WO2019004572A1 - 인버터 일체형 bldc 모터 - Google Patents

인버터 일체형 bldc 모터 Download PDF

Info

Publication number
WO2019004572A1
WO2019004572A1 PCT/KR2018/004006 KR2018004006W WO2019004572A1 WO 2019004572 A1 WO2019004572 A1 WO 2019004572A1 KR 2018004006 W KR2018004006 W KR 2018004006W WO 2019004572 A1 WO2019004572 A1 WO 2019004572A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcb
pcb substrate
inverter housing
coupled
inverter
Prior art date
Application number
PCT/KR2018/004006
Other languages
English (en)
French (fr)
Inventor
임호빈
박희권
신현재
이재원
정경훈
조성국
김호연
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170083135A external-priority patent/KR102325134B1/ko
Priority claimed from KR1020170090177A external-priority patent/KR102368143B1/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to US16/464,758 priority Critical patent/US11146148B2/en
Priority to CN202010709080.3A priority patent/CN111725949B/zh
Priority to CN201880010694.3A priority patent/CN110352634B/zh
Publication of WO2019004572A1 publication Critical patent/WO2019004572A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/0094Structural association with other electrical or electronic devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0231Capacitors or dielectric substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/066Heatsink mounted on the surface of the printed circuit board [PCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09027Non-rectangular flat PCB, e.g. circular
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1009Electromotor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10295Metallic connector elements partly mounted in a hole of the PCB
    • H05K2201/10303Pin-in-hole mounted pins

Definitions

  • the present invention relates to an inverter-integrated type BLDC motor in which a BLDC motor and an inverter are integrated and compact.
  • the brushless direct current (BLDC) motor is a motor that eliminates brushes and commutators in a DC motor and has an electronic rectifier. It can prevent friction and wear, which is a disadvantage of conventional DC motors, and is relatively efficient.
  • the BLDC motor is used as a cooling fan rotation motor.
  • a conventional BLDC motor assembly for a low voltage cooling fan for an automobile is formed of an inverter-integrated BLDC motor in which a motor and an inverter section are integrally formed.
  • the inverter unit is provided with a PCB substrate having various electronic devices including switching elements for controlling the motors, and the switching devices mounted on the PCB substrate are electrically connected to the three-phase terminals of the coils constituting the stator of the motor .
  • the conventional inverter integrated type BLDC motor has a problem in that it is difficult to manufacture a PCB including a PCB substrate due to the type of switching elements and electronic elements mounted on the PCB substrate, the connection structure between the switching elements and the three- It has been difficult to form the inverter section compactly.
  • the inverter integrated type BLDC motor 1000 of the present invention is electrically connected to the drive coil 111 of the stator 110 and has a circumferential direction with respect to the central axis of the stator 110
  • a motor (100) comprising three-phase terminals (120) spaced apart from each other;
  • a PCB board 210 to which the motor 100 is coupled and the switching elements 220 are mounted.
  • the three-phase terminals 120 are coupled to the PCB board 210,
  • An inverter unit 200 electrically connected to the switching elements 220; And at least one of the switching elements 220 may be disposed radially inward with respect to the circumferential line L where the three-phase terminals 120 are disposed.
  • the inverter unit 200 includes an inverter housing 201 formed in a concave shape and having a motor 100 on the outer side and a PCB substrate 210 on the inner side, Through holes 201a passing between the motor 100 and the PCB substrate 210 are formed in the inverter housing 201 so that three-phase terminals 120, one side of which is fixedly coupled to the stator 110, Through the through hole 201a of the PCB 201 and the other side can be coupled to the PCB substrate 210.
  • the board PCB 210 is formed on the PCB 210 and a through hole 213 is formed in the PCB 210 near the PCB 212 so as to pass through both sides of the PCB 210,
  • the three-phase terminals 120 may be coupled to the board side PCB terminal 212 through the through holes 213 of the PCB substrate 210.
  • the plasma display panel further includes a capacitor 230 and an electromagnetic wave shielding filter 240 mounted on the PCB substrate 210 and disposed in an outer region of the PCB substrate 210.
  • the inverter housing 201 is formed with recessed recesses 201b on its inner surface so that the capacitor 230 and the electromagnetic wave shielding filter 240 can be brought into contact with the recess 201b.
  • the electromagnetic wave shielding filter 240 may include a core 241 in a cylindrical shape or a donut shape and a coil 242 wound around the core so as to alternately pass the outside and the inside of the core 241.
  • the capacitor 230 and the electromagnetic wave shielding filter 240 may be arranged side by side on one side of the outer region of the PCB substrate 210.
  • the three-phase terminals 120 may be fixedly coupled to the stator 110 and extend in the height direction of the stator 110 in the direction of the central axis of the stator 110.
  • the three-phase terminal 120 and the PCB-side PCB terminal 212 may be in surface contact with each other.
  • One side of the board side PCB terminal 212 is fixed to the PCB substrate 210 while being spaced apart from the through holes 213 formed in the PCB substrate 210 and the other side is formed with a through hole 213 formed in the PCB substrate 210, And the PCB-side PCB terminal 212 may be formed so that one side and the other side are connected to each other by a bent portion.
  • the three-phase terminal 120 and the board-side PCB terminal 212 may be arranged to be close to or in contact with each other, and then coupled and electrically connected using any one of soldering, laser welding, and electric resistance welding.
  • the inverter-integrated BLDC motor 1000 of the present invention includes a motor 100; An inverter housing (201) to which the motor (100) is coupled at one side; And a PCB substrate 210 coupled to the other side of the inverter housing 201 but separated from the inverter housing 201 except for the coupled parts and having electronic elements including the switching elements 220 mounted thereon. And a first radiating fin 251 may protrude from a side of the inverter housing 201 at a position corresponding to a portion coupled to the PCB 210.
  • a second radiating fin 252 may protrude from one side of the inverter housing 201 at a position corresponding to a portion where the PCB substrate 210 is separated from the inverter housing 201.
  • the surface area of the first radiating fin 251 may be larger than the surface area of the second radiating fin 252.
  • thermal grease 270 may be interposed between the inverter housing 201 and the PCB substrate 210 so as to be in contact with each other.
  • the capacitor 230 and the electromagnetic wave shielding filter 240 which are mounted on the PCB substrate 210 and are disposed in the outer region of the PCB substrate 210 and are in contact with the other side of the inverter housing 201 by thermal grease 270, And protrusions 201c may protrude from one side of the inverter housing 201 at positions corresponding to the capacitors 230 and the electromagnetic wave shielding filter 240.
  • a cooling hole 260 may be formed in the inverter housing 201 so as to pass through one side and the other side of the edge wall 201-2 surrounding the outer periphery of the PCB substrate 210 on which the electronic devices are mounted.
  • cooling holes 260 may be formed close to the first radiating fins 251.
  • the inverter housing 201 may further include a third radiating fin 253 protruding from the outer surface of the rim wall 201-2 surrounding the outer periphery of the PCB 210 on which the electronic devices are mounted.
  • a cooling hole 260 may be formed on the outer side of the rim wall 201-2 to penetrate one side and the other side and the third radiating fin 253 may be disposed adjacent to the cooling hole 260.
  • the inverter-integrated BLDC motor of the present invention is advantageous in that the inverter unit including the PCB substrate can be compactly formed due to the arrangement of the switching elements mounted on the PCB substrate of the inverter unit and the three-phase terminals of the stator coil, .
  • FIG. 1 is an assembled perspective view illustrating an inverter integrated type BLDC motor according to an embodiment of the present invention.
  • Fig. 2 is an exploded perspective view of the inverter integrated type BLDC motor of Fig. 1, exploded and turned upside down.
  • Fig. 1 is an exploded perspective view of the inverter integrated type BLDC motor of Fig. 1, exploded and turned upside down.
  • FIG 3 is an exploded perspective view of an inverter housing and a PCB substrate according to an embodiment of the present invention.
  • FIG. 4 is a top plan view of a PCB substrate according to an embodiment of the present invention.
  • FIG. 5 is a top plan view illustrating a state where a three-phase terminal is assembled to a PCB substrate according to an embodiment of the present invention.
  • FIG. 6 is a front cross-sectional view illustrating a state where a three-phase terminal is assembled to a PCB substrate according to an embodiment of the present invention.
  • FIG. 7 and 8 are an assembled perspective view and an exploded perspective view of an inverter integrated type BLDC motor according to an embodiment of the present invention.
  • FIG. 9 is a plan view showing the inside of an inverter unit of an inverter integrated type BLDC motor according to an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view illustrating the arrangement of the radiating fins of the inverter-integrated BLDC motor according to the embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of a portion of a BLDC motor with a built-in inverter, according to an embodiment of the present invention, in which a capacitor and an electromagnetic wave shielding filter are disposed.
  • FIG. 1 and 2 are an assembled perspective view and an exploded perspective view illustrating an inverter integrated type BLDC motor according to an embodiment of the present invention
  • FIG. 6 is a view illustrating a state where a three-phase terminal is assembled to a PCB substrate according to an embodiment of the present invention
  • the inverter integrated type BLDC motor 1000 of the present invention is electrically connected to the driving coil 111 of the stator 110, and is arranged to be spaced apart from each other along the circumferential direction with respect to the central axis of the stator 110
  • a motor (100) comprising three-phase terminals (120);
  • a PCB board 210 to which the motor 100 is coupled and the switching elements 220 are mounted.
  • the three-phase terminals 120 are coupled to the PCB board 210,
  • An inverter unit 200 electrically connected to the switching elements 220; And at least one of the switching elements 220 may be disposed radially inward with respect to the circumferential line L where the three-phase terminals 120 are disposed.
  • the motor 100 may be a brushless direct current motor.
  • the motor 100 may include a rotor 130 having a permanent magnet coupled to an inner circumferential surface of a casing formed in a concave container shape, And a stator 110 wound around the driving coil 111.
  • the stator 110 may include a stator 110 wound around the driving coil 111.
  • the rotor 130 is coupled to the center of the casing and the rotation axis of the rotor 130 is connected to the inverter housing 201 of the inverter unit 200, And the rotor 130 is rotatable in a state where the inverter housing 201 is fixed.
  • the stator 110 may include three-phase terminals 120 electrically connected to the driving coil 111.
  • the three-phase terminals 120 may be connected to each other along the circumferential direction with respect to the central axis of the stator 110, And can be spaced apart. In this case, the three-phase terminals 120 may be fixedly coupled to the stator 110 as shown in the figure, and the three-phase terminals 120 may be extended in the height direction of the stator 110 have.
  • the inverter unit 200 may include a PCB substrate 210 in an internal space defined by an inverter housing 201 formed in a concave container shape and a cover 202 coupled to the inverter housing 201 as shown in FIG.
  • switching elements 220 for controlling the power of the three phases by the motor 100 may be mounted on the PCB substrate 210.
  • the three-phase terminals 120 of the motor 100 are connected to the switching device 220 mounted on the PCB substrate 210 of the inverter unit 200, and the motor 100 is coupled to the outside of the inverter unit 200, As shown in FIG.
  • At least one of the switching elements 220 may be disposed radially inward with respect to the circumferential line L where the three-phase terminals 120 are disposed. 5, two switching elements 220 are disposed radially inwardly of a circumferential line L in which the three-phase terminals 120 are disposed with respect to the center axis of the stator 110. In other words, And the remaining five switching elements 220 may be disposed radially outwardly of the circumferential line L.
  • the arrangement of the switching elements 220 arranged radially outward than the three-phase terminals 120 is easy, and the radial distance from the central axis to the switching element 220 can be arranged relatively close to each other, (210) can be formed compactly. That is, an unnecessary outer area of the PCB substrate 210 in the width direction and the length direction can be reduced.
  • the size of the inverter housing 201 and the cover 202 accommodating the PCB substrate 210 can be reduced in accordance with the size reduction of the PCB substrate 210 so that the weight of the inverter unit 200 can be reduced, It is possible to form arc-shaped outer ribs on the outer side of the rim wall of the inverter housing 201 by using the space and to improve the strength reinforcing and heat radiation performance by forming ribs connecting between the ribs and the rim wall.
  • the inverter unit 200 includes an inverter housing 201 formed in a concave shape and having a motor 100 on the outer side and a PCB substrate 210 on the inner side, Through holes 201a passing between the motor 100 and the PCB substrate 210 are formed in the inverter housing 201 so that three-phase terminals 120, one side of which is fixedly coupled to the stator 110, Through the through hole 201a of the PCB 201 and the other side can be coupled to the PCB substrate 210.
  • the inverter unit 200 includes an inverter housing 201 in the form of a container recessed downward in the height direction and a cover 202 covering the upper side of the opened height of the inverter housing 201
  • the motor 100 can be coupled to the lower surface of the inverter housing 201 and the PCB substrate 210 can be provided in the inner space formed by the engagement of the inverter housing 201 and the cover 202 .
  • the inverter housing 201 located between the motor 100 and the PCB substrate 210 is provided with through holes 201a passing through the upper and lower surfaces thereof, and a three-phase terminal (120) may pass through the through hole (201a) of the inverter housing (201) and the other side may be coupled to the PCB substrate (210).
  • the inner side of the through holes 201a is sealed with the sealing material
  • the through holes 201a may be sealed by forming a sealing member on the through holes 201a.
  • the three-phase terminals 120 may be coupled to the PCB substrate 210 while inserting and inserting the PCB substrate 210 into the inverter housing 201.
  • the board PCB 210 is formed on the PCB 210 and a through hole 213 is formed in the PCB 210 near the PCB 212 so as to pass through both sides of the PCB 210,
  • the three-phase terminals 120 may be coupled to the board side PCB terminal 212 through the through holes 213 of the PCB substrate 210.
  • the PCB side PCB terminals 212 are protruded upward from the upper surface of the PCB substrate 210 and the through holes 213 passing through the upper and lower surfaces of the PCB substrate 210 close to the PCB side PCB 212, Can be formed.
  • Three PCB-side PCB terminals 212 can be formed so as to be coupled to each of the three three-phase terminals.
  • Through-holes 213 are formed in proximity to the respective PCB-side PCB terminals 212, Side PCB terminal 212 and a single through-hole 213 may be formed as a pair.
  • the three-phase terminal 120 may pass through the through-hole 213 of the PCB substrate 210 and be coupled to the PCB-side PCB terminal 212.
  • the three-phase terminal 120 and the board-side PCB terminal 212 may be coupled so as to be in surface-to-face contact with each other.
  • the three-phase terminal 120 and the PCB-side PCB terminal 212 are disposed to be close to or in contact with each other, .
  • One side of the board side PCB terminal 212 is fixed to the PCB substrate 210 by being spaced apart from the through holes 213 formed in the PCB substrate 210 and the other side is formed with a through hole 213 formed in the PCB substrate 210,
  • the PCB-side PCB terminal 212 may be formed so that one side and the other side of the PCB-side PCB terminal 212 are connected to each other by a bent portion.
  • the three-phase terminal 120 passing through the through hole 213 formed in the PCB substrate 210 can be easily in surface contact with and close to the PCB terminal 212 on the substrate side.
  • the plasma display panel further includes a capacitor 230 and an electromagnetic wave shielding filter 240 mounted on the PCB substrate 210 and disposed in an outer region of the PCB substrate 210.
  • the condenser 230 and the electromagnetic wave shielding filter 240 are relatively bulky, the connecting portion of the capacitor 230 and the connecting portion of the electromagnetic wave shielding filter 240 are coupled to the PCB substrate 210, The capacitor 230 and the electromagnetic wave shielding filter 240 are disposed in the outer region of the inverter 210 to make the inverter unit 200 compact.
  • the inverter housing 201 has recesses 201b formed on the inner side thereof so that the capacitor 230 and the electromagnetic wave shielding filter 240 can be brought into contact with the recess 201b.
  • the inverter unit 200 can be formed compactly also in the height direction.
  • the electromagnetic wave shielding filter 240 may include a core 241 in a cylindrical shape or a donut shape and a coil 242 wound around the core so as to alternately pass the outside and the inside of the core 241.
  • the electromagnetic wave shielding filter 240 is formed in a shape in which the coil 242 is wound so as to alternate between the outer side and the inner side of the cylindrical or donut-shaped core 241,
  • the width or length of the electromagnetic wave shielding filter can be made shorter than that of a conventional electromagnetic wave shielding filter formed by winding a coil in a spring shape and the electromagnetic wave shielding filter can be formed in a short height direction.
  • the capacitor 230 and the electromagnetic wave shielding filter 240 may be arranged side by side on one side of the outer region of the PCB substrate 210.
  • the inverter unit is formed compactly in the width direction can do.
  • the inverter unit 200 is formed with a portion opened in the width direction, and the connector block 400 can be coupled to seal the opened portion.
  • the connector block 400 is connected to the connector block 400 through the sealing part 600 and the connector block 400 is connected to the electric wire 500 by the sealing part 600.
  • the connector block 400 and the cover 202 can be sealed between the connector block 400 and the inverter housing 201 by the sealing part 600.
  • the sealing part 600 may be a sealing material such as silicone or a sealing member such as an O-ring.
  • a wire-side terminal 510 may be coupled to an end of the electric wires 500 arranged in the inverter unit 200 through the connector block 400.
  • a PCB side terminal 211 May be formed and electrically connected to the wire-side terminal 510.
  • FIG. 7 and 8 are exploded perspective views showing an inverter integrated type BLDC motor according to an embodiment of the present invention
  • FIG. 9 is a plan view showing the inside of an inverter unit of an inverter integrated type BLDC motor according to an embodiment of the present invention
  • an inverter integrated type BLDC motor 1000 includes a motor 100; An inverter housing (201) to which the motor (100) is coupled at one side; And a PCB substrate 210 coupled to the other side of the inverter housing 201 but separated from the inverter housing 201 except for the coupled parts and having electronic elements including the switching elements 220 mounted thereon. And a first radiating fin 251 may protrude from a side of the inverter housing 201 at a position corresponding to a portion coupled to the PCB 210.
  • the inverter-integrated BLDC motor 1000 of the present invention may be integrally formed by coupling the motor 100 and the inverter unit 200 together.
  • the motor 100 may be a brushless direct current motor.
  • the motor 100 may include a rotor 130 and a rotor 130 having permanent magnets coupled to an inner circumferential surface of a casing formed in a concave- And a stator 110 wound around the driving coil 111.
  • the stator 110 may include a stator 110 wound around the driving coil 111.
  • the rotor 130 is coupled to the center of the casing and the rotation axis of the rotor 130 is connected to the inverter housing 201 of the inverter unit 200, And the rotor 130 is rotatable in a state where the inverter housing 201 is fixed.
  • the stator 110 may include three-phase terminals 120 electrically connected to the driving coil 111.
  • the three-phase terminals 120 may be fixedly coupled to the stator 110, And the three-phase terminals 120 may extend in the height direction which is the direction of the center axis of the stator 110.
  • the inverter unit 200 may include a PCB substrate 210 in an internal space defined by an inverter housing 201 formed in a concave container shape and a cover 202 coupled to the inverter housing 201 as shown in FIG. And switching elements 220 for controlling the power of the three phases by the motor 100 may be mounted on the PCB substrate 210.
  • the motor 100 is coupled and fixed to the outside of the inverter housing 201.
  • the inverter housing 201 is formed with through holes 201a passing through between the motor 100 and the PCB substrate 210, Phase terminal 120 coupled to one end of the motor 100 through the through hole 201a of the inverter housing 201 and coupled to the PCB board 210 to connect the three- 120 may be electrically coupled to the switching elements 220 mounted on the PCB substrate 210.
  • a gate driver, a main control unit (MCU), a capacitor 230 and an EMI filter 240 such as a CM choke are connected to the PCB substrate 210 in addition to a switching element 220 such as a MosFET for controlling a motor. ) Can be mounted, and a lot of heat can be generated in the electronic devices during operation of the motor.
  • the inverter housing 201 can be extended in the height direction in the vicinity of the periphery of the base 201-1 arranged in parallel to the width direction and the longitudinal direction, and the inverter housing 201,
  • the motor 100 is coupled to the upper side of the base 201-1 and the PCB substrate 210 is coupled to the lower side of the base 201-1.
  • the PCB substrate 210 is partly supported by a supporting portion 201d protruding from the lower surface of the base 201-1 so that the PCB substrate 210 is spaced apart from the lower surface of the base 201-1 of the inverter housing 201
  • the PCB substrate 210 may be fixedly coupled to the supporting portion 201d by using the fastening means 280 or the like.
  • the PCB substrate 210 may be disposed apart from the inverter housing 201 except for a portion coupled to the inverter housing 201.
  • a first radiating fin 251 protrudes from the upper surface of the base 201-1 at one side of the inverter housing 201.
  • the first radiating fin 251 protrudes from the upper surface of the inverter housing 201,
  • the supporting portion 201d may be formed at a position corresponding to a position where the supporting portion 201d is supported.
  • the inverter integrated type BLDC motor of the present invention rapidly transfers heat generated from the electronic elements mounted on the PCB to the first radiating fins 251 through the supporting portion of the inverter housing 201, So that the heat dissipation performance of the inverter section can be improved.
  • a second radiating fin 252 may protrude from one side of the inverter housing 201 at a position corresponding to a portion where the PCB substrate 210 is separated from the inverter housing 201.
  • the second radiating fins 252 protrude upward from the upper surface of the base 201-1 which is one side of the inverter housing 201 and the second radiating fins 252 correspond to the PCB board 210 To the inside of the PCB substrate 210, which is a position where the PCB substrate 210 is located.
  • the heat generated in the electronic devices including the switching elements 220 mounted on the inner circumference of the PCB substrate 210 is dissipated through the second heat dissipation fins 252 so that the heat generated by the first heat dissipation fins 251
  • the inverter unit 200 can be quickly cooled using the second radiating fins 252.
  • the surface area of the first radiating fin 251 may be larger than the surface area of the second radiating fin 252.
  • the surface area of the first radiating fin 251 may be larger than the surface area of the second radiating fin 252 so that the heat of the PCB substrate 210 can be dissipated quickly to the outside through the first radiating fin 251.
  • the surface area of one first radiating fin 251 may be larger than the surface area of one second radiating fin 252.
  • the first radiating fin 251 and the second radiating fin 252 The outer diameter D of the first radiating fin 251 is larger than the outer diameter D of the second radiating fin 252 when the first radiating fin 251 is formed in a cylindrical shape and protruded upward from the upper surface of the base 201-1 of the inverter housing 201 to the same height d, respectively.
  • thermal grease 270 may be interposed between the inverter housing 201 and the PCB substrate 210 so as to be in contact with each other.
  • the PCB substrate 210 is coupled to the inverter housing 201 on the inverter housing 201, The heat of the PCB substrate 210 is easily conducted to the inverter housing 201 through the thermal grease 270 so that the thermal grease 270 is filled between the lower surface and the PCB substrate 210, The heat dissipation can be performed quickly through the radiating fins 252.
  • the capacitor 230 and the electromagnetic wave shielding filter 240 which are mounted on the PCB substrate 210 and are disposed in the outer region of the PCB substrate 210 and are in contact with the other side of the inverter housing 201 by thermal grease 270, And protrusions 201c may protrude from one side of the inverter housing 201 at positions corresponding to the capacitors 230 and the electromagnetic wave shielding filter 240.
  • a capacitor 230 and a main body of the electromagnetic wave shielding filter 240 may be disposed on a peripheral portion of the PCB substrate 210.
  • the housing groove 201b is recessed in the lower surface of the base 201-1, which is the inner surface of the inverter housing 201, and the capacitor 230 and the electromagnetic wave shielding filter 240 can be brought into contact with the catch groove 201b.
  • the capacitor 230 and the electromagnetic wave shielding filter 240 are placed, and the base 230 at the position corresponding to the capacitor 230 and the electromagnetic wave shielding filter 240
  • the protrusion 201c protrudes upward from the upper surface of the inverter 200 so that the heat generated from the capacitor 230 and the electromagnetic wave shielding filter 240 can be easily transferred to the outside of the inverter 200 through the inverter housing 201 It is possible to radiate heat.
  • a cooling hole 260 may be formed in the inverter housing 201 so as to pass through one side and the other side of the edge wall 201-2 surrounding the outer periphery of the PCB substrate 210 on which the electronic devices are mounted.
  • the inverter housing 201 is formed with the rim wall 201-2 in the height direction lower side from the lower surface of the base 201-1, and the PCB 201-2 is formed in the inner space surrounded by the rim wall 201-2.
  • the substrate 210 can be accommodated and the cooling holes 260 can be formed to penetrate the upper and lower surfaces of the edge portion of the base 201-1 to the outer portion of the rim wall 201-2. Accordingly, the heat dissipation performance of the inverter unit 200 can be further improved by the cooling holes 260.
  • a plurality of cooling holes 260 may be formed along the inner periphery of the base 201-1 of the inverter housing 201.
  • the outer periphery of the base 201-1 may be formed at a portion where the cooling holes 260 are formed
  • connection ribs 262 extending radially inwardly from the outer ribs 261 and the outer ribs 261 to form the heat dissipation area.
  • the outer ribs 261 or the connecting ribs 262 may extend downward from the lower surface of the base 201-1 and may be coupled to the rim wall 201-2, It is possible to enhance the strength and heat radiation performance.
  • the cooling hole 260 is formed in the edge portion of the base 201-1 and is formed in the vicinity of the first radiating fin 251 so that the heat dissipation performance of the first radiating fin 251 by the cooling hole 260 Can be further improved.
  • the inverter housing 201 may further include a third radiating fin 253 protruding from the outer surface of the rim wall 201-2 surrounding the outer periphery of the PCB 210 on which the electronic devices are mounted. That is, the third radiating fin 253 is formed to protrude from the outer surface of the rim 201-2 of the inverter housing 201, so that the heat radiation performance of the inverter housing 201 can be improved.
  • the third radiating fin 253 is disposed close to the cooling hole 260, so that the cooling performance can be improved.
  • the third radiating fin 253 may be integrally formed to be connected to the outer rib 261 or the connecting rib 262.
  • the third radiating fin 253 may be formed integrally with the outer rib 261 or the connecting rib 262,
  • the radiating fins 253 may be formed and the third radiating fins 253 may be formed in various forms.
  • 200 inverter unit
  • 201 inverter housing
  • 201-1 base
  • 201c projecting portion
  • 201d supporting portion
  • 202 cover
  • 210 PCB substrate
  • 241 core, 242: coil, 251: first radiating fin, 252: second radiating fin
  • connection rib connection rib
  • 270 thermal grease
  • 280 fastening means

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Inverter Devices (AREA)

Abstract

본 발명은 모터와 인버터부가 일체로 형성된 인버터 일체형 BLDC 모터에 관한 것으로, 인버터부의 PCB 기판에 장착된 스위칭 소자들과 스테이터 코일의 3상 터미널들의 배치를 개선하여, PCB 기판을 포함한 인버터부를 컴팩트하게 형성할 수 있는 인버터 일체형 BLDC 모터에 관한 것이다.

Description

인버터 일체형 BLDC 모터
본 발명은 BLDC 모터와 인버터가 일체형으로 컴팩트하게 구성된 인버터 일체형 BLDC 모터에 관한 것이다.
BLDC(Brushless direct current) 모터는 DC 모터에서 브러시와 정류자를 없애고 전자적인 정류 기구를 설치한 모터로서, 기존의 직류모터가 갖는 단점인 마찰 및 마모를 방지할 수 있고 상대적으로 효율이 높아 최근 하이브리드 자동차의 경우에는 냉각팬 회전용 모터로 BLDC 모터를 적용하는 추세이다.
그리고 종래의 자동차용 저전압 쿨링팬의 BLDC 모터 어셈블리는 모터와 인버터부가 일체형으로 구성된 인버터 일체형 BLDC 모터로 형성된다. 이때, 인버터부에는 모터의 제어를 위한 스위칭 소자들을 포함하여 다양한 전자 소자들이 장착된 PCB 기판이 구비되며, PCB 기판에 장착된 스위칭 소자들은 모터의 스테이터를 구성하는 코일의 3상 터미널과 전기적으로 연결되도록 구성된다.
이에 따라 종래의 인버터 일체형 BLDC 모터는 PCB 기판에 장착된 스위칭 소자들 및 전자 소자들의 형태, 스위칭 소자들과 스테이터 코일의 3상 터미널과의 연결 구조 및 전자 소자들의 방열 구조 등으로 인해 PCB 기판을 포함한 인버터부를 컴팩트하게 형성하는데 어려움이 있었다.
[선행기술문헌] [특허문헌] JP 2016-082735 A (2016.05.16)
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 인버터부의 PCB 기판에 장착된 스위칭 소자들과 스테이터 코일의 3상 터미널들의 배치를 개선하여, PCB 기판을 포함한 인버터부를 컴팩트하게 형성할 수 있는 인버터 일체형 BLDC 모터를 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 인버터 일체형 BLDC 모터(1000)는, 스테이터(110)의 구동코일(111)과 전기적으로 연결되며, 상기 스테이터(110)의 중심축을 기준으로 원주방향을 따라 서로 이격되어 배치된 3상 터미널(120)들을 포함하는 모터(100); 및 상기 모터(100)가 결합되며, 스위칭 소자(220)들이 장착된 PCB 기판(210)이 구비되어, 상기 3상 터미널(120)들이 PCB 기판(210)에 결합되며 상기 3상 터미널(120)들이 스위칭 소자(220)들과 전기적으로 연결된 인버터부(200); 를 포함하여 이루어지되, 상기 스위칭 소자(220)들 중 하나 이상은 상기 3상 터미널(120)들이 배치되는 원주라인(L)을 기준으로 반경방향 내측에 배치될 수 있다.
또한, 상기 인버터부(200)는, 오목하게 용기 형태로 형성되어 외측에 모터(100)가 결합되고 내측에 PCB 기판(210)이 구비된 인버터 하우징(201)을 포함하여 이루어지며, 상기 인버터 하우징(201)에는 모터(100)와 PCB 기판(210)의 사이를 관통하는 관통공(201a)들이 형성되어, 상기 스테이터(110)에 일측이 결합되어 고정된 3상 터미널(120)들이 상기 인버터 하우징(201)의 관통공(201a)을 통과하여 타측이 상기 PCB 기판(210)에 결합될 수 있다.
또한, 상기 PCB 기판(210)에는 기판측 PCB 터미널(212)들이 형성되며, 상기 기판측 PCB 터미널(212)에 근접하여 PCB 기판(210)의 양면을 관통하는 관통공(213)이 형성되어, 상기 3상 터미널(120)들이 PCB 기판(210)의 관통공(213)을 통과하여 기판측 PCB 터미널(212)과 결합될 수 있다.
또한, 상기 PCB 기판(210)에 장착되되 PCB 기판(210)의 외부 영역에 배치된 커패시터(230) 및 전자파 차단 필터(240)를 더 포함하여 이루어질 수 있다.
또한, 상기 인버터 하우징(201)은 내측면에서 오목하게 안치홈(201b)들이 형성되어, 상기 커패시터(230) 및 전자파 차단 필터(240)가 상기 안치홈(201b)에 접촉되어 안치될 수 있다.
또한, 상기 전자파 차단 필터(240)는 원통형태 또는 도너츠 형태의 코어(241) 및 상기 코어(241)의 외측과 내측을 번갈아 통과하도록 코어에 권취된 코일(242)을 포함하여 이루어질 수 있다.
또한, 상기 커패시터(230) 및 전자파 차단 필터(240)는 PCB 기판(210)의 외부 영역 일측에 나란하게 배열될 수 있다.
또한, 상기 3상 터미널(120)들은 일측이 스테이터(110)에 결합되어 고정되며, 상기 3상 터미널(120)들은 스테이터(110)의 중심축 방향인 높이방향으로 연장 형성될 수 있다.
또한, 상기 3상 터미널(120)과 기판측 PCB 터미널(212)은 서로 면접촉되어 결합될 수 있다.
또한, 상기 기판측 PCB 터미널(212)은 일측이 PCB 기판(210)에 형성된 관통공(213)에서 이격되어 PCB 기판(210)에 고정되고 타측은 PCB 기판(210)에 형성된 관통공(213)과 대응되는 위치에 배치되며, 상기 기판측 PCB 터미널(212)은 일측과 타측이 굴곡부에 의해 서로 연결된 형태로 형성될 수 있다.
또한, 상기 3상 터미널(120)과 기판측 PCB 터미널(212)은 서로 마주보도록 근접하거나 접촉되도록 배치된 후 납땜, 레이저 용접 및 전기저항용접 중 어느 하나를 이용해 결합 및 전기적으로 연결될 수 있다.
그리고 본 발명의 인버터 일체형 BLDC 모터(1000)는, 모터(100); 일측에 상기 모터(100)가 결합되는 인버터 하우징(201); 및 상기 인버터 하우징(201)의 타측에 결합되되 결합된 부분을 제외한 나머지 부분이 인버터 하우징(201)과 이격되어 배치되며, 스위칭 소자(220)들을 포함한 전자 소자들이 장착된 PCB 기판(210); 을 포함하여 이루어지며, 상기 인버터 하우징(201)의 일측에는 상기 PCB 기판(210)과 결합된 부분에 대응되는 위치에서 제1방열핀(251)이 돌출 형성될 수 있다.
또한, 상기 인버터 하우징(201)의 일측에는 PCB 기판(210)이 인버터 하우징(201)과 이격된 부분에 대응되는 위치에서 제2방열핀(252)이 돌출 형성될 수 있다.
또한, 상기 제1방열핀(251)의 표면적이 제2방열핀(252)의 표면적보다 크게 형성될 수 있다.
또한, 상기 인버터 하우징(201)과 PCB 기판(210)이 이격된 사이에는 서멀 그리스(270)가 개재되어 접촉될 수 있다.
또한, 상기 PCB 기판(210)에 장착되되 PCB 기판(210)의 외부 영역에 배치되어 상기 인버터 하우징(201)의 타측에 서멀 그리스(270)에 의해 접촉된 커패시터(230) 및 전자파 차단 필터(240)를 더 포함하여 이루어지며, 상기 인버터 하우징(201)의 일측에는 커패시터(230) 및 전자파 차단 필터(240)에 대응되는 위치에서 돌출부(201c)가 돌출 형성될 수 있다.
또한, 상기 인버터 하우징(201)에는 전자 소자들이 장착된 PCB 기판(210)의 외곽을 둘러싸는 테두리벽(201-2) 바깥쪽에 일측과 타측을 관통하는 냉각홀(260)이 형성될 수 있다.
또한, 상기 냉각홀(260)은 제1방열핀(251)에 근접하여 형성될 수 있다.
또한, 상기 인버터 하우징(201)에는 전자 소자들이 장착된 PCB 기판(210)의 외곽을 둘러싸는 테두리벽(201-2)의 외측면에서 제3방열핀(253)이 돌출 형성될 수 있다.
또한, 상기 테두리벽(201-2)의 바깥쪽에는 일측과 타측을 관통하는 냉각홀(260)이 형성되며, 상기 제3방열핀(253)은 냉각홀(260)에 근접하여 배치될 수 있다.
본 발명의 인버터 일체형 BLDC 모터는 인버터부의 PCB 기판에 장착된 스위칭 소자들과 스테이터 코일의 3상 터미널들의 배치로 인해 PCB 기판을 포함한 인버터부를 컴팩트하게 형성할 수 있으며 중량을 저감시킬 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터를 나타낸 조립사시도.
도 2는 도 1의 인버터 일체형 BLDC 모터를 뒤집어서 분해한 분해사시도.
도 3은 본 발명의 일 실시예에 따른 인버터 하우징 및 PCB 기판을 나타낸 분해사시도.
도 4는 본 발명의 일 실시예에 따른 PCB 기판을 나타낸 상측 평면도.
도 5는 본 발명의 일 실시예에 따른 3상 터미널이 PCB 기판에 조립된 상태를 나타낸 상측 평면도.
도 6은 본 발명의 일 실시예에 따른 3상 터미널이 PCB 기판에 조립된 상태를 나타낸 정면 단면도.
도 7 및 도 8은 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터를 나타낸 조립사시도 및 분해사시도.
도 9는 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터의 인버터부 내부를 나타낸 평면도.
도 10은 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터의 방열핀들의 배치를 나타낸 단면 개략도.
도 11은 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터의 커패시터 및 전자파 차단 필터가 배치된 부분의 단면 개략도.
이하, 상기한 바와 같은 구성을 갖는 본 발명의 인버터 일체형 BLDC 모터를 첨부된 도면을 참고하여 상세하게 설명한다.
도 1 및 도 2는 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터를 나타낸 조립사시도 및 분해사시도이며, 도 6은 본 발명의 일 실시예에 따른 3상 터미널이 PCB 기판에 조립된 상태를 나타낸 정면 단면도이다.
도시된 바와 같이 본 발명의 인버터 일체형 BLDC 모터(1000)는, 스테이터(110)의 구동코일(111)과 전기적으로 연결되며, 상기 스테이터(110)의 중심축을 기준으로 원주방향을 따라 서로 이격되어 배치된 3상 터미널(120)들을 포함하는 모터(100); 및 상기 모터(100)가 결합되며, 스위칭 소자(220)들이 장착된 PCB 기판(210)이 구비되어, 상기 3상 터미널(120)들이 PCB 기판(210)에 결합되며 상기 3상 터미널(120)들이 스위칭 소자(220)들과 전기적으로 연결된 인버터부(200); 를 포함하여 이루어지되, 상기 스위칭 소자(220)들 중 하나 이상은 상기 3상 터미널(120)들이 배치되는 원주라인(L)을 기준으로 반경방향 내측에 배치될 수 있다.
우선, 모터(100)는 BLDC 모터(brushless direct current motor)가 될 수 있으며, 일례로 모터(100)는 오목한 용기 형태로 형성된 케이싱의 내측 둘레면에 영구자석이 결합된 로터(130) 및 로터(130)의 내측에 이격되어 배치되며 구동코일(111)이 권취된 스테이터(110)를 포함하여 이루어질 수 있다. 그리고 스테이터(110)는 이하에서 설명할 인버터부(200)의 인버터 하우징(201) 외측에 결합되어 고정될 수 있으며, 로터(130)는 케이싱의 중앙에 회전축이 결합되고 회전축이 인버터 하우징(201)에 베어링으로 결합되어 인버터 하우징(201)이 고정된 상태에서 로터(130)가 회전 가능하도록 구성될 수 있다. 또한, 스테이터(110)는 구동코일(111)과 전기적으로 연결된 3상 터미널(120)들을 포함하여 이루어질 수 있으며, 3상 터미널(120)들은 스테이터(110)의 중심축을 기준으로 원주방향을 따라 서로 이격되어 배치될 수 있다. 이때, 3상 터미널(120)들은 도시된 바와 같이 일측이 스테이터(110)에 결합되어 고정될 수 있으며, 3상 터미널(120)들은 스테이터(110)의 중심축 방향인 높이방향으로 연장 형성될 수 있다.
인버터부(200)는 일례로 도시된 바와 같이 오목한 용기 형태로 형성된 인버터 하우징(201) 및 인버터 하우징(201)에 결합된 커버(202)에 의해 형성된 내부 공간에 PCB 기판(210)이 구비될 수 있으며, PCB 기판(210)에는 모터(100)로 3상의 전원을 제어하여 공급하기 위한 스위칭 소자(220)들이 장착될 수 있다. 그리고 인버터부(200)의 외측에 모터(100)가 결합되어 고정되며, 모터(100)의 3상 터미널(120)들이 인버터부(200)의 PCB 기판(210)에 장착된 스위칭 소자(220)들과 전기적으로 연결되도록 결합될 수 있다.
여기에서 상기 스위칭 소자(220)들 중 하나 이상은 상기 3상 터미널(120)들이 배치되는 원주라인(L)을 기준으로 반경방향 내측에 배치될 수 있다. 일례로 도 5를 참조하면 도시된 바와 같이 스테이터(110)의 중심축을 기준으로 하여 3상 터미널(120)들이 배치되는 원주라인(L)보다 반경방향으로 내측에 2개의 스위칭 소자(220)가 배치되고 나머지 5개의 스위칭 소자(220)들은 원주라인(L)보다 반경방향으로 외측에 배치될 수 있다.
그리하여 반경방향으로 3상 터미널(120)들보다 외측에 배치된 스위칭 소자(220)들의 배치가 용이하며, 중심축으로부터 스위칭 소자(220)까지의 반경방향 거리가 상대적으로 가깝게 배치될 수 있으므로 PCB 기판(210)을 컴팩트하게 형성할 수 있다. 즉, 폭방향 및 길이방향으로 PCB 기판(210)의 불필요한 외곽 영역을 줄일 수 있다. 또한, PCB 기판(210)의 크기 축소에 따라 PCB 기판(210)이 수용되는 인버터 하우징(201) 및 커버(202)의 크기도 줄일 수 있어 인버터부(200)의 중량을 감소시킬 수 있으며, 줄어든 공간을 이용해 인버터 하우징(201)의 테두리벽 바깥쪽에 호형의 외곽 리브를 형성하고 리브와 테두리벽 사이를 연결하는 리브를 형성하여 강도 보강 및 방열 성능을 향상시킬 수도 있다.
또한, 상기 인버터부(200)는, 오목하게 용기 형태로 형성되어 외측에 모터(100)가 결합되고 내측에 PCB 기판(210)이 구비된 인버터 하우징(201)을 포함하여 이루어지며, 상기 인버터 하우징(201)에는 모터(100)와 PCB 기판(210)의 사이를 관통하는 관통공(201a)들이 형성되어, 상기 스테이터(110)에 일측이 결합되어 고정된 3상 터미널(120)들이 상기 인버터 하우징(201)의 관통공(201a)을 통과하여 타측이 상기 PCB 기판(210)에 결합될 수 있다.
즉, 도면을 참조하면 인버터부(200)는 높이방향 하측으로 오목하게 형성된 용기 형태의 인버터 하우징(201) 및 인버터 하우징(201)의 개방된 높이방향 상측을 덮어 막는 커버(202)를 포함하여 이루어질 수 있고, 인버터 하우징(201)의 외부 하면에 모터(100)가 결합될 수 있으며, 인버터 하우징(201)과 커버(202)의 결합에 의해 형성된 내부 공간에 PCB 기판(210)이 구비될 수 있다. 이때, 모터(100)와 PCB 기판(210)의 사이에 위치하는 인버터 하우징(201)에는 상하면을 관통하는 관통공(201a)들이 형성되어, 스테이터(110)에 일측이 결합되어 고정된 3상 터미널(120)들이 인버터 하우징(201)의 관통공(201a)을 통과하여 타측이 PCB 기판(210)에 결합될 수 있다. 여기에서 3상 터미널(120)들이 인버터 하우징(201)의 관통공(201a)을 통과하도록 모터(100)를 인버터 하우징(201)에 결합한 후 관통공(201a)들의 내측을 밀폐재를 이용해 밀폐하거나 관통공(201a)에 실링부재를 형성하여 관통공(201a)들이 밀폐되도록 할 수 있다. 이후 인버터 하우징(201)의 내측에 PCB 기판(210)을 삽입하여 결합하면서 PCB 기판(210)에 3상 터미널(120)들이 결합되도록 할 수 있다.
그리하여 모터(100)의 3상 터미널(120)과 인버터부(200)의 PCB 기판(210)과의 결합 및 전기적인 연결을 용이하게 할 수 있다.
또한, 상기 PCB 기판(210)에는 기판측 PCB 터미널(212)들이 형성되며, 상기 기판측 PCB 터미널(212)에 근접하여 PCB 기판(210)의 양면을 관통하는 관통공(213)이 형성되어, 상기 3상 터미널(120)들이 PCB 기판(210)의 관통공(213)을 통과하여 기판측 PCB 터미널(212)과 결합될 수 있다.
즉, PCB 기판(210)의 상면에서 기판측 PCB 터미널(212)들이 상측으로 돌출 형성되며, 상기 기판측 PCB 터미널(212)에 근접하여 PCB 기판(210)의 상하면을 관통하는 관통공(213)이 형성될 수 있다. 그리고 3개의 3상 터미널 각각에 결합될 수 있도록 3개의 기판측 PCB 터미널(212)이 형성될 수 있으며, 각각의 기판측 PCB 터미널(212)에 근접하여 관통공(213)이 형성되어 하나의 기판측 PCB 터미널(212)과 하나의 관통공(213)이 한 조를 이루어 형성될 수 있다. 그리하여 3상 터미널(120)이 PCB 기판(210)의 관통공(213)을 통과하여 기판측 PCB 터미널(212)과 결합될 수 있다. 이때, 3상 터미널(120)과 기판측 PCB 터미널(212)은 서로 면접촉 하도록 결합될 수 있으며, 서로 마주보도록 근접하거나 접촉되도록 배치된 후 납땜, 레이저 용접 또는 전기저항용접 등을 이용해 결합 및 전기적으로 연결될 수 있다. 또한, 기판측 PCB 터미널(212)은 일측이 PCB 기판(210)에 형성된 관통공(213)에서 이격되어 PCB 기판(210)에 고정되고 타측은 PCB 기판(210)에 형성된 관통공(213)과 대응되는 위치에 배치되며, 상기 기판측 PCB 터미널(212)은 일측과 타측이 굴곡부에 의해 서로 연결된 형태로 형성될 수 있다. 그리하여 PCB 기판(210)에 형성된 관통공(213)을 통과한 3상 터미널(120)이 기판측 PCB 터미널(212)과 면접촉 및 밀착이 용이할 수 있다.
또한, 상기 PCB 기판(210)에 장착되되 PCB 기판(210)의 외부 영역에 배치된 커패시터(230) 및 전자파 차단 필터(240)를 더 포함하여 이루어질 수 있다.
즉, 커패시터(230) 및 전자파 차단 필터(240)는 상대적으로 부피가 크기 때문에, 커패시터(230)의 연결부 및 전자파 차단 필터(240)의 연결부가 PCB 기판(210)에 결합되어 장착되어 있되 PCB 기판(210)의 외부 영역에 커패시터(230) 및 전자파 차단 필터(240)가 배치되어 인버터부(200)를 컴팩트하게 구성할 수 있다.
이때, 상기 인버터 하우징(201)은 내측면에서 오목하게 안치홈(201b)들이 형성되어, 상기 커패시터(230) 및 전자파 차단 필터(240)가 상기 안치홈(201b)에 접촉되어 안치될 수 있다. 그리하여 높이방향으로도 인버터부(200)가 컴팩트하게 형성될 수 있다.
또한, 상기 전자파 차단 필터(240)는 원통형태 또는 도너츠 형태의 코어(241) 및 상기 코어(241)의 외측과 내측을 번갈아 통과하도록 코어에 권취된 코일(242)을 포함하여 이루어질 수 있다.
즉, 도 3 내지 도 5와 같이 전자파 차단 필터(240) 원통형 또는 도너츠형 코어(241)의 외측과 내측을 번갈아 통과하도록 코일(242)이 권취된 형태로 형성되어, 원기둥형의 코어 외주면에 코일스프링 형태로 코일이 권취되어 형성된 기존의 전자파 차단 필터에 비해 폭 또는 길이를 짧게 형성할 수 있으며 높이방향으로도 짧게 형성될 수 있어, 인버터부를 컴팩트하게 형성할 수 있다.
또한, 상기 커패시터(230) 및 전자파 차단 필터(240)는 PCB 기판(210)의 외부 영역 일측에 나란하게 배열될 수 있다.
즉, 도시된 바와 같이 커패시터(230) 및 전자파 차단 필터(240)가 폭방향을 따라 나란하게 배치되었을 때, 상기한 바와 같이 형성된 전자파 차단 필터(240)를 적용하면 폭방향으로 인버터부를 컴팩트하게 형성할 수 있다.
그리고 인버터부(200)에는 폭방향으로 개방된 부분이 형성되어, 개방된 부분을 막아 밀폐하도록 커넥터 블록(400)이 결합될 수 있다. 이때, 커넥터 블록(400)에는 전선(500)들이 관통하여 결합되어 있으며, 커넥터 블록(400)에는 밀폐부(600)가 결합되어 밀폐부(600)에 의해 커넥터 블록(400)과 전선(500)의 사이가 밀폐될 수 있고 밀폐부(600)에 의해 커넥터 블록(400)과 인버터 하우징(201)의 사이 및 커넥터 블록(400)과 커버(202)의 사이가 밀폐될 수 있다. 이때, 밀폐부(600)는 실리콘 등의 밀폐재이거나 오링 등의 실링부재일 수 있다.
또한, 커넥터 블록(400)을 관통하여 인버터부(200)의 내부에 배치된 전선(500)들의 단부에는 전선측 터미널(510)이 결합될 수 있으며, PCB 기판(210)에는 기판측 터미널(211)이 형성되어 전선측 터미널(510)과 결합되어 전기적으로 연결될 수 있다.
도 7 및 도 8은 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터를 나타낸 분해사시도이고, 도 9는 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터의 인버터부 내부를 나타낸 평면도이며, 도 10은 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터의 방열핀들의 배치를 나타낸 단면 개략도이다.
도시된 바와 같이 본 발명의 일 실시예에 따른 인버터 일체형 BLDC 모터(1000)는, 모터(100); 일측에 상기 모터(100)가 결합되는 인버터 하우징(201); 및 상기 인버터 하우징(201)의 타측에 결합되되 결합된 부분을 제외한 나머지 부분이 인버터 하우징(201)과 이격되어 배치되며, 스위칭 소자(220)들을 포함한 전자 소자들이 장착된 PCB 기판(210); 을 포함하여 이루어지며, 상기 인버터 하우징(201)의 일측에는 상기 PCB 기판(210)과 결합된 부분에 대응되는 위치에서 제1방열핀(251)이 돌출 형성될 수 있다.
우선, 본 발명의 인버터 일체형 BLDC 모터(1000)는 모터(100)와 인버터부(200)가 결합되어 일체형으로 구성될 수 있다.
모터(100)는 BLDC 모터(brushless direct current motor)가 될 수 있으며, 일례로 모터(100)는 오목한 용기 형태로 형성된 케이싱의 내측 둘레면에 영구자석이 결합된 로터(130) 및 로터(130)의 내측에 이격되어 배치되며 구동코일(111)이 권취된 스테이터(110)를 포함하여 이루어질 수 있다. 그리고 스테이터(110)는 이하에서 설명할 인버터부(200)의 인버터 하우징(201) 외측에 결합되어 고정될 수 있으며, 로터(130)는 케이싱의 중앙에 회전축이 결합되고 회전축이 인버터 하우징(201)에 베어링으로 결합되어 인버터 하우징(201)이 고정된 상태에서 로터(130)가 회전 가능하도록 구성될 수 있다. 또한, 스테이터(110)는 구동코일(111)과 전기적으로 연결된 3상 터미널(120)들을 포함하여 이루어질 수 있으며, 3상 터미널(120)들은 도시된 바와 같이 일측이 스테이터(110)에 결합되어 고정될 수 있으며, 3상 터미널(120)들은 스테이터(110)의 중심축 방향인 높이방향으로 연장 형성될 수 있다.
인버터부(200)는 일례로 도시된 바와 같이 오목한 용기 형태로 형성된 인버터 하우징(201) 및 인버터 하우징(201)에 결합된 커버(202)에 의해 형성된 내부 공간에 PCB 기판(210)이 구비될 수 있으며, PCB 기판(210)에는 모터(100)로 3상의 전원을 제어하여 공급하기 위한 스위칭 소자(220)들이 장착될 수 있다. 그리고 인버터 하우징(201)의 외측에 모터(100)가 결합되어 고정되며, 인버터 하우징(201)에는 모터(100)와 PCB 기판(210)의 사이를 관통하는 관통공(201a)들이 형성되어 스테이터(110)에 일측이 결합되어 고정된 3상 터미널(120)들이 인버터 하우징(201)의 관통공(201a)을 통과하여 타측이 PCB 기판(210)에 결합되어, 모터(100)의 3상 터미널(120)들이 PCB 기판(210)에 장착된 스위칭 소자(220)들과 전기적으로 연결되도록 결합될 수 있다. 또한, PCB 기판(210)에는 모터의 제어를 위해 MosFET과 같은 스위칭 소자(220) 이외에 게이트 드라이버(Gate Driver), 메인제어유닛(MCU), 커패시터(230) 및 CM choke와 같은 전자파 차단 필터(240) 등의 다양한 전자 소자들이 장착될 수 있으며, 모터의 작동 시 전자 소자들에서는 많은 열이 발생할 수 있다.
여기에서 인버터 하우징(201)은 폭방향 및 길이방향에 나란하게 배치된 베이스(201-1)의 둘레 부근에서 높이방향으로 테두리벽(201-2)이 연장 형성될 수 있으며, 인버터 하우징(201)의 일측인 베이스(201-1)의 상측에 모터(100)가 결합되고 타측인 베이스(201-1)의 하측에 PCB 기판(210)이 결합될 수 있다. 그리고 PCB 기판(210)은 베이스(201-1)의 하면에서 돌출 형성된 지지부(201d)에 일부분이 지지되어 인버터 하우징(201)의 베이스(201-1) 하면에서 PCB 기판(210)이 이격되어 배치될 수 있으며, PCB 기판(210)은 체결수단(280) 등을 이용해 지지부(201d) 부분에 결합되어 고정될 수 있다. 그리하여 PCB 기판(210)은 인버터 하우징(201)에 결합되는 부분을 제외한 나머지 부분이 인버터 하우징(201)과 이격되어 배치될 수 있다. 또한, 인버터 하우징(201)의 일측인 베이스(201-1)의 상면에서 상측으로 제1방열핀(251)이 돌출 형성되되, 제1방열핀(251)은 PCB 기판(210)이 인버터 하우징(201)에 지지되어 결합된 부분인 지지부(201d)가 형성된 위치에 대응되는 위치에 형성될 수 있다.
그리하여 본 발명의 인버터 일체형 BLDC 모터는 PCB 기판에 장착된 전자 소자들에서 발생되는 열이 PCB 기판(210)과 직접 밀착되어 결합된 인버터 하우징(201)의 지지부를 통해 제1방열핀(251)으로 빠르게 전도되어 외부로 방열이 이루어질 수 있어, 인버터부의 방열 성능이 향상될 수 있다.
또한, 상기 인버터 하우징(201)의 일측에는 PCB 기판(210)이 인버터 하우징(201)과 이격된 부분에 대응되는 위치에서 제2방열핀(252)이 돌출 형성될 수 있다.
즉, 도시된 바와 같이 인버터 하우징(201)의 일측인 베이스(201-1)의 상면에서 상측으로 제2방열핀(252)들이 돌출 형성되되, 제2방열핀(252)은 PCB 기판(210)에 대응되는 위치인 PCB 기판(210)의 둘레 내측 영역에 해당되는 범위에 형성될 수 있다. 그리하여 PCB 기판(210)의 둘레 내측에 배치되어 장착된 스위칭 소자(220)들을 포함한 전자 소자들에서 발생되는 열을 제2방열핀(252)들을 통해 방열하도록 함으로써, 제1방열핀(251)들과 함께 제2방열핀(252)들을 이용해 빠르게 인버터부(200)를 냉각시킬 수 있다.
이때, 상기 제1방열핀(251)의 표면적이 제2방열핀(252)의 표면적보다 크게 형성될 수 있다.
즉, PCB 기판(210)의 열을 제1방열핀(251)을 통해 빠르게 외부로 방열할 수 있도록, 제2방열핀(252)의 표면적보다 제1방열핀(251)의 표면적을 크게 형성할 수 있다. 여기에서 한 개의 제1방열핀(251)의 표면적이 한 개의 제2방열핀(252)의 표면적보다 크게 형성될 수 있으며, 일례로 도시된 바와 같이 제1방열핀(251) 및 제2방열핀(252)이 모두 원기둥 형태로 형성되어 인버터 하우징(201)의 베이스(201-1) 상면에서 상측으로 동일한 높이로 돌출 형성된 경우에 제1방열핀(251)의 외경(D)이 제2방열핀(252)의 외경(d)보다 크게 형성될 수 있다.
또한, 상기 인버터 하우징(201)과 PCB 기판(210)이 이격된 사이에는 서멀 그리스(270)가 개재되어 접촉될 수 있다.
즉, 인버터 하우징(201)의 베이스(201-1) 하면에 서멀 그리스(270)를 도포한 후 인버터 하우징(201)에 PCB 기판(210)을 인버터 하우징(201)에 결합하여, 베이스(201-1) 하면과 PCB 기판(210) 사이에 서멀 그리스(270)가 채워져 있도록 함으로써, 서멀 그리스(270)를 통해 PCB 기판(210)쪽의 열을 인버터 하우징(201)으로 용이하게 전도되도록 하여 제2방열핀(252)들을 통해 빠르게 방열이 이루어지도록 할 수 있다.
또한, 상기 PCB 기판(210)에 장착되되 PCB 기판(210)의 외부 영역에 배치되어 상기 인버터 하우징(201)의 타측에 서멀 그리스(270)에 의해 접촉된 커패시터(230) 및 전자파 차단 필터(240)를 더 포함하여 이루어지며, 상기 인버터 하우징(201)의 일측에는 커패시터(230) 및 전자파 차단 필터(240)에 대응되는 위치에서 돌출부(201c)가 돌출 형성될 수 있다.
즉, 도 9와 같이 전기적으로 연결되는 부분이 PCB 기판(210)에 결합되어 있되 PCB 기판(210)의 둘레 바깥쪽 영역에 커패시터(230) 및 전자파 차단 필터(240) 본체가 배치될 수 있다. 여기에서 도 11을 참조하면 인버터 하우징(201)의 내측면인 베이스(201-1) 하면에서 오목하게 안치홈(201b)들이 형성되어, 안치홈(201b)에 커패시터(230) 및 전자파 차단 필터(240)가 상기 안치홈(201b)에 접촉되어 안치될 수 있다. 이때, 안치홈(201b)에 서멀 그리스(270)를 도포한 후 커패시터(230) 및 전자파 차단 필터(240)가 안치되며, 커패시터(230) 및 전자파 차단 필터(240)에 대응되는 위치의 베이스(201-1) 상면에서 돌출부(201c)가 상측으로 돌출 형성되어, 커패시터(230) 및 전자파 차단 필터(240)에서 발생되는 열이 인버터 하우징(201)을 통해 인버터부(200)의 외부로 용이하게 방열되도록 할 수 있다.
또한, 상기 인버터 하우징(201)에는 전자 소자들이 장착된 PCB 기판(210)의 외곽을 둘러싸는 테두리벽(201-2) 바깥쪽에 일측과 타측을 관통하는 냉각홀(260)이 형성될 수 있다.
즉, 도시된 바와 같이 인버터 하우징(201)은 베이스(201-1)의 하면에서 높이방향 하측으로 테두리벽(201-2)이 형성되어, 테두리벽(201-2)에 의해 둘러싸인 내측 공간에 PCB 기판(210)이 수용될 수 있으며, 베이스(201-1)의 가장자리 부분 중 테두리벽(201-2)의 바깥쪽 부분에 상하면을 관통하도록 냉각홀(260)들이 형성될 수 있다. 이에 따라 냉각홀(260)들에 의해 인버터부(200)의 방열 성능이 더욱 향상될 수 있다.
그리고 인버터 하우징(201)의 베이스(201-1) 둘레 안쪽을 따라 복수개의 냉각홀(260)들이 이격되어 형성될 수 있으며, 냉각홀(260)들이 형성된 부분에서 베이스(201-1)의 외곽을 형성하는 외곽 리브(261) 및 외곽 리브(261)에서 반경방향 안쪽으로 연장 형성된 연결 리브(262)들에 의해 방열 면적이 넓게 형성될 수 있다. 또한, 외곽 리브(261) 또는 연결 리브(262)는 베이스(201-1)의 하면에서 하측으로 연장 형성될 수 있으며 테두리벽(201-2)에 결합된 형태로 형성되어 인버터 하우징(201)의 강도를 보강 및 방열 성능을 향상시킬 수 있다. 또한, 냉각홀(260)은 베이스(201-1)의 가장자리 부분에 형성되되 제1방열핀(251)에 근접하여 형성됨으로써, 냉각홀(260)에 의해 제1방열핀(251)에서의 방열 성능이 더욱 향상될 수 있다. 또한, 인버터 하우징(201)에는 전자 소자들이 장착된 PCB 기판(210)의 외곽을 둘러싸는 테두리벽(201-2)의 외측면에서 제3방열핀(253)이 돌출 형성될 수 있다. 즉, 제3방열핀(253)이 인버터 하우징(201)의 테두리벽(201-2) 바깥쪽면에서 돌출된 형태로 형성되어 인버터 하우징(201)의 방열 성능이 향상될 수 있다.
또한, 제3방열핀(253)은 냉각홀(260)에 근접하게 배치되어 냉각 성능이 향상될 수 있다. 이때 제3방열핀(253)은 외곽 리브(261) 또는 연결 리브(262)와 연결되어 있도록 일체로 형성될 수 있고, 냉각홀(260)을 통과하는 냉각 공기의 유동방향과 나란한 평판 형태로 제3방열핀(253)이 형성될 수 있으며, 이외에도 다양한 형태로 제3방열핀(253)이 형성될 수 있다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
[부호의 설명]
1000 : 인버터 일체형 BLDC 모터
100 : 모터, 110 : 스테이터, 111 : 구동코일
120 : 3상 터미널, 130 : 로터
200 : 인버터부, 201 : 인버터 하우징, 201-1 : 베이스
201-2 : 테두리벽, 201a : 관통공, 201b : 안치홈
201c : 돌출부, 201d : 지지부, 202 : 커버, 210 : PCB 기판
211 : 기판측 터미널, 212 : 기판측 PCB 터미널, 213 : 관통공
220 : 스위칭 소자 , 230 : 커패시터, 240 : 전자파 차단 필터
241 : 코어, 242 : 코일, 251 : 제1방열핀, 252 : 제2방열핀
253 : 제3방열핀, 260 : 냉각홀, 261 : 외곽 리브
262 : 연결 리브, 270 : 서멀 그리스, 280 : 체결수단
400 : 커넥터 블록, 500 : 전선, 510 : 전선측 터미널
600 : 밀폐부

Claims (20)

  1. 스테이터(110)의 구동코일(111)과 전기적으로 연결되며, 상기 스테이터(110)의 중심축을 기준으로 원주방향을 따라 서로 이격되어 배치된 3상 터미널(120)들을 포함하는 모터(100); 및
    상기 모터(100)가 결합되며, 스위칭 소자(220)들이 장착된 PCB 기판(210)이 구비되어, 상기 3상 터미널(120)들이 PCB 기판(210)에 결합되며 상기 3상 터미널(120)들이 스위칭 소자(220)들과 전기적으로 연결된 인버터부(200);
    를 포함하여 이루어지되,
    상기 스위칭 소자(220)들 중 하나 이상은 상기 3상 터미널(120)들이 배치되는 원주라인(L)을 기준으로 반경방향 내측에 배치된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  2. 제1항에 있어서,
    상기 인버터부(200)는,
    오목하게 용기 형태로 형성되어 외측에 모터(100)가 결합되고 내측에 PCB 기판(210)이 구비된 인버터 하우징(201)을 포함하여 이루어지며,
    상기 인버터 하우징(201)에는 모터(100)와 PCB 기판(210)의 사이를 관통하는 관통공(201a)들이 형성되어, 상기 스테이터(110)에 일측이 결합되어 고정된 3상 터미널(120)들이 상기 인버터 하우징(201)의 관통공(201a)을 통과하여 타측이 상기 PCB 기판(210)에 결합된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  3. 제2항에 있어서,
    상기 PCB 기판(210)에는 기판측 PCB 터미널(212)들이 형성되며, 상기 기판측 PCB 터미널(212)에 근접하여 PCB 기판(210)의 양면을 관통하는 관통공(213)이 형성되어,
    상기 3상 터미널(120)들이 PCB 기판(210)의 관통공(213)을 통과하여 기판측 PCB 터미널(212)과 결합된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  4. 제2항에 있어서,
    상기 PCB 기판(210)에 장착되되 PCB 기판(210)의 외부 영역에 배치된 커패시터(230) 및 전자파 차단 필터(240)를 더 포함하여 이루어지는 인버터 일체형 BLDC 모터.
  5. 제4항에 있어서,
    상기 인버터 하우징(201)은 내측면에서 오목하게 안치홈(201b)들이 형성되어, 상기 커패시터(230) 및 전자파 차단 필터(240)가 상기 안치홈(201b)에 접촉되어 안치된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  6. 제4항에 있어서,
    상기 전자파 차단 필터(240)는 원통형태 또는 도너츠 형태의 코어(241) 및 상기 코어(241)의 외측과 내측을 번갈아 통과하도록 코어에 권취된 코일(242)을 포함하여 이루어지는 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  7. 제4항에 있어서,
    상기 커패시터(230) 및 전자파 차단 필터(240)는 PCB 기판(210)의 외부 영역 일측에 나란하게 배열된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  8. 제1항에 있어서,
    상기 3상 터미널(120)들은 일측이 스테이터(110)에 결합되어 고정되며, 상기 3상 터미널(120)들은 스테이터(110)의 중심축 방향인 높이방향으로 연장 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  9. 제3항에 있어서,
    상기 3상 터미널(120)과 기판측 PCB 터미널(212)은 서로 면접촉되어 결합된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  10. 제9항에 있어서,
    상기 기판측 PCB 터미널(212)은 일측이 PCB 기판(210)에 형성된 관통공(213)에서 이격되어 PCB 기판(210)에 고정되고 타측은 PCB 기판(210)에 형성된 관통공(213)과 대응되는 위치에 배치되며, 상기 기판측 PCB 터미널(212)은 일측과 타측이 굴곡부에 의해 서로 연결된 형태로 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  11. 제3항에 있어서,
    상기 3상 터미널(120)과 기판측 PCB 터미널(212)은 서로 마주보도록 근접하거나 접촉되도록 배치된 후 납땜, 레이저 용접 및 전기저항용접 중 어느 하나를 이용해 결합 및 전기적으로 연결된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  12. 모터(100);
    일측에 상기 모터(100)가 결합되는 인버터 하우징(201); 및
    상기 인버터 하우징(201)의 타측에 결합되되 결합된 부분을 제외한 나머지 부분이 인버터 하우징(201)과 이격되어 배치되며, 스위칭 소자(220)들을 포함한 전자 소자들이 장착된 PCB 기판(210);
    을 포함하여 이루어지며,
    상기 인버터 하우징(201)의 일측에는 상기 PCB 기판(210)과 결합된 부분에 대응되는 위치에서 제1방열핀(251)이 돌출 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  13. 제12항에 있어서,
    상기 인버터 하우징(201)의 일측에는 PCB 기판(210)이 인버터 하우징(201)과 이격된 부분에 대응되는 위치에서 제2방열핀(252)이 돌출 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  14. 제13항에 있어서,
    상기 제1방열핀(251)의 표면적이 제2방열핀(252)의 표면적보다 크게 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  15. 제13항에 있어서,
    상기 인버터 하우징(201)과 PCB 기판(210)이 이격된 사이에는 서멀 그리스(270)가 개재되어 접촉된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  16. 제12항에 있어서,
    상기 PCB 기판(210)에 장착되되 PCB 기판(210)의 외부 영역에 배치되어 상기 인버터 하우징(201)의 타측에 서멀 그리스(270)에 의해 접촉된 커패시터(230) 및 전자파 차단 필터(240)를 더 포함하여 이루어지며,
    상기 인버터 하우징(201)의 일측에는 커패시터(230) 및 전자파 차단 필터(240)에 대응되는 위치에서 돌출부(201c)가 돌출 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  17. 제12항에 있어서,
    상기 인버터 하우징(201)에는 전자 소자들이 장착된 PCB 기판(210)의 외곽을 둘러싸는 테두리벽(201-2) 바깥쪽에 일측과 타측을 관통하는 냉각홀(260)이 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  18. 제17항에 있어서,
    상기 냉각홀(260)은 제1방열핀(251)에 근접하여 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  19. 제12항에 있어서,
    상기 인버터 하우징(201)에는 전자 소자들이 장착된 PCB 기판(210)의 외곽을 둘러싸는 테두리벽(201-2)의 외측면에서 제3방열핀(253)이 돌출 형성된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
  20. 제19항에 있어서,
    상기 테두리벽(201-2)의 바깥쪽에는 일측과 타측을 관통하는 냉각홀(260)이 형성되며, 상기 제3방열핀(253)은 냉각홀(260)에 근접하여 배치된 것을 특징으로 하는 인버터 일체형 BLDC 모터.
PCT/KR2018/004006 2017-06-30 2018-04-05 인버터 일체형 bldc 모터 WO2019004572A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/464,758 US11146148B2 (en) 2017-06-30 2018-04-05 BLDC motor integrated with inverter
CN202010709080.3A CN111725949B (zh) 2017-06-30 2018-04-05 集成有逆变器的bldc电机
CN201880010694.3A CN110352634B (zh) 2017-06-30 2018-04-05 集成有逆变器的bldc电机

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0083135 2017-06-30
KR1020170083135A KR102325134B1 (ko) 2017-06-30 2017-06-30 인버터 일체형 bldc 모터
KR10-2017-0090177 2017-07-17
KR1020170090177A KR102368143B1 (ko) 2017-07-17 2017-07-17 인버터 일체형 bldc 모터

Publications (1)

Publication Number Publication Date
WO2019004572A1 true WO2019004572A1 (ko) 2019-01-03

Family

ID=64742337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004006 WO2019004572A1 (ko) 2017-06-30 2018-04-05 인버터 일체형 bldc 모터

Country Status (3)

Country Link
US (1) US11146148B2 (ko)
CN (2) CN111725949B (ko)
WO (1) WO2019004572A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022129216A1 (de) 2022-11-04 2024-05-08 Audi Aktiengesellschaft Elektromaschine mit zugeordnetem Pulswechselrichter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756076B (zh) * 2017-11-01 2022-05-20 德昌电机(深圳)有限公司 电机
DE102018200480A1 (de) * 2018-01-12 2019-07-18 Mahle International Gmbh Steuereinrichtung zum Ansteuern eines E-Motors
JP1635983S (ko) * 2019-02-27 2019-07-08
CN111835209A (zh) * 2019-04-23 2020-10-27 台达电子工业股份有限公司 安装组件及其适用的逆变器组件
DE112021000816T5 (de) * 2020-01-31 2022-11-24 Hanon Systems Elektrischer kompressor, invertermontagevorrichtung und inverterherstellungsverfahren
CN219351390U (zh) * 2020-04-07 2023-07-14 米沃奇电动工具公司 动力工具、电动马达和印刷电路板组件
KR20220082591A (ko) * 2020-12-10 2022-06-17 현대자동차주식회사 모터 일체형 인버터
KR20220154998A (ko) * 2021-05-14 2022-11-22 현대자동차주식회사 모터 일체형 인버터
KR20220169180A (ko) * 2021-06-18 2022-12-27 현대자동차주식회사 모터 시스템
DE102021133952A1 (de) 2021-12-21 2023-06-22 Synapticon GmbH Motorvorrichtung mit einer multifunktionalen Zwischeneinheit, die zwischen einer Motoreinheit und einer Servoantriebseinheit der Motorvorrichtung angeordnet ist

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080028563A (ko) * 2006-09-27 2008-04-01 엘지전자 주식회사 영구자석 회전자 모터
JP5522504B2 (ja) * 2008-09-29 2014-06-18 日立工機株式会社 電動工具
US20150084446A1 (en) * 2013-09-24 2015-03-26 Electro-Motor Dynamics, LLC Direct drive stacked motor acuator
KR20150072227A (ko) * 2013-12-19 2015-06-29 주식회사 동희홀딩스 와이어리스 브러시리스 직류 모터 유닛
KR20150072912A (ko) * 2013-12-20 2015-06-30 한라비스테온공조 주식회사 인버터 일체형 bldc 모터

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252885A (ja) * 1998-03-05 1999-09-17 Mitsubishi Electric Corp 電動機駆動装置及び電動機駆動装置の製造方法
KR100830510B1 (ko) * 2006-09-26 2008-05-21 엘지전자 주식회사 영구자석 회전자 모터의 제조방법
KR100830511B1 (ko) * 2006-09-26 2008-05-21 엘지전자 주식회사 영구자석 회전자 모터
JP2008125315A (ja) * 2006-11-15 2008-05-29 Matsushita Electric Ind Co Ltd モータ駆動装置
KR101707597B1 (ko) * 2010-12-07 2017-02-17 한국전자통신연구원 홀 센서리스 bldc 모터용 전원 공급 모듈
CN103502081B (zh) * 2011-05-11 2016-02-10 三菱电机株式会社 电动动力转向装置
DE102011112821B4 (de) * 2011-09-12 2013-06-27 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Elektromotor, insbesondere Kühlerlüftermotor
JP6134127B2 (ja) * 2012-11-21 2017-05-24 三菱重工業株式会社 ヒートシンクを有する機器
CH708584A1 (de) * 2013-09-16 2015-03-31 Micro Motor Ag Anordnung elektrischer Bauteile und elektrischer Antriebsmotor mit einer Bauteileanordnung
JP6179476B2 (ja) * 2014-07-31 2017-08-16 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
JP2016082735A (ja) 2014-10-17 2016-05-16 パナソニックIpマネジメント株式会社 ブラシレスdcモータ
CN105827060A (zh) * 2015-01-08 2016-08-03 大陆汽车投资(上海)有限公司 集成式电力驱动系统
CN105576997B (zh) * 2016-02-04 2019-06-07 中国第一汽车股份有限公司 一种车用集成电机的逆变器总成

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080028563A (ko) * 2006-09-27 2008-04-01 엘지전자 주식회사 영구자석 회전자 모터
JP5522504B2 (ja) * 2008-09-29 2014-06-18 日立工機株式会社 電動工具
US20150084446A1 (en) * 2013-09-24 2015-03-26 Electro-Motor Dynamics, LLC Direct drive stacked motor acuator
KR20150072227A (ko) * 2013-12-19 2015-06-29 주식회사 동희홀딩스 와이어리스 브러시리스 직류 모터 유닛
KR20150072912A (ko) * 2013-12-20 2015-06-30 한라비스테온공조 주식회사 인버터 일체형 bldc 모터

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022129216A1 (de) 2022-11-04 2024-05-08 Audi Aktiengesellschaft Elektromaschine mit zugeordnetem Pulswechselrichter

Also Published As

Publication number Publication date
CN110352634A (zh) 2019-10-18
CN111725949B (zh) 2022-08-19
CN110352634B (zh) 2020-09-18
CN111725949A (zh) 2020-09-29
US20190386547A1 (en) 2019-12-19
US11146148B2 (en) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2019004572A1 (ko) 인버터 일체형 bldc 모터
WO2018038339A1 (ko) 클러스터 조립체 및 이를 포함하는 전동식 압축기
US6091172A (en) Coil connecting structure in outer rotor-type multi-pole generator
WO2010082705A1 (ko) 액시얼 타입 모터
WO2010035928A1 (ko) 냉장고용 팬 모터
JP6129286B1 (ja) 電力供給ユニット一体型回転電機
US11025139B2 (en) Motor
KR102466610B1 (ko) 제어기 및 이를 포함하는 모터 조립체
WO2016111539A1 (ko) 모터
KR20190008609A (ko) 인버터 일체형 bldc 모터
CN106899096B (zh) 电机
KR20190002880A (ko) 인버터 일체형 bldc 모터
WO2022108292A1 (ko) 모터
WO2021141299A1 (ko) 모터
WO2022065752A1 (ko) 공기 압축기
WO2021075848A1 (ko) 모터
KR102466611B1 (ko) 제어기 및 이를 포함하는 모터 조립체
WO2022215887A1 (ko) 모터
WO2020055067A1 (ko) 모터
WO2023013897A1 (ko) 모터 및 제어 장치
WO2021118134A1 (en) Device for driving a compressor, and method for manufacturing the device
JP3775621B2 (ja) 高電圧部品内蔵回転電機
WO2021194238A1 (ko) 병렬식 3상 입력을 위한 결선 구조를 포함하는 구동모터
WO2024122140A1 (ja) モータ
WO2023075307A1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824916

Country of ref document: EP

Kind code of ref document: A1