WO2014203793A1 - Light emitting device, sealing film laminate for producing same, and method for manufacturing light emitting device - Google Patents
Light emitting device, sealing film laminate for producing same, and method for manufacturing light emitting device Download PDFInfo
- Publication number
- WO2014203793A1 WO2014203793A1 PCT/JP2014/065555 JP2014065555W WO2014203793A1 WO 2014203793 A1 WO2014203793 A1 WO 2014203793A1 JP 2014065555 W JP2014065555 W JP 2014065555W WO 2014203793 A1 WO2014203793 A1 WO 2014203793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- emitting device
- optical film
- resin
- sealing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 73
- 238000007789 sealing Methods 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000012788 optical film Substances 0.000 claims abstract description 99
- 239000010410 layer Substances 0.000 claims abstract description 80
- 239000010408 film Substances 0.000 claims abstract description 78
- 239000004065 semiconductor Substances 0.000 claims abstract description 76
- 239000012945 sealing adhesive Substances 0.000 claims abstract description 43
- 238000000605 extraction Methods 0.000 claims abstract description 32
- 239000000853 adhesive Substances 0.000 claims description 73
- 230000001070 adhesive effect Effects 0.000 claims description 70
- 229920005989 resin Polymers 0.000 claims description 48
- 239000011347 resin Substances 0.000 claims description 48
- 229920002050 silicone resin Polymers 0.000 claims description 29
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 22
- 239000004925 Acrylic resin Substances 0.000 claims description 15
- 229920000098 polyolefin Polymers 0.000 claims description 14
- 239000003822 epoxy resin Substances 0.000 claims description 11
- 229920000647 polyepoxide Polymers 0.000 claims description 11
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 claims description 9
- 229920000515 polycarbonate Polymers 0.000 claims description 9
- 239000004417 polycarbonate Substances 0.000 claims description 9
- 239000004642 Polyimide Substances 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 239000005011 phenolic resin Substances 0.000 claims description 7
- 229920001721 polyimide Polymers 0.000 claims description 7
- 229920000178 Acrylic resin Polymers 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 239000000758 substrate Substances 0.000 description 28
- 230000001681 protective effect Effects 0.000 description 15
- 238000001723 curing Methods 0.000 description 11
- 229920002799 BoPET Polymers 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000005253 cladding Methods 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- 150000002921 oxetanes Chemical class 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 239000013464 silicone adhesive Substances 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229910003564 SiAlON Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
- H01L33/54—Encapsulations having a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/005—Processes relating to semiconductor body packages relating to encapsulations
Definitions
- the present invention relates to a light emitting device such as an LED that is simple to manufacture and excellent in light extraction efficiency, and a sealing film laminate used in the manufacture thereof.
- the device is bonded to a base material having high thermal conductivity by Au bumps or resin, and a reflector is provided around the device.
- a structure that is provided and filled so as to cover the entire element using a sealing material mainly composed of silicone has been widely adopted.
- This structure reduces the internal reflection caused by the difference in the refractive index at the interface between the outermost surface layer of the LED element and the air by filling the resin, and tries to suppress the decrease in light extraction efficiency caused by the internal reflection. It is configured for the purpose of protecting the LED element against the influence from the external environment.
- This sealing structure is manufactured by a dispensing method or a molding method using liquid or semi-liquid, mainly silicone or epoxy, or a composite resin material mainly composed of silicone or epoxy.
- the dispensing method there is a problem that the time required for the process to seal each minute package becomes long.
- the mold method has a problem that a large apparatus is required and the working time of each mold is long. Furthermore, it was necessary to design a dedicated tool for each different package design.
- Non-Patent Document 1 Japanese Science and Technology Agency Bulletin No. 788, March 1, 2011, issued by Japan Science and Technology Agency (JST), URL: http://www.jst.go.jp/pr/info/ info788 /
- Patent Document 1 WO2009 / 070809 disclose that the light extraction efficiency is improved by creating a fine uneven shape on the substrate surface that becomes the light extraction surface from the LED element. Yes.
- Non-Patent Document 1 reports an improvement in light extraction efficiency of about 3.5 times.
- Japan Science and Technology Agency No. 788, issued on March 1, 2011 Issued by: Japan Science and Technology Agency (JST), URL: http://www.jst.go.jp/pr/info/info788/
- An object of the present invention is to provide a light emitting device that is simple to manufacture and has improved light extraction efficiency, a method for manufacturing the light emitting device, and a sealing film laminate used for the manufacturing.
- the present invention relates to the following matters.
- a light-emitting device wherein an optical film having a fine uneven shape on a surface is provided on a light extraction direction side of a semiconductor light-emitting element through a sealing adhesive layer.
- Curing of resin including at least one selected from the group consisting of silicone resin, epoxy resin, oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, and urethane resin. 5. The light-emitting device according to any one of 1 to 4, wherein the light-emitting device is formed of a material.
- a thickness of the sealing adhesive layer between the optical film and the semiconductor light emitting element is in a range of 100 to 800 ⁇ m.
- the phosphor includes at least one selected from the group consisting of oxide phosphors, nitride phosphors, oxynitride phosphors, and sulfide phosphors.
- a sealing film laminate comprising: an optical film having a fine uneven shape on a surface; and an adhesive sheet bonded to a smooth surface of the optical film.
- the adhesive sheet is selected from silicone resin, epoxy resin, oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, urethane resin, and a mixture containing at least one of these resins.
- the sealing film laminate as described in 10 or 11 above, which contains a resin.
- a method of manufacturing a light emitting device comprising: dicing the wafer bonded to the sealing film laminate together with the optical film and the adhesive sheet into chips.
- a light emitting device comprising: a light emitting device including a semiconductor light emitting element; an optical film having a fine uneven shape on a surface thereof, and an optical refractive index on the light emitting device side of the interface being controlled. .
- the present invention it is possible to provide a light emitting device that is simple to manufacture and has improved light extraction efficiency, a method for manufacturing the light emitting device, and a sealing film laminate used for the manufacturing.
- FIG. 1 It is a schematic diagram showing a typical example of a light emitting device to which a flip chip type semiconductor light emitting element is applied. It is a schematic diagram showing a typical example of a light emitting device to which a face-up type semiconductor light emitting element is applied. It is a figure which shows typically the cross section of the optical film which has a fine unevenness
- FIG. 10 is a diagram illustrating an example (Embodiment A-1) of a method for manufacturing a light-emitting device, following FIG. 9; It is a figure which shows one example (embodiment A-2) of the manufacturing method of a light-emitting device. It is a figure which shows one example (embodiment B-1) of the manufacturing method of a light-emitting device.
- FIG. 10 is a diagram illustrating an example (Embodiment A-1) of a method for manufacturing a light-emitting device, following FIG. 9; It is a figure which shows one example (embodiment A-2) of the manufacturing method of a light-emitting device. It is a figure which shows one example (embodiment B-1) of the manufacturing method of a light-emitting device.
- FIG. 10 is a diagram illustrating an example (Embodiment A-1) of a method for manufacturing a light-emitting device, following FIG. 9; It is
- FIG. 13 is a diagram illustrating an example (Embodiment B-1) of a method for manufacturing a light-emitting device, following FIG. 12; It is a figure which shows one example (embodiment B-2) of the manufacturing method of a light-emitting device.
- the light-emitting device of the present invention includes (i) a semiconductor light-emitting element, (ii) an optical film having a fine uneven shape on the surface, and (iii) a light extraction direction of the semiconductor light-emitting element.
- the “semiconductor light emitting device” means a structure of a minimum unit capable of emitting light alone by inputting current, and is formed on a growth substrate (which may be finally removed).
- the “semiconductor die” means one that is separated as a unit of one light emitting element after the semiconductor multilayer structure is formed.
- the semiconductor light emitting element is preferably an LED (light emitting diode), and the wavelength of light emitted from the element is not particularly limited.
- FIG. 1 shows an example in which the present invention is applied to a semiconductor light emitting device (LED) called a flip chip type.
- LED semiconductor light emitting device
- the growth direction of the semiconductor layer (photoactive layer, p-type cladding layer, n-type cladding layer, etc.) included in the semiconductor light emitting element 20a is downward in this drawing, and the n electrode and p electrode are downward. become.
- the semiconductor light emitting element is connected to a wiring 22 formed on the surface of the support 23 by a bump 21 or the like for current injection.
- the light extraction direction is upward in the drawing, and the upper layer on the light extraction side in the semiconductor light emitting device 20a is a substrate (sapphire substrate, GaN substrate, etc.) used for the growth of the semiconductor layer.
- the growth substrate may be removed.
- an optical film 11 (hereinafter sometimes simply referred to as an optical film) having a fine irregular shape on the surface is provided via a sealing adhesive layer 12 in the light extraction direction of the semiconductor light emitting element 20a. .
- FIG. 2 shows an example in which the present invention is applied to a semiconductor light emitting device (LED) called a face-up type.
- LED semiconductor light emitting device
- the face-up type in general, the growth direction of a semiconductor layer (photoactive layer, p-type cladding layer, n-type cladding layer, etc.) is upward in the drawing, and the n electrode and the p electrode are located above the semiconductor light emitting element 20b. It is provided upward and connected to the wiring 22 formed on the surface of the support 23 by wire bonding 24. Also in this semiconductor light emitting device, the light extraction direction is the upward direction of the drawing.
- a semiconductor layer photoactive layer, p-type cladding layer, n-type cladding layer, etc.
- the optical film 11 having a fine uneven shape on the surface is provided via the sealing adhesive layer 12 in the light extraction direction of the semiconductor light emitting element 20b.
- an optical film having fine irregularities on the surface is attached by a sealing adhesive layer 12 in the light extraction direction of the semiconductor light emitting devices (20 a, 20 b). Therefore, the light extraction efficiency is improved. This is because the effective refractive index at the interface with the external air layer is modulated stepwise due to the fine unevenness, and internal reflection is reduced.
- the sealing adhesive layer only needs to have at least a function of adhering the optical film to the semiconductor light emitting element, but also has a function of protecting the semiconductor light emitting element from the external environment. Further, as will be described later, a wavelength conversion function can be provided by including a phosphor in the sealing adhesive layer.
- the optical film can be manufactured separately from the manufacturing of the semiconductor light emitting element, and the light emitting device can be manufactured by bonding it. For this reason, the manufacturing process is greatly simplified, and the light emitting device can be manufactured at low cost. An example of the manufacturing process will be described later.
- an optical film having fine irregularities on the surface is provided at the interface with the air of the light emitting device including a semiconductor light emitting element, and the optical refractive index on the light emitting device side of the interface is controlled. It is characterized by being.
- the refractive index is appropriately controlled, and preferably the refractive index difference with air is less than 0.1.
- the height of the fine concavo-convex convex portions of the optical film is 0.07 to 1 ⁇ m, the pitch between adjacent convex portions is 0.07 to 1 ⁇ m, and the height and pitch of the convex portions are within these ranges.
- the refractive index can be controlled to be preferable for the light emitting device.
- the optical film used in the present invention is formed of a substantially transparent material in the wavelength region to be used, and has irregularities on the light extraction side as schematically shown in FIG. 3 (cross-sectional view). Concavities and convexities are formed periodically, and the pitch between adjacent convex portions 111 and convex portions 111 is 0.07 ⁇ m to 1 ⁇ m, preferably 0.3 to 0.7 ⁇ m.
- the convex portion is not particularly limited as long as it has a shape that gradually becomes thinner as it proceeds in the light extraction direction (upward in FIG. 3), that is, a shape in which the cross-sectional area of the convex portion decreases toward the upper side.
- a semi-elliptical rotator shape preferably the major axis is in the vertical direction
- a bell shape preferably the major axis is in the vertical direction
- a bell shape preferably the major axis is in the vertical direction
- a bell shape preferably the major axis is in the vertical direction
- a bell shape preferably the major axis is in the vertical direction
- a bell shape preferably the major axis is in the vertical direction
- a bell shape preferably the major axis is in the vertical direction
- a bell shape preferably the major axis is in the vertical direction
- a cone shape preferably the major axis is in the vertical direction
- a hexagonal pyramid shape preferably the major axis is in the vertical direction
- the height t1 of the convex portion is preferably 0.07 ⁇ m to 1 ⁇ m, and the aspect ratio (height / pitch) is preferably 0.5 or more, more preferably 1 or more, and usually 5 or less.
- the material constituting the optical film examples include silicone resin, polyethylene terephthalate (PET), polyethersulfone (PES), thermosetting resin elastomers such as silicone rubber and fluoro rubber, PMMA, polycarbonate, cyclic polyolefin, polyimide, polyolefin, Examples thereof include a cycloolefin polymer, a phenol resin, and a resin mainly containing at least one selected from these. Of these, silicone resin, polycarbonate, PMMA, cycloolefin polymer and the like are preferable, and silicone resin is particularly preferable.
- the surface unevenness or the surface unevenness and the thin layer that supports the surface unevenness may be formed of a material different from the base material film that constitutes most of the optical film.
- Most of the optical film is preferably formed of a resin having excellent transparency and durability, such as silicone resin, polycarbonate, PMMA, cycloolefin polymer, and the like, and particularly preferably silicone resin.
- the surface unevenness or the surface unevenness and the thin layer that supports the surface unevenness are preferably a cured product of a resin composition containing a (meth) acrylate resin (a resin containing a (meth) acryloyl group).
- the optical film may contain a fine inorganic filler in addition to the resin, whereby the refractive index of the optical film can be adjusted.
- the refractive index of the material constituting the optical film is preferably between 1.3 and 1.7.
- a necessary refractive index can be achieved by selecting a resin as a base material and adjusting the kind and amount of the inorganic filler added as necessary.
- This optical film has an effective refractive index difference with the air layer at the interface 13 with the air layer shown in FIG.
- the effective refractive index difference with the air layer is 0.1, and no irregularities are formed on the surface.
- the difference in refractive index at the interface between the film having a smooth thickness t and the air is equivalent to 0.1. That is, it means that light emitted from the optical film is hardly internally reflected on the surface provided with fine irregularities.
- the thickness t of the optical film is not particularly limited, but can be appropriately selected within the range of, for example, 10 ⁇ m to 5 mm, more typically 20 ⁇ m to 1 mm.
- a cylindrical mold having a fine concave mold is manufactured and placed between a long film unwinding chamber and a winding chamber.
- a liquid UV curable resin is injected into the mold, and the liquid resin in the mold is irradiated with UV when the film passes through the mold.
- An optical film having irregularities on the surface can be formed by winding while adhering to the film while curing. Since this method can be manufactured by a roll-to-roll method, it can be mass-produced at a low cost.
- the concave shape of the mold is set so that the fine irregularities on the surface of the optical film have a predetermined shape that matches the optical characteristics of the semiconductor light emitting element and the sealing adhesive layer, but the height is 0.07 to 1 ⁇ m. In this range, a shape in which the pitch is in the range of 0.07 to 1 ⁇ m and the convex portion on the surface of the optical film is the above-mentioned shape is preferable.
- the optical film can also be manufactured by utilizing a technique such as nanoimprinting, in which a fine pattern is transferred onto a resin surface or the like by using a printing technique by a roll-to-roll method.
- the base film can be selected from the above-mentioned “materials constituting the optical film”.
- the liquid UV curable resin may be a UV curable resin, and examples thereof include a resin composition containing a (meth) acrylate resin (a resin containing a (meth) acryloyl group).
- the sealing adhesive layer adheres the optical film to the semiconductor light emitting element
- the refractive index is a value between the refractive index of the material on the light extraction side surface of the semiconductor light emitting element and the refractive index of air.
- it has a value between the refractive index of the material on the light extraction side surface of the semiconductor light emitting element and the refractive index of the material on the adhesive surface side of the optical film.
- the refractive index of the sealing adhesive layer is preferably in the range of 1.4 to 2.5, and the refractive index of the material on the light extraction side of the semiconductor light emitting device and the material on the adhesive side of the optical film are It is preferable to set appropriately in consideration.
- the resin constituting the sealing adhesive layer may be a thermosetting resin, a thermoplastic resin or the like as long as it has predetermined physical properties (hardness, heat resistance, durability, transparency, refractive index, etc.) in the final product. Any of composite resins may be used.
- the sealing adhesive layer in the final product means a resin layer that has been finally cured.
- the sealing adhesive layer is in a state where these resins are finally cured.
- silicone resins, epoxy resins, oxetane resins, modified silicone resins, modified epoxy resins, modified oxetane resins, and mixtures containing the same are more preferable.
- a silicone resin is particularly preferable from the viewpoint of transparency and durability.
- the thickness of the sealing adhesive layer that is, the distance between the light extraction side surface of the semiconductor light emitting element and the optical film can be changed according to the purpose, but can be set in the range of 100 to 800 ⁇ m, for example.
- the sealing adhesive layer may cover the side surface of the semiconductor light emitting element (semiconductor die).
- the semiconductor light emitting element may be covered including wire bonding.
- the sealing adhesive layer can include a phosphor.
- the phosphor that can be used is not particularly limited, and phosphors used in known semiconductor light emitting devices can be used.
- an oxide phosphor such as YAG (Y 3 Al 5 O 12 : Ce), TAG (Tb 3 Al 5 O 12 : Ce), and silicate (Ca 3 MgSi 4 O 16 Cl 2 : Eu) is referred to as 258Nitride.
- Nitride phosphors such as Ca 2 Si 5 N 8 , oxynitriding typified by SiAlON of ⁇ -type (M x (SiAl) 12 (ON) 16 ) and ⁇ -type ((SiAl) 6 (ON) 3 : Eu)
- Type phosphors and sulfide phosphors may be used alone or in combination of two or more.
- phosphors not exemplified here can be used alone or mixed with the phosphors exemplified above.
- a light emitting device that emits white light or a desired color can be obtained by combining the emission wavelength of the semiconductor light emitting element and the phosphor.
- the phosphor content is usually 0.1 to 120 parts by weight, preferably 1 to 100 parts by weight with respect to 100 parts by weight of the sealing adhesive layer (when cured). Part.
- the sealing adhesive layer may have a multilayer structure, for example, a layer containing a phosphor and a layer containing no phosphor or a smaller amount.
- the fluorescent substance from which luminescent color differs can also be contained in a respectively different layer.
- the sealing film laminate of the present invention has a structure in which the optical film described above and an adhesive sheet for forming the sealing adhesive layer described above are stacked.
- the adhesive sheet is subjected to a curing treatment as necessary to become the above-described sealing adhesive layer.
- adheresive sheet includes not only a self-supporting form but also a form that is not self-supporting and exists in the form of a layer attached on a substrate.
- sheet is used for those that are present before being cured.
- the sealing film laminate of the present invention has a structure in which an adhesive sheet 32 is laminated on a smooth surface (a surface on which fine irregularities are not formed) of the optical film 11. It is preferable that a sealing film laminated body is hold
- the dicing tape 34 is formed in a shape larger than the outer shape of the optical film 11 and the adhesive sheet 32, that is, a larger circle in this example.
- the cut shape of the optical film 11, the adhesive sheet 32, and the dicing tape 34 can be appropriately adjusted to the shape of the wafer to which the sealing film laminate is bonded.
- any shape such as an oval shape, a square shape, a rectangular shape may be used, and can be set as appropriate according to the purpose of use.
- one unit of the laminated structure of the optical film 11 / adhesive sheet 32 / dicing tape 34 is on one release substrate sheet 33. Even in the formed form, a plurality of units of the laminated structure of the optical film 11 / adhesive sheet 32 / dicing tape 34 may be formed on one release substrate sheet 33.
- the laminated structure of the optical film 11 / adhesive sheet 32 / dicing tape 34 is formed on the long release substrate sheet 33 at intervals, and is in a state of roll winding. Can also be provided.
- FIG. 7 shows a cross-sectional view of a different form of the sealing film laminate of the present invention.
- the adhesive sheet 32 is laminated on the smooth surface of the optical film 11 and is held on the release substrate sheet 33.
- the sealing film laminated body of this form can also be provided as a cut sheet or in a rolled state as shown in FIG.
- the adhesive sheet 32 is in a semi-cured state (B-stage state, that is, solid or semi-solid).
- B-stage state that is, solid or semi-solid.
- the material constituting the adhesive sheet is silicone resin, epoxy resin, oxetane resin, modified silicone resin, modified epoxy resin, modified oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, urethane
- silicone resin epoxy resin, oxetane resin, modified silicone resin, modified epoxy resin, modified oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, urethane
- examples thereof include a resin and a mixture containing at least one of these resins.
- resins that can be finally cured by heating are preferable, and silicone resins, epoxy resins, oxetane resins, modified silicone resins, modified epoxy resins, modified oxetane resins, and copolymers or mixtures containing them are preferable.
- a silicone resin is particularly preferable from the viewpoint of transparency and durability.
- silicone resins include polysiloxanes containing organopolysiloxanes having hydrosilyl groups, curing catalysts such as platinum catalysts, and addition-curable silicone resin compositions containing a curing retarder if necessary. After applying a liquid resin to a suitable release substrate, proceed with partial curing, or after dissolving / dispersing a polysiloxane having a predetermined molecular weight in a solvent together with other additives and applying it to a suitable substrate By removing the solvent by drying, a semi-cured (solid, semi-solid) sheet can be formed. A sealing film laminated body is obtained by bonding the obtained sheet
- the thickness of the adhesive sheet does not change greatly even after final curing, and can be set to the same level as the sealing adhesive layer in the light emitting device, for example, in the range of 100 to 800 ⁇ m.
- the temperature for heat curing is, for example, 80 ° C. to 300 ° C.
- the phosphor When the phosphor is contained in the sealing adhesive layer of the completed light-emitting device, the phosphor may be contained in the production of the adhesive sheet. For example, in the stage where the resin is liquid and / or in the solution It is preferable to mix a phosphor.
- the adhesive sheet may be formed as a multilayer structure.
- the manufacturing method of the light emitting device includes the adhesive sheet surface of the sealing film laminate, the wafer on which the plurality of semiconductor light emitting elements are formed, and the light extraction side surface of the semiconductor light emitting element in contact with the adhesive sheet surface.
- a step of bonding there are a step of bonding, and a step of dicing the wafer bonded to the sealing film laminate together with the optical film and the adhesive sheet to form a chip.
- the adhesive sheet can be finally cured by heating after chip formation.
- a typical embodiment of the manufacturing method will now be described.
- a protective tape 41 is attached to the surface (element formation surface) of the wafer 42 on which the semiconductor light emitting element structure with solder bumps is formed.
- the peeling base sheet 33 is peeled off to expose the adhesive sheet.
- 32 is affixed to the wafer 42 to obtain the structure shown in FIG.
- the protective tape 41 is peeled off.
- the semiconductor die semiconductor light emitting element
- the sealing film laminate is mounted on the mounting substrate 23 by the flip chip mounting.
- the adhesive sheet 32 is finally cured by heating at a predetermined temperature for a predetermined time, thereby forming the sealing adhesive layer 12 to complete the light emitting device.
- a protective tape 41 is attached to the surface (element formation surface) of a wafer 42 on which a semiconductor light emitting element structure with solder bumps is formed.
- the sealing film laminate (laminated structure of the optical film 11, the adhesive sheet 32, and the release base sheet 33) shown in FIG. 7 is prepared, the release base sheet 33 is peeled off, and the exposed adhesive sheet 32 is removed from the wafer 42. To obtain the structure shown in FIG.
- the optical film 11 and the adhesive sheet 32 are cut with a size equal to or larger than the wafer 42 (for example, about 5 mm larger). Thereafter, the dicing tape 34 is attached, and the dicing tape is cut into a size larger than the wafer to obtain the structure shown in FIG. This structure is almost the same as the structure of FIG. 9B described in the embodiment A-1. Therefore, in the subsequent steps, the light emitting device can be completed according to the steps described in Embodiment A-1.
- an intermediate array structure in which a plurality of (many) semiconductor light emitting elements are mounted on a support 23 is prepared.
- the support is different from the substrate used for semiconductor growth, and a ceramic substrate such as AlN can be used.
- the semiconductor light emitting device is not particularly limited, such as a flip chip type and a face up type. That is, a large number of semiconductor light emitting elements (such as flip chip type 20a or face up type 20b) are mounted on the support 23, and are connected to predetermined wirings or electrodes on the support by bumps or wire bonding. Yes.
- the separated support body 23 with the sealing film laminated body mounted with the semiconductor light emitting element mounted thereon is mounted on a mounting substrate as necessary. Thereafter, the adhesive sheet 32 is finally cured by heating at a predetermined temperature for a predetermined time, and becomes the sealing adhesive layer 12, thereby completing the light emitting device.
- FIG. 13E shows a flip chip type, but the present invention can also be applied to a face-up type and other forms of semiconductor light emitting elements.
- an intermediate array structure in which a plurality of (many) semiconductor light emitting elements are mounted on a support 23 is prepared as in the embodiment B-1.
- a large number of semiconductor light emitting elements (such as a flip chip type 20a or a face-up type 20b) are mounted on the support 23, and are connected to predetermined wirings or electrodes on the support by bumps or wire bonding.
- the sealing film laminated body (laminated structure of the optical film 11, the adhesive sheet 32, and the peeling base material sheet 33) shown in FIG. 7 is prepared, the peeling base material sheet 33 is peeled off, and the exposed adhesive sheet 32 is supported.
- the structure shown in FIG. 14B is obtained by pasting on the semiconductor light emitting element mounting surface 23.
- the optical film 11 and the adhesive sheet 32 are cut with a size that is the same as or larger than the support 23 (for example, a size that is about 5 mm larger). Thereafter, the dicing tape 34 is attached, and the dicing tape is cut into a size larger than the wafer to obtain the structure shown in FIG. If there is a protective tape on the back side of the support 23, it is also removed.
- This structure is almost the same as the structure of FIG. 12B described in the embodiment B-1. Accordingly, in the subsequent steps, the light emitting device can be completed in accordance with the steps described in Embodiment B-1.
- a flip chip type is shown, but the present invention can also be applied to a face-up type or other forms of semiconductor light emitting elements.
- a sealing film laminate containing the phosphor in the adhesive sheet may be used. Moreover, after apply
- the light emitting device of the present invention can be applied to various uses. For example, in consumer and industrial lighting, automobile headlights, and rear lights at the rear of the vehicle body, the light-emitting device of the present invention can be further re-mounted to provide a lens. Alternatively, the present invention can be applied to a use in place of a lens.
- Example of optical film production> A silicone resin is used as the base film, and a mold as described in the above section ⁇ Optical film with fine irregularities> is used to form a fine irregular shape with a UV curable resin.
- An optical film was obtained.
- the shape of the irregularities is a bell-shaped cone having a height of 0.5 ⁇ m and a pitch (diameter) of 0.3 ⁇ m.
- the obtained optical film has a thickness of 50 ⁇ m and a refractive index of 1.4 (material refractive index).
- the silicone resin solution obtained above was coated on a 38 ⁇ m thick polyester film (PET film), dried at 80 ° C. for 5 minutes, and semi-cured to obtain an adhesive sheet having a thickness of 500 ⁇ m.
- optical film having fine irregularities manufactured in the above-mentioned “optical film manufacturing example” was attached to the surface of the adhesive sheet (opposite to the PET film) at 80 ° C.
- the optical film and the adhesive sheet were cut into a circular shape so that the PET film was cut by 5 to 20 ⁇ m (half cut).
- the circular size may be the same as the size of the substrate to be attached or may be about 20 to 30 mm larger.
- a pressure-sensitive dicing tape having a thickness of 85 ⁇ m was attached.
- the dicing tape was cut into a circular shape by cutting 5 to 20 ⁇ m into the PET film (half cut).
- the size of the circle may be the same as the size of the wafer ring to be attached or about 10 to 20 mm.
- the cut circular outer dicing tape was removed to complete the sealing film laminate.
- the silicone resin solution obtained above was coated on a 38 ⁇ m thick polyester film (PET film), dried at 80 ° C. for 5 minutes, and semi-cured to obtain an adhesive sheet having a thickness of 500 ⁇ m.
- the optical film having fine irregularities manufactured in the above-mentioned “optical film manufacturing example” is attached at 80 ° C., and the sealing film laminate Was completed.
- the film produced in Production Example 1 of the sealing film laminate was peeled off from the PET film on the backside of the wafer and then attached at 80 ° C. After peeling off the protective tape on the surface, the LED chip was separated into pieces by a blade dicing method. After separating into chips, the chip was peeled off from the dicing tape and mounted on a mounting board with a lip chip. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer (adhesive sheet), thereby completing the light emitting device.
- the film produced in Production Example 2 of the sealing film laminate was peeled off from the PET film on the back surface of the wafer, and then pasted at 80 ° C.
- the optical film and the adhesive sheet portion were cut to a size about 5 mm larger than the wafer. Thereafter, a pressure-sensitive dicing tape having a thickness of 85 ⁇ m was attached to the optical film at room temperature.
- the dicing tape was cut into the size of a wafer ring, and then the surface protective tape was peeled off, and then the LED chip was separated into pieces by a blade dicing method. After separation into individual pieces, the chip was peeled off from the dicing tape and mounted on a mounting board with a lip chip. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer, thereby completing a light emitting device.
- Example of Manufacturing Method B-1 A wafer was prepared by flip-chip bonding a large number of LED chips (150 ⁇ m thick, 0.2 ⁇ 0.5 mm size) on an 8-inch circular 150 ⁇ m thick ceramic (AlN) substrate. A protective tape was attached to the back surface of the wafer at room temperature.
- the film produced in Production Example 1 of the sealing film laminate was peeled off from the PET film and pasted at 80 ° C. on the element forming surface of the substrate. After peeling off the protective tape, the LED chip was separated into pieces by a blade dicing method. After separating into pieces, the LED elements were peeled off from the dicing tape and mounted on a mounting board. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer (adhesive sheet), thereby completing the light emitting device.
- Example 4 of light-emitting device production Example of Production Method B-2 A wafer was prepared by flip-chip bonding a number of LED chips (150 ⁇ m thick, 0.2 ⁇ 0.5 mm size) on an 8-inch circular 150 ⁇ m thick ceramic (AlN) substrate. A protective tape was attached to the back surface of the wafer at room temperature.
- the film produced in Production Example 2 of the sealing film laminate was peeled off from the PET film and pasted at 80 ° C. on the element forming surface of the substrate.
- the optical film and the adhesive sheet portion were cut to a size about 5 mm larger than the wafer. Thereafter, a pressure-sensitive dicing tape having a thickness of 85 ⁇ m was attached to the optical film at room temperature.
- the dicing tape was cut into the size of a wafer ring, and then the protective tape was peeled off, and then the LED chip was separated into pieces by a blade dicing method. After separating into pieces, the LED elements were peeled off from the dicing tape and mounted on a mounting board. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer (adhesive sheet), thereby completing the light emitting device.
- Example 5 of light-emitting device production Example of Manufacturing Method Embodiment B-1 (Face Up LED) A number of LED chips (150 ⁇ m thick, 0.2 ⁇ 0.5 mm size) were die-bonded on an 8-inch circular 150 ⁇ m thick ceramic (AlN) substrate using a die attach paste adhesive. After the paste adhesive was cured, it was wire-bonded with a 25 ⁇ m diameter gold wire and electrically connected to the wiring (electrode) on the ceramic substrate. The wafer thus manufactured was used, and thereafter, a light emitting device (face-up type LED) was completed in the same manner as in “Light Emitting Device Production Example 3”.
- the LED devices manufactured in the light emitting device manufacturing examples 1 to 6 have a difference in refractive index of about 0.4 to 0.5 between the silicone resin serving as the sealing material and the external air layer in the conventional structure.
- the fine unevenness gradually modulates the refractive index at the interface with the external air layer, it was possible to control the refractive index difference as small as about 0.01.
- the light emitting device of the present invention can be applied to various uses such as consumer and industrial lighting and indicators, automobile headlights, rear rear lights of vehicle bodies, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Disclosed is a light emitting device wherein an optical film (11), which has a microrelief structure on the surface, is provided on the light extraction side of a semiconductor light emitting element (20a) with a sealing adhesive layer (12) being interposed therebetween. This light emitting device can be manufactured easily and has improved light extraction efficiency. Also disclosed are: a method for manufacturing this light emitting device; and a sealing film laminate which is used for the production of this light emitting device.
Description
本発明は、製造が簡便で光取り出し効率に優れるLED等の発光装置およびその製造に使用される封止フィルム積層体に関する。
The present invention relates to a light emitting device such as an LED that is simple to manufacture and excellent in light extraction efficiency, and a sealing film laminate used in the manufacture thereof.
従来、半導体発光素子(以下、LED素子と略記することもある)の実装および封止構造においては、素子を熱伝導率の高い基材にAuバンプあるいは樹脂によって接合し、素子の周囲にリフレクターを設け、それをシリコーンを主とする封止材を用いて素子全体を覆うように充填する構造が広く採用されてきた。この構造は、樹脂を充填することでLED素子の最表面層と空気との界面の屈折率の差により生じる内部反射を低減し、内部反射が起因となる光の取り出し効率の低下を抑止しようとすること、および外部環境からの影響に対するLED素子の保護を目的として構成されている。
Conventionally, in the mounting and sealing structure of a semiconductor light emitting device (hereinafter sometimes abbreviated as an LED device), the device is bonded to a base material having high thermal conductivity by Au bumps or resin, and a reflector is provided around the device. A structure that is provided and filled so as to cover the entire element using a sealing material mainly composed of silicone has been widely adopted. This structure reduces the internal reflection caused by the difference in the refractive index at the interface between the outermost surface layer of the LED element and the air by filling the resin, and tries to suppress the decrease in light extraction efficiency caused by the internal reflection. It is configured for the purpose of protecting the LED element against the influence from the external environment.
この封止構造は、液状あるいは半液状の、主としてシリコーンもしくはエポキシ、またはそれを主成分としてなる複合樹脂材料を用いて、ディスペンス法もしくはモールド法によって作製される。
This sealing structure is manufactured by a dispensing method or a molding method using liquid or semi-liquid, mainly silicone or epoxy, or a composite resin material mainly composed of silicone or epoxy.
例えばディスペンス法では、微細な一つ一つのパッケージを封止するために工程に要する時間が長くなるなどの問題がある。モールド法では、大型の装置を必要とし、一つ一つのモールドの作業時間が長いという問題がある。更に異なるパッケージデザインに対して、それぞれに専用のツールの設計をする必要があった。
For example, in the dispensing method, there is a problem that the time required for the process to seal each minute package becomes long. The mold method has a problem that a large apparatus is required and the working time of each mold is long. Furthermore, it was necessary to design a dedicated tool for each different package design.
これらの従来の封止構造において、LED素子と大気との屈折率の差は低減されているものの、封止材料とLED素子との間の屈折率差および封止材料と大気との間の屈折率差は依然として大きく、この屈折率の差異により光の取り出し効率が低下するという問題は十分に解決されていない。
In these conventional sealing structures, although the refractive index difference between the LED element and the atmosphere is reduced, the refractive index difference between the sealing material and the LED element and the refraction between the sealing material and the atmosphere. The difference in rate is still large, and the problem that the light extraction efficiency is lowered due to the difference in refractive index has not been sufficiently solved.
また、最近は自動車用途等において、大きな電圧を加えることでよりLEDの明るさを増そうとする高パワー対応のLEDも数多く商品化されている。しかし、従来の封止構造においては、屈折率の差異により内部反射が各層毎の界面で生じ、一部の光は、外部に放射されずに内部で再反射を繰り返すことで熱に変換され、その結果、熱が滞留して損失となる。すなわち照明として活用できる光の取り出し効率が著しく低下してしまうなどの問題がある。
In recent years, many high-powered LEDs have been commercialized to increase the brightness of LEDs by applying a large voltage in automobile applications. However, in the conventional sealing structure, internal reflection occurs at the interface of each layer due to the difference in refractive index, and some light is converted to heat by repeating re-reflection inside without being emitted outside, As a result, heat is retained and lost. That is, there is a problem that the extraction efficiency of light that can be used as illumination is significantly reduced.
これを解決する為に、様々な方法が試みられているが、例えば、基板表面に微細な凹凸構造により屈折率を制御することが報告されている。例えば、非特許文献1(科学技術振興機構報 第788号、平成23年3月1日 科学技術振興機構(JST)発行、URL:http://www.jst.go.jp/pr/info/info788/)および特許文献1(WO2009/070809号公報)においては、LED素子から光取り出し面となる基板表面に、微細な凹凸形状を作成することにより、光取り出し効率が向上することが開示されている。非特許文献1では、約3.5倍の光の取り出し効率向上が報告されている。
In order to solve this, various methods have been tried. For example, it has been reported that the refractive index is controlled by a fine uneven structure on the substrate surface. For example, Non-Patent Document 1 (Japan Science and Technology Agency Bulletin No. 788, March 1, 2011, issued by Japan Science and Technology Agency (JST), URL: http://www.jst.go.jp/pr/info/ info788 /) and Patent Document 1 (WO2009 / 070809) disclose that the light extraction efficiency is improved by creating a fine uneven shape on the substrate surface that becomes the light extraction surface from the LED element. Yes. Non-Patent Document 1 reports an improvement in light extraction efficiency of about 3.5 times.
しかしながら、基板表面に、微細な凹凸形状を形成するためには、エッチング等のための追加の工程や装置が必要になり、製造コストが高額化するため、実現性に乏しい。
However, in order to form a fine concavo-convex shape on the surface of the substrate, an additional process or apparatus for etching or the like is required, and the manufacturing cost is increased, so the feasibility is poor.
本発明は、製造が簡便で、光取り出し効率が向上した発光装置、その製造方法およびその製造に使用される封止フィルム積層体を提供することを目的とする。
An object of the present invention is to provide a light emitting device that is simple to manufacture and has improved light extraction efficiency, a method for manufacturing the light emitting device, and a sealing film laminate used for the manufacturing.
本発明は以下の事項に関する。
The present invention relates to the following matters.
1.表面に微細な凹凸形状を有する光学フィルムが、封止接着層を介して、半導体発光素子の光取り出し方向側に設けられていることを特徴とする発光装置。
1. A light-emitting device, wherein an optical film having a fine uneven shape on a surface is provided on a light extraction direction side of a semiconductor light-emitting element through a sealing adhesive layer.
2.前記封止接着層は、前記半導体発光素子の光取り出し面に直接接触して設けられていることを特徴とする上記1に記載の発光装置。
2. 2. The light emitting device according to 1 above, wherein the sealing adhesive layer is provided in direct contact with a light extraction surface of the semiconductor light emitting element.
3.前記光学フィルムの微細な凹凸形状の凸部の高さが0.07~1μmであり、隣接する凸部の間のピッチが0.07~1μmであることを特徴とする上記1または2に記載の発光装置。
3. 3. The optical film according to 1 or 2 above, wherein the height of the fine uneven-shaped convex portions of the optical film is 0.07 to 1 μm, and the pitch between the adjacent convex portions is 0.07 to 1 μm. Light-emitting device.
4.前記光学フィルムは、微細な凹凸形状を有する側で、空気層との屈折率の差が0.1未満となるように機能することを特徴とする上記1~3のいずれか1項に記載の発光装置。
4. 4. The optical film according to any one of the above items 1 to 3, wherein the optical film functions so that a difference in refractive index from the air layer is less than 0.1 on a side having a fine uneven shape. Light emitting device.
5.前記封止接着層が、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、アクリレート樹脂、アクリル樹脂、ポリカーボネイト、環状ポリオレフィン、ポリイミド、ポリオレフィン、フェノール樹脂、ウレタン樹脂からなる群より選ばれる少なくとも1種を含む樹脂の硬化物で形成されていることを特徴とする上記1~4のいずれか1項に記載の発光装置。
5. Curing of resin including at least one selected from the group consisting of silicone resin, epoxy resin, oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, and urethane resin. 5. The light-emitting device according to any one of 1 to 4, wherein the light-emitting device is formed of a material.
6.前記光学フィルムと前記半導体発光素子の間の前記封止接着層の厚みが、100~800μmの範囲であることを特徴とする上記1~5のいずれか1項に記載の発光装置。
6. 6. The light emitting device according to any one of the above 1 to 5, wherein a thickness of the sealing adhesive layer between the optical film and the semiconductor light emitting element is in a range of 100 to 800 μm.
7.前記封止接着層の屈折率が、1.4~2.5の範囲であることを特徴とする上記1~6のいずれか1項に記載の発光装置。
7. 7. The light emitting device according to any one of 1 to 6, wherein the sealing adhesive layer has a refractive index in the range of 1.4 to 2.5.
8.前記封止接着層が、蛍光体を含有することを特徴とする上記1~7のいずれか1項に記載の発光装置。
8. 8. The light emitting device according to any one of the above 1 to 7, wherein the sealing adhesive layer contains a phosphor.
9.前記蛍光体が、酸化物蛍光体、窒化物蛍光体、酸化窒化型蛍光体および硫化物蛍光体からなる群より選ばれる少なくとも1種を含むことを特徴とする上記8に記載の発光装置。
9. 9. The light-emitting device according to 8 above, wherein the phosphor includes at least one selected from the group consisting of oxide phosphors, nitride phosphors, oxynitride phosphors, and sulfide phosphors.
10.表面に微細な凹凸形状を有する光学フィルムと、この光学フィルムの平滑な面に接着された接着剤シートとを有することを特徴とする封止フィルム積層体。
10. A sealing film laminate comprising: an optical film having a fine uneven shape on a surface; and an adhesive sheet bonded to a smooth surface of the optical film.
11.前記光学フィルムの微細な凹凸形状の凸部の高さが0.07~1μmであり、隣接する凸部の間のピッチが0.07~1μmであることを特徴とする上記10に記載の封止フィルム積層体。
11. 11. The sealing according to 10 above, wherein the height of the fine irregularities of the optical film is 0.07 to 1 μm, and the pitch between adjacent convexities is 0.07 to 1 μm. Stop film laminate.
12.前記接着剤シートが、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、アクリレート樹脂、アクリル樹脂、ポリカーボネイト、環状ポリオレフィン、ポリイミド、ポリオレフィン、フェノール樹脂、ウレタン樹脂、およびこれらの樹脂の少なくとも1種を含む混合物から選ばれる樹脂を含有することを特徴とする上記10または11に記載の封止フィルム積層体。
12. The adhesive sheet is selected from silicone resin, epoxy resin, oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, urethane resin, and a mixture containing at least one of these resins. 12. The sealing film laminate as described in 10 or 11 above, which contains a resin.
13.前記接着剤シートの厚みが100~800μmの範囲であることを特徴とする上記10~12のいずれか1項に記載の封止フィルム積層体。
13. 13. The sealing film laminate according to any one of 10 to 12, wherein the adhesive sheet has a thickness in the range of 100 to 800 μm.
14.前記接着剤シートが、蛍光体を含有することを特徴とする上記10~13のいずれか1項に記載の封止フィルム積層体。
14. 14. The sealing film laminate according to any one of 10 to 13, wherein the adhesive sheet contains a phosphor.
15.前記光学フィルムの微細な凹凸形状を有する側の表面に、さらにダイシングテープが積層されている上記10~14のいずれか1項に記載の封止フィルム積層体。
15. 15. The sealing film laminate according to any one of the above 10 to 14, wherein a dicing tape is further laminated on the surface of the optical film having a fine uneven shape.
16.上記10~15のいずれか1項に記載の封止フィルム積層体の前記接着剤シート面を、複数の半導体発光素子が形成されたウェハーと、光取り出し側の面が前記接着剤シート面と接触するように、貼り合わせる工程と、
前記封止フィルム積層体と貼り合わされたウェハーを、前記光学フィルムと前記接着剤シートと共に、ダイシングして、チップ化する工程と
を有することを特徴とする発光装置の製造方法。 16. The adhesive sheet surface of the sealing film laminate according to any one of the above 10 to 15, the wafer on which a plurality of semiconductor light emitting elements are formed, and the light extraction side surface in contact with the adhesive sheet surface The process of pasting together,
A method of manufacturing a light emitting device, comprising: dicing the wafer bonded to the sealing film laminate together with the optical film and the adhesive sheet into chips.
前記封止フィルム積層体と貼り合わされたウェハーを、前記光学フィルムと前記接着剤シートと共に、ダイシングして、チップ化する工程と
を有することを特徴とする発光装置の製造方法。 16. The adhesive sheet surface of the sealing film laminate according to any one of the above 10 to 15, the wafer on which a plurality of semiconductor light emitting elements are formed, and the light extraction side surface in contact with the adhesive sheet surface The process of pasting together,
A method of manufacturing a light emitting device, comprising: dicing the wafer bonded to the sealing film laminate together with the optical film and the adhesive sheet into chips.
17.前記チップ化後に、加熱して、前記接着剤シートを硬化する工程をさらに有する上記16に記載の発光装置の製造方法。
17. 17. The method for producing a light emitting device according to 16 above, further comprising a step of heating and curing the adhesive sheet after forming the chip.
18.半導体発光素子を備える発光装置の空気との界面に、表面に微細な凹凸形状を有する光学フィルムが設けられ、前記界面の発光装置側の光学屈折率が制御されていることを特徴とする発光装置。
18. A light emitting device comprising: a light emitting device including a semiconductor light emitting element; an optical film having a fine uneven shape on a surface thereof, and an optical refractive index on the light emitting device side of the interface being controlled. .
19.前記光学フィルムの微細な凹凸形状の凸部の高さが0.07~1μmであり、隣接する凸部の間のピッチが0.07~1μmであることを特徴とする上記18に記載の発光装置。
19. 19. The light-emitting device as described in 18 above, wherein the height of the fine concavo-convex convex portions of the optical film is 0.07 to 1 μm, and the pitch between adjacent convex portions is 0.07 to 1 μm. apparatus.
本発明によれば、製造が簡便で、光取り出し効率が向上した発光装置、その製造方法およびその製造に使用される封止フィルム積層体を提供することができる。
According to the present invention, it is possible to provide a light emitting device that is simple to manufacture and has improved light extraction efficiency, a method for manufacturing the light emitting device, and a sealing film laminate used for the manufacturing.
<<発光装置の構造>>
本発明の発光装置は、前述のとおり、(i)半導体発光素子、(ii)表面に微細な凹凸形状を有する光学フィルム、および(iii)前記半導体発光素子の光取り出し方向に設けられ、前記光学フィルムを前記半導体発光素子に接着する封止接着層を有する。 << Structure of Light Emitting Device >>
As described above, the light-emitting device of the present invention includes (i) a semiconductor light-emitting element, (ii) an optical film having a fine uneven shape on the surface, and (iii) a light extraction direction of the semiconductor light-emitting element. A sealing adhesive layer for adhering the film to the semiconductor light emitting device;
本発明の発光装置は、前述のとおり、(i)半導体発光素子、(ii)表面に微細な凹凸形状を有する光学フィルム、および(iii)前記半導体発光素子の光取り出し方向に設けられ、前記光学フィルムを前記半導体発光素子に接着する封止接着層を有する。 << Structure of Light Emitting Device >>
As described above, the light-emitting device of the present invention includes (i) a semiconductor light-emitting element, (ii) an optical film having a fine uneven shape on the surface, and (iii) a light extraction direction of the semiconductor light-emitting element. A sealing adhesive layer for adhering the film to the semiconductor light emitting device;
本出願において、「半導体発光素子」は、電流を入力することで単独で発光可能な最小単位の構造を意味し、成長基板(最終的に除去されていてもよい)とその上に形成される半導体層(光活性層、p型クラッド層およびn型クラッド層等を含む)および半導体層に接して形成される電極層を含む半導体積層構造を含む構造であり、封止樹脂や蛍光体は含まず、バンプやボンディングワイヤーが接続される前のものと接続後のものの両方を意味する。また、本出願において、「半導体ダイ」は、半導体積層構造が形成された後、1つの発光素子の単位として分離されたものを意味する。
In the present application, the “semiconductor light emitting device” means a structure of a minimum unit capable of emitting light alone by inputting current, and is formed on a growth substrate (which may be finally removed). A structure including a semiconductor layer structure including a semiconductor layer (including a photoactive layer, a p-type cladding layer, an n-type cladding layer, etc.) and an electrode layer formed in contact with the semiconductor layer, including a sealing resin and a phosphor First, it means both before and after connecting bumps and bonding wires. Further, in the present application, the “semiconductor die” means one that is separated as a unit of one light emitting element after the semiconductor multilayer structure is formed.
半導体発光素子は、好ましくはLED(light emitting diode)であり、素子から出射される光の波長は特に限定されない。
The semiconductor light emitting element is preferably an LED (light emitting diode), and the wavelength of light emitted from the element is not particularly limited.
本発明の発光装置の代表的な例の模式図を、図1および図2に示す。図1は、フリップチップ型と呼ばれる半導体発光素子(LED)に本発明を適用した例である。フリップチップ型では、半導体発光素子20aに含まれる半導体層(光活性層、p型クラッド層、n型クラッド層等)の成長方向は、この図面で下方向であり、n電極およびp電極は下向きになる。半導体発光素子は、電流注入のため、バンプ21等により支持体23の表面に形成された配線22と接続される。この半導体発光素子では、光取り出し方向は、図面の上方向となり、半導体発光素子20aの中で光取り出し側の上部層は、半導体層の成長に使用した基板(サファイア基板、GaN基板等)であってもよいし、または成長基板が除去されていてもよい。
Schematic diagrams of typical examples of the light emitting device of the present invention are shown in FIGS. FIG. 1 shows an example in which the present invention is applied to a semiconductor light emitting device (LED) called a flip chip type. In the flip chip type, the growth direction of the semiconductor layer (photoactive layer, p-type cladding layer, n-type cladding layer, etc.) included in the semiconductor light emitting element 20a is downward in this drawing, and the n electrode and p electrode are downward. become. The semiconductor light emitting element is connected to a wiring 22 formed on the surface of the support 23 by a bump 21 or the like for current injection. In this semiconductor light emitting device, the light extraction direction is upward in the drawing, and the upper layer on the light extraction side in the semiconductor light emitting device 20a is a substrate (sapphire substrate, GaN substrate, etc.) used for the growth of the semiconductor layer. Alternatively, the growth substrate may be removed.
この形態において、半導体発光素子20aの光取り出し方向に、封止接着層12を介して、表面に微細な凹凸形状を有する光学フィルム11(以下、単に光学フィルムという場合がある)が設けられている。
In this embodiment, an optical film 11 (hereinafter sometimes simply referred to as an optical film) having a fine irregular shape on the surface is provided via a sealing adhesive layer 12 in the light extraction direction of the semiconductor light emitting element 20a. .
図2は、フェースアップ型と呼ばれる半導体発光素子(LED)に本発明を適用した例である。フェースアップ型では、一般に、半導体層(光活性層、p型クラッド層、n型クラッド層等)の成長方向は図面上方向であり、n電極およびp電極は、半導体発光素子20bの上方側に上向きに設けられており、ワイヤーボンディング24により、支持体23の表面に形成された配線22と接続される。この半導体発光素子においても、光取り出し方向は、図面の上方向となる。
FIG. 2 shows an example in which the present invention is applied to a semiconductor light emitting device (LED) called a face-up type. In the face-up type, in general, the growth direction of a semiconductor layer (photoactive layer, p-type cladding layer, n-type cladding layer, etc.) is upward in the drawing, and the n electrode and the p electrode are located above the semiconductor light emitting element 20b. It is provided upward and connected to the wiring 22 formed on the surface of the support 23 by wire bonding 24. Also in this semiconductor light emitting device, the light extraction direction is the upward direction of the drawing.
この形態においても、半導体発光素子20bの光取り出し方向に、封止接着層12を介して、表面に微細な凹凸形状を有する光学フィルム11が設けられている。
Also in this embodiment, the optical film 11 having a fine uneven shape on the surface is provided via the sealing adhesive layer 12 in the light extraction direction of the semiconductor light emitting element 20b.
本発明では、図1および図2に示すように、半導体発光素子(20a、20b)の光取り出し方向に、表面に微細な凹凸形状を有する光学フィルムが封止接着層12により、貼り付けられているため、光の取り出し効率が向上する。これは、微細な凹凸により、外部空気層との界面の実効的な屈折率が段階的に変調されることとなり、内部反射が低減されるからである。
In the present invention, as shown in FIGS. 1 and 2, an optical film having fine irregularities on the surface is attached by a sealing adhesive layer 12 in the light extraction direction of the semiconductor light emitting devices (20 a, 20 b). Therefore, the light extraction efficiency is improved. This is because the effective refractive index at the interface with the external air layer is modulated stepwise due to the fine unevenness, and internal reflection is reduced.
封止接着層は、少なくとも光学フィルムを半導体発光素子と接着する働きがあればよいが、半導体発光素子を封止することで、外界環境から保護する機能も有している。また、後述するように、封止接着層に蛍光体を含有させることで、波長変換の機能を持たせることもできる。
The sealing adhesive layer only needs to have at least a function of adhering the optical film to the semiconductor light emitting element, but also has a function of protecting the semiconductor light emitting element from the external environment. Further, as will be described later, a wavelength conversion function can be provided by including a phosphor in the sealing adhesive layer.
本発明では、光学フィルムを、半導体発光素子の製造とは別に製造することができ、それを接着することで発光装置を製造できる。このため、製造工程が非常に簡略化され、低コストで発光装置を製造することができる。製造工程の例は、後述する。
In the present invention, the optical film can be manufactured separately from the manufacturing of the semiconductor light emitting element, and the light emitting device can be manufactured by bonding it. For this reason, the manufacturing process is greatly simplified, and the light emitting device can be manufactured at low cost. An example of the manufacturing process will be described later.
本発明の発光装置の異なる態様は、半導体発光素子を備える発光装置の空気との界面に、表面に微細な凹凸形状を有する光学フィルムが設けられ、前記界面の発光装置側の光学屈折率が制御されていることを特徴とする。外部空気層との界面に前記光学フィルムが存在することで、屈折率が適切に、好ましくは空気との屈折率差が0.1未満となるように制御される。前記光学フィルムの微細な凹凸形状の凸部の高さが0.07~1μmであり、隣接する凸部の間のピッチが0.07~1μmであり、凸部の高さおよびピッチこれらの範囲内で調整することで、発光装置に好ましい屈折率に制御できる。
In a different aspect of the light emitting device of the present invention, an optical film having fine irregularities on the surface is provided at the interface with the air of the light emitting device including a semiconductor light emitting element, and the optical refractive index on the light emitting device side of the interface is controlled. It is characterized by being. When the optical film is present at the interface with the external air layer, the refractive index is appropriately controlled, and preferably the refractive index difference with air is less than 0.1. The height of the fine concavo-convex convex portions of the optical film is 0.07 to 1 μm, the pitch between adjacent convex portions is 0.07 to 1 μm, and the height and pitch of the convex portions are within these ranges. The refractive index can be controlled to be preferable for the light emitting device.
<<発光装置を構成する材料>>
まず、発光装置を構成する主要部材を説明する。 << Materials constituting light-emitting device >>
First, main members constituting the light emitting device will be described.
まず、発光装置を構成する主要部材を説明する。 << Materials constituting light-emitting device >>
First, main members constituting the light emitting device will be described.
<微細な凹凸を有する光学フィルム>
本発明で使用される光学フィルムは、使用される波長領域において実質的に透明の材料で形成され、図3(断面図)に模式示すように、光取り出し側に凹凸を有する。凹凸は周期的に形成され、隣接する凸部111と凸部111のピッチが、0.07μm~1μm、好ましくは0.3~0.7μmである。 <Optical film with fine irregularities>
The optical film used in the present invention is formed of a substantially transparent material in the wavelength region to be used, and has irregularities on the light extraction side as schematically shown in FIG. 3 (cross-sectional view). Concavities and convexities are formed periodically, and the pitch between adjacentconvex portions 111 and convex portions 111 is 0.07 μm to 1 μm, preferably 0.3 to 0.7 μm.
本発明で使用される光学フィルムは、使用される波長領域において実質的に透明の材料で形成され、図3(断面図)に模式示すように、光取り出し側に凹凸を有する。凹凸は周期的に形成され、隣接する凸部111と凸部111のピッチが、0.07μm~1μm、好ましくは0.3~0.7μmである。 <Optical film with fine irregularities>
The optical film used in the present invention is formed of a substantially transparent material in the wavelength region to be used, and has irregularities on the light extraction side as schematically shown in FIG. 3 (cross-sectional view). Concavities and convexities are formed periodically, and the pitch between adjacent
凸部は、光取りだし方向(図3で上方)に進むに従って、徐々に細くなる形状、即ち凸部の断面積が上方ほど減少するような形状であれば特に限定されない。例えば、図3に示すように、半楕円回転体形(好ましくは長軸が縦方向)、釣鐘形、円錐形、6角錘形等を挙げることができる。
The convex portion is not particularly limited as long as it has a shape that gradually becomes thinner as it proceeds in the light extraction direction (upward in FIG. 3), that is, a shape in which the cross-sectional area of the convex portion decreases toward the upper side. For example, as shown in FIG. 3, a semi-elliptical rotator shape (preferably the major axis is in the vertical direction), a bell shape, a cone shape, a hexagonal pyramid shape, and the like can be given.
凸部の高さt1は、好ましくは0.07μm~1μmであり、アスペクト比(高さ/ピッチ)は、好ましくは0.5以上、より好ましくは1以上で、通常、5以下が好ましい。
The height t1 of the convex portion is preferably 0.07 μm to 1 μm, and the aspect ratio (height / pitch) is preferably 0.5 or more, more preferably 1 or more, and usually 5 or less.
光学フィルムを構成する材料としては、シリコーン樹脂、ポリエチレンテレフタレート(PET)、ポリエーテルサルホン(PES)、シリコーンゴムやフッ素ゴムなどの熱硬化性樹脂エラストマー、PMMA、ポリカーボネイト、環状ポリオレフィン、ポリイミド、ポリオレフィン、シクロオレフィンポリマー、フェノール樹脂、およびこれらから選ばれる少なくとも1種を主成分とする樹脂が挙げられる。なかでも、シリコーン樹脂、ポリカーボネイト、PMMA、シクロオレフィンポリマー等が好ましく、特にシリコーン樹脂が好ましい。
Examples of the material constituting the optical film include silicone resin, polyethylene terephthalate (PET), polyethersulfone (PES), thermosetting resin elastomers such as silicone rubber and fluoro rubber, PMMA, polycarbonate, cyclic polyolefin, polyimide, polyolefin, Examples thereof include a cycloolefin polymer, a phenol resin, and a resin mainly containing at least one selected from these. Of these, silicone resin, polycarbonate, PMMA, cycloolefin polymer and the like are preferable, and silicone resin is particularly preferable.
また、2種類以上の樹脂の積層であってもよい。例えば表面の凹凸または表面の凹凸とそれを支持する薄層が、光学フィルムの大部分を構成する基材フィルムと異なる材料で形成されてもよい。光学フィルムの大部分は、透明性および耐久性に優れる樹脂で形成されるのが好ましく、シリコーン樹脂、ポリカーボネイト、PMMA、シクロオレフィンポリマー等が好ましく、特にシリコーン樹脂が好ましい。表面の凹凸または表面の凹凸とそれを支持する薄層は、(メタ)アクリレート樹脂((メタ)アクリロイル基を含有する樹脂)を含む樹脂組成物の硬化物等であることも好ましい。
Further, it may be a laminate of two or more kinds of resins. For example, the surface unevenness or the surface unevenness and the thin layer that supports the surface unevenness may be formed of a material different from the base material film that constitutes most of the optical film. Most of the optical film is preferably formed of a resin having excellent transparency and durability, such as silicone resin, polycarbonate, PMMA, cycloolefin polymer, and the like, and particularly preferably silicone resin. The surface unevenness or the surface unevenness and the thin layer that supports the surface unevenness are preferably a cured product of a resin composition containing a (meth) acrylate resin (a resin containing a (meth) acryloyl group).
光学フィルムは、樹脂に加えて微細な無機フィラーを含有してもよく、これにより光学フィルムの屈折率を調整することもできる。
The optical film may contain a fine inorganic filler in addition to the resin, whereby the refractive index of the optical film can be adjusted.
光学フィルムを構成する材料の屈折率は、1.3~1.7の間が好ましい。母材となる樹脂の選択と、必要により添加される無機フィラーの種類と量を調整することで、必要な屈折率を達成することができる。
The refractive index of the material constituting the optical film is preferably between 1.3 and 1.7. A necessary refractive index can be achieved by selecting a resin as a base material and adjusting the kind and amount of the inorganic filler added as necessary.
この光学フィルムは、図3に示す空気層との界面13において、空気層との実効的な屈折率の差が、好ましくは0.1未満である。図3に示すように、光学フィルムの凸部111の先端までの厚さをtとすると、空気層との実効的な屈折率の差が0.1とは、表面に凹凸が形成されていない平滑な厚さtのフィルムの空気との界面における屈折率差が、0.1異なる場合と同等であることを意味する。即ち、微細な凹凸を設けた面では、光学フィルムから出射される光が、ほとんど内部反射されるないことを意味する。光学フィルムの厚さtは、特に限定されないが、例えば、10μm~5mm、より典型的には20μm~1mmの範囲で適宜選択することができる。
This optical film has an effective refractive index difference with the air layer at the interface 13 with the air layer shown in FIG. As shown in FIG. 3, when the thickness up to the tip of the convex portion 111 of the optical film is t, the effective refractive index difference with the air layer is 0.1, and no irregularities are formed on the surface. This means that the difference in refractive index at the interface between the film having a smooth thickness t and the air is equivalent to 0.1. That is, it means that light emitted from the optical film is hardly internally reflected on the surface provided with fine irregularities. The thickness t of the optical film is not particularly limited, but can be appropriately selected within the range of, for example, 10 μm to 5 mm, more typically 20 μm to 1 mm.
次に、光学フィルムの製造方法の1例を簡単に説明する。まず、微細な凹型を有する円筒形の金型を製作し、長尺なフィルムの巻き出し室と巻き取り室の間に設置する。巻き出し室から出た基材フィルムが当該金型を通過する前に、液状のUV硬化樹脂を金型に注入し、フィルムが金型を通過する際に金型内の液状樹脂をUV照射にて硬化させながら、フィルム上に接着させながら巻き取りを行うことで、表面に凹凸を有する光学フィルムを形成することができる。この方法は、ロール・トゥ・ロール方式で製造できるために、低コストで量産が可能である。
Next, an example of an optical film manufacturing method will be briefly described. First, a cylindrical mold having a fine concave mold is manufactured and placed between a long film unwinding chamber and a winding chamber. Before the base film coming out of the unwind chamber passes through the mold, a liquid UV curable resin is injected into the mold, and the liquid resin in the mold is irradiated with UV when the film passes through the mold. An optical film having irregularities on the surface can be formed by winding while adhering to the film while curing. Since this method can be manufactured by a roll-to-roll method, it can be mass-produced at a low cost.
光学フィルム表面の微細な凹凸が、半導体発光素子および封止接着層の光学特性に合わせた所定の形状になるように、金型の凹部形状が設定されるが、高さが0.07~1μmの範囲で、ピッチが0.07~1μmの範囲で、光学フィルム表面の凸部が、前述の形状となるような形状が好ましい。
The concave shape of the mold is set so that the fine irregularities on the surface of the optical film have a predetermined shape that matches the optical characteristics of the semiconductor light emitting element and the sealing adhesive layer, but the height is 0.07 to 1 μm. In this range, a shape in which the pitch is in the range of 0.07 to 1 μm and the convex portion on the surface of the optical film is the above-mentioned shape is preferable.
また、光学フィルムは、同様にロール・トゥ・ロール方式にて、印刷技術を使って樹脂表面などに微細なパターンを転写するナノインプリントなどの工法を活用して製作することも可能である。
In addition, the optical film can also be manufactured by utilizing a technique such as nanoimprinting, in which a fine pattern is transferred onto a resin surface or the like by using a printing technique by a roll-to-roll method.
基材フィルムは、前述した「光学フィルムを構成する材料」から選択することができる。液状のUV硬化樹脂は、UV硬化可能な樹脂であればよいが(メタ)アクリレート樹脂((メタ)アクリロイル基を含有する樹脂)を含有する樹脂組成物などが挙げられる。
The base film can be selected from the above-mentioned “materials constituting the optical film”. The liquid UV curable resin may be a UV curable resin, and examples thereof include a resin composition containing a (meth) acrylate resin (a resin containing a (meth) acryloyl group).
<封止接着層>
本発明において、封止接着層は、光学フィルムを半導体発光素子に接着するものであり、屈折率として半導体発光素子の光取り出し側表面の材料の屈折率と空気の屈折率との間の値を有することが好ましく、より好ましくは半導体発光素子の光取り出し側表面の材料の屈折率と光学フィルムの接着面側の材料の屈折率との間の値を有する。 <Sealing adhesive layer>
In the present invention, the sealing adhesive layer adheres the optical film to the semiconductor light emitting element, and the refractive index is a value between the refractive index of the material on the light extraction side surface of the semiconductor light emitting element and the refractive index of air. Preferably, it has a value between the refractive index of the material on the light extraction side surface of the semiconductor light emitting element and the refractive index of the material on the adhesive surface side of the optical film.
本発明において、封止接着層は、光学フィルムを半導体発光素子に接着するものであり、屈折率として半導体発光素子の光取り出し側表面の材料の屈折率と空気の屈折率との間の値を有することが好ましく、より好ましくは半導体発光素子の光取り出し側表面の材料の屈折率と光学フィルムの接着面側の材料の屈折率との間の値を有する。 <Sealing adhesive layer>
In the present invention, the sealing adhesive layer adheres the optical film to the semiconductor light emitting element, and the refractive index is a value between the refractive index of the material on the light extraction side surface of the semiconductor light emitting element and the refractive index of air. Preferably, it has a value between the refractive index of the material on the light extraction side surface of the semiconductor light emitting element and the refractive index of the material on the adhesive surface side of the optical film.
具体的には、封止接着層の屈折率は、好ましくは1.4~2.5の範囲であり、半導体発光素子の光取り出し側表面の材料および光学フィルムの接着面側材料の屈折率を考慮して、適切に設定されることが好ましい。
Specifically, the refractive index of the sealing adhesive layer is preferably in the range of 1.4 to 2.5, and the refractive index of the material on the light extraction side of the semiconductor light emitting device and the material on the adhesive side of the optical film are It is preferable to set appropriately in consideration.
封止接着層を構成する樹脂としては、最終製品において所定の物性(硬さ、耐熱性、耐久性、透明性、屈折率等)を有するものであれば、熱硬化樹脂、熱可塑樹脂またはそれら複合樹脂のいずれでもよい。尚、封止接着層を構成する樹脂として、製造工程において、硬化性樹脂が使用される場合には、最終製品における封止接着層は、最終硬化された樹脂層を意味する。
The resin constituting the sealing adhesive layer may be a thermosetting resin, a thermoplastic resin or the like as long as it has predetermined physical properties (hardness, heat resistance, durability, transparency, refractive index, etc.) in the final product. Any of composite resins may be used. When a curable resin is used in the manufacturing process as the resin constituting the sealing adhesive layer, the sealing adhesive layer in the final product means a resin layer that has been finally cured.
例えば、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、変性シリコーン樹脂、変性エポキシ樹脂、変性オキセタン樹脂、アクリレート樹脂、アクリル樹脂、ポリカーボネイト、環状ポリオレフィン、ポリイミド、ポリオレフィン、フェノール樹脂、ウレタン樹脂からなる群より選ばれる少なくとも1種を含むものが好ましい。最終製品においては、封止接着層は、これらの樹脂が最終硬化した状態にある。これらの中でも、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、変性シリコーン樹脂、変性エポキシ樹脂、変性オキセタン樹脂、およびそれを含む混合物がより好ましい。透明性や耐久性の点からシリコーン樹脂が特に好ましい。封止接着層を形成する封止接着剤については、後述する製造方法の項目でも説明する。
For example, at least selected from the group consisting of silicone resin, epoxy resin, oxetane resin, modified silicone resin, modified epoxy resin, modified oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, urethane resin Those containing one kind are preferred. In the final product, the sealing adhesive layer is in a state where these resins are finally cured. Among these, silicone resins, epoxy resins, oxetane resins, modified silicone resins, modified epoxy resins, modified oxetane resins, and mixtures containing the same are more preferable. A silicone resin is particularly preferable from the viewpoint of transparency and durability. The sealing adhesive forming the sealing adhesive layer will be described in the item of the manufacturing method described later.
封止接着層の厚さ、即ち、半導体発光素子の光取り出し側面と光学フィルムの間の距離は、目的に応じて変えることができるが、例えば100~800μmの範囲に設定することができる。
The thickness of the sealing adhesive layer, that is, the distance between the light extraction side surface of the semiconductor light emitting element and the optical film can be changed according to the purpose, but can be set in the range of 100 to 800 μm, for example.
封止接着層は、半導体発光素子(半導体ダイ)の側面を被覆していてもよい。また、例えばフェースアップ型においては、ワイヤーボンディングも含めて半導体発光素子を被覆していてもよい。
The sealing adhesive layer may cover the side surface of the semiconductor light emitting element (semiconductor die). For example, in the face-up type, the semiconductor light emitting element may be covered including wire bonding.
本発明の1つの好ましい形態において、封止接着層は、蛍光体を含むことができる。使用できる蛍光体としては特に限定されず、公知の半導体発光装置に使用される蛍光体を使用することができる。
In one preferred embodiment of the present invention, the sealing adhesive layer can include a phosphor. The phosphor that can be used is not particularly limited, and phosphors used in known semiconductor light emitting devices can be used.
例えば、YAG(Y3Al5O12:Ce)、TAG(Tb3Al5O12:Ce)、シリケート(Ca3MgSi4O16Cl2:Eu)などの酸化物蛍光体、258Nitrideと言われるCa2Si5N8などの窒化物蛍光体、α型(Mx(SiAl)12(ON)16)およびβ型((SiAl)6(ON)3:Eu)のSiAlONに代表される酸化窒化型蛍光体および硫化物蛍光体が挙げられる。これらは、1種または2種以上を混合して使用することができる。また、ここで例示していない蛍光体も、単独で、または上記の例示した蛍光体と混合して使用することができる。
For example, an oxide phosphor such as YAG (Y 3 Al 5 O 12 : Ce), TAG (Tb 3 Al 5 O 12 : Ce), and silicate (Ca 3 MgSi 4 O 16 Cl 2 : Eu) is referred to as 258Nitride. Nitride phosphors such as Ca 2 Si 5 N 8 , oxynitriding typified by SiAlON of α-type (M x (SiAl) 12 (ON) 16 ) and β-type ((SiAl) 6 (ON) 3 : Eu) Type phosphors and sulfide phosphors. These may be used alone or in combination of two or more. In addition, phosphors not exemplified here can be used alone or mixed with the phosphors exemplified above.
半導体発光素子の発光波長と蛍光体の組み合わせにより、白色光や所望の色を発光する発光装置を得ることができる。
A light emitting device that emits white light or a desired color can be obtained by combining the emission wavelength of the semiconductor light emitting element and the phosphor.
封止接着層中に蛍光体を含有させる場合、蛍光体の含有量は、封止接着層(硬化時)100質量部に対して、通常0.1~120質量部、好ましくは1~100重量部である。
When the phosphor is contained in the sealing adhesive layer, the phosphor content is usually 0.1 to 120 parts by weight, preferably 1 to 100 parts by weight with respect to 100 parts by weight of the sealing adhesive layer (when cured). Part.
また、封止接着層は、多層構造であってもよく、例えば蛍光体を含む層と、蛍光体を含まないか、より少ない量で含む層とすることもできる。また、発光色の異なる蛍光体をそれぞれ異なる層に含有させることもできる。
Further, the sealing adhesive layer may have a multilayer structure, for example, a layer containing a phosphor and a layer containing no phosphor or a smaller amount. Moreover, the fluorescent substance from which luminescent color differs can also be contained in a respectively different layer.
<<発光装置の製造方法およびその製造に使用される材料>>
次に発光装置の製造方法の実施形態を説明する。最初に、ここで説明する製造方法において、好適に使用される封止フィルム積層体を説明し、次いで製造プロセスを説明する。 << Method for Manufacturing Light-Emitting Device and Materials Used for Manufacturing >>
Next, an embodiment of a method for manufacturing a light emitting device will be described. First, the sealing film laminate suitably used in the manufacturing method described here will be described, and then the manufacturing process will be described.
次に発光装置の製造方法の実施形態を説明する。最初に、ここで説明する製造方法において、好適に使用される封止フィルム積層体を説明し、次いで製造プロセスを説明する。 << Method for Manufacturing Light-Emitting Device and Materials Used for Manufacturing >>
Next, an embodiment of a method for manufacturing a light emitting device will be described. First, the sealing film laminate suitably used in the manufacturing method described here will be described, and then the manufacturing process will be described.
<封止フィルム積層体>
本発明の封止フィルム積層体は、前述の光学フィルムと、前述の封止接着層を形成するための接着剤シートとが積層された構造を有する。接着剤シートは、必要により硬化処理を経て、前述の封止接着層となる。ここで、用語「接着剤シート」は、それのみで自己支持性を有する形態に加え、自己支持性がなく、基材上に付着した層の形態で存在する形態も含むものとし、ダイシング後のチップ中に存在する場合も、硬化処理前のものについては「シート」の用語を使用する。 <Sealing film laminate>
The sealing film laminate of the present invention has a structure in which the optical film described above and an adhesive sheet for forming the sealing adhesive layer described above are stacked. The adhesive sheet is subjected to a curing treatment as necessary to become the above-described sealing adhesive layer. Here, the term “adhesive sheet” includes not only a self-supporting form but also a form that is not self-supporting and exists in the form of a layer attached on a substrate. The term “sheet” is used for those that are present before being cured.
本発明の封止フィルム積層体は、前述の光学フィルムと、前述の封止接着層を形成するための接着剤シートとが積層された構造を有する。接着剤シートは、必要により硬化処理を経て、前述の封止接着層となる。ここで、用語「接着剤シート」は、それのみで自己支持性を有する形態に加え、自己支持性がなく、基材上に付着した層の形態で存在する形態も含むものとし、ダイシング後のチップ中に存在する場合も、硬化処理前のものについては「シート」の用語を使用する。 <Sealing film laminate>
The sealing film laminate of the present invention has a structure in which the optical film described above and an adhesive sheet for forming the sealing adhesive layer described above are stacked. The adhesive sheet is subjected to a curing treatment as necessary to become the above-described sealing adhesive layer. Here, the term “adhesive sheet” includes not only a self-supporting form but also a form that is not self-supporting and exists in the form of a layer attached on a substrate. The term “sheet” is used for those that are present before being cured.
本発明の封止フィルム積層体の1例を図4(横断面図)に示す。本発明の封止フィルム積層体は、光学フィルム11の平滑な面(微細な凹凸が形成されていない面)に、接着剤シート32が積層されている構造を有する。封止フィルム積層体は、PETのような剥離基材シート33上に保持されることが好ましい。さらに、ダイシングテープ34により、光学フィルム11および接着剤シート32が覆われていてもよい。この形態の封止フィルム積層体は、ウェハーや基板にただちに貼り合わせできるように、平面からみたときに、図5に示すように、光学フィルム11および接着剤シート32が、例えば円形の形状を有し、ダイシングテープ34が、光学フィルム11および接着剤シート32の外形より大きな形状、即ちこの例ではより大きな円形で形成されている。
An example of the sealing film laminate of the present invention is shown in FIG. 4 (cross-sectional view). The sealing film laminate of the present invention has a structure in which an adhesive sheet 32 is laminated on a smooth surface (a surface on which fine irregularities are not formed) of the optical film 11. It is preferable that a sealing film laminated body is hold | maintained on the peeling base material sheet 33 like PET. Furthermore, the optical film 11 and the adhesive sheet 32 may be covered with the dicing tape 34. When the sealing film laminate of this form is seen from a plane so that it can be immediately bonded to a wafer or a substrate, as shown in FIG. 5, the optical film 11 and the adhesive sheet 32 have, for example, a circular shape. The dicing tape 34 is formed in a shape larger than the outer shape of the optical film 11 and the adhesive sheet 32, that is, a larger circle in this example.
光学フィルム11、接着剤シート32およびダイシングテープ34のカット形状は、封止フィルム積層体を貼り合わせるウェハーの形状に適宜合わせることができる。図で示したような円形の他、楕円形、正方形、長方形、どのような形状でもよく、使用目的に合わせて、適宜設定することができる。
The cut shape of the optical film 11, the adhesive sheet 32, and the dicing tape 34 can be appropriately adjusted to the shape of the wafer to which the sealing film laminate is bonded. In addition to the circular shape shown in the figure, any shape such as an oval shape, a square shape, a rectangular shape may be used, and can be set as appropriate according to the purpose of use.
この形態の封止フィルム積層体の製造時の形態(商品形態)としては、光学フィルム11/接着剤シート32/ダイシングテープ34の積層構造の1単位が、1枚の剥離基材シート33上に形成された形態でも、光学フィルム11/接着剤シート32/ダイシングテープ34の積層構造の複数の単位が、1枚の剥離基材シート33上に形成された形態でもよい。例えば、図6に示すように、光学フィルム11/接着剤シート32/ダイシングテープ34の積層構造が長尺状の剥離基材シート33上に、間隔を置いて形成されており、ロール巻の状態で提供することもできる。
As a form (product form) at the time of manufacture of the sealing film laminate of this form, one unit of the laminated structure of the optical film 11 / adhesive sheet 32 / dicing tape 34 is on one release substrate sheet 33. Even in the formed form, a plurality of units of the laminated structure of the optical film 11 / adhesive sheet 32 / dicing tape 34 may be formed on one release substrate sheet 33. For example, as shown in FIG. 6, the laminated structure of the optical film 11 / adhesive sheet 32 / dicing tape 34 is formed on the long release substrate sheet 33 at intervals, and is in a state of roll winding. Can also be provided.
図7に、本発明の封止フィルム積層体の異なる形態の断面図を示す。この例は、ダイシングテープを有しておらず、光学フィルム11の平滑な面に、接着剤シート32が積層され、剥離基材シート33上に保持されている形態である。この形態の封止フィルム積層体も、1枚のカットシートとして、または図8に示すようにロール巻の状態で提供することもできる。
FIG. 7 shows a cross-sectional view of a different form of the sealing film laminate of the present invention. In this example, there is no dicing tape, and the adhesive sheet 32 is laminated on the smooth surface of the optical film 11 and is held on the release substrate sheet 33. The sealing film laminated body of this form can also be provided as a cut sheet or in a rolled state as shown in FIG.
封止フィルム積層体において、接着剤シート32は、半硬化状態(Bステージ状態、即ち固体状、半固体状)にある。最終硬化条件で硬化させることで、最終硬化物、即ち、発光装置中の封止接着層となる。
In the sealing film laminate, the adhesive sheet 32 is in a semi-cured state (B-stage state, that is, solid or semi-solid). By curing under the final curing conditions, a final cured product, that is, a sealing adhesive layer in the light emitting device is obtained.
接着剤シートを構成する材料としては、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、変性シリコーン樹脂、変性エポキシ樹脂、変性オキセタン樹脂、アクリレート樹脂、アクリル樹脂、ポリカーボネイト、環状ポリオレフィン、ポリイミド、ポリオレフィン、フェノール樹脂、ウレタン樹脂、およびこれらの樹脂の少なくとも1種を含む混合物が挙げられる。
The material constituting the adhesive sheet is silicone resin, epoxy resin, oxetane resin, modified silicone resin, modified epoxy resin, modified oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, urethane Examples thereof include a resin and a mixture containing at least one of these resins.
これらの中でも、加熱により最終硬化可能な樹脂が好ましく、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、変性シリコーン樹脂、変性エポキシ樹脂、変性オキセタン樹脂、およびそれを含む共重合体もしくは混合物が好ましい。透明性や耐久性の点からシリコーン樹脂が特に好ましい。
Among these, resins that can be finally cured by heating are preferable, and silicone resins, epoxy resins, oxetane resins, modified silicone resins, modified epoxy resins, modified oxetane resins, and copolymers or mixtures containing them are preferable. A silicone resin is particularly preferable from the viewpoint of transparency and durability.
シリコーン樹脂であれば、ヒドロシリル基を有するオルガノポリシロキサンを含むポリシロキサン、白金触媒のような硬化触媒、必要により硬化遅延剤を含む付加硬化型シリコーン樹脂組成物などが挙げられる。液状の樹脂を適当な剥離基材に塗布した後に一部硬化を進めるか、または所定の分子量を有するポリシロキサンを、他の添加剤と共に溶剤に溶解/分散し、適当な基材に塗布した後に溶剤を乾燥除去することで、半硬化状態(固体状、半固体状)のシートを形成することができる。得られたシートを光学フィルムと貼り合わせることで、封止フィルム積層体が得られる。
Examples of silicone resins include polysiloxanes containing organopolysiloxanes having hydrosilyl groups, curing catalysts such as platinum catalysts, and addition-curable silicone resin compositions containing a curing retarder if necessary. After applying a liquid resin to a suitable release substrate, proceed with partial curing, or after dissolving / dispersing a polysiloxane having a predetermined molecular weight in a solvent together with other additives and applying it to a suitable substrate By removing the solvent by drying, a semi-cured (solid, semi-solid) sheet can be formed. A sealing film laminated body is obtained by bonding the obtained sheet | seat with an optical film.
エポキシ樹脂、オキセタン樹脂、アクリレート樹脂等を用いる場合においても、樹脂と共に、適切な硬化剤を含む組成物を調製し、同様にして半硬化状態(固体状、半固体状)のシートを形成することができる。得られたシートを光学フィルムに貼り合わせることで、封止フィルム積層体が得られる。
Even when epoxy resin, oxetane resin, acrylate resin, etc. are used, a composition containing an appropriate curing agent is prepared together with the resin, and a semi-cured (solid, semi-solid) sheet is formed in the same manner. Can do. By sticking the obtained sheet | seat on an optical film, a sealing film laminated body is obtained.
接着剤シートの厚さは、最終硬化しても大きくは体積が変わらないため、発光装置における封止接着層と同程度、例えば100~800μmの範囲に設定することができる。加熱硬化する場合の温度は、例えば80℃~300℃である。
The thickness of the adhesive sheet does not change greatly even after final curing, and can be set to the same level as the sealing adhesive layer in the light emitting device, for example, in the range of 100 to 800 μm. The temperature for heat curing is, for example, 80 ° C. to 300 ° C.
完成した発光装置の封止接着層中に蛍光体を含有させる場合、接着剤シートを製造する際に、蛍光体を含有させればよいが、例えば樹脂が液状である段階においておよび/または溶液中に蛍光体を混合することが好ましい。
When the phosphor is contained in the sealing adhesive layer of the completed light-emitting device, the phosphor may be contained in the production of the adhesive sheet. For example, in the stage where the resin is liquid and / or in the solution It is preferable to mix a phosphor.
また、封止接着層を多層構造とする場合、接着剤シートを多層構造として形成すればよい。
Further, when the sealing adhesive layer has a multilayer structure, the adhesive sheet may be formed as a multilayer structure.
<発光装置の製造方法>
発光装置の製造方法は、上記の封止フィルム積層体の接着剤シート面を、複数の半導体発光素子が形成されたウェハーと、半導体発光素子の光取り出し側の面が前記接着剤シート面と接触するように、貼り合わせる工程と、封止フィルム積層体と貼り合わされたウェハーを、光学フィルムと前記接着剤シートと共に、ダイシングして、チップ化する工程とを有する。 <Method for manufacturing light emitting device>
The manufacturing method of the light emitting device includes the adhesive sheet surface of the sealing film laminate, the wafer on which the plurality of semiconductor light emitting elements are formed, and the light extraction side surface of the semiconductor light emitting element in contact with the adhesive sheet surface. Thus, there are a step of bonding, and a step of dicing the wafer bonded to the sealing film laminate together with the optical film and the adhesive sheet to form a chip.
発光装置の製造方法は、上記の封止フィルム積層体の接着剤シート面を、複数の半導体発光素子が形成されたウェハーと、半導体発光素子の光取り出し側の面が前記接着剤シート面と接触するように、貼り合わせる工程と、封止フィルム積層体と貼り合わされたウェハーを、光学フィルムと前記接着剤シートと共に、ダイシングして、チップ化する工程とを有する。 <Method for manufacturing light emitting device>
The manufacturing method of the light emitting device includes the adhesive sheet surface of the sealing film laminate, the wafer on which the plurality of semiconductor light emitting elements are formed, and the light extraction side surface of the semiconductor light emitting element in contact with the adhesive sheet surface. Thus, there are a step of bonding, and a step of dicing the wafer bonded to the sealing film laminate together with the optical film and the adhesive sheet to form a chip.
チップ化後に、加熱することで、接着剤シートを最終硬化することができる。製造方法の代表的な実施形態を次に説明する。
The adhesive sheet can be finally cured by heating after chip formation. A typical embodiment of the manufacturing method will now be described.
<製造方法の実施形態A-1>
ダイシングテープつき封止フィルム積層体を使った発光装置の製造方法を説明する。 <Embodiment A-1 of Manufacturing Method>
The manufacturing method of the light-emitting device using the sealing film laminated body with a dicing tape is demonstrated.
ダイシングテープつき封止フィルム積層体を使った発光装置の製造方法を説明する。 <Embodiment A-1 of Manufacturing Method>
The manufacturing method of the light-emitting device using the sealing film laminated body with a dicing tape is demonstrated.
図9(a)に示すように、半田バンプがついた半導体発光素子構造を形成したウェハー42の表面(素子形成面)に、保護テープ41を貼り付ける。
As shown in FIG. 9A, a protective tape 41 is attached to the surface (element formation surface) of the wafer 42 on which the semiconductor light emitting element structure with solder bumps is formed.
図4で示した封止フィルム積層体(ダイシングテープ34、光学フィルム11、接着剤シート32および剥離基材シート33の積層構造)を用意し、剥離基材シート33を剥がし、露出した接着剤シート32をウェハー42に貼り付けて、図9(b)に示す構造を得る。次に図9(c)に示すように、保護テープ41を剥がす。
4 is prepared (a laminated structure of the dicing tape 34, the optical film 11, the adhesive sheet 32, and the peeling base sheet 33), and the peeling base sheet 33 is peeled off to expose the adhesive sheet. 32 is affixed to the wafer 42 to obtain the structure shown in FIG. Next, as shown in FIG. 9C, the protective tape 41 is peeled off.
図10(d)に示すように、レーザーやダイシングブレードにより、ダイシングして、個片化する。図10(e)に示すように、ダイシングテープを適宜延伸したのち、個片化した半導体発光素子20aをピックアップする。このとき、封止フィルム積層体(光学フィルム11および接着剤シート32)も半導体発光素子20aと共に個片化される。
As shown in FIG. 10 (d), dicing with a laser or a dicing blade into individual pieces. As shown in FIG. 10E, after the dicing tape is appropriately stretched, the separated semiconductor light emitting element 20a is picked up. At this time, the sealing film laminate (the optical film 11 and the adhesive sheet 32) is also singulated together with the semiconductor light emitting element 20a.
次に、図10(f)に示すように、封止フィルム積層体が付いた半導体ダイ(半導体発光素子)を実装基板23にプリップチップ実装する。その後、所定の温度で、所定時間、加熱して、接着剤シート32を最終硬化し、封止接着層12となし、発光装置を完成する。
Next, as shown in FIG. 10 (f), the semiconductor die (semiconductor light emitting element) with the sealing film laminate is mounted on the mounting substrate 23 by the flip chip mounting. After that, the adhesive sheet 32 is finally cured by heating at a predetermined temperature for a predetermined time, thereby forming the sealing adhesive layer 12 to complete the light emitting device.
<製造方法の実施形態A-2>
ダイシングテープなしの封止フィルム積層体を使った発光装置の製造方法を説明する。 <Embodiment A-2 of Manufacturing Method>
The manufacturing method of the light-emitting device using the sealing film laminated body without a dicing tape is demonstrated.
ダイシングテープなしの封止フィルム積層体を使った発光装置の製造方法を説明する。 <Embodiment A-2 of Manufacturing Method>
The manufacturing method of the light-emitting device using the sealing film laminated body without a dicing tape is demonstrated.
図11(a)に示すように、実施形態A-1と同様に、半田バンプがついた半導体発光素子構造を形成したウェハー42の表面(素子形成面)に、保護テープ41を貼り付ける。
As shown in FIG. 11A, similarly to Embodiment A-1, a protective tape 41 is attached to the surface (element formation surface) of a wafer 42 on which a semiconductor light emitting element structure with solder bumps is formed.
図7に示した封止フィルム積層体(光学フィルム11、接着剤シート32および剥離基材シート33の積層構造)を用意し、剥離基材シート33を剥がし、露出した接着剤シート32をウェハー42に貼り付けて、図11(b)に示す構造を得る。
The sealing film laminate (laminated structure of the optical film 11, the adhesive sheet 32, and the release base sheet 33) shown in FIG. 7 is prepared, the release base sheet 33 is peeled off, and the exposed adhesive sheet 32 is removed from the wafer 42. To obtain the structure shown in FIG.
光学フィルム11と接着剤シート32をウェハー42と同じ、またはそれより大きいサイズ(例えば、5mm程度大きいサイズ)でカットする。その後、ダイシングテープ34を貼り付け、ダイシングテープをウェハーより大きいサイズにカットし、図11(c)に示す構造を得る。この構造は、実施形態A-1で説明した図9(b)の構造とほぼ同じである。従って、その後の工程は、実施形態A-1で説明した工程に従って、発光装置を完成することができる。
The optical film 11 and the adhesive sheet 32 are cut with a size equal to or larger than the wafer 42 (for example, about 5 mm larger). Thereafter, the dicing tape 34 is attached, and the dicing tape is cut into a size larger than the wafer to obtain the structure shown in FIG. This structure is almost the same as the structure of FIG. 9B described in the embodiment A-1. Therefore, in the subsequent steps, the light emitting device can be completed according to the steps described in Embodiment A-1.
<製造方法の実施形態B-1>
ダイシングテープつき封止フィルム積層体を使った発光装置の製造方法の例を説明する。この製造方法では、支持体上に搭載された半導体発光素子を用いる。 <Embodiment B-1 of Manufacturing Method>
The example of the manufacturing method of the light-emitting device using the sealing film laminated body with a dicing tape is demonstrated. In this manufacturing method, a semiconductor light-emitting element mounted on a support is used.
ダイシングテープつき封止フィルム積層体を使った発光装置の製造方法の例を説明する。この製造方法では、支持体上に搭載された半導体発光素子を用いる。 <Embodiment B-1 of Manufacturing Method>
The example of the manufacturing method of the light-emitting device using the sealing film laminated body with a dicing tape is demonstrated. In this manufacturing method, a semiconductor light-emitting element mounted on a support is used.
図12(a)に示すように、支持体23上に、複数(多数)の半導体発光素子を搭載した中間アレイ構造を用意する。支持体は、半導体成長に使用した基板とは異なるもので、AlN等のセラミック基板などを使用することができる。半導体発光素子はフリップチップ型、フェースアップ型等、特に限定はされない。即ち、支持体23上に、多数の半導体発光素子(フリップチップ型20aまたはフェースアップ型20b等)が搭載されており、支持体上の所定の配線または電極と、バンプやワイヤーボンディングで接続されている。
As shown in FIG. 12A, an intermediate array structure in which a plurality of (many) semiconductor light emitting elements are mounted on a support 23 is prepared. The support is different from the substrate used for semiconductor growth, and a ceramic substrate such as AlN can be used. The semiconductor light emitting device is not particularly limited, such as a flip chip type and a face up type. That is, a large number of semiconductor light emitting elements (such as flip chip type 20a or face up type 20b) are mounted on the support 23, and are connected to predetermined wirings or electrodes on the support by bumps or wire bonding. Yes.
図4で示した封止フィルム積層体(ダイシングテープ34、光学フィルム11、接着剤シート32および剥離基材シート33の積層構造)を用意し、剥離基材シート33を剥がし、露出した接着剤シート32を支持体23の半導体発光素子搭載面に、貼り付けて、図12(b)に示す構造を得る。もし、支持体23の裏側に保護テープがある場合は、これも剥がす。
4 is prepared (a laminated structure of the dicing tape 34, the optical film 11, the adhesive sheet 32, and the peeling base sheet 33), and the peeling base sheet 33 is peeled off to expose the adhesive sheet. 32 is affixed on the semiconductor light emitting element mounting surface of the support body 23, and the structure shown in FIG.12 (b) is obtained. If there is a protective tape on the back side of the support 23, it is also removed.
図12(c)に示すように、レーザーやダイシングブレードにより、ダイシングして、個片化する。図13(d)に示すように、ダイシングテープを適宜延伸したのち、個片化した、支持体23をピックアップする。このとき、封止フィルム積層体(光学フィルム11および接着剤シート32)も、支持体23と共に個片化される。
As shown in FIG. 12 (c), dicing with a laser or a dicing blade into individual pieces. As shown in FIG. 13D, after the dicing tape is appropriately stretched, the support 23 that has been separated into individual pieces is picked up. At this time, the sealing film laminate (the optical film 11 and the adhesive sheet 32) is also separated into pieces together with the support 23.
図13(e)に示すように、半導体発光素子を搭載した状態で封止フィルム積層体が付いた個片化された支持体23を、必要により実装基板に実装する。その後、所定の温度で、所定時間、加熱して、接着剤シート32が最終硬化し、封止接着層12となり、発光装置が完成する。
As shown in FIG. 13 (e), the separated support body 23 with the sealing film laminated body mounted with the semiconductor light emitting element mounted thereon is mounted on a mounting substrate as necessary. Thereafter, the adhesive sheet 32 is finally cured by heating at a predetermined temperature for a predetermined time, and becomes the sealing adhesive layer 12, thereby completing the light emitting device.
図13(e)では、フリップチップ型を示したが、フェースアップ型やその他の形態の半導体発光素子にも適用できる。
FIG. 13E shows a flip chip type, but the present invention can also be applied to a face-up type and other forms of semiconductor light emitting elements.
<製造方法の実施形態B-2>
ダイシングテープなしの封止フィルム積層体を使った発光装置の製造方法を説明する。 <Embodiment B-2 of Manufacturing Method>
The manufacturing method of the light-emitting device using the sealing film laminated body without a dicing tape is demonstrated.
ダイシングテープなしの封止フィルム積層体を使った発光装置の製造方法を説明する。 <Embodiment B-2 of Manufacturing Method>
The manufacturing method of the light-emitting device using the sealing film laminated body without a dicing tape is demonstrated.
図14(a)に示すように、実施形態B-1と同様に、支持体23上に、複数(多数)の半導体発光素子を搭載した中間アレイ構造を用意する。支持体23上には、多数の半導体発光素子(フリップチップ型20aまたはフェースアップ型20b等)搭載されており、支持体上の所定の配線または電極と、バンプやワイヤボンディングで接続されている。
As shown in FIG. 14A, an intermediate array structure in which a plurality of (many) semiconductor light emitting elements are mounted on a support 23 is prepared as in the embodiment B-1. A large number of semiconductor light emitting elements (such as a flip chip type 20a or a face-up type 20b) are mounted on the support 23, and are connected to predetermined wirings or electrodes on the support by bumps or wire bonding.
図7に示した封止フィルム積層体(光学フィルム11、接着剤シート32および剥離基材シート33の積層構造)を用意し、剥離基材シート33を剥がし、露出した接着剤シート32を支持体23の半導体発光素子搭載面に、貼り付けて、図14(b)に示す構造を得る。
The sealing film laminated body (laminated structure of the optical film 11, the adhesive sheet 32, and the peeling base material sheet 33) shown in FIG. 7 is prepared, the peeling base material sheet 33 is peeled off, and the exposed adhesive sheet 32 is supported. The structure shown in FIG. 14B is obtained by pasting on the semiconductor light emitting element mounting surface 23.
光学フィルム11と接着剤シート32を支持体23と同じ、またはそれより大きいサイズ(例えば、5mm程度大きいサイズ)でカットする。その後、ダイシングテープ34を貼り付け、ダイシングテープをウェハーより大きい大きさにカットし、図14(c)に示す構造を得る。もし、支持体23の裏側に保護テープがある場合は、これも剥がす。この構造は、実施形態B-1で説明した図12(b)の構造とほぼ同じである。従って、その後の工程は、実施形態B-1で説明した工程に従って、発光装置を完成することができる。この例では、フリップチップ型を示したが、フェースアップ型やその他の形態の半導体発光素子にも適用できる。
The optical film 11 and the adhesive sheet 32 are cut with a size that is the same as or larger than the support 23 (for example, a size that is about 5 mm larger). Thereafter, the dicing tape 34 is attached, and the dicing tape is cut into a size larger than the wafer to obtain the structure shown in FIG. If there is a protective tape on the back side of the support 23, it is also removed. This structure is almost the same as the structure of FIG. 12B described in the embodiment B-1. Accordingly, in the subsequent steps, the light emitting device can be completed in accordance with the steps described in Embodiment B-1. In this example, a flip chip type is shown, but the present invention can also be applied to a face-up type or other forms of semiconductor light emitting elements.
以上の実施形態の説明において、封止接着層中に蛍光体を含有させる場合においては、接着剤シート中に蛍光体を含有する封止フィルム積層体を使用すればよい。また、半導体発光素子の表面に蛍光体を塗布してから、封止フィルム積層体の接着剤シートと貼り合わせてもよい。
In the description of the above embodiment, when the phosphor is contained in the sealing adhesive layer, a sealing film laminate containing the phosphor in the adhesive sheet may be used. Moreover, after apply | coating fluorescent substance to the surface of a semiconductor light-emitting device, you may bond together with the adhesive agent sheet of a sealing film laminated body.
本発明の発光装置は、種々の用途に適用することができる。例えば、民生用および産業用の照明、自動車のヘッドライトや車体の後部のリアライトでは、本発明の発光装置を更に再実装してレンズなど設けることも可能であるが、こうしたレンズを不要にしたり、あるいはレンズの代わりの用途に適用することも可能である。
The light emitting device of the present invention can be applied to various uses. For example, in consumer and industrial lighting, automobile headlights, and rear lights at the rear of the vehicle body, the light-emitting device of the present invention can be further re-mounted to provide a lens. Alternatively, the present invention can be applied to a use in place of a lens.
<光学フィルムの製造例>
基材フィルムとしてシリコーン樹脂を使用し、その上に、前述の<微細な凹凸を有する光学フィルム>の項で説明したような金型を使用し、UV硬化樹脂により、微細な凹凸形状を形成し、光学フィルムを得た。凹凸の形状は高さ0.5μm、ピッチ(直径)0.3μmの釣り鐘状の円錐である。得られた光学フィルムの厚さは50μmであり、その屈折率は1.4(材料の屈折率)である。 <Example of optical film production>
A silicone resin is used as the base film, and a mold as described in the above section <Optical film with fine irregularities> is used to form a fine irregular shape with a UV curable resin. An optical film was obtained. The shape of the irregularities is a bell-shaped cone having a height of 0.5 μm and a pitch (diameter) of 0.3 μm. The obtained optical film has a thickness of 50 μm and a refractive index of 1.4 (material refractive index).
基材フィルムとしてシリコーン樹脂を使用し、その上に、前述の<微細な凹凸を有する光学フィルム>の項で説明したような金型を使用し、UV硬化樹脂により、微細な凹凸形状を形成し、光学フィルムを得た。凹凸の形状は高さ0.5μm、ピッチ(直径)0.3μmの釣り鐘状の円錐である。得られた光学フィルムの厚さは50μmであり、その屈折率は1.4(材料の屈折率)である。 <Example of optical film production>
A silicone resin is used as the base film, and a mold as described in the above section <Optical film with fine irregularities> is used to form a fine irregular shape with a UV curable resin. An optical film was obtained. The shape of the irregularities is a bell-shaped cone having a height of 0.5 μm and a pitch (diameter) of 0.3 μm. The obtained optical film has a thickness of 50 μm and a refractive index of 1.4 (material refractive index).
<封止フィルム積層体の製造例1>
ダイシングテープつきLEDチップ用封止フィルム積層体の製造方法
未硬化シリコーン樹脂溶液にYAG蛍光体を添加し、攪拌し、蛍光体を含むシリコーン樹脂溶液を調製した。 <Manufacture example 1 of a sealing film laminated body>
Manufacturing method of sealing film laminate for LED chip with dicing tape YAG phosphor was added to an uncured silicone resin solution and stirred to prepare a silicone resin solution containing the phosphor.
ダイシングテープつきLEDチップ用封止フィルム積層体の製造方法
未硬化シリコーン樹脂溶液にYAG蛍光体を添加し、攪拌し、蛍光体を含むシリコーン樹脂溶液を調製した。 <Manufacture example 1 of a sealing film laminated body>
Manufacturing method of sealing film laminate for LED chip with dicing tape YAG phosphor was added to an uncured silicone resin solution and stirred to prepare a silicone resin solution containing the phosphor.
次に、上記で得られたシリコーン樹脂溶液を38μm厚のポリエステルフィルム(PETフィルム)上にコートし、80℃で5分間乾燥し、半硬化させ、厚み500μmの接着剤シートを得た。
Next, the silicone resin solution obtained above was coated on a 38 μm thick polyester film (PET film), dried at 80 ° C. for 5 minutes, and semi-cured to obtain an adhesive sheet having a thickness of 500 μm.
次に、接着剤シートの表面(PETフィルムとは反対側)に、上記の「光学フィルムの製造例」で製造した微細な凹凸を有する光学フィルムを80℃で貼り付けた。
Next, the optical film having fine irregularities manufactured in the above-mentioned “optical film manufacturing example” was attached to the surface of the adhesive sheet (opposite to the PET film) at 80 ° C.
ダイカットロールナイフを用いて、PETフィルムは5~20μm切り込むようにして(ハーフカット)、光学フィルムと接着シートを、円形にカットした。円形の大きさは貼り付けられる基板のサイズを同じか、20~30mm程度大きくてよい。円形の外側の光学フィルムと接着剤シート部分を取り除いた後、85μm厚の感圧ダイシングテープを貼り付けた。ダイカットロールナイフを用いて、PETフィルムに5~20μm切り込むようにして(ハーフカット)、ダイシングテープを円形にカットした。円形の大きさは貼り付けられるウェハーリングのサイズと同じか10~20mm程度小さくてよい。カットした円形の外側のダイシングテープを取り除いて、封止フィルム積層体を完成した。尚、この封止フィルム積層体は、図4、5で示した形態に対応する。
Using a die-cut roll knife, the optical film and the adhesive sheet were cut into a circular shape so that the PET film was cut by 5 to 20 μm (half cut). The circular size may be the same as the size of the substrate to be attached or may be about 20 to 30 mm larger. After removing the circular outer optical film and the adhesive sheet portion, a pressure-sensitive dicing tape having a thickness of 85 μm was attached. Using a die cut roll knife, the dicing tape was cut into a circular shape by cutting 5 to 20 μm into the PET film (half cut). The size of the circle may be the same as the size of the wafer ring to be attached or about 10 to 20 mm. The cut circular outer dicing tape was removed to complete the sealing film laminate. In addition, this sealing film laminated body respond | corresponds to the form shown in FIG.
<封止フィルム積層体の製造例2>
ダイシングテープなしLEDチップ用封止フィルム積層体の製造方法
未硬化シリコーン樹脂溶液にTAG蛍光体を添加し、攪拌し、蛍光体を含むシリコーン樹脂溶液を調製した。 <Manufacture example 2 of a sealing film laminated body>
Manufacturing method of sealing film laminate for LED chip without dicing tape A TAG phosphor was added to an uncured silicone resin solution and stirred to prepare a silicone resin solution containing the phosphor.
ダイシングテープなしLEDチップ用封止フィルム積層体の製造方法
未硬化シリコーン樹脂溶液にTAG蛍光体を添加し、攪拌し、蛍光体を含むシリコーン樹脂溶液を調製した。 <Manufacture example 2 of a sealing film laminated body>
Manufacturing method of sealing film laminate for LED chip without dicing tape A TAG phosphor was added to an uncured silicone resin solution and stirred to prepare a silicone resin solution containing the phosphor.
次に、上記で得られたシリコーン樹脂溶液を38μm厚のポリエステルフィルム(PETフィルム)上にコートし、80℃で5分間乾燥し、半硬化させ、厚み500μmの接着剤シートを得た。
Next, the silicone resin solution obtained above was coated on a 38 μm thick polyester film (PET film), dried at 80 ° C. for 5 minutes, and semi-cured to obtain an adhesive sheet having a thickness of 500 μm.
次に、接着剤シートの表面(PETフィルムとは反対側)に、上記の「光学フィルムの製造例」で製造した微細な凹凸を有する光学フィルムを80℃で貼り付けて、封止フィルム積層体を完成した。尚、この封止フィルム積層体は、図7で示した形態に対応する。
Next, on the surface of the adhesive sheet (on the side opposite to the PET film), the optical film having fine irregularities manufactured in the above-mentioned “optical film manufacturing example” is attached at 80 ° C., and the sealing film laminate Was completed. In addition, this sealing film laminated body respond | corresponds to the form shown in FIG.
<発光装置の製造例1>
製造方法の実施形態A-1の実施例
4インチ円形ウェハー(150μm厚)上に、半田バンプ付きLED素子を多数形成したLEDウェハーを用意した。このLEDウェハーの素子形成面の表面に保護テープ(300μm厚のバックグラインドテープ)を常温で貼り付け、保護テープ表面の凹凸をなくした。 <Production Example 1 of Light-Emitting Device>
Example of Production Method Embodiment A-1 An LED wafer was prepared in which a large number of LED elements with solder bumps were formed on a 4-inch circular wafer (150 μm thick). A protective tape (a back grind tape having a thickness of 300 μm) was attached to the surface of the element formation surface of this LED wafer at room temperature to eliminate the irregularities on the surface of the protective tape.
製造方法の実施形態A-1の実施例
4インチ円形ウェハー(150μm厚)上に、半田バンプ付きLED素子を多数形成したLEDウェハーを用意した。このLEDウェハーの素子形成面の表面に保護テープ(300μm厚のバックグラインドテープ)を常温で貼り付け、保護テープ表面の凹凸をなくした。 <Production Example 1 of Light-Emitting Device>
Example of Production Method Embodiment A-1 An LED wafer was prepared in which a large number of LED elements with solder bumps were formed on a 4-inch circular wafer (150 μm thick). A protective tape (a back grind tape having a thickness of 300 μm) was attached to the surface of the element formation surface of this LED wafer at room temperature to eliminate the irregularities on the surface of the protective tape.
ウェハー裏面に、封止フィルム積層体の製造例1で作製したフィルムをPETフィルムから剥がした後に80℃で貼り付けた。表面の保護テープを剥がした後に、LEDチップをブレードダイシング法により、個片化した。個片化した後、チップをダイシングテープから剥がし、実装基板にプリップチップ実装した。実装後の装置を、150℃、2時間オーブンに投入し、シリコーン接着層(接着剤シート)を硬化させて、発光装置を完成した。
The film produced in Production Example 1 of the sealing film laminate was peeled off from the PET film on the backside of the wafer and then attached at 80 ° C. After peeling off the protective tape on the surface, the LED chip was separated into pieces by a blade dicing method. After separating into chips, the chip was peeled off from the dicing tape and mounted on a mounting board with a lip chip. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer (adhesive sheet), thereby completing the light emitting device.
<発光装置の製造例2>
製造方法の実施形態A-2の実施例
4インチ円形ウェハー(150μm厚)上に、半田バンプ付きLED素子を多数形成したLEDウェハーを用意した。このLEDウェハーの素子形成面の表面に保護テープ(300μm厚のバックグラインドテープ)を常温で貼り付け、保護テープ表面の凹凸をなくした。 <Production Example 2 of Light Emitting Device>
Example of Manufacturing Method Embodiment A-2 An LED wafer was prepared in which a large number of LED elements with solder bumps were formed on a 4-inch circular wafer (150 μm thick). A protective tape (a back grind tape having a thickness of 300 μm) was attached to the surface of the element formation surface of this LED wafer at room temperature to eliminate the irregularities on the surface of the protective tape.
製造方法の実施形態A-2の実施例
4インチ円形ウェハー(150μm厚)上に、半田バンプ付きLED素子を多数形成したLEDウェハーを用意した。このLEDウェハーの素子形成面の表面に保護テープ(300μm厚のバックグラインドテープ)を常温で貼り付け、保護テープ表面の凹凸をなくした。 <Production Example 2 of Light Emitting Device>
Example of Manufacturing Method Embodiment A-2 An LED wafer was prepared in which a large number of LED elements with solder bumps were formed on a 4-inch circular wafer (150 μm thick). A protective tape (a back grind tape having a thickness of 300 μm) was attached to the surface of the element formation surface of this LED wafer at room temperature to eliminate the irregularities on the surface of the protective tape.
ウェハー裏面に、封止フィルム積層体の製造例2で作製したフィルムをPETフィルムから剥がした後に80℃で貼り付けた。光学フィルムと接着シート部分をウェハーと同じから5mm程度大きいサイズでカットした。その後、85μm厚の感圧ダイシングテープを、光学フィルムに常温で貼り付けた。
The film produced in Production Example 2 of the sealing film laminate was peeled off from the PET film on the back surface of the wafer, and then pasted at 80 ° C. The optical film and the adhesive sheet portion were cut to a size about 5 mm larger than the wafer. Thereafter, a pressure-sensitive dicing tape having a thickness of 85 μm was attached to the optical film at room temperature.
ダイシングテープをウェハーリングの大きさにカットし、次いで表面の保護テープを剥がした後に、LEDチップをブレードダイシング法により、個片化した。個辺化した後、チップをダイシングテープから剥がし実装基板にプリップチップ実装した。実装後の装置を、150℃、2時間オーブンに投入し、シリコーン接着層を硬化させて、発光装置を完成した。
The dicing tape was cut into the size of a wafer ring, and then the surface protective tape was peeled off, and then the LED chip was separated into pieces by a blade dicing method. After separation into individual pieces, the chip was peeled off from the dicing tape and mounted on a mounting board with a lip chip. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer, thereby completing a light emitting device.
<発光装置の製造例3>
製造方法の実施形態B-1の実施例
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)がフリップチップボンディングされたウェハーを用意した。このウェハーの裏面に保護テープを常温で貼り付けた。 <Production Example 3 of Light-Emitting Device>
Example of Manufacturing Method B-1 A wafer was prepared by flip-chip bonding a large number of LED chips (150 μm thick, 0.2 × 0.5 mm size) on an 8-inch circular 150 μm thick ceramic (AlN) substrate. A protective tape was attached to the back surface of the wafer at room temperature.
製造方法の実施形態B-1の実施例
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)がフリップチップボンディングされたウェハーを用意した。このウェハーの裏面に保護テープを常温で貼り付けた。 <Production Example 3 of Light-Emitting Device>
Example of Manufacturing Method B-1 A wafer was prepared by flip-chip bonding a large number of LED chips (150 μm thick, 0.2 × 0.5 mm size) on an 8-inch circular 150 μm thick ceramic (AlN) substrate. A protective tape was attached to the back surface of the wafer at room temperature.
基板の素子形成表面に、封止フィルム積層体の製造例1で作製したフィルムをPETフィルムから剥がした後に80℃で貼り付けた。保護テープを剥がした後に、LEDチップをブレードダイシング法により、個片化した。個片化した後、LED素子をダイシングテープから剥がし、実装基板に実装した。実装後の装置を、150℃、2時間オーブンに投入し、シリコーン接着層(接着剤シート)を硬化させて、発光装置を完成した。
The film produced in Production Example 1 of the sealing film laminate was peeled off from the PET film and pasted at 80 ° C. on the element forming surface of the substrate. After peeling off the protective tape, the LED chip was separated into pieces by a blade dicing method. After separating into pieces, the LED elements were peeled off from the dicing tape and mounted on a mounting board. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer (adhesive sheet), thereby completing the light emitting device.
<発光装置の製造例4>
製造方法の実施形態B-2の実施例
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)がフリップチップボンディングされたウェハーを用意した。このウェハーの裏面に保護テープを常温で貼り付けた。 <Example 4 of light-emitting device production>
Example of Production Method B-2 A wafer was prepared by flip-chip bonding a number of LED chips (150 μm thick, 0.2 × 0.5 mm size) on an 8-inch circular 150 μm thick ceramic (AlN) substrate. A protective tape was attached to the back surface of the wafer at room temperature.
製造方法の実施形態B-2の実施例
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)がフリップチップボンディングされたウェハーを用意した。このウェハーの裏面に保護テープを常温で貼り付けた。 <Example 4 of light-emitting device production>
Example of Production Method B-2 A wafer was prepared by flip-chip bonding a number of LED chips (150 μm thick, 0.2 × 0.5 mm size) on an 8-inch circular 150 μm thick ceramic (AlN) substrate. A protective tape was attached to the back surface of the wafer at room temperature.
基板の素子形成表面に、封止フィルム積層体の製造例2で作製したフィルムをPETフィルムから剥がした後に80℃で貼り付けた。光学フィルムと接着シート部分をウェハーと同じから5mm程度大きいサイズでカットした。その後、85μm厚の感圧ダイシングテープを、光学フィルムに常温で貼り付けた。
The film produced in Production Example 2 of the sealing film laminate was peeled off from the PET film and pasted at 80 ° C. on the element forming surface of the substrate. The optical film and the adhesive sheet portion were cut to a size about 5 mm larger than the wafer. Thereafter, a pressure-sensitive dicing tape having a thickness of 85 μm was attached to the optical film at room temperature.
ダイシングテープをウェハーリングの大きさにカットし、次いで保護テープを剥がした後に、LEDチップをブレードダイシング法により、個片化した。個片化した後、LED素子をダイシングテープから剥がし、実装基板に実装した。実装後の装置を、150℃、2時間オーブンに投入し、シリコーン接着層(接着剤シート)を硬化させて、発光装置を完成した。
The dicing tape was cut into the size of a wafer ring, and then the protective tape was peeled off, and then the LED chip was separated into pieces by a blade dicing method. After separating into pieces, the LED elements were peeled off from the dicing tape and mounted on a mounting board. The mounted device was placed in an oven at 150 ° C. for 2 hours to cure the silicone adhesive layer (adhesive sheet), thereby completing the light emitting device.
<発光装置の製造例5>
製造方法の実施形態B-1の実施例 (フェースアップ型LED)
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)を、ダイアタッチペースト接着剤を用いてダイボンディングした。ペースト接着剤を硬化後、25μm直径の金ワイヤーでワイヤーボンドし、セラミック基板上の配線(電極)と電気接続をした。このようにして製造されたウェハーを使用し、その後は、「発光装置の製造例3」と同様にして、発光装置(フェースアップ型LED)を完成した。 <Example 5 of light-emitting device production>
Example of Manufacturing Method Embodiment B-1 (Face Up LED)
A number of LED chips (150 μm thick, 0.2 × 0.5 mm size) were die-bonded on an 8-inch circular 150 μm thick ceramic (AlN) substrate using a die attach paste adhesive. After the paste adhesive was cured, it was wire-bonded with a 25 μm diameter gold wire and electrically connected to the wiring (electrode) on the ceramic substrate. The wafer thus manufactured was used, and thereafter, a light emitting device (face-up type LED) was completed in the same manner as in “Light Emitting Device Production Example 3”.
製造方法の実施形態B-1の実施例 (フェースアップ型LED)
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)を、ダイアタッチペースト接着剤を用いてダイボンディングした。ペースト接着剤を硬化後、25μm直径の金ワイヤーでワイヤーボンドし、セラミック基板上の配線(電極)と電気接続をした。このようにして製造されたウェハーを使用し、その後は、「発光装置の製造例3」と同様にして、発光装置(フェースアップ型LED)を完成した。 <Example 5 of light-emitting device production>
Example of Manufacturing Method Embodiment B-1 (Face Up LED)
A number of LED chips (150 μm thick, 0.2 × 0.5 mm size) were die-bonded on an 8-inch circular 150 μm thick ceramic (AlN) substrate using a die attach paste adhesive. After the paste adhesive was cured, it was wire-bonded with a 25 μm diameter gold wire and electrically connected to the wiring (electrode) on the ceramic substrate. The wafer thus manufactured was used, and thereafter, a light emitting device (face-up type LED) was completed in the same manner as in “Light Emitting Device Production Example 3”.
<発光装置の製造例6>
製造方法の実施形態B-2の実施例 (フェースアップ型LED)
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)を、ダイアタッチペースト接着剤を用いてダイボンディングした。ペースト接着剤を硬化後、25μm直径の金ワイヤーでワイヤーボンドし、セラミック基板上の配線(電極)と電気接続をした。このようにして製造されたウェハーを使用し、その後は、「発光装置の製造例4」と同様にして、発光装置(フェースアップ型LED)を完成した。 <Production Example 6 of Light-Emitting Device>
Example of Manufacturing Method Embodiment B-2 (Face-up LED)
A number of LED chips (150 μm thick, 0.2 × 0.5 mm size) were die-bonded on an 8-inch circular 150 μm thick ceramic (AlN) substrate using a die attach paste adhesive. After the paste adhesive was cured, it was wire-bonded with a 25 μm diameter gold wire and electrically connected to the wiring (electrode) on the ceramic substrate. The wafer thus manufactured was used, and thereafter, a light emitting device (face-up type LED) was completed in the same manner as in “Light Emitting Device Production Example 4”.
製造方法の実施形態B-2の実施例 (フェースアップ型LED)
8インチ円形150μm厚セラミック(AlN)基板上に、多数のLEDチップ(150μm厚、0.2x0.5mmサイズ)を、ダイアタッチペースト接着剤を用いてダイボンディングした。ペースト接着剤を硬化後、25μm直径の金ワイヤーでワイヤーボンドし、セラミック基板上の配線(電極)と電気接続をした。このようにして製造されたウェハーを使用し、その後は、「発光装置の製造例4」と同様にして、発光装置(フェースアップ型LED)を完成した。 <Production Example 6 of Light-Emitting Device>
Example of Manufacturing Method Embodiment B-2 (Face-up LED)
A number of LED chips (150 μm thick, 0.2 × 0.5 mm size) were die-bonded on an 8-inch circular 150 μm thick ceramic (AlN) substrate using a die attach paste adhesive. After the paste adhesive was cured, it was wire-bonded with a 25 μm diameter gold wire and electrically connected to the wiring (electrode) on the ceramic substrate. The wafer thus manufactured was used, and thereafter, a light emitting device (face-up type LED) was completed in the same manner as in “Light Emitting Device Production Example 4”.
以上、発光装置の製造例1~6で製造されたLED装置は、従来の構造では封止材となるシリコーン樹脂と外部空気層との屈折率の差異が0.4から0.5程度あるのに対して、微細な凹凸が外部空気層との界面で屈折率を段階的に変調させる為に、屈折率差を0.01程度と小さく制御することが実現できた。光学フィルムを使用しないで製作されたLEDと比べて、少なくとも1.2倍以上の光出力が得られる効果を確認することができた。
As described above, the LED devices manufactured in the light emitting device manufacturing examples 1 to 6 have a difference in refractive index of about 0.4 to 0.5 between the silicone resin serving as the sealing material and the external air layer in the conventional structure. On the other hand, since the fine unevenness gradually modulates the refractive index at the interface with the external air layer, it was possible to control the refractive index difference as small as about 0.01. Compared to an LED manufactured without using an optical film, it was possible to confirm the effect of obtaining a light output of at least 1.2 times or more.
本発明は上記実施形態および実施例に限定されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。
The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.
本発明の発光装置は、例えば、民生用および産業用の照明やインジケーター、自動車のヘッドライトや車体の後部のリアライト等の種々の用途に適用することができる。
The light emitting device of the present invention can be applied to various uses such as consumer and industrial lighting and indicators, automobile headlights, rear rear lights of vehicle bodies, and the like.
11 光学フィルム
12 封止接着層
20a 半導体発光素子 フリップチップ型
20b 半導体発光素子 フェイスアップ型
21 バンプ
22 配線
23 支持体
24 ボンディングワイヤー
32 接着剤シート
33 剥離基材シート
34 ダイシングテープ
41 保護テープ
42 ウェハー
111 凸部
DESCRIPTION OFSYMBOLS 11 Optical film 12 Sealing adhesive layer 20a Semiconductor light emitting element Flip chip type | mold 20b Semiconductor light emitting element Face up type | mold 21 Bump 22 Wiring 23 Support body 24 Bonding wire 32 Adhesive sheet 33 Peeling base sheet 34 Dicing tape 41 Protection tape 42 Wafer 111 Convex
12 封止接着層
20a 半導体発光素子 フリップチップ型
20b 半導体発光素子 フェイスアップ型
21 バンプ
22 配線
23 支持体
24 ボンディングワイヤー
32 接着剤シート
33 剥離基材シート
34 ダイシングテープ
41 保護テープ
42 ウェハー
111 凸部
DESCRIPTION OF
Claims (19)
- 表面に微細な凹凸形状を有する光学フィルムが、封止接着層を介して、半導体発光素子の光取り出し方向側に設けられていることを特徴とする発光装置。 A light emitting device characterized in that an optical film having a fine uneven shape on the surface is provided on the light extraction direction side of the semiconductor light emitting element via a sealing adhesive layer.
- 前記封止接着層は、前記半導体発光素子の光取り出し面に直接接触して設けられていることを特徴とする請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the sealing adhesive layer is provided in direct contact with a light extraction surface of the semiconductor light emitting element.
- 前記光学フィルムの微細な凹凸形状の凸部の高さが0.07~1μmであり、隣接する凸部の間のピッチが0.07~1μmであることを特徴とする請求項1または2に記載の発光装置。 3. The optical film according to claim 1 or 2, wherein the height of the fine convex and concave portions of the optical film is 0.07 to 1 μm, and the pitch between adjacent convex portions is 0.07 to 1 μm. The light-emitting device of description.
- 前記光学フィルムは、微細な凹凸形状を有する側で、空気層との屈折率の差が0.1未満となるように機能することを特徴とする請求項1~3のいずれか1項に記載の発光装置。 The optical film functions so that a difference in refractive index from the air layer is less than 0.1 on a side having a fine uneven shape. Light-emitting device.
- 前記封止接着層が、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、アクリレート樹脂、アクリル樹脂、ポリカーボネイト、環状ポリオレフィン、ポリイミド、ポリオレフィン、フェノール樹脂、ウレタン樹脂からなる群より選ばれる少なくとも1種を含む樹脂の硬化物で形成されていることを特徴とする請求項1~4のいずれか1項に記載の発光装置。 Curing of resin including at least one selected from the group consisting of silicone resin, epoxy resin, oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, and urethane resin. The light-emitting device according to claim 1, wherein the light-emitting device is formed of a material.
- 前記光学フィルムと前記半導体発光素子の間の前記封止接着層の厚みが、100~800μmの範囲であることを特徴とする請求項1~5のいずれか1項に記載の発光装置。 6. The light emitting device according to claim 1, wherein a thickness of the sealing adhesive layer between the optical film and the semiconductor light emitting element is in a range of 100 to 800 μm.
- 前記封止接着層の屈折率が、1.4~2.5の範囲であることを特徴とする請求項1~6のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein a refractive index of the sealing adhesive layer is in a range of 1.4 to 2.5.
- 前記封止接着層が、蛍光体を含有することを特徴とする請求項1~7のいずれか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 7, wherein the sealing adhesive layer contains a phosphor.
- 前記蛍光体が、酸化物蛍光体、窒化物蛍光体、酸化窒化型蛍光体および硫化物蛍光体からなる群より選ばれる少なくとも1種を含むことを特徴とする請求項8に記載の発光装置。 The light emitting device according to claim 8, wherein the phosphor includes at least one selected from the group consisting of oxide phosphors, nitride phosphors, oxynitride phosphors and sulfide phosphors.
- 表面に微細な凹凸形状を有する光学フィルムと、この光学フィルムの平滑な面に接着された接着剤シートとを有することを特徴とする封止フィルム積層体。 A sealing film laminate comprising: an optical film having a fine uneven shape on the surface; and an adhesive sheet adhered to a smooth surface of the optical film.
- 前記光学フィルムの微細な凹凸形状の凸部の高さが0.07~1μmであり、隣接する凸部の間のピッチが0.07~1μmであることを特徴とする請求項10に記載の封止フィルム積層体。 The height of the fine concavo-convex convex portions of the optical film is 0.07 to 1 μm, and the pitch between adjacent convex portions is 0.07 to 1 μm. Sealing film laminate.
- 前記接着剤シートが、シリコーン樹脂、エポキシ樹脂、オキセタン樹脂、アクリレート樹脂、アクリル樹脂、ポリカーボネイト、環状ポリオレフィン、ポリイミド、ポリオレフィン、フェノール樹脂、ウレタン樹脂、およびこれらの樹脂の少なくとも1種を含む混合物から選ばれる樹脂を含有することを特徴とする請求項10または11に記載の封止フィルム積層体。 The adhesive sheet is selected from silicone resin, epoxy resin, oxetane resin, acrylate resin, acrylic resin, polycarbonate, cyclic polyolefin, polyimide, polyolefin, phenol resin, urethane resin, and a mixture containing at least one of these resins. Resin is contained, The sealing film laminated body of Claim 10 or 11 characterized by the above-mentioned.
- 前記接着剤シートの厚みが100~800μmの範囲であることを特徴とする請求項10~12のいずれか1項に記載の封止フィルム積層体。 The sealing film laminate according to any one of claims 10 to 12, wherein a thickness of the adhesive sheet is in a range of 100 to 800 µm.
- 前記接着剤シートが、蛍光体を含有することを特徴とする請求項10~13のいずれか1項に記載の封止フィルム積層体。 The sealing film laminate according to any one of claims 10 to 13, wherein the adhesive sheet contains a phosphor.
- 前記光学フィルムの微細な凹凸形状を有する側の表面に、さらにダイシングテープが積層されている請求項10~14のいずれか1項に記載の封止フィルム積層体。 The sealing film laminate according to any one of claims 10 to 14, wherein a dicing tape is further laminated on the surface of the optical film having a fine uneven shape.
- 請求項10~15のいずれか1項に記載の封止フィルム積層体の前記接着剤シート面を、複数の半導体発光素子が形成されたウェハーと、光取り出し側の面が前記接着剤シート面と接触するように、貼り合わせる工程と、
前記封止フィルム積層体と貼り合わされたウェハーを、前記光学フィルムと前記接着剤シートと共に、ダイシングして、チップ化する工程と
を有することを特徴とする発光装置の製造方法。 The adhesive sheet surface of the sealing film laminate according to any one of claims 10 to 15, a wafer on which a plurality of semiconductor light emitting elements are formed, and a light extraction side surface is the adhesive sheet surface A process of bonding so as to contact each other;
A method of manufacturing a light emitting device, comprising: dicing the wafer bonded to the sealing film laminate together with the optical film and the adhesive sheet into chips. - 前記チップ化後に、加熱して、前記接着剤シートを硬化する工程をさらに有する請求項16に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 16, further comprising a step of heating and curing the adhesive sheet after forming the chip.
- 半導体発光素子を備える発光装置の空気との界面に、表面に微細な凹凸形状を有する光学フィルムが設けられ、前記界面の発光装置側の光学屈折率が制御されていることを特徴とする発光装置。 A light emitting device comprising: a light emitting device including a semiconductor light emitting element; an optical film having a fine uneven shape on a surface thereof, and an optical refractive index on the light emitting device side of the interface being controlled. .
- 前記光学フィルムの微細な凹凸形状の凸部の高さが0.07~1μmであり、隣接する凸部の間のピッチが0.07~1μmであることを特徴とする請求項18に記載の発光装置。 19. The optical film according to claim 18, wherein the height of the fine uneven-shaped convex portions of the optical film is 0.07 to 1 μm, and the pitch between adjacent convex portions is 0.07 to 1 μm. Light emitting device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-126947 | 2013-06-17 | ||
JP2013126947A JP2015002298A (en) | 2013-06-17 | 2013-06-17 | Light-emitting device, sealing film laminate for manufacturing of the same, and method for manufacturing light-emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014203793A1 true WO2014203793A1 (en) | 2014-12-24 |
Family
ID=52104529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/065555 WO2014203793A1 (en) | 2013-06-17 | 2014-06-12 | Light emitting device, sealing film laminate for producing same, and method for manufacturing light emitting device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015002298A (en) |
WO (1) | WO2014203793A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017069964A1 (en) * | 2015-10-19 | 2017-04-27 | Koninklijke Philips N.V. | Wavelength converted light emitting device with textured substrate |
JP7572264B2 (en) | 2021-02-25 | 2024-10-23 | 日東電工株式会社 | Optical semiconductor element encapsulation sheet and method for producing optical semiconductor device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6544962B2 (en) | 2015-03-27 | 2019-07-17 | 東レエンジニアリング株式会社 | LED module and method of manufacturing LED module |
CN104916760A (en) * | 2015-05-08 | 2015-09-16 | 李峰 | Die cavity type adhesive film making method and adhesive film made by same |
JP6617481B2 (en) * | 2015-09-03 | 2019-12-11 | パナソニックIpマネジメント株式会社 | Light emitting module |
JP2019102715A (en) * | 2017-12-06 | 2019-06-24 | スタンレー電気株式会社 | Semiconductor light emitting device and manufacturing method of the same |
JP7100246B2 (en) | 2018-06-01 | 2022-07-13 | 日亜化学工業株式会社 | Luminescent device |
TWI750897B (en) | 2020-11-16 | 2021-12-21 | 錼創顯示科技股份有限公司 | Micro led display device and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229507A (en) * | 2008-03-19 | 2009-10-08 | Hitachi Chem Co Ltd | Sealing film |
JP2011003870A (en) * | 2009-05-20 | 2011-01-06 | Nitto Denko Corp | Sheet for photosemiconductor encapsulation |
JP2011018704A (en) * | 2009-07-07 | 2011-01-27 | Toyoda Gosei Co Ltd | Method of forming fine irregularities on surface of sealing member surrounding led chip, and method of manufacturing led lamp including the same method |
JP2012195345A (en) * | 2011-03-15 | 2012-10-11 | Toshiba Corp | Semiconductor light-emitting device |
-
2013
- 2013-06-17 JP JP2013126947A patent/JP2015002298A/en active Pending
-
2014
- 2014-06-12 WO PCT/JP2014/065555 patent/WO2014203793A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009229507A (en) * | 2008-03-19 | 2009-10-08 | Hitachi Chem Co Ltd | Sealing film |
JP2011003870A (en) * | 2009-05-20 | 2011-01-06 | Nitto Denko Corp | Sheet for photosemiconductor encapsulation |
JP2011018704A (en) * | 2009-07-07 | 2011-01-27 | Toyoda Gosei Co Ltd | Method of forming fine irregularities on surface of sealing member surrounding led chip, and method of manufacturing led lamp including the same method |
JP2012195345A (en) * | 2011-03-15 | 2012-10-11 | Toshiba Corp | Semiconductor light-emitting device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017069964A1 (en) * | 2015-10-19 | 2017-04-27 | Koninklijke Philips N.V. | Wavelength converted light emitting device with textured substrate |
CN108604626A (en) * | 2015-10-19 | 2018-09-28 | 亮锐控股有限公司 | Wavelength convert luminaire with textured substrate |
US11005012B2 (en) | 2015-10-19 | 2021-05-11 | Lumileds Llc | Wavelength converted light emitting device with textured substrate |
CN108604626B (en) * | 2015-10-19 | 2022-02-18 | 亮锐控股有限公司 | Wavelength-converted light emitting device with textured substrate |
JP7572264B2 (en) | 2021-02-25 | 2024-10-23 | 日東電工株式会社 | Optical semiconductor element encapsulation sheet and method for producing optical semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2015002298A (en) | 2015-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014203793A1 (en) | Light emitting device, sealing film laminate for producing same, and method for manufacturing light emitting device | |
JP6519311B2 (en) | Light emitting device | |
US10636764B2 (en) | Light emitting device | |
KR102323289B1 (en) | Glueless light emitting device with phosphor converter | |
JP6269702B2 (en) | Method for manufacturing light emitting device | |
JP6237181B2 (en) | Method for manufacturing light emitting device | |
EP2704219B1 (en) | Method for producing light-emitting device, and light-emitting device | |
WO2012029695A1 (en) | Light emitting device and method for manufacturing same | |
KR20120019385A (en) | Phosphor film, method of manufacturing the same, method of coating phosphor layer on an led chip, method of manufacturing led package and led package manufactured thereof | |
JP2015095601A (en) | Light emitting device and light emitting device manufacturing method | |
US20110207253A1 (en) | Flip-chip led module fabrication method | |
US20120021542A1 (en) | Method of packaging light emitting device | |
TW201724573A (en) | Light-emitting device and manufacturing method thereof | |
JP2017085085A (en) | Method for manufacturing light-emitting device | |
KR20090034412A (en) | Light generating chip and method of manufacturing the same | |
US9444024B2 (en) | Methods of forming optical conversion material caps | |
KR101288918B1 (en) | Manufacturing method of light emitting device having wavelenth-converting layer and light emitting device produced by the same | |
KR101752426B1 (en) | Light emitting device and light emitting diode package | |
KR20160059450A (en) | Molded substrate, package structure, and method of manufacture the same | |
CN110323317B (en) | Method for manufacturing module and method for manufacturing optical module | |
JP6387773B2 (en) | Method for manufacturing translucent member and method for manufacturing light emitting device | |
KR102034575B1 (en) | Singulation of light emitting devices before and after application of phosphor | |
KR101460742B1 (en) | Method of manufacutruing semiconductor device structure | |
TWI712186B (en) | Light emitting device packaging process | |
JP6721033B2 (en) | Method for manufacturing light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14813659 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14813659 Country of ref document: EP Kind code of ref document: A1 |