WO2021106736A1 - Laminated film - Google Patents

Laminated film Download PDF

Info

Publication number
WO2021106736A1
WO2021106736A1 PCT/JP2020/043153 JP2020043153W WO2021106736A1 WO 2021106736 A1 WO2021106736 A1 WO 2021106736A1 JP 2020043153 W JP2020043153 W JP 2020043153W WO 2021106736 A1 WO2021106736 A1 WO 2021106736A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
inorganic thin
base material
organic layer
Prior art date
Application number
PCT/JP2020/043153
Other languages
French (fr)
Japanese (ja)
Inventor
美保 大関
勝平 山川
山下 恭弘
花岡 秀典
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2021106736A1 publication Critical patent/WO2021106736A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides

Definitions

  • the present invention relates to a laminated film containing a base material layer including a flexible base material, an organic layer and an inorganic thin film layer in this order.
  • Laminated films with gas barrier properties are widely used in packaging applications for foods, industrial products, pharmaceuticals, etc. (for example, Patent Document 1).
  • Patent Document 1 Laminated films with gas barrier properties are widely used in packaging applications for foods, industrial products, pharmaceuticals, etc.
  • Patent Document 1 In recent years, in flexible substrates of electronic devices such as solar cells, organic EL (electro-luminescence) displays, and organic EL lighting, laminated films having further improved gas barrier properties as compared with the above-mentioned food applications and the like have been demanded.
  • a laminated film in which a thin film layer is laminated via an organic layer on a flexible base material made of polyethylene terephthalate (PET) has been developed (for example, Patent Document 2).
  • the laminated film described in Patent Document 2 is a thin film having higher density than the inorganic layer constituting the conventional gas barrier laminated film as described in Patent Document 1.
  • High gas barrier properties are achieved by stacking layers.
  • a high compressive stress is likely to occur in the thin film layer having high density, and the entire laminated film is likely to be warped due to the compressive stress generated in the thin film layer. It turned out that there was a problem.
  • the warp of the entire laminated film tends to become larger due to the expansion / contraction change of the flexible base material in the manufacturing process, and the laminated film while ensuring high density.
  • one aspect of the present invention is to provide a laminated film having an excellent warp suppressing effect and preferably having a high gas barrier property by containing an inorganic thin film layer having high density.
  • the present inventor has completed the present invention as a result of diligent studies to solve the above problems. That is, one aspect of the present invention provides the following suitable aspects.
  • the organic layer and the above-mentioned laminated body composed of the base material layer, the organic layer and the inorganic thin film layer are measured by heating at a temperature of 130 ° C. or higher for 30 minutes and then allowing to cool at 25 ° C. for 10 minutes.
  • the above-mentioned [1] or [2], wherein the internal stress of the laminated film composed of the inorganic thin film layer is 0.030 GPa or less.
  • the internal stress of the organic layer measured by heating the laminate composed of the base material layer and the organic layer at 180 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes is 0.8 GPa or more.
  • the internal stress of the inorganic thin film layer measured by heating at 25 ° C. for 10 minutes after heating for 30 minutes is 3 ..
  • the inorganic thin film layer is a layer formed by the plasma chemical vapor deposition method. 7]
  • the inorganic thin film layer contains silicon atoms, oxygen atoms, and carbon atoms, as described in [1] to [8]. ].
  • the laminated film according to any one of. [10] The atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer changes continuously in a region of 90% or more in the film thickness direction of the inorganic thin film layer.
  • [11] The laminated film according to any one of the above [1] to [10], which has a gas barrier property.
  • a laminated film having an excellent warp suppressing effect and a high gas barrier property by including an inorganic thin film layer having high density.
  • the laminated film of the present invention includes a base material layer containing a flexible base material (hereinafter, also simply referred to as “base material layer”), an organic layer, and an inorganic thin film layer in this order.
  • base material layer a flexible base material
  • organic layer an organic layer
  • inorganic thin film layer in this order.
  • the laminate consisting of the base material layer and the organic layer constituting the laminated film is heated at a temperature of 130 ° C. or higher for 30 minutes and then allowed to cool at 25 ° C. for 10 minutes for measurement.
  • the internal stress of the organic layer is 0.2 GPa or more.
  • convex warpage is likely to occur with respect to the surface forming the inorganic thin film layer due to the high compressive stress generated in the layer.
  • the internal stress of the organic layer measured after heating the laminate composed of the base material layer and the organic layer constituting the laminated film to 130 ° C. or higher (hereinafter, “organic layer internal stress A”).
  • organic layer internal stress A the internal stress of the organic layer measured after heating the laminate composed of the base material layer and the organic layer constituting the laminated film to 130 ° C. or higher.
  • the internal stress A of the organic layer is less than 0.2 GPa, it becomes difficult to sufficiently suppress the warp of the inorganic thin film layer when the inorganic thin film layer has a high compressive stress, and the gas barrier is highly dense from the viewpoint of the warp suppressing effect. It may not be suitable as a structure of a laminated film having an inorganic thin film layer having excellent properties.
  • the organic layer internal stress A is preferably 0.25 GPa or more, more preferably 0.3 GPa or more. Generally, the higher the internal stress A of the organic layer, the higher the effect of canceling the compressive stress generated in the inorganic thin film layer tends to increase.
  • the internal stress A of the organic layer may be appropriately adjusted according to the compressive stress of the inorganic thin film layer constituting the laminated film, but from the viewpoint of ease of warpage adjustment at the time of forming the inorganic thin film layer and suppression of crack generation of the inorganic thin film layer. Therefore, the upper limit value is usually 7.5 GPa or less, preferably 5.0 GPa or less.
  • the internal stress A of the organic layer is measured in a laminate composed of a base material layer and an organic layer constituting the target laminated film.
  • the organic layer internal stress A is an organic layer (inorganic thin film) located on the side where the base material layer and the inorganic thin film layer are laminated.
  • the layers are on both sides, it means the internal stress in the laminate consisting of the base material layer and the organic layer located between one inorganic thin film layer).
  • the organic layer internal stress A exists between the base material layer and the base material layer and the inorganic thin film layer.
  • the internal stress in the laminate consisting of all organic layers.
  • the organic layer laminated on at least one surface of the base material layer may have an internal stress in the above range, but the base material
  • the organic layers laminated on each side of the layer have sufficient internal stress (tensile stress) to eliminate the warpage caused by the compressive stress generated in the inorganic thin film layer laminated on the layer. It is preferable that the laminated body composed of the organic layer and the base material layer on each side has an internal stress in the above range, because the warp suppressing effect can be exhibited in a well-balanced manner centering on the base material layer.
  • the laminated film is the internal stress of the organic layer measured by heating a laminate composed of a base material layer and an organic layer at 130 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes.
  • the “organic layer internal stress A (130 ° C.)”) is 0.2 GPa or more.
  • the internal stress A (130 ° C.) of the organic layer is 0.2 GPa or more, it is easy to secure a sufficiently high tensile stress in the organic layer that can eliminate the warp of the inorganic thin film layer caused by the high compressive stress. It is possible to suppress the warp of the entire laminated film.
  • Organic layer internal stress A (13 0 ° C.) is preferably 0.25 GPa or more, more preferably 0.3 GPa or more, and is the upper limit thereof from the viewpoint of ease of warpage adjustment at the time of forming the inorganic thin film layer and suppression of crack generation in the inorganic thin film layer.
  • the value is usually 7.5 GPa or less, preferably 5.0 GPa or less.
  • the laminated film is measured by heating a laminate composed of a base material layer and an organic layer at 180 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes to measure the internal stress of the organic layer.
  • organic layer internal stress A (180 ° C.) is preferably 0.8 GPa or more.
  • the internal stress A (180 ° C.) of the organic layer is 0.8 GPa or more, it is easy to secure a sufficiently high tensile stress in the organic layer that can eliminate the warp of the inorganic thin film layer caused by the high compressive stress. It is possible to suppress the warp of the entire laminated film.
  • Organic layer internal stress A ( 180 ° C.) is preferably 0.9 GPa or more, more preferably 1.0 GPa or more. Further, from the viewpoint of ease of warpage adjustment at the time of forming the inorganic thin film layer and suppression of crack generation in the inorganic thin film layer, the upper limit thereof is usually 7.5 GPa or less, preferably 5.0 GPa or less.
  • the stress A (130 ° C.) inside the organic layer is 0. It is preferable that the internal stress A (180 ° C.) of the organic layer is 0.8 GPa or more, and the internal stress A (130 ° C.) and (180 ° C.) of the organic layer are in the ranges described in the previous paragraphs, respectively. It is more preferable to have an internal stress inside.
  • Organic layer internal stress A (130 ° C) When and (180 ° C.) are within the above ranges, it becomes easier to secure a sufficiently high tensile stress in the organic layer that can eliminate the warp of the inorganic thin film layer caused by the high compressive stress, and the warp of the laminated film. The inhibitory effect can be improved more effectively.
  • the internal stress A of the organic layer is the composition of the organic layer, the composition of the base material layer, the type of flexible base material, the thickness of the organic layer and / or the base material layer, the coating method when forming the organic layer, the tension / temperature.
  • -It can be controlled by appropriately selecting drying conditions such as residence time and curing conditions such as temperature and UV irradiation conditions.
  • the heating temperature of the laminate when measuring the internal stress A of the organic layer is 130 ° C. or higher.
  • an electronic device such as a solar cell, an organic EL display, or an organic EL lighting, for example, because of moisture adsorbed on the surface of the laminated film and dehydration of an adhesive or an adhesive sheet used for bonding, for example. It may be exposed to a high temperature environment of 130 ° C. or higher, and if a large warp occurs in the process, poor bonding such as air bubbles, wrinkles, and cracks may occur when the film is attached to an electronic device.
  • the heating temperature may be 130 ° C. or higher, preferably 130 ° C. It is 200 ° C. or lower, more preferably 130 ° C. or 180 ° C., 130 ° C. in one aspect of the present invention, and 180 ° C. in another aspect.
  • the internal stress A of the organic layer is 25 after heating the laminate consisting of the base material layer to be measured and the organic layer at a temperature of 130 ° C. or higher from room temperature (25 ° C.) for 30 minutes. It can be calculated based on the amount of deformation of the laminated body when it is allowed to cool at ° C. for 10 minutes.
  • the laminate to be measured which is cut out into a quadrangle of an appropriate size, is heated at a temperature of 130 ° C. or higher for 30 minutes, then allowed to cool at 25 ° C. for 10 minutes, and then placed on a horizontal plane. The distance (height) from to the four corners is measured, and the radius of curvature is calculated from their average value.
  • the organic layer internal stress A (GPa) Eh 2/ 6 (1-v) Rt (1)
  • t is the thickness of the organic layer (m)
  • R is the radius of curvature (m)
  • h is the thickness of the base material layer (m)
  • E is the Young's modulus of the base material layer (Pa)
  • v is the Poisson's ratio of the base material layer. Represent.
  • the internal stress of the organic layer can be calculated. More specifically, the organic layer internal stress A can be measured and calculated, for example, according to the method described in Examples described later.
  • a laminate consisting of a base material layer constituting a laminated film and an inorganic thin film layer directly laminated on the base material layer is heated at a temperature of 130 ° C. or higher for 30 minutes and then 25 ° C.
  • the internal stress of the inorganic thin film layer measured by allowing to cool for 10 minutes is preferably 2.0 GPa or more.
  • the internal stress of the inorganic thin film layer measured after heating the laminate composed of the base material layer constituting the laminated film and the inorganic thin film layer directly laminated on the base material layer to 130 ° C.
  • the (also referred to as “inorganic thin film layer internal stress B”) is 2.0 GPa or more, it is easy to sufficiently increase the density of the inorganic thin film layer, and it is easy to realize a high gas barrier property of the laminated film.
  • the internal stress B of the inorganic thin film layer is more preferably 2.1 GPa or more, still more preferably 2.2 GPa or more. Generally, the higher the internal stress B of the inorganic thin film layer, the higher the denseness of the inorganic thin film layer, and the higher the gas barrier property tends to be.
  • the internal stress B of the inorganic thin film layer usually changes according to the composition of the inorganic thin film layer so as to secure the desired gas barrier property, but it is possible to secure sufficient denseness of the inorganic thin film layer and it is excessive.
  • the upper limit thereof is usually 15 GPa or less, preferably 10 GPa or less.
  • the internal stress B of the inorganic thin film layer is usually a compressive stress.
  • the laminated film is obtained by heating a laminate consisting of a base material layer and an inorganic thin film layer directly laminated on the base material layer at 130 ° C. for 30 minutes, and then allowing the laminated film to cool at 25 ° C. for 10 minutes.
  • the internal stress of the inorganic thin film layer (hereinafter, also referred to as “inorganic thin film layer internal stress B (130 ° C.)”) measured in the above is preferably 2.0 GPa or more.
  • the internal stress B (130 ° C.) of the inorganic thin film layer is 2.0 GPa or more, it is easy to sufficiently increase the denseness of the inorganic thin film layer, and it is easy to realize a high gas barrier property of the laminated film.
  • the internal stress B (130 ° C.) of the inorganic thin film layer is more preferably 2.1 GPa or more, further preferably 2.2 GPa or more, and it is possible to secure sufficient denseness of the inorganic thin film layer and excessive compressive stress.
  • the upper limit is usually 10 GPa or less, preferably 15 GPa or less.
  • the laminated film is obtained by heating a laminate consisting of a base material layer and an inorganic thin film layer directly laminated on the base material layer at 180 ° C. for 30 minutes, and then releasing the laminated film at 25 ° C. for 10 minutes.
  • the internal stress of the inorganic thin film layer measured by cooling (hereinafter, "inorganic thin film layer internal stress B (180 ° C.)" ) ”) Is preferably 3.0 GPa or more.
  • Inorganic thin film layer internal stress B (18 When (0 ° C.) is 3.0 GPa or more, it is easy to sufficiently increase the denseness of the inorganic thin film layer, and it is easy to realize high gas barrier properties of the laminated film.
  • the internal stress B (180 ° C.) of the inorganic thin film layer is more preferably 3.2 GPa or more, further preferably 3.5 GPa or more, and it is possible to secure sufficient denseness of the inorganic thin film layer and excessive compressive stress.
  • the upper limit is usually 15 GPa or less, preferably 10 GPa or less.
  • the inorganic thin film layer internal stress B (130 ° C.) is 2.0 GPa or more, and the inorganic thin film layer internal stress B (180 ° C.) is 3.0 GPa or more. It is preferable that the internal stresses B (130 ° C.) and (180 ° C.) of the inorganic thin film layer have internal stresses within the ranges described in the previous paragraphs, respectively. When the internal stresses B (130 ° C.) and (180 ° C.) of the inorganic thin film layer are within the above ranges, the density of the inorganic thin film layer can be easily increased, and the gas barrier property of the laminated film can be improved more effectively.
  • the internal stress B of the inorganic thin film layer is the composition of the inorganic thin film layer, the distribution (density) of the inorganic materials / compounds constituting the inorganic thin film layer, the composition of the base material layer, the type of flexible base material, the inorganic thin film layer and / or. It can be controlled by appropriately selecting the thickness of the base material layer, the film forming conditions when forming the inorganic thin film layer, and the like.
  • the internal stress B of the inorganic thin film layer is measured in a laminate consisting of a base material layer constituting the target laminated film and an inorganic thin film layer directly laminated on the base material layer.
  • the measurement of the internal stress B of the inorganic thin film layer is, for example, the same base material as the laminated film to be measured.
  • the measurement is performed in a laminated body for measurement in which an inorganic thin film layer is formed on the layer in the same manner as the inorganic thin film layer constituting the laminated film to be measured.
  • the internal stress B of the inorganic thin film layer is the internal stress in the laminate composed of the base material layer and the inorganic thin film layer laminated on one side of the base material layer.
  • the internal stress B of the inorganic thin film layers of the two inorganic thin film layers may be the same or different from each other, and the inorganic thin film on at least one side may be different. It is preferable that the layer has an internal stress in the above range.
  • the internal stress B of the inorganic thin film layer is obtained after heating a laminate composed of a base material layer to be measured and an inorganic thin film layer at a temperature of room temperature (25 ° C.) to 130 ° C. or higher for 30 minutes.
  • the laminate to be measured cut into a quadrangle of an appropriate size is heated at a temperature of 130 ° C. or higher for 30 minutes. Then, after allowing to cool at 25 ° C.
  • the laminated body after cooling is tubular, the diameter inside the cylinder is measured and the radius of curvature is calculated.
  • Inorganic thin layer internal stress B (GPa) Eh 2/ 6 (1-v) Rt '(2)
  • t' is the thickness of the inorganic thin film layer (m)
  • R is the radius of curvature (m)
  • h is the thickness of the base material layer (m)
  • E is the Young's modulus of the base material layer (Pa)
  • v Poisson's ratio of the base material layer. Represents a ratio. ] Therefore, the internal stress of the inorganic thin film layer can be calculated.
  • the heating temperature of the laminate when measuring the internal stress B of the inorganic thin film layer is 130 ° C. or higher.
  • the heating temperature may be 130 ° C. or higher, but is preferably 130 ° C. or higher and 200 ° C. or lower, more preferably 130 ° C. or 180 ° C., 130 ° C. in one aspect of the present invention, and another one. In the embodiment, it is 180 ° C.
  • Internal stress (compressive stress) generated in the inorganic thin film layer By eliminating the warpage of the inorganic thin film layer caused by the internal stress (tensile stress) generated in the organic layer located between the inorganic thin film layer and the base material layer, the effect of suppressing the warp of the laminated film is improved.
  • the internal stress B of the inorganic thin film layer in the specific range is generated in the inorganic thin film layer at the same temperature as the internal stress A of the organic layer. Therefore, the internal stress B of the inorganic thin film layer
  • the heating temperature when measuring the above is preferably the same as the heating temperature applied when measuring the organic layer internal stress A of the organic layer to be measured. More specifically, the internal stress B of the inorganic thin film layer can be measured and calculated according to, for example, the method described in Examples described later.
  • the organic layer preferably has an organic layer internal stress A (130 ° C.) of 8% or more of the inorganic thin film layer internal stress B (130 ° C.), more preferably 10% or more. More preferably, it has an organic layer internal stress A (130 ° C.) of 12% or more. Further, in one aspect of the present invention, the organic layer preferably has an organic layer internal stress A (180 ° C.) of 15% or more of the inorganic thin film layer internal stress B (180 ° C.), more preferably 20% or more. More preferably, it has an organic layer internal stress A (180 ° C.) of 25% or more.
  • the organic layer internal stress A is equal to or higher than the above lower limit value with respect to the inorganic thin film layer internal stress B, it is suitable for suppressing the warp of the inorganic thin film layer caused by the internal stress (compressive stress) generated in the inorganic thin film layer.
  • the upper limit of the organic layer internal stress A with respect to the inorganic thin film layer internal stress B is usually 50% or less, preferably 40% or less.
  • the laminated film has a relatively high internal stress A of the organic layer, so that the laminated film is formed in the inorganic thin film layer even when it contains an inorganic thin film layer having high density and excellent gas barrier property. It has an excellent effect of suppressing warpage caused by high compressive stress. Therefore, in the laminated film of one aspect of the present invention, a laminate composed of a base material layer, an organic layer and an inorganic thin film layer constituting the laminated film is heated at a temperature of 130 ° C. or higher for 30 minutes, and then heated at 25 ° C. for 10 minutes.
  • the internal stress of the laminated film composed of the organic layer and the inorganic thin film layer (hereinafter, also referred to as “laminated film internal stress C”) measured by allowing to cool is preferably 0.030 GPa or less.
  • laminated film internal stress C measured by allowing to cool
  • the internal stress C of the laminated film is 0.030 GPa or less, it is considered that the warp of the inorganic thin film layer caused by the high compressive stress is suppressed by the organic layer having an internal stress in a specific range, and the inorganic thin film is considered to be suppressed. It is possible to obtain a laminated film in which warpage is suppressed as a whole laminated film while ensuring high density of layers and excellent gas barrier properties.
  • the internal stress C of the laminated film is more preferably 0.025 GPa or less, and further preferably 0.020 GPa or less.
  • the lower limit of the internal stress C of the laminated film is not particularly limited and may be 0 GPa.
  • the internal stress C of the laminated film is the base material layer and the inorganic thin film. It means the internal stress in the laminated body composed of all the layers contained between the base material layer and the inorganic thin film layer located on the side where the layers are laminated and the inorganic thin film layer.
  • the laminated film is obtained by heating a laminated body composed of a base material layer, an organic layer and an inorganic thin film layer constituting the laminated film at 130 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes.
  • the internal stress of the laminated film composed of the organic layer and the inorganic thin film layer to be measured (hereinafter, The “laminated film internal stress C (130 ° C.)”) is preferably 0.030 GPa or less.
  • the internal stress C (130 ° C.) of the laminated film is 0.030 GPa or less, it is easy to obtain a laminated film in which warpage is suppressed as a whole while ensuring high density of the inorganic thin film layer and excellent gas barrier properties. ..
  • the internal stress C (130 ° C.) of the laminated film is more preferably 0. It is 025 GPa or less, more preferably 0.020 GPa or less, and its lower limit value may be 0 GPa or less.
  • the laminated film is obtained by heating a laminate composed of a base material layer, an organic layer and an inorganic thin film layer constituting the laminated film at 180 ° C. for 30 minutes, and then heating at 25 ° C. for 10 minutes.
  • the internal stress of the laminated film composed of the organic layer and the inorganic thin film layer (hereinafter, also referred to as “laminated film internal stress C (180 ° C.)”) measured by allowing to cool for a minute is 0.020 GPa or less. Is preferable.
  • the internal stress C (180 ° C.) of the laminated film is 0.020 GPa or less, it is easy to obtain a laminated film in which warpage is suppressed as a whole while ensuring high density of the inorganic thin film layer and excellent gas barrier properties. ..
  • the internal stress C (180 ° C.) of the laminated film is more preferably 0.015 GPa or less, further preferably 0.010 GPa or less, and its lower limit value may be 0 GPa or less.
  • the internal stress C (130 ° C.) of the laminated film is 0. It is preferable that the internal stress C (180 ° C.) of the laminated film is 0.020 GPa or less, and the internal stress C (130 ° C.) and (180 ° C.) of the laminated film are the upper limits described in the previous paragraphs, respectively. It is more preferable to have an internal stress equal to or less than the value.
  • Laminated film internal stress C When (130 ° C.) and (180 ° C.) are each equal to or less than the above upper limit values, the effect of suppressing warpage of the laminated film can be further improved while ensuring high density of the inorganic thin film layer and excellent gas barrier properties.
  • the internal stress C of the laminated film is obtained when the laminated body to be measured is heated at a temperature of 130 ° C. or higher from room temperature (25 ° C.) for 30 minutes and then allowed to cool at 25 ° C. for 10 minutes. It can be calculated based on the amount of deformation of the laminated body. Specifically, the laminate to be measured, which is cut out into a quadrangle of an appropriate size, is heated at a temperature of 130 ° C. or higher for 30 minutes, then allowed to cool at 25 ° C. for 10 minutes, and then placed on a horizontal plane. The distance (height) from to the four corners is measured, and the radius of curvature is calculated from their average value.
  • Laminated film internal stress C (GPa) Eh 2/ 6 (1-v) Rt '' (3)
  • t'' is the total thickness (m) of the organic layer and the inorganic thin film layer
  • R is the radius of curvature (m)
  • h is the thickness of the base material layer (m)
  • E is the Young's modulus of the base material layer (Pa)
  • v Represents the Poisson's ratio of the substrate layer.
  • the heating temperature of the laminated body when measuring the internal stress C of the laminated film is 130 ° C. or higher.
  • the heating temperature may be 130 ° C. or higher, but is preferably 130 ° C. or higher and 200 ° C. or lower, more preferably 130 ° C. or 180 ° C., 130 ° C. in one aspect of the present invention, and another one. In the embodiment, it is 180 ° C.
  • the heating temperature when measuring the internal stress C of the laminated film may be the same as the heating temperature applied when measuring the internal stress A of the organic layer and the internal stress B of the inorganic thin film layer of the laminated film to be measured. preferable. More specifically, the internal stress C of the laminated film can be measured and calculated according to, for example, the method described in Examples described later.
  • the laminated film is preferably transparent when visually observed.
  • the total light transmittance (Tt) of the laminated film is preferably 78.0% or more, more preferably 80.0% or more, still more preferably 83.0% or more, and particularly preferably 85.0%. As mentioned above, it is extremely preferably 87.0% or more.
  • the upper limit of the total light transmittance of the laminated film is not particularly limited and may be 100% or less.
  • the haze (cloudiness value) of the laminated film is preferably 5.0% or less, more preferably 3.0% or less, and even more preferably 2.0% or less.
  • the lower limit of the haze of the laminated film is not particularly limited and is usually 0% or more. From the viewpoint of visibility, the smaller the haze is, the more preferable it is. Further, it is preferable that the laminated film after exposure for 250 hours in an environment of 60 ° C. and 90% relative humidity still has a haze in the above range.
  • the total light transmittance and haze can be measured using, for example, a haze computer. After performing background measurement in the absence of a laminated film, the laminated film is set in a sample holder and measured. The total light transmittance and haze value of the laminated film can be obtained.
  • the thickness of the laminated film may be appropriately determined according to the intended use. From the viewpoint of good handleability of the laminated film and easy improvement of bending characteristics while ensuring an appropriate surface hardness, it may be, for example, 5 to 550 ⁇ m, preferably 10 to 250 ⁇ m, and more preferably 15 to 200 ⁇ m.
  • the thickness of the laminated film can be measured by a film thickness meter.
  • an inorganic thin film layer having the same compressive stress is provided on both sides of the base material layer. Warpage of the laminated film can be suppressed by canceling each other's internal stresses between the two inorganic thin film layers existing through the material layer.
  • the inorganic material is present in the inorganic thin film layer at a high density, and such a highly dense inorganic thin film layer is provided on both sides of the base material layer.
  • the laminated film contained in the film may not be sufficiently satisfactory in terms of productivity and production cost.
  • the laminated film eliminates the warpage of the organic layer existing between the base material layer and the inorganic thin film layer, which may occur due to the internal stress generated in the inorganic thin film layer. Since it has sufficient internal stress, it has an excellent effect of suppressing warpage of the laminated film even when the inorganic thin film layer is present only on one surface side of the base material layer, and is inorganic only on one side of the base material layer. Since the thin film layer may be formed, it may be advantageous in terms of productivity and production cost. Therefore, in a preferred embodiment of the present invention, the laminated film has an inorganic thin film layer only on one surface side of the base material layer.
  • the base material layer constituting the laminated film of the present invention includes a flexible base material.
  • Flexible substrate means a flexible substrate capable of holding an inorganic thin film layer.
  • a resin film containing at least one kind of resin can be used as the resin component.
  • the flexible base material is preferably a transparent resin base material.
  • Examples of the resin that can be used in the flexible base material include polyethylene naphthalate (PE). Polyester resin such as N); Polyethylene (PE), Polypropylene (PP), Polyethylene resin such as cyclic polyolefin; Polyethylene resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Kenzome of ethylene-vinyl acetate copolymer; Polyacrylonitrile Resin; Acetal resin; Polyethylene resin; Polyether sulfide ( PES), biaxially stretched and heat-annealed polyethylene terephthalate (PET) ).
  • PET polyethylene naphthalate
  • polyester resin such as N
  • Polyethylene Polypropylene
  • Polyethylene resin such as cyclic polyolefin
  • Polyethylene resin Polyethylene resin
  • Polycarbonate resin Polystyrene resin
  • Polyvinyl alcohol resin Polyvinyl alcohol resin
  • Kenzome of ethylene-vinyl acetate copolymer Polyacrylonitrile Resin
  • polyester resin and polyolefin resin from the viewpoint of easily controlling the internal stress A of the organic layer and the internal stress B of the inorganic thin film layer of the obtained laminated film, easily improving the warp suppressing effect, and having high transparency. It is preferable to use a resin selected from the group consisting of PEN, more preferably a resin selected from the group consisting of PEN and cyclic polyolefin, and even more preferably to use PEN.
  • the flexible base material may be an unstretched resin base material, or the unstretched resin base material may be uniaxially stretched, tenter-type sequential biaxially stretched, tenter-type simultaneous biaxially stretched, or tubular-type simultaneous biaxially stretched.
  • the stretched resin base material may be stretched in the flow direction (MD direction) of the resin base material and / or in the direction perpendicular to the flow direction of the resin base material (TD direction) by a known method such as stretching.
  • the flexible base material may be a laminate in which two or more layers of the above-mentioned resin are laminated.
  • the glass transition temperature (Tg) of the flexible substrate is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 150 ° C. or higher, from the viewpoint of heat resistance of the laminated film.
  • the upper limit of the glass transition temperature is preferably 250 ° C. or lower.
  • the glass transition temperature ( Tg) can be measured using a dynamic viscoelasticity measuring (DMA) device or a differential scanning calorimetry (DSC).
  • the thickness of the flexible base material may be appropriately set in consideration of stability during manufacturing of the laminated film, but it is easy to easily transport the flexible base material in vacuum in the manufacturing process of the laminated film. From the viewpoint, it is preferably 5 to 500 ⁇ m. Further, when the inorganic thin film layer is formed by the plasma chemical vapor deposition method (plasma CVD method) as described later, the thickness of the flexible base material is 10. It is more preferably about 200 ⁇ m, and even more preferably 15 to 150 ⁇ m. The thickness of the flexible base material can be measured with a film thickness meter.
  • the flexible substrate may be a retardation film such as a ⁇ / 4 retardation film or a ⁇ / 2 retardation film in which the refractive indexes of the two orthogonal components in the plane are different from each other.
  • a retardation film such as a ⁇ / 4 retardation film or a ⁇ / 2 retardation film in which the refractive indexes of the two orthogonal components in the plane are different from each other.
  • a solvent casting method or a precision extrusion method capable of reducing the residual stress of the film can be used, but the solvent casting method is preferably used from the viewpoint of uniformity.
  • the stretching method is not particularly limited, and vertical uniaxial stretching between rolls, tenter horizontal uniaxial stretching, and the like that can obtain uniform optical characteristics can be applied.
  • In-plane retardation Re at a wavelength of 550 nm when the flexible substrate is a ⁇ / 4 retardation film 550) is usually 100 to 180 nm, preferably 110 to 170 nm, and more preferably 120 to 160 nm.
  • In-plane retardation Re at a wavelength of 550 nm when the flexible substrate is a ⁇ / 2 retardation film 550) is usually 220 to 320 nm, preferably 240 to 300 nm, and more preferably 250 to 280 nm.
  • the retardation value may exhibit an inverse wavelength dispersibility that increases according to the wavelength of the measurement light, and the retardation value decreases according to the wavelength of the measurement light. It may show a positive wavelength dispersion characteristic, or may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
  • the flexible base material is a retardation film exhibiting reverse wavelength dispersibility
  • the phase difference of the flexible base material at the wavelength ⁇ is expressed as Re ( ⁇ )
  • the flexible base material is Re. (450) / Re (550) ⁇ 1 and Re (650) / Re (550)> 1 can be satisfied.
  • the flexible substrate is preferably colorless and transparent from the viewpoint of being able to transmit and absorb light. More specifically, the total light transmittance is preferably 80% or more, and more preferably 85% or more. Further, the haze value is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the total light transmittance and haze of the flexible substrate can be measured by the same method as described above as the method for measuring the total light transmittance and haze in the laminated film.
  • an insulating, electrical resistivity is preferably 10 6 [Omega] cm or more.
  • the surface of the flexible base material may be subjected to a surface activation treatment for cleaning the surface from the viewpoint of adhesion to an organic layer or the like.
  • a surface activation treatment for cleaning the surface from the viewpoint of adhesion to an organic layer or the like.
  • Examples of such surface activation treatment include corona treatment, plasma treatment, and frame treatment.
  • the flexible base material may or may not be annealed, but it is easy to control the internal stress A of the organic layer and the internal stress B of the inorganic thin film layer, and the warpage of the laminated film is suppressed. From the viewpoint of easily improving the effect, it is preferable to perform an annealing treatment.
  • the annealing treatment involves biaxially stretching the flexible substrate and heating it at a temperature equal to or higher than the upper limit of use temperature (for example, 200 ° C.). After biaxially stretching the flexible substrate, the upper limit of use temperature (for example, 200 ° C.) is offline. ) It can be passed through a heating furnace with a temperature higher than that.
  • the flexible base material may be annealed, or the base material layer in which a primer layer or the like, which will be described later, is laminated on one side or both sides may be annealed.
  • the base material layer constituting the laminated film may consist of only a flexible base material, and in addition to the flexible base material, one side or both sides of the flexible base material. It may contain a primer layer formed in.
  • the primer layer By having the primer layer, the adhesion between the flexible base material and the organic layer can be improved.
  • the flexible substrate has primer layers on both sides and there is no layer outside the primer layer on one surface side, that is, when the primer layer is the outermost layer, the primer layer is a laminated film.
  • the laminated film may have an additional primer layer laminated on another portion in addition to the primer layer existing in contact with the flexible base material.
  • the primer layer preferably has a softening temperature of 130 ° C. or higher.
  • the softening temperature of the primer layer is preferably 130 ° C. or higher, more preferably 160 ° C. or higher. Above, more preferably 180 ° C. or higher.
  • the upper limit of the softening temperature of the primer layer is usually 250 ° C. or lower.
  • the primer layer preferably contains at least one selected from urethane resin, acrylic resin, polyester resin, epoxy resin, melamine resin and amino resin. Among these, it is more preferable to contain a polyester resin as a main component.
  • the primer layer may contain an additive in addition to the above resin.
  • an additive a known additive can be used for forming the primer layer, for example, silica particles, alumina particles, calcium carbonate particles, magnesium carbonate particles, barium sulfate particles, aluminum hydroxide particles, titanium dioxide particles. , Zirconium oxide particles, clay, talc and other inorganic particles.
  • silica particles are preferable from the viewpoint of the effect of suppressing warpage of the laminated film.
  • the average primary particle size thereof is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and particularly preferably 20 n. It is m or more, preferably 100 nm or less, more preferably 80 nm or less, still more preferably 60 nm or less, and particularly preferably 40 nm or less.
  • the average primary particle size of the silica particles is in the above range, the aggregation of the silica particles can be suppressed, and the transparency and the warp suppressing effect of the laminated film can be improved.
  • the slipperiness of the laminated film at the time of production can be further improved and blocking can be effectively prevented.
  • the average primary particle size of the silica particles can be measured by the BET method or TEM observation of the particle cross section.
  • the content of the silica particles is preferably 1 to 50% by mass, more preferably 1.5 to 40% by mass, and further preferably 2 to 30% by mass with respect to the mass of the primer layer.
  • the content of the silica particles is at least the above lower limit value, the warp suppressing effect of the laminated film is likely to be improved.
  • the content of the silica particles is not more than the above upper limit value, it is easy to improve optical characteristics such as low haze and high total light transmittance.
  • the thickness of the primer layer is preferably 1 ⁇ m or less, more preferably 500 nm or less, further preferably 200 nm or less, preferably 10 nm or more, and more preferably 20 nm. Above, more preferably 30 nm or more.
  • the thickness of the primer layer can be measured with a film thickness meter.
  • the primer layers are present on both sides of the flexible base material, their thickness may be the same or different, but from the viewpoint of easily improving the warp suppressing effect of the laminated film, the two primer layers are used. It is preferable that the thickness is the same. In one aspect of the present invention, when the laminated film has three or more primer layers, it is preferable that each primer layer has the above thickness.
  • the primer layer can be obtained by applying a resin composition containing a resin, a solvent and, if necessary, an additive on a flexible base material, and drying the coating film to form a film.
  • a resin composition containing a resin, a solvent and, if necessary, an additive on a flexible base material, and drying the coating film to form a film.
  • the solvent is not particularly limited as long as it can dissolve the resin, and is, for example, an alcohol solvent such as methanol, ethanol, 2-propanol, 1-butanol, 2-butanol; diethyl ether, diisopropyl ether, tetrahydrofuran, 1 , 4-Dioxane, propylene glycol monomethyl ether and other ether solvents; acetone, 2-butanol, methyl isobutyl ketone and other ketone solvents; N, N-dimethylformamide, N , N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide and other aprotic polar solvents; methyl acetate, ethyl acetate, n acetate -Ester solvent such as butyl; nitrile solvent such as acetonitrile and benzonitrile; n -Hyd
  • a method for applying the primer layer to the flexible substrate various conventionally used application methods, For example, spray coating, spin coating, bar coating, curtain coating, dipping method, air knife method, slide coating, hopper coating, reverse roll coating, gravure coating, extraction coating and the like can be mentioned.
  • Examples of the method for drying the coating film include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method, and heat drying can be preferably used.
  • the drying temperature is usually about 50 to 350 ° C.
  • the drying time is usually about 30 to 300 seconds, although it depends on the type of resin and solvent.
  • the primer layer may be formed on one side or both sides of the flexible base material, but a commercially available film having the primer layer on one side or both sides of the flexible base material, for example, manufactured by Teijin Film Solutions Co., Ltd. "Theonex (registered trademark)" or the like can also be used.
  • the primer layer may be a single layer or two or more layers.
  • the two primer layers may have the same composition or different compositions from each other, but the effect of suppressing the warp of the laminated film can be easily improved. Therefore, it is preferable that the layers have the same composition.
  • the plurality of primer layers may be layers having the same or different compositions.
  • the base material layer may be a single layer or may be two or more layers as long as it includes a flexible base material.
  • the layer existing between the flexible substrate and the organic layer closest to the flexible substrate is regarded as a layer constituting the base material layer.
  • the base material layer for measuring the organic layer internal stress A and the inorganic thin film layer internal stress B is a flexible group.
  • a layer located between the material and the inorganic thin film layer, located between the organic layer closest to the flexible substrate, and a similar layer existing symmetrically or asymmetrically through the flexible substrate. (Primer layer and the above other layers) are included.
  • the base material layer 1 is composed of a flexible base material 1-1 and two primer layers 1-2 adjacent to both sides thereof.
  • the total thickness of the base material layer is less likely to affect the internal stress of the organic layer and the internal stress of the inorganic thin film layer, and is excellent in the effect of suppressing warpage of the laminated film. From the viewpoint, it may be, for example, 5 to 550 ⁇ m, preferably 10 to 250 ⁇ m, and more preferably 15 to 200 ⁇ m.
  • the laminated film of the present invention is an organic layer located between a base material layer and an inorganic thin film layer, and has the above-mentioned specific organic layer internal stress A (hereinafter, also referred to as “first organic layer”). Has. Further, in one aspect of the present invention, the laminated film further has an organic layer (hereinafter, also referred to as “second organic layer”) on the surface of the base material layer opposite to the first organic layer.
  • second organic layer for example, precipitation of the resin component of the flexible base material or deformation of the flexible base material is easily suppressed, so that even if the laminated film is exposed to a high temperature environment, its haze Effects such as suppression of the rise can be expected.
  • the laminated film when the laminated film contains a first organic layer and / or a second organic layer, even if the first organic layer and the second organic layer are layers having a function as a flattening layer, respectively. It may be a layer having a function as an anti-blocking layer, or a layer having both of these functions.
  • the second organic layer in which the inorganic thin film layer is not laminated functions as an anti-blocking layer from the viewpoint of ensuring slipperiness during film transportation.
  • the first organic layer has a function as a flattening layer
  • the second organic layer has a function as a flattening layer from the viewpoint of improving the gas barrier property by homogenizing the inorganic thin film layer and ensuring slipperiness during film transportation. It is more preferable to have a function as an anti-blocking layer.
  • the second organic layer when the laminated film contains the first organic layer and the second organic layer, if the first organic layer satisfies the organic layer internal stress A in the specific range described above, the second organic layer
  • the value of the internal stress A of the organic layer is not particularly limited, but when the inorganic thin film layer is not present on the side opposite to the base material layer of the second organic layer, the lower the internal stress of the organic layer of the second organic layer is, the more preferable.
  • the first organic layer and the second organic layer may be single layers or may be two or more layers.
  • the first organic layer and the second organic layer may be layers having the same composition or layers having different compositions, but they have the same composition from the viewpoint of easily improving the warp suppressing effect of the laminated film.
  • the laminated film has an organic layer other than the first organic layer and the second organic layer
  • the plurality of organic layers may be layers having the same composition but different compositions. There may be.
  • the organic layer means both the first organic layer and the second organic layer.
  • the organic layer is a layer containing an organic compound, and as long as it satisfies the above-mentioned specific organic layer internal stress A, its constituent components are not particularly limited, and for example, it is photocured having a polymerizable functional group. It can be formed by applying a composition containing a sex compound onto a base material layer and curing the composition.
  • the photocurable compound contained in the composition for forming the organic layer include an ultraviolet or electron beam curable compound, and such a compound has a polymerizable functional group in the molecule.
  • composition for forming the organic layer may contain one kind of photocurable compound. It may contain two or more photocurable compounds. By curing the photocurable compound having a polymerizable functional group contained in the composition for forming an organic layer, the photocurable compound is polymerized to form an organic layer containing a polymer of the photocurable compound.
  • the reaction rate of the polymerizable functional group of the photocurable compound having the polymerizable functional group in the organic layer is preferably 70% or more, more preferably 75% or more, still more preferably 80% from the viewpoint of easily improving the appearance quality. That is all.
  • the upper limit of the reaction rate is not particularly limited, but is preferably 95% or less, more preferably 90% or less, from the viewpoint of easily improving the appearance quality. When the reaction rate is equal to or higher than the above lower limit value, colorless and transparent easily occurs. Further, when the reaction rate is not more than the above upper limit value, the bending resistance is likely to be improved.
  • the reaction rate increases as the polymerization reaction of the photocurable compound having a polymerizable functional group proceeds, for example, when the photocurable compound is an ultraviolet curable compound, the intensity of the ultraviolet rays to be irradiated may be increased. It can be increased by lengthening the irradiation time. By adjusting the curing conditions as described above, the reaction rate can be kept within the above range.
  • the reaction rate was determined from the surface of the coating film with respect to the coating film before curing obtained by applying the composition for forming an organic layer on the substrate and drying it if necessary, and the coating film after curing the coating film.
  • the infrared absorption spectrum can be measured using a total reflection type FT-IR, and can be measured from the amount of change in the intensity of the peak derived from the polymerizable functional group.
  • the polymerizable functional group is a (meth) acryloyl group
  • C C as the reaction rate of the polymerization increases.
  • the intensity of the peak derived from the double bond decreases.
  • reaction rate is calculated by the formula (4) :.
  • Reaction rate [%] [1- (I CC2 / I CO2 ) / (I CC1 / I CO1 )] ⁇ 100 (4) Is calculated by.
  • Range of 450 cm -1 is observed in the vicinity of 1400cm -1
  • C O double infrared absorption peak attributable to binding in the range of usually 1700 ⁇ 1800 cm -1, for example 1700 cm -1 Observed in the vicinity.
  • the intensity of the infrared absorption peak in the range of 1000 to 1100 cm -1 in the infrared absorption spectrum of the organic layer is Ia
  • the intensity of the infrared absorption peak in the range of 1700 to 1800 cm -1 is I.
  • I a and I b the formula (5): 0.05 ⁇ I b / I a ⁇ 1.0 (5) It is preferable to satisfy.
  • the infrared absorption peak in the range of 1000 to 1100 cm -1 is present in the compound and the polymer (for example, the photocurable compound having a polymerizable functional group and / or the polymer thereof) contained in the organic layer.
  • the peak intensity ratio (I b / I a ) is preferably 0.05 or more, more preferably 0.10 or more, still more preferably 0.20 or more.
  • the ratio of peak intensities is equal to or more than the above lower limit value, the uniformity of the organic layer can be easily improved. This is not limited to the following mechanism, but if the amount of siloxane-derived Si—O—Si bonds present in the compound and polymer contained in the organic layer becomes too large, aggregates are generated in the organic layer.
  • the peak intensity ratio (I b / I a ) is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less.
  • the ratio of peak intensities is not more than the above upper limit value, it is easy to improve the adhesion of the organic layer. This is not limited to the following mechanism, but the hardness of the organic layer is increased by the presence of a certain amount or more of siloxane-derived Si—O—Si bonds in the compounds and polymers contained in the organic layer. It is presumed that this is because it is moderately reduced.
  • the infrared absorption spectrum of the organic layer is A It can be measured by a Fourier transform infrared spectrophotometer (FT / IR-460Plus manufactured by JASCO Corporation) equipped with a TR attachment (PIKE MIRacle).
  • the photocurable compound contained in the composition for forming an organic layer is a compound that starts polymerization by ultraviolet rays or the like and proceeds to cure to become a resin which is a polymer.
  • the photocurable compound is preferably a compound having a (meth) acryloyl group from the viewpoint of curing efficiency.
  • the compound having a (meth) acryloyl group may be a monofunctional monomer or oligomer, or may be a polyfunctional monomer or oligomer.
  • “(meth) acryloyl” means acryloyl and / or methacryloyl
  • "(meth) acrylic” means acrylic and / or methacrylic.
  • Examples of the compound having a (meth) acryloyl group include (meth) acrylic compounds, and specifically, alkyl (meth) acrylate, urethane (meth) acrylate, ester (meth) acrylate, epoxy (meth) acrylate, and the like.
  • the polymer and copolymer thereof and the like can be mentioned.
  • the photocurable compound contained in the composition for forming an organic layer may be, for example, in place of the compound having a (meth) acryloyl group or in addition to the compound having a (meth) acryloyl group, for example, metetramethoxysilane.
  • Tetraethoxysilane methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxysilane, isobutyltrimethoxysilane, cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltri It preferably contains ethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diisopropyldimethoxysilane, trimethylethoxysilane, triphenylethoxysilane and the like. Alkoxysilanes other than these may be used.
  • Examples of the photocurable compound other than the photocurable compound having a polymerizable functional group described above include polyester resin, isocyanate resin, ethylene vinyl alcohol resin, vinyl-modified resin, epoxy resin, phenol resin, urea melamine resin, etc. by polymerization. Examples thereof include monomers or oligomers that serve as styrene resins and resins such as alkyl titanates.
  • the composition for forming an organic layer can contain inorganic particles described as inorganic particles that can be contained in the primer layer, preferably silica particles.
  • the average primary particle size of the silica particles contained in the composition for forming an organic layer is preferably 5 to 100 nm, more preferably 5 to 75 nm. When inorganic particles are contained, the effect of suppressing warpage of the laminated film is likely to be improved.
  • the content of the inorganic particles is preferably 20 to 90%, more preferably 40 to 85%, based on the mass of the solid content of the composition for forming the organic layer.
  • the solid content of the composition for forming an organic layer means a component excluding volatile components such as a solvent contained in the composition for forming an organic layer.
  • the composition for forming an organic layer may contain a photopolymerization initiator from the viewpoint of curability of the organic layer.
  • the content of the photopolymerization initiator is preferably 2 to 15%, more preferably 3 to 11%, based on the mass of the solid content of the composition for forming the organic layer, from the viewpoint of enhancing the curability of the organic layer. Is.
  • the composition for forming an organic layer may contain a solvent from the viewpoint of coatability.
  • a solvent capable of dissolving the compound can be appropriately selected depending on the type of the photocurable compound having a polymerizable functional group, and for example, a solvent that can be used when forming a primer layer is described above. Examples include solvents.
  • the solvent may be used alone or in combination of two or more.
  • the inorganic particles In addition to the photocurable compound having a polymerizable functional group, the inorganic particles, the photopolymerization initiator and the solvent, if necessary, a thermal polymerization initiator, an antioxidant, an ultraviolet absorber, a plasticizer, and leveling. Additives such as agents and curl inhibitors may be included.
  • the internal stress A of the organic layer tends to increase by increasing the degree of curing of the composition for forming the organic layer by increasing the irradiation amount or the like.
  • the temperature when forming the organic layer is low or the residence time is short, the solvent remains in the organic layer, or when the coating film is cured by UV irradiation, the UV illuminance and UV integration are performed. Due to the small amount of light, the internal stress A of the organic layer tends to be low when the degree of curing of the organic layer cannot be sufficiently increased.
  • a composition for forming an organic layer (photocurable composition) containing a photocurable compound is applied onto the base material layer, dried if necessary, and then irradiated with ultraviolet rays or an electron beam. , The photocurable compound can be cured to form.
  • Examples of the coating method include the same method as the method of coating the primer layer on the flexible substrate.
  • the organic layer may be a (meth) acrylate resin, a polyester resin, an isocyanate resin, an ethylene vinyl alcohol resin, a vinyl-modified resin, an epoxy resin, a phenol resin, a urea melamine resin, or a styrene. It may contain a resin, an alkyl titanate and the like. The organic layer may contain one kind or a combination of two or more kinds of these resins.
  • the organic layer has a function as a flattening layer
  • the organic layer is a rigid pendulum type physical property tester (for example, when the temperature change of the elastic modulus of the organic layer surface is evaluated by A & D Co., Ltd. (RPT-3000W, etc.), the temperature at which the elastic modulus of the organic layer surface decreases by 50% or more is 150 ° C. or more. It is preferable to have.
  • the surface roughness measured by observing the organic layer with a white interference microscope is preferably 3 nm or less, more preferably 2 nm or less, still more preferably 1 nm or less. ..
  • the surface roughness of the organic layer is not more than the above upper limit value, the defects of the inorganic thin film layer laminated on the organic layer surface are reduced, and the gas barrier property is further enhanced.
  • the surface roughness is measured by observing the organic layer with a white interference microscope and forming interference fringes according to the unevenness of the sample surface.
  • the organic layer When the organic layer has a function as an anti-blocking layer, the organic layer preferably contains the above-mentioned inorganic particles.
  • the thicknesses of the first organic layer and the second organic layer may be appropriately adjusted depending on the intended use, but are preferably 0.1 to 15 ⁇ m, more preferably 0.5 to 12 ⁇ m, respectively. It is preferably 0.7 to 10 ⁇ m.
  • the thickness of the organic layer can be measured with a film thickness meter. When the thickness is at least the above lower limit value, the surface hardness of the laminated film is likely to be improved. Further, when the thickness is not more than the above upper limit value, the flexibility is likely to be improved.
  • the thicknesses of the first organic layer and the second organic layer may be the same or different. When the laminated film of one aspect of the present invention has three or more organic layers, it is preferable that each organic layer has the above-mentioned thickness.
  • the laminated film of the present invention has an inorganic thin film layer on a surface opposite to the base material layer of at least the first organic layer.
  • inorganic thin film layer By having the inorganic thin film layer, it is possible to impart excellent gas barrier properties to the laminated film.
  • inorganic thin film layers may be provided on both sides of the base material layer constituting the laminated film.
  • the organic layer existing between the base material layer and the inorganic thin film layer has an internal stress sufficient to eliminate the warp that may occur due to the internal stress generated in the inorganic thin film layer.
  • the film is excellent in the effect of suppressing the warp of the laminated film even when the inorganic thin film layer is present only on one surface side of the base material layer, the inorganic thin film layer is formed only on one side of the base material layer. Therefore, it is advantageous in terms of productivity and production cost.
  • these inorganic thin film layers when the laminated film has two or more inorganic thin film layers on both sides of the base material layer, these inorganic thin film layers have the same structure but different structures. May be good.
  • the inorganic thin film layer is preferably configured to satisfy the above-mentioned specific inorganic thin film layer internal stress B, has high density capable of expressing the inorganic thin film layer internal stress B, and serves as a gas barrier layer. It is preferably a layer having a function.
  • the inorganic thin film layer having such a gas barrier property is not particularly limited as long as it is a layer of an inorganic material having a gas barrier property, and a known layer of an inorganic material having a gas barrier property can be appropriately used. Examples of inorganic materials include metal oxides, metal nitrides, metal oxynitrides, metal acid carbides and mixtures containing at least two of these.
  • the inorganic thin film layer may be a single-layer film, or may be a multilayer film in which two or more layers including at least the above thin film layer are laminated.
  • the inorganic thin film layer is a silicon atom (from the viewpoint of easily exhibiting a higher gas barrier property (particularly water vapor permeation prevention property), and also from the viewpoint of bending resistance, ease of manufacturing, and low manufacturing cost. It preferably contains at least Si), an oxygen atom (O), and a carbon atom (C).
  • the inorganic thin film layer can be mainly composed of a compound whose general formula is represented by SiO ⁇ C ⁇ .
  • ⁇ and ⁇ each independently represent a positive number less than 2.
  • the main component means that the content of the component is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more with respect to the mass of all the components of the material.
  • Inorganic thin layer may contain one kind of compound represented by the general formula SiO ⁇ C ⁇ , formula SiO alpha C It may contain two or more compounds represented by ⁇ . ⁇ and / or ⁇ in the above general formula may be constant values or may change in the film thickness direction of the inorganic thin film layer.
  • the inorganic thin film layer contains elements other than silicon atom, oxygen atom and carbon atom, for example, one or more atoms of hydrogen atom, nitrogen atom, boron atom, aluminum atom, phosphorus atom, sulfur atom, fluorine atom and chlorine atom. It may be contained.
  • the inorganic thin film layer has high density and defects such as fine voids and cracks.
  • the range of C / Si is the equation (6) :. 0.02 ⁇ C / Si ⁇ 0.50 (6) It is preferable to satisfy.
  • C / Si is more preferably in the range of 0.03 ⁇ C / Si ⁇ 0.45, further preferably in the range of 0.04 ⁇ C / Si ⁇ 0.40, and 0. 05 ⁇ C / S It is particularly preferable that it is in the range of i ⁇ 0.35.
  • the inorganic thin film layer has high density when the average atomic number ratio of oxygen atoms (O) to silicon atoms (Si) in the thin film layer is represented by O / Si, and has fine voids, cracks, etc. From the viewpoint of reducing defects, it is preferably in the range of 1.50 ⁇ O / Si ⁇ 1.98, and 1.55 ⁇ O. It is more preferably in the range of / Si ⁇ 1.97, even more preferably in the range of 1.60 ⁇ O / Si ⁇ 1.96, and particularly preferably in the range of 1.65 ⁇ O / Si ⁇ 1.95. preferable.
  • the average atomic number ratios C / Si and O / Si were measured in XPS depth profile under the following conditions, and from the obtained distribution curves of silicon atoms, oxygen atoms, and carbon atoms, the averages in the thickness direction of each atom were obtained. After determining the atomic concentration, the average atomic number ratio C / Si and O / Si Can be calculated as.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide film equivalent): 0.027 nm / sec Sputtering time: 0.5 minutes
  • X-ray photoelectron spectrometer Made by ULVAC-PHI, Ltd., model name "Quantera SX” M " Irradiated X-ray: Single crystal spectroscopy AlK ⁇ (1486.6 eV) X-ray spot and its size: 100 ⁇ m Detector: Pass Energy 69eV, Step size 0.125eV Charge correction: Neutralizing electron gun (1eV), low-speed Ar ion gun (10V)
  • the peak intensity ratio I 2 / I 1 calculated from infrared spectroscopy (ATR method) is S in the inorganic thin film layer. It is considered to represent the relative ratio of Si—CH 3 to i—O—Si. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (7) has high density and easily reduces defects such as fine voids and cracks, and thus easily enhances gas barrier properties and impact resistance. Peak intensity ratio I 2 / I 1 is 0.02 ⁇ I 2 / I 1 ⁇ 0 from the viewpoint of easily maintaining the high density of the inorganic thin film layer. .. The range of 04 is more preferable.
  • the laminated film becomes moderately slippery and blocking is easily reduced. If the peak intensity ratio I 2 / I 1 is too large, it means that there is too much SiC, and in this case, the flexibility tends to be poor and slipperiness tends to occur. Further, if the peak intensity ratio I 2 / I 1 is too small, the flexibility tends to decrease due to the amount of Si—C being too small.
  • infrared spectroscopic measurement of the surface of the inorganic thin film layer for example, A using a germanium crystal for the prism A It can be measured by a Fourier transform infrared spectrophotometer (FT / IR-460Plus manufactured by JASCO Corporation) equipped with a TR attachment (PIKE MIRacle).
  • FT / IR-460Plus manufactured by JASCO Corporation
  • TR attachment PIKE MIRacle
  • intensity ratio of the peaks present in cm -1 intensity (I 1), and a peak intensity existing in the 770 ⁇ 830cm -1 (I 3) (I 3 / I 1) has the formula (87): 0.25 ⁇ I 3 / I 1 ⁇ 0.50 (8) It is preferable to satisfy.
  • the peak intensity ratio I 3 / I 1 calculated from infrared spectroscopy (ATR method) is S in the inorganic thin film layer. It is considered to represent the relative ratio of Si-C, Si-O, etc. to i-O-Si. Equation (8 It is considered that the inorganic thin film layer satisfying the relationship represented by) is easy to improve the bending resistance and the impact resistance because carbon is introduced while maintaining high density. Peak intensity ratio I 3 / I 1 is 0.25 ⁇ I 3 from the viewpoint of maintaining a balance between the compactness and bending resistance of the inorganic thin film layer. The range of / I 1 ⁇ 0.50 is preferable, and the range of 0.30 ⁇ I 3 / I 1 ⁇ 0.45 is more preferable.
  • the thin film layer is 770 to 770 to the surface of the thin film layer when infrared spectroscopic measurement (ATR method) is performed.
  • ATR method infrared spectroscopic measurement
  • the peak intensity (I 3) present in the 830 cm -1 the intensity ratio expression between the peak present in the 870 ⁇ 910 cm -1 intensity (I 4) (9): 0.70 ⁇ I 4 / I 3 ⁇ 1.00 (9) It is preferable to satisfy.
  • the peak intensity ratio I 4 / I 3 calculated from infrared spectroscopy (ATR method) is S in the inorganic thin film layer. It is considered to represent the ratio of peaks related to iC. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (9) is likely to have high bending resistance and impact resistance because carbon is introduced while maintaining high density.
  • the range of peak intensity ratio I 4 / I 3 0.70 ⁇ I 4 / I 3 ⁇ 1 from the viewpoint of maintaining a balance between the compactness and bending resistance of the inorganic thin film layer. ..
  • the range of 00 is preferable, and the range of 0.80 ⁇ I 4 / I 3 ⁇ 0.95 is more preferable.
  • the thickness of the inorganic thin film layer may be appropriately adjusted depending on the application, but is preferably 5 to 3000 nm. , More preferably 10 to 2000 nm, still more preferably 50 to 1000 nm.
  • the thickness of the inorganic thin film layer can be measured by a film thickness meter. When the thickness is at least the above lower limit value, the gas barrier property is likely to be improved. Further, when the thickness is not more than the above upper limit value, the flexibility is likely to be improved.
  • the thickness may be 10 to 2000 nm because the inorganic thin film layer is formed while discharging through the base material. It is more preferably 50 to 1000 ⁇ m.
  • the inorganic thin film layer can preferably have a high average density of 1.8 g / cm 3 or more.
  • the "average density" of the inorganic thin film layer is the Rutherford Backscattering method (Rutherford Bac).
  • the number of silicon atoms determined by kscattering spectroscopy (RBS), The number of carbon atoms, the number of oxygen atoms, and the hydrogen forward scattering method (Hydrogen Forward) Calculate the weight of the inorganic thin film layer in the measurement range from the number of hydrogen atoms obtained by scattering spectrum (HFS), and divide by the volume of the inorganic thin film layer in the measurement range (product of ion beam irradiation area and film thickness). It is required by doing.
  • the average density of the inorganic thin film layer is at least the above lower limit value, the structure is high in density and it is easy to reduce defects such as fine voids and cracks, which is preferable.
  • the average density of the inorganic thin film layers is preferably less than 2.22 g / cm 3.
  • the inorganic thin film layer contains at least silicon atoms (Si), oxygen atoms (O), and carbon atoms (C), from the surface of the inorganic thin film layer in the film thickness direction of the inorganic thin film layer.
  • a curve showing the relationship between the distance and the atomic ratio of silicon atoms at each distance is called a silicon distribution curve.
  • the surface of the inorganic thin film layer refers to a surface that becomes the surface of the laminated film of the present invention.
  • an oxygen distribution curve a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic ratio of oxygen atoms at each distance.
  • a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic ratio of carbon atoms at each distance is called a carbon distribution curve.
  • the atomic ratio of silicon atom, the atomic ratio of oxygen atom, and the atomic ratio of carbon atom mean the ratio of the number of atoms to the total number of silicon atom, oxygen atom, and carbon atom contained in the inorganic thin film layer.
  • the atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer is 90 in the film thickness direction of the inorganic thin film layer. It is preferable that the change is continuous in the region of% or more.
  • the fact that the atomic number ratio of the carbon atoms changes continuously in the film thickness direction of the inorganic thin film layer does not include, for example, a portion of the carbon distribution curve in which the atomic ratio of carbon changes discontinuously. Represents.
  • the carbon distribution curve of the inorganic thin film layer has eight or more extreme values from the viewpoint of flexibility and gas barrier property of the laminated film.
  • the silicon distribution curve, oxygen distribution curve, and carbon distribution curve of the inorganic thin film layer are subject to the following conditions (i). ) And (ii) are preferable from the viewpoint of flexibility and gas barrier property of the laminated film.
  • the condition represented by the following formula (10) is satisfied in a region where the atomic number ratio of silicon, the atomic number ratio of oxygen, and the atomic number ratio of carbon are 90% or more in the film thickness direction of the inorganic thin film layer. ,and, (Atomic number ratio of oxygen)> (Atomic number ratio of silicon)> (Atomic number ratio of carbon) (10)
  • the carbon distribution curve preferably has at least one, more preferably eight or more extrema.
  • the carbon distribution curve of the inorganic thin film layer is preferably substantially continuous.
  • the fact that the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the formula (11) when the distance from the surface of the thin film layer in the film thickness direction is x [nm] and the atomic ratio of carbon is C, the formula (11):
  • the carbon distribution curve of the inorganic thin film layer preferably has at least one extremum, and 8 It is more preferable to have one or more extrema.
  • the extreme value here is the maximum value or the minimum value of the atomic ratio of each element with respect to the distance from the surface of the inorganic thin film layer in the film thickness direction.
  • the extreme value is the atomic ratio at the point where the atomic ratio of the element changes from increasing to decreasing or the atomic ratio of the element changes from decreasing to increasing when the distance from the surface of the inorganic thin film layer in the film thickness direction is changed. Is the value of.
  • the extremum can be determined, for example, based on the atomic ratios measured at a plurality of measurement positions in the film thickness direction.
  • the atomic ratio measurement position is set so that the interval in the film thickness direction is, for example, 20 nm or less.
  • the measurement results at three or more different measurement positions are compared, and the measurement results increase or decrease. It can be obtained by finding the position where it turns to or the position where it turns from decrease to increase.
  • the position showing the extremum can also be obtained, for example, by differentiating the approximate curve obtained from the discrete data group.
  • the atomic ratio at the position moved by 20 nm in the film thickness direction from the position showing the extreme value is, for example, 0.03 or more.
  • the inorganic thin film layer formed so as to satisfy the condition that the carbon distribution curve preferably has at least one, more preferably eight or more extreme values has gas permeation after bending with respect to the gas permeability before bending.
  • the amount of increase in the rate is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained.
  • the thin film layer is formed so that the number of extreme values of the carbon distribution curve is two or more, the amount of increase is smaller than that in the case where the number of extreme values of the carbon distribution curve is one.
  • the amount of increase is small as compared with the case where the number of extreme values of the carbon distribution curve is two.
  • the carbon distribution curve has two or more extreme values
  • the absolute value of the difference from the distance from the surface of the thin film layer in the film thickness direction at the position indicated by is preferably in the range of 1 nm or more and 200 nm or less, and more preferably in the range of 1 nm or more and 100 nm or less.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve of the inorganic thin film layer is larger than 0.01.
  • the amount of increase in the gas permeability after bending with respect to the gas permeability before bending is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is 0.02 or more, the above effect is high, and when it is 0.03 or more, the above effect is further high.
  • the absolute value is preferably less than 0.05 (less than 5 at%) and less than 0.04 (less than 4 at%). Is more preferable, and less than 0.03 (less than 3 at%) is particularly preferable.
  • the total atomic ratio is preferably less than 0.05, more preferably less than 0.04, and particularly preferably less than 0.03.
  • the gas barrier property of the inorganic thin film layer can be made uniform and improved.
  • the substantially uniform composition means the number of extreme values existing in the film thickness direction at any two points on the surface of the inorganic thin film layer in the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve. Is the same, and the absolute value of the difference between the maximum and minimum values of the atomic ratio of carbon in each carbon distribution curve is the same as or within 0.05.
  • the inorganic thin film layer formed so as to satisfy the above conditions can exhibit the gas barrier property required for, for example, a flexible electronic device using an organic EL element.
  • the layer of the inorganic material containing such atoms tends to increase the denseness and has fine voids, cracks, and the like. From the viewpoint of easily reducing defects, it is preferably formed by a chemical vapor deposition method (CVD method), and above all, it is formed by a plasma chemical vapor deposition method (PECVD method) using glow discharge plasma or the like. More preferred.
  • CVD method chemical vapor deposition method
  • PECVD method plasma chemical vapor deposition method
  • An example of a raw material gas used in the chemical vapor deposition method is an organosilicon compound containing a silicon atom and a carbon atom.
  • organic silicon compounds are hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of the handleability of the compound and the gas barrier property of the obtained inorganic thin film layer.
  • the raw material gas one kind of these organosilicon compounds may be used alone, or two or more kinds may be used in combination.
  • a reaction gas capable of reacting with the raw material gas to form an inorganic compound such as an oxide or a nitride can be appropriately selected and mixed with the raw material gas.
  • the reaction gas for forming the oxide for example, oxygen or ozone can be used.
  • the reaction gas for forming the nitride for example, nitrogen or ammonia can be used.
  • These reaction gases can be used alone or in combination of two or more.
  • the reaction gas for forming an oxide and the nitride are formed.
  • Can be used in combination with a reaction gas for The flow rate ratio of the raw material gas and the reaction gas can be appropriately adjusted according to the atomic ratio of the inorganic material to be formed.
  • a carrier gas may be used to supply the raw material gas into the vacuum chamber.
  • a discharge gas may be used, if necessary, in order to generate a plasma discharge.
  • a carrier gas and a gas for discharge known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon; hydrogen can be used.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of raw material gas and the like, but is preferably in the range of 0.5 Pa to 50 Pa.
  • the internal stress B of the inorganic thin film layer can be controlled by controlling the degree of vacuum at the time of film formation, the temperature of the base material at the time of film formation, the film formation power, and the magnetic field in the electrode. For example, lowering the degree of vacuum, The internal stress B of the inorganic thin film layer tends to increase by increasing the substrate temperature at the time of film formation, increasing the film forming power, and increasing the magnetic field density. On the other hand, the internal stress B of the inorganic thin film layer tends to be lowered by increasing the degree of vacuum, lowering the substrate temperature at the time of film formation, lowering the film forming power, or lowering the magnetic flux density.
  • the configuration of the laminated film of the present invention in one aspect will be described with reference to FIG. 1.
  • the laminated film 4 of the one aspect of the present invention is formed by laminating a base material layer 1, an organic layer 2, and an inorganic thin film layer 3 in this order. .. If the laminated film of the present invention has a base material layer, an organic layer, and an inorganic thin film layer in this order, it has other layers between each layer and in the outermost layer as long as it does not affect the effect of the present invention. However, in one aspect of the present invention, the base material layer, the organic layer, and the inorganic thin film layer are adjacent to each other in this order.
  • Other layers include, for example, additional organic and inorganic thin film layers, protective layers, easy-to-slip layers, hard coat layers, transparent conductive film layers, color filter layers, easy-adhesion layers, curl adjusting layers, stress relaxation layers, and heat-resistant layers. , Scratch resistant layer, indentation resistant layer and the like.
  • the first organic layer 2-1 and the inorganic thin film are formed on one surface of the base material layer 1.
  • Layer 3 Is laminated, and the second organic layer 2-2 is laminated on the surface of the base material layer 1 opposite to the first organic layer 2-1.
  • the laminated body for measuring the internal stress A of the organic layer in one aspect of the present invention is a laminated body composed of the base material layer 1 and the first organic layer 2-1. ..
  • the laminate for measuring the internal stress B of the inorganic thin film layer in one aspect of the present invention is a laminate composed of the base material layer 1 and the inorganic thin film layer 3 directly formed on the base material layer 1. is there.
  • the laminated film 4 of one aspect of the present invention shown in FIG. 3 includes a base material layer 1 having primer layers 1-2 on both sides of the flexible base material 1-1.
  • the first organic layer 2-1 is laminated on one of the primer layers 1-2, and the inorganic thin film layer 3 is different from the primer layer 1-2 of the first organic layer 2-1. It is formed on the opposite side.
  • the side of the primer layer 1-2 opposite to the primer layer 1-2 on which the first organic layer 2-1 of the flexible base material 1-1 is laminated is opposite to the flexible base material 1-1.
  • the second organic layer 2-2 is laminated on the surface of the surface. In the laminated film 4 shown in FIG.
  • the laminated body for measuring the internal stress A of the organic layer in one aspect of the present invention is a flexible base material 1-1 and a primer layer 1-laminated on both sides thereof. It is a laminate composed of a base material layer 1 composed of 2 and a first organic layer 2-1. Further, the laminate for measuring the internal stress B of the inorganic thin film layer in one aspect of the present invention is a substrate layer 1 composed of a flexible substrate 1-1 and primer layers 1-2 laminated on both sides thereof. And an inorganic thin film layer 3 directly formed on the base material layer 1.
  • the method for producing a laminated film of the present invention is not particularly limited as long as each layer can be formed in the above order, but as an example thereof, after forming an organic layer on one surface of a base material layer containing a flexible base material, Examples thereof include a method of forming an inorganic thin film layer on the organic layer.
  • the base material layer has a primer layer
  • an organic layer can be formed on the primer layer after forming the primer layer on one surface of the flexible base material.
  • the laminated film of one aspect of the present invention further contains an organic layer (second organic layer) on the surface of the base material layer opposite to the organic layer (first organic layer), the same method as described above.
  • a second organic layer can be formed on the surface of the base material layer opposite to the first organic layer.
  • the laminated film according to one aspect of the present invention may be produced by separately producing each layer and then laminating them.
  • the inorganic thin film layer uses glow discharge plasma on the organic layer as described above to form a CV. It is preferably formed by a known vacuum film forming method such as the D method.
  • the inorganic thin film layer is preferably formed by a continuous film forming process, and more preferably, for example, the inorganic thin film layer is continuously formed on the long laminate while being continuously conveyed. Specifically, the inorganic thin film layer may be formed while transporting the laminated body from the feeding roll to the winding roll. afterwards, The inorganic thin film layer may be further formed by inverting the feeding roll and the winding roll and transporting the laminated body in the opposite directions.
  • the laminated film of one aspect of the present invention is excellent in the warp suppressing effect of the laminated film and has a high gas barrier property, and is therefore suitable for, for example, an electronic device application requiring a high gas barrier property.
  • the electronic device include a liquid crystal display element, a solar cell, an organic EL display, an organic EL microdisplay, an organic EL lighting, and a flexible electronic device (flexible display) such as electronic paper, which are required to have high gas barrier properties.
  • the laminated film of one aspect of the present invention can be suitably used as a flexible substrate of the flexible electronic device.
  • the element may be formed directly on the laminated film, or after the element is formed on another substrate, the laminated film is passed through an adhesive layer or an adhesive layer. It may be overlapped from above.
  • Example 1 As a base material, a biaxially stretched polyethylene naphthalate film having primer layers on both sides of a flexible base material (manufactured by Teijin Film Solution Co., Ltd., Q65HWA, thickness 100 ⁇ m, Coating composition 1 (Nippon Kako Paint Co., Ltd., TOMAX (registered trademark) FA-3376-2) was applied to the gravure coating method as an organic layer forming composition for forming an organic layer on one side of a width of 350 mm). And applied. After the coating film is dried at 100 ° C.
  • An inorganic thin film layer (thickness 400 nm) is laminated on the surface of the obtained base material with an organic layer on the organic layer side according to the method for producing an inorganic thin film layer described below, and the base material layer / organic layer / inorganic thin film layer is laminated.
  • a laminated film 1 made of the above was obtained.
  • the film thicknesses of the base material layer, the organic layer, and the inorganic thin film layer of the laminated film 1 are measured by a film thickness meter [Co., Ltd. Using a surf coder ET200 manufactured by Kosaka Laboratory, the step difference between the non-deposited portion and the film-deposited portion was measured, and the film thickness (T) of each layer was determined.
  • An inorganic thin film layer was laminated on a base material with an organic layer using a manufacturing apparatus as shown in FIG. Specifically, in the manufacturing apparatus as shown in FIG. 4 installed in the vacuum chamber, the base film 18 with an organic layer is attached to the delivery roll 10 and the inside of the vacuum chamber is 1 ⁇ 10 -3. After the concentration was reduced to Pa or less, an inorganic thin film layer was formed on the organic layer laminated on the base film while the base film 18 was conveyed by the transport roll 11.
  • the base film 18 with an organic layer is conveyed to the surface of a pair of roll-shaped electrodes composed of a film forming roll 12 and a film forming roll 13 while being brought into close contact with each other.
  • Plasma was generated between the pair of electrodes, and the raw material was decomposed in the plasma to form an inorganic thin film layer on the organic layer.
  • magnets are arranged inside the electrodes so that the magnetic flux density is high on the electrode and the surface of the base material with the organic layer to be conveyed, and when plasma is generated, the magnets are arranged on the electrodes and the base material with the organic layer.
  • the plasma is constrained at high density.
  • HMDSO hexamethyldisiloxane
  • oxygen gas oxygen gas
  • the space between the electrodes deposition roll 12 and film formation roll 13
  • AC power was supplied to the film and discharged to generate plasma.
  • plasma CVD A dense inorganic thin film layer was formed on the base material with an organic layer by the method, and the film was wound into a roll by a winding roll 17.
  • ⁇ Film formation condition 1> Supply amount of raw material gas: 50 sccm (Standard Cubic Centimete) r per Minute, 0 ° C, 1 atm standard) Oxygen gas supply: 500 sccm Vacuum degree in vacuum chamber: 1Pa Power applied from the plasma generation power supply: 0.8 kW Frequency of power supply for plasma generation: 70kHz Film transport speed: 0.6 m / min Number of passes: 2 times
  • the flatness, internal stress, moisture transmittance and the like were measured and / or evaluated according to the following methods.
  • the laminated film 1 was cut out into a square of 50 mm ⁇ 50 mm to obtain a measurement sample. Then, the measurement sample was heated from room temperature (25 ° C.) to 130 ° C. or 180 ° C. in a hot air circulation oven and held for 30 minutes, and then allowed to cool at room temperature (25 ° C.) for 10 minutes. Next, the sample is placed on the horizontal plane so that the central portion of the measurement sample is in contact with the horizontal plane, the distances (heights) from the horizontal plane to the four corners are measured, and the average value is obtained from the four distances obtained. Was calculated. The values calculated in Table 1 are listed as warpage values.
  • the internal stress of the organic layer was calculated from the following equation (12). Calculated.
  • the biaxially oriented polyethylene naphthalate film used as a substrate, the Young's modulus E of the substrate 6.1 ⁇ 10 9 Pa, Poisson's ratio v of the substrate was 0.33.
  • the method for forming the inorganic thin film layer described in Example 1 is the same except that the biaxially stretched polyethylene naphthalate film on which the organic layer is not laminated is conveyed as the base material instead of the base material with the organic layer. Then, the inorganic thin film layer was directly laminated on the base material layer to prepare a laminated body for measuring the internal stress of the inorganic thin film layer.
  • the internal stress of the inorganic thin film layer was calculated by using the amount of deformation of the obtained laminate in the same manner as in the method of measuring and calculating the internal stress of the organic layer.
  • the internal stress of the organic layer was calculated according to the above measurement method.
  • the radius of curvature after heating to 130 ° C. is 11.8 mm.
  • the internal stress was 0.32 GPa.
  • the radius of curvature after heating to 180 ° C is 3.6 m. It was m and the internal stress was 1.05 GPa.
  • the internal stress of the inorganic thin film layer was calculated according to the above measurement method.
  • the radius of curvature after heating to 130 ° C is 17.0 mm
  • the internal stress was 2.23 GPa.
  • the radius of curvature after heating to 180 ° C. was 9.8 mm, and the internal stress was 3.89 GPa.
  • the internal stress of the laminated film 1 (the laminated film composed of the organic layer and the inorganic thin film layer in the laminated film 1) is such that the measurement sample is heated from room temperature (25 ° C.) to 130 ° C. or 180 ° C. in the same manner as in the above method for evaluating flatness. After heating in a circulating oven and holding for 30 minutes, 10 at room temperature (25 ° C) After allowing to cool for a minute, the amount of deformation of the obtained laminated film 1 (average value of each distance from the horizontal plane to the four corners, If it was tubular, the diameter inside the cylinder) was measured.
  • the internal stress of the laminated film 1 was calculated.
  • the Poisson's ratio v of the base material was 0.33.
  • the radius of curvature after heating to 130 ° C. was 200 mm, and the internal stress was 0.017 GPa.
  • the radius of curvature after heating to 180 ° C is 417 mm.
  • the internal stress was 0.0083 GPa.
  • the atomic number ratio of the inorganic thin film layer of the laminated film 1 in the film thickness direction is determined by X-ray photoelectron spectroscopy using a scanning X-ray photoelectron spectroscopy analyzer (Quantara SXM, manufactured by ULVAC-PHI Co., Ltd.) according to the following measurement conditions. It was measured.
  • Astrophysical X-ray source is AlK ⁇ ray (1486.6 eV) , X-ray spot 100 ⁇ m), and for charge correction at the time of measurement, a neutralizing electron gun (1) eV), low speed Ar ion gun (10V) was used.
  • MultiPak Spectral analysis was performed using V6.1A (ULVAC PHI Co., Ltd.), and peaks corresponding to the binding energies of 2p of Si, 1s of O, 1s of N, and 1s of C obtained from the measured wide scan spectrum.
  • the surface atomic number ratio of C to Si (C / Si) and the surface atomic number ratio of O to Si (O / Si) were calculated using.
  • As the surface atomic number ratio the average value of the values measured five times was adopted. From this result, a carbon distribution curve was created.
  • ⁇ XPS depth profile measurement conditions > Etching ion species: Argon (Ar + ) Etching rate (SiO 2 thermal oxide film equivalent): 0.027 nm / sec Sputtering time: 0.5 minutes
  • X-ray photoelectron spectrometer ULVAC-PHI, model name "Quantara SXM” Irradiated X-ray: Single crystal spectroscopy AlK ⁇ (1486.6 eV) X-ray spot and its size: 100 ⁇ m Detector: Pass Energy 69eV, Step size 0.125eV Charge correction: Neutralizing electron gun (1eV), low-speed Ar ion gun (10V)
  • Infrared spectroscopic measurement of the surface of the inorganic thin film layer is performed by a Fourier transform infrared spectrophotometer (FT / IR manufactured by Nippon Spectroscopy Co., Ltd.) equipped with an ATR attachment (PIKE MIRacle) using a germanium crystal for the prism. -460Plus) was used.
  • FT / IR Fourier transform infrared spectrophotometer
  • PIKE MIRacle PIKE MIRacle
  • the water vapor permeability is ISO / WD 151 under the conditions of a temperature of 40 ° C. and a humidity of 90% RH. It was measured by the Ca corrosion test method according to 06-7 (Annex C).
  • the water vapor permeability of the obtained laminated film 1 under the conditions of a temperature of 40 ° C. and a humidity of 90% RH was 3.5 ⁇ 10 -3 g / (m 2 ⁇ day).
  • Comparative Example 1 As a base material layer, a biaxially stretched polyethylene naphthalate film having a primer layer on one side of a flexible base material (manufactured by Teijin Film Solution Co., Ltd., Q65HA, thickness 100 ⁇ m, Using a width of 350 mm), an inorganic thin film layer (400) was applied to one side of the film in the same manner as in Example 1. nm) was laminated to obtain a laminated film 2 composed of a base material layer / an inorganic thin film layer.
  • the internal stress of the inorganic thin film layer was calculated by the same method as in Example 1.
  • the radius of curvature after heating to 130 ° C. is 17.0 mm, and the internal stress is 2.23. It was GPa.
  • the radius of curvature after heating to 180 ° C. was 9.8 mm, and the internal stress was 3.89 GPa.
  • the diameter inside the cylinder was measured and used as the radius of curvature.
  • the flatness of the laminated film 2 was evaluated according to the same method as in Example 1, and the diameter inside the obtained cylinder was shown in Table 1 as a warp value.
  • an inorganic thin film layer (4) was applied in the same manner as in Example 1. 00 nm) was laminated to obtain a laminated film 3 composed of a base material layer / an organic layer / an inorganic thin film layer.
  • Biaxially stretched polyethylene naphthalate film manufactured by Teijin Film Solution Co., Ltd., Q65HWA, thickness 100 ⁇
  • primer layers are formed on both sides of a flexible base material as a base material layer.
  • coating composition 2 (Nippon Kako Paint (Nippon Kako Paint)
  • the organic layer formed from TOMAX FA-3298-1) was laminated to obtain a laminate for measuring the internal stress of the organic layer.
  • the internal stress of the organic layer was calculated according to the same measurement method as in Example 1.
  • the radius of curvature after heating to 130 ° C is 23.8 It was mm and the internal stress was 0.16 GPa.
  • the radius of curvature after heating to 180 ° C. was 7.5 mm, and the internal stress was 0.51 GPa.
  • the laminate for measuring the internal stress of the inorganic thin film layer corresponding to the laminated film 3 is the same as the laminate for measuring the internal stress of the inorganic thin film layer of Example 1, and the radius of curvature after heating to 130 ° C. is 17.0 mm.
  • the internal stress was 2.23 GPa.
  • the radius of curvature after heating to 180 ° C is 9 .. It was 8 mm and the internal stress was 3.89 GPa.
  • the flatness of the laminated film 3 was evaluated according to the same method as in Example 1, and the average value of the obtained distances (heights) to the four corners was shown in Table 1 as a warp value.
  • the laminated film obtained in Example 1 is laminated with an inorganic thin film layer having high density and a large internal stress, but the organic layer has a high internal stress and is either 130 ° C. or 180 ° C. It was excellent in the effect of suppressing the warp of the laminated film even when heated at a temperature.
  • the laminated films obtained in Comparative Examples 1 and 2 which did not contain the organic layer or the internal stress of the organic layer was not sufficient, a large warp of the laminated film occurred under any temperature condition.
  • Base material layer 1-1 Flexible base material 1-2: Primer layer 2: Organic layer 2-1: First organic layer 2-2: Second organic layer 3: Inorganic thin film layer 4: Laminated film 10 : Feeding roll 11: Conveying roll 12: Film forming roll 13: Film forming roll 14: Gas supply pipe 15: Power source for plasma generation 16: Magnetic field generator 17: Winding roll 18: Base film

Abstract

An embodiment of the present invention provides a laminated film exhibiting an excellent warpage suppression effect, and preferably having high gas barrier properties as a result of including a highly dense inorganic thin-film layer. An embodiment of the present invention provides a laminated film including a base material layer with a flexible base material contained therein, an organic layer, and an inorganic thin-film layer in the stated order, wherein after a laminate composed of the base material layer and the organic layer is heated for 30 minutes at a temperature of 130°C or higher and then left to cool for 10 minutes at 25°C, the measured internal stress of the organic layer is 0.2 GPa or more.

Description

積層フィルムLaminated film
 本発明は、可撓性基材を含む基材層、有機層および無機薄膜層をこの順に含む積層フィ
ルムに関する。
The present invention relates to a laminated film containing a base material layer including a flexible base material, an organic layer and an inorganic thin film layer in this order.
 ガスバリア性を付与した積層フィルムは、食品、工業用品、医薬品などの包装用途にお
いて広く使用されている(例えば、特許文献1)。近年、太陽電池および有機EL(electro-luminescence)ディスプレイ、有機EL照明等の電子デバイスのフレキシブル基板等において、上記食品用途等と比較してさらに向上したガスバリア性を有する積層フィルムが求められている。このような積層フィルムのガスバリア性等を高めるために、ポリエチレンテレフタレート(PET)からなる可撓性基材上に、有機層を介して薄膜層を積層させた積層フィルムが開発されている(例えば、特許文献2)。
Laminated films with gas barrier properties are widely used in packaging applications for foods, industrial products, pharmaceuticals, etc. (for example, Patent Document 1). In recent years, in flexible substrates of electronic devices such as solar cells, organic EL (electro-luminescence) displays, and organic EL lighting, laminated films having further improved gas barrier properties as compared with the above-mentioned food applications and the like have been demanded. In order to enhance the gas barrier property of such a laminated film, a laminated film in which a thin film layer is laminated via an organic layer on a flexible base material made of polyethylene terephthalate (PET) has been developed (for example, Patent Document 2).
特開2016-68267号公報Japanese Unexamined Patent Publication No. 2016-68267 特開2016-68383号公報Japanese Unexamined Patent Publication No. 2016-68383
 一般に、電子デバイス等に用いられる積層フィルムには、食品や医薬品用途等に用いら
れる積層フィルムと比較して高いガスバリア性が要求される。かかる求めに応じて、例え
ば、特許文献2に記載される積層フィルムは、特許文献1に記載されるような従来のガス
バリア性積層フィルムを構成する無機層と比較して、より緻密性の高い薄膜層を積層する
ことによって高いガスバリア性を実現している。
 しかしながら、本発明者等の検討によれば、緻密性の高い薄膜層では層内に高い圧縮応
力が生じやすく、該薄膜層に生じる圧縮応力に起因して積層フィルム全体に反りが発生し
やすくなるという問題があることがわかった。特に、可撓性基材を用いる積層フィルムで
は、その製造過程における可撓性基材の膨張・収縮変化によって積層フィルム全体の反り
がより大きくなる傾向にあり、高い緻密性を確保したまま積層フィルムの反りを抑制する
技術が必要とされている。
In general, laminated films used for electronic devices and the like are required to have higher gas barrier properties than laminated films used for food and pharmaceutical applications. In response to such a request, for example, the laminated film described in Patent Document 2 is a thin film having higher density than the inorganic layer constituting the conventional gas barrier laminated film as described in Patent Document 1. High gas barrier properties are achieved by stacking layers.
However, according to the study by the present inventors, a high compressive stress is likely to occur in the thin film layer having high density, and the entire laminated film is likely to be warped due to the compressive stress generated in the thin film layer. It turned out that there was a problem. In particular, in a laminated film using a flexible base material, the warp of the entire laminated film tends to become larger due to the expansion / contraction change of the flexible base material in the manufacturing process, and the laminated film while ensuring high density. There is a need for technology to suppress warpage.
 従って、本発明の一態様は、反り抑制効果に優れ、好ましくは、緻密性の高い無機薄膜層を含むことにより高いガスバリア性を有する積層フィルムを提供することを目的とする。 Therefore, one aspect of the present invention is to provide a laminated film having an excellent warp suppressing effect and preferably having a high gas barrier property by containing an inorganic thin film layer having high density.
 本発明者は、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。すなわち、本発明の一態様は、以下の好適な態様を提供するものである。 The present inventor has completed the present invention as a result of diligent studies to solve the above problems. That is, one aspect of the present invention provides the following suitable aspects.
[1]可撓性基材を含む基材層、有機層および無機薄膜層をこの順に含む積層フィルムで
あって、前記基材層と前記有機層とからなる積層体を130℃以上の温度で30分間加熱
後、25℃で10分間放冷して測定される前記有機層の内部応力が0.2GPa以上であ
る積層フィルム。
[2]前記基材層と該基材層上に直接積層された無機薄膜層とからなる積層体を130℃
以上の温度で30分間加熱後、25℃で10分間放冷して測定される前記無機薄膜層の内
部応力が2.0GPa以上である、前記[1]に記載の積層フィルム。
[3]前記基材層、前記有機層および前記無機薄膜層からなる積層体を130℃以上の温
度で30分間加熱後、25℃で10分間放冷して測定される、前記有機層および前記無機
薄膜層からなる積層膜の内部応力が0.030GPa以下である、前記[1]または[2
]に記載の積層フィルム。
[4]前記基材層と前記有機層とからなる積層体を180℃で30分間加熱後、25℃で
10分間放冷して測定される前記有機層の内部応力が0.8GPa以上である、前記[1
]~[3]のいずれかに記載の積層フィルム。
[5]前記基材層と該基材層上に直接積層された無機薄膜層とからなる積層体を180℃
で30分間加熱後、25℃で10分間放冷して測定される前記無機薄膜層の内部応力が3
.0GPa以上である、前記[1]~[4]のいずれかに記載の積層フィルム。
[6]無機薄膜層が基材層の一方の面側のみに存在する、前記[1]~[5]のいずれか
に記載の積層フィルム。
[7]基材層の前記有機層とは反対側の面に有機層をさらに含む、前記[1]~[6]の
いずれかに記載の積層フィルム。
[8]無機薄膜層はプラズマ化学気相成長法により形成された層である、前記[1]~[
7]のいずれかに記載の積層フィルム。
[9]無機薄膜層は、珪素原子、酸素原子および炭素原子を含有する、前記[1]~[8
]のいずれかに記載の積層フィルム。
[10]無機薄膜層に含まれる珪素原子、酸素原子および炭素原子の合計数に対する炭素
原子の原子数比が、無機薄膜層の膜厚方向における90%以上の領域において、連続的に
変化する、前記[9]に記載の積層フィルム。
[11]ガスバリア性を有する、前記[1]~[10]のいずれかに記載の積層フィルム
[1] A laminated film containing a base material layer containing a flexible base material, an organic layer, and an inorganic thin film layer in this order, and a laminate composed of the base material layer and the organic layer is formed at a temperature of 130 ° C. or higher. A laminated film having an internal stress of 0.2 GPa or more, which is measured by heating for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes.
[2] A laminate composed of the base material layer and an inorganic thin film layer directly laminated on the base material layer at 130 ° C.
The laminated film according to the above [1], wherein the internal stress of the inorganic thin film layer measured by heating at the above temperature for 30 minutes and then allowing to cool at 25 ° C. for 10 minutes is 2.0 GPa or more.
[3] The organic layer and the above-mentioned laminated body composed of the base material layer, the organic layer and the inorganic thin film layer are measured by heating at a temperature of 130 ° C. or higher for 30 minutes and then allowing to cool at 25 ° C. for 10 minutes. The above-mentioned [1] or [2], wherein the internal stress of the laminated film composed of the inorganic thin film layer is 0.030 GPa or less.
] The laminated film described in.
[4] The internal stress of the organic layer measured by heating the laminate composed of the base material layer and the organic layer at 180 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes is 0.8 GPa or more. , Said [1
] To [3].
[5] A laminate composed of the base material layer and an inorganic thin film layer directly laminated on the base material layer at 180 ° C.
The internal stress of the inorganic thin film layer measured by heating at 25 ° C. for 10 minutes after heating for 30 minutes is 3
.. The laminated film according to any one of the above [1] to [4], which is 0 GPa or more.
[6] The laminated film according to any one of [1] to [5] above, wherein the inorganic thin film layer is present only on one surface side of the base material layer.
[7] The laminated film according to any one of [1] to [6] above, further comprising an organic layer on the surface of the base material layer opposite to the organic layer.
[8] The inorganic thin film layer is a layer formed by the plasma chemical vapor deposition method.
7] The laminated film according to any one of.
[9] The inorganic thin film layer contains silicon atoms, oxygen atoms, and carbon atoms, as described in [1] to [8].
]. The laminated film according to any one of.
[10] The atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer changes continuously in a region of 90% or more in the film thickness direction of the inorganic thin film layer. The laminated film according to the above [9].
[11] The laminated film according to any one of the above [1] to [10], which has a gas barrier property.
 本発明の一態様によれば、反り抑制効果に優れ、緻密性の高い無機薄膜層を含むことにより高い
ガスバリア性を有する積層フィルムを提供することができる。
According to one aspect of the present invention, it is possible to provide a laminated film having an excellent warp suppressing effect and a high gas barrier property by including an inorganic thin film layer having high density.
本発明の一態様の積層フィルムの一例を示す断面模式図である。It is sectional drawing which shows an example of the laminated film of one aspect of this invention. 本発明の一態様の積層フィルムの他の一例を示す断面模式図である。It is sectional drawing which shows another example of the laminated film of one aspect of this invention. 本発明の一態様の積層フィルムのさらに他の一例を示す断面模式図である。It is sectional drawing which shows still another example of the laminated film of one aspect of this invention. 実施例および比較例で使用した積層フィルムの製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the laminated film used in an Example and a comparative example.
 以下、本発明の一実施の形態について詳細に説明する。なお、本発明の範囲はここで説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更をすることができる。 Hereinafter, an embodiment of the present invention will be described in detail. The scope of the present invention is not limited to the embodiments described here, and various modifications can be made without departing from the spirit of the present invention.
[積層フィルム]
 本発明の積層フィルムは、可撓性基材を含む基材層(以下、単に「基材層」ともいう)、有機層および無機薄膜層をこの順に含む。
 本発明において、積層フィルムを構成する前記基材層と前記有機層とかるなる積層体を、130℃以上の温度で30分間加熱した後、25℃で10分間放冷して測定される、前記有機層の内部応力は0.2GPa以上である。ガスバリア性を向上させるために緻密性を高めた無機薄膜層では、該層内に生じる高い圧縮応力に起因して該無機薄膜層を形成する面に対して凸状の反りが生じやすくなる。本発明の一態様において、積層フィルムを構成する基材層と有機層とからなる積層体を、130℃以上に加熱した後測定される上記有機層の内部応力(以下、「有機層内部応力A」ともいう)を0.2GPa以上とすることで、基材層と薄膜無機層との間に存在する有機層に無機薄膜層で生じる高い圧縮応力に起因する反りを解消し得る適度な引張応力を付与し、これによって積層フィルム全体の反りを抑制することができる。有機層内部応力Aが0.2GPa未満であると、無機薄膜層が高い圧縮応力を有する場合に無機薄膜層の反りを十分に抑制し難くなり、反り抑制効果の観点において、緻密性が高くガスバリア性に優れる無機薄膜層を有する積層フィルムの構成として適さない場合がある。有機層内部応力Aは、好ましくは0.25GPa以上、より好ましくは0.3GPa以上である。通常、有機層内部応力Aが高くなるほど、無機薄膜層で生じる圧縮応力を打ち消す効果は高まる傾向にある。有機層内部応力Aは、積層フィルムを構成する無機薄膜層の圧縮応力に応じて適宜調整すればよいが、無機薄膜層形成時の反り調整のしやすさ、無機薄膜層のクラック発生抑制の観点から、その上限値は通常7.5GPa以下であり、好ましくは5.0GPa以下である。
[Laminated film]
The laminated film of the present invention includes a base material layer containing a flexible base material (hereinafter, also simply referred to as “base material layer”), an organic layer, and an inorganic thin film layer in this order.
In the present invention, the laminate consisting of the base material layer and the organic layer constituting the laminated film is heated at a temperature of 130 ° C. or higher for 30 minutes and then allowed to cool at 25 ° C. for 10 minutes for measurement. The internal stress of the organic layer is 0.2 GPa or more. In the inorganic thin film layer whose denseness is increased in order to improve the gas barrier property, convex warpage is likely to occur with respect to the surface forming the inorganic thin film layer due to the high compressive stress generated in the layer. In one aspect of the present invention, the internal stress of the organic layer measured after heating the laminate composed of the base material layer and the organic layer constituting the laminated film to 130 ° C. or higher (hereinafter, “organic layer internal stress A”). By setting the value to 0.2 GPa or more, the organic layer existing between the base material layer and the thin film inorganic layer has an appropriate tensile stress that can eliminate the warpage caused by the high compressive stress generated in the inorganic thin film layer. Is given, and thus the warpage of the entire laminated film can be suppressed. When the internal stress A of the organic layer is less than 0.2 GPa, it becomes difficult to sufficiently suppress the warp of the inorganic thin film layer when the inorganic thin film layer has a high compressive stress, and the gas barrier is highly dense from the viewpoint of the warp suppressing effect. It may not be suitable as a structure of a laminated film having an inorganic thin film layer having excellent properties. The organic layer internal stress A is preferably 0.25 GPa or more, more preferably 0.3 GPa or more. Generally, the higher the internal stress A of the organic layer, the higher the effect of canceling the compressive stress generated in the inorganic thin film layer tends to increase. The internal stress A of the organic layer may be appropriately adjusted according to the compressive stress of the inorganic thin film layer constituting the laminated film, but from the viewpoint of ease of warpage adjustment at the time of forming the inorganic thin film layer and suppression of crack generation of the inorganic thin film layer. Therefore, the upper limit value is usually 7.5 GPa or less, preferably 5.0 GPa or less.
 上記有機層内部応力Aは、対象となる積層フィルムを構成する基材層と有機層とからなる積層体において測定される。本発明の一態様の積層フィルムが基材層の両面に有機層を有する場合、上記有機層内部応力Aは、基材層と、無機薄膜層が積層される側に位置する有機層(無機薄膜層が両面にある場合には、基材層と一方の無機薄膜層との間に位置する有機層)とからなる積層体における内部応力を意味する。また、基材層と無機薄膜層との間に複数の有機層が存在する場合には、上記有機層内部応力Aは、基材層と、基材層と無機薄膜層との間に存在する全ての有機層とからなる積層体における内部応力を意味する。基材層の両面に有機層と無機薄膜層とがそれぞれ存在する場合には、基材層の少なくとも一方の面に積層される有機層が上記範囲の内部応力を有すればよいが、基材層を中心としてそれぞれの側に積層される有機層が、該層に積層される無機薄膜層に生じる圧縮応力に起因する反りを解消するのに十分な内部応力(引張応力)を有していることが好ましく、基材層を中心にバランスよく反り抑制効果が発現し得るため、それぞれの側の有機層と基材層とからなる積層体が、それぞれ上記範囲の内部応力を有することが好ましい。 The internal stress A of the organic layer is measured in a laminate composed of a base material layer and an organic layer constituting the target laminated film. When the laminated film of one aspect of the present invention has organic layers on both sides of the base material layer, the organic layer internal stress A is an organic layer (inorganic thin film) located on the side where the base material layer and the inorganic thin film layer are laminated. When the layers are on both sides, it means the internal stress in the laminate consisting of the base material layer and the organic layer located between one inorganic thin film layer). When a plurality of organic layers are present between the base material layer and the inorganic thin film layer, the organic layer internal stress A exists between the base material layer and the base material layer and the inorganic thin film layer. It means the internal stress in the laminate consisting of all organic layers. When an organic layer and an inorganic thin film layer are present on both sides of the base material layer, the organic layer laminated on at least one surface of the base material layer may have an internal stress in the above range, but the base material The organic layers laminated on each side of the layer have sufficient internal stress (tensile stress) to eliminate the warpage caused by the compressive stress generated in the inorganic thin film layer laminated on the layer. It is preferable that the laminated body composed of the organic layer and the base material layer on each side has an internal stress in the above range, because the warp suppressing effect can be exhibited in a well-balanced manner centering on the base material layer.
 本発明の一態様において、積層フィルムは、基材層と有機層とからなる積層体
を130℃で30分間加熱後、25℃で10分間放冷して測定される有機層の内部応力(
以下、「有機層内部応力A(130℃)」ともいう)が0.2GPa以上であることが好
ましい。有機層内部応力A(130℃)が0.2GPa以上であると、高い圧縮応力に起
因して生じる無機薄膜層の反りを解消し得る十分に高い引張応力を有機層で確保しやすく
、これにより積層フィルム全体の反りを抑制することができる。有機層内部応力A(13
0℃)は、好ましくは0.25GPa以上、より好ましくは0.3GPa以上であり、ま
た、無機薄膜層形成時の反り調整のしやすさ、無機薄膜層のクラック発生抑制の観点から
、その上限値は通常7.5GPa以下であり、好ましくは5.0GPa以下である。
In one aspect of the present invention, the laminated film is the internal stress of the organic layer measured by heating a laminate composed of a base material layer and an organic layer at 130 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes.
Hereinafter, it is also preferable that the “organic layer internal stress A (130 ° C.)”) is 0.2 GPa or more. When the internal stress A (130 ° C.) of the organic layer is 0.2 GPa or more, it is easy to secure a sufficiently high tensile stress in the organic layer that can eliminate the warp of the inorganic thin film layer caused by the high compressive stress. It is possible to suppress the warp of the entire laminated film. Organic layer internal stress A (13
0 ° C.) is preferably 0.25 GPa or more, more preferably 0.3 GPa or more, and is the upper limit thereof from the viewpoint of ease of warpage adjustment at the time of forming the inorganic thin film layer and suppression of crack generation in the inorganic thin film layer. The value is usually 7.5 GPa or less, preferably 5.0 GPa or less.
 本発明の別の一態様において、積層フィルムは、基材層と有機層とからなる積
層体を180℃で30分間加熱後、25℃で10分間放冷して測定される有機層の内部応
力(以下、「有機層内部応力A(180℃)」ともいう)が0.8GPa以上であること
が好ましい。有機層内部応力A(180℃)が0.8GPa以上であると、高い圧縮応力
に起因して生じる無機薄膜層の反りを解消し得る十分に高い引張応力を有機層で確保しや
すく、これにより積層フィルム全体の反りを抑制することができる。有機層内部応力A(
180℃)は、好ましくは0.9GPa以上、より好ましくは1.0GPa以上であり、
また、無機薄膜層形成時の反り調整のしやすさ、無機薄膜層のクラック発生抑制の観点か
ら、その上限値は通常7.5GPa以下であり、好ましくは5.0GPa以下である。
In another aspect of the present invention, the laminated film is measured by heating a laminate composed of a base material layer and an organic layer at 180 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes to measure the internal stress of the organic layer. (Hereinafter, also referred to as “organic layer internal stress A (180 ° C.)”) is preferably 0.8 GPa or more. When the internal stress A (180 ° C.) of the organic layer is 0.8 GPa or more, it is easy to secure a sufficiently high tensile stress in the organic layer that can eliminate the warp of the inorganic thin film layer caused by the high compressive stress. It is possible to suppress the warp of the entire laminated film. Organic layer internal stress A (
180 ° C.) is preferably 0.9 GPa or more, more preferably 1.0 GPa or more.
Further, from the viewpoint of ease of warpage adjustment at the time of forming the inorganic thin film layer and suppression of crack generation in the inorganic thin film layer, the upper limit thereof is usually 7.5 GPa or less, preferably 5.0 GPa or less.
 また、本発明のさらなる別の一態様においては、有機層内部応力A(130℃)が0.
2GPa以上であり、かつ、有機層内部応力A(180℃)が0.8GPa以上であるこ
とが好ましく、有機層内部応力A(130℃)および(180℃)がそれぞれ先の段落に
記載した範囲内の内部応力を有することがより好ましい。有機層内部応力A(130℃)
および(180℃)がそれぞれ上記範囲内であると、高い圧縮応力に起因して生じる無機
薄膜層の反りを解消し得る十分に高い引張応力を有機層でより確保しやすくなり、積層フ
ィルムの反り抑制効果がより効果的に向上し得る。
Further, in still another aspect of the present invention, the stress A (130 ° C.) inside the organic layer is 0.
It is preferable that the internal stress A (180 ° C.) of the organic layer is 0.8 GPa or more, and the internal stress A (130 ° C.) and (180 ° C.) of the organic layer are in the ranges described in the previous paragraphs, respectively. It is more preferable to have an internal stress inside. Organic layer internal stress A (130 ° C)
When and (180 ° C.) are within the above ranges, it becomes easier to secure a sufficiently high tensile stress in the organic layer that can eliminate the warp of the inorganic thin film layer caused by the high compressive stress, and the warp of the laminated film. The inhibitory effect can be improved more effectively.
 有機層内部応力Aは、有機層の組成、基材層の構成、可撓性基材の種類、有機層および
/または基材層の厚み、有機層を形成する際の塗布方法、張力・温度・滞留時間などの乾
燥条件、温度・UV照射条件などの硬化条件等を適宜選択することにより制御することが
できる。
The internal stress A of the organic layer is the composition of the organic layer, the composition of the base material layer, the type of flexible base material, the thickness of the organic layer and / or the base material layer, the coating method when forming the organic layer, the tension / temperature. -It can be controlled by appropriately selecting drying conditions such as residence time and curing conditions such as temperature and UV irradiation conditions.
 前記有機層内部応力Aを測定する際の積層体の加熱温度は130℃以上である。一般に
、積層フィルムを太陽電池および有機ELディスプレイ、有機EL照明等の電子デバイス
に貼り合わせて用いる場合、積層フィルム表面に吸着した水分や貼り合わせる際に用いる
接着剤や接着シートの脱水のため、例えば130℃以上の高温環境下に曝されることがあ
り、その工程で大きな反りを生じた場合、電子デバイスに貼り合わせる際に、気泡やシワ
、クラックなどの張り合わせ不良を生じることがある。有機層を含む前記積層体を130
℃以上に加熱した際に、該積層体が上記範囲の有機層内部応力を有すれば、130℃以上
の高温環境下に曝される工程を経るような積層フィルムにおいても高い反り抑制効果を期
待できる。したがって、上記加熱温度は130℃以上であればよく、好ましくは130℃
以上200℃以下であり、より好ましくは130℃または180℃であり、本発明の一態
様においては130℃であり、別の一態様においては180℃である。
The heating temperature of the laminate when measuring the internal stress A of the organic layer is 130 ° C. or higher. Generally, when a laminated film is used by being bonded to an electronic device such as a solar cell, an organic EL display, or an organic EL lighting, for example, because of moisture adsorbed on the surface of the laminated film and dehydration of an adhesive or an adhesive sheet used for bonding, for example. It may be exposed to a high temperature environment of 130 ° C. or higher, and if a large warp occurs in the process, poor bonding such as air bubbles, wrinkles, and cracks may occur when the film is attached to an electronic device. 130 of the laminate containing the organic layer
If the laminated body has an organic layer internal stress in the above range when heated to ℃ or higher, a high warpage suppressing effect can be expected even in a laminated film that undergoes a process of being exposed to a high temperature environment of 130 ℃ or higher. it can. Therefore, the heating temperature may be 130 ° C. or higher, preferably 130 ° C.
It is 200 ° C. or lower, more preferably 130 ° C. or 180 ° C., 130 ° C. in one aspect of the present invention, and 180 ° C. in another aspect.
 本発明の一態様において、前記有機層内部応力Aは、測定対象とする基材層と有機層とからなる積層体を室温(25℃)から130℃以上の温度で30分間加熱した後、25℃で10分間放冷した際の積層体の変形量に基づき算出することができる。具体的には、適当な大きさの四角形に切り出した測定対象となる積層体を130℃以上の温度で30分間加熱し、次いで25℃で10分間放冷した後水平面上に載置し、水平面から四隅までの距離(高さ)を測定し、それらの平均値から曲率半径を算出する。なお、放冷後の積層体が筒状である場合は、筒内部の直径を測定し、曲率半径を算出する。算出された曲率半径、基材層および有機層の各厚み、基材層のヤング率およびポアゾン比から、下記式(1):
 有機層内部応力A(GPa)=Eh/6(1-v)Rt    (1)
〔式中、
 tは有機層の厚み(m)、Rは曲率半径(m)、hは基材層の厚み(m)、Eは基材層のヤング率(Pa)、vは基材層のポアソン比を表す。〕
に従い、有機層の内部応力を算出することができる。より詳細には、有機層内部応力Aは、例えば後述する実施例に記載の方法に従い測定、算出することができる。
In one aspect of the present invention, the internal stress A of the organic layer is 25 after heating the laminate consisting of the base material layer to be measured and the organic layer at a temperature of 130 ° C. or higher from room temperature (25 ° C.) for 30 minutes. It can be calculated based on the amount of deformation of the laminated body when it is allowed to cool at ° C. for 10 minutes. Specifically, the laminate to be measured, which is cut out into a quadrangle of an appropriate size, is heated at a temperature of 130 ° C. or higher for 30 minutes, then allowed to cool at 25 ° C. for 10 minutes, and then placed on a horizontal plane. The distance (height) from to the four corners is measured, and the radius of curvature is calculated from their average value. If the laminated body after cooling is tubular, the diameter inside the cylinder is measured and the radius of curvature is calculated. From the calculated radius of curvature, the thicknesses of the base material layer and the organic layer, the Young's modulus of the base material layer, and the Poison ratio, the following formula (1):
The organic layer internal stress A (GPa) = Eh 2/ 6 (1-v) Rt (1)
[In the formula,
t is the thickness of the organic layer (m), R is the radius of curvature (m), h is the thickness of the base material layer (m), E is the Young's modulus of the base material layer (Pa), and v is the Poisson's ratio of the base material layer. Represent. ]
Therefore, the internal stress of the organic layer can be calculated. More specifically, the organic layer internal stress A can be measured and calculated, for example, according to the method described in Examples described later.
 本発明の一態様において、積層フィルムを構成する基材層と該基材層上に直接積層された無機薄膜層とかるなる積層体を、130℃以上の温度で30分間加熱した後、25℃で10分間放冷して測定される無機薄膜層の内部応力は2.0GPa以上であることが好ましい。積層フィルムを構成する基材層と該基材層上に直接積層された無機薄膜層とからなる積層体を、130℃以上に加熱した後測定される上記無機薄膜層の内部応力(以下、「無機薄膜層内部応力B」ともいう)が2.0GPa以上であると、無機薄膜層の緻密性を十分に高めやすく、積層フィルムの高いガスバリア性を実現しやすい。無機薄膜層内部応力Bは、より好ましくは2.1GPa以上、さらに好ましくは2.2GPa以上である。通常、無機薄膜層内部応力Bが高くなるほど、無機薄膜層の緻密性が高くなり、ガスバリア性が向上する傾向にある。無機薄膜層内部応力Bは、通常、所望するガスバリア性を確保し得るよう無機薄膜層の構成に応じて変化するものであるが、無機薄膜層の十分な緻密性を確保でき、かつ、過剰な圧縮応力を生じ難い範囲として、その上限値は通常15GPa以下であり、好ましくは10GPa以下である。なお、無機薄膜層内部応力Bは、通常、圧縮応力である。 In one aspect of the present invention, a laminate consisting of a base material layer constituting a laminated film and an inorganic thin film layer directly laminated on the base material layer is heated at a temperature of 130 ° C. or higher for 30 minutes and then 25 ° C. The internal stress of the inorganic thin film layer measured by allowing to cool for 10 minutes is preferably 2.0 GPa or more. The internal stress of the inorganic thin film layer measured after heating the laminate composed of the base material layer constituting the laminated film and the inorganic thin film layer directly laminated on the base material layer to 130 ° C. or higher (hereinafter, "" When the (also referred to as “inorganic thin film layer internal stress B”) is 2.0 GPa or more, it is easy to sufficiently increase the density of the inorganic thin film layer, and it is easy to realize a high gas barrier property of the laminated film. The internal stress B of the inorganic thin film layer is more preferably 2.1 GPa or more, still more preferably 2.2 GPa or more. Generally, the higher the internal stress B of the inorganic thin film layer, the higher the denseness of the inorganic thin film layer, and the higher the gas barrier property tends to be. The internal stress B of the inorganic thin film layer usually changes according to the composition of the inorganic thin film layer so as to secure the desired gas barrier property, but it is possible to secure sufficient denseness of the inorganic thin film layer and it is excessive. As a range in which compressive stress is unlikely to occur, the upper limit thereof is usually 15 GPa or less, preferably 10 GPa or less. The internal stress B of the inorganic thin film layer is usually a compressive stress.
 本発明の一態様において、積層フィルムは、基材層と該基材層上に直接積層された無機薄膜層とかるなる積層体を130℃で30分間加熱後、25℃で10分間放冷して測定される前記無機薄膜層の内部応力(以下、「無機薄膜層内部応力B(130℃)」ともいう)が2.0GPa以上であることが好ましい。無機薄膜層内部応力B(130℃)が2.0GPa以上であると、無機薄膜層の緻密性を十分に高めやすく、積層フィルムの高いガスバリア性を実現しやすい。無機薄膜層内部応力B(130℃)は、より好ましくは2.1GPa以上、さらに好ましくは2.2GPa以上であり、また、無機薄膜層の十分な緻密性を確保でき、かつ、過剰な圧縮応力の発生を抑制する観点から、その上限値は通常10GPa以下であり、好ましくは15GPa以下である。 In one aspect of the present invention, the laminated film is obtained by heating a laminate consisting of a base material layer and an inorganic thin film layer directly laminated on the base material layer at 130 ° C. for 30 minutes, and then allowing the laminated film to cool at 25 ° C. for 10 minutes. The internal stress of the inorganic thin film layer (hereinafter, also referred to as “inorganic thin film layer internal stress B (130 ° C.)”) measured in the above is preferably 2.0 GPa or more. When the internal stress B (130 ° C.) of the inorganic thin film layer is 2.0 GPa or more, it is easy to sufficiently increase the denseness of the inorganic thin film layer, and it is easy to realize a high gas barrier property of the laminated film. The internal stress B (130 ° C.) of the inorganic thin film layer is more preferably 2.1 GPa or more, further preferably 2.2 GPa or more, and it is possible to secure sufficient denseness of the inorganic thin film layer and excessive compressive stress. From the viewpoint of suppressing the occurrence of the above, the upper limit is usually 10 GPa or less, preferably 15 GPa or less.
 本発明の別の一態様において、積層フィルムは、基材層と該基材層上に直接積
層された無機薄膜層とかるなる積層体を180℃で30分間加熱後、25℃で10分間放
冷して測定される前記無機薄膜層の内部応力(以下、「無機薄膜層内部応力B(180℃
)」ともいう)が3.0GPa以上であることが好ましい。無機薄膜層内部応力B(18
0℃)が3.0GPa以上であると、無機薄膜層の緻密性を十分に高めやすく、積層フィ
ルムの高いガスバリア性を実現しやすい。無機薄膜層内部応力B(180℃)は、より好
ましくは3.2GPa以上、さらに好ましくは3.5GPa以上であり、また、無機薄膜
層の十分な緻密性を確保でき、かつ、過剰な圧縮応力の発生を抑制する観点から、その上
限値は通常15GPa以下であり、好ましくは10GPa以下である。
In another aspect of the present invention, the laminated film is obtained by heating a laminate consisting of a base material layer and an inorganic thin film layer directly laminated on the base material layer at 180 ° C. for 30 minutes, and then releasing the laminated film at 25 ° C. for 10 minutes. The internal stress of the inorganic thin film layer measured by cooling (hereinafter, "inorganic thin film layer internal stress B (180 ° C.)"
) ”) Is preferably 3.0 GPa or more. Inorganic thin film layer internal stress B (18
When (0 ° C.) is 3.0 GPa or more, it is easy to sufficiently increase the denseness of the inorganic thin film layer, and it is easy to realize high gas barrier properties of the laminated film. The internal stress B (180 ° C.) of the inorganic thin film layer is more preferably 3.2 GPa or more, further preferably 3.5 GPa or more, and it is possible to secure sufficient denseness of the inorganic thin film layer and excessive compressive stress. From the viewpoint of suppressing the occurrence of the above, the upper limit is usually 15 GPa or less, preferably 10 GPa or less.
 また、本発明のさらなる別の一態様においては、無機薄膜層内部応力B(130℃)が
2.0GPa以上であり、かつ、無機薄膜層内部応力B(180℃)が3.0GPa以上
であることが好ましく、無機薄膜層内部応力B(130℃)および(180℃)がそれぞ
れ先の段落に記載した範囲内の内部応力を有することがより好ましい。無機薄膜層内部応
力B(130℃)および(180℃)がそれぞれ上記範囲内であると、無機薄膜層の緻密
性をより高めやすくなり、積層フィルムのガスバリア性がより効果的に向上し得る。
Further, in still another aspect of the present invention, the inorganic thin film layer internal stress B (130 ° C.) is 2.0 GPa or more, and the inorganic thin film layer internal stress B (180 ° C.) is 3.0 GPa or more. It is preferable that the internal stresses B (130 ° C.) and (180 ° C.) of the inorganic thin film layer have internal stresses within the ranges described in the previous paragraphs, respectively. When the internal stresses B (130 ° C.) and (180 ° C.) of the inorganic thin film layer are within the above ranges, the density of the inorganic thin film layer can be easily increased, and the gas barrier property of the laminated film can be improved more effectively.
 無機薄膜層内部応力Bは、無機薄膜層の組成、無機薄膜層を構成する無機材料/化合物
の分布(密度)、基材層の構成、可撓性基材の種類、無機薄膜層および/または基材層の
厚み、無機薄膜層を形成する際の成膜条件等を適宜選択することにより制御することがで
きる。
The internal stress B of the inorganic thin film layer is the composition of the inorganic thin film layer, the distribution (density) of the inorganic materials / compounds constituting the inorganic thin film layer, the composition of the base material layer, the type of flexible base material, the inorganic thin film layer and / or. It can be controlled by appropriately selecting the thickness of the base material layer, the film forming conditions when forming the inorganic thin film layer, and the like.
 上記無機薄膜層内部応力Bは、対象となる積層フィルムを構成する基材層と該基材層上に直接積層された無機薄膜層とかるなる積層体において測定される。本発明の一態様において、積層フィルムは、基材層と無機薄膜層との間に有機層を含むため、無機薄膜層内部応力Bの測定は、例えば、測定対象となる積層フィルムと同じ基材層上に、測定対象となる積層フィルムを構成する無機薄膜層と同じ方法で無機薄膜層を形成した測定用の積層体において測定される。基材層の両側に無機薄膜層が存在する場合、上記無機薄膜層内部応力Bは、基材層と基材層の一方の側に積層される無機薄膜層とからなる積層体における内部応力を意味する。積層フィルムが基材層の両側に無機薄膜層を有する場合、2つの無機薄膜層の無機薄膜層内部応力Bは互いに同程度であっても、異なっていてもよく、少なくとも一方の側の無機薄膜層が上記範囲の内部応力を有することが好ましい。 The internal stress B of the inorganic thin film layer is measured in a laminate consisting of a base material layer constituting the target laminated film and an inorganic thin film layer directly laminated on the base material layer. In one aspect of the present invention, since the laminated film contains an organic layer between the base material layer and the inorganic thin film layer, the measurement of the internal stress B of the inorganic thin film layer is, for example, the same base material as the laminated film to be measured. The measurement is performed in a laminated body for measurement in which an inorganic thin film layer is formed on the layer in the same manner as the inorganic thin film layer constituting the laminated film to be measured. When the inorganic thin film layers are present on both sides of the base material layer, the internal stress B of the inorganic thin film layer is the internal stress in the laminate composed of the base material layer and the inorganic thin film layer laminated on one side of the base material layer. means. When the laminated film has inorganic thin film layers on both sides of the base material layer, the internal stress B of the inorganic thin film layers of the two inorganic thin film layers may be the same or different from each other, and the inorganic thin film on at least one side may be different. It is preferable that the layer has an internal stress in the above range.
 本発明の一態様において、前記無機薄膜層内部応力Bは、測定対象とする基材層と無機薄膜層とからなる積層体を室温(25℃)から130℃以上の温度で30分間加熱した後、25℃で10分間放冷した際の積層体の変形量に基づき算出することができる。具体的には、先に記載の有機層内部応力Aの測定方法と同様の方法に従い、適当な大きさの四角形に切り出した測定対象となる積層体を130℃以上の温度で30分間加熱し、次いで25℃で10分間放冷した後水平面上に載置し、水平面から四隅までの距離(高さ)を測定し、それらの平均値から曲率半径を算出する。なお、放冷後の積層体が筒状である場合は、筒内部の直径を測定し、曲率半径を算出する。算出された曲率半径、基材層および無機薄膜層の各厚み、基材層のヤング率およびポアゾン比から、下記式(2):
 無機薄膜層内部応力B(GPa)=Eh/6(1-v)Rt’    (2)
〔式中、
 t’は無機薄膜層の厚み(m)、Rは曲率半径(m)、hは基材層の厚み(m)、Eは
基材層のヤング率(Pa)、vは基材層のポアソン比を表す。〕
に従い、無機薄膜層の内部応力を算出することができる。
In one aspect of the present invention, the internal stress B of the inorganic thin film layer is obtained after heating a laminate composed of a base material layer to be measured and an inorganic thin film layer at a temperature of room temperature (25 ° C.) to 130 ° C. or higher for 30 minutes. , Can be calculated based on the amount of deformation of the laminated body when allowed to cool at 25 ° C. for 10 minutes. Specifically, according to the same method as the method for measuring the internal stress A of the organic layer described above, the laminate to be measured cut into a quadrangle of an appropriate size is heated at a temperature of 130 ° C. or higher for 30 minutes. Then, after allowing to cool at 25 ° C. for 10 minutes, it is placed on a horizontal plane, the distances (heights) from the horizontal plane to the four corners are measured, and the radius of curvature is calculated from the average value thereof. If the laminated body after cooling is tubular, the diameter inside the cylinder is measured and the radius of curvature is calculated. From the calculated radius of curvature, the thickness of each of the base material layer and the inorganic thin film layer, the Young's modulus of the base material layer, and the Poison ratio, the following formula (2):
Inorganic thin layer internal stress B (GPa) = Eh 2/ 6 (1-v) Rt '(2)
[In the formula,
t'is the thickness of the inorganic thin film layer (m), R is the radius of curvature (m), h is the thickness of the base material layer (m), E is the Young's modulus of the base material layer (Pa), and v is Poisson's ratio of the base material layer. Represents a ratio. ]
Therefore, the internal stress of the inorganic thin film layer can be calculated.
 前記無機薄膜層内部応力Bを測定する際の積層体の加熱温度は130℃以上である。上
記加熱温度は130℃以上であればよいが、好ましくは130℃以上200℃以下であり
、より好ましくは130℃または180℃であり、本発明の一態様においては130℃で
あり、別の一態様においては180℃である。無機薄膜層に生じる内部応力(圧縮応力)
に起因して起こる無機薄膜層の反りを、該無機薄膜層と基材層との間に位置する有機層に
生じる内部応力(引張応力)によって解消することにより、積層フィルムの反り抑制効果
を向上させ得るため、無機薄膜層において前記有機層内部応力Aと同じ温度で上記特定範
囲の無機薄膜層内部応力Bが生じることが好ましい。したがって、無機薄膜層内部応力B
を測定する際の上記加熱温度は、測定対象とする有機層の有機層内部応力Aを測定する際
に適用する加熱温度と同じ温度とすることが好ましい。
 より具体的には、無機薄膜層内部応力Bは、例えば後述する実施例に記載の方法に従い
測定、算出することができる。
The heating temperature of the laminate when measuring the internal stress B of the inorganic thin film layer is 130 ° C. or higher. The heating temperature may be 130 ° C. or higher, but is preferably 130 ° C. or higher and 200 ° C. or lower, more preferably 130 ° C. or 180 ° C., 130 ° C. in one aspect of the present invention, and another one. In the embodiment, it is 180 ° C. Internal stress (compressive stress) generated in the inorganic thin film layer
By eliminating the warpage of the inorganic thin film layer caused by the internal stress (tensile stress) generated in the organic layer located between the inorganic thin film layer and the base material layer, the effect of suppressing the warp of the laminated film is improved. Therefore, it is preferable that the internal stress B of the inorganic thin film layer in the specific range is generated in the inorganic thin film layer at the same temperature as the internal stress A of the organic layer. Therefore, the internal stress B of the inorganic thin film layer
The heating temperature when measuring the above is preferably the same as the heating temperature applied when measuring the organic layer internal stress A of the organic layer to be measured.
More specifically, the internal stress B of the inorganic thin film layer can be measured and calculated according to, for example, the method described in Examples described later.
 本発明の一態様の積層フィルムにおいて有機層は、無機薄膜層内部応力B(130℃)の8%以上の有機層内部応力A(130℃)を有することが好ましく、より好ましくは10%以上、さらに好ましくは12%以上の有機層内部応力A(130℃)を有する。また、本発明の一態様において、有機層は、無機薄膜層内部応力B(180℃)の15%以上の有機層内部応力A(180℃)を有することが好ましく、より好ましくは20%以上、さらに好ましくは25%以上の有機層内部応力A(180℃)を有する。無機薄膜層内部応力Bに対して有機層内部応力Aが上記下限値以上であると、無機薄膜層に生じる内部応力(圧縮応力)に起因して生じる無機薄膜層の反りを抑制するのに適した有機層となり得る。通常、有機層の厚みは無機薄膜層の厚みよりも大きく設計されるため、本発明の一態様の積層フィルムにおいて、有機層内部応力Aは無機薄膜層内部応力Bよりも小さいことが好ましく、上記無機薄膜層内部応力Bに対する有機層内部応力Aの上限値は、通常50%以下であり、好ましくは40%以下である。 In the laminated film of one aspect of the present invention, the organic layer preferably has an organic layer internal stress A (130 ° C.) of 8% or more of the inorganic thin film layer internal stress B (130 ° C.), more preferably 10% or more. More preferably, it has an organic layer internal stress A (130 ° C.) of 12% or more. Further, in one aspect of the present invention, the organic layer preferably has an organic layer internal stress A (180 ° C.) of 15% or more of the inorganic thin film layer internal stress B (180 ° C.), more preferably 20% or more. More preferably, it has an organic layer internal stress A (180 ° C.) of 25% or more. When the organic layer internal stress A is equal to or higher than the above lower limit value with respect to the inorganic thin film layer internal stress B, it is suitable for suppressing the warp of the inorganic thin film layer caused by the internal stress (compressive stress) generated in the inorganic thin film layer. Can be an organic layer. Since the thickness of the organic layer is usually designed to be larger than the thickness of the inorganic thin film layer, the internal stress A of the organic layer is preferably smaller than the internal stress B of the inorganic thin film layer in the laminated film of one aspect of the present invention. The upper limit of the organic layer internal stress A with respect to the inorganic thin film layer internal stress B is usually 50% or less, preferably 40% or less.
 本発明の一態様において、積層フィルムは、比較的高い有機層内部応力Aを有することにより、緻密性が高く、ガスバリア性に優れる無機薄膜層を含む場合であっても、該無機薄膜層に生じる高い圧縮応力に起因する反りを抑制する効果に優れる。したがって、本発明の一態様の積層フィルムは、該積層フィルムを構成する基材層と有機層と無機薄膜層とからなる積層体を130℃以上の温度で30分間加熱後、25℃で10分間放冷して測定される、前記有機層と前記無機薄膜層とからなる積層膜の内部応力(以下、「積層膜内部応力C」ともいう)が0.030GPa以下であることが好ましい。積層膜内部応力Cが0.030GPa以下であると、高い圧縮応力に起因して生じる無機薄膜層の反りが、特定の範囲の内部応力を有する有機層によって抑制されていると考えられ、無機薄膜層の緻密性が高く優れたガスバリア性を確保しながら、積層フィルム全体として反りの抑制された積層フィルムを得ることができる。上記積層膜内部応力Cは、より好ましくは0.025GPa以下であり、さらに好ましくは0.020GPa以下である。通常、積層膜内部応力Cの値が小さいほど積層フィルムの反り抑制効果は高くなるため、積層膜内部応力Cの下限値は特に限定されず、0GPaであってよい。
 なお、積層フィルムが基材層と有機層および/または有機層と無機薄膜層の間に複数の
有機層や他の層を含む場合、上記積層膜内部応力Cは、基材層と、無機薄膜層が積層され
る側に位置する基材層と無機薄膜層までの間に含まれる全ての層と、無機薄膜層とからな
る積層体における内部応力を意味する。
In one aspect of the present invention, the laminated film has a relatively high internal stress A of the organic layer, so that the laminated film is formed in the inorganic thin film layer even when it contains an inorganic thin film layer having high density and excellent gas barrier property. It has an excellent effect of suppressing warpage caused by high compressive stress. Therefore, in the laminated film of one aspect of the present invention, a laminate composed of a base material layer, an organic layer and an inorganic thin film layer constituting the laminated film is heated at a temperature of 130 ° C. or higher for 30 minutes, and then heated at 25 ° C. for 10 minutes. The internal stress of the laminated film composed of the organic layer and the inorganic thin film layer (hereinafter, also referred to as “laminated film internal stress C”) measured by allowing to cool is preferably 0.030 GPa or less. When the internal stress C of the laminated film is 0.030 GPa or less, it is considered that the warp of the inorganic thin film layer caused by the high compressive stress is suppressed by the organic layer having an internal stress in a specific range, and the inorganic thin film is considered to be suppressed. It is possible to obtain a laminated film in which warpage is suppressed as a whole laminated film while ensuring high density of layers and excellent gas barrier properties. The internal stress C of the laminated film is more preferably 0.025 GPa or less, and further preferably 0.020 GPa or less. Generally, the smaller the value of the internal stress C of the laminated film, the higher the effect of suppressing the warp of the laminated film. Therefore, the lower limit of the internal stress C of the laminated film is not particularly limited and may be 0 GPa.
When the laminated film contains a plurality of organic layers or other layers between the base material layer and the organic layer and / or the organic layer and the inorganic thin film layer, the internal stress C of the laminated film is the base material layer and the inorganic thin film. It means the internal stress in the laminated body composed of all the layers contained between the base material layer and the inorganic thin film layer located on the side where the layers are laminated and the inorganic thin film layer.
 本発明の一態様において、積層フィルムは、該積層フィルムを構成する基材層
と有機層と無機薄膜層とからなる積層体を130℃で30分間加熱後、25℃で10分間
放冷して測定される、前記有機層と前記無機薄膜層とからなる積層膜の内部応力(以下、
「積層膜内部応力C(130℃)」ともいう)が0.030GPa以下であることが好ま
しい。積層膜内部応力C(130℃)が0.030GPa以下であると、無機薄膜層の緻
密性が高く優れたガスバリア性を確保しながら、積層フィルム全体として反りの抑制され
た積層フィルムが得られやすい。積層膜内部応力C(130℃)は、より好ましくは0.
025GPa以下であり、さらに好ましくは0.020GPa以下であり、また、その下
限値は0GPaであってよい。
In one aspect of the present invention, the laminated film is obtained by heating a laminated body composed of a base material layer, an organic layer and an inorganic thin film layer constituting the laminated film at 130 ° C. for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes. The internal stress of the laminated film composed of the organic layer and the inorganic thin film layer to be measured (hereinafter,
The “laminated film internal stress C (130 ° C.)”) is preferably 0.030 GPa or less. When the internal stress C (130 ° C.) of the laminated film is 0.030 GPa or less, it is easy to obtain a laminated film in which warpage is suppressed as a whole while ensuring high density of the inorganic thin film layer and excellent gas barrier properties. .. The internal stress C (130 ° C.) of the laminated film is more preferably 0.
It is 025 GPa or less, more preferably 0.020 GPa or less, and its lower limit value may be 0 GPa or less.
 本発明の別の一態様において、積層フィルムは、該積層フィルムを構成する基
材層と有機層と無機薄膜層とからなる積層体を180℃で30分間加熱後、25℃で10
分間放冷して測定される、前記有機層と前記無機薄膜層とからなる積層膜の内部応力(以
下、「積層膜内部応力C(180℃)」ともいう)が0.020GPa以下であることが
好ましい。積層膜内部応力C(180℃)が0.020GPa以下であると、無機薄膜層
の緻密性が高く優れたガスバリア性を確保しながら、積層フィルム全体として反りの抑制
された積層フィルムが得られやすい。積層膜内部応力C(180℃)は、より好ましくは
0.015GPa以下であり、さらに好ましくは0.010GPa以下であり、また、そ
の下限値は0GPaであってよい。
In another aspect of the present invention, the laminated film is obtained by heating a laminate composed of a base material layer, an organic layer and an inorganic thin film layer constituting the laminated film at 180 ° C. for 30 minutes, and then heating at 25 ° C. for 10 minutes.
The internal stress of the laminated film composed of the organic layer and the inorganic thin film layer (hereinafter, also referred to as “laminated film internal stress C (180 ° C.)”) measured by allowing to cool for a minute is 0.020 GPa or less. Is preferable. When the internal stress C (180 ° C.) of the laminated film is 0.020 GPa or less, it is easy to obtain a laminated film in which warpage is suppressed as a whole while ensuring high density of the inorganic thin film layer and excellent gas barrier properties. .. The internal stress C (180 ° C.) of the laminated film is more preferably 0.015 GPa or less, further preferably 0.010 GPa or less, and its lower limit value may be 0 GPa or less.
 また、本発明のさらなる別の一態様においては、積層膜内部応力C(130℃)が0.
030GPa以下であり、かつ、積層膜内部応力C(180℃)が0.020GPa以下
であることが好ましく、積層膜内部応力C(130℃)および(180℃)がそれぞれ先
の段落に記載した上限値以下の内部応力を有することがより好ましい。積層膜内部応力C
(130℃)および(180℃)がそれぞれ上記上限値以下であると、無機薄膜層の緻密
性が高く優れたガスバリア性を確保しながら、積層フィルムの反り抑制効果がより向上し
得る。
Further, in still another aspect of the present invention, the internal stress C (130 ° C.) of the laminated film is 0.
It is preferable that the internal stress C (180 ° C.) of the laminated film is 0.020 GPa or less, and the internal stress C (130 ° C.) and (180 ° C.) of the laminated film are the upper limits described in the previous paragraphs, respectively. It is more preferable to have an internal stress equal to or less than the value. Laminated film internal stress C
When (130 ° C.) and (180 ° C.) are each equal to or less than the above upper limit values, the effect of suppressing warpage of the laminated film can be further improved while ensuring high density of the inorganic thin film layer and excellent gas barrier properties.
 本発明の一態様において、前記積層膜内部応力Cは、測定対象とする積層体を室温(25℃)から130℃以上の温度で30分間加熱した後、25℃で10分間放冷した際の積層体の変形量に基づき算出することができる。具体的には、適当な大きさの四角形に切り出した測定対象となる積層体を130℃以上の温度で30分間加熱し、次いで25℃で10分間放冷した後水平面上に載置し、水平面から四隅までの距離(高さ)を測定し、それらの平均値から曲率半径を算出する。なお、放冷後の積層体が筒状である場合は、筒内部の直径を測定し、曲率半径を算出する。算出された曲率半径、基材層の厚み、有機層と無機薄膜層との合計厚み、基材層のヤング率およびポアゾン比から、下記式(3):
 積層膜内部応力C(GPa)=Eh/6(1-v)Rt’’    (3)
〔式中、
 t’’は有機層と無機薄膜層との合計厚み(m)、Rは曲率半径(m)、hは基材層の
厚み(m)、Eは基材層のヤング率(Pa)、vは基材層のポアソン比を表す。〕
に従い、積層膜の内部応力を算出することができる。
In one aspect of the present invention, the internal stress C of the laminated film is obtained when the laminated body to be measured is heated at a temperature of 130 ° C. or higher from room temperature (25 ° C.) for 30 minutes and then allowed to cool at 25 ° C. for 10 minutes. It can be calculated based on the amount of deformation of the laminated body. Specifically, the laminate to be measured, which is cut out into a quadrangle of an appropriate size, is heated at a temperature of 130 ° C. or higher for 30 minutes, then allowed to cool at 25 ° C. for 10 minutes, and then placed on a horizontal plane. The distance (height) from to the four corners is measured, and the radius of curvature is calculated from their average value. If the laminated body after cooling is tubular, the diameter inside the cylinder is measured and the radius of curvature is calculated. From the calculated radius of curvature, the thickness of the base material layer, the total thickness of the organic layer and the inorganic thin film layer, the Young's modulus of the base material layer, and the Poison ratio, the following formula (3):
Laminated film internal stress C (GPa) = Eh 2/ 6 (1-v) Rt '' (3)
[In the formula,
t'' is the total thickness (m) of the organic layer and the inorganic thin film layer, R is the radius of curvature (m), h is the thickness of the base material layer (m), E is the Young's modulus of the base material layer (Pa), v. Represents the Poisson's ratio of the substrate layer. ]
Therefore, the internal stress of the laminated film can be calculated.
 前記積層膜内部応力Cを測定する際の積層体の加熱温度は130℃以上である。上記加
熱温度は130℃以上であればよいが、好ましくは130℃以上200℃以下であり、よ
り好ましくは130℃または180℃であり、本発明の一態様においては130℃であり
、別の一態様においては180℃である。積層膜内部応力Cを測定する際の上記加熱温度
は、測定対象とした積層フィルムの有機層内部応力Aおよび無機薄膜層内部応力Bを測定
する際に適用する加熱温度と同じ温度とすることが好ましい。
 より具体的には、積層膜内部応力Cは、例えば後述する実施例に記載の方法に従い測定
、算出することができる。
The heating temperature of the laminated body when measuring the internal stress C of the laminated film is 130 ° C. or higher. The heating temperature may be 130 ° C. or higher, but is preferably 130 ° C. or higher and 200 ° C. or lower, more preferably 130 ° C. or 180 ° C., 130 ° C. in one aspect of the present invention, and another one. In the embodiment, it is 180 ° C. The heating temperature when measuring the internal stress C of the laminated film may be the same as the heating temperature applied when measuring the internal stress A of the organic layer and the internal stress B of the inorganic thin film layer of the laminated film to be measured. preferable.
More specifically, the internal stress C of the laminated film can be measured and calculated according to, for example, the method described in Examples described later.
 本発明の一態様において、積層フィルムは、目視で観察した場合に透明であることが好ましい。具体的には、積層フィルムの全光線透過率(Tt)は、好ましくは78.0%以上、より好ましくは80.0%以上、さらに好ましくは83.0%以上、特に好ましくは85.0%以上、きわめて好ましくは87.0%以上である。本発明の一態様において、積層フィルムの全光線透過率が上記下限値以上であると、該フィルムを画像表示装置等の電子デバイスに組み込んだ際に、十分な視認性を確保しやすい。本発明の一態様において、積層フィルムの全光線透過率の上限値は特に限定されず、100%以下であればよい。 In one aspect of the present invention, the laminated film is preferably transparent when visually observed. Specifically, the total light transmittance (Tt) of the laminated film is preferably 78.0% or more, more preferably 80.0% or more, still more preferably 83.0% or more, and particularly preferably 85.0%. As mentioned above, it is extremely preferably 87.0% or more. In one aspect of the present invention, when the total light transmittance of the laminated film is at least the above lower limit value, it is easy to secure sufficient visibility when the film is incorporated into an electronic device such as an image display device. In one aspect of the present invention, the upper limit of the total light transmittance of the laminated film is not particularly limited and may be 100% or less.
 本発明の一態様において、積層フィルムのヘイズ(曇価)は、好ましくは5.0%以下、より好ましくは3.0%以下、さらにより好ましくは2.0%以下である。本発明の一態様において、積層フィルムのヘイズが上記の上限値以下であると、該フィルムを画像表示装置等の電子デバイスに組み込んだ際に、十分な視認性を確保しやすい。なお、本発明の一態様において、積層フィルムのヘイズの下限値は特に限定されず、通常0%以上となる。視認性の観点から、ヘイズはその数値が小さいほど好ましい。また、60℃で相対湿度90%の環境下に250時間曝露後の積層フィルムが、上記範囲のヘイズをなお有することが好ましい。 In one aspect of the present invention, the haze (cloudiness value) of the laminated film is preferably 5.0% or less, more preferably 3.0% or less, and even more preferably 2.0% or less. In one aspect of the present invention, when the haze of the laminated film is not more than the above upper limit value, it is easy to secure sufficient visibility when the film is incorporated into an electronic device such as an image display device. In one aspect of the present invention, the lower limit of the haze of the laminated film is not particularly limited and is usually 0% or more. From the viewpoint of visibility, the smaller the haze is, the more preferable it is. Further, it is preferable that the laminated film after exposure for 250 hours in an environment of 60 ° C. and 90% relative humidity still has a haze in the above range.
 全光線透過率およびヘイズは、例えば、ヘイズコンピューターを用いて測定することが
でき、積層フィルムがない状態でバックグランド測定を行った後、積層フィルムをサンプ
ルホルダーにセットして測定を行うことにより、積層フィルムの全光線透過率およびヘイ
ズ値を求めることができる。
The total light transmittance and haze can be measured using, for example, a haze computer. After performing background measurement in the absence of a laminated film, the laminated film is set in a sample holder and measured. The total light transmittance and haze value of the laminated film can be obtained.
 本発明の一態様において、積層フィルムの厚みは、用途に応じて適宜決定すればよい。積層フィルムの取扱性が良好であり、適度な表面硬度を確保しながら屈曲特性を高めやすい観点から、例えば5~550μmであってよく、好ましくは10~250μm、より好ましくは15~200μmである。なお、積層フィルムの厚みは、膜厚計によって測定できる。 In one aspect of the present invention, the thickness of the laminated film may be appropriately determined according to the intended use. From the viewpoint of good handleability of the laminated film and easy improvement of bending characteristics while ensuring an appropriate surface hardness, it may be, for example, 5 to 550 μm, preferably 10 to 250 μm, and more preferably 15 to 200 μm. The thickness of the laminated film can be measured by a film thickness meter.
 高い緻密性に起因して比較的高い圧縮応力が生じるような無機薄膜層を有する積層フィ
ルムにおいては、例えば、同程度の圧縮応力を有する無機薄膜層を基材層の両側に設ける
ことにより、基材層を介して存在する2つの無機薄膜層同士で互いの内部応力を打ち消し
合うことによって積層フィルムの反りを抑制することができる。しかしながら、一般的に
、積層フィルムのガスバリア性を高めるためには無機薄膜層に無機材料が高密度に存在し
ている必要があり、そのような緻密性の高い無機薄膜層を基材層の両側に有する積層フィ
ルムは生産性や生産コストの観点において十分に満足し得ない場合がある。これに対して
、本発明の一態様において、積層フィルムは、基材層と無機薄膜層との間に存在する有機層が、無機薄膜層で生じる内部応力に起因して生じ得る反りを解消するのに十分な内部応力を有するため、無機薄膜層が基材層の一方の面側のみに存在する場合であっても積層フィルムの反りを抑制する効果に優れ、基材層の片側にのみ無機薄膜層を形成すればよいため、生産性や生産コストの面において有利となり得る。したがって、本発明の好ましい一態様において、積層フィルムは、基材層の一方の面側のみに無機薄膜層を有する。
In a laminated film having an inorganic thin film layer in which a relatively high compressive stress is generated due to high density, for example, an inorganic thin film layer having the same compressive stress is provided on both sides of the base material layer. Warpage of the laminated film can be suppressed by canceling each other's internal stresses between the two inorganic thin film layers existing through the material layer. However, in general, in order to enhance the gas barrier property of the laminated film, it is necessary that the inorganic material is present in the inorganic thin film layer at a high density, and such a highly dense inorganic thin film layer is provided on both sides of the base material layer. In some cases, the laminated film contained in the film may not be sufficiently satisfactory in terms of productivity and production cost. On the other hand, in one aspect of the present invention, the laminated film eliminates the warpage of the organic layer existing between the base material layer and the inorganic thin film layer, which may occur due to the internal stress generated in the inorganic thin film layer. Since it has sufficient internal stress, it has an excellent effect of suppressing warpage of the laminated film even when the inorganic thin film layer is present only on one surface side of the base material layer, and is inorganic only on one side of the base material layer. Since the thin film layer may be formed, it may be advantageous in terms of productivity and production cost. Therefore, in a preferred embodiment of the present invention, the laminated film has an inorganic thin film layer only on one surface side of the base material layer.
 以下、本発明の一態様の積層フィルムの各構成成分について詳細に説明する。 Hereinafter, each component of the laminated film according to one aspect of the present invention will be described in detail.
 〔基材層〕
 本発明の積層フィルムを構成する基材層は可撓性基材を含む。可撓性基材は、無機薄膜
層を保持することができる可撓性の基材を意味する。例えば、樹脂成分として少なくとも
1種の樹脂を含む樹脂フィルムを用いることができる。可撓性基材は透明な樹脂基材であ
ることが好ましい。
[Base layer]
The base material layer constituting the laminated film of the present invention includes a flexible base material. Flexible substrate means a flexible substrate capable of holding an inorganic thin film layer. For example, a resin film containing at least one kind of resin can be used as the resin component. The flexible base material is preferably a transparent resin base material.
 可撓性基材において用い得る樹脂としては、例えば、ポリエチレンナフタレート(PE
N)等のポリエステル樹脂;ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリ
オレフィン等のポリオレフィン樹脂;ポリアミド樹脂;ポリカーボネート樹脂;ポリスチ
レン樹脂;ポリビニルアルコール樹脂;エチレン-酢酸ビニル共重合体のケン化物;ポリ
アクリロニトリル樹脂;アセタール樹脂;ポリイミド樹脂;ポリエーテルサルファイド(
PES)、二軸延伸および熱アニール処理を施したポリエチレンテレフタレート(PET
)が挙げられる。可撓性基材として、上記樹脂の1種を使用してもよいし、2種以上の樹
脂を組み合せて使用してもよい。これらの中でも、得られる積層フィルムの有機層内部応
力Aや無機薄膜層内部応力Bを制御しやすく、反り抑制効果を向上させやすい観点、およ
び高い透明性を有する観点等から、ポリエステル樹脂およびポリオレフィン樹脂からなる
群から選択される樹脂を用いることが好ましく、PENおよび環状ポリオレフィンからな
る群から選択される樹脂を用いることがより好ましく、PENを用いることがさらに好ま
しい。
Examples of the resin that can be used in the flexible base material include polyethylene naphthalate (PE).
Polyester resin such as N); Polyethylene (PE), Polypropylene (PP), Polyethylene resin such as cyclic polyolefin; Polyethylene resin; Polycarbonate resin; Polystyrene resin; Polyvinyl alcohol resin; Kenzome of ethylene-vinyl acetate copolymer; Polyacrylonitrile Resin; Acetal resin; Polyethylene resin; Polyether sulfide (
PES), biaxially stretched and heat-annealed polyethylene terephthalate (PET)
). As the flexible base material, one of the above resins may be used, or two or more kinds of resins may be used in combination. Among these, polyester resin and polyolefin resin from the viewpoint of easily controlling the internal stress A of the organic layer and the internal stress B of the inorganic thin film layer of the obtained laminated film, easily improving the warp suppressing effect, and having high transparency. It is preferable to use a resin selected from the group consisting of PEN, more preferably a resin selected from the group consisting of PEN and cyclic polyolefin, and even more preferably to use PEN.
 可撓性基材は、未延伸の樹脂基材であってもよいし、未延伸の樹脂基材を一軸延伸、テ
ンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公
知の方法により、樹脂基材の流れ方向(MD方向)、および/または、樹脂基材の流れ方
向と直角方向(TD方向)に延伸した延伸樹脂基材であってもよい。可撓性基材は、上述
した樹脂の層を2層以上積層した積層体であってもよい。
The flexible base material may be an unstretched resin base material, or the unstretched resin base material may be uniaxially stretched, tenter-type sequential biaxially stretched, tenter-type simultaneous biaxially stretched, or tubular-type simultaneous biaxially stretched. The stretched resin base material may be stretched in the flow direction (MD direction) of the resin base material and / or in the direction perpendicular to the flow direction of the resin base material (TD direction) by a known method such as stretching. The flexible base material may be a laminate in which two or more layers of the above-mentioned resin are laminated.
 可撓性基材のガラス転移温度(Tg)は、積層フィルムの耐熱性の観点から、好ましく
は100℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上である。
また、ガラス転移温度の上限は好ましくは250℃以下である。なお、ガラス転移温度(
Tg)は、動的粘弾性測定(DMA)装置または示差走査熱量計(DSC)を用いて測定
できる。
The glass transition temperature (Tg) of the flexible substrate is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 150 ° C. or higher, from the viewpoint of heat resistance of the laminated film.
The upper limit of the glass transition temperature is preferably 250 ° C. or lower. The glass transition temperature (
Tg) can be measured using a dynamic viscoelasticity measuring (DMA) device or a differential scanning calorimetry (DSC).
 可撓性基材の厚みは、積層フィルムを製造する際の安定性等を考慮して適宜設定してよ
いが、積層フィルムの製造工程で真空中における可撓性基材の搬送を容易にしやすい観点
から、5~500μmであることが好ましい。さらに、後述するようなプラズマ化学気相
成長法(プラズマCVD法)により無機薄膜層を形成する場合、可撓性基材の厚みは10
~200μmであることがより好ましく、15~150μmであることがさらに好ましい
。なお、可撓性基材の厚みは、膜厚計により測定できる。
The thickness of the flexible base material may be appropriately set in consideration of stability during manufacturing of the laminated film, but it is easy to easily transport the flexible base material in vacuum in the manufacturing process of the laminated film. From the viewpoint, it is preferably 5 to 500 μm. Further, when the inorganic thin film layer is formed by the plasma chemical vapor deposition method (plasma CVD method) as described later, the thickness of the flexible base material is 10.
It is more preferably about 200 μm, and even more preferably 15 to 150 μm. The thickness of the flexible base material can be measured with a film thickness meter.
 可撓性基材は、λ/4位相差フィルム、λ/2位相差フィルムなどの、面内における直
交2成分の屈折率が互いに異なる位相差フィルムであってもよい。位相差フィルムの材料
としては、セルロース系樹脂、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリエ
ステル系樹脂、アクリル系樹脂、ポリサルフォン系樹脂、ポリエーテルサルフォン系樹脂
、環状オレフィン系樹脂、液晶化合物の配向固化層などを例示することができる。製膜方
法としては、溶剤キャスト法やフィルムの残留応力を小さくできる精密押出法などを用い
ることができるが、均一性の点で溶剤キャスト法が好ましく用いられる。延伸方法は、特
に制限なく、均一な光学特性が得られるロール間縦一軸延伸、テンター横一軸延伸などを
適用できる。
The flexible substrate may be a retardation film such as a λ / 4 retardation film or a λ / 2 retardation film in which the refractive indexes of the two orthogonal components in the plane are different from each other. As the material of the retardation film, orientation solidification of cellulose-based resin, polycarbonate-based resin, polyarylate-based resin, polyester-based resin, acrylic-based resin, polysulfone-based resin, polyether sulfone-based resin, cyclic olefin-based resin, and liquid crystal compound. Layers and the like can be exemplified. As the film forming method, a solvent casting method or a precision extrusion method capable of reducing the residual stress of the film can be used, but the solvent casting method is preferably used from the viewpoint of uniformity. The stretching method is not particularly limited, and vertical uniaxial stretching between rolls, tenter horizontal uniaxial stretching, and the like that can obtain uniform optical characteristics can be applied.
 可撓性基材がλ/4位相差フィルムである場合の波長550nmでの面内位相差Re(
550)は、通常100~180nmであり、好ましくは110~170nmであり、さ
らに好ましくは120~160nmである。
In-plane retardation Re at a wavelength of 550 nm when the flexible substrate is a λ / 4 retardation film
550) is usually 100 to 180 nm, preferably 110 to 170 nm, and more preferably 120 to 160 nm.
 可撓性基材がλ/2位相差フィルムである場合の波長550nmでの面内位相差Re(
550)は、通常220~320nmであり、好ましくは240~300nmであり、さ
らに好ましくは250~280nmである。
In-plane retardation Re at a wavelength of 550 nm when the flexible substrate is a λ / 2 retardation film
550) is usually 220 to 320 nm, preferably 240 to 300 nm, and more preferably 250 to 280 nm.
 可撓性基材が位相差フィルムである場合に、位相差値が測定光の波長に応じて大きくな
る逆波長分散性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分
散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラット
な波長分散特性を示してもよい。
When the flexible base material is a retardation film, the retardation value may exhibit an inverse wavelength dispersibility that increases according to the wavelength of the measurement light, and the retardation value decreases according to the wavelength of the measurement light. It may show a positive wavelength dispersion characteristic, or may show a flat wavelength dispersion characteristic in which the phase difference value hardly changes depending on the wavelength of the measurement light.
 可撓性基材が逆波長分散性を示す位相差フィルムである場合、可撓性基材の波長λでの
位相差をRe(λ)と表記したときに、可撓性基材は、Re(450)/Re(550)
<1およびRe(650)/Re(550)>1を満たすことができる。
When the flexible base material is a retardation film exhibiting reverse wavelength dispersibility, when the phase difference of the flexible base material at the wavelength λ is expressed as Re (λ), the flexible base material is Re. (450) / Re (550)
<1 and Re (650) / Re (550)> 1 can be satisfied.
 可撓性基材は、光を透過させたり吸収させたりすることができるという観点から、無色
透明であることが好ましい。より具体的には、全光線透過率が80%以上であることが好
ましく、85%以上であることがより好ましい。また、曇価(ヘイズ)が5%以下である
ことが好ましく、3%以下であることがより好ましく、1%以下であることがさらに好ま
しい。可撓性基材の全光線透過率およびヘイズは、積層フィルムにおける全光線透過率お
よびヘイズの測定方法として先に記載したのと同様の方法により測定できる。
The flexible substrate is preferably colorless and transparent from the viewpoint of being able to transmit and absorb light. More specifically, the total light transmittance is preferably 80% or more, and more preferably 85% or more. Further, the haze value is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The total light transmittance and haze of the flexible substrate can be measured by the same method as described above as the method for measuring the total light transmittance and haze in the laminated film.
 可撓性基材は、有機デバイスやエネルギーデバイスの基材に使用することかできるとい
う観点から、絶縁性であることが好ましく、電気抵抗率が10Ωcm以上であることが
好ましい。
Flexible base material, from the viewpoint that it either be used on the substrate of the organic devices and energy devices, it is preferable that an insulating, electrical resistivity is preferably 10 6 [Omega] cm or more.
 可撓性基材の表面には、有機層等との密着性の観点から、その表面を清浄するための表
面活性処理を施してもよい。このような表面活性処理としては、例えば、コロナ処理、プ
ラズマ処理、フレーム処理が挙げられる。
The surface of the flexible base material may be subjected to a surface activation treatment for cleaning the surface from the viewpoint of adhesion to an organic layer or the like. Examples of such surface activation treatment include corona treatment, plasma treatment, and frame treatment.
 可撓性基材は、アニール処理を施していてもよいし、アニール処理を施していなくても
よいが、有機層内部応力Aや無機薄膜層内部応力Bを制御しやすく、積層フィルムにおけ
る反り抑制効果を向上させやすい観点から、アニール処理を施すことが好ましい。アニー
ル処理は可撓性基材を二軸延伸しながら使用上限温度(例えば200℃)以上の温度で熱
する、可撓性基材を二軸延伸した後に、オフラインで使用上限温度(例えば200℃)以
上の温度の加熱炉に通す等が挙げられる。なお、可撓性基材をアニール処理してもよいし
、後述するプライマー層等が片面または両面に積層された状態の基材層をアニール処理し
てもよい。
The flexible base material may or may not be annealed, but it is easy to control the internal stress A of the organic layer and the internal stress B of the inorganic thin film layer, and the warpage of the laminated film is suppressed. From the viewpoint of easily improving the effect, it is preferable to perform an annealing treatment. The annealing treatment involves biaxially stretching the flexible substrate and heating it at a temperature equal to or higher than the upper limit of use temperature (for example, 200 ° C.). After biaxially stretching the flexible substrate, the upper limit of use temperature (for example, 200 ° C.) is offline. ) It can be passed through a heating furnace with a temperature higher than that. The flexible base material may be annealed, or the base material layer in which a primer layer or the like, which will be described later, is laminated on one side or both sides may be annealed.
 本発明の一態様において、積層フィルムを構成する基材層は、可撓性基材のみからなってもよく、また、可撓性基材の他に、該可撓性基材の片面または両面に形成されたプライマー層を含んでいてもよい。プライマー層を有することで、可撓性基材と有機層との密着性が向上し得る。また、可撓性基材の両面にプライマー層を有し、その一方の面側のプライマー層の外側に層が存在しない、すなわち、該プライマー層が最外層である場合、該プライマー層は積層フィルムの保護層として機能するとともに、製造時の滑り性を向上させ、かつブロッキングを防止する機能も果たす。なお、本発明の一態様において、積層フィルムは、可撓性基材に接して存在するプライマー層に加えて、別の部分に積層されたさらなるプライマー層を有していてもよい。 In one aspect of the present invention, the base material layer constituting the laminated film may consist of only a flexible base material, and in addition to the flexible base material, one side or both sides of the flexible base material. It may contain a primer layer formed in. By having the primer layer, the adhesion between the flexible base material and the organic layer can be improved. Further, when the flexible substrate has primer layers on both sides and there is no layer outside the primer layer on one surface side, that is, when the primer layer is the outermost layer, the primer layer is a laminated film. In addition to functioning as a protective layer for the film, it also functions to improve slipperiness during manufacturing and prevent blocking. In one aspect of the present invention, the laminated film may have an additional primer layer laminated on another portion in addition to the primer layer existing in contact with the flexible base material.
 基材層がプライマー層を含む場合、プライマー層は130℃以上の軟化温度を有するこ
とが好ましい。このような軟化温度を有することで、高温環境下においても可撓性基材と
有機層とを十分に密着させることができ、積層フィルムの反り抑制効果を十分に高めやす
くなる。プライマー層の軟化温度は、好ましくは130℃以上、より好ましくは160℃
以上、さらに好ましくは180℃以上である。プライマー層の軟化温度が上記の下限値以
上であると、反り抑制効果をより向上できる。また、プライマー層の軟化温度の上限値は
通常250℃以下である。
When the base material layer contains a primer layer, the primer layer preferably has a softening temperature of 130 ° C. or higher. By having such a softening temperature, the flexible base material and the organic layer can be sufficiently adhered even in a high temperature environment, and the warp suppressing effect of the laminated film can be sufficiently enhanced. The softening temperature of the primer layer is preferably 130 ° C. or higher, more preferably 160 ° C. or higher.
Above, more preferably 180 ° C. or higher. When the softening temperature of the primer layer is at least the above lower limit value, the warp suppressing effect can be further improved. The upper limit of the softening temperature of the primer layer is usually 250 ° C. or lower.
 プライマー層は、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、エポキシ樹脂、メ
ラミン樹脂およびアミノ樹脂から選択される少なくとも1種を含んでなることが好ましい
。これらの中でも、主成分としてポリエステル樹脂を含有することがより好ましい。
The primer layer preferably contains at least one selected from urethane resin, acrylic resin, polyester resin, epoxy resin, melamine resin and amino resin. Among these, it is more preferable to contain a polyester resin as a main component.
 プライマー層は、上記樹脂以外に添加剤を含んでいてもよい。添加剤としては、プライ
マー層を形成するために公知の添加剤を用いることができ、例えば、シリカ粒子、アルミ
ナ粒子、炭酸カルシウム粒子、炭酸マグネシウム粒子、硫酸バリウム粒子、水酸化アルミ
ニウム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、クレイ、タルク等の無機粒子が
挙げられる。これらの中でも、積層フィルムの反り抑制効果の観点から、シリカ粒子が好
ましい。
The primer layer may contain an additive in addition to the above resin. As the additive, a known additive can be used for forming the primer layer, for example, silica particles, alumina particles, calcium carbonate particles, magnesium carbonate particles, barium sulfate particles, aluminum hydroxide particles, titanium dioxide particles. , Zirconium oxide particles, clay, talc and other inorganic particles. Among these, silica particles are preferable from the viewpoint of the effect of suppressing warpage of the laminated film.
 プライマー層がシリカ粒子を含む場合、その平均一次粒子径は、好ましくは5nm以上
、より好ましくは10nm以上、さらに好ましくは15nm以上、特に好ましくは20n
m以上であり、好ましくは100nm以下、より好ましくは80nm以下、さらに好まし
くは60nm以下、特に好ましくは40nm以下である。シリカ粒子の平均一次粒子径が
上記範囲であると、シリカ粒子の凝集を抑制し、積層フィルムの透明性および反り抑制効
果を向上し得る。また、プライマー層が最外層となる場合に、シリカ粒子の平均一次粒子
径が上記範囲であると、製造時における積層フィルムの滑り性をより向上させ、かつブロ
ッキングを有効に防止し得る。なお、シリカ粒子の平均一次粒子径は、BET法や粒子断
面のTEM観察により測定できる。
When the primer layer contains silica particles, the average primary particle size thereof is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 15 nm or more, and particularly preferably 20 n.
It is m or more, preferably 100 nm or less, more preferably 80 nm or less, still more preferably 60 nm or less, and particularly preferably 40 nm or less. When the average primary particle size of the silica particles is in the above range, the aggregation of the silica particles can be suppressed, and the transparency and the warp suppressing effect of the laminated film can be improved. Further, when the primer layer is the outermost layer and the average primary particle size of the silica particles is in the above range, the slipperiness of the laminated film at the time of production can be further improved and blocking can be effectively prevented. The average primary particle size of the silica particles can be measured by the BET method or TEM observation of the particle cross section.
 シリカ粒子の含有量は、プライマー層の質量に対して、好ましくは1~50質量%、よ
り好ましくは1.5~40質量%、さらに好ましくは2~30質量%である。シリカ粒子
の含有量が上記の下限値以上であると、積層フィルムの反り抑制効果を向上しやすい。シ
リカ粒子の含有量が上記の上限値以下であると、低いヘイズや高い全光線透過率等の光学
特性を向上しやすい。
The content of the silica particles is preferably 1 to 50% by mass, more preferably 1.5 to 40% by mass, and further preferably 2 to 30% by mass with respect to the mass of the primer layer. When the content of the silica particles is at least the above lower limit value, the warp suppressing effect of the laminated film is likely to be improved. When the content of the silica particles is not more than the above upper limit value, it is easy to improve optical characteristics such as low haze and high total light transmittance.
 プライマー層の厚みは、好ましくは1μm以下、より好ましくは500nm以下、さら
に好ましくは200nm以下であり、好ましくは10nm以上、より好ましくは20nm
以上、さらに好ましくは30nm以上である。プライマー層の厚みが上記範囲であると、
プライマー層と有機層との密着性および積層フィルムの反り抑制効果を向上しやすい。な
お、プライマー層の厚みは膜厚計によって測定できる。可撓性基材の両面にプライマー層
が存在する場合、それらの厚みは同一であっても、異なっていてもよいが、積層フィルム
の反り抑制効果を向上しやすい観点から、2つのプライマー層の厚みは同じであることが
好ましい。なお、本発明の一態様において、積層フィルムが3つ以上のプライマー層を有する場合、各プライマー層が上記の厚みを有することが好ましい。
The thickness of the primer layer is preferably 1 μm or less, more preferably 500 nm or less, further preferably 200 nm or less, preferably 10 nm or more, and more preferably 20 nm.
Above, more preferably 30 nm or more. When the thickness of the primer layer is within the above range,
It is easy to improve the adhesion between the primer layer and the organic layer and the effect of suppressing warpage of the laminated film. The thickness of the primer layer can be measured with a film thickness meter. When the primer layers are present on both sides of the flexible base material, their thickness may be the same or different, but from the viewpoint of easily improving the warp suppressing effect of the laminated film, the two primer layers are used. It is preferable that the thickness is the same. In one aspect of the present invention, when the laminated film has three or more primer layers, it is preferable that each primer layer has the above thickness.
 プライマー層は、樹脂および溶剤、並びに必要に応じて添加剤を含む樹脂組成物を可撓
性基材上に塗布し、塗膜を乾燥することで成膜して得ることができる。可撓性基材の両面
にプライマー層が存在する場合、それらを形成する順は特に限定されない。
The primer layer can be obtained by applying a resin composition containing a resin, a solvent and, if necessary, an additive on a flexible base material, and drying the coating film to form a film. When the primer layers are present on both sides of the flexible substrate, the order in which they are formed is not particularly limited.
 溶剤としては、前記樹脂を溶解可能なものであれば特に限定されず、例えばメタノール
、エタノール、2-プロパノール、1-ブタノール、2-ブタノール等のアルコール系溶
剤;ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキ
サン、プロピレングリコールモノメチルエーテル等のエーテル系溶剤;アセトン、2-ブ
タノン、メチルイソブチルケトン等のケトン系溶剤;N,N-ジメチルホルムアミド、N
,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリド
ン、ジメチルスルホキシド等の非プロトン性極性溶剤;酢酸メチル、酢酸エチル、酢酸n
-ブチル等のエステル系溶剤;アセトニトリル、ベンゾニトリル等のニトリル系溶剤;n
-ペンタン、n-ヘキサン、n-ヘプタン、オクタン、シクロヘキサン、メチルシクロヘ
キサン等の炭化水素溶剤;ベンゼン、トルエン、キシレン、メシチレン等の芳香族炭化水
素溶剤;塩化メチレン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、モノクロ
ロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素溶剤等が挙げられる。溶剤は単独
または二種以上組み合わせて使用できる。
The solvent is not particularly limited as long as it can dissolve the resin, and is, for example, an alcohol solvent such as methanol, ethanol, 2-propanol, 1-butanol, 2-butanol; diethyl ether, diisopropyl ether, tetrahydrofuran, 1 , 4-Dioxane, propylene glycol monomethyl ether and other ether solvents; acetone, 2-butanol, methyl isobutyl ketone and other ketone solvents; N, N-dimethylformamide, N
, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide and other aprotic polar solvents; methyl acetate, ethyl acetate, n acetate
-Ester solvent such as butyl; nitrile solvent such as acetonitrile and benzonitrile; n
-Hydrocarbon solvents such as pentane, n-hexane, n-heptane, octane, cyclohexane, methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, mesitylene; methylene chloride, chloroform, carbon tetrachloride, 1, 2 -Halogenized hydrocarbon solvents such as dichloroethane, monochlorobenzene and dichlorobenzene can be mentioned. The solvent can be used alone or in combination of two or more.
 プライマー層を可撓性基材に塗布する方法としては、従来用いられる種々の塗布方法、
例えば、スプレー塗布、スピン塗布、バーコート、カーテンコート、浸漬法、エアーナイ
フ法、スライド塗布、ホッパー塗布、リバースロール塗布、グラビア塗布、エクストリュ
ージョン塗布等の方法が挙げられる。
As a method for applying the primer layer to the flexible substrate, various conventionally used application methods,
For example, spray coating, spin coating, bar coating, curtain coating, dipping method, air knife method, slide coating, hopper coating, reverse roll coating, gravure coating, extraction coating and the like can be mentioned.
 塗膜を乾燥する方法としては、例えば自然乾燥法、通風乾燥法、加熱乾燥および減圧乾
燥法が挙げられるが、加熱乾燥を好適に使用できる。乾燥温度は、樹脂や溶剤の種類にも
よるが、通常50~350℃程度であり、乾燥時間は、通常30~300秒程度である。
Examples of the method for drying the coating film include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method, and heat drying can be preferably used. The drying temperature is usually about 50 to 350 ° C., and the drying time is usually about 30 to 300 seconds, although it depends on the type of resin and solvent.
 上記のように、可撓性基材の片面または両面にプライマー層を形成してもよいが、可撓
性基材の片面または両面にプライマー層を有する市販のフィルム、例えば帝人フィルムソ
リューション社製の「テオネックス(登録商標)」等を使用することもできる。
As described above, the primer layer may be formed on one side or both sides of the flexible base material, but a commercially available film having the primer layer on one side or both sides of the flexible base material, for example, manufactured by Teijin Film Solutions Co., Ltd. "Theonex (registered trademark)" or the like can also be used.
 基材層がプライマー層を有する場合、プライマー層は単層であっても、2層以上の多層
であってもよい。また、可撓性基材が両面にプライマー層を有する場合、2つのプライマ
ー層は同じ組成からなってもよく、互いに異なる組成からなってもよいが、積層フィルム
の反り抑制効果を向上しやすい観点から、同じ組成からなる層であることが好ましい。ま
た、本発明の一態様において、積層フィルムがさらなるプライマー層を有する場合、複数のプライマー層は同一または異なる組成からなる層であってもよい。
When the base material layer has a primer layer, the primer layer may be a single layer or two or more layers. Further, when the flexible substrate has primer layers on both sides, the two primer layers may have the same composition or different compositions from each other, but the effect of suppressing the warp of the laminated film can be easily improved. Therefore, it is preferable that the layers have the same composition. Further, in one aspect of the present invention, when the laminated film has an additional primer layer, the plurality of primer layers may be layers having the same or different compositions.
 基材層は可撓性基材を含む限り、単層であっても、2層以上の多層であってもよい。本
発明においては、可撓性基材上にプライマー層などの他の層が存在している場合、可撓性
基材から該可撓性基材に最も近い有機層までの間に存在する層を、基材層を構成する層と
みなす。可撓性基材の両面にプライマー層等の他の層が形成されている場合、上記有機層
内部応力Aや無機薄膜層内部応力Bを測定する際の基材層としては、可撓性基材と無機薄
膜層との間に位置し、該可撓性基材に最も近い有機層までの間に存在する層と、該可撓性
基材を介して対称または非対称に存在する同様の層(プライマー層や上記他の層)とが含
まれる。すなわち、例えば、図3において、基材層1は、可撓性基材1-1とその両面に
隣接する2つのプライマー層1-2とからなる。基材層が可撓性基材以外に他の層を含む
場合、基材層の総厚みは、有機層内部応力や無機薄膜層内部応力に影響を与え難く、積層
フィルムの反り抑制効果に優れる観点から、例えば5~550μmであってよく、好まし
くは10~250μm、より好ましくは15~200μmである。
The base material layer may be a single layer or may be two or more layers as long as it includes a flexible base material. In the present invention, when another layer such as a primer layer is present on the flexible substrate, the layer existing between the flexible substrate and the organic layer closest to the flexible substrate. Is regarded as a layer constituting the base material layer. When other layers such as a primer layer are formed on both sides of the flexible base material, the base material layer for measuring the organic layer internal stress A and the inorganic thin film layer internal stress B is a flexible group. A layer located between the material and the inorganic thin film layer, located between the organic layer closest to the flexible substrate, and a similar layer existing symmetrically or asymmetrically through the flexible substrate. (Primer layer and the above other layers) are included. That is, for example, in FIG. 3, the base material layer 1 is composed of a flexible base material 1-1 and two primer layers 1-2 adjacent to both sides thereof. When the base material layer contains other layers other than the flexible base material, the total thickness of the base material layer is less likely to affect the internal stress of the organic layer and the internal stress of the inorganic thin film layer, and is excellent in the effect of suppressing warpage of the laminated film. From the viewpoint, it may be, for example, 5 to 550 μm, preferably 10 to 250 μm, and more preferably 15 to 200 μm.
 〔有機層〕
 本発明の積層フィルムは、基材層と無機薄膜層との間に位置する有機層であって、上記特定の有機層内部応力Aを有する有機層(以下、「第1有機層」ともいう)を有する。また、本発明の一態様においては、積層フィルムは、基材層の前記第1有機層とは反対側の面にさらに有機層(以下、「第2有機層」ともいう)を有する。第2有機層を有することで、例えば可撓性基材の樹脂成分などの析出または可撓性基材の変形が抑制されやすくなるため、積層フィルムを高温環境下に曝露してもそのヘイズの上昇が抑制されるなどの効果が期待できる。
[Organic layer]
The laminated film of the present invention is an organic layer located between a base material layer and an inorganic thin film layer, and has the above-mentioned specific organic layer internal stress A (hereinafter, also referred to as “first organic layer”). Has. Further, in one aspect of the present invention, the laminated film further has an organic layer (hereinafter, also referred to as “second organic layer”) on the surface of the base material layer opposite to the first organic layer. By having the second organic layer, for example, precipitation of the resin component of the flexible base material or deformation of the flexible base material is easily suppressed, so that even if the laminated film is exposed to a high temperature environment, its haze Effects such as suppression of the rise can be expected.
 本発明の一態様において、積層フィルムが第1有機層および/または第2有機層を含む場合、第1有機層および第2有機層はそれぞれ、平坦化層としての機能を有する層であってもよいし、アンチブロッキング層としての機能を有する層であってもよいし、これらの両方の機能を有する層であってもよい。特に、無機薄膜層が基材層の片面側にのみ存在する積層フィルムにおいては、フィルム搬送時の滑り性確保の観点から、無機薄膜層を積層しない第2有機層がアンチブロッキング層としての機能を有することが好ましく、無機薄膜層の均質化によるガスバリア性の向上とフィルム搬送時の滑り性確保の両立の観点から、第1有機層が平坦化層としての機能を有し、第2有機層がアンチブロッキング層としての機能を有することがより好ましい。 In one aspect of the present invention, when the laminated film contains a first organic layer and / or a second organic layer, even if the first organic layer and the second organic layer are layers having a function as a flattening layer, respectively. It may be a layer having a function as an anti-blocking layer, or a layer having both of these functions. In particular, in a laminated film in which the inorganic thin film layer exists only on one side of the base material layer, the second organic layer in which the inorganic thin film layer is not laminated functions as an anti-blocking layer from the viewpoint of ensuring slipperiness during film transportation. The first organic layer has a function as a flattening layer, and the second organic layer has a function as a flattening layer from the viewpoint of improving the gas barrier property by homogenizing the inorganic thin film layer and ensuring slipperiness during film transportation. It is more preferable to have a function as an anti-blocking layer.
 本発明の一態様において、積層フィルムが第1有機層および第2有機層を含む場合、第1有機層が先に記載した特定範囲の有機層内部応力Aを満たしていれば、第2有機層の有機層内部応力Aの値は特に限定されないが、第2有機層の基材層とは反対側に無機薄膜層が存在しない場合には第2有機層の有機層内部応力は低いほど好ましい。また、第1有機層および第2有機層はそれぞれ単層でもよいし、2層以上の多層であってもよい。また、第1有機層および第2有機層は、同じ組成からなる層であっても、異なる組成からなる層であってもよいが、積層フィルムの反り抑制効果を向上しやすい観点から、同じ組成からなる層であることが好ましい。また、本発明の一態様において、積層フィルムが第1有機層および第2有機層以外の有機層を有する場合、複数の有機層は同じ組成からなる層であっても、異なる組成からなる層であってもよい。
 以下、本明細書の有機層の説明においては、明記しない限り、「有機層」とは第1有機
層および第2有機層の両者を意味する。
In one aspect of the present invention, when the laminated film contains the first organic layer and the second organic layer, if the first organic layer satisfies the organic layer internal stress A in the specific range described above, the second organic layer The value of the internal stress A of the organic layer is not particularly limited, but when the inorganic thin film layer is not present on the side opposite to the base material layer of the second organic layer, the lower the internal stress of the organic layer of the second organic layer is, the more preferable. Further, the first organic layer and the second organic layer may be single layers or may be two or more layers. Further, the first organic layer and the second organic layer may be layers having the same composition or layers having different compositions, but they have the same composition from the viewpoint of easily improving the warp suppressing effect of the laminated film. It is preferably a layer composed of. Further, in one aspect of the present invention, when the laminated film has an organic layer other than the first organic layer and the second organic layer, the plurality of organic layers may be layers having the same composition but different compositions. There may be.
Hereinafter, in the description of the organic layer in the present specification, unless otherwise specified, the “organic layer” means both the first organic layer and the second organic layer.
 有機層は、有機化合物を含む層であって、先に記載した特定の有機層内部応力Aを満た
すものである限り、その構成成分は特に限定されず、例えば、重合性官能基を有する光硬
化性化合物を含む組成物を、基材層上に塗布し、硬化することにより形成することができ
る。有機層を形成するための組成物に含まれる光硬化性化合物としては、紫外線または電
子線硬化性の化合物が挙げられ、このような化合物としては、重合性官能基を分子内に1
個以上有する化合物、例えば、(メタ)アクリロイル基、ビニル基、スチリル基、アリル
基等の重合性官能基を有する化合物が挙げられる。有機層を形成するための組成物(以下
、「有機層形成用組成物」ともいう)は、1種類の光硬化性化合物を含有してもよいし、
2種以上の光硬化性化合物を含有してもよい。有機層形成用組成物に含まれる重合性官能
基を有する光硬化性化合物を硬化させることにより、光硬化性化合物が重合して、光硬化
性化合物の重合物を含む有機層が形成される。
The organic layer is a layer containing an organic compound, and as long as it satisfies the above-mentioned specific organic layer internal stress A, its constituent components are not particularly limited, and for example, it is photocured having a polymerizable functional group. It can be formed by applying a composition containing a sex compound onto a base material layer and curing the composition. Examples of the photocurable compound contained in the composition for forming the organic layer include an ultraviolet or electron beam curable compound, and such a compound has a polymerizable functional group in the molecule.
Examples of the compound having more than one, for example, a compound having a polymerizable functional group such as a (meth) acryloyl group, a vinyl group, a styryl group, and an allyl group can be mentioned. The composition for forming the organic layer (hereinafter, also referred to as “composition for forming the organic layer”) may contain one kind of photocurable compound.
It may contain two or more photocurable compounds. By curing the photocurable compound having a polymerizable functional group contained in the composition for forming an organic layer, the photocurable compound is polymerized to form an organic layer containing a polymer of the photocurable compound.
 有機層における該重合性官能基を有する光硬化性化合物の重合性官能基の反応率は、外
観品質を高めやすい観点から、好ましくは70%以上、より好ましくは75%以上、さら
に好ましくは80%以上である。前記反応率の上限は特に限定されないが、外観品質を高
めやすい観点から、好ましくは95%以下、より好ましくは90%以下である。反応率が
上記の下限値以上であると無色透明化しやすい。また、反応率が上記の上限値以下である
と、耐屈曲性を向上させやすい。反応率は、重合性官能基を有する光硬化性化合物の重合
反応が進むにつれて高くなるため、例えば光硬化性化合物が紫外線硬化性化合物である場
合には、照射する紫外線の強度を高くしたり、照射時間を長くしたりすることにより、高
めることができる。上記のような硬化条件を調整することにより、反応率を上記の範囲内
にすることができる。
The reaction rate of the polymerizable functional group of the photocurable compound having the polymerizable functional group in the organic layer is preferably 70% or more, more preferably 75% or more, still more preferably 80% from the viewpoint of easily improving the appearance quality. That is all. The upper limit of the reaction rate is not particularly limited, but is preferably 95% or less, more preferably 90% or less, from the viewpoint of easily improving the appearance quality. When the reaction rate is equal to or higher than the above lower limit value, colorless and transparent easily occurs. Further, when the reaction rate is not more than the above upper limit value, the bending resistance is likely to be improved. Since the reaction rate increases as the polymerization reaction of the photocurable compound having a polymerizable functional group proceeds, for example, when the photocurable compound is an ultraviolet curable compound, the intensity of the ultraviolet rays to be irradiated may be increased. It can be increased by lengthening the irradiation time. By adjusting the curing conditions as described above, the reaction rate can be kept within the above range.
 反応率は、有機層形成用組成物を基材上に塗布し、必要に応じて乾燥させて得た硬化前
の塗膜、および、該塗膜を硬化後の塗膜について、塗膜表面から全反射型FT-IRを用
いて赤外吸収スペクトルを測定し、重合性官能基に由来するピークの強度の変化量から測
定することができる。例えば、重合性官能基が(メタ)アクリロイル基である場合、(メ
タ)アクリロイル基中のC=C二重結合部分が重合に関与する基であり、重合の反応率が
高くなるにつれてC=C二重結合に由来するピークの強度が低下する。一方、(メタ)ア
クリロイル基中のC=O二重結合部分は重合に関与せず、C=O二重結合に由来するピー
クの強度は重合前後で変化しない。そのため、硬化前の塗膜について測定した赤外吸収ス
ペクトルにおける(メタ)アクリロイル基中のC=O二重結合に由来するピークの強度(
CO1)に対するC=C二重結合に由来するピークの強度(ICC1)の割合(ICC
/ICO1)と、硬化後の塗膜について測定した赤外吸収スペクトルにおける(メタ)
アクリロイル基中のC=O二重結合に由来するピークの強度(ICO2)に対するC=C
二重結合に由来するピークの強度(ICC2)の割合(ICC2/ICO2)とを比較す
ることで、反応率を算出することができる。この場合、反応率は、式(4):
 反応率[%]=[1-(ICC2/ICO2)/(ICC1/ICO1)]×100 
 (4)
により算出される。なお、C=C二重結合に由来する赤外吸収ピークは通常1350~1
450cm-1の範囲、例えば1400cm-1付近に観察され、C=O二重結合に由来
する赤外吸収ピークは通常1700~1800cm-1の範囲、例えば1700cm-1
付近に観察される。
The reaction rate was determined from the surface of the coating film with respect to the coating film before curing obtained by applying the composition for forming an organic layer on the substrate and drying it if necessary, and the coating film after curing the coating film. The infrared absorption spectrum can be measured using a total reflection type FT-IR, and can be measured from the amount of change in the intensity of the peak derived from the polymerizable functional group. For example, when the polymerizable functional group is a (meth) acryloyl group, the C = C double bond moiety in the (meth) acryloyl group is a group involved in the polymerization, and C = C as the reaction rate of the polymerization increases. The intensity of the peak derived from the double bond decreases. On the other hand, the C = O double bond portion in the (meth) acryloyl group does not participate in the polymerization, and the intensity of the peak derived from the C = O double bond does not change before and after the polymerization. Therefore, the intensity of the peak derived from the C = O double bond in the (meth) acryloyl group in the infrared absorption spectrum measured for the coating film before curing (
The proportion of the intensity of the peak derived from C = C double bond to I CO1) (I CC1) ( I CC
1 / ICO1 ) and (meth) in the infrared absorption spectrum measured for the cured coating film.
C = C with respect to the intensity (ICO2 ) of the peak derived from the C = O double bond in the acryloyl group
By comparing the ratio (I CC2 / I CO2) of the intensity of a peak derived from the double bond (I CC2), it is possible to calculate the reaction rate. In this case, the reaction rate is calculated by the formula (4) :.
Reaction rate [%] = [1- (I CC2 / I CO2 ) / (I CC1 / I CO1 )] × 100
(4)
Is calculated by. The infrared absorption peak derived from the C = C double bond is usually 1350 to 1.
Range of 450 cm -1, for example, is observed in the vicinity of 1400cm -1, C = O double infrared absorption peak attributable to binding in the range of usually 1700 ~ 1800 cm -1, for example 1700 cm -1
Observed in the vicinity.
 有機層の赤外吸収スペクトルにおける1000~1100cm-1の範囲の赤外吸収ピ
ークの強度をIとし、1700~1800cm-1の範囲の赤外吸収ピークの強度をI
とすると、IおよびIは式(5):
 0.05≦I/I≦1.0     (5)
を満たすことが好ましい。ここで、1000~1100cm-1の範囲の赤外吸収ピーク
は、有機層に含まれる化合物および重合物(例えば、重合性官能基を有する光硬化性化合
物および/またはその重合物)中に存在するシロキサン由来のSi-O-Si結合に由来
する赤外吸収ピークであり、1700~1800cm-1の範囲の赤外吸収ピークは、有
機層に含まれる化合物および重合物(例えば、重合性官能基を有する光硬化性化合物およ
び/またはその重合物)中に存在するC=O二重結合に由来する赤外吸収ピークであると
考えられる。そして、これらのピークの強度の比(I/I)は、有機層中のシロキサ
ン由来のSi-O-Si結合に対するC=O二重結合の相対的な割合を表すと考えられる
。ピークの強度の比(I/I)が上記所定の範囲である場合、有機層の均一性を高め
やすいと共に、層間の密着性、特に高湿環境下での密着性を高めやすくなる。ピークの強
度の比(I/I)は、好ましくは0.05以上、より好ましくは0.10以上、さら
に好ましくは0.20以上である。ピーク強度の比が上記の下限値以上である場合、有機
層の均一性を高めやすい。これは、以下のメカニズムに何ら限定されるものでないが、有
機層に含まれる化合物および重合物中に存在するシロキサン由来のSi-O-Si結合が
多くなりすぎると有機層中に凝集物が生じ、層が脆化する場合があり、このような凝集物
の生成を低減しやすくなるためであると推測される。ピークの強度の比(I/I)は
、好ましくは1.0以下、より好ましくは0.8以下、さらに好ましくは0.5以下であ
る。ピーク強度の比が上記の上限値以下である場合、有機層の密着性を高めやすい。これ
は、以下のメカニズムに何ら限定されるものでないが、有機層に含まれる化合物および重
合物中にシロキサン由来のSi-O-Si結合が一定量以上存在することにより、有機層
の硬さが適度に低減されるためであると推測される。有機層の赤外吸収スペクトルは、A
TRアタッチメント(PIKE MIRacle)を備えたフーリエ変換型赤外分光光度
計(日本分光製、FT/IR-460Plus)により測定できる。
The intensity of the infrared absorption peak in the range of 1000 to 1100 cm -1 in the infrared absorption spectrum of the organic layer is Ia, and the intensity of the infrared absorption peak in the range of 1700 to 1800 cm -1 is I.
When b, I a and I b the formula (5):
0.05 ≤ I b / I a ≤ 1.0 (5)
It is preferable to satisfy. Here, the infrared absorption peak in the range of 1000 to 1100 cm -1 is present in the compound and the polymer (for example, the photocurable compound having a polymerizable functional group and / or the polymer thereof) contained in the organic layer. Infrared absorption peaks derived from Si—O—Si bonds derived from siloxane, and infrared absorption peaks in the range of 1700 to 1800 cm -1 are compounds and polymers contained in the organic layer (for example, polymerizable functional groups). It is considered to be an infrared absorption peak derived from the C = O double bond present in the photocurable compound and / or its polymer). The ratio of the intensities of these peaks (I b / I a ) is considered to represent the relative ratio of the C = O double bond to the siloxane-derived Si—O—Si bond in the organic layer. When the peak intensity ratio (I b / I a ) is within the above-mentioned predetermined range, it is easy to improve the uniformity of the organic layer, and it is easy to improve the adhesion between layers, particularly the adhesion in a high humidity environment. The peak intensity ratio (I b / I a ) is preferably 0.05 or more, more preferably 0.10 or more, still more preferably 0.20 or more. When the ratio of peak intensities is equal to or more than the above lower limit value, the uniformity of the organic layer can be easily improved. This is not limited to the following mechanism, but if the amount of siloxane-derived Si—O—Si bonds present in the compound and polymer contained in the organic layer becomes too large, aggregates are generated in the organic layer. It is presumed that this is because the layer may be embrittled and the formation of such agglomerates can be easily reduced. The peak intensity ratio (I b / I a ) is preferably 1.0 or less, more preferably 0.8 or less, still more preferably 0.5 or less. When the ratio of peak intensities is not more than the above upper limit value, it is easy to improve the adhesion of the organic layer. This is not limited to the following mechanism, but the hardness of the organic layer is increased by the presence of a certain amount or more of siloxane-derived Si—O—Si bonds in the compounds and polymers contained in the organic layer. It is presumed that this is because it is moderately reduced. The infrared absorption spectrum of the organic layer is A
It can be measured by a Fourier transform infrared spectrophotometer (FT / IR-460Plus manufactured by JASCO Corporation) equipped with a TR attachment (PIKE MIRacle).
 有機層形成用組成物に含まれる光硬化性化合物は、紫外線等により重合が開始し、硬化
が進行して重合物である樹脂となる化合物である。光硬化性化合物は、硬化効率の観点か
ら、好ましくは(メタ)アクリロイル基を有する化合物である。(メタ)アクリロイル基
を有する化合物は、単官能のモノマーまたはオリゴマーであってもよいし、多官能のモノ
マーまたはオリゴマーであってもよい。なお、本明細書において、「(メタ)アクリロイ
ル」とは、アクリロイルおよび/またはメタクリロイルを表し、「(メタ)アクリル」と
は、アクリルおよび/またはメタクリルを表す。
The photocurable compound contained in the composition for forming an organic layer is a compound that starts polymerization by ultraviolet rays or the like and proceeds to cure to become a resin which is a polymer. The photocurable compound is preferably a compound having a (meth) acryloyl group from the viewpoint of curing efficiency. The compound having a (meth) acryloyl group may be a monofunctional monomer or oligomer, or may be a polyfunctional monomer or oligomer. In the present specification, "(meth) acryloyl" means acryloyl and / or methacryloyl, and "(meth) acrylic" means acrylic and / or methacrylic.
 (メタ)アクリロイル基を有する化合物としては、(メタ)アクリル系化合物が挙げら
れ、具体的には、アルキル(メタ)アクリレート、ウレタン(メタ)アクリレート、エス
テル(メタ)アクリレート、エポキシ(メタ)アクリレート、ならびに、その重合体およ
び共重合体等が挙げられる。具体的には、メチル(メタ)アクリレート、ブチル(メタ)
アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレ
ート、フェニル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プ
ロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリ
レート、ジプロピレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ
)アクリレート、プロピレングリコールジ(メタ)アクリレート、およびペンタエリスリ
トールトリ(メタ)アクリレート、並びにその重合体および共重合体等が挙げられる。
Examples of the compound having a (meth) acryloyl group include (meth) acrylic compounds, and specifically, alkyl (meth) acrylate, urethane (meth) acrylate, ester (meth) acrylate, epoxy (meth) acrylate, and the like. In addition, the polymer and copolymer thereof and the like can be mentioned. Specifically, methyl (meth) acrylate, butyl (meth)
Acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, dipropylene glycol Examples thereof include di (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and polymers and copolymers thereof.
 有機層形成用組成物に含まれる光硬化性化合物は、上記(メタ)アクリロイル基を有す
る化合物に代えて、または、上記(メタ)アクリロイル基を有する化合物に加えて、例え
ば、メテトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチ
ルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプ
ロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキ
シシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デ
シルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジ
イソプロピルジメトキシシラン、トリメチルエトキシシラン、およびトリフェニルエトキ
シシラン等を含有することが好ましい。これら以外のアルコキシシランを用いてもよい。
The photocurable compound contained in the composition for forming an organic layer may be, for example, in place of the compound having a (meth) acryloyl group or in addition to the compound having a (meth) acryloyl group, for example, metetramethoxysilane. Tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, isopropyltrimethoxysilane, isobutyltrimethoxysilane, cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltri It preferably contains ethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, diisopropyldimethoxysilane, trimethylethoxysilane, triphenylethoxysilane and the like. Alkoxysilanes other than these may be used.
 上記に述べた重合性官能基を有する光硬化性化合物以外の光硬化性化合物としては、重
合によりポリエステル樹脂、イソシアネート樹脂、エチレンビニルアルコール樹脂、ビニ
ル変性樹脂、エポキシ樹脂、フェノール樹脂、尿素メラミン樹脂、スチレン樹脂、および
アルキルチタネート等の樹脂となる、モノマーまたはオリゴマーが挙げられる。
Examples of the photocurable compound other than the photocurable compound having a polymerizable functional group described above include polyester resin, isocyanate resin, ethylene vinyl alcohol resin, vinyl-modified resin, epoxy resin, phenol resin, urea melamine resin, etc. by polymerization. Examples thereof include monomers or oligomers that serve as styrene resins and resins such as alkyl titanates.
 有機層形成用組成物は、プライマー層に含まれ得る無機粒子として記載の無機粒子、好
ましくはシリカ粒子を含むことができる。有機層形成用組成物に含まれるシリカ粒子の平
均一次粒子径は、好ましくは5~100nm、より好ましくは5~75nmである。無機
粒子を含有すると、積層フィルムの反り抑制効果を向上しやすい。
The composition for forming an organic layer can contain inorganic particles described as inorganic particles that can be contained in the primer layer, preferably silica particles. The average primary particle size of the silica particles contained in the composition for forming an organic layer is preferably 5 to 100 nm, more preferably 5 to 75 nm. When inorganic particles are contained, the effect of suppressing warpage of the laminated film is likely to be improved.
 無機粒子、好ましくはシリカ粒子の含有量は、有機層形成用組成物の固形分の質量に対
して、好ましくは20~90%であり、より好ましくは40~85%である。無機粒子の
含有量が上記範囲であると、積層フィルムの反り抑制効果をより向上しやすい。なお、有
機層形成用組成物の固形分とは、有機層形成用組成物に含まれる溶剤等の揮発性成分を除
いた成分を意味する。
The content of the inorganic particles, preferably the silica particles, is preferably 20 to 90%, more preferably 40 to 85%, based on the mass of the solid content of the composition for forming the organic layer. When the content of the inorganic particles is in the above range, the warp suppressing effect of the laminated film is likely to be further improved. The solid content of the composition for forming an organic layer means a component excluding volatile components such as a solvent contained in the composition for forming an organic layer.
 有機層形成用組成物は、有機層の硬化性の観点から、光重合開始剤を含んでいてよい。
光重合開始剤の含有量は、有機層の硬化性を高める観点から、有機層形成用組成物の固形
分の質量に対して、好ましくは2~15%であり、より好ましくは3~11%である。
The composition for forming an organic layer may contain a photopolymerization initiator from the viewpoint of curability of the organic layer.
The content of the photopolymerization initiator is preferably 2 to 15%, more preferably 3 to 11%, based on the mass of the solid content of the composition for forming the organic layer, from the viewpoint of enhancing the curability of the organic layer. Is.
 有機層形成用組成物は、塗布性の観点から、溶剤を含んでいてよい。溶剤としては、重
合性官能基を有する光硬化性化合物の種類に応じて、該化合物を溶解可能なものを適宜選
択でき、例えば、プライマー層を形成する際に使用し得るものとして先に記載した溶剤等
が挙げられる。溶剤は単独または二種以上組み合わせて使用してよい。
The composition for forming an organic layer may contain a solvent from the viewpoint of coatability. As the solvent, a solvent capable of dissolving the compound can be appropriately selected depending on the type of the photocurable compound having a polymerizable functional group, and for example, a solvent that can be used when forming a primer layer is described above. Examples include solvents. The solvent may be used alone or in combination of two or more.
 前記重合性官能基を有する光硬化性化合物、前記無機粒子、前記光重合開始剤および前
記溶剤の他に、必要に応じて、熱重合開始剤、酸化防止剤、紫外線吸収剤、可塑剤、レベ
リング剤、カール抑制剤等の添加剤を含んでもよい。
In addition to the photocurable compound having a polymerizable functional group, the inorganic particles, the photopolymerization initiator and the solvent, if necessary, a thermal polymerization initiator, an antioxidant, an ultraviolet absorber, a plasticizer, and leveling. Additives such as agents and curl inhibitors may be included.
 有機層形成用組成物を構成する光硬化性化合物や無機粒子、光重合開始剤や溶剤等の種
類、配合量およびそれらの組み合わせを適宜選択することにより、得られる有機層の有機
層内部応力Aを制御することができる。例えば有機層を形成する際、有機層形成用組成物
から形成される塗膜を乾燥する温度を高めたり、塗膜を乾燥する時間を長くしたり、塗膜
をUV照射により硬化する際にUV照射量を上げるなどして有機層形成用組成物の硬化度
を高めることにより、有機層内部応力Aは高くなる傾向にある。一方、有機層を形成する
際の温度が低かったり、滞留時間が短かったりすることで、有機層中に溶媒が残留してし
まったり、塗膜をUV照射により硬化する際にUV照度やUV積算光量が少ないことによ
り、有機層の硬化度が十分に高められない場合に有機層内部応力Aは低くなる傾向にある
The internal stress A of the organic layer of the organic layer obtained by appropriately selecting the types, blending amounts and combinations thereof of photocurable compounds and inorganic particles, photopolymerization initiators, solvents and the like constituting the composition for forming the organic layer. Can be controlled. For example, when forming an organic layer, the temperature at which the coating film formed from the composition for forming an organic layer is dried is raised, the time for drying the coating film is lengthened, or UV is applied when the coating film is cured by UV irradiation. The internal stress A of the organic layer tends to increase by increasing the degree of curing of the composition for forming the organic layer by increasing the irradiation amount or the like. On the other hand, when the temperature when forming the organic layer is low or the residence time is short, the solvent remains in the organic layer, or when the coating film is cured by UV irradiation, the UV illuminance and UV integration are performed. Due to the small amount of light, the internal stress A of the organic layer tends to be low when the degree of curing of the organic layer cannot be sufficiently increased.
 有機層は、例えば、光硬化性化合物を含む有機層形成用組成物(光硬化性組成物)を基
材層上に塗布し、必要に応じて乾燥後、紫外線もしくは電子線を照射することにより、光
硬化性化合物を硬化させて形成することができる。
For the organic layer, for example, a composition for forming an organic layer (photocurable composition) containing a photocurable compound is applied onto the base material layer, dried if necessary, and then irradiated with ultraviolet rays or an electron beam. , The photocurable compound can be cured to form.
 塗布方法としては、上記プライマー層を可撓性基材に塗布する方法と同様の方法が挙げ
られる。
Examples of the coating method include the same method as the method of coating the primer layer on the flexible substrate.
 有機層が平坦化層としての機能を有する場合、該有機層は、(メタ)アクリレート樹脂
、ポリエステル樹脂、イソシアネート樹脂、エチレンビニルアルコール樹脂、ビニル変性
樹脂、エポキシ樹脂、フェノール樹脂、尿素メラミン樹脂、スチレン樹脂、およびアルキ
ルチタネート等を含有してよい。有機層はこれらの樹脂を1種類または2種以上を組み合
わせて含有してもよい。
When the organic layer has a function as a flattening layer, the organic layer may be a (meth) acrylate resin, a polyester resin, an isocyanate resin, an ethylene vinyl alcohol resin, a vinyl-modified resin, an epoxy resin, a phenol resin, a urea melamine resin, or a styrene. It may contain a resin, an alkyl titanate and the like. The organic layer may contain one kind or a combination of two or more kinds of these resins.
 有機層が平坦化層としての機能を有する場合、該有機層は、剛体振り子型物性試験機(
例えばエー・アンド・デイ株式会社製RPT-3000W等)により前記有機層表面の弾
性率の温度変化を評価した場合に、前記有機層表面の弾性率が50%以上低下する温度が
150℃以上であることが好ましい。
When the organic layer has a function as a flattening layer, the organic layer is a rigid pendulum type physical property tester (
For example, when the temperature change of the elastic modulus of the organic layer surface is evaluated by A & D Co., Ltd. (RPT-3000W, etc.), the temperature at which the elastic modulus of the organic layer surface decreases by 50% or more is 150 ° C. or more. It is preferable to have.
 有機層が平坦化層としての機能を有する場合、該有機層を白色干渉顕微鏡で観察して測
定される面粗さは、好ましくは3nm以下、より好ましくは2nm以下、さらに好ましく
は1nm以下である。有機層の面粗さが上記の上限値以下であると、該有機層面上に積層
される無機薄膜層の欠陥が少なくなり、ガスバリア性がより高められる効果がある。面粗
さは、有機層を白色干渉顕微鏡で観察し、サンプル表面の凹凸に応じて、干渉縞が形成さ
れることにより測定される。
When the organic layer has a function as a flattening layer, the surface roughness measured by observing the organic layer with a white interference microscope is preferably 3 nm or less, more preferably 2 nm or less, still more preferably 1 nm or less. .. When the surface roughness of the organic layer is not more than the above upper limit value, the defects of the inorganic thin film layer laminated on the organic layer surface are reduced, and the gas barrier property is further enhanced. The surface roughness is measured by observing the organic layer with a white interference microscope and forming interference fringes according to the unevenness of the sample surface.
 有機層がアンチブロッキング層としての機能を有する場合、有機層は、特に上記に述べ
た無機粒子を含有することが好ましい。
When the organic layer has a function as an anti-blocking layer, the organic layer preferably contains the above-mentioned inorganic particles.
 本発明の一態様において、第1有機層および第2有機層の厚みは、用途に応じて適宜調整してよいが、それぞれ好ましくは0.1~15μm、より好ましくは0.5~12μm、さらに好ましくは0.7~10μmである。有機層の厚みは、膜厚計によって測定することができる。厚みが上記の下限値以上であると、積層フィルムの表面硬度を向上しやすい。また、厚みが上記の上限値以下であると、屈曲性が向上しやすい。第1有機層および第2有機層の厚みは同じであっても、異なっていてもよい。本発明の一態様の積層フィルムが3つ以上の有機層を有する場合、各有機層が上記の厚みを有することが好ましい。 In one aspect of the present invention, the thicknesses of the first organic layer and the second organic layer may be appropriately adjusted depending on the intended use, but are preferably 0.1 to 15 μm, more preferably 0.5 to 12 μm, respectively. It is preferably 0.7 to 10 μm. The thickness of the organic layer can be measured with a film thickness meter. When the thickness is at least the above lower limit value, the surface hardness of the laminated film is likely to be improved. Further, when the thickness is not more than the above upper limit value, the flexibility is likely to be improved. The thicknesses of the first organic layer and the second organic layer may be the same or different. When the laminated film of one aspect of the present invention has three or more organic layers, it is preferable that each organic layer has the above-mentioned thickness.
 〔無機薄膜層〕
 本発明の積層フィルムは、少なくとも第1有機層の基材層とは反対側の面に無機薄膜層を有する。無機薄膜層を有することで、積層フィルムに優れたガスバリア性を付与することができる。本発明の一態様においては、積層フィルムを構成する基材層の両側に無機薄膜層が設けられていてもよい。本発明の一態様において、基材層と無機薄膜層との間に存在する有機層が、無機薄膜層で生じる内部応力に起因して生じ得る反りを解消するのに十分な内部応力を有する積層フィルムは、無機薄膜層が基材層の一方の面側のみに存在する場合であっても積層フィルムの反りを抑制する効果に優れるため、基材層の片側にのみ無機薄膜層を形成することにより、生産性や生産コストの面において有利である。なお、本発明の一態様において、積層フィルムが基材層の両側に2つの、またはそれ以上の無機薄膜層を有する場合、これらの無機薄膜層は同じ構成であっても、異なる構成であってもよい。
[Inorganic thin film layer]
The laminated film of the present invention has an inorganic thin film layer on a surface opposite to the base material layer of at least the first organic layer. By having the inorganic thin film layer, it is possible to impart excellent gas barrier properties to the laminated film. In one aspect of the present invention, inorganic thin film layers may be provided on both sides of the base material layer constituting the laminated film. In one aspect of the present invention, the organic layer existing between the base material layer and the inorganic thin film layer has an internal stress sufficient to eliminate the warp that may occur due to the internal stress generated in the inorganic thin film layer. Since the film is excellent in the effect of suppressing the warp of the laminated film even when the inorganic thin film layer is present only on one surface side of the base material layer, the inorganic thin film layer is formed only on one side of the base material layer. Therefore, it is advantageous in terms of productivity and production cost. In one aspect of the present invention, when the laminated film has two or more inorganic thin film layers on both sides of the base material layer, these inorganic thin film layers have the same structure but different structures. May be good.
 無機薄膜層は、先に記載した特定の無機薄膜層内部応力Bを満たすよう構成されている
ことが好ましく、該無機薄膜層内部応力Bを発現し得る高い緻密性を有し、ガスバリア層
としての機能を有する層であることが好ましい。そのようなガスバリア性を有する無機薄
膜層は、ガスバリア性を有する無機材料の層であれば特に限定されず、公知のガスバリア
性を有する無機材料の層を適宜利用することができる。無機材料の例としては、金属酸化
物、金属窒化物、金属酸窒化物、金属酸炭化物およびこれらのうちの少なくとも2種を含
む混合物が挙げられる。無機薄膜層は単層膜であってもよいし、上記薄膜層を少なくとも
含む2層以上が積層された多層膜であってもよい。
The inorganic thin film layer is preferably configured to satisfy the above-mentioned specific inorganic thin film layer internal stress B, has high density capable of expressing the inorganic thin film layer internal stress B, and serves as a gas barrier layer. It is preferably a layer having a function. The inorganic thin film layer having such a gas barrier property is not particularly limited as long as it is a layer of an inorganic material having a gas barrier property, and a known layer of an inorganic material having a gas barrier property can be appropriately used. Examples of inorganic materials include metal oxides, metal nitrides, metal oxynitrides, metal acid carbides and mixtures containing at least two of these. The inorganic thin film layer may be a single-layer film, or may be a multilayer film in which two or more layers including at least the above thin film layer are laminated.
 無機薄膜層は、より高度なガスバリア性(特に水蒸気透過防止性)を発揮しやすい観点
、ならびに、耐屈曲性、製造の容易性および低製造コストといった観点から、珪素原子(
Si)、酸素原子(O)、および炭素原子(C)を少なくとも含有することが好ましい。
The inorganic thin film layer is a silicon atom (from the viewpoint of easily exhibiting a higher gas barrier property (particularly water vapor permeation prevention property), and also from the viewpoint of bending resistance, ease of manufacturing, and low manufacturing cost.
It preferably contains at least Si), an oxygen atom (O), and a carbon atom (C).
 この場合、無機薄膜層は、一般式がSiOαβで表される化合物が主成分であること
ができる。式中、αおよびβは、それぞれ独立に、2未満の正の数を表す。ここで、「主
成分である」とは、材質の全成分の質量に対してその成分の含有量が50質量%以上、好
ましくは70質量%以上、より好ましくは90質量%以上であることをいう。無機薄膜層
は一般式SiOαβで表される1種類の化合物を含有してもよいし、一般式SiOα
βで表される2種以上の化合物を含有してもよい。前記一般式におけるαおよび/または
βは、無機薄膜層の膜厚方向において一定の値でもよいし、変化していてもよい。
In this case, the inorganic thin film layer can be mainly composed of a compound whose general formula is represented by SiO α C β. In the equation, α and β each independently represent a positive number less than 2. Here, "the main component" means that the content of the component is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more with respect to the mass of all the components of the material. Say. Inorganic thin layer may contain one kind of compound represented by the general formula SiO α C β, formula SiO alpha C
It may contain two or more compounds represented by β. Α and / or β in the above general formula may be constant values or may change in the film thickness direction of the inorganic thin film layer.
 さらに無機薄膜層は珪素原子、酸素原子および炭素原子以外の元素、例えば、水素原子
、窒素原子、ホウ素原子、アルミニウム原子、リン原子、イオウ原子、フッ素原子および
塩素原子のうちの一以上の原子を含有していてもよい。
Further, the inorganic thin film layer contains elements other than silicon atom, oxygen atom and carbon atom, for example, one or more atoms of hydrogen atom, nitrogen atom, boron atom, aluminum atom, phosphorus atom, sulfur atom, fluorine atom and chlorine atom. It may be contained.
 無機薄膜層は、無機薄膜層中の珪素原子(Si)に対する炭素原子(C)の平均原子数
比をC/Siで表した場合に、緻密性を高くし、微細な空隙やクラック等の欠陥を少なく
する観点から、C/Siの範囲は式(6):
 0.02<C/Si<0.50   (6)
を満たすことが好ましい。
 C/Siは、同様の観点から、0.03<C/Si<0.45の範囲にあるとより好ま
しく、0.04<C/Si<0.40の範囲にあるとさらに好ましく、0.05<C/S
i<0.35の範囲にあると特に好ましい。
When the average atomic number ratio of carbon atoms (C) to silicon atoms (Si) in the inorganic thin film layer is represented by C / Si, the inorganic thin film layer has high density and defects such as fine voids and cracks. From the viewpoint of reducing the amount of C / Si, the range of C / Si is the equation (6) :.
0.02 <C / Si <0.50 (6)
It is preferable to satisfy.
From the same viewpoint, C / Si is more preferably in the range of 0.03 <C / Si <0.45, further preferably in the range of 0.04 <C / Si <0.40, and 0. 05 <C / S
It is particularly preferable that it is in the range of i <0.35.
 また、無機薄膜層は、薄膜層中の珪素原子(Si)に対する酸素原子(O)の平均原子
数比をO/Siで表した場合に、緻密性を高くし、微細な空隙やクラック等の欠陥を少な
くする観点から、1.50<O/Si<1.98の範囲にあると好ましく、1.55<O
/Si<1.97の範囲にあるとより好ましく、1.60<O/Si<1.96の範囲に
あるとさらに好ましく、1.65<O/Si<1.95の範囲にあると特に好ましい。
Further, the inorganic thin film layer has high density when the average atomic number ratio of oxygen atoms (O) to silicon atoms (Si) in the thin film layer is represented by O / Si, and has fine voids, cracks, etc. From the viewpoint of reducing defects, it is preferably in the range of 1.50 <O / Si <1.98, and 1.55 <O.
It is more preferably in the range of / Si <1.97, even more preferably in the range of 1.60 <O / Si <1.96, and particularly preferably in the range of 1.65 <O / Si <1.95. preferable.
 なお、平均原子数比C/SiおよびO/Siは、下記条件にてXPSデプスプロファイ
ル測定を行い、得られた珪素原子、酸素原子および炭素原子の分布曲線から、それぞれの
原子の厚み方向における平均原子濃度を求めた後、平均原子数比C/SiおよびO/Si
として算出できる。
 <XPSデプスプロファイル測定>
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.027nm/秒
 スパッタ時間:0.5分
 X線光電子分光装置:アルバック・ファイ(株)製、機種名「Quantera SX
M」
 照射X線:単結晶分光AlKα(1486.6eV)
 X線のスポットおよびそのサイズ:100μm
 検出器:Pass Energy 69eV,Step size 0.125eV
 帯電補正:中和電子銃(1eV)、低速Arイオン銃(10V)
The average atomic number ratios C / Si and O / Si were measured in XPS depth profile under the following conditions, and from the obtained distribution curves of silicon atoms, oxygen atoms, and carbon atoms, the averages in the thickness direction of each atom were obtained. After determining the atomic concentration, the average atomic number ratio C / Si and O / Si
Can be calculated as.
<XPS depth profile measurement>
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide film equivalent): 0.027 nm / sec Sputtering time: 0.5 minutes X-ray photoelectron spectrometer: Made by ULVAC-PHI, Ltd., model name "Quantera SX"
M "
Irradiated X-ray: Single crystal spectroscopy AlKα (1486.6 eV)
X-ray spot and its size: 100 μm
Detector: Pass Energy 69eV, Step size 0.125eV
Charge correction: Neutralizing electron gun (1eV), low-speed Ar ion gun (10V)
 無機薄膜層の表面に対して赤外分光測定(ATR法)を行った場合、950~1050
cm-1に存在するピーク強度(I)と、1240~1290cm-1に存在するピー
ク強度(I2)との強度比(I/I)が式(7):
 0.01≦I/I<0.05     (7)
を満たすことが好ましい。
When infrared spectroscopy (ATR method) is performed on the surface of the inorganic thin film layer, it is 950 to 1050.
cm peak intensities present in the -1 and (I 1), the intensity ratio of the peak intensity existing in the 1240 ~ 1290cm -1 (I2) ( I 2 / I 1) has the formula (7):
0.01 ≤ I 2 / I 1 <0.05 (7)
It is preferable to satisfy.
 赤外分光測定(ATR法)から算出したピーク強度比I/Iは、無機薄膜層中のS
i-O-Siに対するSi-CHの相対的な割合を表すと考えられる。式(7)で表さ
れる関係を満たす無機薄膜層は、緻密性が高く、微細な空隙やクラック等の欠陥を低減し
やすいため、ガスバリア性および耐衝撃性を高めやすいと考えられる。ピーク強度比I
/Iは、無機薄膜層の緻密性を高く保持しやすい観点から、0.02≦I/I<0
.04の範囲がより好ましい。
The peak intensity ratio I 2 / I 1 calculated from infrared spectroscopy (ATR method) is S in the inorganic thin film layer.
It is considered to represent the relative ratio of Si—CH 3 to i—O—Si. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (7) has high density and easily reduces defects such as fine voids and cracks, and thus easily enhances gas barrier properties and impact resistance. Peak intensity ratio I 2
/ I 1 is 0.02 ≤ I 2 / I 1 <0 from the viewpoint of easily maintaining the high density of the inorganic thin film layer.
.. The range of 04 is more preferable.
 無機薄膜層が上記ピーク強度比I/Iの範囲を満たす場合、本発明の一態様において、積層フィルムが適度に滑りやすくなり、ブロッキングを低減しやすい。上記ピーク強度比I/Iが大きすぎると、Si-Cが多すぎることを意味し、この場合、屈曲性が悪く、かつ滑りにくくなる傾向がある。また、上記ピーク強度比I/Iが小さすぎると、Si-Cが少なすぎることにより屈曲性が低下する傾向がある。 When the inorganic thin film layer satisfies the peak intensity ratio I 2 / I 1 , in one aspect of the present invention, the laminated film becomes moderately slippery and blocking is easily reduced. If the peak intensity ratio I 2 / I 1 is too large, it means that there is too much SiC, and in this case, the flexibility tends to be poor and slipperiness tends to occur. Further, if the peak intensity ratio I 2 / I 1 is too small, the flexibility tends to decrease due to the amount of Si—C being too small.
 無機薄膜層の表面の赤外分光測定は、例えば、プリズムにゲルマニウム結晶を用いたA
TRアタッチメント(PIKE MIRacle)を備えたフーリエ変換型赤外分光光度
計(日本分光製、FT/IR-460Plus)によって測定できる。
For infrared spectroscopic measurement of the surface of the inorganic thin film layer, for example, A using a germanium crystal for the prism A
It can be measured by a Fourier transform infrared spectrophotometer (FT / IR-460Plus manufactured by JASCO Corporation) equipped with a TR attachment (PIKE MIRacle).
 無機薄膜層の表面に対して赤外分光測定(ATR法)を行った場合、950~1050
cm-1に存在するピーク強度(I)と、770~830cm-1に存在するピーク強
度(I)との強度比(I/I)が式(87):
 0.25≦I/I≦0.50     (8)
を満たすことが好ましい。
When infrared spectroscopy (ATR method) is performed on the surface of the inorganic thin film layer, it is 950 to 1050.
intensity ratio of the peaks present in cm -1 intensity (I 1), and a peak intensity existing in the 770 ~ 830cm -1 (I 3) (I 3 / I 1) has the formula (87):
0.25 ≤ I 3 / I 1 ≤ 0.50 (8)
It is preferable to satisfy.
 赤外分光測定(ATR法)から算出したピーク強度比I/Iは、無機薄膜層中のS
i-O-Siに対するSi-CやSi-O等の相対的な割合を表すと考えられる。式(8
)で表される関係を満たす無機薄膜層は、高い緻密性を保持しつつ、炭素が導入されるこ
とから耐屈曲性を高めやすく、かつ耐衝撃性も高めやすいと考えられる。ピーク強度比I
/Iは、無機薄膜層の緻密性と耐屈曲性のバランスを保つ観点から、0.25≦I
/I≦0.50の範囲が好ましく、0.30≦I/I≦0.45の範囲がより好ま
しい。
The peak intensity ratio I 3 / I 1 calculated from infrared spectroscopy (ATR method) is S in the inorganic thin film layer.
It is considered to represent the relative ratio of Si-C, Si-O, etc. to i-O-Si. Equation (8
It is considered that the inorganic thin film layer satisfying the relationship represented by) is easy to improve the bending resistance and the impact resistance because carbon is introduced while maintaining high density. Peak intensity ratio I
3 / I 1 is 0.25 ≤ I 3 from the viewpoint of maintaining a balance between the compactness and bending resistance of the inorganic thin film layer.
The range of / I 1 ≤ 0.50 is preferable, and the range of 0.30 ≤ I 3 / I 1 ≤ 0.45 is more preferable.
 前記薄膜層は、薄膜層表面に対して赤外分光測定(ATR法)を行った場合、770~
830cm-1に存在するピーク強度(I)と、870~910cm-1に存在するピ
ーク強度(I)との強度比が式(9):
 0.70≦I/I<1.00     (9)
を満たすことが好ましい。
The thin film layer is 770 to 770 to the surface of the thin film layer when infrared spectroscopic measurement (ATR method) is performed.
And the peak intensity (I 3) present in the 830 cm -1, the intensity ratio expression between the peak present in the 870 ~ 910 cm -1 intensity (I 4) (9):
0.70 ≤ I 4 / I 3 <1.00 (9)
It is preferable to satisfy.
 赤外分光測定(ATR法)から算出したピーク強度比I/Iは、無機薄膜層中のS
i-Cに関連するピーク同士の比率を表すと考えられる。式(9)で表される関係を満た
す無機薄膜層は、高い緻密性を保持しつつ、炭素が導入されることから耐屈曲性を高めや
すく、かつ耐衝撃性も高めやすいと考えられる。ピーク強度比I/Iの範囲について
、無機薄膜層の緻密性と耐屈曲性のバランスを保つ観点から、0.70≦I/I<1
.00の範囲が好ましく、0.80≦I/I<0.95の範囲がより好ましい。
The peak intensity ratio I 4 / I 3 calculated from infrared spectroscopy (ATR method) is S in the inorganic thin film layer.
It is considered to represent the ratio of peaks related to iC. It is considered that the inorganic thin film layer satisfying the relationship represented by the formula (9) is likely to have high bending resistance and impact resistance because carbon is introduced while maintaining high density. Regarding the range of peak intensity ratio I 4 / I 3 , 0.70 ≤ I 4 / I 3 <1 from the viewpoint of maintaining a balance between the compactness and bending resistance of the inorganic thin film layer.
.. The range of 00 is preferable, and the range of 0.80 ≦ I 4 / I 3 <0.95 is more preferable.
 無機薄膜層の厚みは、用途に応じて適宜調整してよいが、好ましくは5~3000nm
、より好ましくは10~2000nm、さらに好ましくは50~1000nmである。無
機薄膜層の厚みは、膜厚計によって測定することができる。厚みが上記の下限値以上であ
ると、ガスバリア性が向上しやすい。また、厚みが上記の上限値以下であると、屈曲性が
向上しやすい。特に、後述するように、グロー放電プラズマを用いて、プラズマCVD法
により薄膜層を形成する場合には、基材を通して放電しつつ前記無機薄膜層を形成するこ
とから、10~2000nmであることがより好ましく、50~1000μmであること
がさらに好ましい。
The thickness of the inorganic thin film layer may be appropriately adjusted depending on the application, but is preferably 5 to 3000 nm.
, More preferably 10 to 2000 nm, still more preferably 50 to 1000 nm. The thickness of the inorganic thin film layer can be measured by a film thickness meter. When the thickness is at least the above lower limit value, the gas barrier property is likely to be improved. Further, when the thickness is not more than the above upper limit value, the flexibility is likely to be improved. In particular, as will be described later, when a thin film layer is formed by a plasma CVD method using glow discharge plasma, the thickness may be 10 to 2000 nm because the inorganic thin film layer is formed while discharging through the base material. It is more preferably 50 to 1000 μm.
 無機薄膜層は、好ましくは1.8g/cm以上の高い平均密度を有し得る。ここで、
無機薄膜層の「平均密度」は、ラザフォード後方散乱法(Rutherford Bac
kscattering Spectrometry:RBS)で求めた珪素の原子数、
炭素の原子数、酸素の原子数と、水素前方散乱法(Hydrogen Forward 
scattering Spectrometry:HFS)で求めた水素の原子数とか
ら測定範囲の無機薄膜層の重さを計算し、測定範囲の無機薄膜層の体積(イオンビームの
照射面積と膜厚との積)で除することで求められる。無機薄膜層の平均密度が上記下限値
以上であると、緻密性が高く、微細な空隙やクラック等の欠陥を低減しやすい構造となる
ため好ましい。無機薄膜層が珪素原子、酸素原子、炭素原子および水素原子からなる本発
明の好ましい一態様において、無機薄膜層の平均密度が2.22g/cm未満であるこ
とが好ましい。
The inorganic thin film layer can preferably have a high average density of 1.8 g / cm 3 or more. here,
The "average density" of the inorganic thin film layer is the Rutherford Backscattering method (Rutherford Bac).
The number of silicon atoms determined by kscattering spectroscopy (RBS),
The number of carbon atoms, the number of oxygen atoms, and the hydrogen forward scattering method (Hydrogen Forward)
Calculate the weight of the inorganic thin film layer in the measurement range from the number of hydrogen atoms obtained by scattering spectrum (HFS), and divide by the volume of the inorganic thin film layer in the measurement range (product of ion beam irradiation area and film thickness). It is required by doing. When the average density of the inorganic thin film layer is at least the above lower limit value, the structure is high in density and it is easy to reduce defects such as fine voids and cracks, which is preferable. In a preferred embodiment of the present invention in which the inorganic thin film layer is composed of silicon atoms, oxygen atoms, carbon atoms and hydrogen atoms, the average density of the inorganic thin film layers is preferably less than 2.22 g / cm 3.
 無機薄膜層が少なくとも珪素原子(Si)、酸素原子(O)、および炭素原子(C)を
含有する本発明の好ましい一態様において、該無機薄膜層の膜厚方向における該無機薄膜
層表面からの距離と、各距離における珪素原子の原子比との関係を示す曲線を珪素分布曲
線という。ここで、無機薄膜層表面とは、本発明の積層フィルムの表面となる面を指す。
同様に、膜厚方向における該無機薄膜層表面からの距離と、各距離における酸素原子の原
子比との関係を示す曲線を酸素分布曲線という。また、膜厚方向における該無機薄膜層表
面からの距離と、各距離における炭素原子の原子比との関係を示す曲線を炭素分布曲線と
いう。珪素原子の原子比、酸素原子の原子比および炭素原子の原子比とは、無機薄膜層に
含まれる珪素原子、酸素原子および炭素原子の合計数に対するそれぞれの原子数の比率を
意味する。
In a preferred embodiment of the present invention in which the inorganic thin film layer contains at least silicon atoms (Si), oxygen atoms (O), and carbon atoms (C), from the surface of the inorganic thin film layer in the film thickness direction of the inorganic thin film layer. A curve showing the relationship between the distance and the atomic ratio of silicon atoms at each distance is called a silicon distribution curve. Here, the surface of the inorganic thin film layer refers to a surface that becomes the surface of the laminated film of the present invention.
Similarly, a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic ratio of oxygen atoms at each distance is called an oxygen distribution curve. Further, a curve showing the relationship between the distance from the surface of the inorganic thin film layer in the film thickness direction and the atomic ratio of carbon atoms at each distance is called a carbon distribution curve. The atomic ratio of silicon atom, the atomic ratio of oxygen atom, and the atomic ratio of carbon atom mean the ratio of the number of atoms to the total number of silicon atom, oxygen atom, and carbon atom contained in the inorganic thin film layer.
 屈曲によるガスバリア性の低下を抑制しやすい観点からは、前記無機薄膜層に含まれる
珪素原子、酸素原子および炭素原子の合計数に対する炭素原子の原子数比が、無機薄膜層
の膜厚方向における90%以上の領域において連続的に変化することが好ましい。ここで
、上記炭素原子の原子数比が、無機薄膜層の膜厚方向において連続的に変化するとは、例
えば上記の炭素分布曲線において、炭素の原子比が不連続に変化する部分を含まないこと
を表す。
From the viewpoint of easily suppressing the deterioration of the gas barrier property due to bending, the atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer is 90 in the film thickness direction of the inorganic thin film layer. It is preferable that the change is continuous in the region of% or more. Here, the fact that the atomic number ratio of the carbon atoms changes continuously in the film thickness direction of the inorganic thin film layer does not include, for example, a portion of the carbon distribution curve in which the atomic ratio of carbon changes discontinuously. Represents.
 前記無機薄膜層の炭素分布曲線が8つ以上の極値を有することが、積層フィルムの屈曲
性およびガスバリア性の観点から好ましい。
It is preferable that the carbon distribution curve of the inorganic thin film layer has eight or more extreme values from the viewpoint of flexibility and gas barrier property of the laminated film.
 前記無機薄膜層の珪素分布曲線、酸素分布曲線および炭素分布曲線が、下記の条件(i
)および(ii)を満たすことが、積層フィルムの屈曲性およびガスバリア性の観点から
好ましい。
(i)珪素の原子数比、酸素の原子数比および炭素の原子数比が、前記無機薄膜層の膜厚
方向における90%以上の領域において、下記式(10)で表される条件を満たす、およ
び、
 (酸素の原子数比)>(珪素の原子数比)>(炭素の原子数比)   (10)
(ii)前記炭素分布曲線が好ましくは少なくとも1つ、より好ましくは8つ以上の極値
を有する。
The silicon distribution curve, oxygen distribution curve, and carbon distribution curve of the inorganic thin film layer are subject to the following conditions (i).
) And (ii) are preferable from the viewpoint of flexibility and gas barrier property of the laminated film.
(I) The condition represented by the following formula (10) is satisfied in a region where the atomic number ratio of silicon, the atomic number ratio of oxygen, and the atomic number ratio of carbon are 90% or more in the film thickness direction of the inorganic thin film layer. ,and,
(Atomic number ratio of oxygen)> (Atomic number ratio of silicon)> (Atomic number ratio of carbon) (10)
(Ii) The carbon distribution curve preferably has at least one, more preferably eight or more extrema.
 無機薄膜層の炭素分布曲線は、実質的に連続であることが好ましい。炭素分布曲線が実
質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まない
ことである。具体的には、膜厚方向における前記薄膜層表面からの距離をx[nm]、炭
素の原子比をCとしたときに、式(11):
    |dC/dx|≦0.01     (11)
を満たすことが好ましい。
The carbon distribution curve of the inorganic thin film layer is preferably substantially continuous. The fact that the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, when the distance from the surface of the thin film layer in the film thickness direction is x [nm] and the atomic ratio of carbon is C, the formula (11):
| DC / dx | ≤0.01 (11)
It is preferable to satisfy.
 また、無機薄膜層の炭素分布曲線は少なくとも1つの極値を有することが好ましく、8
つ以上の極値を有することがより好ましい。ここでいう極値は、膜厚方向における無機薄
膜層表面からの距離に対する各元素の原子比の極大値または極小値である。極値は、膜厚
方向における無機薄膜層表面からの距離を変化させたときに、元素の原子比が増加から減
少に転じる点、または元素の原子比が減少から増加に転じる点での原子比の値である。極
値は、例えば、膜厚方向において複数の測定位置において、測定された原子比に基づいて
求めることができる。原子比の測定位置は、膜厚方向の間隔が、例えば20nm以下に設
定される。膜厚方向において極値を示す位置は、各測定位置での測定結果を含んだ離散的
なデータ群について、例えば互いに異なる3以上の測定位置での測定結果を比較し、測定
結果が増加から減少に転じる位置または減少から増加に転じる位置を求めることによって
得ることができる。極値を示す位置は、例えば、前記の離散的なデータ群から求めた近似
曲線を微分することによって、得ることもできる。極値を示す位置から、原子比が単調増
加または単調減少する区間が例えば20nm以上である場合に、極値を示す位置から膜厚
方向に20nmだけ移動した位置での原子比と、極値との差の絶対値は例えば0.03以
上である。
Further, the carbon distribution curve of the inorganic thin film layer preferably has at least one extremum, and 8
It is more preferable to have one or more extrema. The extreme value here is the maximum value or the minimum value of the atomic ratio of each element with respect to the distance from the surface of the inorganic thin film layer in the film thickness direction. The extreme value is the atomic ratio at the point where the atomic ratio of the element changes from increasing to decreasing or the atomic ratio of the element changes from decreasing to increasing when the distance from the surface of the inorganic thin film layer in the film thickness direction is changed. Is the value of. The extremum can be determined, for example, based on the atomic ratios measured at a plurality of measurement positions in the film thickness direction. The atomic ratio measurement position is set so that the interval in the film thickness direction is, for example, 20 nm or less. For the positions showing extreme values in the film thickness direction, for discrete data groups including the measurement results at each measurement position, for example, the measurement results at three or more different measurement positions are compared, and the measurement results increase or decrease. It can be obtained by finding the position where it turns to or the position where it turns from decrease to increase. The position showing the extremum can also be obtained, for example, by differentiating the approximate curve obtained from the discrete data group. When the interval where the atomic ratio increases or decreases monotonically from the position showing the extreme value is, for example, 20 nm or more, the atomic ratio at the position moved by 20 nm in the film thickness direction from the position showing the extreme value, and the extreme value The absolute value of the difference is, for example, 0.03 or more.
 前記のように炭素分布曲線が好ましくは少なくとも1つ、より好ましくは8つ以上の極
値を有する条件を満たすように形成された無機薄膜層は、屈曲前のガス透過率に対する屈
曲後のガス透過率の増加量が、前記条件を満たさない場合と比較して少なくなる。すなわ
ち、前記条件を満たすことにより、屈曲によるガスバリア性の低下を抑制する効果が得ら
れる。炭素分布曲線の極値の数が2つ以上になるように前記薄膜層を形成すると、炭素分
布曲線の極値の数が1つである場合と比較して、前記の増加量が少なくなる。また、炭素
分布曲線の極値の数が3つ以上になるように前記薄膜層を形成すると、炭素分布曲線の極
値の数が2つである場合と比較して、前記の増加量が少なくなる。炭素分布曲線が2つ以
上の極値を有する場合に、第1の極値を示す位置の膜厚方向における前記薄膜層表面から
の距離と、第1の極値と隣接する第2の極値を示す位置の膜厚方向における前記薄膜層表
面からの距離との差の絶対値が、1nm以上200nm以下の範囲内であることが好まし
く、1nm以上100nm以下の範囲内であることがさらに好ましい。
As described above, the inorganic thin film layer formed so as to satisfy the condition that the carbon distribution curve preferably has at least one, more preferably eight or more extreme values has gas permeation after bending with respect to the gas permeability before bending. The amount of increase in the rate is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained. When the thin film layer is formed so that the number of extreme values of the carbon distribution curve is two or more, the amount of increase is smaller than that in the case where the number of extreme values of the carbon distribution curve is one. Further, when the thin film layer is formed so that the number of extreme values of the carbon distribution curve is three or more, the amount of increase is small as compared with the case where the number of extreme values of the carbon distribution curve is two. Become. When the carbon distribution curve has two or more extreme values, the distance from the thin film layer surface in the film thickness direction at the position showing the first extreme value and the second extreme value adjacent to the first extreme value. The absolute value of the difference from the distance from the surface of the thin film layer in the film thickness direction at the position indicated by is preferably in the range of 1 nm or more and 200 nm or less, and more preferably in the range of 1 nm or more and 100 nm or less.
 また、前記無機薄膜層の炭素分布曲線における炭素の原子比の最大値および最小値の差
の絶対値が0.01より大きいことが好ましい。前記条件を満たすように形成された無機
薄膜層は、屈曲前のガス透過率に対する屈曲後のガス透過率の増加量が、前記条件を満た
さない場合と比較して少なくなる。すなわち、前記条件を満たすことにより、屈曲による
ガスバリア性の低下を抑制する効果が得られる。炭素の原子比の最大値および最小値の差
の絶対値が0.02以上であると前記の効果が高くなり、0.03以上であると前記の効
果がさらに高くなる。
Further, it is preferable that the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon in the carbon distribution curve of the inorganic thin film layer is larger than 0.01. In the inorganic thin film layer formed so as to satisfy the above conditions, the amount of increase in the gas permeability after bending with respect to the gas permeability before bending is smaller than that in the case where the above conditions are not satisfied. That is, by satisfying the above conditions, an effect of suppressing a decrease in gas barrier property due to bending can be obtained. When the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of carbon is 0.02 or more, the above effect is high, and when it is 0.03 or more, the above effect is further high.
 珪素分布曲線における珪素の原子比の最大値および最小値の差の絶対値が低くなるほど
、無機薄膜層のガスバリア性が向上する傾向がある。このような観点で、前記の絶対値は
、0.05未満(5at%未満)であることが好ましく、0.04未満(4at%未満)
であることがより好ましく、0.03未満(3at%未満)であることが特に好ましい。
The lower the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve, the better the gas barrier property of the inorganic thin film layer tends to be. From this point of view, the absolute value is preferably less than 0.05 (less than 5 at%) and less than 0.04 (less than 4 at%).
Is more preferable, and less than 0.03 (less than 3 at%) is particularly preferable.
 また、酸素炭素分布曲線において、各距離における酸素原子の原子比および炭素原子の
原子比の合計を「合計原子比」としたときに、合計原子比の最大値および最小値の差の絶
対値が低くなるほど、前記薄膜層のガスバリア性が向上する傾向がある。このような観点
で、前記の合計原子比は、0.05未満であることが好ましく、0.04未満であること
がより好ましく、0.03未満であることが特に好ましい。
In addition, in the oxygen carbon distribution curve, when the sum of the atomic ratios of oxygen atoms and the atomic ratios of carbon atoms at each distance is taken as the "total atomic ratio", the absolute value of the difference between the maximum and minimum values of the total atomic ratio The lower the value, the better the gas barrier property of the thin film layer tends to be. From this point of view, the total atomic ratio is preferably less than 0.05, more preferably less than 0.04, and particularly preferably less than 0.03.
 前記無機薄膜層面内方向において、無機薄膜層を実質的に一様な組成にすると、無機薄
膜層のガスバリア性を均一にするとともに向上させることができる。実質的に一様な組成
であるとは、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線において、前記無機薄
膜層表面の任意の2点で、それぞれの膜厚方向に存在する極値の数が同じであり、それぞ
れの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同
じであるかもしくは0.05以内の差であることをいう。
When the inorganic thin film layer has a substantially uniform composition in the in-plane direction of the inorganic thin film layer, the gas barrier property of the inorganic thin film layer can be made uniform and improved. The substantially uniform composition means the number of extreme values existing in the film thickness direction at any two points on the surface of the inorganic thin film layer in the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve. Is the same, and the absolute value of the difference between the maximum and minimum values of the atomic ratio of carbon in each carbon distribution curve is the same as or within 0.05.
 前記条件を満たすように形成された無機薄膜層は、例えば有機EL素子を用いたフレキ
シブル電子デバイスなどに要求されるガスバリア性を発現することができる。
The inorganic thin film layer formed so as to satisfy the above conditions can exhibit the gas barrier property required for, for example, a flexible electronic device using an organic EL element.
 無機薄膜層が少なくとも珪素原子、酸素原子、および炭素原子を含有する本発明の好ま
しい一態様において、このような原子を含む無機材料の層は、緻密性を高めやすく、微細
な空隙やクラック等の欠陥を低減しやすい観点から、化学気相成長法(CVD法)で形成
されることが好ましく、中でも、グロー放電プラズマなどを用いたプラズマ化学気相成長
法(PECVD法)で形成されることがより好ましい。
In a preferred embodiment of the present invention in which the inorganic thin film layer contains at least silicon atoms, oxygen atoms, and carbon atoms, the layer of the inorganic material containing such atoms tends to increase the denseness and has fine voids, cracks, and the like. From the viewpoint of easily reducing defects, it is preferably formed by a chemical vapor deposition method (CVD method), and above all, it is formed by a plasma chemical vapor deposition method (PECVD method) using glow discharge plasma or the like. More preferred.
 化学気相成長法において使用する原料ガスの例は、珪素原子および炭素原子を含有する
有機ケイ素化合物である。このような有機ケイ素化合物の例は、ヘキサメチルジシロキサ
ン、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリ
メチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラ
ン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビ
ニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリ
メトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンであ
る。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られる無機薄膜層
のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テト
ラメチルジシロキサンが好ましい。原料ガスとして、これらの有機ケイ素化合物の1種を
単独で使用してもよいし、2種以上を組合せて使用してもよい。
An example of a raw material gas used in the chemical vapor deposition method is an organosilicon compound containing a silicon atom and a carbon atom. Examples of such organic silicon compounds are hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane. , Ppropylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, tetraethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoint of the handleability of the compound and the gas barrier property of the obtained inorganic thin film layer. As the raw material gas, one kind of these organosilicon compounds may be used alone, or two or more kinds may be used in combination.
 また、上記原料ガスに対して、上記原料ガスと反応して酸化物、窒化物等の無機化合物
を形成可能とする反応ガスを適宜選択して混合することができる。酸化物を形成するため
の反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成
するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これら
の反応ガスは、1種を単独でまたは2種以上を組合せて使用することができ、例えば酸窒
化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反
応ガスとを組合せて使用することができる。原料ガスと反応ガスの流量比は、成膜する無
機材料の原子比に応じて適宜調節できる。
Further, a reaction gas capable of reacting with the raw material gas to form an inorganic compound such as an oxide or a nitride can be appropriately selected and mixed with the raw material gas. As the reaction gas for forming the oxide, for example, oxygen or ozone can be used. Further, as the reaction gas for forming the nitride, for example, nitrogen or ammonia can be used. These reaction gases can be used alone or in combination of two or more. For example, when forming an oxynitride, the reaction gas for forming an oxide and the nitride are formed. Can be used in combination with a reaction gas for The flow rate ratio of the raw material gas and the reaction gas can be appropriately adjusted according to the atomic ratio of the inorganic material to be formed.
 上記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用
いてもよい。さらに、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用
いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用
することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用
いることができる。
If necessary, a carrier gas may be used to supply the raw material gas into the vacuum chamber. Further, a discharge gas may be used, if necessary, in order to generate a plasma discharge. As such a carrier gas and a gas for discharge, known ones can be used as appropriate, and for example, a rare gas such as helium, argon, neon, xenon; hydrogen can be used.
 また、真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整する
ことができるが、0.5Pa~50Paの範囲とすることが好ましい。
The pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of raw material gas and the like, but is preferably in the range of 0.5 Pa to 50 Pa.
 例えば、成膜時の真空度や成膜時の基材温度、成膜電力、電極内の磁場を制御すること
により、無機薄膜層内部応力Bを制御することができる。例えば、真空度を低くしたり、
成膜時の基材温度を高めたり、成膜電力を高めたり、磁場密度を上げることにより、無機
薄膜層内部応力Bは高くなる傾向にある。一方、真空度を高くしたり、成膜時の基材温度
を低くしたり、成膜電力を低くしたり、磁場密度を下げることにより、無機薄膜層内部応
力Bは低くなる傾向にある。
For example, the internal stress B of the inorganic thin film layer can be controlled by controlling the degree of vacuum at the time of film formation, the temperature of the base material at the time of film formation, the film formation power, and the magnetic field in the electrode. For example, lowering the degree of vacuum,
The internal stress B of the inorganic thin film layer tends to increase by increasing the substrate temperature at the time of film formation, increasing the film forming power, and increasing the magnetic field density. On the other hand, the internal stress B of the inorganic thin film layer tends to be lowered by increasing the degree of vacuum, lowering the substrate temperature at the time of film formation, lowering the film forming power, or lowering the magnetic flux density.
 本発明の積層フィルムの一態様における構成を図1に基づいて説明すると、本発明
の一態様の積層フィルム4は、基材層1、有機層2および無機薄膜層3をこの順に積層してなる。
 本発明の積層フィルムは、基材層、有機層および無機薄膜層をこの順に有していれば、本発明の効果に影響を及ぼさない限りにおいて、各層の間や最外層に他の層を有していてよいが、本発明の一態様においては、前記基材層、前記有機層および前記無機薄膜層はこの順に隣接して存在する。他の層としては、例えば、さらなる有機層および無機薄膜層、保護層、易滑層、ハードコート層、透明導電膜層、カラーフィルター層、易接着層、カール調整層、応力緩和層、耐熱層、耐擦傷層、耐押し込み層等が挙げられる。
The configuration of the laminated film of the present invention in one aspect will be described with reference to FIG. 1. The laminated film 4 of the one aspect of the present invention is formed by laminating a base material layer 1, an organic layer 2, and an inorganic thin film layer 3 in this order. ..
If the laminated film of the present invention has a base material layer, an organic layer, and an inorganic thin film layer in this order, it has other layers between each layer and in the outermost layer as long as it does not affect the effect of the present invention. However, in one aspect of the present invention, the base material layer, the organic layer, and the inorganic thin film layer are adjacent to each other in this order. Other layers include, for example, additional organic and inorganic thin film layers, protective layers, easy-to-slip layers, hard coat layers, transparent conductive film layers, color filter layers, easy-adhesion layers, curl adjusting layers, stress relaxation layers, and heat-resistant layers. , Scratch resistant layer, indentation resistant layer and the like.
 他の層を含む積層フィルムとして、例えば、本発明の別の一態様である図2に示される
積層フィルム4においては、基材層1の一方の面に第1有機層2-1および無機薄膜層3
が積層され、基材層1の第1有機層2-1とは逆の面に第2有機層2-2が積層されてい
る。図2に記載される積層フィルム4において、本発明の一態様における有機層内部応力Aを測定する際の積層体は、基材層1と第1有機層2-1とからなる積層体である。また、本発明の一態様における無機薄膜層内部応力Bを測定する際の積層体は、基材層1と、該基材層1上に直接形成された無機薄膜層3とからなる積層体である。
As a laminated film containing another layer, for example, in the laminated film 4 shown in FIG. 2, which is another aspect of the present invention, the first organic layer 2-1 and the inorganic thin film are formed on one surface of the base material layer 1. Layer 3
Is laminated, and the second organic layer 2-2 is laminated on the surface of the base material layer 1 opposite to the first organic layer 2-1. In the laminated film 4 shown in FIG. 2, the laminated body for measuring the internal stress A of the organic layer in one aspect of the present invention is a laminated body composed of the base material layer 1 and the first organic layer 2-1. .. Further, the laminate for measuring the internal stress B of the inorganic thin film layer in one aspect of the present invention is a laminate composed of the base material layer 1 and the inorganic thin film layer 3 directly formed on the base material layer 1. is there.
 さらに、図3に示す本発明の一態様の積層フィルム4は、可撓性基材1-1の両面にプライマー層1-2を有する基材層1を含む。該積層フィルム4において、一方のプライマー層1-2上には第1有機層2-1が積層されており、無機薄膜層3が前記第1有機層2-1のプライマー層1-2とは逆の面側に形成されている。また、可撓性基材1-1の第1有機層2-1が積層されたプライマー層1-2とは反対側のプライマー層1-2の可撓性基材1-1とは反対側の面に第2有機層2-2が積層されている。図3に記載される積層フィルム4において、本発明の一態様における有機層内部応力Aを測定する際の積層体は、可撓性基材1-1とその両側に積層されたプライマー層1-2とからなる基材層1と、第1有機層2-1とからなる積層体である。また、本発明の一態様における無機薄膜層内部応力Bを測定する際の積層体は、可撓性基材1-1とその両側に積層されたプライマー層1-2とからなる基材層1と、該基材層1上に直接形成された無機薄膜層3とからなる積層体である。 Further, the laminated film 4 of one aspect of the present invention shown in FIG. 3 includes a base material layer 1 having primer layers 1-2 on both sides of the flexible base material 1-1. In the laminated film 4, the first organic layer 2-1 is laminated on one of the primer layers 1-2, and the inorganic thin film layer 3 is different from the primer layer 1-2 of the first organic layer 2-1. It is formed on the opposite side. Further, the side of the primer layer 1-2 opposite to the primer layer 1-2 on which the first organic layer 2-1 of the flexible base material 1-1 is laminated is opposite to the flexible base material 1-1. The second organic layer 2-2 is laminated on the surface of the surface. In the laminated film 4 shown in FIG. 3, the laminated body for measuring the internal stress A of the organic layer in one aspect of the present invention is a flexible base material 1-1 and a primer layer 1-laminated on both sides thereof. It is a laminate composed of a base material layer 1 composed of 2 and a first organic layer 2-1. Further, the laminate for measuring the internal stress B of the inorganic thin film layer in one aspect of the present invention is a substrate layer 1 composed of a flexible substrate 1-1 and primer layers 1-2 laminated on both sides thereof. And an inorganic thin film layer 3 directly formed on the base material layer 1.
[積層フィルムの製造方法]
 本発明の積層フィルムの製造方法は、各層を上記の順に形成できれば、特に限定されないが、その例としては、可撓性基材を含む基材層の一方の面に有機層を形成した後、該有機層上に無機薄膜層を形成する方法が挙げられる。基材層がプライマー層を有する場合、可撓性基材の一方の面にプライマー層を形成した後、該プライマー層上に有機層を形成することができる。また、本発明の一態様の積層フィルムが、前記基材層の前記有機層(第1有機層)とは反対側の面に有機層(第2有機層)をさらに含む場合、上記方法と同様に基材層の第1有機層とは反対側の面に第2有機層を形成することができる。なお、本発明の一態様の積層フィルムは、各層を別々に作製した後、これらを貼り合わせて製造してもよい。
[Manufacturing method of laminated film]
The method for producing a laminated film of the present invention is not particularly limited as long as each layer can be formed in the above order, but as an example thereof, after forming an organic layer on one surface of a base material layer containing a flexible base material, Examples thereof include a method of forming an inorganic thin film layer on the organic layer. When the base material layer has a primer layer, an organic layer can be formed on the primer layer after forming the primer layer on one surface of the flexible base material. Further, when the laminated film of one aspect of the present invention further contains an organic layer (second organic layer) on the surface of the base material layer opposite to the organic layer (first organic layer), the same method as described above. A second organic layer can be formed on the surface of the base material layer opposite to the first organic layer. The laminated film according to one aspect of the present invention may be produced by separately producing each layer and then laminating them.
 無機薄膜層の緻密性を高めやすく、微細な空隙やクラック等の欠陥を低減しやすい観点
からは、無機薄膜層は、上述したように、有機層上にグロー放電プラズマを用いて、CV
D法等の公知の真空成膜手法で形成することが好ましい。無機薄膜層は、連続的な成膜プ
ロセスで形成させることが好ましく、例えば、長尺の積層体を連続的に搬送しながら、そ
の上に連続的に無機薄膜層を形成させることがより好ましい。具体的には、該積層体を送
り出しロールから巻き取りロールへ搬送しながら無機薄膜層を形成させてよい。その後、
送り出しロールおよび巻き取りロールを反転させて、逆向きに該積層体を搬送させること
で、さらに無機薄膜層を形成させてもよい。
From the viewpoint that the density of the inorganic thin film layer can be easily increased and defects such as fine voids and cracks can be easily reduced, the inorganic thin film layer uses glow discharge plasma on the organic layer as described above to form a CV.
It is preferably formed by a known vacuum film forming method such as the D method. The inorganic thin film layer is preferably formed by a continuous film forming process, and more preferably, for example, the inorganic thin film layer is continuously formed on the long laminate while being continuously conveyed. Specifically, the inorganic thin film layer may be formed while transporting the laminated body from the feeding roll to the winding roll. afterwards,
The inorganic thin film layer may be further formed by inverting the feeding roll and the winding roll and transporting the laminated body in the opposite directions.
 本発明の一態様の積層フィルムは、積層フィルムの反り抑制効果に優れ、高いガスバリア性を有するため、例えば、高いガスバリア性が要求される電子デバイス用途に好適である。電子デバイスとしては、例えば、高いガスバリア性が要求される液晶表示素子、太陽電池、有機ELディスプレイ、有機ELマイクロディスプレイ、有機EL照明および電子ペーパー等のフレキシブル電子デバイス(フレキシブルディスプレイ)が挙げられる。本発明の一態様の積層フィルムは、該フレキシブル電子デバイスのフレキシブル基板として好適に使用できる。該積層フィルムをフレキシブル基板として用いる場合、積層フィルム上に直接素子を形成してもよいし、また別の基板上に素子を形成させた後で、該積層フィルムを接着層や粘着層を介して上から重ね合せてもよい。 The laminated film of one aspect of the present invention is excellent in the warp suppressing effect of the laminated film and has a high gas barrier property, and is therefore suitable for, for example, an electronic device application requiring a high gas barrier property. Examples of the electronic device include a liquid crystal display element, a solar cell, an organic EL display, an organic EL microdisplay, an organic EL lighting, and a flexible electronic device (flexible display) such as electronic paper, which are required to have high gas barrier properties. The laminated film of one aspect of the present invention can be suitably used as a flexible substrate of the flexible electronic device. When the laminated film is used as a flexible substrate, the element may be formed directly on the laminated film, or after the element is formed on another substrate, the laminated film is passed through an adhesive layer or an adhesive layer. It may be overlapped from above.
 以下、実施例により本発明の一態様をさらに詳細に説明する。例中の「%」および「部」は、特
記しない限り、質量%および質量部である。
Hereinafter, one aspect of the present invention will be described in more detail with reference to Examples. Unless otherwise specified, "%" and "part" in the example are mass% and parts by mass.
1.実施例1
 基材として、可撓性基材の両面にプライマー層を有する二軸延伸ポリエチレンナフタレ
ートフィルム(帝人フィルムソリューション(株)製、Q65HWA、厚み100μm、
幅350mm)の片面に、有機層を形成するための有機層形成用組成物として、コーティ
ング組成物1(日本化工塗料(株)、TOMAX(登録商標)FA-3376-2)をグ
ラビアコーティング法にて塗布した。該塗膜を100℃で1分間乾燥させた後、高圧水銀
ランプを用いて、積算光量500mJ/cmの条件で紫外線照射し、厚み4μmの有機
層を積層させて、有機層付き基材を得た。
1. 1. Example 1
As a base material, a biaxially stretched polyethylene naphthalate film having primer layers on both sides of a flexible base material (manufactured by Teijin Film Solution Co., Ltd., Q65HWA, thickness 100 μm,
Coating composition 1 (Nippon Kako Paint Co., Ltd., TOMAX (registered trademark) FA-3376-2) was applied to the gravure coating method as an organic layer forming composition for forming an organic layer on one side of a width of 350 mm). And applied. After the coating film is dried at 100 ° C. for 1 minute, it is irradiated with ultraviolet rays under the condition of an integrated light amount of 500 mJ / cm 2 using a high-pressure mercury lamp, and an organic layer having a thickness of 4 μm is laminated to form a substrate with an organic layer. Obtained.
 得られた有機層付き基材の有機層側の表面に、以下に記載する無機薄膜層の製造方法に
従い、無機薄膜層(厚み400nm)を積層させて、基材層/有機層/無機薄膜層からな
る積層フィルム1を得た。
An inorganic thin film layer (thickness 400 nm) is laminated on the surface of the obtained base material with an organic layer on the organic layer side according to the method for producing an inorganic thin film layer described below, and the base material layer / organic layer / inorganic thin film layer is laminated. A laminated film 1 made of the above was obtained.
 なお、積層フィルム1の基材層、有機層および無機薄膜層の各膜厚は、膜厚計〔(株)
小坂研究所製:サーフコーダET200)を用いて、無成膜部と成膜部の段差測定を行い
、各層の膜厚(T)を求めた。
The film thicknesses of the base material layer, the organic layer, and the inorganic thin film layer of the laminated film 1 are measured by a film thickness meter [Co., Ltd.
Using a surf coder ET200 manufactured by Kosaka Laboratory, the step difference between the non-deposited portion and the film-deposited portion was measured, and the film thickness (T) of each layer was determined.
〔無機薄膜層の製造方法〕
 図4に示すような製造装置を用いて、有機層付き基材上に無機薄膜層を積層させた。具
体的には、真空チャンバー内に設置した図4に示すような製造装置において、上記有機層
付き基材フィルム18を送り出しロ-ル10に装着し、真空チャンバー内を1×10-3
Pa以下にした後、搬送ロール11により前記基材フィルム18を搬送しながら、基材フ
ィルム上に積層された有機層上に無機薄膜層の成膜を行った。無機薄膜層を形成させるた
めに用いるプラズマCVD装置においては、成膜ロール12と成膜ロール13とからなる
一対のロール状電極表面にそれぞれ前記有機層付き基材フィルム18を密接させながら搬
送させ、一対の電極間でプラズマを発生させて、プラズマ中で原料を分解させて前記有機
層上に無機薄膜層を形成させた。前記の一対のロール状電極は、磁束密度が電極および搬
送される有機層付き基材表面で高くなるように電極内部に磁石が配置されており、プラズ
マ発生時に電極および前記有機層付き基材上でプラズマが高密度に拘束される。無機薄膜
層の成膜にあたっては、成膜領域となる電極(成膜ロール12および成膜ロール13)間
の空間に向けてヘキサメチルジシロキサン(HMDSO)ガス、酸素ガスを導入し、電極
ロール間に交流電力を供給し、放電してプラズマを発生させた。次いで、真空チャンバー
内の排気口周辺における圧力が1Paになるように排気量を調節した後、プラズマCVD
法により有機層付き基材上に緻密な無機薄膜層を形成し、巻取りロール17によりロール
状に巻き取った。
[Manufacturing method of inorganic thin film layer]
An inorganic thin film layer was laminated on a base material with an organic layer using a manufacturing apparatus as shown in FIG. Specifically, in the manufacturing apparatus as shown in FIG. 4 installed in the vacuum chamber, the base film 18 with an organic layer is attached to the delivery roll 10 and the inside of the vacuum chamber is 1 × 10 -3.
After the concentration was reduced to Pa or less, an inorganic thin film layer was formed on the organic layer laminated on the base film while the base film 18 was conveyed by the transport roll 11. In the plasma CVD apparatus used for forming the inorganic thin film layer, the base film 18 with an organic layer is conveyed to the surface of a pair of roll-shaped electrodes composed of a film forming roll 12 and a film forming roll 13 while being brought into close contact with each other. Plasma was generated between the pair of electrodes, and the raw material was decomposed in the plasma to form an inorganic thin film layer on the organic layer. In the pair of roll-shaped electrodes, magnets are arranged inside the electrodes so that the magnetic flux density is high on the electrode and the surface of the base material with the organic layer to be conveyed, and when plasma is generated, the magnets are arranged on the electrodes and the base material with the organic layer. The plasma is constrained at high density. In film formation of the inorganic thin film layer, hexamethyldisiloxane (HMDSO) gas and oxygen gas are introduced into the space between the electrodes (deposition roll 12 and film formation roll 13) which are the film formation regions, and between the electrode rolls. AC power was supplied to the film and discharged to generate plasma. Next, after adjusting the exhaust amount so that the pressure around the exhaust port in the vacuum chamber becomes 1 Pa, plasma CVD
A dense inorganic thin film layer was formed on the base material with an organic layer by the method, and the film was wound into a roll by a winding roll 17.
 〈成膜条件1〉
原料ガスの供給量:50sccm(Standard Cubic Centimete
r per Minute、0℃、1気圧基準)
酸素ガスの供給量:500sccm
真空チャンバー内の真空度:1Pa
プラズマ発生用電源からの印加電力:0.8kW
プラズマ発生用電源の周波数:70kHz
フィルムの搬送速度;0.6m/分
パス回数:2回
<Film formation condition 1>
Supply amount of raw material gas: 50 sccm (Standard Cubic Centimete)
r per Minute, 0 ° C, 1 atm standard)
Oxygen gas supply: 500 sccm
Vacuum degree in vacuum chamber: 1Pa
Power applied from the plasma generation power supply: 0.8 kW
Frequency of power supply for plasma generation: 70kHz
Film transport speed: 0.6 m / min Number of passes: 2 times
 得られた積層フィルム1について、以下の方法に従い、平面性、内部応力および水分透
過率等を測定および/または評価した。
With respect to the obtained laminated film 1, the flatness, internal stress, moisture transmittance and the like were measured and / or evaluated according to the following methods.
〔積層フィルムの平面性の評価〕
 積層フィルム1を、50mm×50mmの正方形となるよう切り出して測定用サンプル
を得た。次いで、測定用サンプルを室温(25℃)から130℃または180℃まで熱風
循環オーブンで加熱して30分間保持した後、室温(25℃)で10分間放冷した。次に
、水平面上に、測定用サンプルの中央部が水平面に接するようにサンプルを載置し、水平
面から4隅までの距離(高さ)をそれぞれ測定し、得られた4つの距離から平均値を算出
した。表1に算出した値を反りの値として記載した。
[Evaluation of flatness of laminated film]
The laminated film 1 was cut out into a square of 50 mm × 50 mm to obtain a measurement sample. Then, the measurement sample was heated from room temperature (25 ° C.) to 130 ° C. or 180 ° C. in a hot air circulation oven and held for 30 minutes, and then allowed to cool at room temperature (25 ° C.) for 10 minutes. Next, the sample is placed on the horizontal plane so that the central portion of the measurement sample is in contact with the horizontal plane, the distances (heights) from the horizontal plane to the four corners are measured, and the average value is obtained from the four distances obtained. Was calculated. The values calculated in Table 1 are listed as warpage values.
〔有機層内部応力および無機薄膜層内部応力の測定〕
 基材層として可撓性基材の両面にプライマー層が形成された二軸延伸ポリエチレンナフ
タレートフィルム(帝人フィルムソリューション(株)製、Q65HWA、厚み100μ
m)を用い、上記実施例1に従い、前記基材上にコーティング組成物1(日本化工塗料(
株)、TOMAX FA-3376-2)から形成される有機層を積層させて、有機層内
部応力測定用積層体を得た。上記平面性の評価方法と同様に測定用サンプルを室温(25
℃)から130℃または180℃まで熱風循環オーブンで加熱して30分間保持した後、
室温(25℃)で10分間放冷し、得られた積層体の変形量(水平面から4隅までの各距
離の平均値、筒状であった場合は筒内部の直径)を測定した。測定された変形量から算出
した曲率半径、および有機層の膜厚、基材の厚み、基材のヤング率、基材のポアソン比を
用いて、下記式(12)から有機層の内部応力を算出した。基材として用いた二軸延伸ポ
リエチレンナフタレートフィルムでは、基材のヤング率Eは6.1×10Pa、基材の
ポアソン比vは0.33であった。
 さらに、有機層付き基材の代わりに、有機層が積層されていない上記二軸延伸ポリエチ
レンナフタレートフィルムを基材として搬送させた以外は上記実施例1に記載の無機薄膜
層の形成方法と同様にして、上記基材層上に直接無機薄膜層を積層させて、無機薄膜層内
部応力測定用積層体を作製した。有機層内部応力の測定・算出方法と同様に、得られた積
層体の変形量を用いることで、無機薄膜層の内部応力を算出した。
[Measurement of internal stress of organic layer and internal stress of inorganic thin film layer]
Biaxially stretched polyethylene naphthalate film (manufactured by Teijin Film Solution Co., Ltd., Q65HWA, thickness 100μ) in which primer layers are formed on both sides of a flexible base material as a base material layer.
Using m), according to Example 1 above, coating composition 1 (Nippon Kako Paint (Nippon Kako Paint (Nippon Kako Paint)) was applied onto the substrate.
The organic layer formed from TOMAX FA-3376-2) was laminated to obtain a laminate for measuring the internal stress of the organic layer. In the same manner as the above method for evaluating flatness, the measurement sample was placed at room temperature (25).
After heating in a hot air circulation oven from (° C.) to 130 ° C. or 180 ° C. and holding for 30 minutes,
The mixture was allowed to cool at room temperature (25 ° C.) for 10 minutes, and the amount of deformation of the obtained laminate (the average value of each distance from the horizontal plane to the four corners, and the diameter inside the cylinder if it was tubular) was measured. Using the radius of curvature calculated from the measured amount of deformation, the film thickness of the organic layer, the thickness of the base material, the Young's modulus of the base material, and the Poisson's ratio of the base material, the internal stress of the organic layer was calculated from the following equation (12). Calculated. The biaxially oriented polyethylene naphthalate film used as a substrate, the Young's modulus E of the substrate 6.1 × 10 9 Pa, Poisson's ratio v of the substrate was 0.33.
Further, the method for forming the inorganic thin film layer described in Example 1 is the same except that the biaxially stretched polyethylene naphthalate film on which the organic layer is not laminated is conveyed as the base material instead of the base material with the organic layer. Then, the inorganic thin film layer was directly laminated on the base material layer to prepare a laminated body for measuring the internal stress of the inorganic thin film layer. The internal stress of the inorganic thin film layer was calculated by using the amount of deformation of the obtained laminate in the same manner as in the method of measuring and calculating the internal stress of the organic layer.
 内部応力(GPa)=Eh2/6(1-v)Rt   (12)
〔式(11)中、tは有機層または無機薄膜層の厚み(m)、Rは曲率半径(m)、hは
基材の厚さ(m)、Eは基材のヤング率(Pa)、vは基材のポアソン比である。〕
Internal stress (GPa) = Eh2 / 6 (1-v) Rt (12)
[In the formula (11), t is the thickness (m) of the organic layer or the inorganic thin film layer, R is the radius of curvature (m), h is the thickness of the base material (m), and E is the Young's modulus (Pa) of the base material. , V is the Poisson's ratio of the base material. ]
 積層フィルム1に対応する有機層内部応力測定用積層体において、上記測定方法に従い
有機層の内部応力を算出した。130℃に加熱した後の曲率半径は11.8mmであり、
内部応力は0.32GPaであった。また、180℃に加熱した後の曲率半径は3.6m
mであり、内部応力は1.05GPaであった。
In the laminated body for measuring the internal stress of the organic layer corresponding to the laminated film 1, the internal stress of the organic layer was calculated according to the above measurement method. The radius of curvature after heating to 130 ° C. is 11.8 mm.
The internal stress was 0.32 GPa. The radius of curvature after heating to 180 ° C is 3.6 m.
It was m and the internal stress was 1.05 GPa.
 積層フィルム1に対応する無機薄膜層内部応力測定用積層体において、上記測定方法に
従い無機薄膜層の内部応力を算出した。130℃に加熱した後の曲率半径は17.0mm
であり、内部応力は2.23GPaであった。また、180℃に加熱した後の曲率半径は
9.8mmであり、内部応力は3.89GPaであった。
In the laminated body for measuring the internal stress of the inorganic thin film layer corresponding to the laminated film 1, the internal stress of the inorganic thin film layer was calculated according to the above measurement method. The radius of curvature after heating to 130 ° C is 17.0 mm
The internal stress was 2.23 GPa. The radius of curvature after heating to 180 ° C. was 9.8 mm, and the internal stress was 3.89 GPa.
〔積層膜の内部応力の測定〕
 積層膜1(積層フィルム1における有機層および無機薄膜層からなる積層膜)の内部応
力は、上記平面性の評価方法と同様に測定用サンプルを室温(25℃)から130℃また
は180℃まで熱風循環オーブンで加熱して30分間保持した後、室温(25℃)で10
分間放冷し、得られた積層フィルム1の変形量(水平面から4隅までの各距離の平均値、
筒状であった場合は筒内部の直径)を測定した。測定された変形量から算出した曲率半径
、および有機層と無機薄膜層との合計膜厚、基材の厚み、基材のヤング率、基材のポアソ
ン比を用いて、下記式(13)から積層膜1の内部応力を算出した。基材として用いた二
軸延伸ポリエチレンナフタレートフィルムでは、基材のヤング率Eは6.1×10Pa
、基材のポアソン比vは0.33であった。
[Measurement of internal stress of laminated film]
The internal stress of the laminated film 1 (the laminated film composed of the organic layer and the inorganic thin film layer in the laminated film 1) is such that the measurement sample is heated from room temperature (25 ° C.) to 130 ° C. or 180 ° C. in the same manner as in the above method for evaluating flatness. After heating in a circulating oven and holding for 30 minutes, 10 at room temperature (25 ° C)
After allowing to cool for a minute, the amount of deformation of the obtained laminated film 1 (average value of each distance from the horizontal plane to the four corners,
If it was tubular, the diameter inside the cylinder) was measured. Using the radius of curvature calculated from the measured amount of deformation, the total film thickness of the organic layer and the inorganic thin film layer, the thickness of the base material, the Young's modulus of the base material, and the Poisson's ratio of the base material, from the following formula (13) The internal stress of the laminated film 1 was calculated. The biaxially oriented polyethylene naphthalate film used as a substrate, the Young's modulus E of the substrate 6.1 × 10 9 Pa
The Poisson's ratio v of the base material was 0.33.
 内部応力(GPa)=Eh2/6(1-v)Rt   (13)
〔式(13)中、tは有機層と無機薄膜層との合計膜厚(m)、Rは曲率半径(m)、h
は基材の厚さ(m)、Eは基材のヤング率(Pa)、vは基材のポアソン比である。〕
Internal stress (GPa) = Eh2 / 6 (1-v) Rt (13)
[In formula (13), t is the total film thickness (m) of the organic layer and the inorganic thin film layer, R is the radius of curvature (m), and h.
Is the thickness of the base material (m), E is the Young's modulus of the base material (Pa), and v is the Poisson's ratio of the base material. ]
 積層フィルム1において、130℃に加熱した後の曲率半径は200mmであり、内部
応力は0.017GPaであった。また、180℃に加熱した後の曲率半径は417mm
であり、内部応力は0.0083GPaであった。
In the laminated film 1, the radius of curvature after heating to 130 ° C. was 200 mm, and the internal stress was 0.017 GPa. The radius of curvature after heating to 180 ° C is 417 mm.
The internal stress was 0.0083 GPa.
〔無機薄膜層の膜厚方向のX線光電子分光測定〕
 積層フィルム1の無機薄膜層の膜厚方向の原子数比を、走査型X線光電子分光分析装置
(ULVAC PHI(株)製、QuanteraSXM)を用いて、X線光電子分光法
により、下記測定条件に従って測定した。X線源としてはAlKα線(1486.6eV
、X線スポット100μm)を用い、また、測定時の帯電補正のために、中和電子銃(1
eV)、低速Arイオン銃(10V)を使用した。測定後の解析は、MultiPak 
V6.1A(ULVAC PHI(株))を用いてスペクトル解析を行い、測定したワイ
ドスキャンスペクトルから得られるSiの2p、Oの1s、Nの1s、およびCの1sそ
れぞれのバインディングエネルギーに相当するピークを用いて、Siに対するCの表面原
子数比(C/Si)およびSiに対するOの表面原子数比(O/Si)を算出した。表面
原子数比としては、5回測定した値の平均値を採用した。この結果から、炭素分布曲線を
作成した。
 <XPSデプスプロファイル測定条件>
 エッチングイオン種:アルゴン(Ar
 エッチングレート(SiO熱酸化膜換算値):0.027nm/秒
 スパッタ時間:0.5分
 X線光電子分光装置:ULVAC PHI社製、機種名「Quantera SXM」
 照射X線:単結晶分光AlKα(1486.6eV)
 X線のスポットおよびそのサイズ:100μm
 検出器:Pass Energy 69eV,Step size 0.125eV
 帯電補正:中和電子銃(1eV)、低速Arイオン銃(10V)
[X-ray photoelectron spectroscopy measurement in the film thickness direction of the inorganic thin film layer]
The atomic number ratio of the inorganic thin film layer of the laminated film 1 in the film thickness direction is determined by X-ray photoelectron spectroscopy using a scanning X-ray photoelectron spectroscopy analyzer (Quantara SXM, manufactured by ULVAC-PHI Co., Ltd.) according to the following measurement conditions. It was measured. Astrophysical X-ray source is AlKα ray (1486.6 eV)
, X-ray spot 100 μm), and for charge correction at the time of measurement, a neutralizing electron gun (1)
eV), low speed Ar ion gun (10V) was used. Analysis after measurement is MultiPak
Spectral analysis was performed using V6.1A (ULVAC PHI Co., Ltd.), and peaks corresponding to the binding energies of 2p of Si, 1s of O, 1s of N, and 1s of C obtained from the measured wide scan spectrum. The surface atomic number ratio of C to Si (C / Si) and the surface atomic number ratio of O to Si (O / Si) were calculated using. As the surface atomic number ratio, the average value of the values measured five times was adopted. From this result, a carbon distribution curve was created.
<XPS depth profile measurement conditions>
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide film equivalent): 0.027 nm / sec Sputtering time: 0.5 minutes X-ray photoelectron spectrometer: ULVAC-PHI, model name "Quantara SXM"
Irradiated X-ray: Single crystal spectroscopy AlKα (1486.6 eV)
X-ray spot and its size: 100 μm
Detector: Pass Energy 69eV, Step size 0.125eV
Charge correction: Neutralizing electron gun (1eV), low-speed Ar ion gun (10V)
 上記XPSデプスプロファイル測定の結果から、得られた積層フィルム1の無機薄膜層
の膜厚方向における90%以上の領域において、原子数比が大きい方から酸素、珪素およ
び炭素の順であることが確認された。また、得られた珪素原子、酸素原子および炭素原子
の分布曲線から、それぞれの原子の厚み方向における平均原子濃度を求めた後、平均原子
数比C/SiおよびO/Siを算出した結果、平均原子数比C/Si=0.30、O/S
i=1.73であることが確認された。さらに、無機薄膜層に含まれる珪素原子、酸素原
子および炭素原子の合計数に対する炭素原子の原子数比は、無機薄膜層の膜厚方向におけ
る90%以上の領域において連続的に変化していた。
From the results of the XPS depth profile measurement, it was confirmed that in the region of 90% or more in the film thickness direction of the obtained inorganic thin film layer of the laminated film 1, oxygen, silicon and carbon were in order from the one having the largest atomic number ratio. Was done. Further, from the obtained distribution curves of silicon atoms, oxygen atoms, and carbon atoms, the average atomic concentration in the thickness direction of each atom was obtained, and then the average atomic number ratios C / Si and O / Si were calculated. Atomic number ratio C / Si = 0.30, O / S
It was confirmed that i = 1.73. Further, the atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer changed continuously in the region of 90% or more in the film thickness direction of the inorganic thin film layer.
〔無機薄膜層表面の赤外分光測定(ATR法)〕
 積層フィルム1の無機薄膜層表面の赤外分光測定を、プリズムにゲルマニウム結晶を用
いたATRアタッチメント(PIKE MIRacle)を備えたフーリエ変換型赤外分
光光度計(日本分光(株)製、FT/IR-460Plus)を用いて行った。
[Infrared spectroscopic measurement of the surface of the inorganic thin film layer (ATR method)]
Infrared spectroscopic measurement of the surface of the inorganic thin film layer of the laminated film 1 is performed by a Fourier transform infrared spectrophotometer (FT / IR manufactured by Nippon Spectroscopy Co., Ltd.) equipped with an ATR attachment (PIKE MIRacle) using a germanium crystal for the prism. -460Plus) was used.
 得られた赤外吸収スペクトルから、950~1050cm-1に存在するピーク強度(
)と、1240~1290cm-1に存在するピーク強度(I)との吸収強度比(
/I)を求めると、I/I=0.03であった。また、950~1050cm
-1に存在するピーク強度(I)と、770~830cm-1に存在するピーク強度(
)との吸収強度比(I/I)を求めると、I/I=0.36であった。また
、770~830cm-1に存在するピーク強度(I)と、870~910cm-1
存在するピーク強度(I)との吸収強度比(I/I)を求めると、I/I=0
.84であった。
From the obtained infrared absorption spectrum, the peak intensity existing in 950 to 1050 cm -1 (
Absorption intensity ratio ( I 2 ) to the peak intensity (I 2) present in I 1 ) and 1240 to 1290 cm -1.
When I 2 / I 1 ) was calculated, it was I 2 / I 1 = 0.03. Also, 950 to 1050 cm
Peak intensity at -1 (I 1 ) and peak intensity at 770-830 cm -1 (I 1)
When seeking I 3) and the absorption intensity ratio of the (I 3 / I 1), it was I 3 / I 1 = 0.36. Further, a peak exists in the 770 ~ 830 cm -1 intensity (I 3), when determining the peak exists in the 870 ~ 910 cm -1 intensity (I 4) and the absorption intensity ratio (I 4 / I 3), I 4 / I 3 = 0
.. It was 84.
〔積層フィルムの水蒸気透過度〕
 水蒸気透過度は、温度40℃、湿度90%RHの条件において、ISO/WD 151
06-7(Annex C)に準拠してCa腐食試験法で測定した。
[Water vapor permeability of laminated film]
The water vapor permeability is ISO / WD 151 under the conditions of a temperature of 40 ° C. and a humidity of 90% RH.
It was measured by the Ca corrosion test method according to 06-7 (Annex C).
 得られた積層フィルム1の、温度40℃、湿度90%RHの条件における水蒸気透過度
は3.5×10-3g/(m・day)であった。
The water vapor permeability of the obtained laminated film 1 under the conditions of a temperature of 40 ° C. and a humidity of 90% RH was 3.5 × 10 -3 g / (m 2 · day).
2.比較例1
 基材層として、可撓性基材の片面にプライマー層を有する二軸延伸ポリエチレンナフタ
レートフィルム(帝人フィルムソリューション(株)製、Q65HA、厚み100μm、
幅350mm)を用い、該フィルムの片面に実施例1と同様の方法で無機薄膜層(400
nm)を積層させ、基材層/無機薄膜層からなる積層フィルム2を得た。
2. Comparative Example 1
As a base material layer, a biaxially stretched polyethylene naphthalate film having a primer layer on one side of a flexible base material (manufactured by Teijin Film Solution Co., Ltd., Q65HA, thickness 100 μm,
Using a width of 350 mm), an inorganic thin film layer (400) was applied to one side of the film in the same manner as in Example 1.
nm) was laminated to obtain a laminated film 2 composed of a base material layer / an inorganic thin film layer.
 得られた積層フィルム2について、実施例1と同様の方法で、無機薄膜層の内部応力を
算出した。130℃に加熱した後の曲率半径は17.0mmであり、内部応力は2.23
GPaであった。また、180℃に加熱した後の曲率半径は9.8mmであり、内部応力
は3.89GPaであった。なお、積層フィルム2においては、加熱放冷後の測定用サン
プルが筒状になったため、その筒内部の直径を測定し、曲率半径とした。
For the obtained laminated film 2, the internal stress of the inorganic thin film layer was calculated by the same method as in Example 1. The radius of curvature after heating to 130 ° C. is 17.0 mm, and the internal stress is 2.23.
It was GPa. The radius of curvature after heating to 180 ° C. was 9.8 mm, and the internal stress was 3.89 GPa. In the laminated film 2, since the measurement sample after heating and cooling became a cylinder, the diameter inside the cylinder was measured and used as the radius of curvature.
 また、積層フィルム2の平面性を、実施例1と同様の方法に従い評価し、得られた筒内
部の直径を、反りの値として表1に記載した。
Further, the flatness of the laminated film 2 was evaluated according to the same method as in Example 1, and the diameter inside the obtained cylinder was shown in Table 1 as a warp value.
3.比較例2
 基材層として、可撓性基材の両面にプライマー層を有する二軸延伸ポリエチレンナフタ
レートフィルム(帝人フィルムソリューション(株)製、Q65HWA、厚み100μm
、幅350mm)の片面に、有機層を形成するための有機層形成用組成物として、コーテ
ィング組成物2(日本化工塗料(株)、TOMAX FA-3298-1)をグラビアコ
ーティング法にて塗布した。該塗布膜を100℃で1分間乾燥させた後、高圧水銀ランプ
を用いて、積算光量500mJ/cmの条件で紫外線照射し、厚み4μmの有機層を積
層させて、有機層付き基材を得た。
 得られた有機層付き基材の有機層側の表面に、実施例1と同様の方法で無機薄膜層(4
00nm)を積層させて、基材層/有機層/無機薄膜層からなる積層フィルム3を得た。
3. 3. Comparative Example 2
As a base material layer, a biaxially stretched polyethylene naphthalate film having primer layers on both sides of a flexible base material (manufactured by Teijin Film Solution Co., Ltd., Q65HWA, thickness 100 μm)
, Width 350 mm), coating composition 2 (Nippon Kako Paint Co., Ltd., TOMAX FA-3298-1) was applied by the gravure coating method as an organic layer forming composition for forming an organic layer. .. After the coating film is dried at 100 ° C. for 1 minute, it is irradiated with ultraviolet rays under the condition of an integrated light amount of 500 mJ / cm 2 using a high-pressure mercury lamp, and an organic layer having a thickness of 4 μm is laminated to form a substrate with an organic layer. Obtained.
On the surface of the obtained base material with an organic layer on the organic layer side, an inorganic thin film layer (4) was applied in the same manner as in Example 1.
00 nm) was laminated to obtain a laminated film 3 composed of a base material layer / an organic layer / an inorganic thin film layer.
 得られた積層フィルム3について、実施例1と同様の方法で水蒸気透過度を測定したと
ころ、温度40℃、湿度90%RHの条件において3.7×10-3g/(m・day
)であった。
When the water vapor permeability of the obtained laminated film 3 was measured by the same method as in Example 1, 3.7 × 10 -3 g / (m 2 · day) under the conditions of a temperature of 40 ° C. and a humidity of 90% RH.
)Met.
 基材層として可撓性基材の両面にプライマー層が形成された二軸延伸ポリエチレンナフ
タレートフィルム(帝人フィルムソリューション(株)製、Q65HWA、厚み100μ
m)を用い、上記実施例3に従い、前記基材上にコーティング組成物2(日本化工塗料(
株)、TOMAX FA-3298-1)から形成される有機層を積層させて、有機層内
部応力測定用積層体を得た。
 積層フィルム3に対応する有機層内部応力測定用積層体において、実施例1と同様の測
定方法に従い有機層の内部応力を算出した。130℃に加熱した後の曲率半径は23.8
mmであり、内部応力は0.16GPaであった。また、180℃に加熱した後の曲率半
径は7.5mmであり、内部応力は0.51GPaであった。
Biaxially stretched polyethylene naphthalate film (manufactured by Teijin Film Solution Co., Ltd., Q65HWA, thickness 100μ) in which primer layers are formed on both sides of a flexible base material as a base material layer.
Using m), according to Example 3 above, coating composition 2 (Nippon Kako Paint (Nippon Kako Paint)
The organic layer formed from TOMAX FA-3298-1) was laminated to obtain a laminate for measuring the internal stress of the organic layer.
In the laminated body for measuring the internal stress of the organic layer corresponding to the laminated film 3, the internal stress of the organic layer was calculated according to the same measurement method as in Example 1. The radius of curvature after heating to 130 ° C is 23.8
It was mm and the internal stress was 0.16 GPa. The radius of curvature after heating to 180 ° C. was 7.5 mm, and the internal stress was 0.51 GPa.
 積層フィルム3に対応する無機薄膜層内部応力測定用積層体は、実施例1の無機薄膜層
内部応力測定用積層体と同じであり、130℃に加熱した後の曲率半径は17.0mmで
あり、内部応力は2.23GPaであった。また、180℃に加熱した後の曲率半径は9
.8mmであり、内部応力は3.89GPaであった。
The laminate for measuring the internal stress of the inorganic thin film layer corresponding to the laminated film 3 is the same as the laminate for measuring the internal stress of the inorganic thin film layer of Example 1, and the radius of curvature after heating to 130 ° C. is 17.0 mm. The internal stress was 2.23 GPa. The radius of curvature after heating to 180 ° C is 9
.. It was 8 mm and the internal stress was 3.89 GPa.
 また、積層フィルム3の平面性を、実施例1と同様の方法に従い評価し、得られた4隅
までの距離(高さ)の平均値を、反りの値として表1に記載した。
Further, the flatness of the laminated film 3 was evaluated according to the same method as in Example 1, and the average value of the obtained distances (heights) to the four corners was shown in Table 1 as a warp value.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1で得られた積層フィルムは緻密性が高く内部応力が大きな
無機薄膜層を積層しているが、有機層内部応力が高く、130℃および180℃のいずれ
の温度で加熱した場合にも積層フィルムの反りを抑制する効果に優れていた。一方、有機
層を含まない、または、有機層の内部応力が十分でない比較例1および2で得られた積層
フィルムでは、いずれの温度条件においても積層フィルムの大きな反りが生じた。
As shown in Table 1, the laminated film obtained in Example 1 is laminated with an inorganic thin film layer having high density and a large internal stress, but the organic layer has a high internal stress and is either 130 ° C. or 180 ° C. It was excellent in the effect of suppressing the warp of the laminated film even when heated at a temperature. On the other hand, in the laminated films obtained in Comparative Examples 1 and 2 which did not contain the organic layer or the internal stress of the organic layer was not sufficient, a large warp of the laminated film occurred under any temperature condition.
1:基材層
1-1:可撓性基材
1-2:プライマー層
2:有機層
2-1:第1有機層
2-2:第2有機層
3:無機薄膜層
4:積層フィルム
10:送り出しロール
11:搬送ロール
12:成膜ロール
13:成膜ロール
14:ガス供給管
15:プラズマ発生用電源
16:磁場発生装置
17:巻取りロール
18:基材フィルム
1: Base material layer 1-1: Flexible base material 1-2: Primer layer 2: Organic layer 2-1: First organic layer 2-2: Second organic layer 3: Inorganic thin film layer 4: Laminated film 10 : Feeding roll 11: Conveying roll 12: Film forming roll 13: Film forming roll 14: Gas supply pipe 15: Power source for plasma generation 16: Magnetic field generator 17: Winding roll 18: Base film

Claims (11)

  1.  可撓性基材を含む基材層、有機層および無機薄膜層をこの順に含む積層フィルムであっ
    て、前記基材層と前記有機層とからなる積層体を130℃以上の温度で30分間加熱後、
    25℃で10分間放冷して測定される前記有機層の内部応力が0.2GPa以上である積
    層フィルム。
    A laminated film containing a base material layer containing a flexible base material, an organic layer, and an inorganic thin film layer in this order, and the laminate composed of the base material layer and the organic layer is heated at a temperature of 130 ° C. or higher for 30 minutes. rear,
    A laminated film having an internal stress of 0.2 GPa or more measured by allowing it to cool at 25 ° C. for 10 minutes.
  2.  前記基材層と該基材層上に直接積層された無機薄膜層とからなる積層体を130℃以上
    の温度で30分間加熱後、25℃で10分間放冷して測定される前記無機薄膜層の内部応
    力が2.0GPa以上である、請求項1に記載の積層フィルム。
    The inorganic thin film measured by heating a laminate composed of the base material layer and an inorganic thin film layer directly laminated on the base material layer at a temperature of 130 ° C. or higher for 30 minutes and then allowing it to cool at 25 ° C. for 10 minutes. The laminated film according to claim 1, wherein the internal stress of the layer is 2.0 GPa or more.
  3.  前記基材層、前記有機層および前記無機薄膜層からなる積層体を130℃以上の温度で
    30分間加熱後、25℃で10分間放冷して測定される、前記有機層および前記無機薄膜
    層からなる積層膜の内部応力が0.030GPa以下である、請求項1または2に記載の
    積層フィルム。
    The organic layer and the inorganic thin film layer are measured by heating the laminate composed of the base material layer, the organic layer and the inorganic thin film layer at a temperature of 130 ° C. or higher for 30 minutes and then allowing the laminate to cool at 25 ° C. for 10 minutes. The laminated film according to claim 1 or 2, wherein the internal stress of the laminated film made of the above is 0.030 GPa or less.
  4.  前記基材層と前記有機層とからなる積層体を180℃で30分間加熱後、25℃で10
    分間放冷して測定される有機層の内部応力が0.8GPa以上である、請求項1~3のい
    ずれかに記載の積層フィルム。
    After heating the laminate composed of the base material layer and the organic layer at 180 ° C. for 30 minutes, 10 at 25 ° C.
    The laminated film according to any one of claims 1 to 3, wherein the internal stress of the organic layer measured by allowing to cool for 1 minute is 0.8 GPa or more.
  5.  前記基材層と該基材層上に直接積層された無機薄膜層とからなる積層体を180℃で3
    0分間加熱後、25℃で10分間放冷して測定される無機薄膜層の内部応力が3.0GP
    a以上である、請求項1~4のいずれかに記載の積層フィルム。
    A laminate composed of the base material layer and an inorganic thin film layer directly laminated on the base material layer is formed at 180 ° C. 3
    The internal stress of the inorganic thin film layer measured by heating for 0 minutes and then allowing it to cool at 25 ° C for 10 minutes is 3.0 GP.
    The laminated film according to any one of claims 1 to 4, which is a or more.
  6.  無機薄膜層が基材層の一方の面側のみに存在する、請求項1~5のいずれかに記載の積
    層フィルム。
    The laminated film according to any one of claims 1 to 5, wherein the inorganic thin film layer is present only on one surface side of the base material layer.
  7.  基材層の前記有機層とは反対側の面に有機層をさらに含む、請求項1~6のいずれかに
    記載の積層フィルム。
    The laminated film according to any one of claims 1 to 6, further comprising an organic layer on the surface of the base material layer opposite to the organic layer.
  8.  無機薄膜層はプラズマ化学気相成長法により形成された層である、請求項1~7のいず
    れかに記載の積層フィルム。
    The laminated film according to any one of claims 1 to 7, wherein the inorganic thin film layer is a layer formed by a plasma chemical vapor deposition method.
  9.  無機薄膜層は、珪素原子、酸素原子および炭素原子を含有する、請求項1~8のいずれ
    かに記載の積層フィルム。
    The laminated film according to any one of claims 1 to 8, wherein the inorganic thin film layer contains a silicon atom, an oxygen atom and a carbon atom.
  10.  無機薄膜層に含まれる珪素原子、酸素原子および炭素原子の合計数に対する炭素原子の
    原子数比が、無機薄膜層の膜厚方向における90%以上の領域において、連続的に変化す
    る、請求項9に記載の積層フィルム。
    9. Claim 9 in which the atomic number ratio of carbon atoms to the total number of silicon atoms, oxygen atoms and carbon atoms contained in the inorganic thin film layer changes continuously in a region of 90% or more in the film thickness direction of the inorganic thin film layer. The laminated film described in.
  11.  ガスバリア性を有する、請求項1~10のいずれかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 10, which has a gas barrier property.
PCT/JP2020/043153 2019-11-28 2020-11-19 Laminated film WO2021106736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-214903 2019-11-28
JP2019214903A JP2021084324A (en) 2019-11-28 2019-11-28 Laminated film

Publications (1)

Publication Number Publication Date
WO2021106736A1 true WO2021106736A1 (en) 2021-06-03

Family

ID=76088194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043153 WO2021106736A1 (en) 2019-11-28 2020-11-19 Laminated film

Country Status (3)

Country Link
JP (1) JP2021084324A (en)
TW (1) TW202122262A (en)
WO (1) WO2021106736A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335067A (en) * 2004-05-24 2005-12-08 Nippon Zeon Co Ltd Gas barrier laminate and light emitting element
JP2010208072A (en) * 2009-03-09 2010-09-24 Toray Ind Inc Gas-barrier film
JP2015074160A (en) * 2013-10-09 2015-04-20 東レ株式会社 Gas barrier film
WO2015186434A1 (en) * 2014-06-02 2015-12-10 コニカミノルタ株式会社 Gas barrier film
WO2017010249A1 (en) * 2015-07-13 2017-01-19 コニカミノルタ株式会社 Gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335067A (en) * 2004-05-24 2005-12-08 Nippon Zeon Co Ltd Gas barrier laminate and light emitting element
JP2010208072A (en) * 2009-03-09 2010-09-24 Toray Ind Inc Gas-barrier film
JP2015074160A (en) * 2013-10-09 2015-04-20 東レ株式会社 Gas barrier film
WO2015186434A1 (en) * 2014-06-02 2015-12-10 コニカミノルタ株式会社 Gas barrier film
WO2017010249A1 (en) * 2015-07-13 2017-01-19 コニカミノルタ株式会社 Gas barrier film

Also Published As

Publication number Publication date
TW202122262A (en) 2021-06-16
JP2021084324A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7294841B2 (en) laminated film
TW201805072A (en) Gas barrier film, optical film, and flexible display
JP7211740B2 (en) Gas barrier films and flexible electronic devices
US20180237908A1 (en) Gas barrier film and method of producing gas barrier film
WO2021106736A1 (en) Laminated film
JP2017136827A (en) Gas barrier film and production method of gas barrier film
JP6983040B2 (en) Gas barrier film and devices containing it
JP6354302B2 (en) Gas barrier film
TW202135359A (en) Method for producing optical film
JP6983039B2 (en) Gas barrier film and flexible electronic device
US20210388490A1 (en) Laminated body, flexible electronic device, and laminated-body manufacturing method
WO2017130568A1 (en) Gas barrier film and method for producing gas barrier film
WO2017068938A1 (en) Gas barrier film and method for producing gas barrier film
WO2021106636A1 (en) Laminated film production method
WO2021106634A1 (en) Method for manufacturing gas barrier film
WO2015137389A1 (en) Gas barrier film production method
JP2016124123A (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893496

Country of ref document: EP

Kind code of ref document: A1