WO2014203342A1 - 電池モジュール - Google Patents

電池モジュール Download PDF

Info

Publication number
WO2014203342A1
WO2014203342A1 PCT/JP2013/066809 JP2013066809W WO2014203342A1 WO 2014203342 A1 WO2014203342 A1 WO 2014203342A1 JP 2013066809 W JP2013066809 W JP 2013066809W WO 2014203342 A1 WO2014203342 A1 WO 2014203342A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
inter
cell
block
spacer
Prior art date
Application number
PCT/JP2013/066809
Other languages
English (en)
French (fr)
Inventor
貴支 鈴木
倫弘 木村
直樹 小島
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/897,974 priority Critical patent/US20160126514A1/en
Priority to JP2015522411A priority patent/JP6047234B2/ja
Priority to PCT/JP2013/066809 priority patent/WO2014203342A1/ja
Publication of WO2014203342A1 publication Critical patent/WO2014203342A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module in which a plurality of rectangular battery cells are connected in a stacked state.
  • An electric vehicle or a hybrid vehicle using a motor as a drive source has a battery block in which a large number of battery cells are connected because a large output is required.
  • the electrode expands at the time of charge and discharge, and the interval between the positive electrode terminal and the negative electrode terminal widens, so that the internal resistance increases and the output decreases.
  • the battery cell is composed of a metal outer can, there is a possibility that a short current may flow if an outer can with a potential difference is electrically connected, and it is necessary to insulate a plurality of battery cells from each other. There is.
  • a plurality of rectangular battery cells having a positive electrode terminal and a negative electrode terminal on the same surface are each directly held by a separator to maintain an insulation state between them.
  • a structure of a battery block that fixes the interval between the end plates while being pressed from both ends Patent Document 1.
  • the separator of the battery block described in Patent Document 1 has a structure that covers all six surfaces of the battery cell in order to achieve the purpose of holding the battery cell and maintaining the insulation state between the battery cell outer cans, There is a problem that the shape is complicated and it is difficult to reduce the manufacturing cost in plastic molding of an insulating material.
  • the above-described battery block is a structure that supports each battery cell only by pressing from both ends by the connecting fixture, in order to suppress the movement of the relative displacement of each battery cell due to vibration or impact, There is a problem that it is necessary to increase the pressing force, and it is necessary to set a separator and a battery cell that can withstand the high pressing force.
  • the present invention has been made in view of the above points, and an object thereof is to insulate adjacent battery cells from each other while suppressing movement of relative displacement between the battery cells with a simple configuration. It is providing the battery module which can be maintained in a state.
  • the battery module of the present invention that solves the above problems is a battery module having a battery block in which a plurality of rectangular battery cells are stacked and stacked, and an insulating inter-cell spacer interposed between the plurality of battery cells; And a pair of double-sided tapes that are provided on both surfaces of the inter-cell spacer and fix the pair of adjacent battery cells to the inter-cell spacer via the inter-cell spacer, respectively.
  • FIG. 6 is an exploded perspective view of FIG. 5.
  • FIG. 6 is a view in the direction of the arrow in FIG. 5.
  • the exploded perspective view which shows the insertion direction of the battery block of FIG. The lamination direction arrow directional view of FIG.
  • a double-sided tape is attached to a resin inter-cell spacer that keeps insulation with the battery cells, and the battery cells are bonded together and fixed, thereby suppressing the movement of the relative displacement of the battery cells. It has a structure. Resin upper spacers and lower spacers are respectively attached to the four corners of the battery cell with double-sided tape. Then, the battery block is inserted from the side into the lower case, end plates are arranged at both ends, and the lower case and the end plate are fastened with screws.
  • FIG. 1 is an external perspective view of a battery cell.
  • the battery cell 1 is a rectangular lithium ion secondary battery, and an electrode group having a positive electrode and a negative electrode is housed together with a non-aqueous electrolyte in a battery container made of aluminum alloy.
  • the battery container of the battery cell 1 includes a flat box-shaped battery can 11 and a battery lid 12 that seals the opening of the battery can 11.
  • the battery can 11 is a flat rectangular container formed by deep drawing, and includes a rectangular bottom surface PB, a pair of wide side surfaces PW rising from the long side of the bottom surface PB, and a pair of narrow widths rising from the short side of the bottom surface PB. It has a side surface PN.
  • the battery lid 12 is made of a rectangular flat plate member and has an upper surface PU.
  • the battery lid 12 is provided with a positive external terminal 13 and a negative external terminal 14 for inputting and outputting voltage.
  • the positive electrode external terminal 13 and the negative electrode external terminal 14 are arranged at positions separated from each other in the long side direction of the battery lid 12.
  • the positive external terminal 13 and the negative external terminal 14 are each provided with a nut fastening bolt for fastening the bus bar.
  • the battery lid 12 accommodates the electrode group in the battery can 11 and then laser welded to the battery can 11 to seal the opening of the battery can 11.
  • a plurality of battery cells 1 are arranged and stacked in the thickness direction to constitute the battery block 2 of the battery module 100 (see FIG. 8).
  • FIG. 2 is an external perspective view of the battery block
  • FIG. 3 is an exploded perspective view showing a state in which a part of the battery block is disassembled
  • FIG. 4 is a partial cross-sectional view of the battery block.
  • the battery block 2 is configured by stacking a plurality of battery cells 1 side by side as shown in FIGS. 2 and 3.
  • the plurality of battery cells 1 are arranged such that the positive electrode external terminals 13 and the negative electrode external terminals 14 are alternately continued along the stacking direction.
  • Insulating inter-cell spacers 5 are interposed between the battery cells 1.
  • the inter-cell spacer 5 is provided with double-sided tape 8 on both sides thereof, and the battery cells 1 adjacent to each other are bonded together and fixed.
  • the battery block 2 includes an insulating inter-cell spacer 5 interposed between the plurality of battery cells 1 and a pair of batteries provided on both surfaces of the inter-cell spacer 5 and adjacent to each other via the inter-cell spacer 5. It has a pair of double-sided tapes 8 for fixing the cell 1 to the inter-cell spacer 5.
  • a double-sided tape 8 is attached to a resin inter-cell spacer 5 that maintains insulation between the battery cells 1, and the battery cells 1 are attached to each other with the inter-cell spacer 5 interposed therebetween. Therefore, the movement of the relative displacement of the battery cell 1 can be suppressed.
  • the inter-cell spacer 5 has a flat plate shape having substantially the same size as the wide side surface PW of the battery cell 1, and a concave portion 5 a extending in a groove shape is provided on both surfaces of the cell spacer 5. ing. A plurality of the recesses 5a are provided at predetermined intervals in the cell height direction. And the double-sided tape 8 is provided in the recessed part 5a.
  • the inter-cell spacer 5 is such that the surface of the inter-cell spacer 5 is exposed at a location where the expansion of the battery can 11 can be efficiently suppressed when the battery can 11 is expanded, and the double-sided tape 8 is disposed at the remaining other locations.
  • the position of the recess 5a is set.
  • the double-sided tape 8 has a cushioning property that can be compressed in the tape thickness direction, is thicker than the depth of the recess 5a of the inter-cell spacer 5, and is flush with the surface of the inter-cell spacer 5 by pressing. Can be compressed. Therefore, when the battery block 2 is compressed in the stacking direction, as shown in FIG. 4, the both sides of the inter-cell spacer 5 are brought into contact with the wide side surfaces PW of the battery cells 1 adjacent to each other, so Can be positioned in the stacking direction.
  • the battery block 2 has a case spacer.
  • the inter-case spacer is an insulating spacer interposed between the case inner wall portion of the block case and the battery block 2 when the battery block 2 is accommodated in the block case described later.
  • the inter-case spacer has a pair of upper spacers 3 and a pair of lower spacers 4.
  • the pair of upper spacers 3 and the pair of lower spacers 4 are made of an insulating resin, and are arranged at the four corners of each battery cell 1 in a direction perpendicular to the stacking direction of the battery cells 1.
  • the upper spacer 3 is disposed at a corner between the upper surface PU of the battery lid 12 and the narrow side surface PN of the battery can 11, and the lower spacer 4 is disposed between the bottom surface PB of the battery can 11 and the narrow side surface PN. It is arranged at the corner.
  • the upper spacer 3 and the lower spacer 4 have an L-shaped cross section along the four corners of the battery cell 1. And it has the length over the thickness direction of the battery cell 1, for example like the upper spacer 3 shown in FIG.
  • the upper spacer 3 and the lower spacer 4 are fixed to the battery cell 1 by double-sided tapes 6 and 7, respectively.
  • the double-sided tapes 6 and 7 have a cushioning property that can be compressed in the tape thickness direction. Can be absorbed.
  • the battery block 2 having the above-described configuration, it is possible to maintain the insulation state between the battery cells 1 adjacent to each other while suppressing the movement of the relative displacement of the battery cells 1 with a simple configuration.
  • the battery block 2 not only shows a state in which a pressing force is applied from both ends in the stacking direction but also a movement of the relative displacement of each battery cell 1 in a state in which a pressing force is not applied from both ends in the stacking direction. It is possible to suppress. And since movement of position shift is controlled, a plurality of battery cells 1 can be carried even in the state where there is no fastening member such as a screw or welding and fastening work, and assembling workability is improved. Further, since the fastening means such as screws are not used for assembling the battery block 2, the number of work steps such as fastening work can be reduced, and the weight can be reduced by reducing the number of parts.
  • the inter-cell spacer 5 has a simple flat plate shape and is simpler in shape than a conventional structure that covers all six surfaces of the battery cell, thereby reducing the manufacturing cost by plastic molding. it can.
  • the double-sided tape 8 can be a general-purpose product with a low unit price, and the product cost can be reduced.
  • the battery cans 11 of the battery cells 1 are electrically connected to each other even when a large impact is applied to the battery can 11 due to, for example, a vehicle collision. It can be kept insulative so that it does not.
  • the inter-cell spacer 5 can define the position of the double-sided tape 8 with respect to the battery cell 1 by the recess 5a, can always attach the double-sided tape 8 to a certain place with high accuracy, and can simplify the mounting operation. .
  • the recess 5a of the inter-cell spacer 5 and the double-sided tape 8 have a shape in which five strips are arranged in this embodiment, but can be freely changed depending on the wide side surface PW of the battery cell 1 or a range to be bonded. Can be changed.
  • the shape of the inter-cell spacer 5 is not necessarily the same as the cross-sectional shape of the battery cell 1, and the battery cans 11 of the battery cell 1 and the positive electrode external terminal 13 and the negative electrode external terminal 14 are kept in an insulated state. It can be changed freely to achieve the purpose.
  • FIG. 5 is a perspective view in which an accessory is assembled to the lower case
  • FIG. 6 is an exploded perspective view of FIG. 5
  • FIG. 7 is a view in the stacking direction of FIG.
  • the battery block 2 is accommodated in a block case.
  • the block case has a case inner wall extending along the insertion direction of the battery block 2 and can be accommodated by relatively moving the battery block 2 along the stacking direction of the battery cells 1 and inserting it. It has a configuration. In the present embodiment, it has a configuration for accommodating two battery blocks 2.
  • the block case includes a lower case 101, a pair of end plates 102 (see FIG. 9), a section plate 104, and an upper plate 103 (see FIG. 13).
  • the lower case 101 has a uniform cross-sectional shape in the stacking direction, and is made of a material that is lightweight and has a low specific heat, such as an aluminum alloy.
  • the lower case 101 is provided with a plurality of protrusions on the outer wall portion of the case, so as to ensure a larger surface area and improve heat dissipation.
  • the lower case 101 serves as a support plate that supports the battery block 2 so as to be relatively movable along the stacking direction, and a pair of side plates 111 that extend in parallel to each other and a lower that connects the lower ends of the pair of side plates 111. It has a plate 112 and has a substantially U-shaped cross section.
  • the pair of side plates 111 has a facing surface 111a that faces the narrow side surface PN of the battery cell 1, and the lower plate 112 has a facing surface 112a that faces the bottom surface PB of the battery cell 1, and these A case inner wall portion is formed by the facing surfaces 111a and 112a.
  • the pair of side plates 111 has a protrusion 113 that protrudes from the upper end in a direction approaching each other and faces the upper surface PU of the battery cell 1.
  • the lower case 101 is provided with a cooling channel that extends along the stacking direction and through which the refrigerant flows.
  • the cooling flow path is formed by a through hole 114 that passes through the lower plate 112 of the lower case 101 along the stacking direction.
  • Female screws are screwed into both ends of the through-hole 114 so that a pipe joint 115 is attached.
  • the section plate 104 is interposed and partitioned between the plurality of battery blocks 2 housed in the block case.
  • the section plate 104 is inserted into the lower case 101 from one side in the stacking direction,
  • the screws are fastened to the pair of side plates 111 and the lower plate 112 by fastening screws from the lower three directions.
  • the insulating plate 105 is attached to the opposing surface 111 a of the side plate 111.
  • the insulating plate 105 is made of an insulating resin and is fixed to the side plate 111 with a double-sided tape 106.
  • the insulating plate 105 is interposed between the narrow side surface PN of the battery cell 1 and the side plate 111 and insulates between the two. For example, a large impact that causes deformation of the battery module 100 due to a vehicle collision or the like is generated.
  • the side plate 111 of the lower case 101 can be kept in an insulated state so as not to be electrically connected to the battery cell 1.
  • the heat transfer sheet 107 is attached to the facing surface 112a of the lower plate 112.
  • the heat transfer sheet 107 is in contact with the bottom surface PB of the battery cell 1 so that the heat of the battery cell 1 can be transmitted to the lower plate 112.
  • the insulating plate 105 and the heat transfer sheet 107 are separated and independent from each other with the section plate 104 as a boundary, and are provided for each section partitioned by the section plate 104.
  • the lower case 101 is provided with a plurality of attachment holes for attaching the battery module 100 to the vehicle.
  • FIG. 8 is a perspective view in which the battery block is inserted into the lower case
  • FIG. 9 is an exploded perspective view showing the insertion direction of the battery block 2 in FIG. 8
  • FIG. 10 is a view in the stacking direction of FIG.
  • the battery block 2 is inserted from the end in the stacking direction of the lower case 101 in a state where attached parts are assembled.
  • the two battery blocks 2 are moved from the both sides in the stacking direction of the lower case 101 in the direction approaching each other with the section plate 104 as a boundary.
  • the battery block 2 is supported by the pair of side plates 111 and the lower plate 112 of the lower case 101 and moved along the stacking direction of the battery cells 1.
  • the battery block 2 includes a pair of upper spacers 3 in contact with the corners of the opposing surfaces 111 a of the side plates 111 and the projections 113, and a pair of lower spacers 4 on the side case 101.
  • the plate 111 and the lower plate 112 are in contact with the corners, and the movement in the direction orthogonal to the stacking direction is restricted, and the plate 111 is moved only in the stacking direction.
  • the dimensional tolerance of the battery block 2 and the dimensional tolerance of the lower case 101 in the direction orthogonal to the stacking direction are absorbed by the cushioning properties of the double-sided tapes 6 and 7 of the upper spacer 3 and the lower spacer 4.
  • a material that is slippery with respect to the lower case 101 is selected as the material of the upper spacer 3 and the lower spacer 4, and a material that is slippery with respect to the battery block is selected as the material of the heat transfer sheet 107, whereby the lower case 101 of the battery block 2 is selected. Can be smoothly inserted.
  • end plates 102 are arranged at both ends of the lower case 101 and fixed to the lower case 101 by screw fastening.
  • the battery block 2 is secured while being pressed in the stacking direction by the end plate 102.
  • a tensile force is applied to the fastening bolt that fastens the end plate 102 to the lower case 101.
  • the bottom surface PB of the battery cell 1 and the lower case 101 are thermally coupled via the heat transfer sheet 107.
  • the square of the battery cell 1 is fixed to the lower case 101 via the upper spacer 3 and the lower spacer 4, and the position thereof is regulated, thereby forming the battery block 2.
  • the respective battery cells 1 and the lower case 101 are integrated. Therefore, the movement of the battery cell 1 can be suppressed against the vibration and impact of the vehicle.
  • the lower case 101 Since the lower case 101 is provided with a through-hole 114 to form a cooling flow path, a member such as a pipe necessary for the cooling flow path or a member such as a heat exchange plate is not required, and the module is reduced in weight. The number of parts can be reduced. Further, the lower case 101 has a protrusion on the outer wall of the case, has a larger surface area than a simple plate shape, and is excellent in heat exchange efficiency.
  • the lower case 101 Since the lower case 101 has a structure in which the battery block 2 can move in the stacking direction, the load in the stacking direction by the end plate 102 can be reliably transmitted only to the battery cell 1, and a plurality of battery cells The load applied to each 1 can be made uniform. Further, the fastening bolt that fastens the end plate 102 to the lower case 101 can be subjected to stress in the tensile direction, and the durability of the fastening bolt can be improved as compared with the case where shearing stress is applied.
  • FIG. 11 is a perspective view showing a mounting state of the board unit
  • FIG. 12 is an exploded perspective view of the battery module.
  • the positive electrode external terminal 13 and the negative electrode external terminal 14 of the battery cells 1 adjacent to each other are electrically connected by a plurality of bus bars 123, respectively.
  • Each bus bar 123 is connected to the board connection terminal 122 a of the board unit 122.
  • the board unit 122 includes a circuit for measuring the voltage of each battery cell 1, a connector, and a fuse.
  • an insulating cap 124 On the upper side in the battery cell height direction of the substrate unit 122, an insulating cap 124 that is fitted to the insulating cover 121 and covers the terminal of each battery cell 1 is provided.
  • FIG. 13 is a perspective view showing a state in which the upper plate 103 is assembled to the lower case 101.
  • the battery module 100 is completed by covering the lower case 101 with the upper plate 103 and fastening with screws.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の課題は、簡単な構造で電池セルの相対的な位置ずれの動きを抑制しつつ、隣り合う電池セル同士を絶縁状態に保つことができる電池モジュールを得ることである。 本発明の電池モジュール(100)は、角形の電池セル(1)を複数並べて積層させた電池ブロック(2)を有する電池モジュール(100)であって、複数の電池セル(1)の間に介在される絶縁性のセル間スペーサ(5)と、セル間スペーサ(5)の両面に設けられてセル間スペーサ(5)を介して互いに隣り合う一対の電池セル(1)をセル間スペーサ(5)にそれぞれ固定する一対の両面テープ(8)を有する。

Description

電池モジュール
 本発明は、複数の角形の電池セルを積層状態で連結した電池モジュールに関する。
 モータを駆動源とする電気自動車やハイブリッド自動車は、大きな出力を求められることから多数の電池セルを連結した電池ブロックを備えている。リチウムイオン二次電池の電池セルは、充放電時に電極が膨張し、正極端子と負極端子間の間隔が広くなることで内部抵抗が増大し出力が低下するため、膨張を抑制する必要がある。
 また、電池セルは、金属製の外装缶で構成されているので、電位差のある外装缶が電気的に接続されるとショート電流が流れるおそれがあり、複数の電池セルを互いに絶縁状態にする必要がある。
 例えば、正極端子、負極端子を同一面に有する複数の角形の電池セルを、それぞれセパレータで直接保持して互いの絶縁状態を保ち、配列方向両端に剛性の高いエンドプレートを配置して連結固定具によって両端から押圧をかけた状態でエンドプレートの間隔を固定する電池ブロックの構造が知られている(特許文献1)。
特開2012-119157号公報
 特許文献1に記載された電池ブロックのセパレータは、電池セルの保持と電池セルの外装缶同士の絶縁状態を保つという目的達成のために、電池セルの6面すべてを覆う構造になっており、形状が複雑で絶縁材のプラスチック成型において製造コストを低くすることが難しいという課題がある。
 また、上記した電池ブロックは、連結固定具による両端からの押圧のみで各電池セルを支えている構造なので、振動や衝撃などによる電池セルひとつひとつの相対的な位置ずれの動きを抑制するために、押圧力を高くする必要があり、高押圧力に耐えうるセパレータや電池セルを設定しなければならないという課題がある。
 上記した電池ブロックの構造の場合、高押圧力にセパレータや電池セルが耐えられず押圧力を小さくする必要がある。また、振動や衝撃などにより押圧力が小さくなってしまうと、電池セルの相対的な位置ずれの動きを樹脂のスペーサのみで押さえることになるため、スペーサの強度や寸法精度に左右され、振動や衝撃から各電池セルの相対的な位置ずれの動きを抑制することは困難である。
 本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、簡単な構成で各電池セルの相対的な位置ずれの動きを抑制しつつ、隣り合う電池セル同士を絶縁状態に保つことができる電池モジュールを提供することである。
 上記課題を解決する本発明の電池モジュールは、角形の電池セルを複数並べて積層させた電池ブロックを有する電池モジュールであって、前記複数の電池セルの間に介在される絶縁性のセル間スペーサと、該セル間スペーサの両面に設けられて前記セル間スペーサを介して互いに隣り合う一対の電池セルを前記セル間スペーサにそれぞれ固定する一対の両面テープと、を有することを特徴としている。
 本発明によれば、簡単な構成で各電池セルの相対的な位置ずれの動きを抑制しつつ、互いに隣り合う電池セルどうしの絶縁状態を保つことができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
電池セルの外観斜視図。 電池ブロックの外観斜視図。 電池ブロックの分解斜視図。 電池ブロックの一部断面図。 ロアケースに付帯部品を組み付けた斜視図。 図5の分解斜視図。 図5の積層方向矢視図。 ロアケースに電池ブロックを挿入した斜視図。 図8の電池ブロックの挿入方向を示す分解斜視図。 図9の積層方向矢視図。 基板ユニットの取付状態を示す斜視図。 電池モジュールの分解斜視図。 電池モジュールの外観斜視図。
 本発明の電池モジュールは、電池セルと絶縁状態を保つ樹脂のセル間スペーサに両面テープを貼り付けて、電池セル同士を貼り合わせて固定し、電池セルの相対的な位置ずれの動きを抑制する構造を有する。電池セルの四隅には、樹脂のアッパスペーサ、ロアスペーサがそれぞれ両面テープで貼り付けられている。そして、ロアケースに電池ブロックを横から挿入して両端にエンドプレートを配置し、ロアケースとエンドプレートをネジで締結することによって組み立てられる。
 以下、本発明にかかわる電池モジュールの一実施形態を図面に基づき説明する。なお、以下の説明では、電池モジュールが電気自動車やハイブリッド電気自動車に用いられる車載用の場合を例に説明するが、用途は車載用に限定されるものではない。
(電池セル)
 図1は、電池セルの外観斜視図である。
 電池セル1は、角形のリチウムイオン二次電池であり、アルミニウム合金製の電池容器内に、正極電極と負極電極を有する電極群が非水電解液と共に収容されている。電池セル1の電池容器は、扁平箱形の電池缶11と、電池缶11の開口部を封口する電池蓋12とを有している。電池缶11は、深絞り加工により形成された扁平な角形容器であり、長方形の底面PBと、底面PBの長辺から立ち上がる一対の幅広側面PWと、底面PBの短辺から立ち上がる一対の幅狭側面PNを有している。
 電池蓋12は、長方形の平板部材によって構成されており、上面PUを有している。電池蓋12には、電圧を入出力するための正極外部端子13と負極外部端子14が設けられている。正極外部端子13と負極外部端子14は、電池蓋12の長辺方向に互いに離間した位置に配置されている。正極外部端子13と負極外部端子14には、それぞれバスバーを締結するためのナット締結用のボルトが突設されている。電池蓋12は、電池缶11内に電極群を収容した後に、電池缶11にレーザ溶接されて電池缶11の開口部を封口する。電池蓋12の長辺方向中間位置には、非水電解液を電池缶11内に注入するための注入口15と、内圧の上昇により開裂して電池容器内のガスを排出するガス排出弁16が設けられている。電池セル1は、その厚さ方向に複数配列して積層することにより、電池モジュール100の電池ブロック2を構成する(図8を参照)。
(電池ブロック)
 図2は、電池ブロックの外観斜視図、図3は、電池ブロックの一部を分解した状態を示す分解斜視図、図4は、電池ブロックの一部断面図である。
 電池ブロック2は、図2及び図3に示すように、電池セル1を複数並べて積層させることによって構成されている。複数の電池セル1は、正極外部端子13と負極外部端子14とが積層方向に沿って交互に連続するように配置されている。そして、各電池セル1の間には、絶縁性のセル間スペーサ5が介在されている。セル間スペーサ5は、その両面に両面テープ8が設けられており、互いに隣り合う電池セル1どうしを貼り合わせて固定している。
 すなわち、電池ブロック2は、複数の電池セル1の間に介在される絶縁性のセル間スペーサ5と、セル間スペーサ5の両面に設けられてセル間スペーサ5を介して互いに隣り合う一対の電池セル1をセル間スペーサ5にそれぞれ固定する一対の両面テープ8とを有している。
 電池ブロック2は、電池セル1との絶縁状態を保つ樹脂のセル間スペーサ5に両面テープ8を貼り付けて、セル間スペーサ5を間に介在させた形で電池セル1同士を貼り合わせて互いの位置を固定しているので、電池セル1の相対的な位置ずれの動きを抑制することができる。
 セル間スペーサ5は、電池セル1の幅広側面PWとほぼ同じ大きさを有する平板形状を有しており、その両面には、セル幅方向に亘って溝状に延在する凹部5aが設けられている。凹部5aは、セル高さ方向に所定間隔をおいて複数設けられている。そして、凹部5aに、両面テープ8が設けられている。
 セル間スペーサ5は、電池缶11が膨張した際にその膨張を効率よく押さえることができる箇所にセル間スペーサ5の表面が露出し、残りの他の箇所に両面テープ8が配置されるように、凹部5aの位置が設定されている。
 両面テープ8は、テープ厚さ方向に圧縮可能なクッション性を有しており、セル間スペーサ5の凹部5aの深さよりも厚さが厚く、押圧によってセル間スペーサ5の表面と面一の位置まで圧縮可能になっている。したがって、電池ブロック2を積層方向に圧縮した場合に、図4に示すように、セル間スペーサ5の両面を、互いに隣り合う電池セル1の幅広側面PWにそれぞれ当接させて、電池セル1どうしを積層方向に位置決めすることができる。
 そして、電池ブロック2には、ケース間スペーサが取り付けられている。ケース間スペーサは、後述するブロックケース内に電池ブロック2を収容した際に、ブロックケースのケース内壁部と電池ブロック2との間に介在される絶縁性のスペーサである。ケース間スペーサは、一対のアッパスペーサ3と一対のロアスペーサ4を有している。
 一対のアッパスペーサ3と一対のロアスペーサ4は、絶縁性を有する樹脂によって構成されており、各電池セル1に対して、電池セル1の積層方向に直交する方向の四隅に配置されている。アッパスペーサ3は、電池蓋12の上面PUと電池缶11の幅狭側面PNとの間の隅部に配設され、ロアスペーサ4は、電池缶11の底面PBと幅狭側面PNとの間の隅部に配設されている。
 アッパスペーサ3とロアスペーサ4は、電池セル1の四隅に沿った断面L字形状を有している。そして、例えば図4に示すアッパスペーサ3のように、電池セル1の厚さ方向に亘る長さを有している。アッパスペーサ3とロアスペーサ4は、それぞれ両面テープ6、7によって電池セル1に固定されている。両面テープ6、7は、両面テープ8と同様に、テープ厚さ方向に圧縮可能なクッション性を有しており、後述するブロックケース内に収容した際に、積層方向に直交する方向の公差を吸収することができる。
 上記した構成を有する電池ブロック2によれば、簡単な構成で各電池セル1の相対的な位置ずれの動きを抑制しつつ、互いに隣り合う電池セル1どうしの絶縁状態を保つことができる。
 電池ブロック2は、積層方向の両端から押圧力をかけている状態はもちろんのこと、積層方向の両端から押圧力をかけていない状態においても、各電池セル1の相対的な位置ずれの動きを抑制することが可能である。そして、位置ずれの動きが抑制されているため、ネジや溶接などの締結部材および締結作業がない状態でも複数の電池セル1を持ち運ぶことができ、組立作業性が向上する。また、電池ブロック2の組み立てに、ネジなどの締結手段を用いていないので、締結作業などの作業工数を削減でき、部品点数の削減による軽量化を図ることもできる。
 また、セル間スペーサ5は、単なる平板形状であり、従来のような電池セルの6面の全てを覆う構造のものと比較して、形状が簡単であるので、プラスチック成型による製造コストを安価にできる。そして、両面テープ8も単価の安い汎用品を用いることができ、製品コストを安価にできる。
 また、セル間スペーサ5を介在させることにより、例えば車両衝突等によって電池缶11に変形を生ずるような大きな衝撃が加えられた場合にも、電池セル1の電池缶11どうしが互いに電気的に接続することがないよう絶縁状態に保つことができる。
 セル間スペーサ5は、凹部5aによって電池セル1に対する両面テープ8の位置を規定することができ、両面テープ8を常に一定の場所に精度良く取り付けることができ、取り付け作業を簡単化することができる。
 セル間スペーサ5の凹部5aおよび両面テープ8は、本実施形態においては短冊形状を5本並べた形状となっているが、例えば電池セル1の幅広側面PW全面や円形など貼り合わせたい範囲によって自由に変更することができる。
 セル間スペーサ5の形状は、必ずしも電池セル1の断面形状と同じである必要はなく、電池セル1の電池缶11どうしや正極外部端子13と負極外部端子14との間を絶縁状態に保つという目的達成のため自由に変更することができる。
(電池モジュール)
 図5は、ロアケースに付帯部品を組み付けた斜視図、図6は、図5の分解斜視図、図7は、図5の積層方向矢視図である。
 上記電池ブロック2は、ブロックケースに収容される。ブロックケースは、電池ブロック2の挿入方向に沿って延在するケース内壁部を有しており、電池ブロック2を電池セル1の積層方向に沿って相対的に移動させて挿入することによって収容可能な構成を有している。本実施の形態では、2つの電池ブロック2を収容する構成を有している。
 ブロックケースは、ロアケース101と、一対のエンドプレート102(図9を参照)と、セクションプレート104と、アッパプレート103(図13を参照)を有している。ロアケース101は、積層方向に一様な断面形状を有しており、軽量で比熱が低い材料、例えばアルミニウム合金の押し出し加工などで作られる。ロアケース101は、ケース外壁部に複数の突起部が設けられており、表面積をより広く確保して放熱性の向上を図るようになっている。
 ロアケース101は、電池ブロック2を積層方向に沿って相対的に移動可能に支持する支持プレートとして、互いに平行に延在する一対のサイドプレート111と、これら一対のサイドプレート111の下端を連結するロアプレート112を有しており、断面が略コ字状を形成している。
 一対のサイドプレート111は、電池セル1の幅狭側面PNに対向する対向面111aを有し、ロアプレート112は、電池セル1の底面PBに対向する対向面112aを有しており、これらの対向面111a、112aによってケース内壁部が形成される。一対のサイドプレート111は、上端部から互いに接近する方向に突出して電池セル1の上面PUに対向する凸部113を有している。
 ロアケース101には、積層方向に沿って延在して冷媒が流通される冷却流路が設けられている。冷却流路は、ロアケース101のロアプレート112を積層方向に沿って貫通する貫通孔114によって形成されている。貫通孔114の両端には、雌ネジが螺設されており、配管継ぎ手115が取り付けられるようになっている。
 セクションプレート104は、ブロックケースに収容される複数の電池ブロック2の間に介在されて区画するものであり、積層方向一方側からロアケース101内に挿入され、予め設定された区画位置で、両側方と下方の3方向からネジを締結することによって一対のサイドプレート111とロアプレート112に固定される。
 サイドプレート111の対向面111aには、絶縁プレート105が取り付けられている。絶縁プレート105は、絶縁性の樹脂により構成されており、両面テープ106によってサイドプレート111に固定されている。絶縁プレート105は、電池セル1の幅狭側面PNとサイドプレート111との間に介在されて両者の間を絶縁しており、例えば車両衝突等によって電池モジュール100に変形を生ずるような大きな衝撃が加えられた場合に、ロアケース101のサイドプレート111が電池セル1に電気的に接続することがないように絶縁状態に保つことができる。
 ロアプレート112の対向面112aには、伝熱シート107が取り付けられている。伝熱シート107は、電池セル1の底面PBに当接して電池セル1の熱をロアプレート112に伝達できるようになっている。絶縁プレート105、伝熱シート107は、セクションプレート104を境にそれぞれ分離、独立しており、セクションプレート104によって区画されたセクション毎に設けられている。ロアケース101には、電池モジュール100を車両に取り付けるための取り付け穴が複数設けられている。
 図8は、ロアケースに電池ブロックを挿入した斜視図、図9は、図8の電池ブロック2の挿入方向を示す分解斜視図、図10は、図9の積層方向矢視図である。
 電池ブロック2は、付帯する部品を組み付けた状態のロアケース101の積層方向端部から挿入される。本実施の形態では、図9に示すように、セクションプレート104を境にして2つの電池ブロック2をロアケース101の積層方向両側からそれぞれ互いに接近する方向に移動させて挿入する。
 電池ブロック2は、ロアケース101の一対のサイドプレート111とロアプレート112に支持されて、電池セル1の積層方向に沿って移動される。電池ブロック2は、図10に示すように、ロアケース101内において、一対のアッパスペーサ3がサイドプレート111の対向面111aと凸部113との角部に当接し、かつ、一対のロアスペーサ4がサイドプレート111とロアプレート112との角部に当接しており、積層方向に直交する方向への移動が規制されて、積層方向にのみ移動される。
 電池ブロック2の挿入時、積層方向に直交する方向の電池ブロック2の寸法公差およびロアケース101の寸法公差は、アッパスペーサ3およびロアスペーサ4の両面テープ6、7のクッション性により吸収される。
 アッパスペーサ3およびロアスペーサ4の材料としてロアケース101に対して滑りやすい材料を選定し、また、伝熱シート107の材料として電池ブロックに対して滑りやすい材料を選定することで、電池ブロック2のロアケース101への挿入を円滑に行うことができる。
 電池ブロック2を挿入後、ロアケース101の両端にエンドプレート102を配置し、ネジ締結によってロアケース101に固定する。電池ブロック2は、エンドプレート102によって積層方向に押圧された状態で固縛される。エンドプレート102をロアケース101に締結する締結ボルトには、引っ張り方向の応力が作用する。挿入後、電池セル1の底面PBとロアケース101は、伝熱シート107を介して熱的に結合状態となる。
 上記した電池モジュール100によれば、図10の断面図に示すように、電池セル1の四角がアッパスペーサ3およびロアスペーサ4を介してロアケース101に固定されて位置が規制され、電池ブロック2を構成するそれぞれの電池セル1とロアケース101が一体化される。したがって、車両の振動や衝撃に対して電池セル1の動きを抑制することができる。
 そして、ロアケース101には貫通孔114が設けられて冷却流路が形成されているので、冷却流路として必要なパイプなどの部材や熱交換用のプレートなどの部材が不要となり、モジュールの軽量化、部品点数の削減が図れる。また、ロアケース101は、ケース外壁部に突起部を有しており、単純なプレート形状に比べて表面積が大きく、熱交換の効率に優れる。
 そして、ロアケース101は、その内部で電池ブロック2が積層方向に可動できる構造のため、エンドプレート102による積層方向の荷重を電池セル1のみに確実に伝達することが可能であり、複数の電池セル1それぞれにかかる荷重を均等にすることができる。また、エンドプレート102をロアケース101に締結する締結ボルトには、引っ張り方向の応力を作用させることができ、剪断応力が作用する場合と比較して、締結ボルトの耐久性を向上させることができる。
 図11は、基板ユニットの取付状態を示す斜視図、図12は、電池モジュールの分解斜視図である。
 互いに隣り合う電池セル1の正極外部端子13と負極外部端子14との間が複数のバスバー123によってそれぞれ電気的に接続される。各バスバー123は、基板ユニット122の基板接続端子122aに接続されている。基板ユニット122は、各電池セル1の電圧を測定する回路、コネクタ、ヒューズを有している。基板ユニット122の電池セル高さ方向上側には、絶縁カバー121に嵌合して各電池セル1の端子を覆う絶縁キャップ124が設けられている。
 図13は、ロアケース101にアッパプレート103を組み付けた状態を示す斜視図である。電池モジュール100は、ロアケース101にアッパプレート103をかぶせ、ネジで締結することにより完成する。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1 電池セル
 2 電池ブロック
 3 アッパスペーサ
 4 ロアスペーサ
 5 セル間スペーサ
 11 電池缶
 12 電池蓋
 13 正極外部端子
 14 負極外部端子
 15 注入口
 100 電池モジュール
 101 ロアケース
 102 エンドプレート
 103 アッパケース
 104 セクションプレート
 105 サイドプレート
 107 伝熱シート
 115 配管継ぎ手
 121 絶縁カバー
 122 基板ユニット
 122a 基板接続端子
 123 バスバー
 124 絶縁キャップ

Claims (6)

  1.  角形の電池セルを複数並べて積層させた電池ブロックを有する電池モジュールであって、
     前記複数の電池セルの間に介在される絶縁性のセル間スペーサと、
     該セル間スペーサの両面に設けられて前記セル間スペーサを介して互いに隣り合う一対の電池セルを前記セル間スペーサにそれぞれ固定する一対の両面テープと、
     を有することを特徴とする電池モジュール。
  2.  前記セル間スペーサは、該セル間スペーサの両面に凹部を有し、
     前記両面テープは、前記凹部に設けられていることを特徴とする請求項1に記載の電池モジュール。
  3.  前記電池ブロックを前記電池セルの積層方向に沿って相対的に移動させて挿入することによって収容可能なブロックケースと、
     該ブロックケースの電池ブロック挿入方向に沿って延在するケース内壁部と前記電池ブロックとの間に介在される絶縁性のケース間スペーサと、
     該ケース間スペーサを前記電池ブロックの前記電池セルに固定する両面テープと、
    を有することを特徴とする請求項2に記載の電池モジュール。
  4.  前記ブロックケースは、
     前記電池ブロックを前記電池セルの積層方向に沿って相対的に移動可能に支持する支持プレートと、
     該支持プレートの両端部にそれぞれ締結されて前記電池ブロックを前記電池セルの積層方向に押圧した状態に保持する一対のエンドプレートと、
     を有することを特徴とする請求項3に記載の電池モジュール。
  5.  前記支持プレートは、前記電池セルの積層方向に沿って延在して冷媒が流通される冷却流路を有することを特徴とする請求項4に記載の電池モジュール。
  6.  前記ケース間スペーサは、前記電池セルに対して該電池セルの積層方向に直交する方向の四隅に配置される一対のアッパスペーサと一対のロアスペーサを有することを特徴とする請求項3に記載の電池モジュール。
PCT/JP2013/066809 2013-06-19 2013-06-19 電池モジュール WO2014203342A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/897,974 US20160126514A1 (en) 2013-06-19 2013-06-19 Battery module
JP2015522411A JP6047234B2 (ja) 2013-06-19 2013-06-19 電池モジュール
PCT/JP2013/066809 WO2014203342A1 (ja) 2013-06-19 2013-06-19 電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066809 WO2014203342A1 (ja) 2013-06-19 2013-06-19 電池モジュール

Publications (1)

Publication Number Publication Date
WO2014203342A1 true WO2014203342A1 (ja) 2014-12-24

Family

ID=52104108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066809 WO2014203342A1 (ja) 2013-06-19 2013-06-19 電池モジュール

Country Status (3)

Country Link
US (1) US20160126514A1 (ja)
JP (1) JP6047234B2 (ja)
WO (1) WO2014203342A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201373A (ja) * 2014-04-09 2015-11-12 株式会社豊田自動織機 電池ユニットの製造方法、及び、電池ユニット
KR20160082074A (ko) * 2014-12-30 2016-07-08 에이치엘그린파워 주식회사 밀봉 구조를 갖는 배터리 팩 및 이의 제조 방법
CN106058112A (zh) * 2016-08-12 2016-10-26 东莞力朗电池科技有限公司 一种圆柱型电池模组
JP2017147201A (ja) * 2016-02-19 2017-08-24 株式会社Gsユアサ 蓄電装置、蓄電装置の製造方法、及び蓄電装置用の隣接部材の製造方法
CN107394068A (zh) * 2016-02-19 2017-11-24 株式会社杰士汤浅国际 蓄电装置以及该蓄电装置的制造方法
WO2018155081A1 (ja) * 2017-02-24 2018-08-30 日立オートモティブシステムズ株式会社 電池モジュール
US10290851B2 (en) 2016-02-19 2019-05-14 Gs Yuasa International Ltd. Energy storage apparatus
JP2019106283A (ja) * 2017-12-12 2019-06-27 本田技研工業株式会社 車両用バッテリユニット
JP2019169270A (ja) * 2018-03-22 2019-10-03 本田技研工業株式会社 電池パックの製造方法及び電池パック
WO2019190385A1 (en) * 2018-03-29 2019-10-03 Alelion Energy Systems Ab Battery module
JP2019169387A (ja) * 2018-03-23 2019-10-03 株式会社Gsユアサ 蓄電装置
JP2022520353A (ja) * 2019-11-13 2022-03-30 エルジー エナジー ソリューション リミテッド 電池モジュールおよびこれを含む電池パック
JP2022533851A (ja) * 2020-04-13 2022-07-26 エルジー エナジー ソリューション リミテッド 電池モジュールおよびその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210744A1 (de) * 2017-06-27 2018-12-27 Bayerische Motoren Werke Aktiengesellschaft Elektrochemische Batteriezelle für ein Batteriemodul und Verfahren zur Herstellung einer Batteriezelle sowie Batteriemodul
DE102018202263A1 (de) * 2018-02-14 2019-08-14 Conti Temic Microelectronic Gmbh Batterie für ein Kraftfahrzeug
KR102325438B1 (ko) * 2018-04-25 2021-11-10 주식회사 엘지에너지솔루션 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
EP3813152A4 (en) * 2018-06-22 2022-04-20 Vehicle Energy Japan Inc. SECONDARY BATTERY MODULE
US10797279B2 (en) * 2018-06-28 2020-10-06 Caterpillar Inc. Battery housing systems
FR3087946B1 (fr) * 2018-10-31 2022-01-28 Valeo Systemes Thermiques Module de stockage d’energie electrique
DE102018221541A1 (de) * 2018-12-12 2020-06-18 Robert Bosch Gmbh Batteriemodul aufweisend eine Mehrzahl an Batteriezellen
CN110212134A (zh) * 2019-06-27 2019-09-06 蜂巢能源科技有限公司 电池包的电池模块
DE102019119869B4 (de) * 2019-07-23 2021-03-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul einer Kraftfahrzeugbatterie und Verfahren zur Herstellung eines solchen Batteriemoduls
DE102019211253A1 (de) * 2019-07-29 2021-02-04 Elringklinger Ag Galvanische Zellen und Batteriemodule
CN110767858B (zh) * 2019-11-04 2022-11-22 华霆(合肥)动力技术有限公司 电池包及电动车
CN113381058B (zh) * 2021-06-09 2023-10-31 珠海冠宇电池股份有限公司 一种锂离子电池
CN113964422A (zh) * 2021-10-18 2022-01-21 汉光热工科创中心(深圳)有限公司 一种电池壳体和方壳电池
CN114069093A (zh) * 2021-10-19 2022-02-18 汉光热工科创中心(深圳)有限公司 一种电池包和储能系统
CN114256549B (zh) * 2021-12-20 2023-04-14 厦门海辰储能科技股份有限公司 电池模组和储能设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066322A (ja) * 2004-08-30 2006-03-09 Shin Kobe Electric Mach Co Ltd 組電池及びモジュール電池
JP2012212604A (ja) * 2011-03-31 2012-11-01 Nec Energy Devices Ltd 電池パック
JP2012256521A (ja) * 2011-06-09 2012-12-27 Sony Corp バッテリモジュール、電子機器、電力システムおよび電動車両
JP2013025982A (ja) * 2011-07-20 2013-02-04 Sanyo Electric Co Ltd 電源装置及び電源装置を備える車両
JP2013058498A (ja) * 2012-12-25 2013-03-28 Toshiba Corp 組電池の電池パック
JP2013073914A (ja) * 2011-09-29 2013-04-22 Lithium Energy Japan:Kk 組電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066322A (ja) * 2004-08-30 2006-03-09 Shin Kobe Electric Mach Co Ltd 組電池及びモジュール電池
JP2012212604A (ja) * 2011-03-31 2012-11-01 Nec Energy Devices Ltd 電池パック
JP2012256521A (ja) * 2011-06-09 2012-12-27 Sony Corp バッテリモジュール、電子機器、電力システムおよび電動車両
JP2013025982A (ja) * 2011-07-20 2013-02-04 Sanyo Electric Co Ltd 電源装置及び電源装置を備える車両
JP2013073914A (ja) * 2011-09-29 2013-04-22 Lithium Energy Japan:Kk 組電池
JP2013058498A (ja) * 2012-12-25 2013-03-28 Toshiba Corp 組電池の電池パック

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201373A (ja) * 2014-04-09 2015-11-12 株式会社豊田自動織機 電池ユニットの製造方法、及び、電池ユニット
KR20160082074A (ko) * 2014-12-30 2016-07-08 에이치엘그린파워 주식회사 밀봉 구조를 갖는 배터리 팩 및 이의 제조 방법
KR102277562B1 (ko) * 2014-12-30 2021-07-14 에이치엘그린파워 주식회사 밀봉 구조를 갖는 배터리 팩 및 이의 제조 방법
US10263227B2 (en) 2016-02-19 2019-04-16 Gs Yuasa International Ltd. Energy storage apparatus and method for manufacturing the same
CN107394068A (zh) * 2016-02-19 2017-11-24 株式会社杰士汤浅国际 蓄电装置以及该蓄电装置的制造方法
CN107394068B (zh) * 2016-02-19 2021-06-15 株式会社杰士汤浅国际 蓄电装置以及该蓄电装置的制造方法
US10290851B2 (en) 2016-02-19 2019-05-14 Gs Yuasa International Ltd. Energy storage apparatus
JP2017147201A (ja) * 2016-02-19 2017-08-24 株式会社Gsユアサ 蓄電装置、蓄電装置の製造方法、及び蓄電装置用の隣接部材の製造方法
CN106058112B (zh) * 2016-08-12 2023-12-01 东莞力朗电池科技有限公司 一种圆柱型电池模组
CN106058112A (zh) * 2016-08-12 2016-10-26 东莞力朗电池科技有限公司 一种圆柱型电池模组
WO2018155081A1 (ja) * 2017-02-24 2018-08-30 日立オートモティブシステムズ株式会社 電池モジュール
JPWO2018155081A1 (ja) * 2017-02-24 2019-06-27 日立オートモティブシステムズ株式会社 電池モジュール
JP2019106283A (ja) * 2017-12-12 2019-06-27 本田技研工業株式会社 車両用バッテリユニット
JP2019169270A (ja) * 2018-03-22 2019-10-03 本田技研工業株式会社 電池パックの製造方法及び電池パック
JP7018340B2 (ja) 2018-03-22 2022-02-10 本田技研工業株式会社 電池パックの製造方法及び電池パック
JP2019169387A (ja) * 2018-03-23 2019-10-03 株式会社Gsユアサ 蓄電装置
JP7187793B2 (ja) 2018-03-23 2022-12-13 株式会社Gsユアサ 蓄電装置
WO2019190385A1 (en) * 2018-03-29 2019-10-03 Alelion Energy Systems Ab Battery module
JP2022520353A (ja) * 2019-11-13 2022-03-30 エルジー エナジー ソリューション リミテッド 電池モジュールおよびこれを含む電池パック
JP7229589B2 (ja) 2019-11-13 2023-02-28 エルジー エナジー ソリューション リミテッド 電池モジュールおよびこれを含む電池パック
JP2022533851A (ja) * 2020-04-13 2022-07-26 エルジー エナジー ソリューション リミテッド 電池モジュールおよびその製造方法
JP7195690B2 (ja) 2020-04-13 2022-12-26 エルジー エナジー ソリューション リミテッド 電池モジュールおよびその製造方法

Also Published As

Publication number Publication date
US20160126514A1 (en) 2016-05-05
JPWO2014203342A1 (ja) 2017-02-23
JP6047234B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6047234B2 (ja) 電池モジュール
JP6494754B2 (ja) 電池モジュール
CN108615842B (zh) 电池组件
US10586952B2 (en) Battery module comprising cartridge having gripping part
JP4974578B2 (ja) パック電池
CN108780861B (zh) 电源装置
JP5272629B2 (ja) 組電池構造体の製造方法
US11056747B2 (en) Battery module
JP6063933B2 (ja) 再充電可能電気バッテリ
JP6279948B2 (ja) バッテリシステムの製造方法とこの方法で製造されるバッテリシステム
JP2012014962A (ja) 組電池
WO2019049760A1 (ja) 電池モジュール
WO2018155506A1 (ja) 電池モジュール
WO2018062226A1 (ja) 電池モジュール、及び電池パック
US9985256B2 (en) Energy storage apparatus, method for manufacturing the same and method for manufacturing adjacent member for energy storage apparatus
JP2017126531A (ja) 組電池
JP6469768B2 (ja) 電池モジュール
JP2013026191A (ja) 電源装置
JP2017126537A (ja) 組電池
WO2020105502A1 (ja) 蓄電モジュール
WO2021153523A1 (ja) 蓄電モジュール
CN115775945A (zh) 蓄电装置
JP2014022238A (ja) 電池パック
JP6744101B2 (ja) 組電池
JP2015191770A (ja) セルホルダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887509

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522411

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897974

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887509

Country of ref document: EP

Kind code of ref document: A1