WO2014200014A1 - 窒化珪素製耐摩耗性部材および窒化珪素焼結体の製造方法 - Google Patents

窒化珪素製耐摩耗性部材および窒化珪素焼結体の製造方法 Download PDF

Info

Publication number
WO2014200014A1
WO2014200014A1 PCT/JP2014/065436 JP2014065436W WO2014200014A1 WO 2014200014 A1 WO2014200014 A1 WO 2014200014A1 JP 2014065436 W JP2014065436 W JP 2014065436W WO 2014200014 A1 WO2014200014 A1 WO 2014200014A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
rare earth
sintered body
mass
nitride sintered
Prior art date
Application number
PCT/JP2014/065436
Other languages
English (en)
French (fr)
Inventor
山口 晴彦
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to JP2015522809A priority Critical patent/JP6416088B2/ja
Priority to US14/896,775 priority patent/US9663407B2/en
Publication of WO2014200014A1 publication Critical patent/WO2014200014A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/40Ceramics, e.g. carbides, nitrides, oxides, borides of a metal
    • F16C2206/58Ceramics, e.g. carbides, nitrides, oxides, borides of a metal based on ceramic nitrides
    • F16C2206/60Silicon nitride (Si3N4)l

Definitions

  • Embodiments described later generally relate to a silicon nitride wear-resistant member and a method for manufacturing the same.
  • Silicon nitride sintered bodies are used as wear-resistant members such as bearing balls and rollers by utilizing their wear resistance.
  • a silicon nitride-yttrium oxide-aluminum oxide-aluminum nitride-titanium oxide system or the like is known (Patent Document 1: Japanese Patent Application Laid-Open No. 2001-328869).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-328869
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-34581 discloses a silicon nitride sintered body using yttrium oxide-MgAl 2 O 4 spinel-silicon carbide-titanium oxide as a sintering aid. .
  • Patent Document 2 it is possible to set the sintering temperature to 1600 ° C. or lower.
  • the sintered bodies shown in Patent Document 1 and Patent Document 2 had good sinterability and excellent wear resistance.
  • these conventional silicon nitride sintered bodies have high hardness and are difficult to process materials.
  • Wear-resistant members such as bearing balls are required to have a flat surface with a surface roughness Ra of 0.1 ⁇ m or less.
  • diamond abrasive grains are usually used for the surface processing of the silicon nitride sintered body.
  • the conventional silicon nitride sintered body is a difficult-to-process material, the load of polishing processing is large and the cost is high. There was a problem that caused an increase.
  • silicon nitride sintered bodies have been developed with a focus on improving material properties such as fracture toughness in order to improve wear resistance. Certainly, the wear resistance is improved by improving the material properties.
  • Such a silicon nitride sintered body is optimal for a bearing ball in a high load environment such as a machine tool.
  • wear-resistant members such as bearing balls are not limited to those used in a high load environment, but are also used in a low load environment such as a fan motor bearing such as a personal computer. Since the silicon nitride sintered bodies described in Patent Document 1 and Patent Document 2 have excellent characteristics, they can also be used for fan motor bearings. However, there are problems such as poor processability and high cost.
  • the present invention is to cope with such a problem and to provide a silicon nitride sintered body having good workability.
  • the wear-resistant member made of silicon nitride according to the embodiment is mainly composed of ⁇ -Si 3 N 4 crystal particles, the rare earth element is converted to oxide in an amount of 2 to 4% by mass, and Al is converted into an oxide in an amount of 2 to 2%.
  • the silicon nitride sintered body is a rare earth-Hf—O system.
  • the area ratio of the rare earth-Hf—O compound crystal in the grain boundary phase per unit area 30 ⁇ m ⁇ 30 ⁇ m in an arbitrary cross section is 5 to 50%, and the rare earth-Hf—O between unit areas
  • the variation of the area ratio of the system compound crystal is within 10%.
  • the method for producing a silicon nitride sintered body according to the embodiment is synthesized by a metal nitriding method, has an oxygen content of 1.5% by mass or less, contains ⁇ -phase silicon nitride of 80% by mass or more, and has an average Silicon nitride powder having a particle size of 1 ⁇ m or less, 2 to 4% by mass of rare earth elements in terms of oxides, 2 to 6% by mass in terms of oxides, and 0.1 to 5% by mass of Hf in terms of oxides %, A step of preparing the raw material mixture, a step of forming the obtained mixed powder to obtain a molded body having a relative density of 50 to 58%, and the resulting molded body in a non-oxidizing atmosphere.
  • the obtained silicon nitride sintered body has a rare earth-Hf—O-based compound crystal and has a unit area of 30 ⁇ m ⁇ 30 ⁇ m in an arbitrary cross section.
  • the area ratio of rare earth-Hf—O-based compound crystals in the peri-grain boundary phase is 5 to 5
  • the variation of the area ratio of rare earth-Hf—O-based compound crystals between unit areas is within 10%.
  • the silicon nitride wear-resistant member of this embodiment controls the abundance ratio of rare earth-Hf-O compound crystals. Therefore, it has excellent wear resistance. In addition, there is an advantage that surface processing such as polishing processing can be easily performed. In addition, according to the method for manufacturing a wear resistant member made of silicon nitride of the present embodiment, a silicon nitride sintered body in which the abundance ratio of rare earth-Hf—O-based compound crystals is controlled can be obtained.
  • the wear resistant member made of silicon nitride according to the present embodiment is mainly composed of ⁇ -Si 3 N 4 crystal particles, 2 to 4% by mass in terms of oxide of rare earth elements and 2 in terms of oxide in terms of Al.
  • the silicon nitride sinter is made of rare earth-Hf—O.
  • the area ratio of the rare earth-Hf—O based compound crystal in the grain boundary phase per unit area 30 ⁇ m ⁇ 30 ⁇ m in an arbitrary cross section is 5 to 50%, and the rare earth-Hf— The variation of the area ratio of the O-based compound crystal is within 10%.
  • the rare earth element is contained in an amount of 2 to 4% by mass in terms of oxide.
  • the rare earth elements are Y (yttrium), La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), Eu (europium), Gd (gadolinium), Tb. It is preferably at least one selected from (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), and Lu (lutetium).
  • the conversion to an oxide shall be converted into R 2 O 3 when R is a rare earth element.
  • R when added as a sintering aid, it is preferably added as a rare earth oxide powder.
  • the amount of rare earth element is less than 2% by mass in terms of oxide, the amount of rare earth-Hf—O-based compound crystal formed is lowered, leading to a decrease in mechanical properties and workability of the wear-resistant member.
  • the content exceeds 4% by mass, the variation in the amount of rare earth-Hf—O-based compound crystals increases.
  • yttrium is preferable.
  • Yttrium is a component that easily forms Y—Hf—O-based compound crystals.
  • Al aluminum
  • Al oxide conversion is performed with Al 2 O 3 .
  • the amount of Al is less than 2% by mass or exceeds 6% by mass in terms of oxide, the strength is lowered and the durability as a wear-resistant member is lowered.
  • the method for adding the Al component is not particularly limited as long as it contains Al, but it is preferably at least one of AlN, Al 2 O 3 , and MgAl 2 O 4 spinel. In particular, it is preferable to add AlN and one of Al 2 O 3 or MgAl 2 O 4 in combination.
  • AlN and Al 2 O 3 or MgAl 2 O 4 are used in combination, AlN easily suppresses decomposition of silicon nitride and SiO 2 into SiO, so that uniform grain growth is promoted. Increases nature. Moreover, it becomes easy to produce a crystalline compound with Hf or a rare earth element. As a result, it is possible to control the abundance ratio of the rare earth-Hf—O-based compound crystal in the grain boundary phase.
  • the silicon nitride sintered body contains 0.1 to 5% by mass of Hf (hafnium) in terms of oxide. Conversion to oxide is performed with HfO 2 .
  • Hf is a component that easily reacts with a rare earth element (or a rare earth element compound), and can form a rare earth-Hf-O-based compound crystal.
  • Hf component is preferably added as a HfO 2 powder. By adding it as HfO 2 powder, it becomes easy to control the abundance ratio of rare earth-Hf—O-based compound crystals.
  • the content of the Hf component is less than 0.1% by mass in terms of oxide, the amount of rare earth-Hf—O-based compound crystal formed decreases.
  • it exceeds 5% by mass the existence variation of rare earth-Hf—O-based compound crystals increases.
  • the Hf content is preferably 0.5 to 3% by mass in terms of oxide.
  • a silicon nitride sintered body containing such a sintering aid component has a rare earth-Hf—O-based compound crystal.
  • the composition of the rare earth-Hf—O-based compound is not particularly limited as long as it contains rare earth elements, Hf, and oxygen as constituent components.
  • Examples of the rare earth-Hf—O-based compounds include rare earth-Hf—O, rare earth-Hf—O—N, and the like.
  • the rare earth-Hf—O-based compound must be partially or entirely crystalline.
  • the rare earth-Hf—O based compound crystal has an area ratio of the rare earth—Hf—O based compound crystal in the grain boundary phase per unit area of 30 ⁇ m ⁇ 30 ⁇ m in an arbitrary cross section of the silicon nitride sintered body of 5 to 50%.
  • the variation in the area ratio of rare earth-Hf—O-based compound crystals between unit areas is within 10%.
  • the presence or absence of the rare earth-Hf—O-based compound crystal can be confirmed by the presence or absence of a peak by XRD described later. Moreover, the area ratio per unit area can be analyzed by SEM observation. When observed with SEM, the rare earth-Hf-O compound crystals appear white. On the other hand, the Si 3 N 4 crystal grains and the grain boundary glass phase appear dark gray.
  • the SEM photograph an enlarged photograph of 4000 times or more, it is possible to distinguish between the Si 3 N 4 crystal particles and the grain boundary glass phase. If the Si 3 N 4 crystal particle is ⁇ -type, it has an elongated particle shape, and if it is ⁇ -type, it has a round particle shape.
  • the grain boundary glass phase is present in an indefinite form at the grain boundary between the Si 3 N 4 crystal grains. Therefore, if it is an enlarged photograph (SEM photograph) of 4000 times or more, it is possible to distinguish between the Si 3 N 4 crystal grains and the grain boundary glass phase.
  • FIG. 2 is Si 3 N 4 crystal particles
  • 3 is a rare earth-Hf—O-based compound crystal
  • 4 is a grain boundary glass phase.
  • the rare earth-Hf—O-based compound crystal is observed in white.
  • the area of the grain boundary phase (total of the grain boundary glass phase and rare earth-Hf—O-based compound crystal) per unit area of 30 ⁇ m ⁇ 30 ⁇ m is determined.
  • the total area of rare earth-Hf—O-based compound crystals per unit area 30 ⁇ m ⁇ 30 ⁇ m is determined. [(Total area of rare earth-Hf—O compound crystals) / (area of grain boundary phase)] ⁇ 100 (%), rare earth—Hf—O system in grain boundary phase per unit area of 30 ⁇ m ⁇ 30 ⁇ m
  • the area ratio (%) of the compound crystal is determined.
  • the area ratio of the rare earth-Hf—O-based compound crystal in the grain boundary phase per unit area 30 ⁇ m ⁇ 30 ⁇ m is in the range of 5 to 50% in an arbitrary cross section.
  • the variation of the area ratio (%) per unit area is 10%.
  • the variation in the area ratio is measured at five locations where the unit areas of 30 ⁇ m ⁇ 30 ⁇ m are not overlapped, and indicates the deviation of the individual area ratios from the average value of the area ratios at the five locations.
  • the area ratio (%) of five places that do not overlap is M1, M2, M3, M4, and M5
  • all of M1 to M5 are in the range of 5 to 50%.
  • M6 (M1 + M2 + M3 + M4 + M5) / 5.
  • the variation in the area ratio (%) can be obtained by
  • ⁇ 100 (%), where n 1 to an integer of 1 to 5.
  • the variation in all of M1 to M5 is within 10% with respect to the average value M6.
  • the silicon nitride sintered body has a grain boundary phase composed mainly of ⁇ -Si 3 N 4 crystal grains and composed of sintering aid components such as rare earth elements, Al, and Hf.
  • the ⁇ -Si 3 N 4 crystal grains and the grain boundary phase have different hardness, and the ⁇ -Si 3 N 4 crystal grains are harder than the grain boundary phase.
  • the grain boundary phase is composed of a rare earth-Hf—O-based compound crystal and a grain boundary glass phase.
  • the surface polishing of the silicon nitride sintered body include lapping using a diamond grindstone.
  • lapping using a diamond grindstone is effective in obtaining a spherical wear-resistant member whose entire surface is a sliding surface such as a bearing ball.
  • the hard Si 3 N 4 crystal particles are removed first, and the soft grain boundary glass phase is later removed. This is because the diamond grindstone strikes harder Si 3 N 4 crystal grains.
  • the hardness of the grain boundary phase can be increased by allowing a predetermined amount of rare earth-Hf—O-based compound crystal to be present in the grain boundary phase.
  • the hardness of the grain boundary phase close to the hardness of the Si 3 N 4 crystal particles, it is possible to make the grain boundary phase and the Si 3 N 4 crystal particles cut in the same way. For this reason, the polishing time can be shortened.
  • the rare earth-Hf—O-based compound crystal is preferably a compound crystal represented by R 2 Hf 2 O 7 when R is a rare earth. Since R 2 Hf 2 O 7 compound crystal is close to the hardness the Si 3 N 4 crystal grains, easily obtaining an effect that equal the shaved how the grain boundary phase and Si 3 N 4 crystal grains.
  • R 2 Hf 2 O 7 include Y 2 Hf 2 O 7 and Er 2 Hf 2 O 7 . It is preferable to use Y 2 O 3 or Er 2 O 3 as a sintering aid.
  • the rare earth-Hf—O-based compound crystal may contain other components such as Ca.
  • XRD analysis an arbitrary cross section of the silicon nitride sintered body is used as a measurement surface.
  • the measurement surface is a polished surface having a surface roughness Ra of 0.05 ⁇ m or less.
  • XRD analysis was performed with Cu target (Cu-K ⁇ ), tube voltage 40 kV, tube current 40 mA, scan speed 2.0 ° / min, slit (RS) 0.15 mm, scan range (2 ⁇ ) 10 ° -60 °. It shall be.
  • the peak detection position (2 ⁇ ) by XRD analysis is determined by the composition of the crystalline compound.
  • the height of the peak is determined according to the amount of the crystalline compound.
  • the detection of a peak intensity I1 of 30.0 ⁇ 0.5 ° indicates that a predetermined amount of rare earth-Hf—O-based compound is formed.
  • Examples of rare earth-Hf—O compound crystals include Y 2 Hf 2 O 7 .
  • the peak intensity I2 of 27.1 ⁇ 0.5 ° and the peak intensity I3 of 33.7 ⁇ 0.5 ° are peaks based on ⁇ -Si 3 N 4 crystals. This is because I2 and I3 are typical two large peaks among the peaks based on ⁇ -Si 3 N 4 crystal particles.
  • the reason why the denominator is (I2 + I3) / 2 (average value of I2 and I3) is to suppress the influence of changes in the peak heights of I2 and I3 due to the orientation of ⁇ -Si 3 N 4 crystal grains. .
  • the average particle diameter of the rare earth-Hf—O-based compound crystal is preferably 1 ⁇ m or less.
  • the aggregate of rare earth-Hf-O compound crystals preferably has a maximum diameter of 5 ⁇ m or less. The effect is obtained by the presence of a predetermined amount of rare earth-Hf—O-based compound crystals. On the other hand, if the rare earth-Hf—O-based compound crystal is too large, the rare earth-Hf—O-based compound crystal and its agglomerates will become the starting point of fracture, and the wear resistance may be lowered.
  • the silicon nitride sintered body according to the embodiment contains 0.1 to 5% by mass in terms of oxide of at least one selected from Group 4a (excluding Hf), Group 5a, and Group 6a elements. It is preferable.
  • Group 4A elements (excluding Hf) are Ti (titanium) and Zr (zirconium).
  • the group 5A elements are V (vanadium), Nb (niobium), and Ta (tantalum).
  • the 6A group elements are Cr (chromium), Mo (molybdenum), and W (tungsten).
  • the oxide conversion of the group 4A element (excluding Hf) is calculated using TiO 2 and ZrO 2 .
  • in terms of oxide of the Group 5A element shall be converted by V 2 O 5, Nb 2 O 5, Ta 2 O 5.
  • oxide of the Group 6A elements shall be converted in Cr 2 O 3, MoO 3, WO 3.
  • a 4A group element (except Hf) component, a 5A group element component, or a 6A group element component when adding a 4A group element (except Hf) component, a 5A group element component, or a 6A group element component as a sintering aid, it is preferably added as any one of oxide, carbide, and nitride. Further, if the content is less than 0.1 wt%, the effect of addition is insufficient, and if it exceeds 5 wt%, the sinterability deteriorates. The presence of the group 4A element component (excluding Hf), the group 5A element component, and the group 6A element component can strengthen the grain boundary phase.
  • the 4A group (except Hf) element component, the 5A group element component, and the 6A group element component are powders having an average particle size of 2 ⁇ m or less. Further, if any one of the group 4A (excluding Hf) element component, the group 5A element component, and the group 6A element component is a carbide powder, the effect of strengthening the grain boundary phase and improving the lubricity of the sliding surface can be obtained. Can do.
  • the silicon nitride sintered body of the embodiment preferably contains 2 to 7% by mass of SiC. Further, SiC is preferably a powder having an average particle size of 2 ⁇ m or less. SiC powder can enhance the grain boundary phase and improve the lubricity of the sliding surface. The SiC content is calculated in terms of SiC.
  • the silicon nitride sintered body of the embodiment has a relative density of 98.0% or more, more preferably 99.0 to 100%. If the relative density is as low as less than 98.0%, pores increase, and as a result, it may be difficult to control the presence state of the rare earth-Hf—O-based compound crystal.
  • the average aspect ratio of ⁇ -Si 3 N 4 crystal grains is preferably 4 or less. In addition, it is preferable that all the ⁇ -Si 3 N 4 crystal particles have an average major axis of 6 ⁇ m or less. By controlling the average aspect ratio and the major axis, the existence state of the grain boundary phase can be controlled, and as a result, the existence state of the rare earth-Hf—O-based compound crystal can be easily controlled.
  • Examples of the wear resistant member made of silicon nitride of the embodiment include a bearing ball, a roller, a check ball, a wear pad, a plunger, and a roller. These wear-resistant members slide with a counterpart member made of a metal member or ceramics.
  • the surface roughness Ra is polished to 0.1 ⁇ m or less.
  • the surface roughness Ra is preferably flattened to 0.1 ⁇ m or less, further 0.05 ⁇ m or less, more preferably 0.01 ⁇ m or less.
  • the surface roughness Ra in the range of 0.01 to 4 is specified as Grade (sphere accuracy) of 0.003.
  • Grade sphere accuracy
  • the surface roughness Ra can be used without any problem as long as it is smaller than the specified accuracy grade (Grade).
  • FIG. 1 shows an example of a bearing ball as a wear-resistant member (in the figure, 1 is a bearing ball). Furthermore, it is preferable to use it for a bearing having a load applied to the bearing ball of 5.1 GPa or less. Examples of such bearings include machine tools and personal computer fan motors. Further, the bearing ball of the embodiment can have a life of 600 hours or more when a load with a contact pressure of 5.1 GPa is applied by a thrust type rolling fatigue tester and the spindle is rotated at 1200 rpm. Since the surface pressure is 5.1 GPa, excellent wear resistance is exhibited if the load applied to the bearing ball is 5.1 GPa or less.
  • the method for producing a silicon nitride sintered body according to the embodiment is synthesized by a metal nitriding method, has an oxygen content of 1.5 mass% or less, contains ⁇ -phase silicon nitride of 80 mass% or more, and has an average particle size Of silicon nitride powder having a particle size of 1 ⁇ m or less, rare earth elements in an oxide equivalent of 2 to 4 mass%, Al in an oxide equivalent of 2 to 6 mass%, and Hf in an oxide equivalent of 0.1 to 5 mass%.
  • the obtained silicon nitride sintered body has a rare earth-Hf—O-based compound crystal in a grain boundary phase per unit area of 30 ⁇ m ⁇ 30 ⁇ m in an arbitrary cross section.
  • Unit area ratio of rare earth-Hf-O compound crystal is 5-50%
  • the variation in the area ratio of the rare earth-Hf—O-based compound crystal between the areas is within 10%.
  • silicon nitride powder will be described.
  • the silicon nitride powder is synthesized by a metal nitriding method and preferably has an oxygen content of 1.5% by mass or less, ⁇ -phase silicon nitride of 80% by mass or more, and an average particle size of 1 ⁇ m or less.
  • the silicon nitride powder synthesized by metal nitriding contains 100 to 3000 wtppm Fe and 50 to 2000 wtppm Ca as metal impurities.
  • the silicon nitride powder synthesized by the imide decomposition method has 50 wtppm or less of Fe and 20 wtppm or less of Ca as metal impurities.
  • the silicon nitride powder synthesized by the metal nitriding method is obtained by pulverizing the synthesized silicon nitride bulk into silicon nitride powder. Since the pulverization process is used, the particle size distribution becomes broad. When the particle size distribution is broad, it becomes easy to obtain a structure in which small particles enter into the gaps between large particles, so that it becomes easy to obtain a sintered body having small pores (pores) and high density.
  • silicon nitride powder synthesized by metal nitriding method is less expensive than silicon nitride powder synthesized by imide decomposition method. Therefore, the obtained silicon nitride sintered body can also be reduced in cost.
  • the oxygen content of the silicon nitride powder is preferably 1.5% by mass or less. If the oxygen content exceeds 1.5% by mass, the amount of rare earth-Hf—O-based compound crystals formed is affected.
  • the silicon nitride powder preferably contains 80% by mass or more of ⁇ -phase type silicon nitride and has an average particle size of 1 ⁇ m or less.
  • the ⁇ -type silicon nitride powder grows into ⁇ -type silicon nitride crystal particles ( ⁇ -Si 3 N 4 crystal particles) by a sintering process. By accompanying grain growth from ⁇ type to ⁇ type, a silicon nitride sintered body having excellent wear resistance can be obtained.
  • the rare earth element component is preferably a rare earth oxide powder having an average particle size of 2 ⁇ m or less.
  • the Al component is preferably a powder having an average particle diameter of 2 ⁇ m or less, which is one or more of Al 2 O 3 , AlN, and MgAl 2 O 4 spinel.
  • the Hf component is preferably HfO 2 powder having an average particle size of 2 ⁇ m or less.
  • the group 4A element component (excluding Hf), the group 5A element component, and the group 6A element component are preferably powders having an average particle size of 2 ⁇ m or less. If necessary, it is preferable to add 2 to 7% by mass of SiC. Further, SiC is preferably a powder having an average particle size of 2 ⁇ m or less.
  • the step of preparing the raw material mixed powder obtained by adding the sintering aid powder to the silicon nitride powder is a step of uniformly mixing the sintering aid powder with the silicon nitride powder.
  • it is effective to perform the mixing process for a long time.
  • a crushing and mixing process using a ball mill or the like is effective, and it is preferably performed for a long time of 50 hours or more.
  • the crushing and mixing step can prevent secondary particles in which silicon nitride powders, sintering aid powders, silicon nitride powder and sintering aid powder are combined. Uniform mixing can be performed when most of the silicon nitride powder and the sintering aid powder become primary particles. In order to perform uniform mixing, it is preferable to mix as a powder having a predetermined particle size.
  • the obtained mixed powder is molded to obtain a molded body having a relative density of 50 to 58%.
  • a resin binder is added as necessary when producing a molded body.
  • the process of obtaining a molded object is metal mold forming.
  • the compact has a relative density in the range of 50 to 58%.
  • the density of the molded body is a value obtained by dividing the actual measurement value measured by the dimensional weight method by the theoretical density.
  • the rare earth-Hf—O-based compound crystal is formed by reacting a rare earth element component and an Hf component during the sintering process.
  • the reaction is Y 2 O 3 + 2HfO 2 ⁇ Y 2 Hf 2 O 7 .
  • the relative density of the molded body is preferably 50 to 58%, more preferably 52 to 56%.
  • a step of sintering the obtained molded body at a temperature of 1600 to 1950 ° C. in a non-oxidizing atmosphere is performed.
  • the non-oxidizing atmosphere is preferably an inert atmosphere such as nitrogen or argon.
  • the sintering temperature is less than 1600 ° C., the sintering becomes insufficient and the strength of the sintered body is lowered.
  • the sintering step is preferably a pressurized atmosphere.
  • a normal pressure atmosphere or a pressurized atmosphere may be used.
  • the sintering time is preferably 1 to 15 hours. If it is less than 1 hour, sintering may be insufficient. On the other hand, if it exceeds 15 hours, the Si 3 N 4 crystal grains may grow excessively.
  • the temperature of 1500 to 1600 ° C. is the temperature at which the rare earth element component and the Hf component react.
  • the upper limit of the temperature raising time is not particularly limited, but is preferably 15 hours or less in order to prevent the production time from being prolonged. If the addition amount of the rare earth element component and the Hf component is in the above range, the reaction of the rare earth-Hf—O-based compound crystal is completed in 15 hours or less. Moreover, the relative density of a sintered compact can be 98.0% or more by performing such a sintering process.
  • the obtained sintered body is preferably subjected to a hot isostatic pressing (HIP) treatment at a temperature of 1600 to 1950 ° C. in a non-oxidizing atmosphere at a pressure of 30 MPa or more.
  • HIP hot isostatic pressing
  • the obtained silicon nitride sintered body has a rare earth-Hf—O-based compound crystal, and a rare earth in a grain boundary phase per unit area of 30 ⁇ m ⁇ 30 ⁇ m in an arbitrary cross section.
  • the area ratio of the —Hf—O-based compound crystal is 5 to 50%, and the variation in the area ratio of the rare earth-Hf—O-based compound crystal between unit areas can be made within 10%.
  • the lapping process is preferably a lapping process using a diamond grindstone.
  • Example 1 As shown in Table 1, silicon nitride powder 1 synthesized by metal nitriding method and silicon nitride powder 2 synthesized by imide decomposition method were prepared.
  • a silicon nitride sintered body comprising Examples 1 to 9 and Comparative Examples 1 to 2 was prepared by combining the silicon nitride powders 1 and 2 and the sintering aids 1 to 10 according to the processing conditions shown in Table 3. Manufactured. Molding was performed by mold processing.
  • the relative density (%), XRD analysis, and dispersion state of rare earth-Hf—O compound crystals were measured.
  • a peak intensity I3 of 30.0 ⁇ 0.5 °, a peak intensity I2 of 17.1 ⁇ 0.5 °, a peak intensity I3 of 33.7 ⁇ 0.5 ° were measured, and I1 / [( I2 + I3) / 2].
  • XRD analysis was performed with a Cu target (Cu-K ⁇ ), tube voltage 40 kV, tube current 40 mA, scan speed 2.0 ° / min, slit (RS) 0.15 mm, scan range (2 ⁇ ) 10 ° to 60 °. Carried out.
  • the dispersion state of the rare earth-Hf—O-based compound crystal was obtained by taking SEM photographs (3,000 times) of 5 unit areas of 30 ⁇ m ⁇ 30 ⁇ m which are different in any cross section of each sintered body.
  • An area ratio (%) obtained by dividing the total area of rare earth-Hf-O-based compound crystals that appear white in the SEM photograph by the total area of the grain boundary phase, and having the largest deviation from the average value was displayed as variation.
  • the measurement results are shown in Table 4 below.
  • the dispersion state of the rare earth-Hf—O-based compound crystal satisfied the present embodiment.
  • the lapping process uses (1) the time until the surface roughness Ra is polished from 1 ⁇ m to 0.1 ⁇ m by using diamond abrasive grains having a particle diameter of 0.25 ⁇ m, and (2) the surface roughness Ra is from 0.10 ⁇ m.
  • the time until polishing to 0.01 ⁇ m and (3) the time to polish the surface roughness Ra from 0.01 ⁇ m to 0.004 ⁇ m were measured.
  • the polishing time is shown as a ratio when Comparative Example 2 is set to 100. The results are shown in Table 5 below.
  • the silicon nitride sintered body according to each example has a short polishing time.
  • a bearing ball having a surface roughness Ra of 0.01 ⁇ m was produced and subjected to an abrasion resistance test.
  • the wear resistance test was performed by measuring the time until the surface of the silicon nitride ball (bearing ball) was peeled off when the surface pressure was applied with a load of 5.1 GPa with a thrust type rolling fatigue tester and the spindle was rotated at 1200 rpm. .
  • the measurement time was 600 hours as the upper limit.
  • those in which surface peeling was not confirmed even after 600 hours passed were described as “600 hours or more”. The results are shown in Table 6 below.
  • the wear resistant members (bearing balls) according to the respective examples showed excellent wear resistance. As a result, it was confirmed that the wear resistant member according to the example had good workability and wear resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 β-Si結晶粒子を主成分とし、希土類元素を酸化物に換算して2~4質量%と、Alを酸化物換算で2~6質量%と、Hfを酸化物換算で0.1~5質量%とを含有する窒化珪素焼結体を具備する耐摩耗性部材において、上記窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μm当りの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、上記単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とする。上記構成によれば、耐摩耗性に優れ、加工性の良い窒化珪素焼結体からなる耐摩耗性部材を提供することができる。

Description

窒化珪素製耐摩耗性部材および窒化珪素焼結体の製造方法
 後述する実施形態は、概ね、窒化珪素製耐摩耗性部材とその製造方法に関する。
 窒化珪素焼結体は、その耐摩耗性を利用してベアリングボールやローラなどの耐摩耗性部材として使用されている。従来の窒化珪素焼結体の焼結組成としては、窒化珪素-酸化イットリウム-酸化アルミニウム-窒化アルミニウム-酸化チタン系等が知られている(特許文献1:特開2001-328869号公報)。焼結助剤として、酸化イットリウム、酸化アルミニウム、窒化アルミニウム、酸化チタンを使用することにより焼結性が向上し、優れた耐摩耗性を有する窒化珪素焼結体が得られている。
 また、特許文献2(特開2003-34581号公報)には、焼結助剤として、酸化イットリウム-MgAlスピネル-炭化珪素-酸化チタンを使用した窒化珪素焼結体が開示されている。特許文献2では焼結温度を1600℃以下にすることを可能としている。
 上記特許文献1および特許文献2に示された焼結体は、いずれも焼結性が良好であり、優れた耐摩耗性を有していた。一方で、これら従来の窒化珪素焼結体は硬度が高く難加工性材料であった。ベアリングボールなどの耐摩耗性部材は、摺動面が表面粗さRa0.1μm以下の平坦面とすることが必要である。ここで、上記窒化珪素焼結体の表面加工には、通常、ダイヤモンド砥粒が使われているが、従来の窒化珪素焼結体は難加工材であることから、研磨加工の負荷が大きくコストアップの要因となる問題点があった。
特開2001-328869号公報 特開2003-34581号公報
 これまでの窒化珪素焼結体は耐摩耗性を向上させるために破壊靭性などの材料特性を高いものにすることのみに着眼して開発されてきた。確かに材料特性を向上させることにより耐摩耗性は向上する。このような窒化珪素焼結体は、工作機械などの高負荷環境でのベアリングボールには最適である。
 一方、ベアリングボールなどの耐摩耗性部材は、高負荷環境下で使われるものに限らず、パソコンなどのファンモータ用ベアリングといった低負荷環境下で使用される用途もある。特許文献1や特許文献2に記載の窒化珪素焼結体は特性が優れることからファンモータ用ベアリングにも使用できる。しかしながら、加工性が悪く、コストが高くなるといった問題があった。
 本発明は、このような問題に対応するためのものであり、加工性が良好である窒化珪素焼結体を提供するためのものである。
 実施形態に係る窒化珪素製耐摩耗性部材は、β-Si結晶粒子を主成分とし、希土類元素を酸化物に換算して2~4質量%と、Alを酸化物換算で2~6質量%と、Hfを酸化物換算で0.1~5質量%とを含有する窒化珪素焼結体を具備する耐摩耗性部材において、上記窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μmあたりの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とするものである。
 また、実施形態に係る窒化珪素焼結体の製造方法は、金属窒化法で合成され、酸素含有量が1.5質量%以下であり、α相型窒化珪素を80質量%以上含有し、平均粒径が1μm以下の窒化珪素粉末に、希土類元素を酸化物換算で2~4質量%と、Alを酸化物換算で2~6質量%と、Hfを酸化物換算で0.1~5質量%とを添加した原料混合体を調製する工程と、得られた混合粉体を成形して相対密度が50~58%である成形体を得る工程と、得られた成形体を非酸化性雰囲気中にて温度1600~1950℃で焼結する工程とを有することにより、得られた窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μmあたりの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とするものである。
 本実施形態の窒化珪素製耐摩耗性部材は、希土類-Hf-O系化合物結晶の存在割合を制御している。そのため、優れた耐摩耗性を有している。その上で、研磨加工などの表面加工を実施し易い利点がある。また、本実施形態の窒化珪素製耐摩耗性部材の製造方法によれば、希土類-Hf-O系化合物結晶の存在割合を制御した窒化珪素焼結体を得ることができる。
実施形態のベアリングボールの一例を示す斜視図である。 実施形態の窒化珪素焼結体の組織写真の一例を示すSEM写真である。
 本実施形態に係る窒化珪素製耐摩耗性部材は、β-Si結晶粒子を主成分とし、希土類元素を酸化物に換算して2~4質量%と、Alを酸化物換算で2~6質量%と、Hfを酸化物換算で0.1~5質量%とを含有する窒化珪素焼結体を具備する耐摩耗性部材において、上記窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μm当りの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とするものである。
 まず、添加成分について説明する。希土類元素は酸化物に換算して2~4質量%含有するものである。希土類元素は、Y(イットリウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジウム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユーロピウム)、Gd(ガドリウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)から選択される少なくとも1種であることが好ましい。
 また、酸化物への換算は、希土類元素をRとしたときRにて換算するものとする。また、焼結助剤として添加する際は、希土類酸化物粉末として添加することが好ましい。希土類元素量が酸化物換算で2質量%未満では、希土類-Hf-O系化合物結晶の形成量が低下し、耐摩耗性部材の機械特性の低下や加工性の低下を招く。また、4質量%を超えると希土類-Hf-O系化合物結晶の形成量のばらつきが大きくなる。また、希土類元素の中ではイットリウムが好ましい。イットリウムはY-Hf-O系化合物結晶を形成し易い成分である。
 また、Al(アルミニウム)を酸化物換算で2~6質量%含有するものである。Alの酸化物換算はAlにて行うものとする。Al量が酸化物換算で2質量%未満または6質量%を超えると強度の低下を招き耐摩耗性部材としての耐久性が低下する。また、Al成分の添加方法としては、Alを含有していれば特に限定されるものではないが、AlN、Al,MgAlスピネルのいずれか1種以上であることが好ましい。特にAlNと、AlまたはMgAlのうち一つを併用して添加することが好ましい。AlNと、AlまたはMgAlを併用して用いると、AlNが窒化珪素およびSiOのSiOへの分解を抑制しやすいため均一な粒成長が促進され、粒界相組織の結晶性が高くなる。また、Hfや希土類元素との結晶性化合物が生成し易くなる。その結果として、粒界相中の希土類-Hf-O系化合物結晶の存在割合の制御を行うことができる。
 また、窒化珪素焼結体は、Hf(ハフニウム)を酸化物換算で0.1~5質量%含有している。酸化物への換算はHfOにて行うものとする。Hfは希土類元素(または希土類元素化合物)と反応し易い成分であり、希土類-Hf-O系化合物結晶を形成することができる。また、Hf成分を添加する際は、HfO粉末として添加することが好ましい。HfO粉末として添加することにより、希土類-Hf-O系化合物結晶の存在割合を制御し易くなる。また、Hf成分の含有量が酸化物換算で0.1質量%未満では希土類-Hf-O系化合物結晶の形成量が低下する。一方、5質量%を超えると希土類-Hf-O系化合物結晶の存在ばらつきが大きくなる。また、Hf含有量は酸化物換算で0.5~3質量%が好ましい。
 このような焼結助剤成分を含む窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有している。希土類-Hf-O系化合物は構成成分として希土類元素、Hf、酸素を有していればその組成は特に限定されるものではない。また、希土類-Hf-O系化合物としては、希土類-Hf-O、希土類-Hf-O-N、などが挙げられる。また、希土類-Hf-O系化合物はその一部または全部が結晶となっていることが必要である。
 また、希土類-Hf-O系化合物結晶は、窒化珪素焼結体の任意の断面において単位面積30μm×30μmあたりの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とするものである。
 希土類-Hf-O系化合物結晶の有無は後述するXRDによるピークの有無で確認できる。また、単位面積あたりの面積比はSEM観察にて分析することができる。SEM観察したとき、希土類-Hf-O系化合物結晶は白色に見える。一方、Si結晶粒子や粒界ガラス相は濃い灰色に見える。
 また、SEM写真を4000倍以上の拡大写真とすることにより、Si結晶粒子と粒界ガラス相との区別もできる。Si結晶粒子はβ型であれば細長い粒子形状、α型であれば丸い粒子形状を呈している。粒界ガラス相は、Si結晶粒子同士の粒界に不定形に存在する。そのため、4000倍以上の拡大写真(SEM写真)であれば、Si結晶粒子と粒界ガラス相とを区別することができる。
 また、ポアは黒色に見える。また、任意の断面をSEM観察する場合は、断面を表面粗さRaが0.05μm以下になるまで研磨加工するものとする。図2に実施形態の窒化珪素焼結体の組織写真の一例を示すSEM写真を示した。図中、2はSi結晶粒子、3は希土類-Hf-O系化合物結晶、4は粒界ガラス相である。図2に示す組織形態を見て分かる通り、希土類-Hf-O系化合物結晶は白色に観察される。
 単位面積30μm×30μm当りの粒界相(粒界ガラス相と希土類-Hf-O系化合物結晶の合計)の面積を求める。次に、単位面積30μm×30μm当りの希土類-Hf-O系化合物結晶の合計の面積を求める。[(希土類-Hf-O系化合物結晶の合計の面積)/(粒界相の面積)]×100(%)にて、単位面積30μm×30μm当りの粒界相中の希土類-Hf-O系化合物結晶の面積比(%)を求める。実施形態の窒化珪素焼結体は、任意の断面において単位面積30μm×30μm当りの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%の範囲内となっている。
 その上で、単位面積あたりの面積比(%)のばらつきが10%となっている。面積比のばらつきは、単位面積30μm×30μmを重複しない5か所測定し、その5か所の面積比の平均値に対する個々の面積比のずれを示すものである。例えば、重複しない5か所の面積比(%)をM1、M2、M3、M4、M5としたとき、M1~M5はいずれも5~50%の範囲内となっている。面積比の平均値をM6としたとき、M6=(M1+M2+M3+M4+M5)/5となる。面積比(%)のばらつきは、|[(M6-Mn)/M6]|×100(%)、n=1~5の整数、により求めることができる。実施形態の窒化珪素焼結体は、平均値M6に対して、M1~M5のいずれもばらつきが10%以内になっている。
 つまり、単位面積30μm×30μmという微小領域において、希土類-Hf-O系化合物結晶を所定量存在させ、その存在量(面積比)のばらつきを低減させたものである。窒化珪素焼結体は、β-Si結晶粒子を主成分とし、希土類元素、Al、Hfなどの焼結助剤成分からなる粒界相を有している。β-Si結晶粒子と粒界相とは硬度が異なっており、β-Si結晶粒子の方が粒界相よりも硬い。また、粒界相は、希土類-Hf-O系化合物結晶と粒界ガラス相からなっている。
 窒化珪素製耐摩耗性部材に用いる場合、表面研磨加工を施して表面粗さRaを0.05μm以下の平坦面にすることが有効である。窒化珪素焼結体の表面研磨加工は、ダイヤモンド砥石を使ったラップ加工が挙げられる。特に、ベアリングボールのように表面全体が摺動面となる球体状の耐摩耗性部材を得る場合にダイヤモンド砥石を使ったラップ加工が有効である。ラップ加工を行ったとき、Si結晶粒子と粒界ガラス相の硬度の違いに起因して、削られ方にばらつきが生じていた。ダイヤモンド砥石のように硬い砥石を使った場合、硬いSi結晶粒子の方が先に除去されていき、柔らかい粒界ガラス相は後で除去されていく。これはダイヤモンド砥石が硬いSi結晶粒子の方に強く当たるためである。実施形態の窒化珪素焼結体は、粒界相中に所定量の希土類-Hf-O系化合物結晶を存在させることにより粒界相の硬度を上げることができる。
 粒界相の硬度をSi結晶粒子の硬度に近づけることにより、粒界相とSi結晶粒子の削られ方を同等にすることができる。このため、研磨時間の短縮が可能となる。このように粒界相とSi結晶粒子の硬度を同等とするには、希土類-Hf-O系化合物結晶を所定量存在させることが有効である。
 また、希土類-Hf-O系化合物結晶としては希土類をRとしたとき、RHfで示される化合物結晶であることが好ましい。RHf化合物結晶はSi結晶粒子の硬度に近いため、粒界相とSi結晶粒子との削られ方を同等にする効果を得易い。また、RHfとしては、YHf、ErHfが挙げられる。焼結助剤として、YやErを使うことが好ましい。
 また、希土類-Hf-O系化合物結晶としては、Caなどの他の成分を含んでいても良い。
 また、窒化珪素焼結体のXRD分析を行ったとき、希土類-Hf-O系化合物結晶に基づく30.0±0.5°のピーク強度I1と、β-Si結晶に基づく27.1±0.5°のピーク強度I2と、33.7±0.5°のピーク強度I3とが、関係式:I1/[(I2+I3)/2]=0.1~0.2を満たすことが好ましい。
 なお、XRD分析は窒化珪素焼結体の任意の断面を測定面とする。測定面は表面粗さRaが0.05μm以下に研磨された研磨面とする。XRD分析は、Cuターゲット(Cu-Kα)、管電圧40kV、管電流40mA、スキャンスピート2.0°/min、スリット(RS)0.15mm、走査範囲(2θ)10°~60°にて実施するものとする。
 XRD分析によるピークの検出位置(2θ)は、結晶化合物の組成によって決まる。また、ピークの高さは結晶化合物の量に応じて決定される。30.0±0.5°のピーク強度I1が検出されるということは所定量の希土類-Hf-O系化合物が形成されていることを示している。希土類-Hf-O系化合物結晶としては、Y2Hf27などが挙げられる。
 また、27.1±0.5°のピーク強度I2と33.7±0.5°のピーク強度I3はβ-Si結晶に基づくピークである。また、I2とI3はβ-Si結晶粒子に基づくピークの中で代表的な2つの大きなピークであるためである。また、分母を(I2+I3)/2としている(I2とI3の平均値)のは、β-Si結晶粒子の配向によりI2、I3のピーク高さが変化する影響を抑制するためである。
 また、関係式:I1/[(I2+I3)/2]=0.1~0.2を満たすということは、結晶性の良い希土類-Hf-O系化合物結晶が形成されていることを示している。結晶性の良い希土類-Hf-O系化合物結晶を前述のように存在させることにより、耐摩耗性と加工性との両立を図ることができる。
 また、I1/[(I2+I3)/2]=0.1~0.2になっていると含有しているHf(Hfを酸化物換算して0.1~5質量%)の90質量%以上が希土類-Hf-O系化合物結晶になっている状態を示す。
 また、希土類-Hf-O系化合物結晶の平均粒径が1μm以下であることが好ましい。また、希土類-Hf-O系化合物結晶の凝集体は最大径が5μm以下であることが好ましい。希土類-Hf-O系化合物結晶を所定量存在させることにより効果を得るものである。その一方で、希土類-Hf-O系化合物結晶が大きすぎると希土類-Hf-O系化合物結晶およびその凝集体が破壊起点となり、却って耐摩耗性が低下する恐れがある。
 また、実施形態に係る窒化珪素焼結体は、4a族(Hfを除く)、5a族、6a族元素の中から選択される少なくとも1種を酸化物換算で0.1~5質量%含有することが好ましい。4A族元素(Hfを除く)は、Ti(チタン)、Zr(ジルコニウム)である。また、5A族元素は、V(バナジウム)、Nb(ニオブ)、Ta(タンタル)である。また、6A族元素は、Cr(クロム)、Mo(モリブデン)、W(タングステン)である。4A族(Hf除く)元素の酸化物換算は、TiO、ZrOにて換算するものとする。また、5A族元素の酸化物換算は、V,Nb,Taにて換算するものとする。また、6A族元素の酸化物換算は、Cr、MoO、WOにて換算するものとする。
 また、焼結助剤として4A族元素(Hf除く)成分、5A族元素成分、6A族元素成分を添加する際は、酸化物、炭化物、窒化物のいずれか1種として添加することが好ましい。また、含有量が0.1wt%未満では添加の効果が不十分であり、5wt%を超えると却って焼結性が悪化する。4A族(Hf除く)元素成分、5A族元素成分、6A族元素成分が存在することにより、粒界相を強化することができる。このため、4A族(Hf除く)元素成分、5A族元素成分、6A族元素成分は平均粒径2μm以下の粉末であることが好ましい。また、4A族(Hf除く)元素成分、5A族元素成分、6A族元素成分のいずれか1種を炭化物粉末とすれば粒界相の強化と摺動面の潤滑性向上との効果を得ることができる。
 また、実施形態の窒化珪素焼結体は、SiCを2~7質量%含有することが好ましい。また、SiCは平均粒径2μm以下の粉末であることが好ましい。SiC粉末は粒界相の強化と、摺動面の潤滑性を向上させることができる。また、SiC含有量はSiC換算で計算される。
 また、実施形態の窒化珪素焼結体は、相対密度が98.0%以上であり、さらには99.0~100%であることが好ましい。相対密度が98.0%未満と低いと、ポアが増加する結果、希土類-Hf-O系化合物結晶の存在状態を制御するのが困難となるおそれがある。また、β-Si結晶粒子の平均アスペクト比は4以下が好ましい。また、いずれのβ-Si結晶粒子も長径が平均6μm以下であることが好ましい。平均アスペクト比や長径を制御することにより、粒界相の存在状態を制御でき、その結果、希土類-Hf-O系化合物結晶の存在状態の制御も行い易くなる。
 実施形態の窒化珪素製耐摩耗性部材は、ベアリングボール、ローラ、チェックボール、ウエアパッド、プランジャー、コロなどが挙げられる。これら耐摩耗性部材は、金属部材やセラミックスなどからなる相手部材と摺動する。摺動面の耐久性を上げるためには、表面粗さRaが0.1μm以下に研磨加工することが好ましい。表面粗さRaを0.1μm以下、さらには0.05μm以下、より好ましくは0.01μm以下と平坦にすることが好ましい。
 摺動面を平坦にすることにより、窒化珪素焼結体の耐久性を向上させると共に相手部材への攻撃性を低下させることができる。相手部材への攻撃性を低下させることにより、相手部材の消耗を低減できるので耐摩耗性部材を組み込んだ装置の耐久性を向上させることができる。また、研磨加工はダイヤモンド砥石を使用するラップ加工が好ましい。
 例えば、ASTM(American Society for Testing and Materials)のF2094(Standard Specification for Silicon Nitride Bearing Balls)では、Grade(球の精度)として表面粗さRaが0.004~0.013μmの範囲に規定されている。このようなベアリングボールを作製する場合には、上記のような表面粗さとなる球の精度が必要となる。なお、表面粗さRaは規定された精度等級(Grade)より小さい値であれば問題がなく使用できるものである。
 上記ラップ加工は、特にベアリングボールのように表面全体を研磨加工するものに好適である。図1に耐摩耗性部材としてのベアリングボールの一例を示した(図中、1はベアリングボール)。さらに、ベアリングボールに掛かる負荷が5.1GPa以下の軸受けに使用することが好ましい。このような軸受けとしては、工作機械、パソコン用ファンモータなどが挙げられる。また、実施形態のベアリングボールは、スラスト式転がり疲労試験機で面圧が5.1GPaの荷重を印加し、スピンドルを1200rpmで回転したときの寿命が600時間以上とすることができる。面圧を5.1GPaとしているので、ベアリングボールに掛かる負荷が5.1GPa以下の用途であれば優れた耐摩耗性を示すものである。
 次に実施形態に係る窒化珪素焼結体の製造方法について説明する。実施形態に係る窒化珪素焼結体の製造方法は、金属窒化法で合成され、酸素含有量が1.5質量%以下であり、α相型窒化珪素を80質量%以上含有し、平均粒径が1μm以下の窒化珪素粉末に、希土類元素を酸化物換算で2~4質量%と、Alを酸化物換算で2~6質量%と、Hfを酸化物換算で0.1~5質量%とを添加した原料混合粉末を調製する工程と、得られた原料混合粉末を成形して相対密度50~58%の成形体を得る工程と、得られた成形体を非酸化性雰囲気中1600~1950℃で焼結する工程とを有することにより、得られた窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μmあたりの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とするものである。
 まず、窒化珪素粉末について説明する。窒化珪素粉末は、金属窒化法で合成され、酸素含有量が1.5質量%以下であり、α相型窒化珪素を80質量%以上含有し、平均粒径が1μm以下であることが好ましい。金属窒化法で合成された窒化珪素粉末は、金属不純物としてFeを100~3000wtppm、Caを50~2000wtppm含有している。それに対し、イミド分解法により合成された窒化珪素粉末は金属不純物としてFeが50wtppm以下、Caが20wtppm以下である。
 金属不純物の多い金属窒化法で合成された窒化珪素粉末を使用したとしても、優れた特性を示すものである。また、金属窒化法で合成された窒化珪素粉は、合成した窒化珪素バルクを粉砕して窒化珪素粉にしている。粉砕工程を使用していることから粒度分布がブロードとなる。粒度分布がブロードであると、大きな粒子の隙間に小さな粒子が入り込む構造を取りやすくなるためポア(気孔)が小さく密度の高い焼結体を得易くなる。
 また、イミド分解法により合成した窒化珪素粉と比べて金属窒化法により合成された窒化珪素粉の方が安価である。そのため、得られる窒化珪素焼結体も低コスト化できる。
 また、窒化珪素粉の酸素含有量は1.5質量%以下であることが好ましい。酸素含有量が1.5質量%を超えて多いと、希土類-Hf-O系化合物結晶の形成量に影響が出る。また、窒化珪素粉はα相型窒化珪素を80質量%以上含有し、平均粒径が1μm以下であることが好ましい。α型窒化珪素粉は焼結工程により、β型窒化珪素結晶粒子(β-Si結晶粒子)へと粒成長していく。α型からβ型への粒成長を伴うことによって耐摩耗性の優れた窒化珪素焼結体を得ることができる。
 また、焼結助剤として、希土類元素成分を酸化物換算で2~4質量%、Al成分を酸化物換算で2~6質量%、Hf成分を酸化物換算で0.1~5質量%添加するものとする。希土類元素成分は平均粒径2μm以下の希土類酸化物粉末であることが好ましい。また、Al成分は、Al、AlN、MgAlスピネルのいずれか1種以上である平均粒径2μm以下の粉末であることが好ましい。また、Hf成分は平均粒径2μm以下のHfO粉末であることが好ましい。
 また、必要に応じ、4a族(Hfを除く)、5a族、6a族元素の中から少なくとも1種を酸化物換算で0.1~5質量%添加することが好ましい。また、4A族(Hf除く)元素成分、5A族元素成分、6A族元素成分は平均粒径2μm以下の粉末であることが好ましい。また、必要に応じ、SiCを2~7質量%添加することが好ましい。また、SiCは平均粒径2μm以下の粉末であることが好ましい。
 また、窒化珪素粉末に焼結助剤粉末を添加した原料混合粉末を調製する工程は、窒化珪素粉末に焼結助剤粉末を均一に混合する工程である。窒化珪素粉末と焼結助剤粉末の均一混合には、混合工程を長時間行うことが有効である。ボールミルなどによる解砕混合工程が有効であり、50時間以上の長時間行うことが好ましい。解砕混合工程により、窒化珪素粉末同士、焼結助剤粉末同士、窒化珪素粉末および焼結助剤粉末が結合した二次粒子となることを防ぐことができる。窒化珪素粉末と焼結助剤粉末のほとんどが一次粒子となることにより均一混合を行うことができる。また、均一混合を行うためにも所定の粒径を有する粉末として混合することが好ましい。
 次に、得られた混合粉体を成形して相対密度が50~58%である成形体を得る工程を行う。成形体を作製する際に必要に応じ樹脂バインダーを添加するものとする。また、成形体を得る工程は金型成形であることが好ましい。また、成形体は相対密度50~58%の範囲にすることが好ましい。成形体の密度は、寸法重量法で測定した実測値を理論密度で割った値である。また、理論密度は窒化珪素粉および焼結助剤粉の真密度と重量から計算により求めた値である。相対密度(%)=(実測値/理論密度)×100(%)、により求めるものとする。
 実施形態の製造方法により得られる窒化珪素焼結体は、希土類-Hf-O系化合物結晶の存在状態を制御する必要がある。希土類-Hf-O系化合物結晶は、希土類元素成分とHf成分が焼結工程中に反応して形成するものである。例えば、希土類-Hf-O系化合物結晶がYHf結晶の場合、Y+2HfO→YHf、といった反応となる。
 このような反応をスムーズに進行させるためには、前述のように原料混合粉末を均一に混合することが有効である。また、成形体の密度を50~58%にすることにより、成形体内部で反応するスペースを十分確保することができる。また、反応に伴ってガス成分が発生した際に成形体外に放出し易くなる。
 また、成形体密度が50%未満では得られる焼結体の機械的強度が低下する。また、成形体の密度が58%を超えて大きいと、希土類-Hf-O系化合物結晶を形成する反応が十分行われない恐れがある。また、反応に伴って発生したガスが外部に出ないで内部に残存する恐れがある。内部にガスが残存すると希土類-Hf-O系化合物結晶の分散状態のばらつきが大きくなる恐れがある。そのため、成形体の相対密度を50~58%、さらには52~56%にすることが好ましい。
 次に得られた成形体を、非酸化性雰囲気中で温度1600~1950℃で焼結する工程を行うものとする。非酸化性雰囲気とは、窒素、アルゴンなどの不活性雰囲気であることが好ましい。また、焼結温度が1600℃未満では焼結が不十分となり、焼結体の強度が低下する。
 一方、1950℃を超えて高いとSi結晶粒子が粒成長し過ぎて希土類-Hf-O系化合物結晶の分散状態の制御が困難となる。また、この焼結工程は加圧雰囲気が好ましいが、1700℃以下で焼結を行う場合は常圧雰囲気、加圧雰囲気のいずれでもよい。また、焼結時間は1~15時間が好ましい。1時間未満では焼結が不十分となる恐れがある。また、15時間を超えて大きいとSi結晶粒子が粒成長し過ぎる恐れがある。
 また、焼結する工程の前に、温度1500~1600℃の間を2時間以上かけて昇温することが好ましい。1500~1600℃の温度は希土類元素成分とHf成分とが反応する温度である。1500~1600℃の温度領域を2時間以上かけて昇温することにより、希土類-Hf-O系化合物結晶の形成を促進させることができる。
 なお、昇温時間の上限は特に限定されるものではないが製造時間の長時間化を防ぐために15時間以下が好ましい。また、希土類元素成分およびHf成分の添加量が上記範囲であれば15時間以下で希土類-Hf-O系化合物結晶の反応が完了する。また、このような焼結工程を行うことにより、焼結体の相対密度を98.0%以上にすることができる。
 また、得られた焼結体に、非酸化性雰囲気中で圧力30MPa以上であり、温度1600~1950℃にて熱間静水圧プレス(HIP)処理することが好ましい。HIP処理を行うことにより、焼結体の相対密度を99.5~100%にすることができる。
 このような製造方法を適用することにより、得られた窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μmあたりの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内にすることができる。
 また、窒化珪素焼結体を耐摩耗性部材に適用する場合は、摺動面となる表面を研磨加工するものとする。また、研磨加工はダイヤモンド砥石を使ったラップ加工が好ましい。
(実施例)
(実施例1)
 表1に示すように金属窒化法で合成された窒化珪素粉末1およびイミド分解法で合成された窒化珪素粉末2を用意した。
Figure JPOXMLDOC01-appb-T000001
 次に焼結助剤として表2に示す組合せのものを用意した。また、いずれも平均粒径は1.2μmのものを用意した。
Figure JPOXMLDOC01-appb-T000002
 次に、前記窒化珪素粉末1~2と焼結助剤1~10とを組合せて表3に示す処理条件により処理して実施例1~9および比較例1~2から成る窒化珪素焼結体を製造した。なお、成形は金型加工により実施した。
Figure JPOXMLDOC01-appb-T000003
 得られた各焼結体に対して、相対密度(%)、XRD分析、希土類-Hf-O系化合物結晶の分散状態を測定した。XRD分析は、30.0±0.5°のピーク強度I1、27.1±0.5°のピーク強度I2、33.7±0.5°のピーク強度I3を測定し、I1/[(I2+I3)/2]の値を示した。なお、XRD分析は、Cuターゲット(Cu-Kα)、管電圧40kV、管電流40mA、スキャンスピート2.0°/min、スリット(RS)0.15mm、走査範囲(2θ)10°~60°にて実施した。
 また、希土類-Hf-O系化合物結晶の分散状態は、各焼結体の任意の断面において異なる5か所の単位面積30μm×30μmのSEM写真(3000倍)を撮影した。SEM写真にて白色に見える希土類-Hf-O系化合物結晶の合計面積を粒界相の合計面積で割って平均したものを面積比(%)とし、その平均値から最も大きなズレが生じたものをばらつきとして表示した。それらの測定結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
 各実施例に係る窒化珪素焼結体は希土類-Hf-O系化合物結晶の分散状態が本実施形態を満足していた。
 次に各実施例および比較例に係る窒化珪素焼結体について、ダイヤモンド砥石を使用したラップ加工を行った。ラップ加工は、粒径が0.25μmのダイヤモンド砥粒を用いて、(1)表面粗さRaを1μmから0.1μmまで研磨するまでの時間、(2)表面粗さRaを0.10μmから0.01μmまで研磨するまでの時間、(3)表面粗さRaを0.01μmから0.004μmまで研磨するまでの時間、を測定した。研磨時間に関しては比較例2を100としたときの比で示した。その結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上記表5に示す結果から明らかなように、各実施例に係る窒化珪素焼結体は研磨加工時間が短かった。
 次に表面粗さRaを0.01μmに研磨したベアリングボールを作製して耐摩耗性試験を行った。耐摩耗性試験は、スラスト式転がり疲労試験機で面圧が5.1GPaの荷重を印加し、スピンドルを1200rpmで回転したとき窒化珪素ボール(ベアリングボール)の表面が剥離するまでの時間を測定した。なお、測定時間は600時間を上限とした。なお、試験の結果で600時間経過後も表面剥離が確認されないものを「600時間以上」と表記した。その結果を下記表6に示した。
Figure JPOXMLDOC01-appb-T000006
 上記表6に示す結果から明らかなように、各実施例に係る耐摩耗性部材(ベアリングボール)は優れた耐摩耗性を示した。この結果、実施例に係る耐摩耗性部材は加工性および耐摩耗性が共に良好であることが確認できた。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、本発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。また、前述の各実施形態は、相互に組み合わせて実施することができる。
1…ベアリングボール
2…Si結晶粒子
3…希土類-Hf-O系化合物結晶
4…粒界ガラス相

Claims (12)

  1.  β-Si結晶粒子を主成分とし、希土類元素を酸化物に換算して2~4質量%、Alを酸化物換算で2~6質量%、Hfを酸化物換算で0.1~5質量%含有する窒化珪素焼結体を具備する耐摩耗性部材において、
     窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μm当りの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、単位面積間の希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とする窒化珪素製耐摩耗性部材。
  2.  窒化珪素焼結体のXRD分析を実施したとき、希土類-Hf-O系化合物結晶に基づく30.0±0.5°のピーク強度I1、β-Si結晶に基づく27.1±0.5°のピーク強度I2、33.7±0.5°のピーク強度I3が、I1/[(I2+I3)/2]=0.1~0.2を満たすことを特徴とする請求項1記載の窒化珪素製耐摩耗性部材。
  3.  希土類-Hf-O系化合物結晶の平均粒径が1μm以下であることを特徴とする請求項1ないし請求項2のいずれか1項に記載の窒化珪素製耐摩耗性部材。
  4.  窒化珪素焼結体は、4a族(Hfを除く)、5a族、6a族元素の中から選択される少なくとも1種を酸化物換算で0.1~5質量%含有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化珪素製耐摩耗性部材。
  5.  窒化珪素焼結体は、SiCを2~7質量%含有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の窒化珪素製耐摩耗性部材。
  6.  耐摩耗性部材がベアリングボールであることを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化珪素製耐摩耗性部材。
  7.  スラスト式転がり疲労試験機で面圧が5.1GPaの荷重を印加し、スピンドルを1200rpmで回転したときの寿命が600時間以上であることを特徴とする請求項1ないし請求項6のいずれか1項に記載の窒化珪素製耐磨耗性部材。
  8.  金属窒化法で合成され、酸素含有量が1.5質量%以下であり、α相型窒化珪素を80質量%以上含有し、平均粒径が1μm以下である窒化珪素粉末に、希土類元素を酸化物換算で2~4質量%と、Alを酸化物換算で2~6質量%と、Hfを酸化物換算で0.1~5質量%とを添加した原料混合体粉末を調製する工程と、
     得られた原料混合体粉末を成形して相対密度が50~58%である成形体を得る工程と、得られた成形体を非酸化性雰囲気中にて温度1600~1950℃で焼結する工程とを有することにより、
     得られた窒化珪素焼結体は、希土類-Hf-O系化合物結晶を有し、任意の断面において単位面積30μm×30μmあたりの粒界相中の希土類-Hf-O系化合物結晶の面積比が5~50%であり、上記単位面積間における希土類-Hf-O系化合物結晶の面積比のばらつきが10%以内であることを特徴とする窒化珪素焼結体の製造方法。
  9.  焼結する工程の前に、温度1500~1600℃の間を2時間以上かけて昇温することを特徴とする請求項8記載の窒化珪素焼結体の製造方法。
  10.  得られた焼結体に、非酸化性雰囲気中で圧力30MPa以上であり、温度1600~1950℃にて熱間静水圧プレス(HIP)処理することを特徴とする請求項8ないし請求項9のいずれか1項に記載の窒化珪素焼結体の製造方法。
  11.  原料混合体粉末を調製する工程は、4a族(Hfを除く)、5a族、6a族元素の中から選択される少なくとも1種を酸化物換算で0.1~5質量%添加する工程を有することを特徴とする請求項8ないし請求項10のいずれか1項に記載の窒化珪素焼結体の製造方法。
  12.  原料混合体粉末を調製する工程は、SiCを2~7質量%添加する工程を有することを特徴とする請求項8ないし請求項11のいずれか1項に記載の窒化珪素焼結体の製造方法。
PCT/JP2014/065436 2013-06-13 2014-06-11 窒化珪素製耐摩耗性部材および窒化珪素焼結体の製造方法 WO2014200014A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015522809A JP6416088B2 (ja) 2013-06-13 2014-06-11 窒化珪素製耐摩耗性部材および窒化珪素焼結体の製造方法
US14/896,775 US9663407B2 (en) 2013-06-13 2014-06-11 Silicon nitride wear resistant member and method for producing silicon nitride sintered compact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124875 2013-06-13
JP2013-124875 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014200014A1 true WO2014200014A1 (ja) 2014-12-18

Family

ID=52022305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065436 WO2014200014A1 (ja) 2013-06-13 2014-06-11 窒化珪素製耐摩耗性部材および窒化珪素焼結体の製造方法

Country Status (3)

Country Link
US (1) US9663407B2 (ja)
JP (1) JP6416088B2 (ja)
WO (1) WO2014200014A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698206A (zh) * 2019-10-15 2020-01-17 洛阳轴承研究所有限公司 大尺寸氮化硅轴承球的烧结方法和大尺寸氮化硅轴承球的制备方法
WO2023032695A1 (ja) * 2021-08-30 2023-03-09 Ntn株式会社 窒化ケイ素焼結体、機械部品および軸受

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508525B2 (en) * 2016-03-10 2019-12-17 Bubbletight, LLC Degradable downhole tools and\or components thereof, method of hydraulic fracturing using such tools or components, and method of making such tools or components
EP3896300A4 (en) * 2018-12-11 2022-08-31 Kabushiki Kaisha Toshiba SLIDING ELEMENT, AND BEARING, MOTOR AND DRIVE DEVICE USING THE SAME
CN117229063B (zh) * 2023-09-14 2024-03-05 铜川铜瓷特种陶瓷制造有限公司 一种高硬度耐磨的陶瓷柱塞及其制备工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279123A (ja) * 1993-03-26 1994-10-04 Sumitomo Electric Ind Ltd 窒化ケイ素焼結体及びその製造方法
JP2004256339A (ja) * 2003-02-25 2004-09-16 Kyocera Corp 窒化珪素質焼結体の製造方法
WO2008032427A1 (fr) * 2006-09-13 2008-03-20 Kabushiki Kaisha Toshiba Élément coulissant et palier utilisant celui-ci
WO2011102298A1 (ja) * 2010-02-16 2011-08-25 株式会社東芝 耐摩耗性部材およびその製造方法
WO2013035302A1 (ja) * 2011-09-05 2013-03-14 株式会社 東芝 窒化珪素焼結体とその製造方法、およびそれを用いた耐摩耗性部材とベアリング

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652936B2 (ja) * 1992-04-15 1997-09-10 新日本製鐵株式会社 窒化珪素質焼結体およびその製造方法
EP0603787B1 (de) * 1992-12-23 1998-03-25 Hoechst Aktiengesellschaft Hochtemperaturfeste Siliziumnitridkeramik und Verfahren zu ihrer Herstellung
JP4744704B2 (ja) 2000-03-16 2011-08-10 株式会社東芝 耐摩耗性部材の製造方法
JP2003034581A (ja) 2001-07-24 2003-02-07 Toshiba Corp 窒化けい素製耐摩耗性部材およびその製造方法
JP4869070B2 (ja) * 2004-05-20 2012-02-01 株式会社東芝 高熱伝導性窒化ケイ素焼結体及び窒化ケイ素構造部材
WO2006038489A1 (ja) * 2004-10-01 2006-04-13 Yokohama Tlo Company, Ltd. 導電性窒化ケイ素材料とその製造方法
US9440887B2 (en) * 2012-10-30 2016-09-13 Kabushiki Kaisha Toshiba Silicon nitride sintered body and wear resistant member using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279123A (ja) * 1993-03-26 1994-10-04 Sumitomo Electric Ind Ltd 窒化ケイ素焼結体及びその製造方法
JP2004256339A (ja) * 2003-02-25 2004-09-16 Kyocera Corp 窒化珪素質焼結体の製造方法
WO2008032427A1 (fr) * 2006-09-13 2008-03-20 Kabushiki Kaisha Toshiba Élément coulissant et palier utilisant celui-ci
WO2011102298A1 (ja) * 2010-02-16 2011-08-25 株式会社東芝 耐摩耗性部材およびその製造方法
WO2013035302A1 (ja) * 2011-09-05 2013-03-14 株式会社 東芝 窒化珪素焼結体とその製造方法、およびそれを用いた耐摩耗性部材とベアリング

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698206A (zh) * 2019-10-15 2020-01-17 洛阳轴承研究所有限公司 大尺寸氮化硅轴承球的烧结方法和大尺寸氮化硅轴承球的制备方法
CN110698206B (zh) * 2019-10-15 2021-10-22 洛阳轴承研究所有限公司 大尺寸氮化硅轴承球的烧结方法和大尺寸氮化硅轴承球的制备方法
WO2023032695A1 (ja) * 2021-08-30 2023-03-09 Ntn株式会社 窒化ケイ素焼結体、機械部品および軸受

Also Published As

Publication number Publication date
US20160137556A1 (en) 2016-05-19
JPWO2014200014A1 (ja) 2017-02-23
JP6416088B2 (ja) 2018-10-31
US9663407B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
JP6400478B2 (ja) 耐磨耗性部材
JP5732037B2 (ja) 耐摩耗性部材およびその製造方法
JP6416088B2 (ja) 窒化珪素製耐摩耗性部材および窒化珪素焼結体の製造方法
JP5886337B2 (ja) 耐摩耗性部材およびそれを用いた耐摩耗性機器
JP5944910B2 (ja) 窒化珪素焼結体とその製造方法、およびそれを用いた耐摩耗性部材とベアリング
JPWO2008111307A1 (ja) 窒化珪素焼結体とそれを用いた摺動部材
JP5100201B2 (ja) 窒化珪素焼結体とそれを用いた摺動部材
EP1669335B1 (en) Bearing rolling ball and method for manufacturing the same
JP5830439B2 (ja) 転動体及びその製造方法
JP6491964B2 (ja) 窒化珪素焼結体およびそれを用いた耐摩耗性部材
CN104768900B (zh) 氮化硅烧结体以及使用该氮化硅烧结体的滑动构件
JPWO2018030308A1 (ja) 窒化珪素焼結体製摩擦攪拌接合ツール部材およびそれを用いた摩擦攪拌接合装置
WO2021241583A1 (ja) 窒化珪素焼結体、それを用いた耐摩耗性部材、および窒化珪素焼結体の製造方法
EP4155565A1 (en) Silicon nitride sintered body, wear-resistant member using same, and method for manufacturing silicon nitride sintered body
JP5349525B2 (ja) 転動体
EP2891640A1 (en) Sialon sintered body and wear-resistant component using same
JP4939736B2 (ja) 窒化けい素焼結体の製造方法
JP4004024B2 (ja) 炭化チタン基セラミックス工具とその製造方法
JP2007326745A (ja) 耐磨耗性部材、耐磨耗性機器および耐磨耗性部材の製造方法
JP2021001094A (ja) 窒化珪素焼結体およびそれを用いた耐摩耗性部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522809

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14896775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811653

Country of ref document: EP

Kind code of ref document: A1