WO2014200193A1 - 양방향 전력 변환 장치 - Google Patents

양방향 전력 변환 장치 Download PDF

Info

Publication number
WO2014200193A1
WO2014200193A1 PCT/KR2014/004398 KR2014004398W WO2014200193A1 WO 2014200193 A1 WO2014200193 A1 WO 2014200193A1 KR 2014004398 W KR2014004398 W KR 2014004398W WO 2014200193 A1 WO2014200193 A1 WO 2014200193A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
acdc
motor generator
gear
bidirectional
Prior art date
Application number
PCT/KR2014/004398
Other languages
English (en)
French (fr)
Inventor
백승문
강정수
조영보
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130066948A external-priority patent/KR20140144856A/ko
Priority claimed from KR1020130076534A external-priority patent/KR20150003536A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2015523041A priority Critical patent/JP5999610B2/ja
Priority to EP14766091.4A priority patent/EP2838183A4/en
Priority to US14/384,811 priority patent/US20160087487A1/en
Priority to CN201480000925.4A priority patent/CN104919683A/zh
Publication of WO2014200193A1 publication Critical patent/WO2014200193A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K47/00Dynamo-electric converters
    • H02K47/02AC/DC converters or vice versa
    • H02K47/04Motor/generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/143Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple generators

Definitions

  • the present invention relates to a bi-directional power converter, by using a plurality of ACDC motor generator that can be rotated and generated by receiving AC power and DC power, by converting the AC power to DC power to charge the battery or DC power It relates to a bi-directional power converter that can be converted to AC power to charge the battery.
  • the present invention physically connects a plurality of ACDC motor generators that can receive both AC power and DC power, and rotates the other ACDC motor generator using the rotational force of one ACDC motor generator.
  • the present invention relates to a bidirectional power converter that converts AC power into isolated DC power to charge a battery, or DC power is converted to isolated AC power to charge a battery.
  • the present invention relates to a rectification circuit using a sub winding of a child method, and has an effect of reducing conduction loss.
  • This method uses a separate insulating element (eg, an integrated circuit (IC) using a semiconductor) in the process of insulating the AC current side (hereinafter, primary side) and DC current side (hereinafter, secondary side). Therefore, there was an inconvenience to insulate the primary side and the secondary side, and accordingly, the conventional converter has a problem in that the size of the converter must be large enough to accommodate the insulation element.
  • a separate insulating element eg, an integrated circuit (IC) using a semiconductor
  • the present inventors insulate the primary side and the secondary side without using a circuit isolation element, and supply at least one of an AC power source and a DC power source in order to solve the problem of the conventional converter described above.
  • the present invention led to the invention of a bi-directional power converter that can charge a battery by converting AC power to DC power or DC power to AC power and charging the battery, as well as miniaturizing the overall size of the power converter.
  • the present invention was derived to solve the above problems, an object of the present invention, by using a plurality of ACDC motor generator that can be rotated and generated by receiving AC power and DC power, by converting AC power to DC power
  • the present invention aims to provide a bidirectional power converter that can charge a battery or convert a DC power source into an AC power source to charge a battery.
  • the present invention is to provide a bidirectional power conversion device that can insulate the AC power supply side and the DC power supply side without a separate insulation device.
  • the present invention is to provide a bidirectional power conversion apparatus that can be omitted by the isolation process by physically directly connecting a plurality of ACDC motor generator that is applied to AC power or DC power.
  • the present invention is to provide a bi-directional power conversion apparatus that can adjust the gear ratio of the plurality of ACDC motor generator to adjust the power ratio as well.
  • the present invention is to provide a bi-directional power conversion apparatus that can be provided differently depending on the power specification of the AC power or DC power applied.
  • Bidirectional power conversion apparatus is configured to include a plurality of ACDC motor generator to generate DC power by receiving AC power, or to generate AC power by receiving DC power.
  • the plurality of ACDC motor generators may be connected to each other via a rotating shaft.
  • the plurality of ACDC motor generators may be provided according to the power specifications of the AC power or DC power applied respectively.
  • the power specification may correspond to at least one of voltage, current, frequency, and power consumption.
  • the plurality of ACDC motor generators may provide a rotation force for rotating the rotation shaft.
  • the plurality of ACDC motor generators may be fastened to each other through the rotation shaft and one or more gears.
  • the plurality of ACDC motor generators, the power ratio may be adjusted through the gear ratio of each of the one or more gears.
  • the plurality of ACDC motor generators may be engaged with each other through one or more gears.
  • the plurality of ACDC motor generators, power ratios can be adjusted to each other through the gear ratio of one or more gears engaged with each other.
  • the plurality of ACDC motor generators may generate insulated AC power or DC power through rotational force, respectively.
  • the plurality of ACDC motor generators may be provided according to the power specification of the generated AC power or DC power, respectively.
  • the plurality of ACDC motor generators are connected to each other through one or more belts, and may rotate to correspond to each other.
  • the plurality of ACDC motor generators may correspond to states insulated from each other.
  • Bi-directional power conversion device since the AC power supply side and the DC power supply side is connected through physical means, there is an effect that enables the insulation without a separate insulation element.
  • the overall size is reduced as much as the space occupied by the insulating device, thereby miniaturizing the power converter.
  • the gear ratio of the gear connecting the plurality of ACDC motor generator can be adjusted, the power ratio corresponding to the gear ratio can also be adjusted together.
  • FIG. 1 is a diagram illustrating a circuit of a conventional converter 10.
  • FIG. 2 is a diagram illustrating a configuration of the bidirectional power conversion apparatus 100 according to an embodiment of the present invention.
  • FIG 3 is a view illustrating a state in which the first ACDC motor generator 110 and the second ACDC motor generator 120 are connected to each other through the rotation shaft 130.
  • FIG 4 is a view illustrating a state in which the first ACDC motor generator 110 and the second ACDC motor generator 120 are directly connected through respective gears.
  • FIG 5 is a view illustrating a state in which the first ACDC motor generator 110 and the second ACDC motor generator 120 are connected through the belt 140.
  • FIG. 1 is a diagram illustrating a circuit of a conventional converter 10 and FIG. 2 is a diagram illustrating a configuration of a bidirectional power converter 100 according to an embodiment of the present invention.
  • the conventional converter 10 is insulated from the AC power side and the DC power side through separate insulating materials 11.
  • the insulating material 11 may mean to cover or isolate a conductive part around by using a non-conductor (for example, rubber), and the insulating material 11 May be formed of a material that does not cause deterioration even when exposed to high and low temperatures.
  • a non-conductor for example, rubber
  • a diode is illustrated as an insulating material (11).
  • the diode includes an insulating region formed by reducing the number of free electrons and holes in a narrow space of a junction portion formed by bonding a p-type semiconductor and an n-type semiconductor. It isolates AC power side (primary side) and DC power side (secondary side).
  • the bidirectional power converter 100 includes a first ACDC motor generator 110 and a second ACDC motor generator 120.
  • the first ACDC motor generator 110 is rotated by receiving AC power from the AC power supply, and may serve to rotate the shaft of the second ACDC motor generator 120, which will be described later.
  • DC power insulated by the generator 120 is produced and the DC power thus produced may be supplied to a battery (not shown) to charge the battery.
  • the first ACDC motor generator 110 is illustrated as receiving AC power from the AC power source, the first ACDC motor generator 110 may be rotatable by receiving DC power from the DC power source as well as the AC power source.
  • the power that can be applied to the first ACDC motor generator 110 may correspond to both AC and DC.
  • the first ACDC motor generator 110 may produce insulated AC power while rotating along the rotation of the second ACDC motor generator 120 which will be described later, and the AC power thus produced may be supplied to a battery (not shown). The battery can be charged.
  • the first ACDC motor 110 that performs this role may basically be composed of an external stator and an internal rotor.
  • the internal rotor of the first ACDC motor generator 110 that receives the AC power from the outside is rotated by an induced current, and the first gear 111 may be formed at the distal end of the internal rotor.
  • the first gear 111 is fixed without being spaced apart from the inner rotor of the first ACDC motor generator 110, and rotates corresponding to the inner rotor and the second gear 121 of the second ACDC motor generator 120 described later. And directly rotate the second ACDC motor generator 120, or directly engage the rotary shaft gear 131 formed on the rotary shaft 130 to be described later to rotate the rotary shaft 130.
  • the first ACDC motor generator 110 rotates the internal rotor through the torque generated by the induced current, and in the case of a small motor is formed by winding a winding shorted to the internal rotor a plurality of times or in the case of a large motor It can be formed by winding a winding that is not shorted at multiple times.
  • the first ACDC motor generator 110 may be classified into an induction motor, a synchronous motor, a rectifier motor, etc. according to the type of the rotor, and as long as the first ACDC motor generator 110 performs the role as described above. Note that the type and size of the first ACDC motor generator 110 is not limited.
  • the first ACDC motor generator 110 may be provided according to the power specification of the applied AC power. In other words, the first ACDC motor generator 110 may be selected according to the power specification of the applied AC power and provided in the bidirectional power converter 100.
  • the power specification may mean a specification including voltage, current, frequency, power consumption, and the like, wherein the voltage of the AC power is the first ACDC motor. Since the first ACDC motor generator 110 may not be properly driven when the power consumption of the generator 110 is lower, the first ACDC motor generator 110 may be selectively changed according to the power specification of the AC power source. . Therefore, even if AC power is variously applied, the first ACDC motor generator 110 may be selected to correspond to the power specification by the user.
  • the first ACDC motor generator 110 when the applied voltage of the AC power is 110v, the first ACDC motor generator 110 may be changed for 110v, and when the applied voltage is 220v, the first ACDC motor generator 110 may be changed for 220v. Can be.
  • the first ACDC motor generator 110 is not limited to 110v and 220v and may be changed at any time according to more various voltage values.
  • the second ACDC motor generator 120 may rotate to correspond to the above-described first ACDC motor generator 110 to produce insulated DC power, and the DC power thus produced may be a battery (not shown). Can be used to charge the battery.
  • the second ACDC motor generator 120 may rotate by receiving DC power from a DC power supply, thereby rotating the shaft of the first ACDC motor generator 110 described above, wherein the first ACDC motor rotates.
  • AC power insulated by the generator 110 is produced and the AC power thus produced may be supplied to a battery (not shown) to charge the battery.
  • the second ACDC motor generator 120 is shown to receive DC power, the second ACDC motor generator 120 is similar to the first ACDC motor generator 110. It can be rotated by receiving power, and the power that can be applied by the second ACDC motor generator 120 may correspond to both AC and DC. Like the first ACDC motor generator 110 described above, the second ACDC motor generator 120 may perform an internal stator and an internal rotor. The second ACDC motor generator 120 may perform the above-described first operation. A second gear 121 may be formed to mesh with the gear 111.
  • the second gear 121 formed at the distal end of the inner rotor rotates in engagement with the above-described first gear 111 to quickly rotate the inner rotor, wherein the rotation of the inner rotor is the second ACDC motor generator 120.
  • the magnetic flux is interrupted by a coil (a conductor wound by a winding) provided therein, and the generated electromotive force is emitted to the outside, and the electromotive force may correspond to DC power.
  • the second gear 121 formed at the distal end of the internal rotor may be directly engaged with the first gear 111 or directly with the rotary shaft gear 131 which will be described later.
  • the second ACDC motor generator 120 may be provided according to the power specification of the DC power produced, similarly to the first ACDC motor generator 110 described above. In other words, the second ACDC motor generator 120 may be selected according to the power specification of the generated DC power and provided inside the bidirectional power converter 100. Therefore, even if the DC power varies, the second ACDC motor generator 120 may be selected to correspond to the power specification by the user.
  • the power specification is the same as described above in the first ACDC motor generator 110, so a description thereof will be omitted.
  • the second ACDC motor generator 120 may be connected to the above-described first ACDC motor generator 110 in various ways (physical methods), which will be described in more detail with reference to FIG. 3.
  • FIG. 3 is a view illustrating a state in which the first ACDC motor generator 110 and the second ACDC motor generator 120 are connected to each other through the rotation shaft 130
  • FIG. 4 is a diagram of the first ACDC motor generator 110 and the second ACDC motor generator 110.
  • ACDC motor generator 120 is a view showing a state directly connected through each gear
  • Figure 5 is a state in which the first ACDC motor generator 110 and the second ACDC motor generator 120 is connected through the belt 140
  • Figure is a diagram.
  • the first ACDC motor generator 110 and the second ACDC motor generator 120 may be connected to each other through a rotation shaft 130, and the first gear 111 and the first shaft may be connected to the rotation shaft 130.
  • One or more rotary shaft gears 131 may be provided to engage with the two gears 121.
  • connection state when the first ACDC motor generator 110 is applied with AC power and rotates in the clockwise or counterclockwise direction, the rotating shaft gear 131 engaged with the first gear 111 rotates and the rotating shaft 130 ) Rotates, another rotation shaft gear 131 formed on one side of the rotation shaft 130 is rotated, the second gear 121 meshed with the rotation shaft gear 131 is rotated, the second ACDC motor generator 120 Is driven.
  • the configuration of the bidirectional power conversion device 100 does not require a separate insulation device, if only the rotation shaft 130 is connected to the center, the size of the AC power supply side and the DC power supply side can be reduced.
  • the physical rotational force of the first ACDC motor generator 110 may be maintained in the second ACDC motor generator 120, or the physical rotational force of the second ACDC motor generator 120 may be lost in the first ACDC motor generator 110. It can be excellent in terms of energy efficiency since it is delivered.
  • the first ACDC motor generator 110 and the second ACDC motor generator 120 may be directly engaged with each other through the first gear 111 and the second gear 121, respectively.
  • the configuration may be used when the distance between the first ACDC motor generator 110 and the second ACDC motor generator 120 is short or when the size of the bidirectional power converter 100 is further reduced.
  • Such a configuration can transmit the rotational force more efficiently than the above-described FIG. 3, and the first ACDC motor generator 110 rotates at a high speed because the first gear 111 and the fourth gear 121 are directly connected.
  • the generated rotational force may be more easily transmitted to the second ACDC motor generator 120.
  • the power ratio of AC power or DC power produced may also be adjusted.
  • the first ACDC motor generator 110 when the first gear 111 of the first ACDC motor generator 110 connected to the AC power source is configured with a smaller gear than the second gear 121, the first ACDC motor generator 110 rotates rapidly. Therefore, the second ACDC motor generator 120 may be rotated more quickly to produce higher DC power, and the first gear 111 of the first ACDC motor generator 110 may be larger than the second gear 121. In the configuration, since the first ACDC motor generator 110 rotates slowly, the second ACDC motor generator 120 may produce lower DC power.
  • the second ACDC motor generator 120 may rotate rapidly. Therefore, by rotating the first ACDC motor generator 110 more quickly, it is possible to produce higher AC power, and the second gear 121 of the second ACDC motor generator 120 is configured with a larger gear than the first gear 111. In this case, since the second ACDC motor generator 120 rotates slowly, lower AC power can be produced even in the first ACDC motor generator 110.
  • the internal rotors of the first ACDC motor generator 110 and the second ACDC motor generator 120 face the same direction, and the first gear 111 and the end of the internal rotors are respectively oriented.
  • the second gear 121 is formed.
  • the first gear 111 and the second gear 121 are not directly engaged with each other, but are connected through a separate belt 140.
  • the belt 140 is to be interpreted to mean a timing belt that connects a timing gear mounted on the crankshaft of the engine and a timing gear mounted on the camshaft in an automobile engine. Can be.
  • the first gear 111 and the second gear 121 may rotate in the same direction, and may correspond to a configuration having higher energy efficiency than the energy efficiency in FIGS. 3 and 4 described above. have.
  • FIGS. 3 and 4 show frictional forces generated when the protrusions of the first gear 111, the second gear 121, and the rotary shaft gear 131 are in contact with each other. 5 may be offset to some extent, whereas the configuration of FIG. 5 may not offset energy efficiency because such friction does not exist.
  • protrusions protruding at regular intervals may be formed on the inner surface of the belt 140, that is, the surface contacting the first gear 111 and the second gear 121.
  • the protrusion protruding at regular intervals may refer to an uneven structure formed on the inner surface, such as a timing belt of the automobile engine, the protrusion is formed on the first gear 111 and the second gear 121. It may be formed to correspond to the spacing of the projections. Accordingly, the belt 140 may be engaged with the first gear 111 and the second gear 121 without being spaced apart from each other, and the rotational force of the first ACDC motor generator 110 may be transmitted to the second ACDC motor generator 120. Alternatively, the rotational force of the second ACDC motor generator 120 may be transmitted to the first ACDC motor generator 110 as it is, and the first ACDC motor generator 110 and the second ACDC motor generator 120 are in vain with each other. It can prevent.
  • the bi-directional power conversion device 100 is the first ACDC motor generator 110 and through a physical connection (rotation shaft 130 or belt 140) without a separate insulation element 11 and
  • the second ACDC motor generator 120 can be connected, and also can be simplified in circuit compared to the conventional converter 10 using the insulating element 11, the conventional converter 10 using the insulating element 11 In comparison, the overall size can be reduced.
  • the bidirectional power converter 100 can supply the produced AC power or insulated DC power to the battery to charge the battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)
  • Control Of Eletrric Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

본 발명은 양방향 전력 변환 장치에 관한 것으로서, 복수의 ACDC 모터발전기를 서로 물리적으로 연결시킴으로써 서로 절연된 AC 전력 혹은 DC 전력을 생산하여 배터리를 충전시킬 수 있는 양방향 전력 변환 장치에 관한 것이다.

Description

양방향 전력 변환 장치
본 출원은 2013년 6월 12일에 한국특허청에 제출된 한국 특허 출원 제10-2013-0066948호 및 2013년 7월 1일에 한국특허청에 제출된 한국 특허 출원 제10-2013-0076534호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 발명은 양방향 전력 변환 장치에 관한 것으로서, AC 전원 및 DC 전원을 공급 받아 회전 및 발전이 가능한 복수의 ACDC 모터발전기를 이용함으로써, AC 전원을 DC 전원으로 변환하여 배터리를 충전하거나, 혹은 DC 전원을 AC 전원으로 변환하여 배터리를 충전할 수 있는 양방향 전력 변환 장치 에 관한 것이다.
보다 구체적으로, 본 발명은 AC 전원 및 DC 전원을 모두 인가 받을 수 있는 복수의 ACDC 모터발전기를 서로 물리적으로 연결시키고, 하나의 ACDC 모터발전기의 회전력을 이용하여 다른 ACDC 모터발전기를 회전시키며, 그에 따라 AC 전원이 절연된 DC 전원으로 변환되어 배터리를 충전하거나, 혹은 DC 전원이 절연된 AC 전원으로 변환되어 배터리를 충전할 수 있는 양방향 전력 변환 장치에 관한 것이다.
최근 산업 및 경제가 급속도로 발전함에 따라, 이러한 발전을 가능케 하는 전기의 사용량도 함께 증가하게 되었다.
한편, 이러한 전기는 DC(Direct current)라고 하는 직류상태와 AC(Alternating current)라고 하는 교류상태로 존재하게 되는데, 전자기기는 이러한 DC 전류 및 AC 전류를 다양하게 사용하게 된다. 통상적으로는 발전소에서 전송되는 전기는 교류상태의 AC 전류에 해당하며, 이러한 AC 전류를 DC 전류에 의해 구동되는 전자기기가 사용하기 위해선 컨버터(Converter)라고 하는 변환기를 통해 변환시켜주어야 한다.
이러한 컨버터는 AC-AC 컨버터, AC-DC 컨버터, DC-DC 컨버터, DC-AC 컨버터 등 다양한 종류가 존재하는데, 종래의 컨버터를 살펴보면, 한국공개특허 제10-2013-0050180호는 직류-직류 컨버터에 관한 것으로, 자식방식의 보조권선을 이용하여 정류회로를 생성하여 도통손실을 줄일 수 있는 효과를 가진다.
그런데, 이러한 종래의 컨버터는 상술한 직류-직류 컨버터뿐만 아니라 대부분이 자식방식의 유도전류를 이용하여 AC를 DC로 변환하거나 또는 DC를 AC로 변환하는 방식을 사용하고 있다.
이러한 방식은 AC 전류 측(이하, 1차 측)과 DC전류 측(이하, 2차 측)을 절연하는 과정에서 별도의 절연소자(예를 들어, 반도체를 이용한 집적 회로(IC) 등)를 이용하여 1차 측과 2차 측을 절연시켜야 하는 불편함이 있었으며, 그에 따라 종래의 컨버터는 절연소자를 수용할 만큼 컨버터의 사이즈가 커져야 하는 문제점을 가진다.
이에, 본 발명자는 상술된 기존의 컨버터가 가지는 문제점을 해결하기 위해, 회로적인 절연소자를 이용하지 않으면서 1차 측과 2차 측을 절연시키고, 또한 AC 전원 및 DC 전원 중 어느 하나 이상을 공급 받아 AC 전원을 DC 전원으로, 혹은 DC 전원을 AC 전원으로 양방향 전력 변환하여 배터리를 충전할 수 있으며, 뿐만 아니라 전력 변환 장치의 전체적인 크기를 보다 소형화할 수 있는 양방향 전력 변환 장치를 발명하기에 이르렀다.
본 발명은 상술된 문제점을 해결하기 위해 도출된 것으로서, 본 발명의 목적은, AC 전원 및 DC 전원을 공급 받아 회전 및 발전이 가능한 복수의 ACDC 모터발전기를 이용함으로써, AC 전원을 DC 전원으로 변환하여 배터리를 충전하거나, 혹은 DC 전원을 AC 전원으로 변환하여 배터리를 충전할 수 있는 양방향 전력 변환 장치를 제공하고자 한다.
보다 구체적으로, 본 발명은 별도의 절연소자 없이 AC 전원 측과 DC 전원 측을 절연할 수 있는 양방향 전력 변환 장치를 제공하고자 한다.
또한, 본 발명은 AC 전원 혹은 DC 전원을 인가 받는 복수의 ACDC 모터발전기를 물리적으로 직접 연결 시킴으로써 절연과정이 생략 가능한 양방향 전력 변환 장치를 제공하고자 한다.
또한, 본 발명은 복수의 ACDC 모터발전기의 기어비를 조절하여 전원비도 함께 조절할 수 있도록 하는 양방향 전력 변환 장치를 제공하고자 한다.
또한, 본 발명은 인가되는 AC 전원 혹은 DC 전원의 전원사양에 따라 서로 상이하게 구비가능한 양방향 전력 변환 장치를 제공하고자 한다.
본 발명의 일 실시예에 따른 양방향 전력 변환 장치는, AC 전원을 인가 받아 DC 전력을 생산하거나, 또는 DC 전원을 인가 받아 AC 전력을 생산하는 복수의 ACDC 모터발전기를 포함하여 구성된다.
상기 복수의 ACDC 모터발전기는, 회전축을 통해 서로 연결되는 것을 특징으로 할 수 있다.
상기 복수의 ACDC 모터발전기는, 각각 인가되는 AC 전원 또는 DC 전원의 전원사양에 따라 구비되는 것을 특징으로 할 수 있다.
상기 전원사양은, 전압(Voltage), 전류(Ampere), 주파수(Frequency), 소비전력(Power consumption) 중 하나 이상에 해당할 수 있다.
상기 복수의 ACDC 모터발전기는, 상기 회전축을 회전시키기 위한 회전력을 제공할 수 있다.
상기 복수의 ACDC 모터발전기는, 상기 회전축과 하나 이상의 기어를 통해 서로 체결될 수 있다.
상기 복수의 ACDC 모터발전기는, 상기 하나 이상의 기어가 각각 가지는 기어비를 통해 전원비가 조절될 수 있다.
상기 복수의 ACDC 모터발전기는, 각각 하나 이상의 기어를 통해 서로 맞물려 체결될 수 있다.
상기 복수의 ACDC 모터발전기는, 서로 맞물려 체결된 하나 이상의 기어가 가지는 기어비를 통해 서로 전원비가 조절될 수 있다.
상기 복수의 ACDC 모터발전기는, 각각 회전력을 통해 절연된 AC 전력 혹은 DC 전력을 생성할 수 있다.
상기 복수의 ACDC 모터발전기는, 각각 생성되는 AC 전력 또는 DC 전력의 전원사양에 따라 구비되는 것을 특징으로 할 수 있다.
상기 복수의 ACDC 모터발전기는, 하나 이상의 벨트를 통해 서로 연결되며, 서로 상응하도록 회전할 수 있다.
상기 복수의 ACDC 모터발전기는, 서로 절연된 상태에 해당할 수 있다.
본 발명의 일 실시예에 따른 양방향 전력 변환 장치는, AC 전원 측과 DC 전원 측이 물리적인 수단을 통해 연결되기 때문에, 별도의 절연소자 없이도 절연이 가능하게 하는 효과를 가진다.
그에 따라. 본 발명은 절연소자가 차지하던 공간만큼 전체적인 크기가 줄어들게 되어 전력 변환 장치의 소형화가 가능한 효과를 가진다.
또한, 복수의 ACDC 모터발전기를 연결하는 기어의 기어비를 조절할 수 있으므로, 기어비에 상응하는 전원비도 함께 조절할 수 있는 효과를 가진다.
또한, AC 전원 측과 DC 전원측이 회로적으로 간단해지기 때문에 회로의 설계가 용이해지는 효과를 가진다.
도 1은 기존의 컨버터(10)가 가지는 회로를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 양방향 전력 변환 장치(100)의 구성을 도시한 도면이다.
도 3은 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)가 회전축(130)을 통해 서로 연결된 상태를 도시한 도면이다.
도 4는 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)가 각각의 기어를 통해 직접 연결된 상태를 도시한 도면이다.
도 5는 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)가 벨트(140)를 통해 연결된 상태를 도시한 도면이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
도 1은 기존의 컨버터(10)가 가지는 회로를 도시한 도면이고 도 2는 본 발명의 일 실시예에 따른 양방향 전력 변환 장치(100)의 구성을 도시한 도면이다.
먼저, 도 1을 통해 기존의 컨버터(10)를 살펴보면, 기존의 컨버터(10)는 AC 전원 측과 DC 전원 측이 별도의 절연소재(11)를 통해 절연되고 있다.
이러한 절연소재(11)는 일반적으로 전자기기 또는 전선 등에 전기가 통하는 경우, 도전부분 주변을 부도체(예를 들어, 고무 등)를 이용하여 피복 또는 격리시키는 것을 의미할 수 있는데, 절연소재(11)는 고온, 저온에 노출되더라도 열화가 일어나지 않는 재질로 형성될 수 있다.
도 1에서는 절연소재(11)로써 다이오드(Diode)를 도시하였는데, 다이오드는 p형 반도체와 n형 반도체를 접합하여 생성되는 접합부분의 좁은 공간에 자유전자와 정공의 수가 줄어들면서 형성되는 절연영역을 이용하여 AC 전원 측(1차측)과 DC 전원 측(2차 측)을 절연하게 된다.
이러한 다이오드를 이용한 절연과정은 기존의 공지된 기술을 사용하기 때문에, 상세한 설명은 생략하기로 하며 기존의 컨버터(10)는 이러한 절연소재(11)를 수용하기 위한 내부 공간을 구비해야만 하고, 그에 따라 전체적인 크기가 커지는 문제점을 가지게 된다.
이러한 문제점을 개선한 양방향 전력 변환 장치(100)를 도 2를 통해 살펴보면, 양방향 전력 변환 장치(100)는 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)를 포함한다.
먼저, 제1 ACDC 모터발전기(110)는 AC 전원으로부터 AC 전력을 인가 받아 회전하여, 후술되는 제2 ACDC 모터발전기(120)의 축을 회전시키는 역할을 수행할 수 있으며, 이때 회전되는 제2 ACDC 모터발전기(120)에 의하여 절연된 DC 전력이 생산되고 이렇게 생산된 DC 전력은 배터리(미도시)에 공급되어 배터리를 충전시킬 수 있다.
또한, 본 명세서에서는 제1 ACDC 모터발전기(110)가 AC 전원으로부터 AC 전력을 인가 받는 것으로 도시하였지만, 제1 ACDC 모터발전기(110)는 AC 전원뿐만 아니라 DC 전원으로부터 DC 전력을 인가 받아 회전 가능할 수 있으며, 제1 ACDC 모터발전기(110)가 인가 받을 수 있는 전력은 AC 및 DC 모두 해당할 수 있음을 유의한다.
또한, 제1 ACDC 모터발전기(110)는 후술되는 제2 ACDC 모터발전기(120)의 회전을 따라 회전하면서 절연된 AC 전력을 생산할 수 있고, 이렇게 생산된 AC 전력은 배터리(미도시)에 공급되어 배터리를 충전시킬 수 있다.
이러한 역할을 수행하는 제1 ACDC 모터(110)는 기본적으로 외부 고정자와 내부 회전자로 구성될 수 있다. 외부로부터 AC 전력을 인가 받은 제1 ACDC 모터발전기(110)의 내부 회전자는 유도전류에 의해 회전하게 되고, 이러한 내부 회전자의 말단부에는 제1 기어(111)가 형성될 수 있다.
제1 기어(111)는 제1 ACDC 모터발전기(110)의 내부 회전자와 이격없이 고정되며, 내부 회전자와 상응하여 회전하며 후술되는 제2 ACDC 모터발전기(120)의 제2 기어(121)와 직접적으로 맞물려 제2 ACDC 모터발전기(120)를 회전시키거나, 또는 후술되는 회전축(130)에 형성된 회전축 기어(131)와 직접적으로 맞물려 회전축(130)을 회전시키는 역할을 수행할 수 있다.
이러한 제1 ACDC 모터발전기(110)는 유도전류에 의하여 생성되는 토크를 통해 내부 회전자를 회전시키며, 소형 모터의 경우 내부 회전자에 단락된 권선을 복수 번 감아서 형성하거나 대형 모터의 경우 내부 회전에 단락되지 않은 권선을 복수 번 감아서 형성할 수 있다.
이러한 제1 ACDC 모터발전기(110)는 회전자의 유형에 따라 유도전동기, 동기전동기, 정류자전동기 등으로 분류될 수 있으며, 제1 ACDC 모터발전기(110)가 상술한 바와 같은 역할을 수행하는 한, 제1 ACDC 모터발전기(110)의 종류 및 크기는 제한되지 않음을 유의한다.
일 실시예에서, 제1 ACDC 모터발전기(110)는 인가되는 AC 전력의 전원사양에 따라 구비될 수 있다. 다시 말해서, 제1 ACDC 모터발전기(110)는 인가되는 AC 전력의 전원사양에 따라 선택되어 양방향 전력 변환 장치(100)의 내부에 구비될 수 있다.
여기에서, 전원사양이라 함은, 전압(Voltage), 전류(Ampere), 주파수(Frequency), 소비전력(Power consumption) 등을 포함한 사양을 의미할 수 있는데, AC 전력이 가지는 전압이 제1 ACDC 모터발전기(110)의 소비 전압보다 낮은 경우 제1 ACDC 모터발전기(110)가 제대로 구동되지 않을 수 있기 때문에, AC 전력원의 전원사양에 따라 제1 ACDC 모터발전기(110)도 선택적으로 변경될 수 있다. 따라서, AC 전력이 다양하게 인가되더라도 제1 ACDC 모터발전기(110)는 사용자에 의하여 전원사양에 상응하도록 선택될 수 있다.
예를 들어, AC 전원의 인가전압이 110v 인 경우 제1 ACDC 모터발전기(110)는 110v용으로 변경될 수 있고, 인가전압이 220v 인 경우 제1 ACDC 모터발전기(110)는 220v용으로 변경될 수 있다.
한편, 제1 ACDC 모터발전기(110)는 110v 및 220v에 국한되지 않으며, 보다 다양한 전압값에 따라 언제든지 변경될 수 있음을 유의한다.
다음으로, 제2 ACDC 모터발전기(120)는 상술한 제1 ACDC 모터발전기(110)와 상응하도록 회전하여 절연된 DC 전력을 생산하는 역할을 수행할 수 있으며, 이렇게 생산된 DC 전력은 배터리(미도시)에 공급되어 배터리를 충전시킬 수 있다.
반대로, 제2 ACDC 모터발전기(120)는 DC 전원으로부터 DC 전력을 인가 받아 회전하여, 상술한 제1 ACDC 모터발전기(110)의 축을 회전시키는 역할을 수행할 수 있으며, 이때 회전되는 제1 ACDC 모터발전기(110)에 의하여 절연된 AC 전력이 생산되고 이렇게 생산된 AC 전력은 배터리(미도시)에 공급되어 배터리를 충전시킬 수 있다.
또한, 본 명세서에서는 제2 ACDC 모터발전기(120)가 DC 전력을 인가 받는 것으로 도시하였지만, 제2 ACDC 모터발전기(120)는 제1 ACDC 모터발전기(110)와 마찬가지로 DC 전원뿐만 아니라 AC 전원으로 AC 전력을 인가 받아 회전 가능할 수 있으며, 제2 ACDC 모터발전기(120)가 인가 받을 수 있는 전력은 AC 및 DC 모두에 해당할 수 있음을 유의한다. 이러한 역할을 수행하는 제2 ACDC 모터발전기(120)는 상술한 제1 ACDC 모터발전기(110)와 마찬가지로 내부적으로 외부 고정자와 내부 회전자로 구성될 수 있으며, 내부 회전자의 말단부에는 상술한 제1 기어(111)와 맞물리는 제2 기어(121)가 형성될 수 있다.
이러한 내부 회전자의 말단부에 형성된 제2 기어(121)는 상술한 제1 기어(111)와 맞물려 회전하면서 내부 회전자를 빠르게 회전시키게 되고, 이때 내부 회전자의 회전은 제2 ACDC 모터발전기(120) 내부에 구비된 코일(권선으로 감긴 도체)에 의하여 자속이 끊어지게 되고 이때 생성되는 기전력을 외부로 방출하게 되고, 이러한 기전력이 DC 전력에 해당할 수 있다.
이러한 내부 회전자의 말단부에 형성된 제2 기어(121)는 제1 기어(111)와 직접적으로 맞물리거나 또는 후술되는 회전축 기어(131)와 직접적으로 맞물릴 수 있다.
그리고 제2 ACDC 모터발전기(120)는 상술한 제1 ACDC 모터발전기(110)와 마찬가지로, 생산되는 DC 전력의 전원사양에 따라 구비될 수 있다. 다시 말해서, 제2 ACDC 모터발전기(120)는 생산되는 DC 전력의 전원사양에 따라 선택되어 양방향 전력 변환 장치(100)의 내부에 구비될 수 있다. 따라서, DC 전력이 다양하게 변하더라도 제2 ACDC 모터발전기(120)는 사용자에 의하여 전원사양에 상응하도록 선택될 수 있다.
여기에서, 전원사양이라 함은, 제1 ACDC 모터발전기(110)에서 상술한 바와 동일하므로 이에 대한 설명은 생략하기로 한다.
한편, 이러한 제2 ACDC 모터발전기(120)는 상술한 제1 ACDC 모터발전기(110)와 다양한 방식(물리적인 방식)으로 연결될 수 있는데, 이는 도 3을 통해 보다 상세하게 설명하기로 한다.
도 3은 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)가 회전축(130)을 통해 서로 연결된 상태를 도시한 도면이고, 도 4는 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)가 각각의 기어를 통해 직접 연결된 상태를 도시한 도면이며, 도 5는 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)가 벨트(140)를 통해 연결된 상태를 도시한 도면이다.
먼저, 도 3을 살펴보면, 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)는 가운데에 회전축(130)을 통해 연결될 수 있으며, 회전축(130)에는 제1 기어(111) 및 제2 기어(121)와 맞물리는 하나 이상의 회전축 기어(131)가 구비될 수 있다.
이러한 연결상태에 따라, 제1 ACDC 모터발전기(110)가 AC 전원을 인가 받아 시계방향 또는 반시계방향으로 회전하는 경우 제1 기어(111)와 맞물린 회전축 기어(131)가 회전하게 되면서 회전축(130)이 회전하게 되고, 회전축(130)의 일측에 형성된 또 다른 회전축 기어(131)가 회전하며, 이 회전축 기어(131)와 맞물린 제2 기어(121)가 회전하면서 제2 ACDC 모터발전기(120)가 구동된다.
이러한 양방향 전력 변환 장치(100)의 구성은 별도의 절연소자가 불필요하기 때문에, 중심부에 회전축(130)만 연결해 준다면 AC 전원 측과 DC 전원측의 사이즈를 축소시킬 수 있다. 그리고 제1 ACDC 모터발전기(110)의 물리적인 회전력이 제2 ACDC 모터발전기(120)에, 혹은 제2 ACDC 모터발전기(120)의 물리적인 회전력이 제1 ACDC 모터발전기(110)에 손실없이 그대로 전달되므로 에너지 효율면에서도 우수할 수 있다.
다음으로, 도 4를 살펴보면, 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)는 각각 제1 기어(111) 및 제2 기어(121)를 통해 직접적으로 맞물려 연결될 수 있으며, 이러한 구성은 제1 ACDC 모터발전기(110)와 제2 ACDC 모터발전기(120)의 거리가 가깝거나, 양방향 전력 변환 장치(100)의 사이즈를 보다 축소화시킬 경우 사용될 수 있다.
이러한 구성은 상술한 도 3 보다 더욱 효율적으로 회전력을 전달할 수 있으며, 제1 기어(111)와 네2 기어(121)가 직접 연결되어 있기 때문에 제1 ACDC 모터발전기(110)가 고속으로 회전하는 경우 발생되는 회전력이 보다 용이하게 제2 ACDC 모터발전기(120)에 전달될 수 있다.
이렇듯, 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)는 기어를 통해 맞물려 회전하기 때문에, 해당 기어가 가지는 기어비를 조절하면 생산되는 AC 전력 혹은 DC 전력의 전원비 또한 조절할 수 있다.
예를 들어, AC 전원 측과 연결된 제1 ACDC 모터발전기(110)의 제1 기어(111)를 제2 기어(121)보다 작은 기어로 구성하는 경우, 제1 ACDC 모터발전기(110)는 빠르게 회전하기 때문에 제2 ACDC 모터발전기(120)를 보다 빠르게 회전시켜 보다 높은 DC 전력 생산이 가능하고, 제1 ACDC 모터발전기(110)의 제1 기어(111)를 제2 기어(121)보다 큰 기어로 구성하는 경우, 제1 ACDC 모터발전기(110)는 느리게 회전하기 때문에 제2 ACDC 모터발전기(120)에서도 보다 낮은 DC 전력 생산이 가능하다.
또한, 반대로 DC 전원 측과 연결된 제2 ACDC 모터발전기(120)의 제2 기어(121)를 제1 기어(111)보다 작은 기어로 구성하는 경우, 제2 ACDC 모터발전기(120)는 빠르게 회전하기 때문에 제1 ACDC 모터발전기(110)를 보다 빠르게 회전시켜 보다 높은 AC 전력 생산이 가능하고, 제2 ACDC 모터발전기(120)의 제2 기어(121)를 제1 기어(111)보다 큰 기어로 구성하는 경우, 제2 ACDC 모터발전기(120)는 느리게 회전하기 때문에 제1 ACDC 모터발전기(110)에서도 보다 낮은 AC 전력 생산이 가능하다.
마지막으로, 도 5를 살펴보면, 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)의 내부 회전자가 동일한 방향을 향하고 있으며, 이러한 내부 회전자들의 말단부에는 각각 제1 기어(111) 및 제2 기어(121)가 형성되어 있다.
그리고 이러한 제1 기어(111) 및 제2 기어(121)는 직접적으로 맞물린 것이 아니라 별도의 벨트(140)를 통해 연결된다.
여기에서 벨트(140)라 함은, 자동차 엔진에 있어서 엔진의 크랭크축에 장착된 타이밍기어(timing gear)와 캠축에 장착된 타이밍기어를 연결해주는 타이밍벨트(timing belt)와 상응하는 의미로 해석될 수 있다.
이러한 구성에 의하여 제1 기어(111)와 제2 기어(121)는 서로 동일한 방향을 회전할 수 있으며, 상술한 도 3 및 도 4 에서의 에너지 효율보다 더욱 높은 에너지 효율을 가지는 구성에 해당할 수 있다.
그 이유는, 도 3 및 도 4 는 복수의 기어들이 직접적으로 맞물려 있기 때문에 제1 기어(111), 제2 기어(121) 및 회전축 기어(131)의 돌기가 서로 접하면서 생성되는 마찰력이 에너지 효율을 어느 정도 상쇄시킬 수 있는데 반해, 도 5의 구성은 이러한 마찰력이 존재하지 않기 때문에 에너지 효율이 상쇄되지 않을 수 있다.
일 실시예에서, 벨트(140)의 내부면, 즉 제1 기어(111) 및 제2 기어(121)와 접하는 면에는 일정한 간격으로 돌출된 돌기가 형성될 수 있다.
여기에서, 일정한 간격으로 돌출된 돌기라 함은, 자동차 엔진의 타이밍벨트와 같이 내부면에 형성된 요철구조를 의미할 수 있으며, 이러한 돌기는 제1 기어(111) 및 제2 기어(121)에 형성된 돌기의 생성 간격과 상응하도록 형성될 수 있다. 그에 따라, 벨트(140)는 제1 기어(111) 및 제2 기어(121)와 이격없이 맞물릴 수 있고, 또한 제1 ACDC 모터발전기(110)의 회전력을 제2 ACDC 모터발전기(120)에, 혹은 제2 ACDC 모터발전기(120)의 회전력을 제1 ACDC 모터발전기(110)에 그대로 전달할 수 있으며, 제1 ACDC 모터발전기(110)와 제2 ACDC 모터발전기(120)가 서로 헛도는 것을 방지할 수 있다.
살펴본 바와 같이, 본 발명에 따른 양방향 전력 변환 장치(100)는 별도의 절연소자(11)가 없이도 물리적인 연결(회전축(130) 또는 벨트(140))을 통해 제1 ACDC 모터발전기(110) 및 제2 ACDC 모터발전기(120)를 연결할 수 있고, 또한 절연소자(11)를 사용한 기존의 컨버터(10)에 비하여 회로적으로 간단해질 수 있으며, 절연소자(11)를 사용한 기존의 컨버터(10)에 비하여 전체적인 크기가 축소될 수 있다.
또한, 본 발명에 따른 양방향 전력 변환 장치(100)는 생산된 AC 전력 혹은 절연된 DC 전력을 배터리에 공급하여 배터리를 충전할 수 있게 된다.
이상 본 발명의 특정 실시예를 도시하고 설명하였으나, 본 발명의 기술사상은 첨부된 도면과 상기한 설명내용에 한정하지 않으며 본 발명의 사상을 벗어나지 않는 범위 내에서 다양한 형태의 변형이 가능함은 이 분야의 통상의 지식을 가진 자에게는 자명한 사실이며, 이러한 형태의 변형은, 본 발명의 정신에 위배되지 않는 범위 내에서 본 발명의 특허청구범위에 속한다고 볼 것이다.

Claims (13)

  1. 배터리를 충전할 수 있도록 연결되는 양방향 전력 변환 장치에 있어서,
    AC 전원을 인가 받아 DC 전력을 생산하거나, 또는 DC 전원을 인가 받아 AC 전력을 생산하는 복수의 ACDC 모터발전기;를 포함하고,
    상기 복수의 ACDC 모터발전기는 회전축을 통해 서로 연결되는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  2. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    각각 인가되는 AC 전원 또는 DC 전원의 전원사양에 따라 구비되는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  3. 제2항에 있어서,
    상기 전원사양은,
    전압(Voltage), 전류(Ampere), 주파수(Frequency), 소비전력(Power consumption) 중 하나 이상에 해당하는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  4. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    상기 회전축을 회전시키기 위한 회전력을 제공하는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  5. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    각각 상기 회전축과 하나 이상의 기어를 통해 서로 체결되는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  6. 제5항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    상기 하나 이상의 기어가 각각 가지는 기어비를 통해 서로 전원비가 조절되는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  7. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    각각 하나 이상의 기어를 통해 서로 맞물려 체결되는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  8. 제7항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    상기 하나 이상의 기어가 가지는 기어비를 통해 서로 전원비가 조절되는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  9. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    각각 회전력을 통해 절연된 AC 전력 혹은 DC 전력을 생성하는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  10. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    각각 생성되는 AC 전력 또는 DC 전력의 전원사양에 따라 구비되는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  11. 제10항에 있어서,
    상기 전원사양은,
    전압(Voltage), 전류(Ampere), 주파수(Frequency), 소비전력(Power consumption) 중 하나 이상에 해당하는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  12. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    하나 이상의 벨트를 통해 서로 연결되며, 서로 상응하도록 회전하는 것을 특징으로 하는,
    양방향 전력 변환 장치.
  13. 제1항에 있어서,
    상기 복수의 ACDC 모터발전기는,
    서로 절연된 상태에 해당하는 것을 특징으로 하는,
    양방향 전력 변환 장치.
PCT/KR2014/004398 2013-06-12 2014-05-16 양방향 전력 변환 장치 WO2014200193A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015523041A JP5999610B2 (ja) 2013-06-12 2014-05-16 両方向電力変換装置
EP14766091.4A EP2838183A4 (en) 2013-06-12 2014-05-16 BIDIRECTIONAL POWER CONVERSION DEVICE
US14/384,811 US20160087487A1 (en) 2013-06-12 2014-05-16 Bidirectional power converting apparatus
CN201480000925.4A CN104919683A (zh) 2013-06-12 2014-05-16 双向功率转换设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0066948 2013-06-12
KR1020130066948A KR20140144856A (ko) 2013-06-12 2013-06-12 Ac 모터와 dc 발전기를 이용한 acdc 컨버터
KR10-2013-0076534 2013-07-01
KR1020130076534A KR20150003536A (ko) 2013-07-01 2013-07-01 Dc 모터와 ac 발전기를 이용한 dcac 인버터

Publications (1)

Publication Number Publication Date
WO2014200193A1 true WO2014200193A1 (ko) 2014-12-18

Family

ID=52022450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004398 WO2014200193A1 (ko) 2013-06-12 2014-05-16 양방향 전력 변환 장치

Country Status (5)

Country Link
US (1) US20160087487A1 (ko)
EP (1) EP2838183A4 (ko)
JP (1) JP5999610B2 (ko)
CN (1) CN104919683A (ko)
WO (1) WO2014200193A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461622B2 (en) * 2015-03-20 2019-10-29 Raymond F. Miller Power generator with DC motor and AC generator coupled with sprockets
US10615640B2 (en) * 2017-01-10 2020-04-07 Young B. Kim System and method for delivering electric power

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150974A (ja) * 1997-11-17 1999-06-02 Sony Corp 直交流変換装置
JP2009089591A (ja) * 2007-09-27 2009-04-23 Baumueller Nuernberg Gmbh テンショニングメカニズムのための制御式電動モータ装置
KR101003639B1 (ko) * 2009-01-08 2010-12-23 코스모스산업 주식회사 기어를 이용한 발전장치
KR101134649B1 (ko) * 2005-04-21 2012-04-09 주식회사 아덴 동력전환 장치와 이를 이용한 하이브리드 시스템
WO2012090737A1 (ja) * 2010-12-27 2012-07-05 三菱重工業株式会社 発電機及び発電設備
KR20130050180A (ko) 2011-11-07 2013-05-15 엘지이노텍 주식회사 직류-직류 컨버터

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172949A (ja) * 1983-03-22 1984-09-29 Shibaura Eng Works Co Ltd 複合ブラシレスサ−ボモ−タ
JPH10210732A (ja) * 1997-01-21 1998-08-07 Shunji Yamanaka 蓄電発電装置
FR2846162A3 (fr) * 1999-07-05 2004-04-23 Lydian Forestal Production d'electricite 220v ou 380v alternatif a partir d'une source 12v ou 24v continu
DE19951584B4 (de) * 1999-10-27 2005-09-15 Ballard Power Systems Ag Vorrichtung zum Erzeugen elektrischer Energie mit einer Brennstoffzelle, der Zusatzaggregate zum Starten und zum Betrieb zugeordnet sind und Verfahren zum Betrieb der Vorrichtung
JP2003061397A (ja) * 2001-08-16 2003-02-28 Shinyo Sangyo Kk 電気モーターで駆動の発電装置。
US20060087122A1 (en) * 2004-10-25 2006-04-27 Kent Saunders Sheffield Electric surplus power generator
KR100777982B1 (ko) * 2006-04-28 2007-11-21 주식회사 탑 엔지니어링 벨트식 이송 장치
US8097967B2 (en) * 2008-06-30 2012-01-17 Demand Energy Networks, Inc. Energy systems, energy devices, energy utilization methods, and energy transfer methods
JP2010172173A (ja) * 2009-01-23 2010-08-05 Shinyo Industries Co Ltd 電動機駆動の自家発電装置。
US8350502B2 (en) * 2009-07-09 2013-01-08 Rabal Clifford R Electromagnetic motor
US20110049892A1 (en) * 2009-08-06 2011-03-03 Jonathan Ross System For Efficient Energy Generation
US20110227438A1 (en) * 2010-03-16 2011-09-22 Hassnain Syed Z Self Generating Motor-Generator Assembly
JP2012100455A (ja) * 2010-11-03 2012-05-24 Unique Tape:Kk 電動・発電システム
JP5142172B1 (ja) * 2011-06-30 2013-02-13 株式会社Quan Japan 電力変換器
US8664782B1 (en) * 2013-03-15 2014-03-04 Johnny Kim Electric generator apparatus for motor vehicles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150974A (ja) * 1997-11-17 1999-06-02 Sony Corp 直交流変換装置
KR101134649B1 (ko) * 2005-04-21 2012-04-09 주식회사 아덴 동력전환 장치와 이를 이용한 하이브리드 시스템
JP2009089591A (ja) * 2007-09-27 2009-04-23 Baumueller Nuernberg Gmbh テンショニングメカニズムのための制御式電動モータ装置
KR101003639B1 (ko) * 2009-01-08 2010-12-23 코스모스산업 주식회사 기어를 이용한 발전장치
WO2012090737A1 (ja) * 2010-12-27 2012-07-05 三菱重工業株式会社 発電機及び発電設備
KR20130050180A (ko) 2011-11-07 2013-05-15 엘지이노텍 주식회사 직류-직류 컨버터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2838183A4

Also Published As

Publication number Publication date
EP2838183A1 (en) 2015-02-18
EP2838183A4 (en) 2016-04-20
US20160087487A1 (en) 2016-03-24
JP5999610B2 (ja) 2016-09-28
JP2015523051A (ja) 2015-08-06
CN104919683A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
US9812929B2 (en) Electric rotating machine
WO2017082704A1 (ko) 로터 조립체 및 이를 포함하는 모터
WO2019004572A1 (ko) 인버터 일체형 bldc 모터
WO2014137066A1 (ko) 자동 위치조정 무선충전기 및 그를 이용한 충전 방법
US20220123638A1 (en) Electric drive and method of operating the electric drive
WO2014200193A1 (ko) 양방향 전력 변환 장치
CN109767902A (zh) 一种大功率高频旋转电力电子变压器
WO2011004921A1 (ko) 전동 발전 장치를 구비하는 전기 차량 및 그 구동 방법
WO2020004820A1 (ko) 전기자동차용 순환 충전 시스템
WO2013176407A1 (ko) 발전장치
WO2013115498A1 (ko) 전기차의 구동전원공급장치 및 그 제어방법
WO2021194241A1 (ko) 다중 도전체 재질의 입력단을 포함하는 6상 구동모터
WO2015165012A1 (en) Brushless motor and system thereof
WO2020080869A1 (ko) 인버터 모듈 및 이를 포함하는 전동압축기
WO2019050382A2 (ko) 다중브러시와 분배기를 이용한 ac 또는 dc 발전장치
WO2023182603A1 (ko) 교류발전장치
WO2018124634A1 (ko) 로터 및 이를 포함하는 모터
WO2017116089A1 (ko) 유도 전동기의 회전자 구조
WO2013085124A1 (ko) 부하가 절감된 계자를 회전시켜 발전하는 발전기
WO2021201518A4 (ko) 비회전식 직류 발전기
WO2015072590A1 (ko) 휴대용 자가 발전기
WO2021194238A1 (ko) 병렬식 3상 입력을 위한 결선 구조를 포함하는 구동모터
WO2020189939A1 (ko) 모듈형 초경량 dc발전기
WO2024049093A1 (ko) 마찰 발전기용 슬림형 디스크 구동장치
WO2021230496A1 (ko) 비회전식 교류 발전장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015523041

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14384811

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014766091

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14766091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE