WO2014201938A1 - 柔性啮合无级变速箱 - Google Patents

柔性啮合无级变速箱 Download PDF

Info

Publication number
WO2014201938A1
WO2014201938A1 PCT/CN2014/078330 CN2014078330W WO2014201938A1 WO 2014201938 A1 WO2014201938 A1 WO 2014201938A1 CN 2014078330 W CN2014078330 W CN 2014078330W WO 2014201938 A1 WO2014201938 A1 WO 2014201938A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
sprocket
output shaft
shaped
input shaft
Prior art date
Application number
PCT/CN2014/078330
Other languages
English (en)
French (fr)
Inventor
徐宇
Original Assignee
Xu Yu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xu Yu filed Critical Xu Yu
Priority to EP14812915.8A priority Critical patent/EP3012486B1/en
Priority to US14/898,558 priority patent/US10006525B2/en
Publication of WO2014201938A1 publication Critical patent/WO2014201938A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H9/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members
    • F16H9/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion
    • F16H9/24Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by endless flexible members without members having orbital motion using chains or toothed belts, belts in the form of links; Chains or belts specially adapted to such gearing

Definitions

  • the present invention relates to a shifting device in a power transmission process, and more particularly to a shifting portion of an automobile or a motorcycle engine after outputting power. Background technique
  • the automatic gearbox has the characteristics of large output torque, but it has the disadvantages of complicated structure, high maintenance cost, high fuel consumption, gear position shock during driving, and poor comfort.
  • the current CVT continuously variable transmission, CVT continuously variable transmission is mainly made of steel belt (or steel chain) friction cone wheel type continuously variable transmission, which passes through a steel belt (or steel chain) and two A friction cone that can change the diameter to change the output of the power speed. It has the advantages of smooth power output, no shift shock and low fuel consumption.
  • the maximum output gear ratio is 6.25 times, the maximum transmission torque is 1000 N/M or more, the torque can be increased, the energy consumption loss is almost unchanged, but the volume is slightly increased.
  • the shifting principle of the technical solution of the present invention is:
  • the shifting transmission is driven by the toothed chain and the segmented flexible sprocket, and there are five equal-tooth pitch T-shaped grooves on the input and output conical drum surfaces, which are arranged in parallel respectively.
  • the five segmented input and output flexible T-shaped sprocket blocks slidingly fit in the T-shaped groove form a flexible sprocket of the same pitch, while the toothed chain and the segmented flexible sprocket are changed in the input shaft and the output shaft cone.
  • the different meshing diameter positions of the five equal-tooth pitch T-shaped grooves on the drum surface do not change the inter-tooth pitch of the segmented flexible sprocket, so that it can be matched with the fixed pitch toothed chain. change.
  • the meshing linear velocity of the segmented flexible sprocket and the toothed chain will change correspondingly due to the meshing diameter of the input shaft and the output shaft conical roller.
  • the diameter is large and the linear velocity is large, and the diameter is large.
  • the small line speed is small, so that the output spindle speed changes, so as to achieve the output speed that needs to be set.
  • the technical solution adopted by the present invention to solve the technical problem is: the power is rotated by the input shaft conical drum, and the five-section input flexibility of the input shaft conical roller surface is slidably fitted in five T-shaped grooves with equal pitches.
  • the sprocket rotates to drive the toothed chain drive meshed with it by the segmented flexible sprocket, and then the toothed chain drives five segments that are slidingly fitted in the five equal-tooth pitch T-shaped grooves on the output conical roller surface.
  • the output flexible sprocket rotates, and the five segmented output flexible sprocket and the output shaft conical drum surface are connected by five equal-tooth pitch T-shaped grooves, thereby driving the output shaft conical drum to rotate and output power.
  • the adjustment of the rotational speed is mainly to adjust the position and distance between the different diameters of the conical drum by the screw rod adjustment.
  • the flexible sprocket is conical on the input shaft.
  • Speed adjust the segmented flexible sprocket to slide at different meshing diameter positions on the conical roller surface, and the corresponding set speed can be obtained.
  • the two conical drums of the input shaft and the output shaft have the same diameter and taper, and are arranged in the forward and reverse directions in the gearbox, so that the meshing center distance can always remain unchanged, thus ensuring the toothed chain during the shift adjustment process.
  • the perimeter remains the same.
  • the input shaft is mounted on the transmission case, and the servo motor rotates by driving the sun gear, and then drives the planetary wheel with which it cooperates , the planetary gear and the speed adjustment screw are connected by a fixed key, the speed
  • the adjusting screw rods are distributed around the surface of the conical drum in an umbrella shape, and the rotation speed adjusting screw drives the rotation speed adjusting nut roller to linearly move along the axial direction of the screw rod, and the groove of the rotation speed adjusting nut roller half surrounds the toothed chain and the flexible sprocket
  • the tooth surface thereby driving the toothed chain and the flexible sprocket to move linearly together, thereby changing the different meshing of the segmented flexible sprocket sliding in the five equal-tooth pitch T-shaped grooves on the input shaft and the output shaft conical roller surface
  • the diameter position finally makes the meshing linear velocity of the segmented flexible sprocket and the
  • the beneficial effects of the present invention are: while retaining the ordinary conventional gear meshing gearbox capable of transmitting large torque, the utility model has the advantages of smooth torque output, no impact, fuel economy, and the like, and has a simple structure.
  • FIG. 1 is a front elevational view showing a high speed operation in the A-A direction of the present invention.
  • Fig. 2 is a cross-sectional view showing the present invention in a low speed operation in the B-B direction.
  • Fig. 3 is a cross-sectional view showing the middle portion of the C-C direction at the time of constant speed operation.
  • Fig. 4 is a plan view showing the H-H of the present invention at a high speed operation, and is a plan view of the axial speed governing actuator at the time of high speed operation of the present invention.
  • Fig. 5 is a plan view showing the L-L at a low speed operation of the present invention, and is a plan view of the axial speed governing actuator at the time of low speed operation of the present invention.
  • Fig. 6 is a plan view showing the M-M mid-section constant-speed operation of the present invention, and is a plan view of the axial speed-regulating actuator in the middle-stage constant-speed operation of the present invention.
  • Fig. 7 is a cross-sectional view showing the high-speed operation in the A-A direction of the present invention.
  • Fig. 8 is a cross-sectional view showing the present invention in a low speed operation in the B-B direction.
  • Fig. 9 is a cross-sectional view showing the middle portion of the C-C direction of the present invention at the same speed.
  • Figure 10 is a right side cross-sectional view taken along the line D-D of the present invention.
  • Fig. 1 is a left sectional view taken along the line E-E of the present invention.
  • Figure 12 is a cross-sectional view showing the actuator of the F-F direction active planetary gear speed governing mechanism of the present invention.
  • Figure 13 is a cross-sectional view showing the GG direction driven planetary gear speed governing mechanism of the present invention.
  • Figure 4 (1) Power input shaft conical drum. (2) Segmented flexible input sprocket consisting of T-shaped sprocket blocks. (3) Toothed chain. (4) Segmented flexible output sprocket consisting of T-shaped sprocket blocks. (5) Power output shaft conical drum.
  • FIG. 5 Input shaft toothed chain speed adjustment roller. (7) Input shaft speed adjustment screw. (8) Speed servo motor. (9) Input shaft speed control sun gear. (10) Input shaft speed control planetary gears. (11) Input shaft output shaft shared speed adjustment screw. (12) Speed adjustment screw guide post. (13) The toothed chain input shaft and output shaft share the speed adjustment nut roller. (14) Input shaft speed control planetary gears. (15) Output shaft speed control sun gear. (16) Input shaft speed adjustment screw. (17) Toothed chain speed Output adjustment nut roller.
  • Embodiment A flexible meshing continuously variable transmission, as shown in the accompanying drawings.
  • segmented flexible input sprocket 2 consisting of power input shaft conical drum 1 ⁇ T-shaped sprocket block ⁇ toothed chain 3 ⁇ segmented sprocket block consisting of segmented flexible output sprocket 4 ⁇ Power output shaft conical drum 5
  • the five-section input flexible sprocket 2 that slides on the conical roller surface of the input shaft and fits in the five equal-tooth pitch-shaped grooves is rotated.
  • the segmented flexible sprocket drives the toothed chain 3 with its meshing drive, and then drives the segmented output flexible sprocket 4 which is slidingly fitted in the five equal-tooth pitch grooves on the output shaft conical roller surface.
  • the five segmented output flexible sprockets are connected with five equal-tooth pitch grooving grooves on the surface of the output shaft conical drum 5, thereby driving the output shaft conical drum 5 to rotate and output power.
  • the output shaft end speed adjustment process is as follows: Input and output shaft common speed adjustment screw 1 1 ⁇ Common speed adjustment lead screw output shaft speed adjustment planetary wheel 14 ⁇ Output shaft speed adjustment sun gear 1 5 ⁇ the remaining 3 output shaft speeds Adjusting the planetary gear 14 ⁇ 3 output shaft speed adjustment screw 16 ⁇ 3 toothed chain speed output adjustment nut roller 17 and 1 toothed chain input shaft output shaft shared speed on 4 speed adjustment screw guide columns 12 Adjust the nut roller 13 ⁇ toothed chain 3.
  • the T-shaped toothed chain anti-skid tensioning block 18 prevents the toothed chain from following the conical roll When the surface of the cylinder rotates, it slides loosely, which acts as a non-slip tensioning toothed chain.
  • the ⁇ -shaped flexible sprocket block anti-skid positioning mechanism 19 can function as a toothed chain 3 and a segmented T-shaped flexible sprocket block to follow the rotation of the conical drum surface to the separated arc segment, preventing the toothed chain 3 And the segmented T-shaped flexible sprocket block slides loosely in the five equal-tooth pitch T-shaped grooves on the conical roller surface.
  • Fig. 1 1 Conical tooth chain symmetrical tension balance block 20 and conical tooth chain tension balance block 2 1 pair of teeth
  • the chain 3 acts as a tensioning force.
  • the power input shaft conical drum 1 and the power output shaft conical drum 5 function to adjust the dynamic balance when rotating.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Transmission Devices (AREA)

Abstract

一种柔性啮合无级变速箱,包括:动力传动机构,动力通过输入轴圆锥形滚筒(1)旋转,带动输入轴圆锥形滚筒(1)面上滑动配合在5条等间距T形槽内的5块分段式输入柔性链轮(2)转动,然后分段式输入柔性链轮(2)带动与其啮合的齿形链(3)传动,再带动5块滑动配合在输出轴圆锥形滚筒(5)面上5条等间距T形槽内的分段式输出柔性链轮(4)转动,5块分段式输出柔性链轮(4)带动输出轴圆锥形滚筒(5)旋转输出动力;变速机构,转速的凋节是利用转速调整丝杠(11)转动,带动与其配合的调整螺母滚轮(17)作直线运动,调整螺母滚轮(17)再带动齿形链(3)和分段式柔性链轮在输入轴和输出轴圆锥形滚筒面上不同的啮合直径位置平移,得到不同的转速,以此来达到输出轴圆锥形滚筒(5)需要的转速。

Description

柔性啮合无级变速箱
技术领域
本发明涉及动力传递过程中的变速装置, 尤其涉及汽车、 摩托车发动 机输出动力后的变速部分。 背景技术
目前, 汽车摩托车等内燃机上所有的自动变速箱按变速类型可分为自 动档位变速和自动无级变速两大类。 自动档位变速箱具有输出扭矩大的特 点, 但却有结构复杂, 维护成本高, 油耗大, 行驶过程中具有档位冲击, 舒适感欠佳等缺点。而现在的自动连续可变无级变速箱即 CVT无级变速箱 主要以钢带 (或钢链) 摩擦锥轮式无级变速箱为主, 它通过一根钢带 (或 钢链) 和两个可以改变直径大小的摩擦锥轮来改变动力速度的输出。 它具 有动力输出平滑, 无换档冲击, 油耗低的优点。 但是因为其原理是靠钢带 (或链条) 和锥轮之间的摩擦力来传递动力的输出, 所以钢带和锥盘之间 的摩擦力的控制需要充分平衡动力传动效率和压紧力之间的比例关系, 压 紧力大时, 摩擦力就大, 那么传递的扭矩也大, 但同时传动效率就降低, 因而输出扭矩基本小于 300N/M。 特别是在 200 N/M 以上的大扭矩输出区 域, 扭矩损耗巨大, 所以在汽车启动及上坡时容易丢转及溜坡。 这也是目 前 CVT无级变速箱始终无法广泛推广的主要原因。 所以 CVT无级变速箱 一般多用于微型车及小型车上。 发明内容
本发明的发明目的是提供一种全新结构的柔性分段式齿形链轮无级变 速箱, 以克服现有 CVT无级变速箱无法输出大扭矩的缺点。 它不但具有普 通常规齿轮变速箱传输扭矩大、 能耗损失小的特点, 又具有扭矩输出平滑、 无冲击、结构简单的优点。最大输出变速比为 6.25倍,最大传输扭矩为 1000 N/M以上, 扭矩还可以增加, 能耗损失几乎不变, 但体积略有增加。 本发明的技术方案的变速原理是: 变速传动是由齿形链和分段式柔性 链轮啮合进行传动,在输入和输出圆锥形滚筒面上有 5条等齿间距 T形槽, 分别并行排列在 T形槽内滑动配合的 5块分段式输入和输出柔性 T形链轮 块组成同齿距的柔性链轮, 而改变齿形链和分段式柔性链轮在输入轴和输 出轴圆锥形滚筒面上 5条等齿间距的 T形槽中不同的啮合直径位置, 也不 会改变分段式柔性链轮的齿间节距, 从而就可以和固定节距齿形链配合传 动保持不变。 在输入转速保持相同状态下, 分段式柔性链轮与齿形链的啮 合线速度的大小会因为输入轴和输出轴圆锥形滚筒的啮合直径的大小而相 应改变, 直径大线速度大, 直径小线速度小, 从而使输出主轴转速产生变 化, 以此达到需要设定的输出转速。
本发明解决其技术问题所采取的技术方案是: 动力通过输入轴圆锥形 滚筒旋转, 带动输入轴圆锥形滚筒面上滑动配合在 5条等齿间距 T形槽内 的 5 块分段式输入柔性链轮转动, 从而通过分段式柔性链轮带动与其啮合 的齿形链传动, 然后齿形链又带动 5 块滑动配合在输出圆锥形滚筒面上 5 条等齿间距 T 形槽内的分段式输出柔性链轮进行转动, 5 块分段式输出柔 性链轮与输出轴圆锥形滚筒面通过 5条等齿间距 T形槽连接, 因而带动输 出轴圆锥形滚筒旋转输出动力。 转速的调节主要是利用丝杆调整与其配合 的螺母滚轮在圆锥形滚筒不同直径之间的位置和距离来调速, 在输入轴转 速固定时, 当分段式输入柔性链轮在输入轴圆锥形滚筒面上 5 条等齿间距 T 形槽内的某一啮合直径位置时, 输入轴圆锥形滚筒面上直径大的筒面上 得到大的线速度, 反之直径小的筒面上得到小的线速度, 调节分段式柔性 链轮滑动在圆锥形滚筒面上不同的啮合直径位置, 就可以得到相应的设定 转速。 而输入轴和输出轴 2个圆锥形滚筒的直径和锥度相等, 在变速箱内 正反向布局, 因而啮合中心距能始终保持不变, 所以也就保证了齿形链在 变速调节过程中的周长始终保持不变。
分段式柔性链轮在圆锥形滚筒面上不同的啮合直径位置的调节: 输入 轴是装配在变速箱箱体上转动的, 而伺服电机通过带动太阳轮转动, 再带 动与其配合的行星轮转动, 行星轮和转速调整丝杆通过固定键连接, 转速 调整丝杆分别呈伞状环绕分布于圆锥形滚筒表面, 转速调整丝杆带动转速 调整螺母滚轮沿丝杆轴向作直线移动, 转速调整螺母滚轮的凹槽半包围住 齿形链和柔性链轮齿面, 从而带动齿形链和柔性链轮一起作直线移动, 从 而达到改变分段式柔性链轮滑动在输入轴和输出轴圆锥形滚筒面上 5 条等 齿间距 T形槽中不同的啮合直径位置, 最终使分段式柔性链轮与齿形链的 啮合线速度变大或变小, 直径大线速度大, 直径小线速度小, 从而使输出 主轴转速产生变化, 以此达到需要设定的输出转速。
由于上述技术方案运用, 本发明的有益效果是: 在保留了普通常规齿 轮啮合变速箱能够传递大扭矩的同时, 又具有扭矩输出平滑、 无冲击、 省 油等优点, 而且结构简单。 附图说明
图 1是本发明 A-A方向高速运转时的主视图。
图 2是本发明 B-B方向低速运转时的剖视图。
图 3是本发明 C-C方向中段等速运转时的剖视图。
图 4是本发明 H-H高速运转时的俯视图, 也是本发明高速运转时的轴 向调速执行机构俯视图。
图 5是本发明 L-L低速运转时的俯视图, 也是本发明低速运转时的轴 向调速执行机构俯视图。
图 6是本发明 M-M中段等速运转时的俯视图,也是本发明中段等速运 转时的轴向调速执行机构俯视图。
图 7是本发明 A-A方向高速运转时的剖面图。
图 8是本发明 B-B方向低速运转时的剖面图。
图 9是本发明 C-C方向中段等速运转时的剖面图。
图 10是本发明 D-D方向右剖视图。
图 1 1是本发明 E-E方向左剖视图。
图 12是本发明 F-F方向主动行星轮调速执行机构剖视图。
图 13是本发明 G-G方向从动行星轮调速执行机构剖视图。 图 4 中: ( 1) 动力输入轴圆锥形滚筒。 (2) T形链轮块组成的分段式 柔性输入链轮。 (3) 齿形链。 (4) T形链轮块组成的分段式柔性输出链轮。 (5) 动力输出轴圆锥形滚筒。
图 5 中: (6) 输入轴齿形链转速调整滚轮。 (7) 输入轴转速调整丝杠。 (8) 调速伺服电机。 (9) 输入轴调速太阳轮。 ( 10) 输入轴调速行星轮。 ( 11) 输入轴输出轴共用转速调整丝杠。 ( 12) 转速调整丝杆导柱。 ( 13) 齿形链输入轴和输出轴共用转速调整螺母滚轮。 ( 14) 输入轴调速行星轮。 ( 15) 输出轴调速太阳轮。 ( 16) 输入轴转速调整丝杠。 ( 17) 齿形链转速 输出调整螺母滚轮。
图 7 中: ( 18) T形齿形链防滑张紧块。 (19) T形柔性链轮块防滑定 位机构。
图 11 中: (20) 圆锥形齿形链对称张紧平衡块。 (21) 圆锥形齿形链张 紧平衡块。 具体实施方式
下面结合附图及实施例对本发明作进 步描述:
实施例: 一种柔性啮合无级变速箱, 参见附图所示。
一、 变速箱动力输入输出依次传递过程:
在图 4中:动力输入轴圆锥形滚筒 1→T形链轮块组成的分段式柔性输 入链轮 2→齿形链 3→Τ形链轮块组成的分段式柔性输出链轮 4→动力输出 轴圆锥形滚筒 5
在动力传递过程中, 动力通过输入轴圆锥形滚筒 1旋转时, 带动输入 轴圆锥形滚筒面上滑动配合在 5条等齿间距 Τ形槽内的 5块分段式输入柔 性链轮 2转动, 然后分段式柔性链轮带动与其啮合的齿形链 3传动, 再带 动 5块滑动配合在输出轴圆锥形滚筒面上 5条等齿间距 Τ形槽内的分段式 输出柔性链轮 4进行转动, 5块分段式输出柔性链轮与输出轴圆锥形滚筒 5 面上 5条等齿间距 Τ形槽连接, 因而带动输出轴圆锥形滚筒 5旋转输出动 力。 二、 变速箱转速调整执行机构零部件的依次传递过程- 在图 5 中- 输入轴端调速过程为:转速调整伺服电机 8→输入轴转速调整太阳轮 9 →4个输入轴转速调整行星轮 10→3根输入轴转速调整丝杠 7和 1 根输入 输出轴共用转速调整丝杠 1 1→在 4根转速调整丝杆导柱 12上的 3个齿形 链转速输入调整螺母滚轮 6和 1个齿形链输入轴输出轴共用转速调整螺母 滚轮 13→齿形链 3。
输出轴端调速过程为: 输入输出轴共用的转速调整丝杠 1 1→共用转速 调整丝杠上的输出轴转速调整行星轮 14→输出轴转速调整太阳轮 1 5→其 余 3个输出轴转速调整行星轮 14→3根输出轴转速调整丝杠 16→在 4根转 速调整丝杆导柱 12上的 3个齿形链转速输出调整螺母滚轮 17和 1个齿形 链输入轴输出轴共用转速调整螺母滚轮 13→齿形链 3。
当转速调整伺服电机 8旋转时, 带动输入轴转速调整太阳轮 9转动, 再带动 4个输入轴转速调整行星轮 10旋转,再带动键槽配合在行星轮上的 3根输入轴转速调整丝杠 7和 1根输入输出轴共用转速调整丝杠 1 1转动, 最后使 3个齿形链转速输入调整螺母滚轮 6和 1个齿形链输入轴输出轴共 用转速调整螺母滚轮 13在 4根转速调整丝杆导柱 12上移动, 以此来改变 齿形链 3在动力输入轴圆锥形滚筒 1 上不同的旋转直径位置而改变齿形链 3 传动速度的快慢, 也就是通过改变动力输入轴圆锥形滚筒 1 和动力输出 轴圆锥形滚筒 5上分段式柔性链轮和齿形链的啮合直径位置, 最终达到改 变转速的目的。 当齿形链 3和转速调整螺母滚轮沿转速调整丝杠和导柱移 动到图 1、 4、 7 的位置时, 本变速箱输出最高转速。 当齿形链和转速调整 螺母滚轮沿转速调整丝杠和导柱移动到图 2、 5、 8 的位置时, 本变速箱输 出最低转速。 当齿形链和转速调整螺母滚轮沿转速调整丝杠和导柱移动到 图 3、 6、 9的位置时, 本变速箱输入输出转速相同。
三、 齿形链和分段式 T形柔性链轮块的滑动轨道以及防滑张紧定位机 构- 在图 7 中: T形齿形链防滑张紧块 18可以防止齿形链在跟随圆锥形滚 筒表面转动时滑动松脱, 起到防滑张紧齿形链的作用。 τ 形柔性链轮块防 滑定位机构 19可以起到齿形链 3和分段式 T形柔性链轮块在跟随圆锥形滚 筒表面旋转到经过分离圆弧段时定位的作用, 防止齿形链 3和分段式 T形 柔性链轮块在圆锥形滚筒面上 5条等齿间距 T形槽内滑动松脱。
四、 动力输入轴和输出轴圆锥形滚筒旋转时的动平衡调节机构: 在图 1 1 中: 圆锥形齿形链对称张紧平衡块 20和圆锥形齿形链张紧平 衡块 2 1对齿形链 3起到张紧作用。对动力输入轴圆锥形滚筒 1和动力输出 轴圆锥形滚筒 5在旋转时起到调节动平衡的作用。

Claims

权 利 要 求 书
1 . 一种柔性啮合无级变速箱, 其特征是: 其结构由动力输入轴圆锥形 滚筒→分段式输入柔性链轮→齿形链→分段式输出柔性链轮→动力输出轴 圆锥形滚筒顺序传动连接构成, 动力输入轴圆锥形滚筒旋转时, 带动 5块滑 动配合在圆锥形滚筒面上 5 条等齿间距 T 形槽内的分段式输入柔性链轮转 动, 然后分段式输入柔性链轮带动与其啮合的齿形链传动, 从而带动 5块滑 动配合在输出轴圆锥形滚筒面上 5条等齿间距 T形槽内的分段式输出柔性链 轮进行转动, 5块分段式输出柔性链轮与输出轴圆锥形滚筒面通过 5条等齿 间距滑动 T形槽连接, 因而又带动输出轴圆锥形滚筒旋转输出动力。
2. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: 变速传动 是由齿形链和分段式柔性链轮啮合进行传动, 分别有 5块分段式 T形链轮块 组成同齿距的分段式柔性链轮, 在输入轴和输出轴圆锥形滚筒面上 5条等齿 间距 T形槽中滑动, 分段式柔性链轮滑动在圆锥形滚筒面上不同的啮合直径 位置,可以使柔性链轮与齿形链的啮合线速度变大或变小,直径大线速度大, 直径小线速度小, 从而使输出轴转速产生变化。
3. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: 输入和输 出柔性链轮分别是由 5块分段式 T形链轮块组成开放式链轮, T形链轮块上 部有同齿距的链轮齿, T形链轮块之间的距离也等于齿距, 可与齿形链啮合 传动, 下部有 T形块可在输入轴或输出轴圆锥形滚筒面上的 T形槽内滑动, 从而形成分段式柔性链轮。
4. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: 分段式 T 形柔性链轮滑动轨道是由在输入轴和输出轴圆锥形滚筒面上分别有 5条在不 同直径位置槽齿间距始终相等的 T形槽, T形槽尺寸与 T形链轮块下部的 T 形嵌入块尺寸滑动相配, T形槽的滑动方向由圆锥形滚筒面上各处的 (或啮 合线速度的) 直径决定。
5. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: 分段式 T 形柔性链轮块防滑定位机构是由 2 块相同的 T 形板相对由销钉紧固连接组 成, T形板下部的圆孔套在齿形链输入轴和输出轴共用的转速调整螺母滚轮 上, T形板上部的 2个腰形圆弧孔分别套在齿形链输入轴转速调整螺母滚轮 上和套在齿形链输出轴转速调整螺母滚轮上。
6. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: 齿形链的 防滑张紧定位机构是由 2块 T形齿形链防滑张紧块分别在输入轴和输出轴圆 锥形滚筒面上各自的 1条直线 T形槽内滑动构成。
7. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: T 形链轮 块上部有同齿距的链轮齿, 链轮齿与输入轴或输出轴圆锥形滚筒中心线平 行, 与齿形链啮合传动。 下部的 τ形块与圆锥形滚筒面上的 T形槽形状尺寸 滑动相配。
8. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: 动力输入 轴和输出轴圆锥形滚筒旋转时的动平衡调节机构是由紧固在各自圆锥形滚 筒面上 4条直线平衡槽内的 2块圆锥弧形齿形链对称张紧平衡块和 2块圆锥 弧形齿形链张紧平衡块组成。
9. 根据权利要求 1 所述的柔性啮合无级变速箱, 其特征是: 动力输入 轴和输出轴圆锥形滚筒是 2个直径和锥度相同的圆锥台, 在变速箱内正反向 布局, 动力输入轴和输出轴圆锥形滚筒面上分别有 5条在不同直径位置始终 等距的 T形槽、 1条 T形齿形链防滑张紧块直线 T形槽和 4条紧固平衡块直 线 T形槽共十条 T形槽构成。
10. 根据权利要求 1所述的柔性啮合无级变速箱, 其特征是: 变速箱转 速调整执行机构是由转速调整伺服电机带动转速调整太阳轮, 再带动与太阳 轮啮合的输入轴和输出轴转速调整行星轮转动, 然后通过固定键带动输入轴 和输出轴转速调整丝杠转动, 再带动转速调整丝杆导柱上的输入轴和输出轴 转速调整螺母滚轮作直线运动, 最后带动齿形链和分段式柔性链轮在输入轴 和输出轴圆锥形滚筒面上不同的啮合直径位置平移, 以此来达到输出轴转速 的调整。
PCT/CN2014/078330 2013-06-17 2014-05-23 柔性啮合无级变速箱 WO2014201938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14812915.8A EP3012486B1 (en) 2013-06-17 2014-05-23 Flexibly engaged continuously variable transmission gearbox
US14/898,558 US10006525B2 (en) 2013-06-17 2014-05-23 Flexibly engaged continuously variable transmission gearbox

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310238180.2 2013-06-17
CN201310238180.2A CN103307237B (zh) 2013-06-17 2013-06-17 柔性啮合无级变速箱

Publications (1)

Publication Number Publication Date
WO2014201938A1 true WO2014201938A1 (zh) 2014-12-24

Family

ID=49132797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078330 WO2014201938A1 (zh) 2013-06-17 2014-05-23 柔性啮合无级变速箱

Country Status (4)

Country Link
US (1) US10006525B2 (zh)
EP (1) EP3012486B1 (zh)
CN (1) CN103307237B (zh)
WO (1) WO2014201938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117589114A (zh) * 2024-01-16 2024-02-23 泰州市爱国机械有限公司 一种行星齿轮轴对称度检测设备及其检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307237B (zh) 2013-06-17 2015-10-14 徐宇 柔性啮合无级变速箱
CN104806710A (zh) * 2014-01-28 2015-07-29 任孝忠 锥体八字形齿条无级变速装置
CN111720507A (zh) * 2020-06-30 2020-09-29 陈建军 一种锥柱无极变速器
CN112303199B (zh) * 2020-10-10 2024-02-23 深圳市迈圈信息技术有限公司 一种车载动力设备
US11772743B2 (en) * 2022-02-18 2023-10-03 Joseph Francis Keenan System and method for bicycle transmission
CN115366673B (zh) * 2022-10-24 2023-02-14 溧阳市新力机械铸造有限公司 一种用于新能源汽车的齿轮轴装置
CN117847151A (zh) * 2024-03-04 2024-04-09 四川丹齿精工科技有限公司 一种精密减速箱传动结构总成

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107738A1 (de) * 1990-03-15 1991-09-19 Zahnradfabrik Friedrichshafen Getriebeaggregat fuer kraftfahrzeuge mit einem stufenlos regelbaren umschlingungsgetriebe
CN1292467A (zh) * 1999-10-08 2001-04-25 沈醒迪 齿轮式高匀速度无级变速器
CN1448646A (zh) * 2002-03-28 2003-10-15 沈勇 机械式啮合传动无级变速器
CN1936365A (zh) * 2006-08-28 2007-03-28 上海中纺机通用机械有限公司 含有剪状杠杆板的滚柱式无级变速器
CN101220853A (zh) * 2007-01-13 2008-07-16 郭质刚 楔槽链式无级变速器
JP4277556B2 (ja) * 2003-04-02 2009-06-10 トヨタ自動車株式会社 端部可撓性ピンによるチェーンベルト
CN102345713A (zh) * 2010-08-02 2012-02-08 徐宇 汽车套筒齿轮无级变速箱
CN103307237A (zh) * 2013-06-17 2013-09-18 徐宇 柔性啮合无级变速箱

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE638169C (de) * 1936-11-11 Alfred Konrad Stufenlos regelbares Kettenraederwechselgetriebe
US178029A (en) * 1876-05-30 Improvement in expansion-pulleys
US692219A (en) * 1901-05-25 1902-01-28 American Expansion Pulley Company Expansible pulley.
US693545A (en) * 1901-07-05 1902-02-18 Peter Jacobsen Expansion-pulley.
US944585A (en) * 1905-02-10 1909-12-28 Henry F Watson Driving mechanism.
US1091338A (en) * 1913-02-26 1914-03-24 Lester J Houpt Transmission and reversing gearing for engines.
US1160414A (en) * 1915-04-05 1915-11-16 William B Kelsey Variable-speed mechanism.
US1379504A (en) * 1920-05-20 1921-05-24 Young John Variable-speed transmission
US1446294A (en) * 1920-06-29 1923-02-20 Healey Syndicate Ltd Variable velocity ratio gearing
US1969792A (en) * 1931-10-14 1934-08-14 Charles C Gates Cone belt
US2344341A (en) * 1941-11-18 1944-03-14 Victor Gutzwiller Speed changing device
US2552179A (en) * 1948-08-26 1951-05-08 Kamp Albert Variable speed segment pulley
US2705892A (en) * 1951-09-18 1955-04-12 Albert J Yeager Variable speed transmission
US2941409A (en) * 1955-10-21 1960-06-21 Richard P Witt Variable speed power transmission device
US2898772A (en) * 1957-06-18 1959-08-11 Rufus M Campbell Variable speed cone pulley drive
US3021717A (en) * 1960-12-20 1962-02-20 John C Bondurant Uniform speed changer or transmission
US3209607A (en) * 1962-11-28 1965-10-05 Beloit Corp Controlled belt drive
US3873128A (en) * 1973-05-29 1975-03-25 Trans World Products Inc Drive transmission for a bicycle or the like
US3906809A (en) * 1974-03-11 1975-09-23 Marlo W V Erickson Transmission having an infinitely variable drive ratio
US4875389A (en) * 1983-03-23 1989-10-24 Frank Fragnito Chain driven, continuously infinite variable speed transmission system
US4842569A (en) * 1987-11-16 1989-06-27 Recreational Accessoried Corporation Bicycle transmission having infinitely variable drive ratio
US5226854A (en) * 1992-02-25 1993-07-13 Hauser Richard J Transmission system
US5984814A (en) * 1997-09-04 1999-11-16 Davenport; Bruce Variable ratio chain drive transmission
US6152844A (en) * 1999-05-10 2000-11-28 Daugherty; B. Eugene Variable diameter pulley for a transmission
US6656070B2 (en) * 2000-07-24 2003-12-02 Armin Sebastian Tay Cone with torque transmitting members for continuous variable transmissions
US6626780B2 (en) * 2000-11-14 2003-09-30 Frank A. Fragnito Positive engagement continuously variable transmission
US6575856B2 (en) * 2001-05-16 2003-06-10 Lawrence A. Anderson Variable drive transmission
US6908406B2 (en) * 2003-03-05 2005-06-21 Mark Albert Overbay Continuously variable transmission with elastomeric meshing interface
EP1673555B1 (en) * 2003-10-13 2007-04-18 Varibox (Pty) Limited Infinitely variable transmission
US8393984B2 (en) * 2003-10-13 2013-03-12 Varibox (Pty) Limited Infinitely variable transmission
US7722490B2 (en) * 2005-01-20 2010-05-25 Armin Sebastian Tay Cones, configurations, and adjusters for friction and non-friction dependent continuous variable transmissions
US8628439B2 (en) * 2005-01-20 2014-01-14 Armin Sebastian Tay Cones, configurations, and adjusters for friction and non-friction dependent continuous variable transmissions
CN100498001C (zh) * 2007-08-20 2009-06-10 唐国胜 动力节能套装组
US9651123B2 (en) * 2014-11-02 2017-05-16 Armin Sebastian Tay Cone with member CVT for which belt tension can be reduced

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4107738A1 (de) * 1990-03-15 1991-09-19 Zahnradfabrik Friedrichshafen Getriebeaggregat fuer kraftfahrzeuge mit einem stufenlos regelbaren umschlingungsgetriebe
CN1292467A (zh) * 1999-10-08 2001-04-25 沈醒迪 齿轮式高匀速度无级变速器
CN1448646A (zh) * 2002-03-28 2003-10-15 沈勇 机械式啮合传动无级变速器
JP4277556B2 (ja) * 2003-04-02 2009-06-10 トヨタ自動車株式会社 端部可撓性ピンによるチェーンベルト
CN1936365A (zh) * 2006-08-28 2007-03-28 上海中纺机通用机械有限公司 含有剪状杠杆板的滚柱式无级变速器
CN101220853A (zh) * 2007-01-13 2008-07-16 郭质刚 楔槽链式无级变速器
CN102345713A (zh) * 2010-08-02 2012-02-08 徐宇 汽车套筒齿轮无级变速箱
CN103307237A (zh) * 2013-06-17 2013-09-18 徐宇 柔性啮合无级变速箱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117589114A (zh) * 2024-01-16 2024-02-23 泰州市爱国机械有限公司 一种行星齿轮轴对称度检测设备及其检测方法
CN117589114B (zh) * 2024-01-16 2024-04-26 泰州市爱国机械有限公司 一种行星齿轮轴对称度检测设备及其检测方法

Also Published As

Publication number Publication date
US20160153531A1 (en) 2016-06-02
EP3012486A1 (en) 2016-04-27
US10006525B2 (en) 2018-06-26
CN103307237A (zh) 2013-09-18
EP3012486B1 (en) 2019-09-04
CN103307237B (zh) 2015-10-14
EP3012486A4 (en) 2017-04-12

Similar Documents

Publication Publication Date Title
WO2014201938A1 (zh) 柔性啮合无级变速箱
US5121936A (en) Variable speed transmission
KR102433297B1 (ko) 무단 변속기
US5215323A (en) Variable speed transmission
US5167591A (en) Variable speed transmission
JP2018520308A (ja) 往復直線運動から一方向円運動への変換装置及び該装置を用いた乗り物
CN102317649B (zh) 无级变速器
WO2010031322A1 (zh) 一种适用于电动车的自动变速器
US8057351B2 (en) Planetary gear device with two sun gears having different diameters
CN111677821A (zh) 齿轮传动无级变速器
CN113719592A (zh) 一种动齿齿轮的啮合方法及应用该方法的变径无级变速器
KR101311573B1 (ko) 차량용 무단 변속장치
CN111284630A (zh) 一种自行车新型卡盘式无级变速器的随动调节装置
CN106627099A (zh) 一种混合动力车用电子机械无级变速器及混合动力汽车
CN100410562C (zh) 齿轮传动无级自动变速器
CN105156619A (zh) 复合式无级变速传动装置
CN108533700B (zh) 一种无级变速器
KR100931965B1 (ko) 유성치차를 이용한 연속 고변속장치
CN212155691U (zh) 一种无级变速器
US11293531B2 (en) Automatic transmission and control method of automatic transmission
JP2010203602A (ja) ワンウェイ遊星歯車による無段変速装置
WO2012019318A1 (zh) 齿啮合传动无级变速器
CN2467387Y (zh) 档位式变速传动装置
CA2041907C (en) Variable speed transmission
CN103629323B (zh) 同步带-蜗轮及其传动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14812915

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898558

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014812915

Country of ref document: EP