining the atomic concentration, it can be calculated from the average atomic concentration, for example, by the method described in Examples.
<XPS depth profile measurement>
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide film equivalent): 0.027 nm / sec
Spatter time: 0.5 min
Using X-ray photoelectron spectrometer Irradiation X-ray: Single crystal spectroscopy AlKα (1486.6 eV)
X-ray spot and its size: 100 μm
Detector: Pass Energy 69eV, Step size 0.125eV
Charge correction: Neutralizing electron gun (1eV), low-speed Ar ion gun (10V)
 無機薄膜層の表面に対して赤外分光測定(ATR法)を行った場合、950~1050cm-1に存在するピーク強度(I)と、1240~1290cm-1に存在するピーク強度(I)との吸収強度比(I/I)が式(4)を満たすことが好ましい。
    0.01≦I/I<0.05     (4)
When performing infrared spectroscopy with respect to the surface of the inorganic thin film layer (ATR method), a peak exists in the 950 ~ 1050 cm -1 strength (I 3), the peak intensity existing in the 1240 ~ 1290cm -1 (I 4 ) And the absorption intensity ratio (I 4 / I 3 ) preferably satisfy the formula (4).
0.01 ≤ I 4 / I 3 <0.05 (4)
 本発明の一実施態様では、赤外分光測定(ATR法)から算出したピーク強度比I/Iは、無機薄膜層中のSi-O-Siに対するSi-CHの相対的な割合を表すと考えられる。式(4)で表される関係を満たす無機薄膜層は、緻密性が高く、微細な空隙やクラック等の欠陥を低減しやすいため、ガスバリア性及び耐衝撃性を高めやすいと考えられる。ピーク強度比I/Iは、無機薄膜層の緻密性を高く保持しやすい観点から、0.02≦I/I<0.04の範囲がより好ましい。 In one embodiment of the present invention, the peak intensity ratio I 2 / I 1 calculated from infrared spectroscopy (ATR method) is the relative ratio of Si—CH 3 to Si—O—Si in the inorganic thin film layer. It is thought to represent. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (4) has high density and easily reduces defects such as fine voids and cracks, and thus easily enhances gas barrier properties and impact resistance. The peak intensity ratio I 4 / I 3 is more preferably in the range of 0.02 ≦ I 4 / I 3 <0.04 from the viewpoint of easily maintaining the high density of the inorganic thin film layer.
 無機薄膜層が上記ピーク強度比I/Iの範囲を満たす場合、本発明の一実施態様により製造される積層フィルムが適度に滑りやすくなり、ブロッキングを低減しやすい。上記ピーク強度比I/Iが大きすぎると、Si-Cが多すぎることを意味し、この場合、屈曲性が悪く、かつ滑りにくくなる傾向がある。また、上記ピーク強度比I/Iが小さすぎると、Si-Cが少なすぎることにより屈曲性が低下する傾向がある。 When the inorganic thin film layer satisfies the range of the peak intensity ratio I 4 / I 3 , the laminated film produced by one embodiment of the present invention becomes moderately slippery and blocking is easily reduced. If the peak intensity ratio I 4 / I 3 is too large, it means that there is too much SiC, and in this case, the flexibility tends to be poor and slipperiness tends to occur. Further, if the peak intensity ratio I 4 / I 3 is too small, the flexibility tends to decrease due to the amount of Si—C being too small.
 無機薄膜層の表面の赤外分光測定は、プリズムにゲルマニウム結晶を用いたATRアタッチメントを備えたフーリエ変換型赤外分光光度計によって測定できる。 The infrared spectroscopic measurement of the surface of the inorganic thin film layer can be measured by a Fourier transform infrared spectrophotometer equipped with an ATR attachment using a germanium crystal on the prism.
 無機薄膜層の表面に対して赤外分光測定(ATR法)を行った場合、950~1050cm-1に存在するピーク強度(I)と、770~830cm-1に存在するピーク強度(I)との強度比(I/I)が式(5)を満たすことが好ましい。
    0.25≦I/I≦0.50     (5)
When performing infrared spectroscopy with respect to the surface of the inorganic thin film layer (ATR method), a peak exists in the 950 ~ 1050 cm -1 intensity (I 3), the peak intensity existing in the 770 ~ 830cm -1 (I 5 ) And the intensity ratio (I 5 / I 3 ) preferably satisfy the formula (5).
0.25 ≤ I 5 / I 3 ≤ 0.50 (5)
 赤外分光測定(ATR法)から算出したピーク強度比I/Iは、無機薄膜層中のSi-O-Siに対するSi-CやSi-O等の相対的な割合を表すと考えられる。式(5)で表される関係を満たす無機薄膜層は、高い緻密性を保持しつつ、炭素が導入されることから耐屈曲性を高めやすく、かつ耐衝撃性も高めやすいと考えられる。ピーク強度比I/Iは、無機薄膜層の緻密性と耐屈曲性のバランスを保つ観点から、0.25≦I/I≦0.50の範囲が好ましく、0.30≦I/I≦0.45の範囲がより好ましい。 The peak intensity ratio I 5 / I 3 calculated from infrared spectroscopy (ATR method) is considered to represent the relative ratio of Si—C, Si—O, etc. to Si—O—Si in the inorganic thin film layer. .. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (5) is likely to have high bending resistance and impact resistance because carbon is introduced while maintaining high density. The peak intensity ratio I 5 / I 3 is preferably in the range of 0.25 ≤ I 5 / I 3 ≤ 0.50, preferably 0.30 ≤ I, from the viewpoint of maintaining a balance between the compactness and the bending resistance of the inorganic thin film layer. The range of 3 / I 1 ≤ 0.45 is more preferable.
 前記無機薄膜層は、無機薄膜層表面に対して赤外分光測定(ATR法)を行った場合、770~830cm-1に存在するピーク強度(I)と、870~910cm-1に存在するピーク強度(I)との強度比が式(6)を満たすことが好ましい。
    0.70≦I/I<1.00     (6)
The inorganic thin film layer, when subjected infrared spectrometry the inorganic thin film layer surface (ATR method), a peak exists in the 770 ~ 830 cm -1 intensity (I 5), present in the 870 ~ 910 cm -1 It is preferable that the intensity ratio with the peak intensity (I 6) satisfies the formula (6).
0.70 ≤ I 6 / I 5 <1.00 (6)
 赤外分光測定(ATR法)から算出したピーク強度比I/Iは、無機薄膜層中のSi-Cに関連するピーク同士の比率を表すと考えられる。式(6)で表される関係を満たす無機薄膜層は、高い緻密性を保持しつつ、炭素が導入されることから耐屈曲性を高めやすく、かつ耐衝撃性も高めやすいと考えられる。ピーク強度比I/Iの範囲について、無機薄膜層の緻密性と耐屈曲性のバランスを保つ観点から、0.70≦I/I<1.00の範囲が好ましく、0.80≦I/I<0.95の範囲がより好ましい。 The peak intensity ratio I 6 / I 5 calculated from infrared spectroscopic measurement (ATR method) is considered to represent the ratio of peaks related to Si—C in the inorganic thin film layer. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (6) is likely to have high bending resistance and impact resistance because carbon is introduced while maintaining high density. Regarding the range of the peak intensity ratio I 6 / I 5 , the range of 0.70 ≦ I 6 / I 5 <1.00 is preferable, and 0.80 from the viewpoint of maintaining the balance between the compactness and the bending resistance of the inorganic thin film layer. The range of ≦ I 6 / I 5 <0.95 is more preferable.
 無機薄膜層は、単層であっても、2層以上の多層であってもよい。また、基材の両方の面に無機薄膜層を有していてもよい。無機薄膜層を2層以上又は複数形成する場合、各層は同じ組成からなる層であっても、異なる組成からなる層であってもよいが、積層フィルムのガスバリア性及び耐熱性を向上しやすい観点から、同じ組成からなる層であることが好ましい。また、無機薄膜層を2層以上又は複数形成する場合は、後述の複数パスで実施例すればよい。 The inorganic thin film layer may be a single layer or a multilayer of two or more layers. Further, an inorganic thin film layer may be provided on both surfaces of the base material. When two or more or a plurality of inorganic thin film layers are formed, each layer may be a layer having the same composition or a layer having a different composition, but from the viewpoint of easily improving the gas barrier property and heat resistance of the laminated film. Therefore, it is preferable that the layers have the same composition. Further, when two or more or a plurality of inorganic thin film layers are formed, the example may be carried out by a plurality of passes described later.
 無機薄膜層の厚さは、ガスバリア性及び耐屈曲性を向上しやすく、かつ無機薄膜層形成後の帯電量を低減しやすい観点から、好ましくは5nm以上、より好ましくは10nm以上、さらに好ましくは50nm以上、特に好ましくは100nm以上であり、好ましくは3000nm以下、より好ましくは2000nm以下、さらに好ましくは1000nm以下である。無機薄膜層が2層以上又は複数ある場合、各層の厚さは同一又は異なっていてもよい。 The thickness of the inorganic thin film layer is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 50 nm, from the viewpoint of easily improving gas barrier properties and bending resistance and easily reducing the amount of charge after forming the inorganic thin film layer. As described above, it is particularly preferably 100 nm or more, preferably 3000 nm or less, more preferably 2000 nm or less, and further preferably 1000 nm or less. When there are two or more or a plurality of inorganic thin film layers, the thickness of each layer may be the same or different.
 無機薄膜層は、好ましくは1.8g/cm以上の高い平均密度を有し得る。ここで、無機薄膜層の「平均密度」は、ラザフォード後方散乱法(Rutherford Backscattering Spectrometry:RBS)で求めた珪素の原子数、炭素の原子数、酸素の原子数と、水素前方散乱法(Hydrogen Forward scattering Spectrometry:HFS)で求めた水素の原子数とから測定範囲の無機薄膜層の重さを計算し、測定範囲の無機薄膜層の体積(イオンビームの照射面積と膜厚との積)で除することで求められる。無機薄膜層の平均密度が上記の下限以上であると、緻密性が高く、微細な空隙やクラック等の欠陥を低減しやすい構造となるため好ましい。無機薄膜層が珪素原子、酸素原子、炭素原子及び水素原子からなる本発明の好ましい一実施態様において、無機薄膜層の平均密度が2.22g/cm未満であることが好ましい。 The inorganic thin film layer can preferably have a high average density of 1.8 g / cm 3 or more. Here, the "average density" of the inorganic thin film layer is the number of silicon atoms, the number of carbon atoms, the number of oxygen atoms obtained by the Rutherford Backscattering Spectrometry (RBS), and the hydrogen forward scattering method (Hydrogen Forward). The weight of the inorganic thin film layer in the measurement range is calculated from the number of hydrogen atoms obtained by scattering Spectrometry (HFS), and divided by the volume of the inorganic thin film layer in the measurement range (the product of the ion beam irradiation area and the film thickness). It is required by doing. When the average density of the inorganic thin film layer is at least the above lower limit, the density is high and the structure is preferable because defects such as fine voids and cracks can be easily reduced. In a preferred embodiment of the present invention in which the inorganic thin film layer is composed of silicon atoms, oxygen atoms, carbon atoms and hydrogen atoms, the average density of the inorganic thin film layers is preferably less than 2.22 g / cm 3.
 無機薄膜層が少なくとも珪素原子(Si)、酸素原子(O)、及び炭素原子(C)を含有する本発明の好ましい一実施態様において、該無機薄膜層の膜厚方向における該無機薄膜層表面からの距離と、各距離における珪素原子の原子数比との関係を示す曲線を珪素分布曲線という。ここで、無機薄膜層表面とは、本発明の一実施態様により製造される積層フィルムの表面となる面を指す。同様に、膜厚方向における該無機薄膜層表面からの距離と、各距離における酸素原子の原子数比との関係を示す曲線を酸素分布曲線という。また、膜厚方向における該無機薄膜層表面からの距離と、各距離における炭素原子の原子数比との関係を示す曲線を炭素分布曲線という。珪素原子の原子数比、酸素原子の原子数比及び炭素原子の原子数比とは、無機薄膜層に含まれる珪素原子、酸素原子及び炭素原子の合計数に対するそれぞれの原子数の比率を意味する。 In a preferred embodiment of the present invention in which the inorganic thin film layer contains at least silicon atoms (Si), oxygen atoms (O), and carbon atoms (C), from the surface of the inorganic thin film layer in the film thickness direction of the inorganic thin film layer. The curve showing the relationship between the distances and the atomic number ratio of silicon atoms at each distance is called a silicon distribution curve. Here, the surface of the inorganic thin film layer refers to a surface that becomes the surface of the laminated film produced by one embodiment of the present invention. Similarly, a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic number ratio of oxygen atoms at each distance is called an oxygen distribution curve. Further, a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic number ratio of carbon atoms at each distance is called a carbon distribution curve. The atomic number ratio of silicon atom, the atomic number ratio of oxygen atom, and the atomic number ratio of carbon atom mean the ratio of the number of atoms to the total number of silicon atom, oxygen atom, and carbon atom contained in the inorganic thin film layer. ..
 屈曲によるガスバリア性の低下の抑制、及び無機薄膜層形成後の帯電量を低減しやすい観点から、前記無機薄膜層に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子の原子数比が、無機薄膜層の膜厚方向における90%以上の領域において連続的に変化することが好ましい。ここで、上記炭素原子の原子数比が、無機薄膜層の膜厚方向において連続的に変化するとは、例えば上記の炭素分布曲線において、炭素の原子数比が後述の通り、不連続に変化する部分を含まないことを意味する。 The ratio of the number of carbon atoms to the total number of silicon atoms, oxygen atoms, and carbon atoms contained in the inorganic thin film layer from the viewpoint of suppressing the decrease in gas barrier property due to bending and easily reducing the amount of charge after forming the inorganic thin film layer. However, it is preferable that the inorganic thin film layer continuously changes in a region of 90% or more in the film thickness direction. Here, the fact that the atomic number ratio of the carbon atoms changes continuously in the film thickness direction of the inorganic thin film layer means that, for example, in the carbon distribution curve described above, the atomic number ratio of carbon changes discontinuously as described later. It means that it does not include a part.
 前記無機薄膜層の炭素分布曲線が8つ以上の極値を有することが、積層フィルムの耐屈曲性及びガスバリア性の観点から好ましい。 It is preferable that the carbon distribution curve of the inorganic thin film layer has eight or more extreme values from the viewpoint of bending resistance and gas barrier property of the laminated film.
 前記無機薄膜層の珪素分布曲線、酸素分布曲線及び炭素分布曲線が、下記の条件(i)及び(ii)を満たすことが、積層フィルムの耐屈曲性及びガスバリア性の観点から好ましい。
(i)珪素の原子数比、酸素の原子数比及び炭素の原子数比が、前記無機薄膜層の膜厚方向における90%以上の領域において、下記式(7)で表される条件を満たす、及び、
    (酸素の原子数比)>(珪素の原子数比)>(炭素の原子数比)    (7)(ii)前記炭素分布曲線が好ましくは少なくとも1つ、より好ましくは8つ以上の極値を有する。
It is preferable that the silicon distribution curve, oxygen distribution curve and carbon distribution curve of the inorganic thin film layer satisfy the following conditions (i) and (ii) from the viewpoint of bending resistance and gas barrier property of the laminated film.
(I) The condition represented by the following formula (7) is satisfied in a region where the atomic number ratio of silicon, the atomic number ratio of oxygen, and the atomic number ratio of carbon are 90% or more in the film thickness direction of the inorganic thin film layer. ,as well as,
(Atomic number ratio of oxygen)> (Atomic number ratio of silicon)> (Atomic number ratio of carbon) (7) (ii) The carbon distribution curve preferably has at least one, more preferably eight or more extreme values. Have.
 無機薄膜層の炭素分布曲線は、実質的に連続であることが好ましい。炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子数比が不連続に変化する部分を含まないことである。具体的には、膜厚方向における前記無機薄膜層表面からの距離をx[nm]、炭素の原子数比をCとしたときに、式(8)を満たすことが好ましい。
    |dC/dx|≦0.01     (8)
The carbon distribution curve of the inorganic thin film layer is preferably substantially continuous. The fact that the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic number ratio of carbon changes discontinuously. Specifically, it is preferable that the formula (8) is satisfied when the distance from the surface of the inorganic thin film layer in the film thickness direction is x [nm] and the atomic number ratio of carbon is C.
| DC / dx | ≤0.01 (8)
 また、無機薄膜層の炭素分布曲線は少なくとも1つの極値を有することが好ましく、8つ以上の極値を有することがより好ましい。ここでいう極値は、膜厚方向における無機薄膜層表面からの距離に対する各元素の原子数比の極大値又は極小値である。極値は、膜厚方向における無機薄膜層表面からの距離を変化させたときに、元素の原子数比が増加から減少に転じる点、又は元素の原子数比が減少から増加に転じる点での原子数比の値である。極値は、例えば、膜厚方向における複数の測定位置において、測定された原子数比に基づいて求めることができる。原子数比の測定位置は、膜厚方向の間隔が、例えば20nm以下に設定される。膜厚方向において極値を示す位置は、各測定位置での測定結果を含んだ離散的なデータ群について、例えば互いに異なる3以上の測定位置での測定結果を比較し、測定結果が増加から減少に転じる位置又は減少から増加に転じる位置を求めることによって得ることができる。極値を示す位置は、例えば、前記の離散的なデータ群から求めた近似曲線を微分することによって、得ることもできる。極値を示す位置から、原子数比が単調増加又は単調減少する区間が例えば20nm以上である場合に、極値を示す位置から膜厚方向に20nmだけ移動した位置での原子数比と、極値との差の絶対値は例えば0.03以上である。 Further, the carbon distribution curve of the inorganic thin film layer preferably has at least one extreme value, and more preferably has eight or more extreme values. The extreme value here is the maximum value or the minimum value of the atomic number ratio of each element with respect to the distance from the surface of the inorganic thin film layer in the film thickness direction. The extreme value is at the point where the atomic number ratio of the element changes from increase to decrease or the atomic number ratio of the element changes from decrease to increase when the distance from the surface of the inorganic thin film layer in the film thickness direction is changed. It is the value of the atomic number ratio. The extreme value can be obtained, for example, based on the atomic number ratio measured at a plurality of measurement positions in the film thickness direction. At the measurement position of the atomic number ratio, the interval in the film thickness direction is set to, for example, 20 nm or less. For the positions showing extreme values in the film thickness direction, for discrete data groups including the measurement results at each measurement position, for example, the measurement results at three or more different measurement positions are compared, and the measurement results increase or decrease. It can be obtained by finding the position where it turns to or the position where it turns from decrease to increase. The position showing the extremum can also be obtained, for example, by differentiating the approximate curve obtained from the discrete data group. When the section where the atomic number ratio monotonically increases or decreases monotonically from the position showing the extreme value is, for example, 20 nm or more, the atomic number ratio at the position moved by 20 nm in the film thickness direction from the position showing the extreme value and the pole. The absolute value of the difference from the value is, for example, 0.03 or more.
 前記のように炭素分布曲線が好ましくは少なくとも1つ、より好ましくは8つ以上の極値を有する条件を満たすように形成された無機薄膜層は、屈曲前のガス透過率に対する屈曲後のガス透過率の増加量が、前記条件を満たさない場合と比較して少なくなる。すなわち、前記条件を満たすことにより、屈曲によるガスバリア性の低下を抑制する効果が得られる。炭素分布曲線の極値の数が2つ以上になるように前記無機薄膜層を形成すると、炭素分布曲線の極値の数が1つである場合と比較して、前記の増加量が少なくなる。また、炭素分布曲線の極値の数が3つ以上になるように前記無機薄膜層を形成すると、炭素分布曲線の極値の数が2つである場合と比較して、前記の増加量が少なくなる。炭素分布曲線が2つ以上の極値を有する場合に、第1の極値を示す位置の膜厚方向における前記無機薄膜層表面からの距離と、第1の極値と隣接する第2の極値を示す位置の膜厚方向における前記無機薄膜層表面からの距離との差の絶対値が、1nm~200nmの範囲内であることが好ましく、1nm~100nmの範囲内であることがさらに好ましい。 As described above, the inorganic thin film layer formed so as to satisfy the condition that the carbon distribution curve preferably has at least one, more preferably eight or more extreme values has gas permeation after bending with respect to the gas permeability before bending. The amount of increase in the rate is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained. When the inorganic thin film layer is formed so that the number of extreme values of the carbon distribution curve is two or more, the amount of increase is smaller than that of the case where the number of extreme values of the carbon distribution curve is one. .. Further, when the inorganic thin film layer is formed so that the number of extreme values of the carbon distribution curve is three or more, the amount of increase is larger than that of the case where the number of extreme values of the carbon distribution curve is two. Less. When the carbon distribution curve has two or more extrema, the distance from the surface of the inorganic thin film layer in the film thickness direction at the position showing the first extremum and the second extremum adjacent to the first extremum. The absolute value of the difference from the distance from the surface of the inorganic thin film layer in the film thickness direction of the position showing the value is preferably in the range of 1 nm to 200 nm, and more preferably in the range of 1 nm to 100 nm.
 また、前記無機薄膜層の炭素分布曲線における炭素の原子数比の最大値及び最小値の差の絶対値が0.01より大きいことが好ましい。前記条件を満たすように形成された無機薄膜層は、屈曲前のガス透過率に対する屈曲後のガス透過率の増加量が、前記条件を満たさない場合と比較して少なくなる。すなわち、前記条件を満たすことにより、屈曲によるガスバリア性の低下を抑制する効果が得られる。炭素の原子数比の最大値及び最小値の差の絶対値が0.02以上であると前記の効果が高くなり、0.03以上であると前記の効果がさらに高くなる。 Further, it is preferable that the absolute value of the difference between the maximum value and the minimum value of the atomic number ratio of carbon in the carbon distribution curve of the inorganic thin film layer is larger than 0.01. In the inorganic thin film layer formed so as to satisfy the above conditions, the amount of increase in the gas permeability after bending with respect to the gas permeability before bending is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained. When the absolute value of the difference between the maximum value and the minimum value of the atomic number ratio of carbon is 0.02 or more, the above effect is high, and when it is 0.03 or more, the above effect is further high.
 珪素分布曲線における珪素の原子数比の最大値及び最小値の差の絶対値が低くなるほど、無機薄膜層のガスバリア性が向上する傾向がある。このような観点で、前記の絶対値は、0.05未満(5at%未満)であることが好ましく、0.04未満(4at%未満)であることがより好ましく、0.03未満(3at%未満)であることが特に好ましい。 The lower the absolute value of the difference between the maximum and minimum values of the atomic number ratio of silicon in the silicon distribution curve, the better the gas barrier property of the inorganic thin film layer tends to be. From this point of view, the absolute value is preferably less than 0.05 (less than 5 at%), more preferably less than 0.04 (less than 4 at%), and less than 0.03 (3 at%). Less than) is particularly preferable.
 また、酸素炭素分布曲線において、各距離における酸素原子の原子数比及び炭素原子の原子数比の合計を「合計原子数比」としたときに、合計原子数比の最大値及び最小値の差の絶対値が低くなるほど、前記無機薄膜層のガスバリア性が向上する傾向がある。このような観点で、前記の合計原子数比は、0.05未満(5at%未満)であることが好ましく、0.04未満(4at%未満)であることがより好ましく、0.03未満(3at%未満)であることが特に好ましい。 In addition, in the oxygen carbon distribution curve, when the total of the atomic number ratio of oxygen atoms and the atomic number ratio of carbon atoms at each distance is defined as the "total atomic number ratio", the difference between the maximum value and the minimum value of the total atomic number ratio. The lower the absolute value of, the better the gas barrier property of the inorganic thin film layer tends to be. From this point of view, the total atomic number ratio is preferably less than 0.05 (less than 5 at%), more preferably less than 0.04 (less than 4 at%), and less than 0.03 (less than 0.03). It is particularly preferable that it is less than 3 at%).
 前記無機薄膜層表面方向において、無機薄膜層を実質的に一様な組成にすると、無機薄膜層のガスバリア性を向上させることができる。実質的に一様な組成であるとは、酸素分布曲線、炭素分布曲線及び酸素炭素分布曲線において、前記無機薄膜層表面の任意の2点で、それぞれの膜厚方向に存在する極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子数比の最大値及び最小値の差の絶対値が、互いに同じであるかもしくは0.05以内の差であることをいう。 When the inorganic thin film layer has a substantially uniform composition in the surface direction of the inorganic thin film layer, the gas barrier property of the inorganic thin film layer can be improved. The substantially uniform composition means the number of extreme values existing in the film thickness direction at any two points on the surface of the inorganic thin film layer in the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve. Is the same, and the absolute value of the difference between the maximum value and the minimum value of the atomic number ratio of carbon in each carbon distribution curve is the same as each other or the difference is within 0.05.
 前記条件を満たすように形成された無機薄膜層は、例えば有機EL素子(organic electro-luminescence element)を用いたフレキシブル電子デバイスなどに要求されるガスバリア性を発現することができる。 The inorganic thin film layer formed so as to satisfy the above conditions can exhibit the gas barrier property required for a flexible electronic device using, for example, an organic electro-luminescence element.
 上記の無機薄膜層の組成、膜厚及び各分布曲線の形状等は、成膜ガスの種類、これらのガスの流量比(例えば反応ガスと成膜ガスの流量比)、成膜条件などを適宜選択すること、例えば上記に例示の成膜ガス;反応ガス及び原料ガスの流量の範囲;並びに、上記の放電プラズマを発生させる際の圧力の範囲、印加電力の範囲、周波数の範囲及びフィルムの搬送速度の範囲等から適宜選択することで調整することができる。 For the composition, film thickness, shape of each distribution curve, etc. of the above-mentioned inorganic thin film layer, the type of film-forming gas, the flow rate ratio of these gases (for example, the flow rate ratio of the reaction gas and the film-forming gas), the film forming conditions, etc. The choices include, for example, the film-forming gas exemplified above; the flow rate range of the reaction gas and the source gas; and the pressure range, applied power range, frequency range and film transfer when generating the discharge plasma described above. It can be adjusted by appropriately selecting from the speed range and the like.
 ここで、得られる無機薄膜層が、珪素原子、酸素原子及び炭素原子を少なくとも含有する一実施態様において、原料ガスと反応ガスの好ましい調整方法を以下に説明する。
 かかる態様の場合、珪素原子及び炭素原子を含有する有機ケイ素化合物を含む原料ガスと反応ガスとの分解反応により、SiOやSiO(0<x<2、0<y<2)が生成させ、無機薄膜層を形成してもよい。一対の成膜ロール間の空間に供給される原料ガスと反応ガスとの比率としては、原料ガスと反応ガスとを完全に反応させる(原料ガスを完全酸化させる)ために理論上必要となる反応ガス比率よりも過剰にしないことが好ましい。これは、原料ガスに含まれる前記有機ケイ素化合物が完全酸化されると、SiO層を生成し、SiO層が形成されない、すなわち、該有機ケイ素化合物中の酸化されなかった炭素原子が無機薄膜層中に取り込まれなくなり、ガスバリア性の観点から不利になるからである。一方、反応ガスの比率が小さすぎると、酸化されなかった炭素原子が無機薄膜層中に過剰に取り込まれ、無機薄膜層の透明性が低下する場合がある。このため、一対の成膜ロール間に供給される反応ガスの体積流量Vと原料ガスの体積流量Vとの流量比(V/V)は、原料ガスに含まれる該有機ケイ素化合物を完全酸化させるために必要な、反応ガスの体積流量V02と原料ガスの体積流量V01との最小流量比(V02/V01)をPとしたとき、好ましくは0.98P~0.20P、より好ましくは0.95P~0.25P、さらに好ましくは0.90P~0.30Pである。
流量比V/Vが上記の上限以下であると、無機薄膜層において、該有機シラン化合物由来の過剰な炭素原子による透明性の低下を有効に抑制でき、また流量比V/Vが上記の下限以上であると、無機薄膜層において、該有機シラン化合物由来の過少な炭素原子によるガスバリア性の低下を有効に抑制できる。
Here, in one embodiment in which the obtained inorganic thin film layer contains at least silicon atoms, oxygen atoms, and carbon atoms, a preferable method for adjusting the raw material gas and the reaction gas will be described below.
In such an embodiment, SiO 2 and SiO x Cy (0 <x <2, 0 <y <2) are produced by the decomposition reaction of the raw material gas containing the organosilicon compound containing silicon atoms and carbon atoms with the reaction gas. It may be generated to form an inorganic thin film layer. The ratio of the raw material gas and the reaction gas supplied to the space between the pair of film forming rolls is a reaction theoretically required to completely react the raw material gas and the reaction gas (completely oxidize the raw material gas). It is preferable not to exceed the gas ratio. This is because when the organosilicon compound contained in the raw material gas is completely oxidized, a SiO 2 layer is formed and the SiO x Cy layer is not formed, that is, the unoxidized carbon atom in the organosilicon compound is formed. This is because it is not incorporated into the inorganic thin film layer, which is disadvantageous from the viewpoint of gas barrier property. On the other hand, if the ratio of the reaction gas is too small, unoxidized carbon atoms may be excessively incorporated into the inorganic thin film layer, and the transparency of the inorganic thin film layer may decrease. Therefore, the flow rate ratio of the volume flow V 1 of the volume flow V 2 and the raw material gas in the reaction gas to be supplied between the pair of deposition rolls (V 2 / V 1) is the organosilicon compound contained in the raw material gas When the minimum flow rate ratio (V 02 / V 01 ) of the volumetric flow rate V 02 of the reaction gas and the volume flow rate V 01 of the raw material gas, which is necessary for complete oxidation of the gas, is P 0 , it is preferably 0.98 P 0 to It is 0.20P 0 , more preferably 0.95P 0 to 0.25P 0 , and even more preferably 0.90P 0 to 0.30P 0 .
When the flow rate ratio V 2 / V 1 is not more than the above upper limit, the decrease in transparency due to the excess carbon atom derived from the organic silane compound can be effectively suppressed in the inorganic thin film layer, and the flow rate ratio V 2 / V 1 can be effectively suppressed. When is greater than or equal to the above lower limit, it is possible to effectively suppress a decrease in gas barrier property due to a small amount of carbon atoms derived from the organic silane compound in the inorganic thin film layer.
 最小流量比P(V02/V01)は、以下のように求められる。例えば原料ガスとしてヘキサメチルジシロキサン(HMDSO)[(CHSi-O-Si(CH]を用い、反応ガスとして酸素を用いた場合に、原料ガスと反応ガスとの反応により下記の反応式(I):(CHSi-O-Si(CH + 12O →6CO+9HO+2SiO  (I)に従った反応が生じ、SiOが製造される。このような反応においては、HMDSO1モルを完全酸化するための酸素量は12モルである。
よって、最小流量比PはV02/V01=12となる。
The minimum flow rate ratio P 0 (V 02 / V 01 ) is obtained as follows. For example, when hexamethyldisiloxane (HMDSO) [(CH 3 ) 3 Si—O—Si (CH 3 ) 3 ] is used as the raw material gas and oxygen is used as the reaction gas, the reaction between the raw material gas and the reaction gas causes the reaction. The reaction according to the following reaction formula (I): (CH 3 ) 3 Si—O—Si (CH 3 ) 3 + 12O 2 → 6CO 2 + 9H 2 O + 2SiO 2 (I) occurs, and SiO 2 is produced. In such a reaction, the amount of oxygen for complete oxidation of 1 mol of HMDSO is 12 mol.
Therefore, the minimum flow rate ratio P 0 is V 02 / V 01 = 12.
 成膜ガスを一対のロール間の空間に供給するために、公知のガス供給管等を用いてもよい。なお、成膜ガスを上記圧力下でプラズマ放電させるために、少なくとも成膜ロール及びガス供給管を真空チャンバー内等に配置するのが好ましい。 A known gas supply pipe or the like may be used to supply the film-forming gas to the space between the pair of rolls. In order to plasma discharge the film-forming gas under the above pressure, it is preferable to arrange at least the film-forming roll and the gas supply pipe in a vacuum chamber or the like.
 工程(II)により無機薄膜層を成膜して得られた積層フィルムは、搬送ロール等により巻取りロールまで搬送される。 The laminated film obtained by forming the inorganic thin film layer in step (II) is conveyed to the take-up roll by a conveying roll or the like.
〔工程(III)〕
 工程(III)は、工程(II)で得られた積層フィルムを巻取りロールにより巻き取る工程である。
[Step (III)]
The step (III) is a step of winding the laminated film obtained in the step (II) with a take-up roll.
 本発明の一実施態様の製造方法では、工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値が、真空下で測定したときに、1.5kV以下である。そのため、搬送途中や巻き取られた後に異物が付着しにくいため、得られる積層フィルムの異物欠陥の発生を抑制できる。なお、本明細書において、真空下とは、10Pa以下の圧力を示す。 In the production method of one embodiment of the present invention, when the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer and the time of winding is measured under vacuum in steps (II) and (III). In addition, it is 1.5 kV or less. Therefore, foreign matter is unlikely to adhere during transportation or after being wound up, so that the occurrence of foreign matter defects in the obtained laminated film can be suppressed. In addition, in this specification, under vacuum means a pressure of 10 Pa or less.
 無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値は、真空下で測定したときに、好ましくは1.4kV以下、より好ましくは1.2kV以下、さらに好ましくは1.0kV以下である。帯電量の絶対値が上記の上限以下であると、異物欠陥の発生をより抑制しやすい。なお、無機薄膜層形成後、巻取り時までの帯電量(真空下)は、静電電位監視装置及び真空対応静電電位センサを用いて測定でき、例えば実施例に記載の方法により測定できる。 The absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until winding is preferably 1.4 kV or less, more preferably 1.2 kV or less, still more preferably 1 when measured under vacuum. It is 0.0 kV or less. When the absolute value of the amount of charge is not more than the above upper limit, it is easier to suppress the occurrence of foreign matter defects. The amount of charge (under vacuum) after the formation of the inorganic thin film layer until the time of winding can be measured using an electrostatic potential monitoring device and a vacuum-compatible electrostatic potential sensor, and can be measured, for example, by the method described in Examples.
 無機薄膜層形成後、巻取り時までの帯電量は、無機薄膜層を形成した直後(一対の成膜ロールのうち、2番目の成膜ロールの直後)から、巻取りロールで巻き取る直前(巻取りロール直前ともいう)の帯電量を示し、上記装置を用いて、2番目の成膜ロールを通過してから5秒以内又は2番目の成膜ロールを通過してからの搬送距離10cm以内の箇所と、巻取りロールで巻取り始める前5秒以内又は巻取り始めるまでの搬送距離10cm以内の箇所との帯電量を少なくとも測定して得られたものである。また、成膜ロールと巻取りロールの距離等に応じて、これらの測定箇所の間に適宜、さらなる測定箇所を設けてもよい。 The amount of charge from the formation of the inorganic thin film layer to the time of winding is from immediately after the formation of the inorganic thin film layer (immediately after the second film forming roll of the pair of film forming rolls) to immediately before winding with the winding roll (immediately after the winding film forming roll). Indicates the amount of charge (also referred to as immediately before the take-up roll), and within 5 seconds after passing through the second film-forming roll or within 10 cm of the transport distance after passing through the second film-forming roll using the above apparatus. It was obtained by measuring at least the amount of charge between the above-mentioned part and the part within 5 seconds before the start of winding with the take-up roll or within the transport distance of 10 cm until the start of winding. Further, depending on the distance between the film forming roll and the take-up roll and the like, further measurement points may be appropriately provided between these measurement points.
 巻き出し時の高い帯電量は、導電性の搬送ロール及び成膜ロールによる搬送;正電荷又は負電荷が多く存在するプラズマ空間の通過;基材上への無機薄膜層の成膜などにより、電荷移動等が生じて低減される。従って、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量は、好ましくは上記に示す範囲で製造条件を適宜変更することにより、1.5kV以下に調整できる。 The high amount of charge at the time of unwinding is due to the transfer by the conductive transfer roll and the film forming roll; the passage through the plasma space where many positive charges or negative charges exist; the formation of an inorganic thin film layer on the substrate, etc. Movement and the like occur and are reduced. Therefore, the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding can be adjusted to 1.5 kV or less, preferably by appropriately changing the production conditions within the range shown above.
 本発明の一実施態様の製造方法は、1パスで行ってもよく、複数パスで行ってもよい。ここで、1パスとは、一定の長さの積層フィルムを製造する際に、一定の長さの基材を巻き出し、無機薄膜層を成膜し、巻き取るまでの一連の動作を意味し、言い換えれば、プラズマの発生開始から停止までの操作を意味する。従って、複数パスは、積層フィルムの製造を2パス以上で行うことを意味する。複数パス行う製造方法では、基材上に形成された無機薄膜層表面に、放電プラズマによりさらに無機薄膜層が形成されるため、基材の少なくとも一方の面に無機薄膜層が2層以上形成される。 The manufacturing method according to one embodiment of the present invention may be carried out in one pass or in a plurality of passes. Here, 1 pass means a series of operations from unwinding a base material having a certain length, forming an inorganic thin film layer, and winding the laminated film having a certain length. In other words, it means an operation from the start to the stop of plasma generation. Therefore, the plurality of passes means that the laminated film is manufactured in two or more passes. In the manufacturing method in which a plurality of passes are performed, since the inorganic thin film layer is further formed by the discharge plasma on the surface of the inorganic thin film layer formed on the base material, two or more inorganic thin film layers are formed on at least one surface of the base material. To.
 本発明の一実施態様の製造方法では、基材を巻き出す工程(I)、すなわち、1パス目において巻き出し時の所定の帯電量を満たせばよい。特に無機薄膜層が成膜されていない基材の巻き出し時に巻きずれが生じやすく、工程(I)における巻き出し時の帯電量が所定の範囲を満たせば、2パス目以降も巻きずれの発生を抑制できる。また、工程(II)及び(III)における無機薄膜層形成後、巻き取り時までにおいては、少なくとも1パス目で所定の帯電量を満たせばよいが、異物欠陥の発生をより抑制しやすい観点からは、2パス目以降も所定の帯電量を満たすことが好ましい。なお、2パス目以降に積層フィルムを巻き出す際に、巻き出し時の帯電量(大気下)の絶対値が2.0kV以上であってもよい。 In the production method of one embodiment of the present invention, the step (I) of unwinding the base material, that is, the predetermined charge amount at the time of unwinding may be satisfied in the first pass. In particular, unwinding is likely to occur when unwinding a base material on which an inorganic thin film layer is not formed, and if the amount of charge at unwinding in step (I) satisfies a predetermined range, unwinding will occur even after the second pass. Can be suppressed. Further, after the formation of the inorganic thin film layer in the steps (II) and (III) and until the time of winding, the predetermined charge amount may be satisfied at least in the first pass, but from the viewpoint of more easily suppressing the occurrence of foreign matter defects. It is preferable that the predetermined charge amount is satisfied even after the second pass. When unwinding the laminated film after the second pass, the absolute value of the amount of charge (in the atmosphere) at the time of unwinding may be 2.0 kV or more.
 本発明の好適な実施態様では、工程(I)において、巻き出し時の基材表面における帯電量の絶対値を、大気下で測定したときに2.0kV以上に制御し、工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値を、真空下で測定したときに1.5kV以下に制御する。また、本発明の好適な実施態様では、本発明の製造方法は、工程(I)において、巻き出し時の基材表面における帯電量を大気下で測定して該帯電量の絶対値が2.0kV以上になるように制御(又は調整)し、かつ、工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量を真空下で測定して該帯電量の絶対値が1.5kV以下となるように制御(又は調整)する。 In a preferred embodiment of the present invention, in step (I), the absolute value of the amount of charge on the surface of the base material at the time of unwinding is controlled to 2.0 kV or more when measured in the atmosphere, and step (II) and In (III), the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is controlled to 1.5 kV or less when measured under vacuum. Further, in a preferred embodiment of the present invention, in the production method of the present invention, in the step (I), the amount of charge on the surface of the base material at the time of unwinding is measured in the atmosphere, and the absolute value of the amount of charge is 2. It is controlled (or adjusted) so that it becomes 0 kV or more, and in steps (II) and (III), the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer and before winding is measured under vacuum. The absolute value of the charge amount is controlled (or adjusted) so as to be 1.5 kV or less.
[本発明の一実施態様]
 以下、図1を参照しながら、本発明の一実施態様に係る製造方法を説明するが、本発明は図1による実施態様に限定されるものではない。
[One Embodiment of the present invention]
Hereinafter, the production method according to one embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to the embodiment according to FIG.
 図1は、本発明の一実施態様に用いられる製造装置の一例を示す概略図であり、プラズマ化学気相成長法により無機薄膜層を形成する装置の概略図である。なお、図1においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜調整している。このため、寸法や比率等は適宜変更できる。 FIG. 1 is a schematic view showing an example of a manufacturing apparatus used in one embodiment of the present invention, and is a schematic diagram of an apparatus for forming an inorganic thin film layer by a plasma chemical vapor deposition method. In FIG. 1, the dimensions and ratios of each component are appropriately adjusted in order to make the drawings easier to see. Therefore, the dimensions, ratio, and the like can be changed as appropriate.
 図1に示す製造装置10は、送り出しロール11、巻取りロール12、搬送ロール13~18、第1成膜ロール25、第2成膜ロール26、ガス供給管19、プラズマ発生用電源20、電極21、電極22、第1成膜ロール25の内部に設置された磁場形成装置23、及び第2成膜ロール26の内部に設置された磁場形成装置24を有している。 The manufacturing apparatus 10 shown in FIG. 1 includes a feeding roll 11, a winding roll 12, a transport roll 13 to 18, a first film forming roll 25, a second film forming roll 26, a gas supply pipe 19, a plasma generation power supply 20, and an electrode. It has 21, an electrode 22, a magnetic field forming device 23 installed inside the first film forming roll 25, and a magnetic field forming device 24 installed inside the second film forming roll 26.
 製造装置10の構成要素のうち、少なくとも第1成膜ロール25、第2成膜ロール26、ガス供給管19、磁場形成装置23、磁場形成装置24は、積層フィルムを製造するときに、図示略の真空チャンバー内に配置される。この真空チャンバーは、図示略の真空ポンプに接続される。真空チャンバーの内部の圧力は、真空ポンプの動作により調整される。 Of the components of the manufacturing apparatus 10, at least the first film forming roll 25, the second film forming roll 26, the gas supply pipe 19, the magnetic field forming device 23, and the magnetic field forming device 24 are not shown when manufacturing the laminated film. Is placed in the vacuum chamber of. This vacuum chamber is connected to a vacuum pump (not shown). The pressure inside the vacuum chamber is adjusted by the operation of the vacuum pump.
 この装置を用いると、プラズマ発生用電源20を制御することにより、第1成膜ロール25と第2成膜ロール26との間の空間27に、ガス供給管19から供給される成膜ガスの放電プラズマを発生させることができ、発生する放電プラズマを用いて連続的な成膜プロセスでプラズマCVD成膜を行うことができる。 By using this device, by controlling the plasma generation power supply 20, the film-forming gas supplied from the gas supply pipe 19 into the space 27 between the first film-forming roll 25 and the second film-forming roll 26. Discharge plasma can be generated, and plasma CVD film formation can be performed by a continuous film formation process using the generated discharge plasma.
 送り出しロール11には、成膜前の基材29が巻き取られた状態、すなわち、ロール状基材の状態で配置されている。工程(I)において、送り出しロール11からロール状基材29が長手方向に巻き出される。巻き出し速度は、巻き出し時の帯電量の絶対値を2.0kV以上に調整しやすくする観点から、好ましくは1.2m/分以上である。巻き出し時の帯電量は、静電電位監視装置(図示せず)により、送り出しロール直後の測定位置101で測定することができる。測定位置101は、巻き出してから5秒以内の位置、又は、巻き出してからの搬送距離10cm以内の位置である。巻き出し時の帯電量は、大気下で測定する必要があるため、大気下において、送り出しロール11から基材29を巻き出した時に測定を行う。次いで、製造装置10の内部を真空にした後、搬送ロール13及び14により基材29を第1成膜ロール25に搬送する。本発明の一実施態様では巻き出した時の帯電量の絶対値が、大気下で測定したときに、2.0kV以上であり、得られる積層フィルムの巻きずれの発生を抑制できる。 The feeding roll 11 is arranged with the base material 29 before film formation wound up, that is, in the state of a roll-shaped base material. In step (I), the roll-shaped base material 29 is unwound from the delivery roll 11 in the longitudinal direction. The unwinding speed is preferably 1.2 m / min or more from the viewpoint of making it easy to adjust the absolute value of the charge amount at the time of unwinding to 2.0 kV or more. The amount of charge at the time of unwinding can be measured at the measurement position 101 immediately after the feeding roll by an electrostatic potential monitoring device (not shown). The measurement position 101 is a position within 5 seconds after unwinding, or a position within a transport distance of 10 cm after unwinding. Since it is necessary to measure the amount of charge at the time of unwinding in the atmosphere, the measurement is performed when the base material 29 is unwound from the delivery roll 11 in the atmosphere. Next, after the inside of the manufacturing apparatus 10 is evacuated, the base material 29 is transferred to the first film forming roll 25 by the transfer rolls 13 and 14. In one embodiment of the present invention, the absolute value of the amount of charge at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and the occurrence of unwinding of the obtained laminated film can be suppressed.
 工程(II)において、一対の成膜ロール25及び26間に、反応ガスと原料ガスとを供給し、該ロール間に発生させるプラズマ放電により、搬送された基材29の少なくとも一方の側に無機薄膜層を形成して積層フィルムを得る。工程(II)の詳細を以下に示す。 In step (II), the reaction gas and the raw material gas are supplied between the pair of film forming rolls 25 and 26, and the plasma discharge generated between the rolls causes the inorganic material to be transferred to at least one side of the base material 29. A thin film layer is formed to obtain a laminated film. Details of step (II) are shown below.
 第1成膜ロール25及び第2成膜ロール26は導電性材料で形成され、それぞれ回転しながら基材29を搬送する。第1成膜ロール25及び第2成膜ロール26は、平行に延在して対向配置されている。第1成膜ロール25及び第2成膜ロール26は、直径が同じものを用いることが好ましく、直径は5cm~30cmである。また、第1成膜ロール25と第2成膜ロール26とは、相互に絶縁されていると共に、共通するプラズマ発生用電源20に接続されている。プラズマ発生用電源20から交流電圧を印加すると、第1成膜ロール25と第2成膜ロール26との間の空間27に電場が形成される。プラズマ発生用電源20は、印加電力が好ましくは100W~10kWであり、交流の周波数は好ましくは50Hz~500kHzである。 The first film-forming roll 25 and the second film-forming roll 26 are made of a conductive material, and each of them conveys the base material 29 while rotating. The first film forming roll 25 and the second film forming roll 26 extend in parallel and are arranged to face each other. The first film forming roll 25 and the second film forming roll 26 preferably have the same diameter, and have a diameter of 5 cm to 30 cm. Further, the first film forming roll 25 and the second film forming roll 26 are insulated from each other and connected to a common plasma generation power source 20. When an AC voltage is applied from the plasma generation power source 20, an electric field is formed in the space 27 between the first film forming roll 25 and the second film forming roll 26. The applied power of the plasma generation power supply 20 is preferably 100 W to 10 kW, and the AC frequency is preferably 50 Hz to 500 kHz.
 磁場形成装置23及び磁場形成装置24は、空間27に磁場を形成する部材であり、第1成膜ロール25及び第2成膜ロール26の内部に格納されている。磁場形成装置23及び磁場形成装置24は、第1成膜ロール25及び第2成膜ロール26と共には回転しないように(すなわち、真空チャンバーに対する相対的な姿勢が変化しないように)固定されている。 The magnetic field forming device 23 and the magnetic field forming device 24 are members that form a magnetic field in the space 27, and are housed inside the first film forming roll 25 and the second film forming roll 26. The magnetic field forming device 23 and the magnetic field forming device 24 are fixed so as not to rotate together with the first film forming roll 25 and the second forming film roll 26 (that is, the posture relative to the vacuum chamber does not change). ..
 磁場形成装置23及び磁場形成装置24は、第1成膜ロール25及び第2成膜ロール26の延在方向と同方向に延在する中心磁石23a,24aと、中心磁石23a,24aの周囲を囲みながら、第1成膜ロール25及び第2成膜ロール26の延在方向と同方向に延在して配置される円環状の外部磁石23b,24bとを有している。磁場形成装置23では、中心磁石23aと外部磁石23bとを結ぶ磁力線(磁界)が、無終端のトンネルを形成している。磁場形成装置24においても同様に、中心磁石24aと外部磁石24bとを結ぶ磁力線が、無終端のトンネルを形成している。 The magnetic field forming device 23 and the magnetic field forming device 24 are formed around the central magnets 23a and 24a extending in the same direction as the extending direction of the first film forming roll 25 and the second film forming roll 26 and around the central magnets 23a and 24a. While surrounding, it has an annular outer magnets 23b and 24b that are arranged so as to extend in the same direction as the extending direction of the first film forming roll 25 and the second film forming roll 26. In the magnetic field forming device 23, the magnetic field lines (magnetic fields) connecting the central magnet 23a and the external magnet 23b form an endless tunnel. Similarly, in the magnetic field forming device 24, the magnetic field lines connecting the central magnet 24a and the external magnet 24b form an endless tunnel.
 この磁力線と、第1成膜ロール25と第2成膜ロール26との間に形成される電界と、が交叉するマグネトロン放電によって、成膜ガスの放電プラズマが生成される。すなわち、詳しくは後述するように、空間27は、プラズマCVD成膜を行う成膜空間として用いられ、基材29において第1成膜ロール25、第2成膜ロール26に接しない面(成膜面)には、成膜ガスがプラズマ状態を経由して堆積した無機薄膜層が形成される。 The discharge plasma of the film-forming gas is generated by the magnetron discharge in which the magnetic field lines and the electric field formed between the first film-forming roll 25 and the second film-forming roll 26 intersect. That is, as will be described in detail later, the space 27 is used as a film forming space for performing plasma CVD film formation, and the surface of the base material 29 that does not come into contact with the first film forming roll 25 and the second film forming roll 26 (film formation). On the surface), an inorganic thin film layer in which the film-forming gas is deposited via the plasma state is formed.
 空間27の近傍には、空間27にプラズマCVDの原料ガスや反応ガスを含む成膜ガス28を供給するガス供給管19が設けられている。ガス供給管19は、第1成膜ロール25及び第2成膜ロール26の延在方向と同一方向に延在する管状の形状を有しており、複数箇所に設けられた開口部から空間27に成膜ガス28を供給する。図1では、ガス供給管19から空間27に向けて成膜ガス28を供給する様子を矢印で示している。 In the vicinity of the space 27, a gas supply pipe 19 for supplying a film-forming gas 28 containing a plasma CVD raw material gas and a reaction gas is provided in the space 27. The gas supply pipe 19 has a tubular shape extending in the same direction as the extending direction of the first film forming roll 25 and the second film forming roll 26, and the space 27 is provided through openings provided at a plurality of locations. 28 is supplied with the film-forming gas 28. In FIG. 1, an arrow indicates how the film-forming gas 28 is supplied from the gas supply pipe 19 toward the space 27.
 原料ガス及び反応ガスは、上記例示の原料ガス及び反応ガスが用いられ、その流量及び比率も、上記例示の範囲から選択できる。なお、成膜ガスには、上記キャリアガス及び放電用ガスを含んでいてもよい。真空チャンバー内の圧力(真空度)、すなわち、空間27の圧力は好ましくは0.1~50Paである。プラズマ発生装置の電極ドラムの電力は、好ましくは100W~10kWである。基材29の搬送速度(ライン速度)は、通常、巻き出し速度と同様であり、好ましくは1.2m/分以上である。 As the raw material gas and reaction gas, the above-exemplified raw material gas and reaction gas are used, and the flow rate and ratio thereof can also be selected from the above-exemplified range. The film-forming gas may include the carrier gas and the discharge gas. The pressure in the vacuum chamber (degree of vacuum), that is, the pressure in the space 27 is preferably 0.1 to 50 Pa. The electric power of the electrode drum of the plasma generator is preferably 100 W to 10 kW. The transport speed (line speed) of the base material 29 is usually the same as the unwinding speed, and is preferably 1.2 m / min or more.
 製造装置10においては、以下のとおり、基材29に対して成膜が行われる。すなわち、基材29の表面に無機薄膜層が形成される。まず、成膜前に、基材29から発生するアウトガスが十分に少なくなるように事前の処理を行うとよい。 In the manufacturing apparatus 10, the film is formed on the base material 29 as follows. That is, an inorganic thin film layer is formed on the surface of the base material 29. First, before film formation, it is advisable to perform a pretreatment so that the outgas generated from the base material 29 is sufficiently reduced.
 基材29からのアウトガスの発生量を少なくする方法としては、真空乾燥、加熱乾燥、及びこれらの組み合わせによる乾燥、並びに自然乾燥による乾燥方法が挙げられる。いずれの乾燥方法であっても、ロール状に巻き取った基材29の内部の乾燥を促進するために、乾燥中にロールの巻き替え(巻出し及び巻取り)を繰り返し行い、基材29全体を乾燥環境下に曝すことが好ましい。 Examples of the method for reducing the amount of outgas generated from the base material 29 include vacuum drying, heat drying, drying by a combination thereof, and drying by natural drying. Regardless of the drying method, in order to accelerate the drying of the inside of the base material 29 wound in a roll shape, the roll is repeatedly rewound (unwinding and winding) during drying, and the entire base material 29 is taken up. Is preferably exposed to a dry environment.
 真空乾燥は、耐圧性の真空容器に基材29を入れ、真空ポンプのような減圧機を用いて真空容器内を排気して真空にすることにより行う。真空乾燥時の真空容器内の圧力は、1000Pa以下が好ましく、100Pa以下がより好ましく、10Pa以下がさらに好ましい。真空容器内の排気は、減圧機を連続的に運転することで連続的に行うこととしてもよく、内圧が一定以上にならないように管理しながら、減圧機を断続的に運転することで断続的に行うこととしてもよい。乾燥時間は、少なくとも8時間以上であることが好ましく、1週間以上であることがより好ましく、1ヶ月以上であることがさらに好ましい。 Vacuum drying is performed by placing the base material 29 in a pressure-resistant vacuum container and evacuating the inside of the vacuum container using a decompressor such as a vacuum pump to create a vacuum. The pressure in the vacuum vessel during vacuum drying is preferably 1000 Pa or less, more preferably 100 Pa or less, and even more preferably 10 Pa or less. Exhaust in the vacuum vessel may be performed continuously by continuously operating the decompressor, or intermittently by operating the decompressor intermittently while controlling the internal pressure so as not to exceed a certain level. It may be done in. The drying time is preferably at least 8 hours or more, more preferably 1 week or more, and further preferably 1 month or more.
 加熱乾燥は、基材29を室温以上の環境下に曝すことにより行う。加熱温度は、室温以上200℃以下が好ましく、室温以上150℃以下がさらに好ましい。200℃を超える温度では、基材29が変形するおそれや、基材29から例えばオリゴマー成分が溶出し表面に析出することにより、欠陥が生じるおそれがある。乾燥時間は、加熱温度や用いる加熱手段により適宜選択することができる。 Heat drying is performed by exposing the base material 29 to an environment of room temperature or higher. The heating temperature is preferably room temperature or higher and 200 ° C. or lower, and more preferably room temperature or higher and 150 ° C. or lower. At a temperature exceeding 200 ° C., the base material 29 may be deformed, or defects may occur due to elution of, for example, an oligomer component from the base material 29 and precipitation on the surface. The drying time can be appropriately selected depending on the heating temperature and the heating means used.
 加熱手段としては、常圧下で基材29を室温以上200℃以下に加熱できるものであればよい。通常知られる装置の中では、赤外線加熱装置、マイクロ波加熱装置や、加熱ドラムが好ましく用いられる。赤外線加熱装置とは、赤外線発生手段から赤外線を放射することにより対象物を加熱する装置である。マイクロ波加熱装置とは、マイクロ波発生手段からマイクロ波を照射することにより対象物を加熱する装置である。加熱ドラムとは、ドラム表面を加熱し、対象物をドラム表面に接触させることにより、接触部分から熱伝導により加熱する装置である。 The heating means may be any as long as it can heat the base material 29 to room temperature or higher and 200 ° C. or lower under normal pressure. Among the commonly known devices, an infrared heating device, a microwave heating device, and a heating drum are preferably used. The infrared heating device is a device that heats an object by radiating infrared rays from an infrared generating means. The microwave heating device is a device that heats an object by irradiating a microwave from a microwave generating means. The heating drum is a device that heats the surface of the drum and brings the object into contact with the surface of the drum to heat the drum surface by heat conduction from the contact portion.
 自然乾燥は、基材29を低湿度の雰囲気中に配置し、乾燥ガス(乾燥空気、乾燥窒素)を通風させることで低湿度の雰囲気を維持することにより行う。自然乾燥を行う際には、基材29を配置する低湿度環境にシリカゲルなどの乾燥剤を一緒に配置することが好ましい。乾燥時間は、8時間以上であることが好ましく、1週間以上であることがより好ましく、1ヶ月以上であることがさらに好ましい。これらの乾燥は、基材29を製造装置に装着する前に別途行ってもよく、基材29を製造装置に装着した後に、製造装置内で行ってもよい。基材29を製造装置に装着した後に乾燥させる方法としては、送り出しロール11から基材29を送り出し搬送しながら、チャンバー内を減圧することが挙げられる。また、通過させるロールがヒーターを備えるものとし、ロールを加熱することで該ロールを上述の加熱ドラムとして用いて加熱することとしてもよい。 Natural drying is performed by arranging the base material 29 in a low humidity atmosphere and allowing dry gas (dry air, dry nitrogen) to pass through to maintain a low humidity atmosphere. When performing natural drying, it is preferable to place a desiccant such as silica gel together in a low humidity environment in which the base material 29 is placed. The drying time is preferably 8 hours or more, more preferably 1 week or more, and further preferably 1 month or more. These dryings may be performed separately before mounting the base material 29 on the manufacturing apparatus, or may be performed in the manufacturing apparatus after mounting the base material 29 on the manufacturing apparatus. As a method of mounting the base material 29 on the manufacturing apparatus and then drying it, it is possible to reduce the pressure in the chamber while feeding and transporting the base material 29 from the delivery roll 11. Further, the roll to be passed may be provided with a heater, and the roll may be heated by using the roll as the above-mentioned heating drum.
 基材29からのアウトガスを少なくする別の方法として、予め基材29の表面に無機膜を成膜しておくことが挙げられる。無機膜の成膜方法としては、真空蒸着(加熱蒸着)、電子ビーム(Electron Beam、EB)蒸着、スパッタ、イオンプレーティングなどの物理的成膜方法が挙げられる。熱CVD、プラズマCVD、大気圧CVDなどの化学的堆積法により無機膜を成膜することとしてもよい。表面に無機膜を成膜した基材29を、上述の乾燥方法による乾燥処理を施すことにより、さらにアウトガスの影響を少なくしてもよい。 Another method of reducing the outgas from the base material 29 is to form an inorganic film on the surface of the base material 29 in advance. Examples of the method for forming an inorganic film include a physical film forming method such as vacuum vapor deposition (heat vapor deposition), electron beam (EB) vapor deposition, sputtering, and ion plating. The inorganic film may be formed by a chemical deposition method such as thermal CVD, plasma CVD, or atmospheric pressure CVD. The influence of outgas may be further reduced by subjecting the base material 29 having an inorganic film formed on the surface to a drying treatment by the above-mentioned drying method.
 次いで、不図示の真空チャンバー内を減圧環境とし、第1成膜ロール25、第2成膜ロール26に印加して空間27に電界を生じさせる。この際、磁場形成装置23及び磁場形成装置24では上述した無終端のトンネル状の磁場を形成しているため、成膜ガスを導入することにより、該磁場と空間27に放出される電子とによって、該トンネルに沿ったドーナツ状の成膜ガスの放電プラズマが形成される。この放電プラズマは、数Pa近傍の低圧力で発生可能であるため、真空チャンバー内の温度を室温近傍とすることが可能になる。 Next, a vacuum chamber (not shown) is used as a reduced pressure environment, and an electric field is generated in the space 27 by applying it to the first film forming roll 25 and the second film forming roll 26. At this time, since the magnetic field forming device 23 and the magnetic field forming device 24 form the above-mentioned non-terminal tunnel-shaped magnetic field, the magnetic field and the electrons emitted into the space 27 are generated by introducing the film-forming gas. , A discharge plasma of a donut-shaped film-forming gas is formed along the tunnel. Since this discharge plasma can be generated at a low pressure of around several Pa, the temperature inside the vacuum chamber can be set to around room temperature.
 一方、磁場形成装置23及び磁場形成装置24が形成する磁場に高密度で捉えられている電子の温度は高いので、当該電子と成膜ガスとの衝突により生じる放電プラズマが生じる。すなわち、空間27に形成される磁場と電場により電子が空間27に閉じ込められることにより、空間27に高密度の放電プラズマが形成される。より詳しくは、無終端のトンネル状の磁場と重なる空間においては、高密度の(高強度の)放電プラズマが形成され、無終端のトンネル状の磁場とは重ならない空間においては低密度の(低強度の)放電プラズマが形成される。これら放電プラズマの強度は、連続的に変化するものである。 On the other hand, since the temperature of the electrons captured at high density in the magnetic field formed by the magnetic field forming device 23 and the magnetic field forming device 24 is high, discharge plasma generated by the collision between the electrons and the film-forming gas is generated. That is, electrons are confined in the space 27 by the magnetic field and the electric field formed in the space 27, so that a high-density discharge plasma is formed in the space 27. More specifically, a high-density (high-intensity) discharge plasma is formed in a space that overlaps with an unterminated tunnel-shaped magnetic field, and a low-density (low) in a space that does not overlap with an unterminated tunnel-shaped magnetic field. (Intensity) discharge plasma is formed. The intensity of these discharge plasmas changes continuously.
 放電プラズマが生じると、ラジカルやイオンを多く生成してプラズマ反応が進行し、成膜ガスに含まれる原料ガスと反応ガスとの反応が生じる。ここで、高強度の放電プラズマが形成されている空間では、酸化反応に与えられるエネルギーが多いため反応が進行しやすく、主として前記有機ケイ素化合物の完全酸化反応を生じさせることができる。一方、低強度の放電プラズマが形成されている空間では、酸化反応に与えられるエネルギーが少ないため反応が進行しにくく、主として前記有機ケイ素化合物の不完全酸化反応を生じさせることができる。 When discharge plasma is generated, a large amount of radicals and ions are generated and the plasma reaction proceeds, and the reaction between the raw material gas contained in the film-forming gas and the reaction gas occurs. Here, in the space where the high-intensity discharge plasma is formed, the reaction easily proceeds because the energy given to the oxidation reaction is large, and the complete oxidation reaction of the organosilicon compound can be mainly caused. On the other hand, in the space where the low-intensity discharge plasma is formed, the energy given to the oxidation reaction is small, so that the reaction is difficult to proceed, and the incomplete oxidation reaction of the organosilicon compound can be mainly caused.
 なお、本明細書において「珪素原子及び炭素原子を含有する有機ケイ素化合物の完全酸化反応」とは、該有機ケイ素化合物と酸素との反応が進行し、該有機ケイ素化合物が、上述の反応式(I)に示すような、SiOと水と二酸化炭素にまで酸化分解されることを意味する。 In the present specification, the "complete oxidation reaction of an organosilicon compound containing a silicon atom and a carbon atom" means that the reaction between the organosilicon compound and oxygen proceeds, and the organosilicon compound has the above-mentioned reaction formula ( It means that it is oxidatively decomposed into SiO 2 , water and carbon dioxide as shown in I).
 また、本明細書において「珪素原子及び炭素原子を含有する有機ケイ素化合物の不完全酸化反応」とは、該有機ケイ素化合物が完全酸化反応をせず、SiOではなく構造中に炭素を含むSiOxCy(0<x<2、0<y<2)が生じる反応となることを意味する。 Further, in the present specification, "incomplete oxidation reaction of an organosilicon compound containing a silicon atom and a carbon atom" means SiOxCy in which the organosilicon compound does not undergo a complete oxidation reaction and contains carbon in the structure instead of SiO 2. It means that the reaction is such that (0 <x <2, 0 <y <2) occurs.
 上述のとおり、製造装置10では、放電プラズマが第1成膜ロール25、第2成膜ロール26の表面にドーナツ状に形成されるため、第1成膜ロール25、第2成膜ロール26の表面を搬送される基材29は、高強度の放電プラズマが形成されている空間と、低強度の放電プラズマが形成されている空間とを交互に通過することとなる。そのため、第1成膜ロール25、第2成膜ロール26の表面を通過する基材29の表面には、完全酸化反応によって生じるSiOを多く含む層(Ha1層又はHa2層とする)に、不完全酸化反応によって生じるSiOxCyを多く含む層(Hb1層又はHb2層とする)が挟持されて形成される。例えば、積層されている順に、基材29/HA層(Ha1層/Hb1層/Ha1層)/HB層(Ha2層/Hb2層/Ha2層)で構成された積層体などが形成される。 As described above, in the manufacturing apparatus 10, since the discharge plasma is formed in a donut shape on the surfaces of the first film forming roll 25 and the second film forming roll 26, the first film forming roll 25 and the second film forming roll 26 The base material 29 transported on the surface alternately passes through the space in which the high-intensity discharge plasma is formed and the space in which the low-intensity discharge plasma is formed. Therefore, on the surface of the base material 29 that passes through the surfaces of the first film forming roll 25 and the second film forming roll 26, a layer containing a large amount of SiO 2 generated by the complete oxidation reaction (referred to as Ha1 layer or Ha2 layer). A layer containing a large amount of SiOxCy (referred to as an H b1 layer or an H b2 layer) generated by an incomplete oxidation reaction is sandwiched and formed therein. For example, a laminate composed of a base material 29 / HA layer ( Ha1 layer / Hb1 layer / Ha1 layer) / HB layer ( Ha2 layer / Hb2 layer / Ha2 layer) in the order of being laminated, or the like. Is formed.
 これらに加えて、高温の2次電子が磁場の作用で基材29に流れ込むのが防止され、よって、基材29の温度を低く抑えたままで高い電力の投入が可能となり、高速成膜が達成される。膜の堆積は、主に基材29の成膜面のみに起こり、成膜ロールは基材29に覆われて汚れにくいために、長時間の安定成膜ができる。 In addition to these, high-temperature secondary electrons are prevented from flowing into the base material 29 due to the action of the magnetic field, so that high power can be applied while keeping the temperature of the base material 29 low, and high-speed film formation is achieved. Will be done. The film deposition mainly occurs only on the film-forming surface of the base material 29, and the film-forming roll is covered with the base material 29 to prevent stains, so that stable film formation can be performed for a long time.
 本発明の一実施態様において、製造される積層フィルムは、少なくとも、HA層とHB層とを有する。まず、基材側にHA層を形成した後に、HB層を形成することが好ましい。HB層を形成する際は、HA層を形成時の膜表面の温度より、高い温度で成膜することが好ましい。膜表面の温度を制御する方法としては、1.真空チャンバー内の成膜時の圧力を低くする、2.プラズマ発生用電源からの印加電力を高くする、3.原料ガスの流量(及び反応ガスの流量)を小さくする、4.基材の搬送速度を小さくする、5.成膜ロール自体の温度を上げる、6.成膜時のプラズマ発生用電源の周波数を下げるなどが挙げられる。これらの条件1~6のうちの1つを選び、他の条件を固定して、選んだ条件を最適化して、成膜時に適度な温度となるようにして、成膜してもよいし、これらの条件のうちの2つ又は3つ以上を変化させて、最適化して、成膜時に適度な温度となるようにして、成膜してもよい。なお、条件1~4及び6に関しては、上述の範囲で最適化することが好ましい。上記5の条件に関しては、第1成膜ロール25及び第2成膜ロール26の表面の温度として、-10~80℃であることが好ましい。 In one embodiment of the present invention, the laminated film produced has at least an HA layer and an HB layer. First, it is preferable to form the HB layer after forming the HA layer on the base material side. When forming the HB layer, it is preferable to form the HA layer at a temperature higher than the temperature of the film surface at the time of formation. As a method of controlling the temperature of the film surface, 1. 2. Reduce the pressure during film formation in the vacuum chamber. 2. Increase the applied power from the plasma generation power supply. 3. Reduce the flow rate of the raw material gas (and the flow rate of the reaction gas). 4. Reduce the transport speed of the base material. Raise the temperature of the film forming roll itself, 6. For example, lowering the frequency of the power source for plasma generation at the time of film formation. One of these conditions 1 to 6 may be selected, the other conditions may be fixed, and the selected conditions may be optimized so that the temperature becomes appropriate at the time of film formation. Two or three or more of these conditions may be changed to optimize the film formation so that the temperature becomes appropriate at the time of film formation. It is preferable to optimize conditions 1 to 4 and 6 within the above range. Regarding the above condition 5, the surface temperature of the first film forming roll 25 and the second film forming roll 26 is preferably −10 to 80 ° C.
 工程(III)において、基材29の表面に無機薄膜層が形成された積層フィルムを搬送ロール17及び18で搬送し、巻取りロール12により、ロール状に巻き取られる。 In the step (III), the laminated film in which the inorganic thin film layer is formed on the surface of the base material 29 is conveyed by the conveying rolls 17 and 18, and is wound into a roll by the winding roll 12.
 工程(II)及び工程(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値は、真空下で測定したときに、1.5kV以下であり、得られる積層フィルム表面への異物の付着を防ぎ、異物欠陥の発生を有効に抑制できる。無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量は、静電電位監視装置及び真空対応静電電位センサ(図示せず)により、第2成膜ロール直後の測定位置102及び巻取りロール直前の測定位置103で測定することができる。測定位置102は、第2成膜ロール26を通過してから5秒以内又は第2成膜ロール26を通過してからの搬送距離10cm以内の位置である。測定位置103は、巻取りロール12で巻取り始める前5秒以内又は巻取り始めるまでの搬送距離10cm以内の位置である。 In step (II) and step (III), the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is 1.5 kV or less when measured under vacuum. It is possible to prevent foreign matter from adhering to the surface of the laminated film and effectively suppress the occurrence of foreign matter defects. The amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until the time of winding is measured at the measurement position 102 immediately after the second film forming roll by the electrostatic potential monitoring device and the vacuum-compatible electrostatic potential sensor (not shown). It can be measured at the measurement position 103 immediately before the take-up roll. The measurement position 102 is a position within 5 seconds after passing through the second film forming roll 26 or within a transport distance of 10 cm after passing through the second film forming roll 26. The measurement position 103 is a position within 5 seconds before the start of winding with the take-up roll 12 or within a transport distance of 10 cm until the start of winding.
 本発明の一実施態様の製造方法では、工程(A)において、プラズマの発生開始から停止までの操作を1回以上、すなわち、1パス以上で行う。図1の製造装置では、一定の長さの積層フィルムを製造する際に、一定の長さの基材29を巻き出し、一対の成膜ロール25及び26を通過する際に無機薄膜層を成膜し、巻取りロール12で巻き取るまでの動作が1パスである。また、通常、2パス目は、1パス目で基材29に無機薄膜層が成膜されたフィルムを巻き取った巻取りロール12から、該フィルムを送り出し、搬送ロール18~16により搬送され、次いで、第2成膜ロール26及び第1成膜ロール25を通過する際に、1パス目で成膜された無機薄膜層上にさらに無機薄膜層が成膜され、次いで、搬送ロール15~13により搬送され、最後に、送り出しロール11で該フィルムが巻き取られる。よって、成膜を複数パスで行うことにより、無機薄膜層を多層にすることができる。かかる場合、同じ厚みの無機薄膜層を形成する場合であっても、搬送スピードを上げることができるため、基材への熱ダメージを抑制することができる。なお、上記の通り、基材を巻き出す工程(I)、すなわち、1パス目において所定の帯電量を満たせばよい。また、工程(II)及び(III)における無機薄膜層形成後、巻き取り時までにおいては、少なくとも1パス目で所定の帯電量を満たせばよいが、異物欠陥の発生をより抑制しやすい観点からは、2パス目以降も所定の帯電量を満たすことが好ましい。ここで、パス回数が複数回の場合、工程(II)及び(III)における無機薄膜層形成後、巻き取り時までの帯電量は、成膜ロールを基準に、一方の側の測定位置、すなわち、測定位置102及び測定位置103で測定したものであればよく、他方の側にも対応する測定位置を設けて、両方の側で測定することもできる。 In the manufacturing method of one embodiment of the present invention, in the step (A), the operation from the start to the stop of plasma generation is performed once or more, that is, in one pass or more. In the manufacturing apparatus of FIG. 1, when manufacturing a laminated film of a certain length, a base material 29 of a certain length is unwound, and an inorganic thin film layer is formed when passing through a pair of film forming rolls 25 and 26. The operation of filming and winding with the take-up roll 12 is one pass. Further, usually, in the second pass, the film is sent out from the winding roll 12 in which the film having the inorganic thin film layer formed on the base material 29 is wound in the first pass, and the film is conveyed by the conveying rolls 18 to 16. Next, when passing through the second film forming roll 26 and the first film forming roll 25, an inorganic thin film layer is further formed on the inorganic thin film layer formed in the first pass, and then the transport rolls 15 to 13 are formed. Finally, the film is wound up by the delivery roll 11. Therefore, the inorganic thin film layer can be made into multiple layers by performing the film formation in a plurality of passes. In such a case, even when the inorganic thin film layer having the same thickness is formed, the transport speed can be increased, so that thermal damage to the base material can be suppressed. As described above, the predetermined charge amount may be satisfied in the step (I) of unwinding the base material, that is, in the first pass. Further, after the formation of the inorganic thin film layer in the steps (II) and (III) and until the time of winding, the predetermined charge amount may be satisfied at least in the first pass, but from the viewpoint of more easily suppressing the occurrence of foreign matter defects. It is preferable that the predetermined charge amount is satisfied even after the second pass. Here, when the number of passes is a plurality of times, the amount of charge from the formation of the inorganic thin film layer in the steps (II) and (III) to the time of winding is the measurement position on one side, that is, based on the film forming roll. , The measurement may be performed at the measurement position 102 and the measurement position 103, and the measurement can be performed on both sides by providing the corresponding measurement positions on the other side.
 図1にかかる本発明の一実施態様では、基材29は、上記[基材]の項に記載の基材と同様のものであり、無機薄膜層は〔工程(II)〕の項に記載の無機薄膜層と同様のものである。 In one embodiment of the present invention according to FIG. 1, the base material 29 is the same as the base material described in the above [base material] section, and the inorganic thin film layer is described in the section [step (II)]. It is similar to the inorganic thin film layer of.
〔積層フィルム〕
 本発明の一実施態様の製造方法により得られる積層フィルムは、前記基材と、該基材の少なくとも一方の面に形成された1層以上の前記無機薄膜層とを含む。該基材は、前記可撓性フィルムに加え、前記プライマー層及び/又は前記有機層を含んでいてもよい。本発明の一実施態様の製造方法により得られる積層フィルムは、工程(I)において、巻き出し時の基材表面における帯電量の絶対値が大気下で測定したときに2.0kV以上であり、かつ工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値が真空下で測定したときに1.5kV以下であるため、巻きずれ及び異物欠陥が抑制されている。そのため、本発明の一実施態様の製造方法により得られる積層フィルムは、有機EL素子や有機薄膜太陽電池等の電子デバイス用途に好適に利用可能である。
 図2に、本発明の一実施態様の製造方法により得られる積層フィルムの層構成の一例を示すが、この態様に限定されない。積層フィルム1は、例えば図1に示す製造装置により製造することができ、可撓性フィルム5、プライマー層4及び有機層3をこの順に有する基材6上に無機薄膜層2が形成(又は積層)されたフィルムである。なお、図1においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜調整している。このため、寸法や比率等は適宜変更できる。
[Laminated film]
The laminated film obtained by the production method of one embodiment of the present invention includes the base material and one or more layers of the inorganic thin film formed on at least one surface of the base material. The substrate may include the primer layer and / or the organic layer in addition to the flexible film. The laminated film obtained by the production method of one embodiment of the present invention has an absolute value of the amount of charge on the surface of the base material at the time of unwinding of 2.0 kV or more when measured in the atmosphere in step (I). Moreover, in steps (II) and (III), the absolute value of the amount of charge on the surface of the inorganic thin film layer after the formation of the inorganic thin film layer until winding is 1.5 kV or less when measured under vacuum, so that the winding shift occurs. And foreign matter defects are suppressed. Therefore, the laminated film obtained by the production method of one embodiment of the present invention can be suitably used for electronic device applications such as organic EL elements and organic thin-film solar cells.
FIG. 2 shows an example of the layer structure of the laminated film obtained by the production method of one embodiment of the present invention, but the present invention is not limited to this aspect. The laminated film 1 can be manufactured by, for example, the manufacturing apparatus shown in FIG. 1, and the inorganic thin film layer 2 is formed (or laminated) on the base material 6 having the flexible film 5, the primer layer 4, and the organic layer 3 in this order. ) Is a film. In FIG. 1, the dimensions and ratios of each component are appropriately adjusted in order to make the drawings easier to see. Therefore, the dimensions, ratio, and the like can be changed as appropriate.
 本発明の一実施態様により得られる積層フィルムは、ガスバリア性フィルムであることが好ましい。
該ガスバリア性フィルムは、ガスバリア性、特に水蒸気バリア性に優れるため、水蒸気透過度が小さい。該ガスバリア性フィルムの水蒸気透過度は、好ましくは5×10-2g/m/day以下、より好ましくは1×10-2g/m/day以下、さらに好ましくは5×10-3g/m/day以下である。ガスバリア性フィルムの水蒸気透過度が上記の上限以下であると、ガスバリア性を向上できる。また、ガスバリア性フィルムの水蒸気透過度の下限は、通常0g/m/day以上である。なお、水蒸気透過度は、ISO/WD 15106-7(Annex C)に準拠したCa腐食試験法で測定でき、例えば実施例に記載の方法により測定できる。
The laminated film obtained by one embodiment of the present invention is preferably a gas barrier film.
Since the gas barrier film is excellent in gas barrier property, particularly water vapor barrier property, the water vapor permeability is small. The water vapor permeability of the gas barrier film is preferably 5 × 10 -2 g / m 2 / day or less, more preferably 1 × 10 -2 g / m 2 / day or less, and further preferably 5 × 10 -3 g. It is less than / m 2 / day. When the water vapor permeability of the gas barrier film is not more than the above upper limit, the gas barrier property can be improved. The lower limit of the water vapor permeability of the gas barrier film is usually 0 g / m 2 / day or more. The water vapor permeability can be measured by a Ca corrosion test method based on ISO / WD 15106-7 (Annex C), for example, by the method described in Examples.
 積層フィルムは、必要に応じて、各層の間や最外層に、他の層を有していてよい。他の層としては、例えば易滑層、ハードコート層、透明導電膜層、カラーフィルター層、易接着層、カール調整層、応力緩和層、耐熱層、耐擦傷層、耐押し込み層、保護層等が挙げられる。 The laminated film may have other layers between each layer or between the outermost layers, if necessary. Other layers include, for example, an easy-slip layer, a hard coat layer, a transparent conductive film layer, a color filter layer, an easy-adhesion layer, a curl adjustment layer, a stress relaxation layer, a heat-resistant layer, an abrasion-resistant layer, a pressing-resistant layer, a protective layer, and the like. Can be mentioned.
 積層フィルムの厚みは、積層フィルムのガスバリア性、耐屈曲性、耐久性及び表面硬度等の観点から、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上であり、好ましくは600μm以下、より好ましくは300μm以下、さらに好ましくは250μm以下である。なお、積層フィルムの厚み(膜厚)は、膜厚計により測定できる。 The thickness of the laminated film is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 15 μm or more, preferably 600 μm or less, from the viewpoint of gas barrier property, bending resistance, durability, surface hardness, etc. of the laminated film. It is more preferably 300 μm or less, still more preferably 250 μm or less. The thickness (film thickness) of the laminated film can be measured with a film thickness meter.
 積層フィルムは、好ましくは長尺フィルムであり、その長さ及び幅はそれぞれ、上記基材の長さ及び幅と同じ範囲から選択できる。本発明の一実施態様では、巻き出し時の帯電量の絶対値、及び無機薄膜層形成後、巻取り時までの帯電量の絶対値が所定範囲に調整されているため、上記の下限以上の長尺基材であっても巻きずれ及び異物欠陥の発生を有効に抑制できる。 The laminated film is preferably a long film, and the length and width thereof can be selected from the same range as the length and width of the base material, respectively. In one embodiment of the present invention, the absolute value of the charge amount at the time of unwinding and the absolute value of the charge amount at the time of winding after the formation of the inorganic thin film layer are adjusted within a predetermined range, and thus are equal to or higher than the above lower limit. Even with a long base material, it is possible to effectively suppress the occurrence of unwinding and foreign matter defects.
〔膜厚〕
 実施例及び比較例で得られた積層フィルムの可撓性フィルム、有機層及び無機薄膜層の各層の膜厚は、膜厚計((株)小坂研究所製、「サーフコーダET200」)を用いて、無成膜部と成膜部の段差測定を行って求めた。
[Film thickness]
For the film thickness of each of the flexible film, the organic layer and the inorganic thin film layer of the laminated film obtained in Examples and Comparative Examples, a film thickness meter (manufactured by Kosaka Laboratory Co., Ltd., "Surfcoder ET200") was used. Then, the step between the non-deposited portion and the film-deposited portion was measured.
〔無機薄膜層表面のX線光電子分光測定〕
 実施例で得られた積層フィルムの無機薄膜層表面の原子数比は、X線光電子分光法(ULVAC PHI(株)製、「QuanteraSXM」)を用いて、以下のXPSデプスプロファイルに従って測定した。X線源としてはAlKα線(1486.6eV、X線スポット100μm)を用い、また、測定時の帯電補正のために、中和電子銃(1eV)、低速Arイオン銃(10V)を使用した。測定後の解析は、MultiPak V6.1A(アルバック・ファイ(株))を用いてスペクトル解析を行い、測定したワイドスキャンスペクトルから得られるSiの2p、Oの1s、Nの1s、およびCの1sそれぞれのバインディングエネルギーに相当するピークを用いて、Siに対するC(C/Si)及びSiに対するO(O/Si)の表面原子数比を算出した。表面原子数比としては、5回測定した値の平均値を採用した。この結果から、珪素原子、酸素原子及び炭素原子の分布曲線を作成し、それぞれの原子の厚み方向における平均原子濃度を求めた後、平均原子濃度から平均原子数比C/Si及びO/Siを算出した。
<XPSデプスプロファイル測定>
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.027nm/sec
 スパッタ時間:0.5min
 X線光電子分光装置:アルバックファイ社製、機種名「Quantera SXM」
 照射X線:単結晶分光AlKα(1486.6eV)
 X線のスポットおよびそのサイズ:100μm
 検出器:Pass Energy 69eV,Step size 0.125eV
 帯電補正:中和電子銃(1eV)、低速Arイオン銃(10V)
[X-ray photoelectron spectroscopy measurement of the surface of the inorganic thin film layer]
The atomic number ratio of the surface of the inorganic thin film layer of the laminated film obtained in the examples was measured by X-ray photoelectron spectroscopy (“QuantaraSXM” manufactured by ULVAC-PHI Co., Ltd.) according to the following XPS depth profile. An AlKα ray (1486.6 eV, X-ray spot 100 μm) was used as the X-ray source, and a neutralizing electron gun (1 eV) and a low-speed Ar ion gun (10 V) were used for charge correction at the time of measurement. For post-measurement analysis, spectrum analysis was performed using MultiPak V6.1A (ULVAC-PHI, Inc.), and Si 2p, O 1s, N 1s, and C 1s obtained from the measured wide scan spectrum. The surface atomic number ratios of C (C / Si) to Si and O (O / Si) to Si were calculated using the peaks corresponding to the respective binding energies. As the surface atomic number ratio, the average value of the values measured five times was adopted. From this result, a distribution curve of silicon atom, oxygen atom and carbon atom is created, the average atomic concentration in the thickness direction of each atom is obtained, and then the average atomic number ratios C / Si and O / Si are obtained from the average atomic concentration. Calculated.
<XPS depth profile measurement>
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide film equivalent): 0.027 nm / sec
Spatter time: 0.5 min
X-ray photoelectron spectrometer: ULVAC-PHI, model name "Quantara SXM"
Irradiated X-ray: Single crystal spectroscopy AlKα (1486.6 eV)
X-ray spot and its size: 100 μm
Detector: Pass Energy 69eV, Step size 0.125eV
Charge correction: Neutralizing electron gun (1eV), low-speed Ar ion gun (10V)
〔無機薄膜層表面の赤外分光測定(ATR法)〕
 実施例で得られた積層フィルムの無機薄膜層表面の赤外分光測定は、プリズムにゲルマニウム結晶を用いたATRアタッチメント(PIKE MIRacle)を備えたフーリエ変換型赤外分光光度計(日本分光(株)製、FT/IR-460Plus)によって測定した。
[Infrared spectroscopic measurement of the surface of the inorganic thin film layer (ATR method)]
The infrared spectroscopic measurement of the surface of the inorganic thin film layer of the laminated film obtained in the examples was performed by a Fourier transform infrared spectrophotometer equipped with an ATR attachment (PIKE MIRacle) using a germanium crystal for the prism (JASCO Corporation). Manufactured by FT / IR-460Plus).
〔積層フィルムの水蒸気透過度〕
 実施例で得られた積層フィルムの水蒸気透過度は、温度23℃、湿度50%RHの条件において、ISO/WD 15106-7(Annex C)に準拠してCa腐食試験法で測定した。
[Water vapor permeability of laminated film]
The water vapor permeability of the laminated film obtained in the examples was measured by a Ca corrosion test method in accordance with ISO / WD 15106-7 (Annex C) under the conditions of a temperature of 23 ° C. and a humidity of 50% RH.
〔無機薄膜層の製造方法〕
 実施例及び比較例において、図1に示す製造装置を用いて、基材の有機層側の表面に無機薄膜層を積層した。具体的には、図1に示すように、基材29を送り出しロ-ル10に装着し、真空チャンバー内を1×10-3Pa以下にした後、真空チャンバー内の排気口周辺における圧力が1Paになるように、成膜空間27に、原料ガスとしてのヘキサメチルジシロキサン(HMDSO)と、反応ガスとしての酸素ガス(放電ガスとしても機能する)とを含む成膜ガス28を供給し、排気量を調節した。その後、第1成膜ロール25と第2成膜ロール26にそれぞれ交流電力を供給し、一対の成膜ロール25及び26の間で放電によりプラズマを発生させた。その際、真空チャンバー内の排気口周辺における圧力が1Paになるよう、再度排気量を微調整した。次いで、発生させたプラズマを用いて原料ガスと反応ガスとを分解及び反応させて、下記成膜条件にてプラズマCVD法による薄膜形成を行い、基材29の有機層側の表面に、緻密な無機薄膜層を積層させた。さらに、搬送ロールを経由して、巻取りロール12により、積層フィルムを巻き取った。なお、一対の成膜ロール25及び26はプラズマ発生用電源20と接続された電極であり、搬送は、該電極表面にそれぞれ基材を密着させながら行った。また、一対の成膜ロール25及び26(電極)は、磁束密度が電極及び基材表面で高くなるように電極内部に磁場形成装置23及び24が配置されており、該磁場により、プラズマ発生時に電極及び基材上でプラズマが高密度に拘束された。
 〈成膜条件1〉
 原料ガスの供給量:50sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)
酸素ガスの供給量:500sccm
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.4kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;3.0m/min
パス回数:28回
[Manufacturing method of inorganic thin film layer]
In Examples and Comparative Examples, an inorganic thin film layer was laminated on the surface of the base material on the organic layer side using the manufacturing apparatus shown in FIG. Specifically, as shown in FIG. 1, after the base material 29 is attached to the delivery roll 10 and the inside of the vacuum chamber is reduced to 1 × 10 -3 Pa or less, the pressure around the exhaust port in the vacuum chamber is increased. A film-forming gas 28 containing hexamethyldisiloxane (HMDSO) as a raw material gas and an oxygen gas (which also functions as a discharge gas) as a reaction gas is supplied to the film-forming space 27 so as to be 1 Pa. The exhaust volume was adjusted. After that, AC power was supplied to the first film forming roll 25 and the second film forming roll 26, respectively, and plasma was generated by electric discharge between the pair of film forming rolls 25 and 26. At that time, the displacement was finely adjusted again so that the pressure around the exhaust port in the vacuum chamber became 1 Pa. Next, the raw material gas and the reaction gas are decomposed and reacted using the generated plasma to form a thin film by the plasma CVD method under the following film forming conditions, and the surface of the base material 29 on the organic layer side is densely formed. An inorganic thin film layer was laminated. Further, the laminated film was wound by the winding roll 12 via the transport roll. The pair of film forming rolls 25 and 26 are electrodes connected to the plasma generation power supply 20, and the transfer was performed while the base material was brought into close contact with the surface of the electrodes. Further, in the pair of film forming rolls 25 and 26 (electrodes), magnetic field forming devices 23 and 24 are arranged inside the electrodes so that the magnetic flux density is high on the electrodes and the surface of the base material, and the magnetic fields cause the plasma when plasma is generated. The plasma was densely constrained on the electrodes and substrate.
<Film formation condition 1>
Supply amount of raw material gas: 50 sccm (Standard Cubic Centimeter per Minute, 0 ° C, 1 atm standard)
Oxygen gas supply: 500 sccm
Vacuum degree in vacuum chamber: 1Pa
Power applied from the plasma generation power supply: 0.4 kW
Frequency of power supply for plasma generation: 70kHz
Film transport speed; 3.0 m / min
Number of passes: 28 times
〔積層フィルムの帯電量の評価〕
 上記の通り、図1に示す製造装置に基材29を装着後、温度23℃、湿度50%RHの条件において、静電電位監視装置(SP-WATCH KSD-0110、春日電機(株)製)を用いて、送り出しロール11直後の測定位置101により、基材29表面における帯電量を測定した。次いで、製造装置内を真空引きした後、基材29を搬送させプラズマを発生させた条件にて、送り出しロール11直後の測定位置101により、基材29表面における帯電量を測定し、第2成膜ロール26直後の測定位置102及び巻取りロール直前の測定位置103により、成膜された無機薄膜層表面における帯電量を測定した。
[Evaluation of charge amount of laminated film]
As described above, after mounting the base material 29 on the manufacturing apparatus shown in FIG. 1, an electrostatic potential monitoring apparatus (SP-WATCH KSD-0110, manufactured by Kasuga Electric Co., Ltd.) under the conditions of a temperature of 23 ° C. and a humidity of 50% RH. The amount of charge on the surface of the base material 29 was measured at the measurement position 101 immediately after the delivery roll 11. Next, after the inside of the manufacturing apparatus was evacuated, the amount of charge on the surface of the base material 29 was measured at the measurement position 101 immediately after the delivery roll 11 under the condition that the base material 29 was conveyed and plasma was generated. The amount of charge on the surface of the formed inorganic thin film layer was measured at the measurement position 102 immediately after the film roll 26 and the measurement position 103 immediately before the take-up roll.
〔積層フィルムの巻きずれの評価〕
 巻取りロール12に巻き取られた実施例及び比較例の積層フィルムにおいて、ロールの両端の巻きずれが5mm未満の場合を〇とし、巻きずれが5mm以上の場合を×とした。
なお、巻きずれはロール状積層フィルムの端面からのずれの程度を示す。
[Evaluation of unwinding of laminated film]
In the laminated films of Examples and Comparative Examples wound on the take-up roll 12, the case where the unwinding at both ends of the roll was less than 5 mm was evaluated as ◯, and the case where the unwinding was 5 mm or more was evaluated as x.
The winding deviation indicates the degree of deviation from the end face of the roll-shaped laminated film.
〔積層フィルムの外観の評価>
 製造装置から取り出した実施例及び比較例で得られた積層フィルムから、210mm×297mmの矩形領域を切り出し、表面検査ランプ(FYシリーズ、フナテック社製)での全面目視確認、及びマイクロスコープ(商品名「デジタルマイクロスコープ」、ハイロックス社製、対物レンズ35倍)での全面観察を行った。各観察において、20μm以上の異物欠陥が無ければ〇とし、20μm以上の異物欠陥を確認した場合を×と判定した。
[Evaluation of appearance of laminated film>
A rectangular area of 210 mm × 297 mm was cut out from the laminated films obtained in Examples and Comparative Examples taken out from the manufacturing apparatus, and the entire surface was visually confirmed with a surface inspection lamp (FY series, manufactured by Funatec), and a microscope (trade name). Full-scale observation was performed with a "digital microscope", manufactured by Hirox, and an objective lens of 35 times. In each observation, if there was no foreign matter defect of 20 μm or more, it was evaluated as ◯, and when a foreign matter defect of 20 μm or more was confirmed, it was judged as x.
〔実施例1〕
 両面にプライマー層を有する可撓性フィルム(帝人フィルムソリューション(株)製、商品名「テオネックス(登録商標)」、二軸延伸ポリエチレンナフタレートフィルム、Q65HWA、厚み100μm、長さ500m、幅350mm、両面易接着処理)の片面に、有機層形成用組成物(日本化工塗料(株)、「TOMAX FA-3292」)をグラビアコーティング法にて塗布し、100℃で1分乾燥させた後、高圧水銀ランプを用いて、積算光量500mJ/cmの条件で紫外線照射し、厚み2.5μmの有機層を積層させて、可撓性フィルム、プライマー層及び有機層がこの順に積層された基材を得た。ここで、有機層形成用組成物は、溶剤として酢酸エチルを8.1質量%、プロピレングリコールモノメチルエーテルを52.1質量%、固形分としてUV硬化オリゴマーを10~20質量%、シリカ粒子(平均一次粒子径20nm)を20~30質量%、添加剤として光重合開始剤を2~3質量%含有する組成物である。UV硬化オリゴマーは、重合性官能基として(メタ)アクリロイル基を有する光硬化性化合物である。また、基材幅(単位:m)に対する長手方向にかかる張力(単位:N)、すなわち、巻取り張力(N/m)を、90N/mとして巻取り基材を作成した。長手方向にかかる張力はテンションメーターにより測定した。このようにして得た基材の有機層側の表面に、上記無機薄膜層の製造方法に従い、無機薄膜層を積層させ、積層フィルムAを得た。また、得られた積層フィルムAの無機薄膜層の厚みは700nmであり、該積層フィルムAの長さは500m及び幅は350mmであった。また、温度40℃、湿度90%RHの条件における水蒸気透過度は5.0×10-5g/(m・day)であった。
[Example 1]
Flexible film with primer layers on both sides (manufactured by Teijin Film Solution Co., Ltd., trade name "Theonex (registered trademark)", biaxially stretched polyethylene naphthalate film, Q65HWA, thickness 100 μm, length 500 m, width 350 mm, both sides An organic layer forming composition (Nippon Kako Paint Co., Ltd., "TOMAX FA-3292") is applied to one side of the (easy-adhesive treatment) by a gravure coating method, dried at 100 ° C. for 1 minute, and then high-pressure mercury. Using a lamp, ultraviolet rays are irradiated under the condition of an integrated light amount of 500 mJ / cm 2 , and an organic layer having a thickness of 2.5 μm is laminated to obtain a base material in which a flexible film, a primer layer and an organic layer are laminated in this order. It was. Here, the composition for forming an organic layer contains 8.1% by mass of ethyl acetate as a solvent, 52.1% by mass of propylene glycol monomethyl ether, 10 to 20% by mass of UV-curable oligomer as a solid content, and silica particles (average). It is a composition containing 20 to 30% by mass of a primary particle size (20 nm) and 2 to 3% by mass of a photopolymerization initiator as an additive. The UV curable oligomer is a photocurable compound having a (meth) acryloyl group as a polymerizable functional group. Further, the winding base material was prepared with the tension (unit: N) applied in the longitudinal direction with respect to the base material width (unit: m), that is, the winding tension (N / m) being 90 N / m. The tension applied in the longitudinal direction was measured with a tension meter. An inorganic thin film layer was laminated on the surface of the base material thus obtained on the organic layer side according to the method for producing an inorganic thin film layer to obtain a laminated film A. The thickness of the inorganic thin film layer of the obtained laminated film A was 700 nm, and the length of the laminated film A was 500 m and the width was 350 mm. The water vapor permeability under the conditions of a temperature of 40 ° C. and a humidity of 90% RH was 5.0 × 10-5 g / (m 2 · day).
 上記条件にてXPSデプスプロファイル測定を行ったところ、積層フィルムAは、無機薄膜層に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子の原子数比が、無機薄膜層の膜厚方向における90%以上の領域において連続的に変化し、該領域において、原子数比が大きい方から酸素、珪素及び炭素の順となっていた。また、平均原子数比C/Siは0.30であり、平均原子数比O/Siは1.73であった。 When the XPS depth profile was measured under the above conditions, in the laminated film A, the ratio of the number of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer was the thickness of the inorganic thin film layer. It changed continuously in the region of 90% or more in the direction, and in that region, the order of oxygen, silicon, and carbon was from the one with the largest atomic number ratio. The average atomic number ratio C / Si was 0.30, and the average atomic number ratio O / Si was 1.73.
 積層フィルムAの無機薄膜層について、上記条件にて赤外分光測定を行った。赤外吸収スペクトルから、950~1050cm-1に存在するピーク強度(I)と、1240~1290cm-1に存在するピーク強度(I)との吸収強度比(I/I)を求めると、I/I=0.03であった。また、950~1050cm-1に存在するピーク強度(I)と、770~830cm-1に存在するピーク強度(I)との吸収強度比(I/I)を求めると、I/I=0.36であった。また、770~830cm-1に存在するピーク強度(I)と、870~910cm-1に存在するピーク強度(I)との吸収強度比(I/I)を求めると、I/I=0.84であった。 The inorganic thin film layer of the laminated film A was subjected to infrared spectroscopic measurement under the above conditions. From infrared absorption spectra, determined the peak present in the 950 ~ 1050 cm -1 intensity (I 3), the peak intensity existing in the 1240 ~ 1290cm -1 (I 4) and absorption intensity ratio of the (I 4 / I 3) And I 4 / I 3 = 0.03. Further, a peak exists in the 950 ~ 1050 cm -1 intensity (I 3), when determining the peak exists in the 770 ~ 830 cm -1 intensity (I 5) and the absorption intensity ratio (I 5 / I 3), I 5 / I 3 = 0.36. Further, a peak exists in the 770 ~ 830 cm -1 intensity (I 5), when determining the peak intensity existing in the 870 ~ 910cm -1 (I 6) and the absorption intensity ratio (I 6 / I 5), I 6 / I 5 = 0.84.
〔比較例1〕
 両面にプライマー層を有する可撓性フィルム(帝人フィルムソリューション(株)製、商品名「テオネックス(登録商標)」、二軸延伸ポリエチレンナフタレートフィルム、Q65HWA、厚み100μm、長さ500m、幅350mm、両面易接着処理)を使用し、基材幅(単位:m)に対する長手方向にかかる張力(単位:N)、すなわち、巻取り張力(N/m)を、90N/mとして巻取り基材を作成した。次いで、上記無機薄膜層の製造方法に従い、無機薄膜層を基材上に積層させ、積層フィルムBを得た。
[Comparative Example 1]
Flexible film with primer layers on both sides (manufactured by Teijin Film Solution Co., Ltd., trade name "Theonex (registered trademark)", biaxially stretched polyethylene naphthalate film, Q65HWA, thickness 100 μm, length 500 m, width 350 mm, both sides Easy-adhesion processing) is used to create a take-up base material with the tension (unit: N) applied in the longitudinal direction with respect to the base material width (unit: m), that is, the take-up tension (N / m) being 90 N / m. did. Next, the inorganic thin film layer was laminated on the base material according to the method for producing the inorganic thin film layer to obtain a laminated film B.
 実施例1及び比較例1の積層フィルム製造中、上記方法に従い積層フィルムの帯電量を測定した。得られた結果を表1に示す。また、実施例1及び比較例1で得られた積層フィルムをついて、上記方法に従い積層フィルムの巻きずれの評価、及び外観の評価を行った。得られた結果を表1に示す。 During the production of the laminated films of Example 1 and Comparative Example 1, the charge amount of the laminated films was measured according to the above method. The results obtained are shown in Table 1. Further, with respect to the laminated films obtained in Example 1 and Comparative Example 1, the unwinding of the laminated film and the appearance were evaluated according to the above method. The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1及び表2に示されるように、実施例1では、巻き出し時の基材表面における帯電量の絶対値が、大気下で測定したときに2.0kV以上であり、かつ無機薄膜層形成後、巻き取るまでの無機薄膜層表面における帯電量の絶対値が、真空下で測定したときに1.5kV以下に調整されているため、得られる積層フィルムの巻きずれ及び異物欠陥の発生が抑制されることが確認された。これに対して、比較例1では、巻き出し時の基材表面における帯電量の絶対値が、大気下で測定したときに2.0kV未満であるため、巻きずれが生じることが確認された。 As shown in Tables 1 and 2, in Example 1, the absolute value of the amount of charge on the surface of the base material at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and an inorganic thin film layer is formed. After that, the absolute value of the amount of charge on the surface of the inorganic thin film layer until winding is adjusted to 1.5 kV or less when measured under vacuum, so that the resulting laminated film is prevented from unwinding and foreign matter defects. It was confirmed that it would be done. On the other hand, in Comparative Example 1, since the absolute value of the amount of charge on the surface of the base material at the time of unwinding was less than 2.0 kV when measured in the atmosphere, it was confirmed that unwinding occurred.
 1…積層フィルム、2…無機薄膜層、3…有機層、4…プライマー層、5…可撓性フィルム、6…基材、10…製造装置、11…送り出しロール、12…巻取りロール、13~18…搬送ロール、19…ガス供給管、20…プラズマ発生用電源、21,22…電極、23,24…磁場形成装置、25…第1成膜ロール、26…第2成膜ロール、27…空間(成膜空間)、28…成膜ガス、29…基材、101,102,103…測定位置 1 ... Laminated film, 2 ... Inorganic thin film layer, 3 ... Organic layer, 4 ... Primer layer, 5 ... Flexible film, 6 ... Base material, 10 ... Manufacturing equipment, 11 ... Feeding roll, 12 ... Winding roll, 13 ~ 18 ... Transfer roll, 19 ... Gas supply pipe, 20 ... Plasma generation power supply, 21,22 ... Electrode, 23, 24 ... Magnetic field forming device, 25 ... First film forming roll, 26 ... Second film forming roll, 27 ... Space (deposition space), 28 ... film formation gas, 29 ... base material, 101, 102, 103 ... measurement position

Claims (5)

  1.  プラズマ化学気相成長法を用いて、基材と、該基材の少なくとも一方の面に形成された1層以上の無機薄膜層とを含む積層フィルムを製造する方法であって、該方法は、ロール状基材を送り出しロールから巻き出す工程(I)、一対の成膜ロール間に、反応ガスと原料ガスとを供給し、該ロール間に発生させるプラズマ放電により、搬送された基材の少なくとも一方の側に無機薄膜層を形成して積層フィルムを得る工程(II)、及び、該積層フィルムを巻取りロールにより巻き取る工程(III)を含み、
     工程(I)において、巻き出し時の基材表面における帯電量の絶対値は、大気下で測定したときに2.0kV以上であり、工程(II)及び(III)において、無機薄膜層形成後、巻取り時までの無機薄膜層表面における帯電量の絶対値は、真空下で測定したときに1.5kV以下である、方法。
    A method for producing a laminated film containing a base material and one or more inorganic thin film layers formed on at least one surface of the base material by using a plasma chemical vapor deposition method. In the step (I) of unwinding the roll-shaped base material from the delivery roll, at least the base material conveyed by the plasma discharge generated between the rolls by supplying the reaction gas and the raw material gas between the pair of film forming rolls It includes a step (II) of forming an inorganic thin film layer on one side to obtain a laminated film and a step (III) of winding the laminated film with a take-up roll.
    In the step (I), the absolute value of the charge amount on the surface of the base material at the time of unwinding is 2.0 kV or more when measured in the atmosphere, and in the steps (II) and (III) after the formation of the inorganic thin film layer. The method, wherein the absolute value of the amount of charge on the surface of the inorganic thin film layer up to the time of winding is 1.5 kV or less when measured under vacuum.
  2.  前記無機薄膜層は、珪素原子、酸素原子及び炭素原子を少なくとも含有する、請求項1に記載の方法。 The method according to claim 1, wherein the inorganic thin film layer contains at least silicon atoms, oxygen atoms, and carbon atoms.
  3.  前記無機薄膜層に含まれる珪素原子、酸素原子及び炭素原子の合計数に対する炭素原子の原子数比は、無機薄膜層の膜厚方向における90%以上の領域において、連続的に変化する、請求項1又は2に記載の方法。 The claim that the atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer changes continuously in a region of 90% or more in the film thickness direction of the inorganic thin film layer. The method according to 1 or 2.
  4.  前記基材は、可撓性フィルムと、該可撓性フィルムの少なくとも一方の側に形成された有機層とを含む、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the base material comprises a flexible film and an organic layer formed on at least one side of the flexible film.
  5.  前記積層フィルムは、ガスバリア性フィルムである、請求項1~4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the laminated film is a gas barrier film.
PCT/JP2020/042464 2019-11-25 2020-11-13 Laminated film production method WO2021106636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019212443A JP2021084233A (en) 2019-11-25 2019-11-25 Method for producing laminated film
JP2019-212443 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021106636A1 true WO2021106636A1 (en) 2021-06-03

Family

ID=76086517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042464 WO2021106636A1 (en) 2019-11-25 2020-11-13 Laminated film production method

Country Status (2)

Country Link
JP (1) JP2021084233A (en)
WO (1) WO2021106636A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309000A (en) * 1994-05-17 1995-11-28 Teijin Ltd Composite polyester film
JP2011073430A (en) * 2009-09-01 2011-04-14 Sumitomo Chemical Co Ltd Gas-barrier multilayer film
JP2012082464A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Plasma cvd film-forming apparatus, film-forming method, gas-barrier laminated film
WO2015053143A1 (en) * 2013-10-11 2015-04-16 コニカミノルタ株式会社 Film forming device and film forming method
WO2015119109A1 (en) * 2014-02-04 2015-08-13 コニカミノルタ株式会社 Production method for gas-barrier film, and gas-barrier film
JP2017211643A (en) * 2016-05-20 2017-11-30 住友化学株式会社 Production method of laminate film and production method of polarizing plate
JP2018197378A (en) * 2017-05-24 2018-12-13 住友化学株式会社 Method of manufacturing laminate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07309000A (en) * 1994-05-17 1995-11-28 Teijin Ltd Composite polyester film
JP2011073430A (en) * 2009-09-01 2011-04-14 Sumitomo Chemical Co Ltd Gas-barrier multilayer film
JP2012082464A (en) * 2010-10-08 2012-04-26 Sumitomo Chemical Co Ltd Plasma cvd film-forming apparatus, film-forming method, gas-barrier laminated film
WO2015053143A1 (en) * 2013-10-11 2015-04-16 コニカミノルタ株式会社 Film forming device and film forming method
WO2015119109A1 (en) * 2014-02-04 2015-08-13 コニカミノルタ株式会社 Production method for gas-barrier film, and gas-barrier film
JP2017211643A (en) * 2016-05-20 2017-11-30 住友化学株式会社 Production method of laminate film and production method of polarizing plate
JP2018197378A (en) * 2017-05-24 2018-12-13 住友化学株式会社 Method of manufacturing laminate

Also Published As

Publication number Publication date
JP2021084233A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US10054487B2 (en) Laminated film and flexible electronic device
WO2014123201A1 (en) Gas barrier film and method for manufacturing same
WO2014203892A1 (en) Gas barrier film and method for producing same
WO2018168671A1 (en) Gas barrier coating, gas barrier film, method for producing gas barrier coating, and method for producing gas barrier film
EP3778217A1 (en) Laminate film
JP6998734B2 (en) Laminates and devices containing them
WO2021106636A1 (en) Laminated film production method
JP6840255B2 (en) Gas barrier film
WO2021106634A1 (en) Method for manufacturing gas barrier film
WO2015146262A1 (en) Gas-barrier film and process for producing gas-barrier film
WO2021106635A1 (en) Method for producing optical film
JP6858641B2 (en) Method of manufacturing a laminate
JP6354302B2 (en) Gas barrier film
JP7261547B2 (en) laminated film
WO2015025782A1 (en) Device for producing gas barrier film and method for producing gas barrier film
JP6983040B2 (en) Gas barrier film and devices containing it
WO2015053189A1 (en) Gas barrier film and process for manufacturing same
WO2020085248A1 (en) Laminated body, flexible electronic device, and laminated-body manufacturing method
JP2016193526A (en) Gas barrier film, and electronic device using the gas barrier film
JP6341207B2 (en) Gas barrier film manufacturing equipment
WO2021106736A1 (en) Laminated film
CN109415805B (en) Method for producing gas barrier film
WO2016159206A1 (en) Gas barrier film and method for manufacturing same
CN109778149B (en) Gas barrier film, organic electroluminescent element, electronic paper, and method for producing gas barrier film
CN108349210B (en) Gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892640

Country of ref document: EP

Kind code of ref document: A1