WO2012081555A1 - Gas barrier laminate and method for producing gas barrier laminate - Google Patents

Gas barrier laminate and method for producing gas barrier laminate Download PDF

Info

Publication number
WO2012081555A1
WO2012081555A1 PCT/JP2011/078713 JP2011078713W WO2012081555A1 WO 2012081555 A1 WO2012081555 A1 WO 2012081555A1 JP 2011078713 W JP2011078713 W JP 2011078713W WO 2012081555 A1 WO2012081555 A1 WO 2012081555A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
gas
film
barrier layer
Prior art date
Application number
PCT/JP2011/078713
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 一生
大石 清
尾▲崎▼ 浩司
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012548779A priority Critical patent/JP5958346B2/en
Publication of WO2012081555A1 publication Critical patent/WO2012081555A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A gas barrier laminate of the present invention is obtained by laminating, on at least one surface of a substrate: a stress-alleviating layer that is formed by atmospheric pressure plasma CVD and contains a metal oxide and/or metal nitride; and a barrier layer that is formed by the wet process and comprises a silicon oxynitride. As a result, no cracks are produced and good bending resistance is obtained.

Description

ガスバリア積層体及びガスバリア積層体の製造方法Gas barrier laminate and method for producing gas barrier laminate
 本発明は、ガスバリア積層体及びガスバリア積層体の製造方法に関する。 The present invention relates to a gas barrier laminate and a method for producing the gas barrier laminate.
 真空蒸着やスパッタリングなどの真空ドライ成膜プロセスで形成したバリア層と、ウェット塗布プロセスで形成した樹脂(応力緩和)層と、を積層したガスバリアフィルム技術が開示されているが(例えば、特許文献1)、真空ドライ成膜で緻密なバリア層を得るためには成膜レート(速度)を低くする必要があり生産性が低いこと、また、真空ドライ成膜プロセスとウェット塗布プロセスとの組み合わせは連続生産性に劣るという問題があった。 A gas barrier film technique is disclosed in which a barrier layer formed by a vacuum dry film formation process such as vacuum deposition or sputtering and a resin (stress relaxation) layer formed by a wet coating process are laminated (for example, Patent Document 1). ) In order to obtain a dense barrier layer by vacuum dry film formation, it is necessary to lower the film formation rate (speed) and the productivity is low, and the combination of the vacuum dry film formation process and the wet coating process is continuous. There was a problem of inferior productivity.
 このような問題から、ポリシラザン溶液を塗布、乾燥後、真空紫外光で改質処理して、バリア層を形成する技術が開示されているが(特許文献2)、この形態でより高いガスバリア性能を得るために積層を繰り返すと、ポリシラザン改質時の膜収縮で発生する応力でクラックが発生したり、応力緩和が充分でなかったり、また、耐屈曲性に問題があり、ガスバリア性能も充分でなかった。 From such a problem, a technique for forming a barrier layer by applying a polysilazane solution, drying, and then modifying with a vacuum ultraviolet light to form a barrier layer is disclosed (Patent Document 2). Repeated lamination to obtain cracks due to stress generated by film shrinkage at the time of polysilazane modification, stress relaxation is insufficient, there is a problem in flex resistance, and gas barrier performance is also insufficient It was.
 ガスバリア性能の改善のための技術としては、バリア層として、上記ポリシラザン層と、プラズマCVD法で形成した層を併用した技術が開示されている(特許文献3参照)。この技術のポイントは真空プラズマCVD法により形成したバリア層と、ポリシラザンを含む液体を塗布後加熱処理し形成したバリア層を併用し、ガスバリア性能を相互に補完することにあるが、真空プロセスによるバリア層の生産性の悪さと、ポリシラザンを含む液体からガスバリア性を得るにも比較的高温で長時間の加熱処理が必要であり、例えばPESのような耐熱性の高い基板が必要で汎用性の高いPET等に適用するには困難があり、且つガスバリア性能についてもさほど向上せず、そして、何よりも真空プラズマ法により形成したバリア層は応力緩和能に問題があるため、ポリシラザン改質時の膜収縮で発生する応力でクラックが発生したり、屈曲時の応力緩和が充分でなかったり、耐屈曲性の課題については改善されていない。 As a technique for improving the gas barrier performance, a technique in which the above-described polysilazane layer and a layer formed by a plasma CVD method are used in combination as a barrier layer is disclosed (see Patent Document 3). The point of this technology is to use a barrier layer formed by a vacuum plasma CVD method and a barrier layer formed by applying a liquid containing polysilazane and then heat-treating it to complement each other, but the gas barrier performance is mutually complemented. In order to obtain a gas barrier property from a liquid containing polysilazane, it is necessary to perform heat treatment for a long time at a relatively high temperature. For example, a substrate having high heat resistance such as PES is required and has high versatility. It is difficult to apply to PET, etc., and the gas barrier performance is not improved so much, and above all, the barrier layer formed by the vacuum plasma method has a problem in the stress relaxation ability. Cracks are generated by the stress generated in the case, stress relaxation at the time of bending is not sufficient, and the problem of bending resistance has not been improved
特開平8-164595号公報JP-A-8-164595 特開2009-255040号公報JP 2009-255040 A 特開平8-281861号公報Japanese Patent Laid-Open No. 8-281186
 従って、本発明の目的は、クラックが発生したりすることがなく、かつ良好な耐屈曲性を有するガスバリア積層体及びガスバリア積層体の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a gas barrier laminate and a method for producing the gas barrier laminate that do not generate cracks and have good bending resistance.
 本発明の上記課題は以下の手段により達成される。 The above object of the present invention is achieved by the following means.
 1.基板の少なくとも片面に、大気圧プラズマCVD法で形成した金属酸化物及び金属酸窒化物の少なくとも一方を含む応力緩和層、並びにウェットプロセスで形成された珪素酸窒化物からなるバリア層が積層されたことを特徴とするガスバリア積層体。 1. A stress relaxation layer containing at least one of a metal oxide and a metal oxynitride formed by atmospheric pressure plasma CVD and a barrier layer made of silicon oxynitride formed by a wet process were laminated on at least one surface of the substrate. A gas barrier laminate characterized by that.
 2.前記金属酸化物及び金属酸窒化物は、炭素を含有することを特徴とする前記1に記載のガスバリア積層体。 2. 2. The gas barrier laminate according to 1 above, wherein the metal oxide and the metal oxynitride contain carbon.
 3.前記金属酸化物及び前記金属酸窒化物に含有される炭素は元素比率で0.1%以上、30%未満であることを特徴とする前記1または2に記載のガスバリア積層体。 3. 3. The gas barrier laminate according to 1 or 2, wherein the carbon contained in the metal oxide and the metal oxynitride is 0.1% or more and less than 30% in terms of element ratio.
 4.前記バリア層は、改質処理が行われることを特徴とする前記1~3の何れか一項に記載のガスバリア積層体。 4. The gas barrier laminate according to any one of 1 to 3, wherein the barrier layer is subjected to a modification treatment.
 5.前記1~3の何れか一項に記載の応力緩和層、及びウェットプロセスで形成されたバリア層をガスバリア層ユニットとした際に、前記基板の少なくとも片面に前記ガスバリア層ユニットを少なくとも二つ繰り返し積層することを特徴とする前記1~4の何れか一項に記載のガスバリア積層体。 5. When the stress relaxation layer according to any one of 1 to 3 and the barrier layer formed by a wet process are used as a gas barrier layer unit, at least two of the gas barrier layer units are repeatedly stacked on at least one surface of the substrate. The gas barrier laminate according to any one of the above 1 to 4, wherein the gas barrier laminate is characterized in that:
 6.基板の少なくとも片面に、金属酸化物および金属酸窒化物の少なくとも一方を含む応力緩和層を大気圧プラズマCVD法で形成し、前記応力緩和層上に、珪素酸窒化物からなるバリア層をウェットプロセスで形成することを特徴とするガスバリア積層体の製造方法。 6. A stress relaxation layer including at least one of a metal oxide and a metal oxynitride is formed on at least one surface of the substrate by an atmospheric pressure plasma CVD method, and a barrier layer made of silicon oxynitride is formed on the stress relaxation layer by a wet process. A method for producing a gas barrier laminate, characterized by comprising:
 7.前記金属酸化物および金属酸窒化物は、炭素を含有することを特徴とする前記6に記載のガスバリア積層体の製造方法。 7. 7. The method for producing a gas barrier laminate according to 6, wherein the metal oxide and the metal oxynitride contain carbon.
 8.前記金属酸化物および金属酸窒化物に含有される炭素は、元素比率で0.1%以上、30%未満であることを特徴とする前記6または7に記載のガスバリア積層体の製造方法。 8. 8. The method for producing a gas barrier laminate according to 6 or 7, wherein carbon contained in the metal oxide and metal oxynitride is 0.1% or more and less than 30% in terms of element ratio.
 9.前記バリア層に改質処理を行うことを特徴とする前記6~8の何れか一項に記載のガスバリア積層体の製造方法。 9. The method for producing a gas barrier laminate according to any one of 6 to 8, wherein the barrier layer is subjected to a modification treatment.
 10.前記応力緩和層、及び前記バリア層をガスバリア層ユニットとした際に、前記基板の少なくとも片面に前記ガスバリア層ユニットを少なくとも二つ繰り返し積層することを特徴とする前記6~9の何れか一項に記載のガスバリア積層体の製造方法。 10. Any one of the above 6 to 9, wherein when the stress relaxation layer and the barrier layer are gas barrier layer units, at least two of the gas barrier layer units are repeatedly laminated on at least one surface of the substrate. The manufacturing method of the gas barrier laminated body of description.
 従って、本発明により、クラックが発生したりすることがなく、かつ良好な耐屈曲性を有するガスバリア積層体が得られる。 Therefore, according to the present invention, it is possible to obtain a gas barrier laminate that does not generate cracks and has good bending resistance.
本発明に係るガスバリア積層体の一例を示す断面構成図である。It is a section lineblock diagram showing an example of a gas barrier layered product concerning the present invention.
 本発明は、基板の少なくとも片面に、大気圧プラズマCVD法で形成した金属酸化物及び金属酸窒化物の少なくとも一方を含む層、及びウェットプロセスで形成された珪素酸窒化物からなる層を有するガスバリア積層体に関する。 The present invention provides a gas barrier having a layer comprising at least one of a metal oxide and a metal oxynitride formed by atmospheric pressure plasma CVD on at least one surface of a substrate, and a layer made of silicon oxynitride formed by a wet process It relates to a laminate.
 本発明においては、大気圧プラズマCVD法で形成した金属酸化物及び金属酸窒化物の少なくとも一方を含む層を応力緩和層として、また、ウェットプロセスで形成された珪素酸窒化物からなる層をバリア層として積層体を、これを基板例えば樹脂フィルム上に形成することで、バリア層形成時の膜収縮や、屈曲により発生する応力によるクラックや剥がれの発生を抑え、耐屈曲性を向上させたガスバリア積層体を構成するものである。 In the present invention, a layer containing at least one of metal oxide and metal oxynitride formed by atmospheric pressure plasma CVD is used as a stress relaxation layer, and a layer made of silicon oxynitride formed by a wet process is used as a barrier. A gas barrier that has improved flex resistance by suppressing the occurrence of film shrinkage during the barrier layer formation and cracks and peeling due to stress generated by bending by forming a laminate as a layer on a substrate such as a resin film It constitutes a laminate.
 図1は、本発明に係るガスバリア積層体の一例を示す断面構成図である。 FIG. 1 is a cross-sectional configuration diagram showing an example of a gas barrier laminate according to the present invention.
 本発明のガスバリア積層体は、基板1上に応力緩和層2として大気圧プラズマCVD法で形成した金属酸化物及び金属酸窒化物の少なくとも一方を含む層が、更に該応力緩和層2上にバリア層3として、例えばポリシラザンの改質によってウェットプロセスで形成した珪素酸窒化物からなる層が積層形成され、構成される。 In the gas barrier laminate of the present invention, a layer containing at least one of a metal oxide and a metal oxynitride formed as a stress relaxation layer 2 on the substrate 1 by an atmospheric pressure plasma CVD method is further provided on the stress relaxation layer 2. As the layer 3, for example, a layer made of silicon oxynitride formed by a wet process by modification of polysilazane is laminated and formed.
 また、該応力緩和層とバリア層が積層されたユニットを一つのガスバリア層ユニットとして、該ガスバリア層ユニットを少なくとも二つ繰り返し積層することも本発明の好ましい一態様である。 It is also a preferred aspect of the present invention that the unit in which the stress relaxation layer and the barrier layer are laminated is used as one gas barrier layer unit, and the gas barrier layer unit is repeatedly laminated at least two times.
 本発明では、下層となる金属酸化物及び金属酸窒化物の少なくとも一方を含む層を、応力緩和層としてドライプロセスである大気圧プラズマCVD法により形成する。当該応力緩和層は、多少のガスバリア性を有する。また、本発明では、バリア層を、例えば、ポリシラザン塗布層等のウェットプロセスで形成する珪素酸窒化物層からなる層で形成し、前記応力緩和層と合わせて積層体を構成することを特徴としている。 In the present invention, a layer including at least one of a metal oxide and a metal oxynitride serving as a lower layer is formed as a stress relaxation layer by an atmospheric pressure plasma CVD method which is a dry process. The stress relaxation layer has some gas barrier properties. In the present invention, the barrier layer is formed of a layer made of a silicon oxynitride layer formed by a wet process such as a polysilazane coating layer, for example, and the laminate is configured together with the stress relaxation layer. Yes.
 応力緩和層は柔軟性のある、内部応力が小さい層であり、例えばバリア層成膜時の膜収縮による応力を緩和できる層であるが、大気圧プラズマCVD法を用いることで、成膜レートを上げても、バリア層と密着性のよい金属酸化物または金属酸窒化物を含む内部応力の小さい柔軟な膜(層)を形成できる。なお、真空プラズマ法では成膜レートが低いので生産性が問題であり、また、柔軟な膜になりにくく応力緩和能が低い層となってしまう。
 また、本発明の構成においては、バリア層がウェットプロセスにて積層されるときに、その下層として応力緩和層が大気圧プラズマCVD法により形成されていると、前記バリア層が基板や下層膜吸着水を受けにくくなるため、積層されたバリア層については、大気圧プラズマCVD法により形成された応力緩和層によって、下層からの水の影響を受けにくくより緻密でガスバリア性能の高い膜が得られると考えられる。
The stress relaxation layer is a flexible layer having a small internal stress. For example, the stress relaxation layer is a layer that can relieve the stress caused by the film shrinkage during film formation of the barrier layer. Even if it raises, the flexible film | membrane (layer) with a small internal stress containing the metal oxide or metal oxynitride which has favorable adhesiveness with a barrier layer can be formed. Note that the vacuum plasma method has a problem of productivity because the film formation rate is low, and it becomes difficult to form a flexible film, resulting in a layer having low stress relaxation ability.
In the configuration of the present invention, when the barrier layer is laminated by a wet process, if the stress relaxation layer is formed as the lower layer by an atmospheric pressure plasma CVD method, the barrier layer is adsorbed to the substrate or the lower layer film. Since it is difficult to receive water, the laminated barrier layer is more susceptible to the influence of water from the lower layer by the stress relaxation layer formed by the atmospheric pressure plasma CVD method. Conceivable.
 また、大気圧プラズマCVD法で形成した応力緩和層は、柔軟で内部応力が小さく、自身の膜収縮がないため、ポリシラザンの改質による緻密なバリア層形成の際に発生する応力を充分に緩和できる。 In addition, the stress relaxation layer formed by atmospheric pressure plasma CVD is flexible, has low internal stress, and does not shrink itself. Therefore, the stress generated when forming a dense barrier layer by modifying polysilazane is sufficiently relaxed. it can.
 また、バリア層と同じ材料(材質)からなる膜を応力緩和層に用いることで、ウェットプロセスで形成された珪素酸窒化物からなるバリア層との密着性のよい積層膜とすることができる。 Also, by using a film made of the same material (material) as the barrier layer for the stress relaxation layer, a laminated film having good adhesion to the barrier layer made of silicon oxynitride formed by a wet process can be obtained.
 また、大気圧プラズマCVD法によれば、例えばポリシラザン塗布等のウェットプロセスによるときと同様に大気圧下で実施できるので、金属酸化物及び金属酸窒化物の少なくとも一方を含む層(応力緩和層)、ウェットプロセスで形成された珪素酸窒化物からなる層(バリア層)の積層体を形成するときに大気圧下での連続処理が可能であり生産上好ましい。 In addition, according to the atmospheric pressure plasma CVD method, for example, it can be carried out under atmospheric pressure as in the case of a wet process such as polysilazane coating, so a layer containing at least one of a metal oxide and a metal oxynitride (stress relaxation layer) When forming a layered structure of silicon oxynitride (barrier layer) formed by a wet process, continuous processing under atmospheric pressure is possible, which is preferable in production.
 真空プラズマCVD法ではウェットプロセスによるバリア層成膜工程との連続処理はできない。また真空引きなど工程の工数が大きくなるため生産性が悪くなってしまう。 真空 Vacuum plasma CVD cannot be performed continuously with the barrier layer deposition process using a wet process. Further, the number of man-hours for the process such as evacuation is increased, so that productivity is deteriorated.
 本発明は、基板の少なくとも片面に、大気圧プラズマCVD法で形成した金属酸化物及び金属酸窒化物の少なくとも一方を含む層、及びウェットプロセスで形成された珪素酸窒化物からなる層を有するガスバリア積層体であるが、基板の少なくとも片面に、このようなガスバリア層ユニットを少なくとも二つ繰り返し積層することも好ましい。積層数は求められるガスバリア性能により決められるが、本発明において膜厚を厚くした場合にも、ガスバリア層ユニットの耐屈曲性がよいことから、屈曲性の劣化がない。 The present invention provides a gas barrier having a layer comprising at least one of a metal oxide and a metal oxynitride formed by atmospheric pressure plasma CVD on at least one surface of a substrate, and a layer made of silicon oxynitride formed by a wet process Although it is a laminated body, it is also preferable that at least two such gas barrier layer units are repeatedly laminated on at least one surface of the substrate. The number of laminated layers is determined by the required gas barrier performance, but even when the film thickness is increased in the present invention, the flexibility of the gas barrier layer unit is good, so that the flexibility is not deteriorated.
 以下、本発明の各層について詳細に説明する。 Hereinafter, each layer of the present invention will be described in detail.
 〔応力緩和層〕
 本発明においては、応力緩和層が大気圧プラズマCVD法で形成されたことを特徴の1つとする。
(Stress relaxation layer)
One feature of the present invention is that the stress relaxation layer is formed by an atmospheric pressure plasma CVD method.
 (大気圧プラズマCVD)
 一般に、金属酸化物及び金属酸窒化物の少なくとも一方を含む層を形成する方法には真空蒸着やスパッタ法、真空プラズマCVD等が知られているが、これらの方法で得られた金属酸化物及び金属酸窒化物の少なくとも一方を含む層は前述のような十分に優れた応力緩和性能は得られない。
 とりわけ、多気圧プラズマCVD法で形成された金属酸化物及び金属酸窒化物の少なくとも一方を含む層の圧縮応力は、真空プラズマCVD法で形成された金属酸化物及び金属酸窒化物の少なくとも一方を含む層の圧縮応力の約1/100である。圧縮応力の測定方法としては、厚さ100μm、巾10mm、長さ50mmの石英硝子上に、各層を1μm厚みで製膜し、NEC三栄社製薄膜物性評価装置MH4000にて圧縮応力(残留応力、MPa)を測定することができる。
(Atmospheric pressure plasma CVD)
In general, vacuum deposition, sputtering, vacuum plasma CVD, and the like are known as a method for forming a layer containing at least one of a metal oxide and a metal oxynitride. The layer containing at least one of the metal oxynitrides cannot obtain sufficiently excellent stress relaxation performance as described above.
In particular, the compressive stress of the layer containing at least one of the metal oxide and metal oxynitride formed by the multi-pressure plasma CVD method is at least one of the metal oxide and metal oxynitride formed by the vacuum plasma CVD method. It is about 1/100 of the compressive stress of the containing layer. As a method for measuring the compressive stress, each layer was formed to a thickness of 1 μm on a quartz glass having a thickness of 100 μm, a width of 10 mm, and a length of 50 mm, and the compressive stress (residual stress, MPa) can be measured.
 本発明におけるこれら金属酸化物及び金属窒化物の少なくとも一方を含む層(薄膜)の厚さは、用いられる材料の種類、構成により最適条件が異なり、適宜選択されるが、5~2000nmの範囲内であることが好ましい。 The thickness of the layer (thin film) containing at least one of these metal oxides and metal nitrides in the present invention varies depending on the type and configuration of the materials used and is appropriately selected, but is within the range of 5 to 2000 nm. It is preferable that
 例えば、上記の範囲より薄い場合には、膜欠陥が多く均一な膜が得られず、充分な応力緩和能が得られにくい。また、金属酸化物または金属窒化物を有する層の厚さが上記の範囲より厚い場合には、内部応力も大きくなりバリア層成膜時に、あるいは成膜後の積層体の折り曲げ、引っ張り等の外的要因で亀裂が生じる等のおそれがあり好ましい応力緩和性が得られないことがある。 For example, when the thickness is smaller than the above range, there are many film defects, a uniform film cannot be obtained, and sufficient stress relaxation ability is difficult to obtain. In addition, if the thickness of the layer having a metal oxide or metal nitride is larger than the above range, the internal stress also increases, and the barrier layer is formed during film formation or after the film is bent or pulled. There is a risk that cracks may occur due to mechanical factors, and preferable stress relaxation properties may not be obtained.
 また、本発明においては、前記金属酸化物及び金属窒化物の少なくとも一方を含む層に、ウェットプロセスによって珪素酸窒化物の薄膜を積層したものは透明であることが好ましい。透明であることにより、ガスバリア積層体を透明なものとすることが可能となり、EL素子、又光電変換素子等の透明基板等の用途にも使用することが可能となるからである。ガスバリア積層体の光透過率としては、例えば試験光の波長を550nmとしたとき透過率が80%以上のものが好ましく、90%以上が更に好ましい。 In the present invention, it is preferable that a silicon oxynitride thin film laminated on a layer containing at least one of the metal oxide and the metal nitride by a wet process is transparent. This is because the gas barrier laminate can be made transparent by being transparent, and can also be used for applications such as transparent substrates such as EL elements and photoelectric conversion elements. As the light transmittance of the gas barrier laminate, for example, when the wavelength of the test light is 550 nm, the transmittance is preferably 80% or more, and more preferably 90% or more.
 プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法は、原材料(原料ともいう)である有機金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、金属酸化物、金属窒化物、金属炭化物等のセラミック層を、またこれらの金属酸窒化物、金属窒化炭化物などとの混合物も作り分けることができるため好ましい。 The plasma CVD method, or the plasma CVD method under atmospheric pressure or near atmospheric pressure, is performed by selecting conditions such as organometallic compounds, decomposition gas, decomposition temperature, and input power as raw materials (also referred to as raw materials). It is preferable because a ceramic layer of a metal, a metal nitride, a metal carbide, etc., and a mixture with these metal oxynitrides, metal nitride carbides, etc. can be formed separately.
 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。また、これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。 For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon oxide is generated. In addition, because highly active charged particles and radicals exist in the plasma space at a high density, multistage chemical reactions are promoted very rapidly in the plasma space, and the elements present in the plasma space are This is because it is converted into a thermodynamically stable compound in a very short time.
 このような無機物の原料としては、典型または遷移金属元素を有していれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。又、溶媒によって希釈して使用してもよく、溶媒は、メタノール、エタノール、n-ヘキサンなどの有機溶媒及びこれらの混合溶媒が使用できる。尚、これらの希釈溶媒は、プラズマ放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視することができる。 As such an inorganic material, as long as it has a typical or transition metal element, it may be in a gas, liquid, or solid state at normal temperature and pressure. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation. The solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof can be used as the solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
 また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気、フッ素ガス、フッ化水素、トリフルオロアルコール、トリフルオロトルエン、硫化水素、二酸化硫黄、二硫化炭素、塩素ガスなどが挙げられる。 In addition, as a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide Examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, water vapor, fluorine gas, hydrogen fluoride, trifluoroalcohol, trifluorotoluene, hydrogen sulfide, sulfur dioxide, carbon disulfide, and chlorine gas.
 金属元素を含む原料ガスと、分解ガスを適宜選択することで、各種の金属酸化物、金属窒化物、金属炭化物を得ることができる。 Various metal oxides, metal nitrides, and metal carbides can be obtained by appropriately selecting a source gas containing a metal element and a decomposition gas.
 本発明においては、金属元素を含む原料ガスとして、例えば、珪素化合物としては、テトラエチルシラン、テトラメチルシラン、テトライソプロピルシラン、テトラブチルシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルシランジ(2,4-ペンタンジオナート)、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン等、珪素水素化合物としては、テトラ水素化シラン、ヘキサ水素化ジシラン等、ハロゲン化珪素化合物としては、テトラクロロシラン、メチルトリクロロシラン、ジエチルジクロロシラン等を挙げることが出来、何れも本発明において好ましく用いることが出来る。これらを2種以上同時に混合して使用することも出来る。上記の珪素化合物は、取り扱い上の観点から珪素アルコキシド、アルキルシラン、珪素水素化合物が好ましく、腐食性、有害ガスの発生がなく、工程上の汚れなども少ないことから、特に珪素化合物として珪素アルコキシドが好ましい。 In the present invention, as a source gas containing a metal element, for example, as a silicon compound, tetraethylsilane, tetramethylsilane, tetraisopropylsilane, tetrabutylsilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, dimethyldimethoxy Silane, diethyldiethoxysilane, diethylsilanedi (2,4-pentanedionate), methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, and other silicon hydride compounds include tetrahydrogenated silane, hexahydrogenated Examples of the silicon halide compound such as disilane include tetrachlorosilane, methyltrichlorosilane, and diethyldichlorosilane, and any of these can be preferably used in the present invention. Two or more of these may be mixed and used at the same time. From the viewpoint of handling, the above silicon compounds are preferably silicon alkoxides, alkyl silanes, and silicon hydrogen compounds, and are not corrosive, do not generate harmful gases, and have little contamination in the process. preferable.
 またチタン化合物としては、有機チタン化合物、チタン水素化合物、ハロゲン化チタン等が挙げられ、有機チタン化合物としては、例えば、トリエトキシチタン、トリメトキシチタン、トリイソプロポキシチタン、トリブトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチルジメトキシチタン、エチルトリエトキシチタン、メチルトリイソプロポキシチタン、トリエチルチタン、トリイソプロピルチタン、トリブチルチタン、テトラエチルチタン、テトライソプロピルチタン、テトラブチルチタン、テトラジメチルアミノチタン、ジメチルチタンジ(2,4-ペンタンジオナート)、エチルチタントリ(2,4-ペンタンジオナート)、チタントリス(2,4-ペンタンジオナート)、チタントリス(アセトメチルアセタート)、トリアセトキシチタン、ジプロポキシプロピオニルオキシチタン等、ジブチリロキシチタン、チタン水素化合物としてはモノチタン水素化合物、ジチタン水素化合物等、ハロゲン化チタンとしては、トリクロロチタン、テトラクロロチタン等を挙げることが出来、何れも本発明において好ましく用いることが出来る。またこれらを2種以上同時に混合して使用することも出来る。 Examples of titanium compounds include organic titanium compounds, titanium hydrogen compounds, and titanium halides. Examples of organic titanium compounds include triethoxy titanium, trimethoxy titanium, triisopropoxy titanium, tributoxy titanium, and tetraethoxy titanium. , Tetraisopropoxy titanium, methyl dimethoxy titanium, ethyl triethoxy titanium, methyl triisopropoxy titanium, triethyl titanium, triisopropyl titanium, tributyl titanium, tetraethyl titanium, tetraisopropyl titanium, tetrabutyl titanium, tetradimethylamino titanium, dimethyl titanium di (2,4-pentanedionate), ethyltitanium tri (2,4-pentanedionate), titanium tris (2,4-pentanedionate), titanium tris (acetomethyl) SETATE), triacetoxytitanium, dipropoxypropionyloxytitanium, etc., dibutyryloxytitanium, titanium hydrogen compound as monotitanium hydrogen compound, dititanium hydrogen compound, etc., and halogenated titanium as trichlorotitanium, tetrachlorotitanium, etc. Any of these can be preferably used in the present invention. Two or more of these can be mixed and used at the same time.
 また錫化合物としては、有機錫化合物、錫水素化合物、ハロゲン化錫等であり、有機錫化合物としては、例えば、テトラエチル錫、テトラメチル錫、二酢酸ジ-n-ブチル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジエチルジエトキシ錫、トリイソプロピルエトキシ錫、ジエチル錫、ジメチル錫、ジイソプロピル錫、ジブチル錫、ジエトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチラート、錫ジアセトアセトナート、エチル錫アセトアセトナート、エトキシ錫アセトアセトナート、ジメチル錫ジアセトアセトナート等、錫水素化合物等、ハロゲン化錫としては、二塩化錫、四塩化錫等を挙げることができ、何れも本発明において好ましく用いることができる。また、これらを2種以上同時に混合して使用してもよい。 Examples of the tin compound include organic tin compounds, tin hydrogen compounds, tin halides, and the like. Examples of the organic tin compounds include tetraethyltin, tetramethyltin, di-n-butyltin diacetate, tetrabutyltin, and tetraoctyl. Tin, tetraethoxytin, methyltriethoxytin, diethyldiethoxytin, triisopropylethoxytin, diethyltin, dimethyltin, diisopropyltin, dibutyltin, diethoxytin, dimethoxytin, diisopropoxytin, dibutoxytin, tin dibutyrate, Tin diacetoacetonate, ethyltin acetoacetonate, ethoxytin acetoacetonate, dimethyltin diacetoacetonate, etc., tin hydride compounds, etc. Examples of tin halides include tin dichloride and tin tetrachloride. Any of these can be preferably used in the present invention. Two or more of these may be mixed and used at the same time.
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。 Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
 また、その他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエトキシド、バリウム2,2,6,6-テトラメチルヘプタンジオネート、ベリリウムアセチルアセトナート、ビスマスヘキサフルオロペンタンジオネート、ジメチルカドミウム、カルシウム2,2,6,6-テトラメチルヘプタンジオネート、クロムトリフルオロペンタンジオネート、コバルトアセチルアセトナート、銅ヘキサフルオロペンタンジオネート、マグネシウムヘキサフルオロペンタンジオネート-ジメチルエーテル錯体、ガリウムエトキシド、テトラエトキシゲルマン、テトラメトキシゲルマン、ハフニウムt-ブドキシド、ハフニウムエトキシド、インジウムアセチルアセトナート、インジウム2,6-ジメチルアミノヘプタンジオネート、フェロセン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジウムアセチルアセトナート、白金ヘキサフルオロペンタンジオネート、トリメチルシクロペンタジエニル白金、ロジウムジカルボニルアセチルアセトナート、ストロンチウム2,2,6,6-テトラメチルヘプタンジオネート、タンタルメトキシド、タンタルトリフルオロエトキシド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドオキシド、マグネシウムヘキサフルオロアセチルアセトナート、亜鉛アセチルアセトナート、ジエチル亜鉛、などが挙げられる。 Other organometallic compounds include, for example, antimony ethoxide, arsenic triethoxide, barium 2,2,6,6-tetramethylheptanedionate, beryllium acetylacetonate, bismuth hexafluoropentanedionate, dimethylcadmium, calcium 2,2,6,6-tetramethylheptanedionate, chromium trifluoropentanedionate, cobalt acetylacetonate, copper hexafluoropentanedionate, magnesium hexafluoropentanedionate-dimethyl ether complex, gallium ethoxide, tetraethoxygermane , Tetramethoxygermane, hafnium t-butoxide, hafnium ethoxide, indium acetylacetonate, indium 2,6-dimethylaminoheptane dione , Ferrocene, lanthanum isopropoxide, lead acetate, tetraethyl lead, neodymium acetylacetonate, platinum hexafluoropentanedionate, trimethylcyclopentadienylplatinum, rhodium dicarbonylacetylacetonate, strontium 2,2,6,6-tetra Examples include methyl heptanedionate, tantalum methoxide, tantalum trifluoroethoxide, tellurium ethoxide, tungsten ethoxide, vanadium triisopropoxide oxide, magnesium hexafluoroacetylacetonate, zinc acetylacetonate, diethylzinc, and the like.
 これらのうち、本発明においては、珪素化合物を用いるのが好ましく、珪素化合物から形成される酸化ケイ素、酸化窒化ケイ素又は窒化珪素が好ましい。 Among these, in the present invention, it is preferable to use a silicon compound, and silicon oxide, silicon oxynitride or silicon nitride formed from a silicon compound is preferable.
 これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。 These discharge gases are mixed with a discharge gas that tends to be in a plasma state, and the gas is sent to a plasma discharge generator.
 このような放電ガスとしては、窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 As such a discharge gas, nitrogen gas and / or 18th group atom of the periodic table, specifically helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置(プラズマ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガス全体に対し、放電ガスの割合を50%以上として反応性ガスを供給する。 The film is formed by mixing the discharge gas and the reactive gas and supplying the mixed gas as a mixed gas to a plasma discharge generator (plasma generator). Although the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas being 50% or more with respect to the entire mixed gas.
 例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。また、シラザン等を原料化合物として用いれば、酸化窒化珪素が生成する。 For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon oxide is generated. Further, if silazane or the like is used as a raw material compound, silicon oxynitride is generated.
 これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。 This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
 本発明において、金属酸化物及び金属窒化物の少なくとも一方を含む層は、好ましくは、酸化珪素膜であり、炭素含有量が1~30at%である酸化ケイ素膜であることが好ましい。本発明において炭素含有量(at%)は、原子数濃度%(atomic concentration)を表す。 In the present invention, the layer containing at least one of metal oxide and metal nitride is preferably a silicon oxide film, and is preferably a silicon oxide film having a carbon content of 1 to 30 at%. In the present invention, the carbon content (at%) represents the atomic concentration (atomic concentration).
 前記金属酸化物及び金属酸窒化物は、炭素含有量が上記の範囲であることにより、より柔軟で内部応力の小さな膜となり、また、大気圧プラズマ法による成膜レートも大きくできる。 The metal oxide and the metal oxynitride have a carbon content within the above range, so that the metal oxide and the metal oxynitride become a film that is more flexible and has low internal stress, and the film formation rate by the atmospheric pressure plasma method can be increased.
 大気圧プラズマCVD法を用いて薄膜を形成する場合、製造条件、又用いる薄膜形成ガス(原料ガス、添加ガス等の種類、比率等)によって、酸化珪素粒子の充填の程度、また混入する微量の不純物粒子等に差が生じる為、これらを調整して炭素含有量を調整する。これにより、物性、密度等が異なり、柔軟性も異なってくる。 When forming a thin film using the atmospheric pressure plasma CVD method, depending on the manufacturing conditions and the thin film forming gas used (type, ratio, etc. of source gas and additive gas), the degree of filling of silicon oxide particles and the amount of contamination Since there is a difference in impurity particles, etc., the carbon content is adjusted by adjusting these. Thereby, physical properties, density, and the like are different, and flexibility is also different.
 (X線反射率法)
 X線反射率法の概要は、X線回折ハンドブック 151ページ(理学電機株式会社編 2000年 国際文献印刷社)や化学工業1999年1月No.22を参照して行うことができる。
(X-ray reflectivity method)
The outline of the X-ray reflectivity method is described in page 151 of the X-ray diffraction handbook (Science Electric Co., Ltd., 2000, International Literature Printing Co., Ltd.) 22 can be performed.
 本発明に有用な測定方法の具体例を以下に示す。 Specific examples of measurement methods useful in the present invention are shown below.
 これは、表面が平坦な物質に非常に浅い角度で行線を入射させ測定を行う方法で、測定装置としては、マックサイエンス社製MXP21を用いて行う。X線源のターゲットには銅を用い、42kV、500mAで作動させる。インシデントモノクロメータには多層膜パラボラミラーを用いる。入射スリットは0.05mm×5mm、受光スリットは0.03mm×20mmを用いる。2θ/θスキャン方式で0から5°をステップ幅0.005°、1ステップ10秒のFT法にて測定を行う。得られた反射率曲線に対し、マックサイエンス社製Reflectivity Analysis Program Ver.1を用いてカーブフィッティングを行い、実測値とフィッティングカーブの残差平方和が最小になるように各パラメータを求める。各パラメータから積層膜の屈折率、厚さおよび密度を求めることができる。本発明における積層膜の膜厚評価も上記X線反射率測定より求めることができる。 This is a method in which row lines are incident on a material having a flat surface at a very shallow angle, and measurement is performed using MXP21 manufactured by Mac Science. Copper is used as the target of the X-ray source and it is operated at 42 kV and 500 mA. A multilayer parabolic mirror is used for the incident monochromator. The incident slit is 0.05 mm × 5 mm, and the light receiving slit is 0.03 mm × 20 mm. Measurement is performed by the FT method with a step width of 0.005 ° and a step of 10 seconds from 0 to 5 ° in the 2θ / θ scan method. With respect to the obtained reflectance curve, Reflectivity Analysis Program Ver. Curve fitting is performed using 1, and each parameter is obtained so that the residual sum of squares of the actual measurement value and the fitting curve is minimized. The refractive index, thickness and density of the laminated film can be obtained from each parameter. The film thickness evaluation of the laminated film in the present invention can also be obtained from the X-ray reflectivity measurement.
 酸化珪素膜の密度は、微量成分である炭素含有量と密接に相関があり、例えば、炭素原子濃度が低い(0.1at%未満)膜は密度が高い膜となるが、炭素原子濃度がこれよりも高い、1at%以上、30at%未満の膜は、膜密度もより低くより柔らかい組成物であり、応力緩和層として適する。 The density of the silicon oxide film is closely correlated with the carbon content, which is a trace component. For example, a film having a low carbon atom concentration (less than 0.1 at%) is a film having a high density. A film of 1 at% or more and less than 30 at%, which is higher than the above, is a softer composition having a lower film density and suitable as a stress relaxation layer.
 炭素含有量を示す原子数濃度%(at%)は公知の分析手段を用いて求めることができるが、本発明においては下記のXPS法によって算出されるもので、以下に定義される。 The atomic concentration% (at%) indicating the carbon content can be determined using a known analysis means, but in the present invention, it is calculated by the following XPS method and is defined below.
 原子数濃度%(atomic concentration)=炭素原子の個数/全原子の個数×100
 XPS表面分析装置は、本発明では、VGサイエンティフィックス社製ESCALAB-200Rを用いた。具体的には、X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV~1.7eVとなるように設定した。
Atomic concentration% = number of carbon atoms / number of all atoms × 100
As the XPS surface analyzer, ESCALAB-200R manufactured by VG Scientific, Inc. was used in the present invention. Specifically, Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The energy resolution was set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag3d5 / 2 peak.
 測定としては、先ず、結合エネルギー0eV~1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。 As a measurement, first, the range of binding energy from 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected.
 次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行い、各元素のスペクトルを測定した。 Next, with respect to all the detected elements except the etching ion species, the data acquisition interval was set to 0.2 eV, and the photoelectron peak giving the maximum intensity was subjected to narrow scan, and the spectrum of each element was measured.
 得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS-SCA-JAPAN製のCOMMON DATA PROCESSING SYSTEM (Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理を行い、各分析ターゲットの元素(炭素、酸素、ケイ素、チタン等)の含有率の値を原子数濃度(atomic concentration:at%)として求めた。 The obtained spectrum is COMMON DATA PROCESSING SYSTEM (Ver. 2.3 or later is preferable) manufactured by VAMAS-SCA-JAPAN in order not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer. After being transferred to the top, processing was performed with the same software, and the content value of each analysis target element (carbon, oxygen, silicon, titanium, etc.) was determined as atomic concentration (at%).
 定量処理を行う前に、各元素についてCount Scaleのキャリブレーションを行い、5ポイントのスムージング処理を行った。定量処理では、バックグラウンドを除去したピークエリア強度(cps*eV)を用いた。バックグラウンド処理には、Shirleyによる方法を用いた。また、Shirley法については、D.A.Shirley,Phys.Rev.,B5,4709(1972)を参考にすることができる。 Before performing the quantitative process, the calibration of the Count Scale was performed for each element, and a 5-point smoothing process was performed. In the quantitative process, the peak area intensity (cps * eV) from which the background was removed was used. For the background treatment, the method by Shirley was used. For the Shirley method, see D.C. A. Shirley, Phys. Rev. , B5, 4709 (1972).
 (応力緩和層の形成方法)
 本発明のガスバリア積層体の製造方法において、本発明に係る金属酸化物及び金属酸窒化物の少なくとも一方を含む層の形成に好適に用いることのできる大気圧プラズマCVD法について、更に詳細に説明する。
(Method for forming stress relaxation layer)
In the method for producing a gas barrier laminate of the present invention, an atmospheric pressure plasma CVD method that can be suitably used for forming a layer containing at least one of the metal oxide and the metal oxynitride according to the present invention will be described in more detail. .
 CVD法(化学的気相成長法)は、揮発・昇華した有機金属化合物が高温の支持体表面に付着し、熱により分解反応が起き、熱的に安定な無機物の薄膜が生成されるというものであり、このような通常のCVD法(熱CVD法とも称する)では、通常500℃以上の基板温度が必要であるため、プラスチック支持体への製膜には使用することが難しいが一方、プラズマCVD法は、支持体近傍の空間に電界を印加し、プラズマ状態となった気体が存在する空間(プラズマ空間)を発生させ、揮発・昇華した有機金属化合物がこのプラズマ空間に導入されて分解反応が起きた後に支持体上に吹きつけられることにより、無機物の薄膜を形成するというものである。プラズマ空間内では、数%の高い割合の気体がイオンと電子に電離しており、ガスの温度は低く保たれるものの、電子温度は非常な高温のため、この高温の電子、あるいは低温ではあるがイオン・ラジカルなどの励起状態のガスと接するために無機膜の原料である有機金属化合物は低温でも分解することができる。したがって、無機物を製膜する支持体についても低温化することができ、樹脂フィルム支持体上へも十分製膜することが可能な製膜方法である。 In CVD (chemical vapor deposition), volatilized and sublimated organometallic compounds adhere to the surface of a high-temperature support, causing a thermal decomposition reaction to produce a thermally stable inorganic thin film. In such a normal CVD method (also referred to as a thermal CVD method), since a substrate temperature of 500 ° C. or higher is usually required, it is difficult to use for forming a film on a plastic support. In the CVD method, an electric field is applied to the space in the vicinity of the support to generate a space (plasma space) in which a gas is present (plasma space). Volatilized and sublimated organometallic compounds are introduced into the plasma space and decomposed. After the occurrence of this, it is sprayed onto the support to form an inorganic thin film. In the plasma space, a high percentage of gas is ionized into ions and electrons, and although the temperature of the gas is kept low, the electron temperature is very high, so this high temperature electron or low temperature Is in contact with an excited state gas such as ions and radicals, so that the organometallic compound as the raw material of the inorganic film can be decomposed even at a low temperature. Therefore, it is a film forming method that can lower the temperature of the support on which the inorganic material is formed and can sufficiently form the film on the resin film support.
 プラズマ放電処理装置においては、ガス供給手段から、前記金属を含む原料ガス、分解ガスを適宜選択して、またこれらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合してプラズマ放電発生装置にガスを送りこむことで前記の層を得ることができる。 In the plasma discharge treatment apparatus, the source gas containing metal and the decomposition gas are appropriately selected from the gas supply means, and a discharge gas that tends to be in a plasma state is mainly mixed with these reactive gases. The above layer can be obtained by feeding a gas into the plasma discharge generator.
 大気圧プラズマCVD法において、プラズマ放電処理は、大気圧もしくはその近傍の圧力下で行われるが、大気圧もしくはその近傍の圧力とは20kPa~110kPa程度であり、本発明に記載の良好な効果を得るためには、93kPa~104kPaが好ましい。 In the atmospheric pressure plasma CVD method, the plasma discharge treatment is performed under atmospheric pressure or a pressure in the vicinity thereof, but the atmospheric pressure or the pressure in the vicinity thereof is about 20 kPa to 110 kPa, and the good effects described in the present invention are obtained. In order to obtain it, 93 kPa to 104 kPa is preferable.
 放電条件は、放電空間に、前記第1の高周波電界と第2の高周波電界とを重畳し、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、且つ、前記第1の高周波電界の強さV1、前記第2の高周波電界の強さV2および放電開始電界の強さIVとの関係が、
V1≧IV>V2または V1>IV≧V2 を満たし、
前記第2の高周波電界の出力密度が、1W/cm以上である。
The discharge condition is such that the first high-frequency electric field and the second high-frequency electric field are superimposed on the discharge space, the frequency ω2 of the second high-frequency electric field is higher than the frequency ω1 of the first high-frequency electric field, and The relationship between the strength V1 of the first high-frequency electric field, the strength V2 of the second high-frequency electric field, and the strength IV of the discharge start electric field is:
V1 ≧ IV> V2 or V1> IV ≧ V2 is satisfied,
The output density of the second high frequency electric field is 1 W / cm 2 or more.
 高周波とは、少なくとも40kHzの周波数を有するものを言う。 «High frequency means that has a frequency of at least 40 kHz.
 重畳する高周波電界が、ともにサイン波である場合、第1の高周波電界の周波数ω1と該周波数ω1より高い第2の高周波電界の周波数ω2とを重ね合わせた成分となり、その波形は周波数ω1のサイン波上に、それより高い周波数ω2のサイン波が重なった鋸歯状の波形となる。 When the superposed high-frequency electric field is both a sine wave, the frequency ω1 of the first high-frequency electric field and the frequency ω2 of the second high-frequency electric field higher than the frequency ω1 are superimposed, and the waveform is a sine of the frequency ω1. A sawtooth waveform in which a sine wave having a higher frequency ω2 is superimposed on the wave is obtained.
 放電開始電界の強さとは、実際の薄膜形成方法に使用される放電空間(電極の構成など)および反応条件(ガス条件など)において放電を起こすことの出来る最低電界強度のことを指す。放電開始電界強度は、放電空間に供給されるガス種や電極の誘電体種または電極間距離などによって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界強度に支配される。 The strength of the electric field at which discharge starts is the lowest electric field strength that can cause discharge in the discharge space (electrode configuration, etc.) and reaction conditions (gas conditions, etc.) used in the actual thin film formation method. The discharge start electric field strength varies somewhat depending on the type of gas supplied to the discharge space, the dielectric type of the electrode, or the distance between the electrodes, but is controlled by the discharge start electric field strength of the discharge gas in the same discharge space.
 上記でサイン波等の連続波の重畳について説明したが、これに限られるものではなく、両方パルス波であっても、一方が連続波でもう一方がパルス波であってもかまわない。また、更に第3の電界を有していてもよい。 Although the superposition of continuous waves such as sine waves has been described above, the present invention is not limited to this, and both pulse waves, one of them may be continuous, and the other may be pulse waves. Further, it may have a third electric field.
 高周波電界を、同一放電空間に印加する具体的な方法としては、対向電極を構成する第1電極に周波数ω1であって電界強度V1である第1の高周波電界を印加する第1電源を接続し、第2電極に周波数ω2であって電界強度V2である第2の高周波電界を印加する第2電源を接続した大気圧プラズマ放電処理装置を用いることである。 As a specific method for applying a high-frequency electric field to the same discharge space, a first power source for applying a first high-frequency electric field having a frequency ω1 and an electric field strength V1 is connected to the first electrode constituting the counter electrode. The use of an atmospheric pressure plasma discharge treatment apparatus in which a second power source for applying a second high-frequency electric field having a frequency ω2 and an electric field strength V2 is connected to the second electrode.
 上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと反応性ガスとを供給するガス供給手段を備える。更に、電極の温度を制御する電極温度制御手段を有することが好ましい。 The above atmospheric pressure plasma discharge treatment apparatus includes gas supply means for supplying a discharge gas and a reactive gas between the counter electrodes. Furthermore, it is preferable to have an electrode temperature control means for controlling the temperature of the electrode.
 また、第1電極、第1電源またはそれらの間の何れかには第1フィルタを、また第2電極、第2電源またはそれらの間の何れかには第2フィルタを接続することが好ましく、第1フィルタは第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルタはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする機能が備わっているものを使用する。ここで、通過しにくいとは、好ましくは、電流の20%以下、より好ましくは10%以下しか通さないことをいう。逆に通過しやすいとは、好ましくは電流の80%以上、より好ましくは90%以上を通すことをいう。 Further, it is preferable to connect the first filter to the first electrode, the first power source or any of them, and connect the second filter to the second electrode, the second power source or any of them, The first filter facilitates the passage of the first high-frequency electric field current from the first power source to the first electrode, grounds the second high-frequency electric field current, and the second filter from the second power source to the first power source. It makes it difficult to pass the current of the high frequency electric field. On the other hand, the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, and the second power from the first power source. A power supply having a function of making it difficult to pass the current of the first high-frequency electric field to the power supply is used. Here, being difficult to pass means that it preferably passes only 20% or less of the current, more preferably 10% or less. On the contrary, being easy to pass means preferably passing 80% or more of the current, more preferably 90% or more.
 更に、大気圧プラズマ放電処理装置の第1電源は、第2電源より高い高周波電界強度を印加出来る能力を有していることが好ましい。 Furthermore, it is preferable that the first power source of the atmospheric pressure plasma discharge treatment apparatus has a capability of applying a high-frequency electric field strength higher than that of the second power source.
 ここで、本発明でいう高周波電界強度(印加電界強度)と放電開始電界強度は、下記の方法で測定されたものをいう。 Here, the high-frequency electric field strength (applied electric field strength) and the discharge starting electric field strength referred to in the present invention are those measured by the following method.
 高周波電界強度V1及びV2(単位:kV/mm)の測定方法:
 各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、電界強度を測定する。
Measuring method of high-frequency electric field strengths V1 and V2 (unit: kV / mm):
A high-frequency voltage probe (P6015A) is installed in each electrode section, and the output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength is measured.
 放電開始電界強度IV(単位:kV/mm)の測定方法:
 電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開始電界強度IVと定義する。測定器は上記高周波電界強度測定と同じである。
Measuring method of electric discharge starting electric field intensity IV (unit: kV / mm):
A discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the electric field strength at which discharge starts is defined as a discharge starting electric field strength IV. The measuring instrument is the same as the high frequency electric field strength measurement.
 所定の放電条件をとることにより、例え窒素ガスのように放電開始電界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持出来、高性能な薄膜形成を行うことが出来る。 By adopting predetermined discharge conditions, even a discharge gas with a high discharge start electric field strength such as nitrogen gas can start discharge, maintain a high density and stable plasma state, and perform high-performance thin film formation. I can do it.
 上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp-p)は3.7kV/mm程度であり、従って、上記の関係において、第1の高周波電界強度を、V1≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることが出来る。 When the discharge gas is nitrogen gas according to the above measurement, the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first high frequency electric field strength is By applying V1 ≧ 3.7 kV / mm, the nitrogen gas can be excited to be in a plasma state.
 ここで、第1電源の周波数としては、200kHz以下が好ましく用いることが出来る。またこの電界波形としては、連続波でもパルス波でもよい。下限は40kHz程度が望ましい。 Here, the frequency of the first power source is preferably 200 kHz or less. The electric field waveform may be a continuous wave or a pulse wave. The lower limit is preferably about 40 kHz.
 一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。 On the other hand, the frequency of the second power source is preferably 800 kHz or more. The higher the frequency of the second power source, the higher the plasma density, and a dense and high-quality thin film can be obtained. The upper limit is preferably about 200 MHz.
 このような2つの電源から高周波電界を印加することは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くできることが本発明の重要な点である。 The application of a high frequency electric field from such two power sources is necessary to start the discharge of a discharge gas having a high discharge start electric field strength by the first high frequency electric field, and the high frequency of the second high frequency electric field. It is an important point of the present invention that the plasma density can be increased by the high power density.
 また、第1の高周波電界の出力密度を高くすることで、放電の均一性を維持したまま、第2の高周波電界の出力密度を向上させることができる。これにより、更なる均一高密度プラズマが生成できる。 Also, by increasing the output density of the first high-frequency electric field, it is possible to improve the output density of the second high-frequency electric field while maintaining the uniformity of discharge. Thereby, a further uniform high-density plasma can be generated.
 本発明に用いられる大気圧プラズマ放電処理装置において、前記第1フィルタは、第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルタはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする。本発明において、かかる性質のあるフィルタであれば制限無く使用出来る。 In the atmospheric pressure plasma discharge processing apparatus used in the present invention, the first filter facilitates passage of the current of the first high-frequency electric field from the first power source to the first electrode, and grounds the current of the second high-frequency electric field. Thus, it is difficult to pass the current of the second high-frequency electric field from the second power source to the first power source. On the other hand, the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, and the second power from the first power source. The current of the first high-frequency electric field to the power supply is made difficult to pass. In the present invention, any filter having such properties can be used without limitation.
 例えば、第1フィルタとしては、第2電源の周波数に応じて数10pF~数万pFのコンデンサ、もしくは数μH程度のコイルを用いることが出来る。第2フィルタとしては、第1電源の周波数に応じて10μH以上のコイルを用い、これらのコイルまたはコンデンサを介してアース接地することでフィルタとして使用出来る。 For example, as the first filter, a capacitor of several tens of pF to tens of thousands of pF or a coil of about several μH can be used depending on the frequency of the second power source. As the second filter, a coil of 10 μH or more is used according to the frequency of the first power supply, and it can be used as a filter by grounding through these coils or capacitors.
 供給電力は高いほど良く、第1電源は1W/cm以上が好ましく、2W/cm以上がより好ましく、5W/cm以上が更に好ましい。第2電源は、1W/cm以上が好ましく、5W/cm以上がより好ましく、11W/cm以上が更に好ましい。 Supply power higher well, the first power source is preferably 1W / cm 2 or more, 2W / cm 2 or more is more preferable, 5W / cm 2 or more is more preferable. The second power source is preferably 1 W / cm 2 or more, more preferably 5 W / cm 2 or more, and even more preferably 11 W / cm 2 or more.
 また、放電ガスとしては、窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。反応性ガスとしては珪素化合物を珪素酸化物にできれば限定はないが、酸素、水が好ましい。 Further, as the discharge gas, nitrogen gas and / or 18th group atom of the periodic table, specifically helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost. The reactive gas is not limited as long as the silicon compound can be changed to silicon oxide, but oxygen and water are preferable.
 本発明に適用できる大気圧プラズマ放電処理装置としては、例えば、特開2004-68143号公報、同2003-49272号公報、国際特許第02/48428号パンフレット等に記載されている大気圧プラズマ放電処理装置を挙げることができる。 As an atmospheric pressure plasma discharge treatment apparatus applicable to the present invention, for example, atmospheric pressure plasma discharge treatment described in JP-A-2004-68143, 2003-49272, International Patent No. 02/48428, etc. A device can be mentioned.
 また、大気圧プラズマ放電処理装置に設置する電源としては、神鋼電機 SPG50-4500(周波数50kHz)、ハイデン研究所 PHF-6k(100kHz)、パール工業 CF-2000-200k(200kHz)、CF-2000-400k(400kHz)、CF-2000-800k(800kHz)、CF-2000-2M(2MHz)、CF-2000-13M(13.56MHz)、CF-2000-27M(27MHz)、CF-2000-150M(150MHz)等の市販のものが挙げられ、いずれも好ましく使用できる。 As for the power source installed in the atmospheric pressure plasma discharge treatment apparatus, Shinko Electric SPG50-4500 (frequency 50 kHz), Hayden Laboratory PHF-6k (100 kHz), Pearl Industry CF-2000-200k (200 kHz), CF-2000- 400k (400kHz), CF-2000-800k (800kHz), CF-2000-2M (2MHz), CF-2000-13M (13.56MHz), CF-2000-27M (27MHz), CF-2000-150M (150MHz) ) And the like, and any of them can be preferably used.
 〔バリア層〕
 本発明におけるバリア層は、珪素原子および酸素原子を含有し、酸素及び水蒸気の透過を阻止する膜で、構成する材料として具体的には、珪素を有する無機酸化物が好ましく、珪素酸窒化物層を挙げることができる。
[Barrier layer]
The barrier layer in the present invention is a film that contains silicon atoms and oxygen atoms and prevents the permeation of oxygen and water vapor. Specifically, the constituent material is preferably an inorganic oxide containing silicon, and a silicon oxynitride layer Can be mentioned.
 この様な、バリア層により、JISK7129B法に従って測定した水蒸気透過率が、10-4g/(m・24h)以下、好ましくは10-5g/(m・24h)以下であり、酸素透過率が0.01cm/(m・24h・atm)以下、好ましくは0.001cm/(m・24h・atm)以下であるバリア性に優れたガスバリア積層体が得られる。 With such a barrier layer, the water vapor transmission rate measured according to the JISK7129B method is 10 −4 g / (m 2 · 24 h) or less, preferably 10 −5 g / (m 2 · 24 h) or less, rate is 0.01cm 3 / (m 2 · 24h · atm) or less, preferably 0.001cm 3 / (m 2 · 24h · atm) or less is barrier excellent in gas barrier layered product is obtained.
 本発明のガスバリア積層体(バリアフィルム)の水蒸気透過度としては、有機ELディスプレイや高精彩カラー液晶ディスプレイ等の高度の水蒸気バリア性を必要とする用途に用いる場合、特に有機ELディスプレイ用途の場合、極わずかであっても、成長するダークスポットが発生し、ディスプレイの表示寿命が極端に短くなる場合があるため、JISK7129B法に従って測定した水蒸気透過度は前記の値以下であることが好ましい。 As the water vapor permeability of the gas barrier laminate (barrier film) of the present invention, when used for applications requiring high water vapor barrier properties such as organic EL displays and high-definition color liquid crystal displays, particularly for organic EL display applications, Even if it is extremely small, a growing dark spot may be generated and the display life of the display may be extremely shortened. Therefore, the water vapor permeability measured according to the JISK7129B method is preferably not more than the above value.
 この様なバリア性を達成するためには、バリア層表面の表面粗さが、JIS B0601:2001に準じて求めた粗さ曲線の最大断面高さRt(p)で、10nm以上、30nm以下であることが好ましい。 In order to achieve such a barrier property, the surface roughness of the barrier layer surface is 10 nm or more and 30 nm or less in terms of the maximum cross-sectional height Rt (p) of the roughness curve obtained according to JIS B0601: 2001. Preferably there is.
 (バリア層の形成方法)
 本発明のガスバリア積層体の製造は、基板上の少なくとも一方の面に、前記のように応力緩和層として、金属酸化物及び金属窒化物の少なくとも一方を含む層を大気圧プラズマCVD法で形成した上に、少なくとも1種の珪素化合物を含有する液体を20℃~120℃で塗布(ウェットプロセス)、乾燥させ、珪素化合物薄膜を形成して前記珪素化合物薄膜に対し改質処理を行って、珪素酸窒化物の薄膜を積層することを特徴とする。
(Method for forming barrier layer)
In the production of the gas barrier laminate of the present invention, a layer containing at least one of a metal oxide and a metal nitride was formed on at least one surface of a substrate as a stress relaxation layer by atmospheric pressure plasma CVD as described above. On top of this, a liquid containing at least one silicon compound is applied at 20 ° C. to 120 ° C. (wet process) and dried to form a silicon compound thin film, and the silicon compound thin film is subjected to a modification treatment, and silicon A thin film of oxynitride is laminated.
 ウェットプロセス、例えば塗布により形成する珪素化合物を含有する液体としては、ポリシラザン含有塗布液が好ましい。 As the liquid containing a silicon compound formed by a wet process, for example, application, a polysilazane-containing application liquid is preferable.
 (ポリシラザン含有塗布液によるバリア層の形成)
 本発明に係るバリア層は、大気圧プラズマCVD法で形成した応力緩和層上にポリシラザン化合物を含有する塗布液を積層塗布することにより形成される。
(Formation of barrier layer with polysilazane-containing coating solution)
The barrier layer according to the present invention is formed by laminating and applying a coating liquid containing a polysilazane compound on a stress relaxation layer formed by an atmospheric pressure plasma CVD method.
 塗布方法としては、任意の適切な方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。塗布厚さは、目的に応じて適切に設定され得る。例えば、塗布厚さは、乾燥後の厚さが好ましくは1nm~100μm程度、さらに好ましくは10nm~10μm程度、最も好ましくは10nm~1μm程度となるように設定され得る。 Any appropriate method can be adopted as a coating method. Specific examples include a spin coating method, a roll coating method, a flow coating method, an ink jet method, a spray coating method, a printing method, a dip coating method, a casting film forming method, a bar coating method, and a gravure printing method. The coating thickness can be appropriately set according to the purpose. For example, the coating thickness can be set so that the thickness after drying is preferably about 1 nm to 100 μm, more preferably about 10 nm to 10 μm, and most preferably about 10 nm to 1 μm.
 本発明で用いられる「ポリシラザン」とは、珪素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。 The “polysilazane” used in the present invention is a polymer having a silicon-nitrogen bond, and is composed of Si—N, Si—H, N—H, etc. SiO 2 , Si 3 N 4 and both intermediate solid solutions SiO x N y. Such as a ceramic precursor inorganic polymer.
 フィルム基板を損なわないように塗布するためには、比較的低温でセラミック化してシリカに変性する化合物がよく、例えば、特開平8-112879号公報に記載の下記一般式(1)で表される単位からなる主骨格を有する化合物が好ましい。 In order not to damage the film substrate, a compound which is converted to silica by being ceramicized at a relatively low temperature is preferable. For example, it is represented by the following general formula (1) described in JP-A-8-112879. A compound having a main skeleton composed of units is preferred.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基またはアルコキシ基を表す。 In the general formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. .
 本発明では、得られるガスバリア層としての緻密性の観点からは、R、R、及びRの全てが水素原子であるパーヒドロポリシラザンが特に好ましい。 In the present invention, perhydropolysilazane in which all of R 1 , R 2 , and R 3 are hydrogen atoms is particularly preferable from the viewpoint of the denseness as a gas barrier layer to be obtained.
 一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基板との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。 On the other hand, the organopolysilazane in which a part of the hydrogen atom bonded to Si is substituted with an alkyl group or the like has an improved adhesion to the base substrate by having an alkyl group such as a methyl group, and is hard. The ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. These perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.
 パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。これらは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。 Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. The number average molecular weight (Mn) is about 600 to 2000 (polystyrene conversion), and there are liquid or solid substances, and the state varies depending on the molecular weight. These are marketed in a solution state dissolved in an organic solvent, and the commercially available product can be used as it is as a polysilazane-containing coating solution.
 低温でセラミック化するポリシラザンの他の例としては、上記一般式(1)で表される単位からなる主骨格を有するポリシラザンに、ケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(例えば、特開平5-238827号公報参照)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(例えば、特開平6-122852号公報参照)、アルコールを反応させて得られるアルコール付加ポリシラザン(例えば、特開平6-240208号公報参照)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(例えば、特開平6-299118号公報参照)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(例えば、特開平6-306329号公報参照)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(例えば、特開平7-196986号公報参照)等が挙げられる。 As another example of polysilazane which becomes ceramic at low temperature, a silicon alkoxide-added polysilazane obtained by reacting a silicon alkoxide with a polysilazane having a main skeleton composed of a unit represented by the above general formula (1) (for example, Japanese Patent Laid-Open No. Hei. No. 5-238827), glycidol-added polysilazane obtained by reacting glycidol (for example, see JP-A-6-122852), alcohol-added polysilazane obtained by reacting alcohol (for example, JP-A-6-240208) A metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (see, for example, JP-A-6-299118), and an acetylacetonate complex obtained by reacting a metal-containing acetylacetonate complex Additional polysilazanes (eg, Unexamined see JP 6-306329), fine metal particles added polysilazane obtained by adding metal particles (e.g., Japanese Unexamined see JP 7-196986), and the like.
 更には、上記ポリシラザンの他には、シルセスキオキサンも用いることができる。シルセスキオキサンとしては、例えば、Mayaterials社製Q8シリーズのOctakis(tetramethylammonium)pentacyclo-octasiloxane-octakis(yloxide)hydrate;Octa(tetramethylammonium)silsesquioxane、Octakis(dimethylsiloxy)octasilsesquioxane、Octa[[3-[(3-ethyl-3-oxetanyl)methoxy]propyl]dimethylsiloxy] octasilsesquioxane;Octaallyloxetane silsesquioxane、Octa[(3-Propylglycidylether)dimethylsiloxy] silsesquioxane;Octakis[[3-(2,3-epoxypropoxy)propyl]dimethylsiloxy]octasilsesquioxane、Octakis[[2-(3,4-epoxycyclohexyl)ethyl]dimethylsiloxy]octasilsesquioxane、Octakis[2-(vinyl)dimethylsiloxy]silsesquioxane;Octakis(dimethylvinylsiloxy)octasilsesquioxane、Octakis[(3-hydroxypropyl)dimethylsiloxy]octasilsesquioxane、Octa[(methacryloylpropyl)dimethylsilyloxy]silsesquioxane Octakis[(3-methacryloxypropyl)dimethylsiloxy]octasilsesquioxane、等の化合物が挙げられる。 Furthermore, in addition to the above polysilazane, silsesquioxane can also be used. The silsesquioxanes such, Mayaterials Co. Q8 series of Octakis (tetramethylammonium) pentacyclo-octasiloxane-octakis (yloxide) hydrate; Octa (tetramethylammonium) silsesquioxane, Octakis (dimethylsiloxy) octasilsesquioxane, Octa [[3 - [(3- ethyl-3-oxyethyl) methoxy] propyl] dimethylsiloxy] octasilsesquioxane; Octalyloxetanes silsquioxane, Octa [(3-Propylglycidylethyl) ) Dimethylsiloxy] silsesquioxane; Octakis [[3- (2,3-epoxypropoxy) propyl] dimethylsiloxy] octasilsesquioxane, Octakis [[2- (3,4-epoxycyclohexyl) ethyl] dimethylsiloxy] octasilsesquioxane, Octakis [2- (vinyl) dimethylsiloxy] silsesquioxane; Octakis (dimethylvinylsilyloxy) octasisilsesquioxane, Octakis [(3-hydroxypropyloyl) dimethylsiloxy] octasilsesquixane, methacryloylpropyl) dimethylsilyloxy] silsesquioxane Octakis [(3-methacryloxypropyl) dimethylsiloxy] octasilsesquioxane, the compounds of the like.
 ポリシラザンを含有する塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応するようなアルコール系や水分を含有するものを用いることは好ましくない。従って、具体的には、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒や、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。詳しくは、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の炭化水素、塩化メチレン、トリコロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等がある。これらの有機溶媒は、ポリシラザンの溶解度や有機溶媒の蒸発速度等の特性にあわせて選択し、複数の有機溶媒を混合してもよい。 As the organic solvent for preparing a coating liquid containing polysilazane, it is not preferable to use an alcohol or water-containing one that easily reacts with polysilazane. Therefore, specifically, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers can be used. . Specifically, there are hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and turben, halogen hydrocarbons such as methylene chloride and trichloroethane, ethers such as dibutyl ether, dioxane and tetrahydrofuran. These organic solvents may be selected according to characteristics such as the solubility of polysilazane and the evaporation rate of the organic solvent, and a plurality of organic solvents may be mixed.
 ポリシラザン含有の塗布液中におけるポリシラザン濃度は、目的とするバリア層の膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。 The polysilazane concentration in the polysilazane-containing coating solution is preferably about 0.2 to 35% by mass, although it varies depending on the film thickness of the target barrier layer and the pot life of the coating solution.
 ポリシラザン含有の塗布液中には、珪素酸窒素化合物への転化を促進するため、アミンや金属の触媒を添加することもできる。具体的には、AZエレクトロニックマテリアルズ(株)製のアクアミカ NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL150A、NP110、NP140、SP140等が挙げられる。 In the polysilazane-containing coating solution, an amine or metal catalyst may be added to promote conversion to a silicon silicate nitrogen compound. Specific examples include Aquamica NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials.
 (バリア層の有機溶媒、水分除去操作)
 本発明に係るポリシラザン含有の塗布液により形成されたバリア層は、改質処理前または改質処理中に水分が除去されていることが好ましい。そのために、バリア層中の有機溶媒の除去を目的とする第一工程と、それに続くバリア層中の水分の除去を目的とする第二工程とに分かれていることが好ましい。
(Operation for removing organic solvent and moisture from barrier layer)
The barrier layer formed by the polysilazane-containing coating solution according to the present invention preferably has moisture removed before or during the modification treatment. Therefore, it is preferable to divide into the 1st process aiming at the removal of the organic solvent in a barrier layer, and the subsequent 2nd process aiming at the removal of the water | moisture content in a barrier layer.
 大気圧プラズマCVD法によりドライプロセスにより応力緩和層を形成する本発明においては、応力緩和層自体の、また、基板や下層膜吸着水を受けにくいためこの点好ましいと考えられる。 In the present invention in which the stress relaxation layer is formed by a dry process by the atmospheric pressure plasma CVD method, it is considered preferable in this respect because the stress relaxation layer itself and the substrate or the lower layer film adsorbed water are hardly received.
 第一工程においては、主に有機溶媒を取り除くため、乾燥条件を熱処理等の方法で適宜決めることができ、このときに水分が除去される条件にあってもよい。熱処理温度は迅速処理の観点から高い温度であることが好ましいが、樹脂フィルム基板に対する熱ダメージを考慮し、温度と処理時間を適宜決定することが好ましい。例えば、樹脂基板として、ガラス転位温度(Tg)が70℃のポリエチレンテレフタレート基板を用いる場合には、熱処理温度は200℃以下を設定することができる。処理時間は溶媒が除去され、かつ基板への熱ダメージが少なくなるように短時間に設定することが好ましく、熱処理温度が200℃以下であれば30分以内に設定することができる。 In the first step, in order to mainly remove the organic solvent, the drying conditions can be appropriately determined by a method such as heat treatment, and at this time, the moisture may be removed. The heat treatment temperature is preferably a high temperature from the viewpoint of rapid processing, but it is preferable to appropriately determine the temperature and treatment time in consideration of thermal damage to the resin film substrate. For example, when a polyethylene terephthalate substrate having a glass transition temperature (Tg) of 70 ° C. is used as the resin substrate, the heat treatment temperature can be set to 200 ° C. or less. The treatment time is preferably set to a short time so that the solvent is removed and thermal damage to the substrate is reduced. If the heat treatment temperature is 200 ° C. or less, the treatment time can be set within 30 minutes.
 第二工程は、バリア層中の水分を取り除くための工程で、水分を除去する方法としては低湿度環境に維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は-8℃(温度25℃/湿度10%)以下、さらに好ましい露点温度は-31℃(温度25℃/湿度1%)以下であり、維持される時間はバリア層の膜厚によって適宜設定することが好ましい。バリア層の膜厚が1.0μm以下の条件においては、露点温度は-8℃以下で、維持される時間は5分以上であることが好ましい。また、水分を取り除きやすくするため、減圧乾燥してもよい。減圧乾燥における圧力は常圧~0.1MPaを選ぶことができる。 The second step is a step for removing moisture in the barrier layer, and the method for removing moisture is preferably in the form of dehumidification while maintaining a low humidity environment. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. A preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is −8 ° C. (temperature 25 ° C./humidity 10%) or lower, and a more preferable dew point temperature is −31 ° C. (temperature 25 ° C./temperature). (Humidity 1%) or less, and the maintained time is preferably set appropriately depending on the thickness of the barrier layer. Under the condition that the thickness of the barrier layer is 1.0 μm or less, it is preferable that the dew point temperature is −8 ° C. or less and the maintaining time is 5 minutes or more. Moreover, you may dry under reduced pressure in order to make it easy to remove a water | moisture content. The pressure in the vacuum drying can be selected from normal pressure to 0.1 MPa.
 第一工程の条件に対する第二工程の好ましい条件としては、例えば、第一工程において温度60~150℃、処理時間1分~30分間で溶媒を除去したときには、第二工程の露点は4℃以下で、処理時間は5分~120分により水分を除去する条件を選ぶことができる。第一工程と第二工程の区分は露点の変化で区別することができ、工程環境の露点の差が10℃以上変わることで区分ができる。 As a preferable condition of the second step with respect to the condition of the first step, for example, when the solvent is removed at a temperature of 60 to 150 ° C. and a treatment time of 1 to 30 minutes in the first step, the dew point of the second step is 4 ° C. or less. The treatment time can be selected from 5 minutes to 120 minutes to remove moisture. The first process and the second process can be distinguished by a change in dew point, and the difference can be made by changing the dew point of the process environment by 10 ° C. or more.
 本発明に係るバリア層は、第二工程により水分が取り除かれた後も、その状態を維持しながら改質処理を施すことが好ましい。 The barrier layer according to the present invention is preferably subjected to a modification treatment while maintaining its state even after moisture is removed in the second step.
 (バリア層の含水量)
 本発明に係るバリア層の含水率は、以下に示す分析方法に従って測定することができる。
(Water content of the barrier layer)
The moisture content of the barrier layer according to the present invention can be measured according to the analysis method shown below.
 ヘッドスペース-ガスクロマトグラフ/質量分析法
 装置:HP6890GC/HP5973MSD
 オーブン:40℃(2min)、その後、10℃/minの速度で150℃まで昇温
 カラム:DB-624(0.25mmid×30m)
 注入口:230℃
 検出器:SIM m/z=18
 HS条件:190℃・30min
 本発明におけるバリア層中の含水率は、上記の分析方法により得られる含水量から、バリア層の体積で除した値として定義され、第二工程により水分が取り除かれた状態においては、好ましくは0.1%以下であり、さらに好ましい含水率は、0.01%以下(検出限界以下)である。
Headspace-gas chromatograph / mass spectrometry instrument: HP6890GC / HP5973MSD
Oven: 40 ° C. (2 min), then heated to 150 ° C. at a rate of 10 ° C./min Column: DB-624 (0.25 mm × 30 m)
Inlet: 230 ° C
Detector: SIM m / z = 18
HS condition: 190 ° C, 30min
The moisture content in the barrier layer in the present invention is defined as a value obtained by dividing the moisture content obtained by the above analysis method by the volume of the barrier layer, and is preferably 0 in a state where moisture is removed by the second step. 0.1% or less, and a more preferable water content is 0.01% or less (below the detection limit).
 本発明においては、改質処理前、あるいは改質処理中に水分を除去することが、シラノールに転化したバリア層の脱水反応を促進する観点から好ましい形態である。 In the present invention, it is preferable to remove water before or during the reforming treatment from the viewpoint of promoting the dehydration reaction of the barrier layer converted to silanol.
 〔バリア層の改質処理〕
 本発明における改質処理とは、ポリシラザン化合物の珪素酸窒化物への転化反応をいう。
[Modification of barrier layer]
The modification treatment in the present invention refers to a conversion reaction of a polysilazane compound to silicon oxynitride.
 本発明における改質処理は、バリア層の転化反応に基づく公知の方法を選ぶことができる。ポリシラザン化合物の置換反応による珪素酸窒化物膜の形成には450℃以上の高温が必要であり、プラスチック等のフレキシブル基板においては、適応が難しい。 For the modification treatment in the present invention, a known method based on the conversion reaction of the barrier layer can be selected. The formation of the silicon oxynitride film by the substitution reaction of the polysilazane compound requires a high temperature of 450 ° C. or higher, and is difficult to adapt to a flexible substrate such as plastic.
 従って、本発明のガスバリア積層体を作製するに際しては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマやオゾンや紫外線を使う転化反応が好ましい。 Therefore, in producing the gas barrier laminate of the present invention, from the viewpoint of adapting to a plastic substrate, a conversion reaction using plasma, ozone, or ultraviolet rays that can be converted at a lower temperature is preferable.
 (プラズマ処理)
 改質処理として用いることのできるプラズマ処理としては、公知の方法を用いることができるが、前述の大気圧プラズマ処理が好ましい。
(Plasma treatment)
As the plasma treatment that can be used as the modification treatment, a known method can be used, but the aforementioned atmospheric pressure plasma treatment is preferable.
 (紫外線照射処理)
 本発明において、改質処理の方法の1つとして、紫外線照射による処理も好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸化窒化珪素膜を形成することが可能である。
(UV irradiation treatment)
In the present invention, treatment by ultraviolet irradiation is also preferable as one of the modification treatment methods. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and can form a silicon oxide film or silicon oxynitride film having high density and insulation at low temperatures. It is.
 この紫外線照射により、基板が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られるセラミックス膜が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。 The substrate is heated by this ultraviolet irradiation, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated, so that polysilazane is excited and polysilazane ceramics. Is promoted, and the resulting ceramic film becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
 本発明に係る方法では、常用されているいずれの紫外線発生装置を使用することが可能である。 In the method according to the present invention, any commonly used ultraviolet ray generator can be used.
 なお、本発明でいう紫外線とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~350nmの紫外線を用いる。 The ultraviolet ray referred to in the present invention generally means an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 350 nm. Use ultraviolet light.
 紫外線の照射は、照射されるバリア層を担持している基板がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。 For the irradiation of ultraviolet rays, it is preferable to set the irradiation intensity and the irradiation time within a range in which the substrate carrying the barrier layer to be irradiated is not damaged.
 基板としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基板表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基板-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 Taking the case of using a plastic film as the substrate, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the substrate surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm 2 . The distance between the substrate and the ultraviolet irradiation lamp can be set so that the irradiation can be performed for 0.1 seconds to 10 minutes.
 一般に、紫外線照射処理時の基板温度が150℃以上になると、プラスチックフィルム等の場合には、基板が変形したり、その強度が劣化したりする等、基板の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムや、金属等の基板の場合には、より高温での改質処理が可能である。従って、この紫外線照射時の基板温度としては、一般的な上限はなく、基板の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。 Generally, when the substrate temperature at the time of ultraviolet irradiation treatment is 150 ° C. or higher, the properties of the substrate are impaired in the case of a plastic film or the like, for example, the substrate is deformed or its strength is deteriorated. However, in the case of a film having high heat resistance such as polyimide or a substrate such as metal, a modification treatment at a higher temperature is possible. Therefore, there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機(株)製)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線をバリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてからバリア層に当てることが望ましい。 Examples of such ultraviolet ray generating means include metal halide lamps, high-pressure mercury lamps, low-pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. )), UV light laser, and the like. Moreover, when irradiating the generated ultraviolet rays to the barrier layer, it is desirable to apply the ultraviolet rays from the generation source to the barrier layer after reflecting the ultraviolet rays from the generation source with a reflecting plate from the viewpoint of achieving efficiency improvement and uniform irradiation.
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基板の形状によって適宜選定することができる。例えば、バッチ処理の場合には、バリア層を表面に有する基板を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス(株)製の紫外線焼成炉を使用することができる。また、バリア層を表面に有する基板が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基板やバリア層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 UV irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be used. For example, in the case of batch processing, a substrate having a barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with an ultraviolet source as described above. The ultraviolet baking furnace itself is generally known, and for example, an ultraviolet baking furnace manufactured by Eye Graphics Co., Ltd. can be used. Further, when the substrate having the barrier layer on the surface is a long film, the substrate is ceramicized by continuously irradiating ultraviolet rays in the drying zone having the ultraviolet ray generation source as described above while being conveyed. be able to. The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, depending on the composition and concentration of the substrate and barrier layer used.
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で、酸化珪素膜の形成を行う方法である。
(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment). The treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and only bonds photons called photon processes. By this action, a silicon oxide film is formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
 これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。 As a vacuum ultraviolet light source necessary for this, a rare gas excimer lamp is preferably used.
 Xe、Kr、Ar、Ne等の希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には
  e+Xe→e+Xe
  Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光を発光する。
Since noble gas atoms such as Xe, Kr, Ar, Ne, and the like are chemically bonded and do not form molecules, they are called inert gases. However, rare gas atoms (excited atoms) that have gained energy by discharge or the like can be combined with other atoms to form molecules. When the rare gas is xenon, e + Xe → e + Xe *
Xe * + Xe + Xe → Xe 2 * + Xe
Thus, when the excited excimer molecule Xe 2 * transitions to the ground state, excimer light of 172 nm is emitted.
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。 ¡Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
 エキシマ発光を得るには、誘電体バリア放電を用いる方法が知られている。誘電体バリア放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる、雷に似た非常に細いmicro dischargeと呼ばれる放電で、micro dischargeのストリーマが管壁(誘電体)に達すると誘電体表面に電荷が溜まるため、micro dischargeは消滅する。このmicro dischargeが管壁全体に広がり、生成・消滅を繰り返している放電である。このため肉眼でも分る光のチラツキを生じる。また、非常に温度の高いストリーマが局所的に直接管壁に達するため、管壁の劣化を早める可能性もある。 In order to obtain excimer light emission, a method using dielectric barrier discharge is known. Dielectric barrier discharge is a lightning generated in a gas space by arranging a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. When the micro discharge streamer reaches the tube wall (dielectric), the electric discharge accumulates on the surface of the dielectric, and the micro discharge disappears. This micro discharge spreads over the entire tube wall, and is a discharge that repeatedly generates and disappears. For this reason, flickering of light that can be seen with the naked eye occurs. Moreover, since a very high temperature streamer reaches a pipe wall directly locally, there is a possibility that deterioration of the pipe wall may be accelerated.
 効率よくエキシマ発光を得る方法としては、誘電体バリア放電以外には無電極電界放電でも可能である。 As a method for efficiently obtaining excimer light emission, electrodeless field discharge is possible in addition to dielectric barrier discharge.
 容量性結合による無電極電界放電で、別名RF放電とも呼ばれる。ランプと電極及びその配置は、基本的には誘電体バリア放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られるため、チラツキがない長寿命のランプが得られる。 Electrode-free electric field discharge due to capacitive coupling, also called RF discharge. The lamp, the electrode, and the arrangement thereof may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz. Since the electrodeless field discharge can provide a spatially and temporally uniform discharge in this way, a long-life lamp without flickering can be obtained.
 誘電体バリア放電の場合は、micro dischargeが電極間のみで生じるため、放電空間全体で放電を行わせるには外側の電極は外表面全体を覆い、かつ外部に光を取り出すために光を透過するものでなければならない。このため細い金属線を網状にした電極が用いられる。この電極は光を遮らないようにできるだけ細い線が用いられるため、酸素雰囲気中では真空紫外光により発生するオゾン等により損傷しやすい。 In the case of dielectric barrier discharge, since micro discharge occurs only between the electrodes, the outer electrode covers the entire outer surface and transmits light to extract light to the outside in order to cause discharge in the entire discharge space. Must be a thing. For this reason, an electrode in which a fine metal wire is formed in a net shape is used. Since this electrode uses as thin a line as possible so as not to block light, it is easily damaged by ozone generated by vacuum ultraviolet light in an oxygen atmosphere.
 これを防ぐためにはランプの周囲、すなわち照射装置内を窒素等の不活性ガスの雰囲気にし、合成石英の窓を設けて照射光を取り出す必要が生じる。合成石英の窓は高価な消耗品であるばかりでなく、光の損失も生じる。 To prevent this, it is necessary to create an atmosphere of an inert gas such as nitrogen around the lamp, that is, the inside of the irradiation device, and provide a synthetic quartz window to extract the irradiation light. Synthetic quartz windows are not only expensive consumables, but also cause light loss.
 二重円筒型ランプは外径が25mm程度であるため、ランプ軸の直下とランプ側面では照射面までの距離の差が無視できず、照度に大きな差を生じる。従って仮にランプを密着して並べても、一様な照度分布が得られない。合成石英の窓を設けた照射装置にすれば酸素雰囲気中の距離を一様にでき、一様な照度分布が得られる。 Since the outer diameter of the double-cylindrical lamp is about 25 mm, the difference in distance to the irradiation surface cannot be ignored directly below the lamp axis and on the side of the lamp, resulting in a large difference in illuminance. Therefore, even if the lamps are closely arranged, a uniform illuminance distribution cannot be obtained. If the irradiation device is provided with a synthetic quartz window, the distance in the oxygen atmosphere can be made uniform, and a uniform illuminance distribution can be obtained.
 無電極電界放電を用いた場合には、外部電極を網状にする必要はない。ランプ外面の一部に外部電極を設けるだけでグロー放電は放電空間全体に広がる。外部電極には、通常アルミのブロックで作られた光の反射板を兼ねた電極がランプ背面に使用される。しかし、ランプの外径は誘電体バリア放電の場合と同様に大きいため一様な照度分布にするためには合成石英が必要となる。 ¡When electrodeless field discharge is used, it is not necessary to make the external electrode mesh. The glow discharge spreads over the entire discharge space simply by providing an external electrode on a part of the outer surface of the lamp. As the external electrode, an electrode that also serves as a light reflector, usually made of an aluminum block, is used on the back of the lamp. However, since the outer diameter of the lamp is as large as in the case of the dielectric barrier discharge, synthetic quartz is required to obtain a uniform illuminance distribution.
 細管エキシマランプの最大の特徴は、構造がシンプルなことである。石英管の両端を閉じ、内部にエキシマ発光を行うためのガスを封入しているだけである。従って、非常に安価な光源を提供できる。 The biggest feature of the capillary excimer lamp is its simple structure. The quartz tube is closed at both ends, and only gas for excimer light emission is sealed inside. Therefore, a very inexpensive light source can be provided.
 二重円筒型ランプは、内外管の両端を接続して閉じる加工をしているため、細管ランプに比べ取り扱いや輸送で破損しやすい。細管ランプの管の外径は6~12mm程度で、あまり太いと始動に高い電圧が必要になる。 二 重 Double-cylindrical lamps are easily damaged by handling and transportation compared to thin-tube lamps because they are processed by connecting both ends of the inner and outer tubes. The outer diameter of the tube of the thin tube lamp is about 6 to 12 mm. If it is too thick, a high voltage is required for starting.
 放電の形態は、誘電体バリア放電でも無電極電界放電のいずれでも使用できる。電極の形状はランプに接する面が平面であってもよいが、ランプの曲面に合わせた形状にすればランプをしっかり固定できるとともに、電極がランプに密着することにより放電がより安定する。また、アルミで曲面を鏡面にすれば光の反射板にもなる。 The discharge mode can be either dielectric barrier discharge or electrodeless field discharge. The electrode may have a flat surface in contact with the lamp, but if the shape is matched to the curved surface of the lamp, the lamp can be firmly fixed, and the discharge is more stable when the electrode is in close contact with the lamp. Also, if the curved surface is made into a mirror surface with aluminum, it also becomes a light reflector.
 Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン膜の改質を実現できる。従って、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板等への照射を可能としている。 The Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. Due to the high energy of the active oxygen, ozone and ultraviolet radiation, the polysilazane film can be modified in a short time. Therefore, compared to low-pressure mercury lamps with a wavelength of 185 nm and 254 nm and plasma cleaning, it is possible to shorten the process time associated with high throughput, reduce the equipment area, and irradiate organic materials and plastic substrates that are easily damaged by heat. .
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート等のフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed. For this reason, it is suitable for flexible film materials such as polyethylene terephthalate which are considered to be easily affected by heat.
 バリア層は充分に均質に改質されガスバリア性能が高いことが本発明においては好ましい。 It is preferable in the present invention that the barrier layer is sufficiently homogeneously modified and has high gas barrier performance.
 本発明のように、ウェットプロセスにより成膜し、改質処理を施すことにより得られるバリア層を、大気圧プラズマCVD法により形成した金属酸化物及び金属窒化物の少なくとも一層を応力緩和層として共に形成することで、応力集中による割れ(クラック)を防ぎ、高いバリア性と応力緩和機能を両立でき、耐屈曲性に優れたガスバリア積層体とすることができる。また、バリア層の改質処理方法として真空紫外処理を採用することにより、高温での処理も必要がなく応力緩和層と連続して生産することが容易であり好ましい。 As in the present invention, a barrier layer obtained by forming a film by a wet process and subjecting it to a modification treatment is used together with at least one of a metal oxide and a metal nitride formed by an atmospheric pressure plasma CVD method as a stress relaxation layer. By forming, it is possible to prevent cracking due to stress concentration, to achieve both high barrier properties and a stress relaxation function, and to obtain a gas barrier laminate excellent in flex resistance. In addition, by adopting vacuum ultraviolet treatment as the barrier layer modification treatment method, it is preferable that treatment at a high temperature is not necessary and it is easy to produce continuously with the stress relaxation layer.
 また、本発明において、大気圧プラズマCVD法で形成された金属酸化物及び金属窒化物の少なくとも一方を含む層(応力緩和層)、及びウェットプロセスで形成された珪素酸窒化物からなる層(バリア層)を積層してガスバリア層ユニットとした際に、前記基板の少なくとも片面に該ガスバリア層ユニットを少なくとも二つ繰り返し積層することもできる。 In the present invention, a layer (stress relaxation layer) containing at least one of a metal oxide and a metal nitride formed by an atmospheric pressure plasma CVD method, and a layer (barrier) made of silicon oxynitride formed by a wet process Layer) to form a gas barrier layer unit, at least two gas barrier layer units may be repeatedly laminated on at least one surface of the substrate.
 各層ユニットを積層する場合についても、近似した組成をもつ金属酸化物(或いは窒化物)を含有する層同士であり、接着性もよく、また、本発明においては連続して大気圧中での製造が可能であり生産性の上でも好ましい。 In the case of laminating each layer unit, layers containing metal oxides (or nitrides) having an approximate composition are also good, and adhesion is good, and in the present invention, it is continuously produced at atmospheric pressure. This is preferable in terms of productivity.
 ガスバリア層ユニットを積層する場合、積層数は求められるガスバリア性能により決められるが、本発明においては、ガスバリア層ユニットとして、2~3の範囲が好ましく、積層数を増やし、膜厚を厚くした場合にも、ガスバリア層ユニットの耐屈曲性がよいことから、屈曲性の劣化がない。 When stacking gas barrier layer units, the number of stacks is determined by the required gas barrier performance, but in the present invention, the range of 2 to 3 is preferable as the gas barrier layer unit, and when the number of stacks is increased and the film thickness is increased. However, since the gas barrier layer unit has good bending resistance, there is no deterioration in flexibility.
 次に本発明に係るガスバリア積層体において基板として用いられる樹脂フィルム支持体について説明する。 Next, a resin film support used as a substrate in the gas barrier laminate according to the present invention will be described.
 基板である樹脂フィルム支持体は、前記応力緩和層及びバリア層を保持することができる有機材料で形成されたものであれば特に限定されるものではない。 The resin film support as a substrate is not particularly limited as long as it is formed of an organic material capable of holding the stress relaxation layer and the barrier layer.
 例えばアクリル酸エステル、メタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂フィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(製品名Sila-DEC、チッソ株式会社製)、更には前記樹脂を2層以上積層して成る樹脂フィルム等を挙げることができる。コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などが好ましく用いられ、また、光学的透明性、耐熱性、無機層、バリア層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いることができる。支持体の厚みは5~500μm程度が好ましく、更に好ましくは25~250μmである。 For example, acrylic ester, methacrylate ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP) Polystyrene (PS), nylon (Ny), aromatic polyamide, polyetheretherketone, polysulfone, polyethersulfone, polyimide, polyetherimide, and other resin films, silsesquioxane having an organic-inorganic hybrid structure And a heat-resistant transparent film (product name: Sila-DEC, manufactured by Chisso Corporation), and a resin film formed by laminating two or more layers of the resin. In terms of cost and availability, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC) and the like are preferably used, and optical transparency, heat resistance, inorganic layer, In terms of adhesion to the barrier layer, a heat-resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure can be preferably used. The thickness of the support is preferably about 5 to 500 μm, more preferably 25 to 250 μm.
 また、本発明に係る樹脂フィルム支持体は透明であることが好ましい。支持体が透明であり、支持体上に形成する層も透明であることにより、透明なバリアフィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。 The resin film support according to the present invention is preferably transparent. Since the support is transparent and the layer formed on the support is also transparent, it becomes possible to make a transparent barrier film, so that it becomes possible to make a transparent substrate such as an organic EL element. is there.
 また、上記に挙げた樹脂等を用いた樹脂フィルム支持体は、未延伸フィルムでもよく、延伸フィルムでもよい。 In addition, the resin film support using the above-described resins or the like may be an unstretched film or a stretched film.
 本発明に用いられる樹脂フィルム支持体は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の支持体を製造することができる。また、未延伸の支持体を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸などの公知の方法により、支持体の流れ(縦軸)方向、または支持体の流れ方向と直角(横軸)方向に延伸することにより延伸支持体を製造することができる。この場合の延伸倍率は、支持体の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向および横軸方向にそれぞれ2~10倍が好ましい。 The resin film support used in the present invention can be produced by a conventionally known general method. For example, an unstretched support that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching. Further, the unstretched support is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular-type simultaneous biaxial stretching, and other known methods, such as the flow (vertical axis) direction of the support, or A stretched support can be produced by stretching in the direction perpendicular to the flow direction of the support (horizontal axis). The draw ratio in this case can be appropriately selected according to the resin as the raw material of the support, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction.
 また、本発明においては、バリア層を形成する前に樹脂フィルム支持体をコロナ放電処理してもよい。 In the present invention, the resin film support may be subjected to corona discharge treatment before the barrier layer is formed.
 さらに、本発明に係る支持体表面には、金属酸化物膜または金属窒化物膜との密着性の向上を目的としてアンカーコート剤層を形成してもよい。このアンカーコート剤層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1または2種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5g/m(乾燥状態)程度が好ましい。 Furthermore, an anchor coat agent layer may be formed on the surface of the support according to the present invention for the purpose of improving the adhesion with the metal oxide film or the metal nitride film. Examples of the anchor coating agent used in this anchor coating agent layer include polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, and alkyl titanates. Can be used alone or in combination. Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
 (平滑層)
 本発明において、基板である樹脂フィルム支持体上には平滑層が設けられていることが好ましい。
(Smooth layer)
In this invention, it is preferable that the smooth layer is provided on the resin film support body which is a board | substrate.
 本発明の平滑層は、突起等が存在する透明樹脂フィルム支持体の粗面を平坦化し、あるいは、透明樹脂フィルム支持体に存在する突起により応力緩和層又はバリア層に生じる凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性樹脂を硬化させて形成される。 The smooth layer of the present invention flattens the rough surface of the transparent resin film support on which protrusions and the like are present, or fills irregularities and pinholes generated in the stress relaxation layer or barrier layer with the protrusions on the transparent resin film support. Provided for flattening. Such a smooth layer is basically formed by curing a photosensitive resin.
 平滑層の感光性樹脂としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。 As the photosensitive resin of the smooth layer, for example, a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
 光重合性不飽和結合を分子内に1個以上有する反応性モノマーとしては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、n-ペンチルアクリレート、n-ヘキシルアクリレート、2-エチルヘキシルアクリレート、n-オクチルアクリレート、n-デシルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2-エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、2-ヒドロキシエチルアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,5-ペンタンジオールジアクリレート、1,6-ヘキサジオールジアクリレート、1,3-プロパンジオールアクリレート、1,4-シクロヘキサンジオールジアクリレート、2,2-ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールヘキサアクリレート等、および、上記のアクリレートをメタクリレートに換えたもの、γ-メタクリロキシプロピルトリメトキシシラン、1-ビニル-2-ピロリドン等が挙げられる。上記の反応性モノマーは、1種または2種以上の混合物として、あるいは、その他の化合物との混合物として使用することができる。 Examples of reactive monomers having at least one photopolymerizable unsaturated bond in the molecule include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, tert-butyl acrylate, and n-pentyl. Acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, n-decyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, allyl acrylate, benzyl acrylate, butoxyethyl acrylate, butoxyethylene glycol acrylate, cyclohexyl acrylate, dicyclo Pentanyl acrylate, 2-ethylhexyl acrylate, glycerol acrylate, grease Zyl acrylate, 2-hydroxyethyl acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,5-pentanediol diacrylate, 1,6-hexadiol diacrylate, 1,3-propane Diol acrylate, 1,4-cyclohexanediol diacrylate, 2,2-dimethylolpropane diacrylate, glycerol diacrylate, tripropylene glycol diacrylate, glycerol triacrylate, trimethylolpropane triacrylate, pentaerythritol hexaacrylate, and the like, and The above acrylate replaced with methacrylate, γ-methacryloxypropyltrimethoxysilane, 1-vinyl-2-pi Lolidon etc. are mentioned. Said reactive monomer can be used as a 1 type, 2 or more types of mixture, or a mixture with another compound.
 感光性樹脂の組成物は光重合開始剤を含有する。光重合開始剤としては、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4-ビス(ジメチルアミン)ベンゾフェノン、4,4-ビス(ジエチルアミン)ベンゾフェノン、ジベンジルケトン、フルオレノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、アントラキノン、2-tert-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、2,6-ビス(p-アジドベンジリデン)シクロヘキサン、2,6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、2-フェニル-1,2-ブタジオン-2-(o-メトキシカルボニル)オキシム、ミヒラーケトン、2-メチル[4-(メチルチオ)フェニル]-2-モノフォリノ-1-プロパン、2-ベンジル-2-ジメチルアミノ-1-(4-モノフォリノフェニル)-ブタノン-1、ナフタレンスルホニルクロライド、n-フェニルチオアクリドン、4,4-アゾビスイソブチロニトリル、四臭素化炭素、トリブロモフェニルスルホン等、メチレンブルー等の光還元性の色素とアスコルビン酸、トリエタノールアミン等の還元剤の組み合わせ等が挙げられ、これらの光重合開始剤を1種または2種以上の組み合わせで使用することができる。 The composition of the photosensitive resin contains a photopolymerization initiator. Examples of photopolymerization initiators include benzophenone, methyl o-benzoylbenzoate, 4,4-bis (dimethylamine) benzophenone, 4,4-bis (diethylamine) benzophenone, dibenzyl ketone, fluorenone, and 2,2-diethoxyacetophenone. 2,2-dimethoxy-2-phenylacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, anthraquinone, 2-tert-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, anthrone, Benzanthrone, 2,6-bis (p-azidobenzylidene) cyclohexane, 2,6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 2-phenyl-1,2-butadion-2 (O-methoxycarbonyl) oxime, Michler's ketone, 2-methyl [4- (methylthio) phenyl] -2-monoforino-1-propane, 2-benzyl-2-dimethylamino-1- (4-monoforinophenyl)- Photoreductive dyes such as butanone-1, naphthalenesulfonyl chloride, n-phenylthioacridone, 4,4-azobisisobutyronitrile, carbon tetrabromide, tribromophenylsulfone, methylene blue and the like, ascorbic acid, tri The combination of reducing agents, such as ethanolamine, is mentioned, These photoinitiators can be used by 1 type, or 2 or more types of combination.
 平滑層の形成方法は特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。 The method for forming the smooth layer is not particularly limited, but is preferably formed by a spin coating method, a spray method, a blade coating method, a wet coating method such as a dip method, or a dry coating method such as a vapor deposition method.
 平滑層の形成では、上述の感光性樹脂に、必要に応じて、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。 In the formation of the smooth layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. In addition, regardless of the position where the smooth layer is laminated, in any smooth layer, an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.
 感光性樹脂を溶媒に溶解または分散させた塗布液を用いて平滑層を形成する際に使用する溶媒としては、メタノール、エタノール、イソプロパノール、エチレングリコール、プロピレングリコール等のアルコール類、α-もしくはβ-テルピネオール等のテルペン類等、アセトン、メチルエチルケトン、シクロヘキサノン、N-メチル-2-ピロリドン、ジエチルケトン、2-ヘプタノン、4-ヘプタノン等のケトン類、トルエン、キシレン等の芳香族炭化水素類、チルセロソルブ、エチルセロソルブ、カルビトール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、セロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等の酢酸エステル類、ジエチレングリコールジアルキルエーテル、3-エトキシプロピオン酸エチル、安息香酸メチル、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。 Solvents used when forming a smooth layer using a coating solution in which a photosensitive resin is dissolved or dispersed in a solvent include alcohols such as methanol, ethanol, isopropanol, ethylene glycol, propylene glycol, α- or β- Terpenes such as terpineol, etc., ketones such as acetone, methyl ethyl ketone, cyclohexanone, N-methyl-2-pyrrolidone, diethyl ketone, 2-heptanone, 4-heptanone, aromatic hydrocarbons such as toluene, xylene, tilcellosolve, Glycol ethers such as ethyl cellosolve, carbitol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, triethylene glycol monomethyl ether, ethyl acetate, butyl acetate, cellosolve acetate, ethyl cell Examples include acetates such as losolve acetate and propylene glycol monomethyl ether acetate, diethylene glycol dialkyl ether, ethyl 3-ethoxypropionate, methyl benzoate, N, N-dimethylacetamide, N, N-dimethylformamide and the like.
 平滑層の平滑性は、JIS B 0601で規定される表面粗さで表現される値で、最大断面高さRt(p)が、10nm以上、30nm以下であることが好ましい。この範囲よりも値が小さい場合には、大気圧プラズマCVD法により応力緩和層を形成する場合、又、更にバリア層を成膜するとき、密着性が損なわれる場合がある。また、この範囲よりも大きい場合には、応力緩和層またはバリア層を形成した後の、凹凸を平滑化することが難しくなる場合がある。 The smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601, and the maximum cross-sectional height Rt (p) is preferably 10 nm or more and 30 nm or less. If the value is smaller than this range, adhesion may be impaired when a stress relaxation layer is formed by atmospheric pressure plasma CVD, or when a barrier layer is further formed. On the other hand, if it is larger than this range, it may be difficult to smooth the unevenness after the stress relaxation layer or barrier layer is formed.
 表面粗さは、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が数十μmの区間内を多数回測定し、微細な凹凸の振幅に関する粗さである。 The surface roughness is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius, and the measurement direction is several tens by the stylus having a minimum tip radius. It is the roughness related to the amplitude of fine irregularities measured in a section of μm many times.
 (平滑層への添加剤)
 好ましい態様のひとつは、前述の感光性樹脂中に表面に光重合反応性を有する感光性基が導入された反応性シリカ粒子(以下、単に「反応性シリカ粒子」ともいう)を含むものである。ここで光重合性を有する感光性基としては、(メタ)アクリロイルオキシ基に代表される重合性不飽和基などを挙げることができる。また感光性樹脂は、この反応性シリカ粒子の表面に導入された光重合反応性を有する感光性基と光重合反応可能な化合物、例えば、重合性不飽和基を有する不飽和有機化合物を含むものであってもよい。また感光性樹脂としては、このような反応性シリカ粒子や重合性不飽和基を有する不飽和有機化合物に適宜汎用の希釈溶剤を混合することによって固形分を調整したものを用いることができる。
(Additive to smooth layer)
One preferred embodiment includes reactive silica particles (hereinafter also simply referred to as “reactive silica particles”) in which a photosensitive group having photopolymerization reactivity is introduced on the surface of the above-described photosensitive resin. Here, examples of the photopolymerizable photosensitive group include polymerizable unsaturated groups represented by a (meth) acryloyloxy group. The photosensitive resin contains a photopolymerizable photosensitive group introduced on the surface of the reactive silica particles and a compound capable of photopolymerization, for example, an unsaturated organic compound having a polymerizable unsaturated group. It may be. Moreover, as a photosensitive resin, what adjusted solid content by mixing a general-purpose dilution solvent suitably with such a reactive silica particle or the unsaturated organic compound which has a polymerizable unsaturated group can be used.
 ここで反応性シリカ粒子の平均粒子径としては、0.001~0.1μmの平均粒子径であることが好ましい。平均粒子径をこのような範囲にすることにより、後述する平均粒子径1~10μmの無機粒子からなるマット剤と組合せて用いることによって、防眩性と解像性とをバランス良く満たす光学特性と、ハードコート性とを兼ね備えた平滑層を形成し易くなる。尚、このような効果をより得易くする観点からは、更に平均粒子径として0.001~0.01μmのものを用いることがより好ましい。本発明に用いられる平滑層中には、上述の様な無機粒子を質量比として20%以上60%以下含有することが好ましい。20%以上添加することで、応力緩和層、バリア層との密着性が向上する。また60%を超えると、フィルムを湾曲させたり、加熱処理を行った場合にクラックが生じたり、ガスバリアフィルムの透明性や屈折率などの光学的物性に影響を及ぼすことがある。 Here, the average particle diameter of the reactive silica particles is preferably 0.001 to 0.1 μm. By setting the average particle size in such a range, by using it in combination with a matting agent composed of inorganic particles having an average particle size of 1 to 10 μm, which will be described later, optical characteristics satisfying a good balance between anti-glare properties and resolution. Further, it becomes easy to form a smooth layer having both hard coat properties. From the viewpoint of making it easier to obtain such effects, it is more preferable to use an average particle diameter of 0.001 to 0.01 μm. The smooth layer used in the present invention preferably contains 20% or more and 60% or less of the inorganic particles as described above as a mass ratio. Addition of 20% or more improves adhesion with the stress relaxation layer and the barrier layer. On the other hand, if it exceeds 60%, the film may be bent or cracked when heat-treated, or optical properties such as transparency and refractive index of the gas barrier film may be affected.
 本発明では、重合性不飽和基修飾加水分解性シランが、加水分解性シリル基の加水分解反応によって、シリカ粒子との間に、シリルオキシ基を生成して化学的に結合しているようなものを、反応性シリカ粒子として用いることができる。 In the present invention, a polymerizable unsaturated group-modified hydrolyzable silane is chemically bonded to a silica particle by generating a silyloxy group by a hydrolysis reaction of a hydrolyzable silyl group. Can be used as reactive silica particles.
 加水分解性シリル基としては、例えば、アルコキシリル基、アセトキシリル基等のカルボキシリレートシリル基、クロシリル基等のハロゲン化シリル基、アミノシリル基、オキシムシリル基、ヒドリドシリル基等が挙げられる。 Examples of the hydrolyzable silyl group include a carboxylylate silyl group such as an alkoxylyl group and an acetoxysilyl group, a halogenated silyl group such as a chlorosilyl group, an aminosilyl group, an oxime silyl group, and a hydridosilyl group.
 重合性不飽和基としては、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、プロペニル基、ブタジエニル基、スチリル基、エチニイル基、シンナモイル基、マレート基、アクリルアミド基等が挙げられる。 Examples of the polymerizable unsaturated group include acryloyloxy group, methacryloyloxy group, vinyl group, propenyl group, butadienyl group, styryl group, ethynyl group, cinnamoyl group, malate group, and acrylamide group.
 平滑層の厚みとしては、1~10μm、好ましくは2~7μmであることが望ましい。1μm以上にすることにより、平滑層を有するフィルムとしての平滑性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面にのみ設けた場合における平滑フィルムのカールを抑え易くすることができるようになる。 The thickness of the smooth layer is 1 to 10 μm, preferably 2 to 7 μm. By making it 1 μm or more, it becomes easy to make the smoothness as a film having a smooth layer sufficient, and by making it 10 μm or less, it becomes easy to adjust the balance of the optical properties of the smooth film, and the smooth layer has a high transparency. When the film is provided on only one surface of the molecular film, curling of the smooth film can be easily suppressed.
 (ブリードアウト防止層)
 ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム支持体中から未反応のオリゴマーなどが表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で、平滑層を有する基板の反対面に設けられる。
(Bleed-out prevention layer)
The bleed-out prevention layer is used for the purpose of suppressing the phenomenon that, when a film having a smooth layer is heated, unreacted oligomers are transferred from the film support to the surface and contaminate the contact surface. Provided on the opposite side of the substrate having a layer.
 ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。 The bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
 ブリードアウト防止層に含ませることが可能な、重合性不飽和基を有する不飽和有機化合物としては、分子中に2個以上の重合性不飽和基を有する多価不飽和有機化合物、あるいは分子中に1個の重合性不飽和基を有する単価不飽和有機化合物等を挙げることができる。 Examples of the unsaturated organic compound having a polymerizable unsaturated group that can be included in the bleed-out prevention layer include a polyunsaturated organic compound having two or more polymerizable unsaturated groups in the molecule, or in the molecule And monounsaturated organic compounds having one polymerizable unsaturated group.
 ここで多価不飽和有機化合物としては、例えばエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、等が挙げられる。 Examples of the polyunsaturated organic compound include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, glycerol di (meth) acrylate, glycerol tri (meth) acrylate, and 1,4-butanediol di (meth) ) Acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dicyclopentanyl di (meth) acrylate, pentaerythritol tri (meth) acrylate , Etc.
 また単価不飽和有機化合物としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。 Examples of the monounsaturated organic compound include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, lauryl ( (Meth) acrylate, stearyl (meth) acrylate, allyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) ) Acrylate, glycerol (meth) acrylate, glycidyl (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate Doors and the like.
 その他の添加剤として、マット剤を含有しても良い。マット剤としては、平均粒子径が0.1~5μm程度の無機粒子が好ましい。 ) Matting agents may be added as other additives. As the matting agent, inorganic particles having an average particle diameter of about 0.1 to 5 μm are preferable.
 このような無機粒子としては、シリカ、アルミナ、タルク、クレイ、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、水酸化アルミニウム、二酸化チタン、酸化ジルコニウム等の1種又は2種以上を併せて使用することができる。 As such inorganic particles, one or more of silica, alumina, talc, clay, calcium carbonate, magnesium carbonate, barium sulfate, aluminum hydroxide, titanium dioxide, zirconium oxide and the like can be used in combination. .
 ここで無機粒子からなるマット剤は、ハードコート剤の固形分100質量部に対して2質量部以上、好ましくは4質量部以上、より好ましくは6質量部以上、20質量部以下、好ましくは18質量部以下、より好ましくは16質量部以下の割合で混合されていることが望ましい。 Here, the matting agent composed of inorganic particles is 2 parts by mass or more, preferably 4 parts by mass or more, more preferably 6 parts by mass or more and 20 parts by mass or less, preferably 18 parts per 100 parts by mass of the solid content of the hard coat agent. It is desirable that they are mixed in a proportion of not more than part by mass, more preferably not more than 16 parts by mass.
 また本発明のブリードアウト防止層には、ハードコート剤及びマット剤の他の成分として熱可塑性樹脂、熱硬化性樹脂、電離放射線硬化性樹脂、光重合開始剤等を含有させてもよい。 The bleed-out preventing layer of the present invention may contain a thermoplastic resin, a thermosetting resin, an ionizing radiation curable resin, a photopolymerization initiator, etc. as other components of the hard coat agent and the matting agent.
 このような熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体、酢酸ビニル及びその共重合体、塩化ビニル及びその共重合体、塩化ビニリデン及びその共重合体等のビニル系樹脂、ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂、アクリル樹脂及びその共重合体、メタクリル樹脂及びその共重合体等のアクリル系樹脂、ポリスチレン樹脂、ポリアミド樹脂、線状ポリエステル樹脂、ポリカーボネート樹脂等が挙げられる。 Examples of such thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, methylcellulose, vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof. Vinyl resins such as polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, acrylic resins and copolymers thereof, acrylic resins such as methacrylic resins and copolymers thereof, polystyrene resins, polyamide resins, linear polyester resins, polycarbonates Examples thereof include resins.
 また熱硬化性樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。 Also, examples of the thermosetting resin include thermosetting urethane resin composed of acrylic polyol and isocyanate prepolymer, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, silicone resin and the like.
 また電離放射線硬化性樹脂としては、光重合性プレポリマー若しくは光重合性モノマーなどの1種又は2種以上を混合した電離放射線硬化塗料に電離放射線(紫外線又は電子線)を照射することで硬化するものを使用することができる。ここで光重合性プレポリマーとしては、1分子中に2個以上のアクリロイル基を有し、架橋硬化することにより3次元網目構造となるアクリル系プレポリマーが特に好ましく使用される。このアクリル系プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレート等が使用できる。また光重合性モノマーとしては、上記に記載した多価不飽和有機化合物等が使用できる。 Moreover, as ionizing radiation curable resin, it hardens | cures by irradiating ionizing radiation (an ultraviolet ray or an electron beam) to the ionizing radiation hardening coating material which mixed 1 type (s) or 2 or more types, such as a photopolymerizable prepolymer or a photopolymerizable monomer. Things can be used. Here, as the photopolymerizable prepolymer, an acrylic prepolymer having two or more acryloyl groups in one molecule and having a three-dimensional network structure by crosslinking and curing is particularly preferably used. As this acrylic prepolymer, urethane acrylate, polyester acrylate, epoxy acrylate, melamine acrylate and the like can be used. Further, as the photopolymerizable monomer, the polyunsaturated organic compounds described above can be used.
 また光重合開始剤としては、アセトフェノン、ベンゾフェノン、ミヒラーケトン、ベンゾイン、ベンジルメチルケタール、ベンゾインベンゾエート、ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-(4-(メチルチオ)フェニル)-2-(4-モルフォリニル)-1-プロパン、α-アシロキシムエステル、チオキサンソン類等が挙げられる。 As photopolymerization initiators, acetophenone, benzophenone, Michler ketone, benzoin, benzylmethyl ketal, benzoin benzoate, hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2- (4-morpholinyl) -1-propane, α-acyloxime ester, thioxanthone and the like.
 以上のようなブリードアウト防止層は、ハードコート剤、マット剤、及び必要に応じて他の成分を配合して、適宜必要に応じて用いる希釈溶剤によって塗布液として調製し、当該塗布液を支持体フィルム表面に従来公知の塗布方法によって塗布した後、電離放射線を照射して硬化させることにより形成することができる。尚、電離放射線を照射する方法としては、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、メタルハライドランプなどから発せられる100~400nm、好ましくは200~400nmの波長領域の紫外線を照射する、又は走査型やカーテン型の電子線加速器から発せられる100nm以下の波長領域の電子線を照射することにより行うことができる。 The bleed-out prevention layer as described above is mixed with a hard coat agent, a matting agent, and other components as necessary, and is prepared as a coating solution by using a diluent solvent as necessary, and supports the coating solution. It can form by apply | coating to a body film surface by a conventionally well-known coating method, and then irradiating with ionizing radiation and hardening. As a method of irradiating with ionizing radiation, ultraviolet rays in a wavelength region of 100 to 400 nm, preferably 200 to 400 nm, emitted from an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a metal halide lamp, or the like are irradiated or scanned. The irradiation can be performed by irradiating an electron beam having a wavelength region of 100 nm or less emitted from a type or curtain type electron beam accelerator.
 本発明におけるブリードアウト防止層の厚みとしては、1~10μm、好ましくは2~7μmであることが望ましい。1μm以上にすることにより、フィルムとしての耐熱性を十分なものにし易くなり、10μm以下にすることにより、平滑フィルムの光学特性のバランスを調整し易くなると共に、平滑層を透明高分子フィルムの一方の面に設けた場合におけるバリアフィルムのカールを抑え易くすることができるようになる。 The thickness of the bleed-out prevention layer in the present invention is 1 to 10 μm, preferably 2 to 7 μm. By making it 1 μm or more, it becomes easy to make the heat resistance as a film sufficient, and by making it 10 μm or less, it becomes easy to adjust the balance of the optical properties of the smooth film, and the smooth layer is one of the transparent polymer films. When it is provided on this surface, curling of the barrier film can be easily suppressed.
 本発明のガスバリア積層体は、種々の封止用材料、基板フィルムとして用いることができる。 The gas barrier laminate of the present invention can be used as various sealing materials and substrate films.
 例えば、有機EL素子、有機光電変換素子に用いることができる。このような素子の支持体として用いたとき、本発明のガスバリア積層体は透明であるため、支持体側から太陽光の受光を行ったり、ガスバリア性樹脂フィルム側から光を取りだしたりすることができる。即ち、このガスバリア性樹脂フィルム上に、例えば、ITO等の透明導電性薄膜を透明電極として設け、有機EL素子や、有機光電変換素子を構成することができる。また、有機EL素子または有機光電変換素子を形成し、この上に別の封止材料を(同じでもよいが)重ねて前記ガスバリアフィルム支持体と周囲を接着、素子を封じ込めることで有機光電変換素子を封止することができ、これにより外気の湿気や酸素等のガスによる素子への影響を封じることが出来る。本発明に係るガスバリア積層体はこのような封止材料としても用いることができる。 For example, it can be used for organic EL elements and organic photoelectric conversion elements. When used as a support for such an element, the gas barrier laminate of the present invention is transparent, so that it can receive sunlight from the support side or extract light from the gas barrier resin film side. That is, on this gas barrier resin film, for example, a transparent conductive thin film such as ITO can be provided as a transparent electrode to constitute an organic EL element or an organic photoelectric conversion element. In addition, an organic EL element or an organic photoelectric conversion element is formed, and another sealing material is stacked on the organic EL element or the organic photoelectric conversion element (which may be the same), and the gas barrier film support and the periphery are bonded together. Thus, it is possible to seal the influence of the moisture of the outside air and gas such as oxygen on the device. The gas barrier laminate according to the present invention can also be used as such a sealing material.
 以下、実施例をあげて本発明を具体的に説明するが、本発明はこれにより限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 実施例1
 (支持体)
 熱可塑性樹脂支持体として、両面に易接着加工された厚み125μmのポリエステルフィルム(帝人デュポンフィルム株式会社製、テトロンO3)の基板を、170℃で30分アニール加熱処理したものを用いた。
Example 1
(Support)
As a thermoplastic resin support, a substrate of a 125 μm thick polyester film (Tetoron O3, manufactured by Teijin DuPont Films Ltd.) that was easily bonded on both sides was annealed at 170 ° C. for 30 minutes and used.
 バリアフィルムの作製は、上記支持体を20m/分の速度で搬送しながら、以下の形成方法により、片面にブリードアウト防止層、反対面に平滑層を形成後に、粘着性保護フィルムを貼合した、ロール状のバリアフィルムを得た。 The barrier film was produced by adhering an adhesive protective film after forming a bleed-out prevention layer on one side and a smooth layer on the opposite side by the following forming method while transporting the support at a speed of 20 m / min. A roll-shaped barrier film was obtained.
 〈平滑層およびブリードアウト防止層を有するフィルムの作製〉
 (ブリードアウト防止層の形成)
 上記支持体の片面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7535を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、硬化条件;500mJ/cm空気下、高圧水銀ランプ使用、乾燥条件;80℃、3分で硬化を行い、ブリードアウト防止層を形成した。
<Production of film having smooth layer and bleed-out preventing layer>
(Formation of bleed-out prevention layer)
A UV curable organic / inorganic hybrid hard coat material OPSTAR Z7535 manufactured by JSR Corporation was applied to one side of the support, and the film was coated with a wire bar so that the film thickness after drying was 4 μm, followed by curing conditions: 500 mJ / cm Under high pressure using a high-pressure mercury lamp in 2 air, curing was performed at 80 ° C. for 3 minutes to form a bleed-out prevention layer.
 (平滑層の形成)
 続けて上記支持体の反対面に、JSR株式会社製 UV硬化型有機/無機ハイブリッドハードコート材 OPSTAR Z7501を塗布、乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した後、乾燥条件;80℃、3分で乾燥後、空気雰囲気下、高圧水銀ランプ使用、硬化条件;500mJ/cm硬化を行い、平滑層を形成した。
(Formation of smooth layer)
Subsequently, a UV curable organic / inorganic hybrid hard coat material OPSTAR Z7501 manufactured by JSR Corporation was applied to the opposite surface of the support, and the film was dried with a wire bar so that the film thickness after drying was 4 μm, and then drying conditions; After drying at 80 ° C. for 3 minutes, a high pressure mercury lamp was used in an air atmosphere, curing conditions; 500 mJ / cm 2 curing was performed to form a smooth layer.
 このときの最大断面高さRt(p)は21nmであった。 The maximum cross-sectional height Rt (p) at this time was 21 nm.
 最大断面高さRt(p)は、AFM(原子間力顕微鏡)で、極小の先端半径の触針を持つ検出器で連続測定した凹凸の断面曲線から算出され、極小の先端半径の触針により測定方向が30μmの区間内を多数回測定し、微細な凹凸の振幅に関する平均の粗さである。 The maximum cross-sectional height Rt (p) is calculated from an uneven cross-sectional curve continuously measured by an AFM (Atomic Force Microscope) with a detector having a stylus having a minimum tip radius. This is the average roughness of the amplitude of fine irregularities measured many times in a section with a measurement direction of 30 μm.
 〈ガスバリア積層体(ガスバリアフィルム)の作製〉
 (応力緩和層の形成)
 次に、上記平滑層、ブリードアウト防止層を設けた支持体の上記平滑層の上に大気圧プラズマCVD法により珪素酸化物層を以下に示す条件で形成した。
<Production of gas barrier laminate (gas barrier film)>
(Formation of stress relaxation layer)
Next, a silicon oxide layer was formed on the smooth layer of the support provided with the smooth layer and the bleed-out prevention layer by atmospheric pressure plasma CVD under the following conditions.
 (珪素酸化物の薄膜の大気圧プラズマCVD法による形成)
 上記平滑層、ブリードアウト防止層を設けた支持体の上に有機珪素化合物と酸素を原料した大気圧プラズマCVDにより以下に示す条件で薄膜形成した。膜厚は50nmである。ロール電極型放電処理装置を用いて処理を実施。ロール電極に対向する棒状電極を複数個フィルムの搬送方向に対し平行に設置し、各電極部に原料及び電力を投入し以下のように薄膜を形成した。
(Formation of silicon oxide thin film by atmospheric pressure plasma CVD method)
A thin film was formed on the support provided with the smooth layer and the bleed-out preventing layer by atmospheric pressure plasma CVD using an organic silicon compound and oxygen as raw materials under the following conditions. The film thickness is 50 nm. Processing is performed using a roll electrode type discharge treatment device. A plurality of rod-shaped electrodes opposed to the roll electrode were installed in parallel to the film transport direction, and raw materials and electric power were supplied to each electrode part to form a thin film as follows.
 ここで誘電体は対向する電極共に、セラミック溶射加工のものに片肉で1mm被覆した。また、被覆後の電極間隙は、1mmに設定した。また誘電体を被覆した金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷却水による電極温度コントロールを行いながら実施した。ここで使用する電源は、応用電機製高周波電源(100kHz)、パール工業製高周波電源(13.56MHz)を使用した。下記条件で試料を作製した。 Here, the dielectric was coated with 1 mm of single-sided ceramic sprayed material, with both electrodes facing each other. The electrode gap after coating was set to 1 mm. The metal base material coated with a dielectric has a stainless steel jacket specification having a cooling function by cooling water, and was performed while controlling the electrode temperature by cooling water during discharge. As the power source used here, a high frequency power source (100 kHz) manufactured by Applied Electric and a high frequency power source (13.56 MHz) manufactured by Pearl Industry were used. Samples were prepared under the following conditions.
 〈プラズマCVD層〉
 〈応力緩和層混合ガス組成物1〉
放電ガス:窒素ガス                      94.85体積%
薄膜形成ガス:ヘキサメチルジシロキサン             0.15体積%
添加ガス:酸素ガス                        5.0体積%
 〈緩衝膜成膜条件〉
第1電極側 電源種類  ハイデン研究所 100kHz(連続モード) PHF-6k
      周波数   100kHz
      出力密度  10W/cm(この時の電圧Vpは7kVであった)
      電極温度  120℃
第2電極側 電源種類  パール工業 13.56MHz CF-5000-13M
      周波数   13.56MHz
      出力密度  5W/cm(この時の電圧Vpは1kVであった)
      電極温度  90℃
 (バリア層の形成)
 次に、上記試料応力緩和層上に珪素化合物層塗布液を用いてウェットプロセスにてバリア層を形成した。
<Plasma CVD layer>
<Stress relaxation layer mixed gas composition 1>
Discharge gas: Nitrogen gas 94.85% by volume
Thin film forming gas: hexamethyldisiloxane 0.15% by volume
Additive gas: Oxygen gas 5.0% by volume
<Buffer film formation conditions>
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C
(Formation of barrier layer)
Next, a barrier layer was formed on the sample stress relaxation layer by a wet process using a silicon compound layer coating solution.
 (珪素化合物層塗布液)
 パーヒドロポリシラザン(PHPS)の20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製 アクアミカ NAX120-20)を、乾燥後の膜厚が、200nmとなるようにワイヤレスバーの番手とパーヒドロポリシラザン溶液を脱水ジブチルエーテルで希釈し調整して、23℃50%RH環境下で、上記珪素酸化物膜層上に塗布、後に80℃、1分乾燥した試料を得た。
(Silicon compound layer coating solution)
Perhydropolysilazane (PHPS) 20% by weight dibutyl ether solution (Aquamica NAX120-20, manufactured by AZ Electronic Materials Co., Ltd.), wireless bar count and perhydropolysilazane solution so that the film thickness after drying is 200 nm. Was diluted with dehydrated dibutyl ether and adjusted to obtain a sample coated on the silicon oxide film layer at 23 ° C. and 50% RH and then dried at 80 ° C. for 1 minute.
 乾燥試料をさらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。 The dried sample was further dehumidified by being held for 10 minutes in an atmosphere of a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature −8 ° C.).
 〔改質処理〕
 除湿処理を行った試料に対し、下記の条件で改質処理を施した。改質処理時の露点温度は-8℃で実施した。
[Modification treatment]
The sample subjected to the dehumidification treatment was subjected to a modification treatment under the following conditions. The dew point temperature during the reforming process was -8 ° C.
 (改質処理装置)
 装置:株式会社 エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200
 波長:172nm
 ランプ封入ガス:Xe
 (改質処理条件)
 稼動ステージ上に固定した試料を、以下の条件で改質処理を行って、バリア層を形成した。
(Modification equipment)
Equipment: Ex D irradiation system MODEL manufactured by M.D. Com: MECL-M-1-200
Wavelength: 172nm
Lamp filled gas: Xe
(Reforming treatment conditions)
The sample fixed on the operation stage was subjected to a modification treatment under the following conditions to form a barrier layer.
 エキシマ光強度   :130mW/cm(172nm)
 試料と光源の距離  :1mm
 ステージ加熱温度  :70℃
 照射装置内の酸素濃度:1.0%
 エキシマ照射時間  :5秒
 以上により、ガスバリア性フィルムであるガスバリア積層体試料1を作製した。
Excimer light intensity: 130 mW / cm 2 (172 nm)
Distance between sample and light source: 1mm
Stage heating temperature: 70 ° C
Oxygen concentration in the irradiation device: 1.0%
Excimer irradiation time: 5 seconds As described above, gas barrier laminate sample 1 as a gas barrier film was produced.
 同様にして試料2~6を作製した。 Samples 2 to 6 were produced in the same manner.
 なお、試料2、3については、プラズマCVD層形成条件をそれぞれ以下のように変えて作成した。 Samples 2 and 3 were prepared by changing the plasma CVD layer formation conditions as follows.
 試料2
 〈プラズマCVD層〉
 〈応力緩和層混合ガス組成物2〉
放電ガス:窒素ガス                       99.0体積%
薄膜形成ガス:ヘキサメチルジシロキサン              0.5体積%
添加ガス:酸素ガス                        0.5体積%
 〈緩衝膜成膜条件〉
第1電極側 電源種類  ハイデン研究所 100kHz(連続モード) PHF-6k
      周波数   100kHz
      出力密度  12W/cm(この時の電圧Vpは6kVであった)
      電極温度  120℃
第2電極側 電源種類  パール工業 13.56MHz CF-5000-13M
      周波数   13.56MHz
      出力密度  5W/cm(この時の電圧Vpは1kVであった)
      電極温度  90℃
 試料3
 〈プラズマCVD層〉
 〈応力緩和層混合ガス組成物3〉
放電ガス:窒素ガス                  94.99体積%
薄膜形成ガス:テトラエトキシシラン           0.01体積%
添加ガス:酸素ガス                    5.0体積%
 〈第二酸化珪素膜成膜条件〉
第1電極側 電源種類 ハイデン研究所 100kHz(連続モード) PHF-6k
      周波数  100kHz
      出力密度 10W/cm(この時の電圧Vpは7kVであった)
      電極温度 120℃
第2電極側 電源種類 パール工業 13.56MHz CF-5000-13M
      周波数  13.56MHz
      出力密度 10W/cm(この時の電圧Vpは2kVであった)
      電極温度 90℃
 試料4
 前記試料1の応力緩和層を、塗布法を用いて作製した。大気圧プラズマ法を用いる代わりに、前記試料1のバリア層で用いたパーヒドロポリシラザン(PHPS)の改質処理による珪素酸化物層に置き換えた。
Sample 2
<Plasma CVD layer>
<Stress relaxation layer mixed gas composition 2>
Discharge gas: Nitrogen gas 99.0% by volume
Thin film forming gas: Hexamethyldisiloxane 0.5% by volume
Additive gas: 0.5% by volume of oxygen gas
<Buffer film formation conditions>
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 12 W / cm 2 (the voltage Vp at this time was 6 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 5 W / cm 2 (the voltage Vp at this time was 1 kV)
Electrode temperature 90 ° C
Sample 3
<Plasma CVD layer>
<Stress relaxation layer mixed gas composition 3>
Discharge gas: Nitrogen gas 94.99 volume%
Thin film forming gas: tetraethoxysilane 0.01% by volume
Additive gas: Oxygen gas 5.0% by volume
<Silicon dioxide film formation conditions>
1st electrode side Power supply type HEIDEN Laboratory 100kHz (continuous mode) PHF-6k
Frequency 100kHz
Output density 10 W / cm 2 (the voltage Vp at this time was 7 kV)
Electrode temperature 120 ° C
Second electrode side Power supply type Pearl Industry 13.56MHz CF-5000-13M
Frequency 13.56MHz
Output density 10 W / cm 2 (the voltage Vp at this time was 2 kV)
Electrode temperature 90 ° C
Sample 4
The stress relaxation layer of Sample 1 was prepared using a coating method. Instead of using the atmospheric pressure plasma method, the silicon oxide layer was replaced by a modification treatment of perhydropolysilazane (PHPS) used in the barrier layer of Sample 1.
 試料5
 試料4において、応力緩和層を、パーヒドロポリシラザン(PHPS)に代えて、有機ポリシラザン(メチルヒドロポリシラザン)を用い、同条件で塗布、乾燥、改質処理して形成し試料5を作製した。
Sample 5
In sample 4, the stress relaxation layer was formed by applying organic polysilazane (methylhydropolysilazane) instead of perhydropolysilazane (PHPS), coating, drying, and modifying treatment under the same conditions to prepare sample 5.
 試料6
 試料1において、応力緩和層を以下の樹脂組成物に変更したものを試料6とした。
Sample 6
Sample 6 was obtained by changing the stress relaxation layer to the following resin composition in Sample 1.
 (応力緩和層形成)
 上記平滑層、ブリードアウト防止層を設けた支持体の平滑層上に、下記組成物を、乾燥膜厚が400nmとなるように塗布し、80℃にて5分間乾燥した。次に80W/cm高圧水銀灯を12cmの距離から4秒間照射して硬化させた。
(Stress relaxation layer formation)
On the smooth layer of the support provided with the smooth layer and the bleed-out prevention layer, the following composition was applied so that the dry film thickness was 400 nm, and dried at 80 ° C. for 5 minutes. Next, an 80 W / cm high pressure mercury lamp was irradiated for 4 seconds from a distance of 12 cm to be cured.
 〈組成物〉
ジペンタエリスリトールヘキサアクリレート単量体           60質量部
ジペンタエリスリトールヘキサアクリレート2量体           20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分      20質量部
ジエトキシベンゾフェノン(UV光開始剤)               2質量部
メチルエチルケトン                         50質量部
酢酸エチル                             50質量部
イソプロピルアルコール                       50質量部
 上記組成物を撹拌しながら溶解した。
<Composition>
Dipentaerythritol hexaacrylate monomer 60 parts by mass Dipentaerythritol hexaacrylate dimer 20 parts by mass Dipentaerythritol hexaacrylate trimer or higher component 20 parts by mass Diethoxybenzophenone (UV photoinitiator) 2 parts by mass methyl ethyl ketone 50 50 parts by weight ethyl acetate 50 parts by weight Isopropyl alcohol 50 parts by weight The above composition was dissolved while stirring.
 試料7
 上記平滑層、ブリードアウト防止層を設けた支持体の平滑層上に、真空プラズマ装置を用いて、40°で気化させたテトラメチルジシロキサン(TMDSO)を用い、TMDSO/酸素=0.5の流量比で真空容器内に導入し、13.3Paの真空度を維持しながら、13.56MHzの高周波を平行平板電極に導入してプラズマ放電を起こし、真空プラズマCVD法により膜厚50nmの珪素酸化物層を形成した。なお、出力密度は、5W/cmであった。
Sample 7
On the smooth layer of the support provided with the smooth layer and the bleed-out prevention layer, tetramethyldisiloxane (TMDSO) vaporized at 40 ° using a vacuum plasma apparatus is used, and TMDSO / oxygen = 0.5. Introduced into the vacuum vessel at a flow rate ratio, while maintaining a vacuum of 13.3 Pa, a high frequency of 13.56 MHz was introduced into the parallel plate electrodes to cause plasma discharge, and silicon oxide with a film thickness of 50 nm was formed by vacuum plasma CVD. A physical layer was formed. The power density was 5 W / cm 2 .
 次いで、試料1と同様に、珪素化合物層塗布液を用いてウェットプロセスにて試料1と同様のバリア層を形成し試料7とした。 Next, similarly to Sample 1, a barrier layer similar to Sample 1 was formed by wet process using a silicon compound layer coating solution, and Sample 7 was obtained.
 試料8
 真空プラズマCVD層形成条件として、真空度を26.6Paとし、出力密度を2W/cmに代える以外は試料7と同様にして試料8とした。
Sample 8
As a vacuum plasma CVD layer formation condition, Sample 8 was prepared in the same manner as Sample 7 except that the degree of vacuum was 26.6 Pa and the output density was changed to 2 W / cm 2 .
 以上試料1~8について、応力緩和層についてそれぞれ、炭素%(原子数濃度)を測定した。 For the samples 1 to 8, the carbon% (atomic number concentration) was measured for each of the stress relaxation layers.
 〔炭素含有量の評価〕
 作製した第一、第二、また第三の酸化珪素層の炭素含有量はXPSにて測定した(原子数濃度%)。炭素含有率は下記のXPS法によって算出される原子数濃度%であり、以下に定義される。
[Evaluation of carbon content]
The carbon contents of the produced first, second, and third silicon oxide layers were measured by XPS (atomic concentration%). The carbon content is an atomic number concentration% calculated by the following XPS method and is defined below.
 原子数濃度%(atomic concentration(at%))=炭素原子の個数/全原子の個数×100
 XPS表面分析装置は、本発明では、VGサイエンティフィックス社製ESCALAB-200Rを用いた。具体的には、X線アノードにはMgを用い、出力600W(加速電圧15kV、エミッション電流40mA)で測定した。エネルギー分解能は、清浄なAg3d5/2ピークの半値幅で規定したとき、1.5eV~1.7eVとなるように設定した。
Atomic concentration (at%) = number of carbon atoms / number of all atoms × 100
As the XPS surface analyzer, ESCALAB-200R manufactured by VG Scientific, Inc. was used in the present invention. Specifically, Mg was used for the X-ray anode, and measurement was performed at an output of 600 W (acceleration voltage: 15 kV, emission current: 40 mA). The energy resolution was set to be 1.5 eV to 1.7 eV when defined by the half width of a clean Ag3d5 / 2 peak.
 測定としては、先ず、結合エネルギー0eV~1100eVの範囲を、データ取り込み間隔1.0eVで測定し、いかなる元素が検出されるかを求めた。 As a measurement, first, the range of binding energy from 0 eV to 1100 eV was measured at a data acquisition interval of 1.0 eV to determine what elements were detected.
 次に、検出された、エッチングイオン種を除く全ての元素について、データの取り込み間隔を0.2eVとして、その最大強度を与える光電子ピークについてナロースキャンを行い、各元素のスペクトルを測定した。 Next, with respect to all the detected elements except the etching ion species, the data acquisition interval was set to 0.2 eV, and the photoelectron peak giving the maximum intensity was subjected to narrow scan, and the spectrum of each element was measured.
 得られたスペクトルは、測定装置、あるいは、コンピュータの違いによる含有率算出結果の違いを生じせしめなくするために、VAMAS-SCA-JAPAN製のCOMMON DATA PROCESSING SYSTEM(Ver.2.3以降が好ましい)上に転送した後、同ソフトで処理を行い、各分析ターゲットの元素(炭素、酸素、ケイ素、チタン等)の含有率の値を原子数濃度(atomic concentration:at%)として求めた。 The obtained spectrum is COMMON DATA PROCESSING SYSTEM (Ver. 2.3 or later is preferable) manufactured by VAMAS-SCA-JAPAN in order not to cause a difference in the content calculation result due to a difference in measuring apparatus or computer. After being transferred to the top, processing was performed with the same software, and the content value of each analysis target element (carbon, oxygen, silicon, titanium, etc.) was determined as atomic concentration (at%).
 定量処理を行う前に、各元素についてCount Scaleのキャリブレーションを行い、5ポイントのスムージング処理を行った。定量処理では、バックグラウンドを除去したピークエリア強度(cps*eV)を用いた。バックグラウンド処理には、Shirleyによる方法を用いた。 Before performing the quantitative process, the calibration of the Count Scale was performed for each element, and a 5-point smoothing process was performed. In the quantitative process, the peak area intensity (cps * eV) from which the background was removed was used. For the background treatment, the method by Shirley was used.
 作製したガスバリア積層体(ガスバリアフィルム)についてクラック耐性、耐屈曲性、又バリア性能について下記の評価を行った。 The produced gas barrier laminate (gas barrier film) was subjected to the following evaluations on crack resistance, flex resistance, and barrier performance.
 《ガスバリア積層体の評価》
 〔評価1:クラック耐性の評価〕
 ポリシラザン改質時の膜収縮で発生する応力によるバリア層のクラック発生を、作製した試料表面について、100倍ルーペを用いて目視観察することで評価した。
<< Evaluation of gas barrier laminate >>
[Evaluation 1: Evaluation of crack resistance]
The occurrence of cracks in the barrier layer due to the stress generated by the film shrinkage during the polysilazane modification was evaluated by visually observing the prepared sample surface using a 100-fold magnifier.
 クラック耐性の評価ランク
 5:クラック発生なし
 4:クラック若干発生あるが、使用上問題なし
 3:クラック発生あるが、使用上懸念
 2:クラック発生あり、使用上問題あり
 1:クラック発生あり、使用出来ない
 〔評価2:ガスバリア性の評価〕
 上記作製した各ガスバリア積層体について、下記の方法に従って、水蒸気透過率を測定し、これをガスバリア性の尺度とした。
Evaluation rank of crack resistance 5: No crack generation 4: Some cracks are generated, but there are no problems in use 3: Cracks are generated, but there are concerns in use 2: Cracks are generated, there are problems in use 1: Cracks are generated, usable None [Evaluation 2: Evaluation of gas barrier properties]
About each produced gas barrier laminated body, the water-vapor-permeation rate was measured in accordance with the following method, and this was made into the scale of gas barrier property.
 〈水蒸気透過率(WVTR)の評価〉
 以下の測定方法により評価した。
<Evaluation of water vapor transmission rate (WVTR)>
The following measurement methods were used for evaluation.
 装置
蒸着装置:日本電子(株)製真空蒸着装置JEE-400
恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
レーザー顕微鏡:KEYENCE VK-8500
原子間力顕微鏡(AFM):Digital Instruments社製DI3100。
Device vapor deposition device: JEE-400 vacuum vapor deposition device manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Laser microscope: KEYENCE VK-8500
Atomic force microscope (AFM): DI3100 manufactured by Digital Instruments.
 原材料
水分と反応して腐食する金属:カルシウム(粒状)
水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 (水蒸気バリア性評価用セルの作製)
 各試料No.1~8のバリア層面に、真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、試料の測定面積部分(12mm×12mmを9箇所)以外をマスクし、金属カルシウムを蒸着させた。その後、真空状態のままマスクを取り去り、シート片側全面にアルミニウムをもう一つの金属蒸着源から蒸着させた。アルミニウム封止後、真空状態を解除し、速やかに乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介してアルミニウム封止側と対面させ、紫外線を照射することで、評価用セルを作製した。
Metal that corrodes by reacting with raw material moisture: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
(Preparation of water vapor barrier property evaluation cell)
Each sample No. Using a vacuum vapor deposition apparatus (JEOL-made vacuum vapor deposition apparatus JEE-400) on the 1 to 8 barrier layer surfaces, a portion other than the measurement area of the sample (12 mm × 12 mm 9 positions) was masked to deposit metallic calcium. Thereafter, the mask was removed in a vacuum state, and aluminum was deposited from another metal deposition source on the entire surface of one side of the sheet. After aluminum sealing, the vacuum state is released, and immediately facing the aluminum sealing side through a UV-curable resin for sealing (made by Nagase ChemteX) on quartz glass with a thickness of 0.2 mm in a dry nitrogen gas atmosphere The cell for evaluation was produced by irradiating with ultraviolet rays.
 得られた両面を封止した試料を60℃、90%RHの高温高湿下で保存し、特開2005-283561号記載の方法に基づき、金属カルシウムの腐食量からセル内に透過した水分量を計算した。 The obtained sample with both surfaces sealed is stored under high temperature and high humidity of 60 ° C. and 90% RH, and the amount of moisture permeated into the cell from the corrosion amount of metallic calcium based on the method described in JP-A-2005-283561. Was calculated.
 なお、バリアフィルム面から以外の水蒸気の透過が無いことを確認するために、比較試料としてバリアフィルム試料の代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な60℃、90%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor other than from the barrier film surface, instead of the barrier film sample as a comparative sample, a sample in which metallic calcium was vapor-deposited using a quartz glass plate having a thickness of 0.2 mm, The same 60 ° C., 90% RH high temperature and high humidity storage was performed, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 以下の評価ランクに従った。 The following evaluation rank was followed.
 5:1×10-4g/(m・24h)未満
 4:1×10-4g/(m・24h)以上、1×10-3g/(m・24h)未満
 3:1×10-3g/(m・24h)以上、1×10-2g/(m・24h)未満
 2:1×10-2g/(m・24h)以上、1×10-1g/(m・24h)未満
 1:1×10-1g/(m・24h)以上。
Less than 5: 1 × 10 −4 g / (m 2 · 24 h) 4: 1 × 10 −4 g / (m 2 · 24 h) or more and less than 1 × 10 −3 g / (m 2 · 24 h) 3: 1 × 10 −3 g / (m 2 · 24 h) or more, less than 1 × 10 −2 g / (m 2 · 24 h) 2: 1 × 10 −2 g / (m 2 · 24 h) or more, 1 × 10 −1 Less than g / (m 2 · 24 h) 1: 1 × 10 −1 g / (m 2 · 24 h) or more.
 〔評価3:耐屈曲性の評価〕
 各ガスバリア積層体を、半径が10mmの曲率になるように、180度の角度で100回の屈曲を繰り返した後、各ガスバリア積層体のガスバリア層面の顕微鏡観察と、下式に従って水蒸気透過率の劣化比率を測定し、下記の基準に従って折り曲げ耐性を評価した。
[Evaluation 3: Evaluation of bending resistance]
Each gas barrier laminate was repeatedly bent 100 times at an angle of 180 degrees so that the radius of curvature was 10 mm, and then the gas barrier layer surface of each gas barrier laminate was observed under a microscope, and the water vapor transmission rate was deteriorated according to the following equation: The ratio was measured and bending resistance was evaluated according to the following criteria.
 水蒸気透過率の劣化比率=屈曲操作後の水蒸気透過率/屈曲操作前の水蒸気透過率
 5:セラミック層でのクラックの発生がなく、また巻き付け操作前後での水蒸気透過率の劣化比率が1.2未満である
 4:セラミック層でのクラックの発生がなく、また巻き付け操作前後での水蒸気透過率の劣化比率が1.2以上1.5未満である
 3:セラミック層で極微小のクラックの発生が認められ、また巻き付け操作前後での水蒸気透過率の劣化比率が1.5以上2.0未満である
 2:セラミック層で明らかなクラックの発生が認められ、また巻き付け操作前後での水蒸気透過率の劣化比率が2.0以上5.0未満である
 1:セラミック層で明らかなクラックの発生が認められ、また巻き付け操作前後での水蒸気透過率の劣化比率が5.0以上である
Deterioration ratio of water vapor transmission rate = water vapor transmission rate after bending operation / water vapor transmission rate before bending operation 5: No crack is generated in the ceramic layer, and the deterioration rate of water vapor transmission rate before and after the winding operation is 1.2. 4: There is no occurrence of cracks in the ceramic layer, and the deterioration rate of the water vapor transmission rate before and after the winding operation is 1.2 or more and less than 1.5. 3: Generation of extremely small cracks in the ceramic layer. In addition, the deterioration ratio of the water vapor transmission rate before and after the winding operation is 1.5 or more and less than 2.0 2: the occurrence of obvious cracks in the ceramic layer is recognized, and the water vapor transmission rate before and after the winding operation Deterioration ratio is 2.0 or more and less than 5.0 1: Clear cracks are observed in the ceramic layer, and the deterioration ratio of water vapor permeability before and after the winding operation is 5.0 or more.
Figure JPOXMLDOC01-appb-T000002
 なお、試料7(応力緩和層は真空プラズマCVD法を用いて形成される)は、試料1~3(応力緩和層は大気圧プラズマCVD法で形成される)と比較し、稼働率は80%であった(試料1~3を100%としたとき)。すなわち、大気圧プラズマCVD法の方が、稼働率が良く、生産性が良いことがわかった。
Figure JPOXMLDOC01-appb-T000002
Sample 7 (the stress relaxation layer is formed using a vacuum plasma CVD method) has an operating rate of 80% compared to samples 1 to 3 (the stress relaxation layer is formed using an atmospheric pressure plasma CVD method). (Samples 1 to 3 were taken as 100%). That is, it was found that the atmospheric pressure plasma CVD method has a higher operation rate and better productivity.
 実施例2
 積層の例
 試料1のガスバリアユニットを2つ、または3つ繰り返し積層(応力緩和層、バリア層を交互に積層)したガスバリア積層体(試料9、10)を形成し、実施例1と同様にクラック耐性、耐屈曲性、バリア性能について評価したところ、バリア性能が大きく向上し、充分な応力緩和性能を持ち、耐屈曲性についても膜厚の増加にもかかわらず良好なレベルを維持していることが判った。
Example 2
Example of Lamination A gas barrier laminate (samples 9 and 10) in which two or three gas barrier units of sample 1 are repeatedly laminated (stress relaxation layers and barrier layers are alternately laminated) is formed, and cracks are formed in the same manner as in Example 1. Evaluation of resistance, bending resistance, and barrier performance showed that barrier performance was greatly improved, sufficient stress relaxation performance was maintained, and a good level of bending resistance was maintained despite an increase in film thickness. I understood.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明は、金属酸窒化物層を積層したガスバリアフィルム技術に利用することができる。 The present invention can be used for gas barrier film technology in which metal oxynitride layers are laminated.
 1 基板
 2 応力緩和層
 3 バリア層
1 substrate 2 stress relaxation layer 3 barrier layer

Claims (10)

  1.  基板の少なくとも片面に、大気圧プラズマCVD法で形成した金属酸化物及び金属酸窒化物の少なくとも一方を含む応力緩和層、並びにウェットプロセスで形成された珪素酸窒化物からなるバリア層が積層されたことを特徴とするガスバリア積層体。 A stress relaxation layer containing at least one of a metal oxide and a metal oxynitride formed by atmospheric pressure plasma CVD and a barrier layer made of silicon oxynitride formed by a wet process were laminated on at least one surface of the substrate. A gas barrier laminate characterized by that.
  2.  前記金属酸化物及び金属酸窒化物は、炭素を含有することを特徴とする請求項1に記載のガスバリア積層体。 The gas barrier laminate according to claim 1, wherein the metal oxide and the metal oxynitride contain carbon.
  3.  前記金属酸化物及び前記金属酸窒化物に含有される炭素は元素比率で0.1%以上、30%未満であることを特徴とする請求項1または2に記載のガスバリア積層体。 The gas barrier laminate according to claim 1 or 2, wherein carbon contained in the metal oxide and the metal oxynitride is 0.1% or more and less than 30% in terms of element ratio.
  4.  前記バリア層は、改質処理が行われることを特徴とする請求項1~3の何れか一項に記載のガスバリア積層体。 The gas barrier laminate according to any one of claims 1 to 3, wherein the barrier layer is subjected to a modification treatment.
  5.  請求項1~3の何れか一項に記載の応力緩和層、及びウェットプロセスで形成されたバリア層をガスバリア層ユニットとした際に、前記基板の少なくとも片面に前記ガスバリア層ユニットを少なくとも二つ繰り返し積層することを特徴とする請求項1~4の何れか一項に記載のガスバリア積層体。 When the stress relaxation layer according to any one of claims 1 to 3 and the barrier layer formed by a wet process are used as a gas barrier layer unit, at least two of the gas barrier layer unit are repeated on at least one side of the substrate. The gas barrier laminate according to any one of claims 1 to 4, wherein the laminate is laminated.
  6.  基板の少なくとも片面に、金属酸化物および金属酸窒化物の少なくとも一方を含む応力緩和層を大気圧プラズマCVD法で形成し、前記応力緩和層上に、珪素酸窒化物からなるバリア層をウェットプロセスで形成することを特徴とするガスバリア積層体の製造方法。 A stress relaxation layer including at least one of a metal oxide and a metal oxynitride is formed on at least one surface of the substrate by an atmospheric pressure plasma CVD method, and a barrier layer made of silicon oxynitride is formed on the stress relaxation layer by a wet process. A method for producing a gas barrier laminate, characterized by comprising:
  7.  前記金属酸化物および金属酸窒化物は、炭素を含有することを特徴とする請求項6に記載のガスバリア積層体の製造方法。 The method for producing a gas barrier laminate according to claim 6, wherein the metal oxide and the metal oxynitride contain carbon.
  8.  前記金属酸化物および金属酸窒化物に含有される炭素は、元素比率で0.1%以上、30%未満であることを特徴とする請求項6または7に記載のガスバリア積層体の製造方法。 The method for producing a gas barrier laminate according to claim 6 or 7, wherein carbon contained in the metal oxide and the metal oxynitride is 0.1% or more and less than 30% in terms of element ratio.
  9.  前記バリア層に改質処理を行うことを特徴とする請求項6~8の何れか一項に記載のガスバリア積層体の製造方法。 The method for producing a gas barrier laminate according to any one of claims 6 to 8, wherein the barrier layer is subjected to a modification treatment.
  10.  前記応力緩和層、及び前記バリア層をガスバリア層ユニットとした際に、前記基板の少なくとも片面に前記ガスバリア層ユニットを少なくとも二つ繰り返し積層することを特徴とする請求項6~9の何れか一項に記載のガスバリア積層体の製造方法。 10. The gas barrier layer unit according to claim 6, wherein when the stress relaxation layer and the barrier layer are gas barrier layer units, at least two of the gas barrier layer units are repeatedly stacked on at least one surface of the substrate. The manufacturing method of the gas barrier laminated body as described in any one of.
PCT/JP2011/078713 2010-12-13 2011-12-12 Gas barrier laminate and method for producing gas barrier laminate WO2012081555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548779A JP5958346B2 (en) 2010-12-13 2011-12-12 Method for producing gas barrier laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010276714 2010-12-13
JP2010-276714 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081555A1 true WO2012081555A1 (en) 2012-06-21

Family

ID=46244654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078713 WO2012081555A1 (en) 2010-12-13 2011-12-12 Gas barrier laminate and method for producing gas barrier laminate

Country Status (2)

Country Link
JP (1) JP5958346B2 (en)
WO (1) WO2012081555A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092085A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Gas barrier film, method for manufacturing same, and electronic device using same
WO2014119754A1 (en) * 2013-01-31 2014-08-07 コニカミノルタ株式会社 Gas barrier film, method for producing same, and electronic device using same
WO2014203892A1 (en) * 2013-06-20 2014-12-24 コニカミノルタ株式会社 Gas barrier film and method for producing same
WO2015053189A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Gas barrier film and process for manufacturing same
WO2015060394A1 (en) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 Gas barrier film
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same
KR20160020836A (en) * 2014-08-14 2016-02-24 엘에스엠트론 주식회사 Barrier film structure and organic electronic device having the same
WO2016052123A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Gas barrier film, electronic device using same, and method for producing gas barrier film
WO2016178391A1 (en) * 2015-05-01 2016-11-10 コニカミノルタ株式会社 Long gas-barrier film and method for producing same, and short gas-barrier film and method for producing same
JPWO2014126037A1 (en) * 2013-02-12 2017-02-02 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP2017177640A (en) * 2016-03-31 2017-10-05 住友化学株式会社 Laminate film and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061429B2 (en) * 2016-10-03 2022-04-28 株式会社きもと A hard coat film for adhering an inorganic compound layer, and a transparent conductive film and a touch panel using the hard coat film.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257595A (en) * 1994-03-23 1995-10-09 Toppan Printing Co Ltd Gas-barrier packaging bag
JP2006044231A (en) * 2004-06-28 2006-02-16 Dainippon Printing Co Ltd Gas barrier film, substrate for display using the same and display
JP2006264094A (en) * 2005-03-24 2006-10-05 Konica Minolta Holdings Inc Gas-barrier film
JP2008230106A (en) * 2007-03-22 2008-10-02 Toppan Printing Co Ltd Gas barrier laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003118030A (en) * 2001-10-16 2003-04-23 Asahi Glass Co Ltd Gas-barrier organic base material and electroluminescent element using the base material
JP2007277631A (en) * 2006-04-06 2007-10-25 Konica Minolta Holdings Inc Method for producing gas-barrier thin film laminate, gas-barrier thin film laminate, gas-barrier resin base and organic electroluminescent device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257595A (en) * 1994-03-23 1995-10-09 Toppan Printing Co Ltd Gas-barrier packaging bag
JP2006044231A (en) * 2004-06-28 2006-02-16 Dainippon Printing Co Ltd Gas barrier film, substrate for display using the same and display
JP2006264094A (en) * 2005-03-24 2006-10-05 Konica Minolta Holdings Inc Gas-barrier film
JP2008230106A (en) * 2007-03-22 2008-10-02 Toppan Printing Co Ltd Gas barrier laminate

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014092085A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Gas barrier film, method for manufacturing same, and electronic device using same
JPWO2014092085A1 (en) * 2012-12-14 2017-01-12 コニカミノルタ株式会社 Gas barrier film, method for producing the same, and electronic device using the same
WO2014119754A1 (en) * 2013-01-31 2014-08-07 コニカミノルタ株式会社 Gas barrier film, method for producing same, and electronic device using same
JPWO2014126037A1 (en) * 2013-02-12 2017-02-02 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
WO2014203892A1 (en) * 2013-06-20 2014-12-24 コニカミノルタ株式会社 Gas barrier film and method for producing same
WO2015053189A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Gas barrier film and process for manufacturing same
CN105658424A (en) * 2013-10-24 2016-06-08 柯尼卡美能达株式会社 Gas barrier film
WO2015060394A1 (en) * 2013-10-24 2015-04-30 コニカミノルタ株式会社 Gas barrier film
JPWO2015060394A1 (en) * 2013-10-24 2017-03-09 コニカミノルタ株式会社 Gas barrier film
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same
KR20160020836A (en) * 2014-08-14 2016-02-24 엘에스엠트론 주식회사 Barrier film structure and organic electronic device having the same
KR102345984B1 (en) * 2014-08-14 2021-12-30 에스케이넥실리스 주식회사 Barrier film structure and organic electronic device having the same
WO2016052123A1 (en) * 2014-09-30 2016-04-07 東レ株式会社 Gas barrier film, electronic device using same, and method for producing gas barrier film
JPWO2016052123A1 (en) * 2014-09-30 2017-07-13 東レ株式会社 Gas barrier film, electronic device using the same, and method for producing gas barrier film
WO2016178391A1 (en) * 2015-05-01 2016-11-10 コニカミノルタ株式会社 Long gas-barrier film and method for producing same, and short gas-barrier film and method for producing same
CN107531016A (en) * 2015-05-01 2018-01-02 柯尼卡美能达株式会社 Strip gas barrier film and its manufacture method and short strip shape gas barrier film and its manufacture method
JPWO2016178391A1 (en) * 2015-05-01 2018-02-22 コニカミノルタ株式会社 Elongated gas barrier film and method for producing the same, and short gas barrier film and method for producing the same
CN107531016B (en) * 2015-05-01 2019-08-09 柯尼卡美能达株式会社 Strip gas barrier film and its manufacturing method and short strip shape gas barrier film and its manufacturing method
JP2017177640A (en) * 2016-03-31 2017-10-05 住友化学株式会社 Laminate film and method for manufacturing the same

Also Published As

Publication number Publication date
JP5958346B2 (en) 2016-07-27
JPWO2012081555A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5958346B2 (en) Method for producing gas barrier laminate
JP5880442B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
JP5786940B2 (en) Gas barrier film and method for producing the same
JP6041039B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
JP6274213B2 (en) Gas barrier film
WO2013161809A1 (en) Gas barrier film, and electronic device employing same
WO2014119750A1 (en) Gas barrier film
JP5626308B2 (en) Method for producing gas barrier laminate and gas barrier laminate
JP5691947B2 (en) Gas barrier film and method for producing gas barrier film
JP5861644B2 (en) Method for producing gas barrier film and gas barrier film
JP2012131194A (en) Gas barrier film
JP2011143550A (en) Gas-barrier film
JP2012067193A (en) Method for cleaning gas barrier film, gas barrier package and organic electronic device
JP6073549B2 (en) Gas barrier film, electronic device, and method for producing gas barrier film
JP2012228859A (en) Gas barrier film and method of manufacturing the same
JP6060848B2 (en) Gas barrier film
JP2014240051A (en) Gas barrier film, manufacturing method of gas barrier film, and manufacturing apparatus of gas barrier film
JP2014240462A (en) Gas barrier film, method for manufacturing gas barrier film, and apparatus for manufacturing gas barrier film
JP5825016B2 (en) Barrier film manufacturing method
JP2013022799A (en) Gas barrier film, and method of manufacturing the gas barrier film
JP2016193526A (en) Gas barrier film, and electronic device using the gas barrier film
WO2017010249A1 (en) Gas barrier film
JP2011044453A (en) Back sheet for solar cell, and solar cell module
JP2016193527A (en) Gas barrier film
JP2015024384A (en) Method of manufacturing gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849168

Country of ref document: EP

Kind code of ref document: A1