WO2014199855A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014199855A1
WO2014199855A1 PCT/JP2014/064613 JP2014064613W WO2014199855A1 WO 2014199855 A1 WO2014199855 A1 WO 2014199855A1 JP 2014064613 W JP2014064613 W JP 2014064613W WO 2014199855 A1 WO2014199855 A1 WO 2014199855A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
needle
refrigerant
expansion valve
pressure
Prior art date
Application number
PCT/JP2014/064613
Other languages
English (en)
French (fr)
Inventor
匡史 齋藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201480033387.9A priority Critical patent/CN105308400B/zh
Priority to ES14810377.3T priority patent/ES2673875T3/es
Priority to AU2014279254A priority patent/AU2014279254C1/en
Priority to EP14810377.3A priority patent/EP3009773B1/en
Publication of WO2014199855A1 publication Critical patent/WO2014199855A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner, and in particular, to an air conditioner having a refrigerant circuit configured by connecting a compressor, an outdoor heat exchanger, a first expansion valve, a receiver, an openable / closable valve, and an indoor heat exchanger. .
  • Patent Document 1 Japanese Patent Laid-Open No. 10-132393
  • the air conditioner is a refrigerant circuit configured by connecting a compressor, an outdoor heat exchanger, a first expansion valve, a receiver, a second expansion valve (openable / closable valve), and an indoor heat exchanger.
  • the receiver may be liquid-sealed when the two expansion valves are fully closed.
  • the “liquid seal” means that a predetermined space of the refrigerant circuit is filled with the liquid refrigerant and the liquid refrigerant is contained in the predetermined space, and the equipment constituting the predetermined space is ruptured due to a temperature rise. It is to be. That is, here, the receiver between the two expansion valves including the receiver in the refrigerant circuit is filled with the liquid refrigerant and the liquid refrigerant is contained in this part, and the receiver constitutes this part by the temperature rise, etc. Equipment may burst.
  • an injection pipe for extracting the refrigerant from the upper space of the receiver and injecting it into the compressor is provided, and a fully-closed expansion valve is used as a gas vent valve provided in the injection pipe.
  • a fully closed type expansion valve for example, a first expansion valve
  • a liquid side closing valve is provided on the other of the upstream side and the downstream side of the receiver.
  • An object of the present invention is to provide an air conditioner having a refrigerant circuit configured by connecting a compressor, an outdoor heat exchanger, a first expansion valve, a receiver, an openable / closable valve, and an indoor heat exchanger. It is to be able to prevent liquid sealing of the receiver without using a liquid sealing preventive pipe and without providing a liquid sealing prevention tube.
  • An air conditioner includes an air conditioner having a refrigerant circuit configured by connecting a compressor, an outdoor heat exchanger, a first expansion valve, a receiver, an openable / closable valve, and an indoor heat exchanger. It is.
  • the first expansion valve a fully-closed expansion valve that is fully closed when the needle is seated on the valve seat is used, and the first expansion valve is used when the needle is seated on the valve seat.
  • the moving direction of the needle is the moving direction of the needle and the moving direction of the needle when the needle is separated from the valve seat is the separating direction of the needle
  • the refrigerant from the receiver flows from the needle moving direction side of the valve seat and flows into the needle and the valve.
  • the refrigerant circuit is provided in the first arrangement state in which it flows out to the needle separating direction side of the valve seat through a gap between the seat and the seat.
  • the first expansion valve provided in the refrigerant circuit in the first arrangement state has a spring that urges the needle seated on the valve seat in the needle traveling direction when fully closed.
  • the force that pushes the needle in the needle separation direction due to the reverse pressure opening valve pressure difference which is the pressure difference of the refrigerant pressure in the space in the needle travel direction side of the valve seat with respect to the refrigerant pressure in the needle separation direction side space,
  • the urging force in the needle traveling direction is overcome, the needle is released from the seated state with respect to the valve seat.
  • the liquid sealing of the receiver can be prevented without providing a liquid sealing prevention tube.
  • the first expansion valve including the receiver in the refrigerant circuit rises, the first expansion valve including the receiver in the refrigerant circuit It is necessary to allow the refrigerant existing in the part between the valve and the openable / closable valve to escape to the other part of the refrigerant circuit.
  • the refrigerant from the receiver flows into the first expansion valve from the needle traveling direction side of the valve seat, and flows out to the needle separating direction side of the valve seat through the gap between the needle and the valve seat.
  • the refrigerant circuit is provided in the first arrangement state.
  • the first expansion valve provided in the refrigerant circuit in the first arrangement state when fully closed, A spring that urges the needle seated against the valve seat in the direction of needle travel is provided, and the force that pushes the needle in the direction away from the needle due to the reverse pressure opening valve pressure difference overcomes the urging force of the spring in the direction of needle travel. And the structure which cancels
  • the first expansion valve in the refrigerant circuit configured by connecting the compressor, the outdoor heat exchanger, the first expansion valve, the receiver, the openable / closable valve, and the indoor heat exchanger, the first expansion valve In spite of the use of a fully-enclosed expansion valve, it is possible to prevent the liquid sealing of the receiver without providing a liquid sealing prevention tube.
  • the air conditioner according to the second aspect is the air conditioner according to the first aspect, wherein the openable / closable valve is a liquid side shut-off valve.
  • a refrigerant circuit is configured in which a fully closed first expansion valve is provided on one of the upstream side and the downstream side of the receiver, and a liquid side shut-off valve is provided on the other of the upstream side and the downstream side of the receiver. ing. For this reason, when the first expansion valve and the liquid-side closing valve are fully closed, the receiver may be liquid-sealed.
  • the refrigerant from the receiver flows into the fully-enclosed first expansion valve from the needle traveling direction side of the valve seat, and the needle separation direction of the valve seat passes through the gap between the needle and the valve seat. It is made to provide in a refrigerant circuit in the 1st arrangement state which flows out to the side.
  • the first expansion in the refrigerant circuit configured by connecting the compressor, the outdoor heat exchanger, the first expansion valve, the receiver, the liquid side shut-off valve, and the indoor heat exchanger, the first expansion Despite the use of a fully-closed expansion valve as the valve, the liquid sealing of the receiver can be prevented without providing a liquid sealing prevention tube.
  • An air conditioner according to a third aspect is the air conditioner according to the first aspect, wherein the second expansion valve is openable and closable as a second expansion valve when the needle is seated on the valve seat.
  • a fully-closed expansion valve that is closed is used.
  • at least one of the first expansion valve and the second expansion valve is set so that the moving direction of the needle when the needle is seated on the valve seat is the needle traveling direction, and the needle is moved away from the valve seat.
  • the moving direction of the needle is the needle separation direction
  • the first expansion valve and / or the second expansion valve provided in the refrigerant circuit in the first arrangement state have a spring that urges the needle seated on the valve seat in the needle traveling direction when fully closed.
  • the needle generated by the reverse pressure opening valve pressure difference, which is the pressure difference of the refrigerant pressure in the space on the needle traveling direction side of the valve seat with respect to the refrigerant pressure in the space on the needle separation direction side of the valve seat, When the pushing force overcomes the urging force of the spring in the needle traveling direction, the needle is released from the seated state with respect to the valve seat.
  • a refrigerant in which a fully closed first expansion valve is provided on one of the upstream and downstream sides of the receiver, and a fully closed second expansion valve is provided on the other of the upstream and downstream sides of the receiver.
  • a circuit is configured.
  • At least one of the first expansion valve and the second expansion valve passes through the gap between the needle and the valve seat when the refrigerant from the receiver flows in from the needle traveling direction side of the valve seat. It is provided in the refrigerant circuit in the first arrangement state that flows out to the needle separating direction side of the valve seat.
  • the valve seat needle in the first expansion valve and / or the second expansion valve provided in the refrigerant circuit in the first arrangement state, the valve seat needle with respect to the pressure of the refrigerant in the space on the needle separation direction side of the valve seat when fully closed.
  • a reverse pressure opening valve pressure difference which is a pressure difference of the refrigerant pressure in the space on the traveling direction side
  • a force that pushes the needle in the needle separating direction acts.
  • a spring that urges the needle seated against the valve seat in the direction of needle travel is provided, and the force that pushes the needle in the direction away from the needle by the reverse pressure opening valve pressure difference
  • the urging force in the direction is overcome, a configuration in which the needle is released from the seated state with respect to the valve seat is provided.
  • An air conditioner according to a fourth aspect is the air conditioner according to any of the first to third aspects, wherein the atmospheric temperature at the place where the receiver, the first expansion valve and the openable / closable valve are installed is the highest value.
  • the biasing force of the spring when fully closed is set so that the sum of the maximum saturation pressure, which is the saturation pressure of the corresponding refrigerant, and the difference between the reverse pressure opening valve pressures is equal to or less than the pressure resistance of the receiver.
  • the biasing force of the spring when fully closed is the maximum saturation pressure that is the saturation pressure of the refrigerant corresponding to the maximum value of the ambient temperature at the place where the first expansion valve and the openable / closable valve are installed. It is set so that the sum of the reverse pressure opening valve pressure difference is equal to or less than the pressure resistance of the receiver.
  • the force that pushes the needle in the direction away from the needle generated by the reverse pressure opening valve pressure overcomes the urging force of the spring in the direction of needle travel, and the needle is moved against the valve seat. It can be released from the seated state. For this reason, the refrigerant existing in the portion between the first expansion valve including the receiver and the openable / closable valve in the refrigerant circuit is transferred to the outdoor heat exchanger side and the indoor heat exchanger side before exceeding the pressure resistance of the receiver. Relief can prevent the receiver from sealing.
  • An air conditioner according to a fifth aspect is the air conditioner according to the first aspect, wherein the refrigerant circuit further includes a gas vent valve for extracting the refrigerant from the upper space of the receiver.
  • a fully closed type expansion valve that is fully closed when the needle is seated on the valve seat is used.
  • at least one of the first expansion valve and the gas vent valve is set so that the moving direction of the needle when the needle is seated on the valve seat is the needle traveling direction, and the needle when the needle is separated from the valve seat.
  • the first disposition state in which the refrigerant from the receiver flows in from the needle traveling direction side of the valve seat and flows out to the needle separating direction side of the valve seat through the gap between the needle and the valve seat. It is provided in the refrigerant circuit.
  • the first expansion valve and / or the gas vent valve provided in the refrigerant circuit in the first arrangement state has a spring that biases the needle seated on the valve seat in the needle traveling direction when fully closed.
  • the needle generated by the reverse pressure opening valve pressure difference, which is the pressure difference of the refrigerant pressure in the space in the needle travel direction side of the valve seat with respect to the refrigerant pressure in the space in the needle separation direction side of the valve seat, in the needle separation direction
  • the pressing force overcomes the urging force of the spring in the needle traveling direction, the needle is released from the seated state with respect to the valve seat.
  • a fully closed first expansion valve is provided on one of the upstream and downstream sides of the receiver
  • an openable / closable valve is provided on the other of the upstream and downstream sides of the receiver
  • the fully closed type is provided in the receiver.
  • a refrigerant circuit provided with a gas vent valve is configured.
  • the pressure of the refrigerant present in the portion between the first expansion valve including the receiver, the openable / closable valve and the gas vent valve in the refrigerant circuit has increased.
  • At least one of the first expansion valve and the gas vent valve is connected to the valve through the clearance between the needle and the valve seat when the refrigerant from the receiver flows in from the needle traveling direction side of the valve seat. It is provided in the refrigerant circuit in the first arrangement state that flows out to the needle separating direction side of the seat.
  • a reverse pressure opening valve pressure difference which is a pressure difference between the refrigerant pressures in the space on the direction side
  • a force that pushes the needle in the needle separating direction acts.
  • the first expansion valve and / or the gas vent valve provided in the refrigerant circuit in the first arrangement state is utilized by utilizing the force that pushes the needle in the direction away from the needle due to such a reverse valve opening pressure difference.
  • a spring that urges the needle seated against the valve seat in the direction of needle travel is provided, and the force that pushes the needle in the direction away from the needle due to the reverse pressure opening valve pressure difference If the urging force is overcome, the needle is released from the seated state with respect to the valve seat.
  • the 1st expansion valve which includes a receiver in a refrigerant circuit when the pressure of the refrigerant
  • the air conditioner according to a sixth aspect is the air conditioner according to the fifth aspect, wherein the openable / closable valve is a liquid side shut-off valve.
  • a refrigerant circuit is configured in which a fully closed first expansion valve is provided on one of the upstream side and the downstream side of the receiver, and a liquid side shut-off valve is provided on the other of the upstream side and the downstream side of the receiver. ing. For this reason, when the first expansion valve and the liquid-side closing valve are fully closed, the receiver may be liquid-sealed.
  • the refrigerant from the receiver flows into the fully closed first expansion valve and / or the gas vent valve from the needle traveling direction side of the valve seat and passes through the gap between the needle and the valve seat. It is made to provide in a refrigerant circuit in the 1st arrangement state which flows out to the needle separation direction side of a valve seat.
  • the air conditioner in the refrigerant circuit configured by connecting the compressor, the outdoor heat exchanger, the first expansion valve, the receiver, the liquid side shut-off valve, the indoor heat exchanger, and the gas vent valve. Even though a fully-enclosed expansion valve is used as the first expansion valve and the gas vent valve, the liquid sealing of the receiver can be prevented without providing a liquid sealing prevention tube.
  • An air conditioner according to a seventh aspect is the air conditioner according to the first aspect, wherein the openable / closable valve is a second expansion valve, and the refrigerant circuit vents the refrigerant from the upper space of the receiver. Further, as the second expansion valve and the gas vent valve, a fully-closed expansion valve that is fully closed when the needle is seated on the valve seat is used. In this case, at least one of the first expansion valve, the second expansion valve, and the gas vent valve is set such that the moving direction of the needle when the needle is seated on the valve seat is the needle traveling direction, and the needle moves from the valve seat.
  • the refrigerant from the receiver flows in from the needle traveling direction side of the valve seat and flows out to the needle separation direction side of the valve seat through the gap between the needle and the valve seat.
  • the refrigerant circuit is provided in the first arrangement state.
  • the first expansion valve, the second expansion valve and / or the gas vent valve provided in the refrigerant circuit in the first arrangement state urges the needle seated on the valve seat in the needle traveling direction when fully closed.
  • a needle generated by a reverse pressure-opening valve pressure difference which is a pressure difference between the refrigerant pressure in the space on the valve seat needle traveling direction side and the refrigerant pressure in the space on the needle separation direction side of the valve seat
  • a refrigerant circuit in which fully closed first and second expansion valves are provided on the upstream side and downstream side of the receiver and a fully closed type gas vent valve is provided in the receiver is configured.
  • a fully closed type expansion valve is used as the first expansion valve, the second expansion valve, and the gas vent valve, the first expansion valve, the second expansion valve, and the gas vent valve are fully closed.
  • the refrigerant existing in the part between the first expansion valve, the second expansion valve and the gas vent valve in the refrigerant circuit including the receiver can be released to the other part of the refrigerant circuit. It is necessary to.
  • the refrigerant from the receiver flows in from the needle traveling direction side of the valve seat, and the needle and the valve seat
  • the refrigerant circuit is provided in a first arrangement state in which it flows out to the needle separating direction side of the valve seat through a gap therebetween.
  • a reverse pressure opening valve pressure difference which is a pressure difference between the pressures of the refrigerant in the space on the needle traveling direction side of the valve seat, is generated, a force is applied to push the needle in the needle separating direction.
  • the gas vent valve is provided with a spring that urges the needle seated against the valve seat in the needle traveling direction when fully closed, and the force that pushes the needle in the needle separating direction due to the reverse pressure opening valve pressure difference.
  • the air conditioner in the refrigerant circuit configured by connecting the compressor, the outdoor heat exchanger, the first expansion valve, the receiver, the second expansion valve, the indoor heat exchanger, and the gas vent valve.
  • the fully-enclosed expansion valve is used as the first expansion valve, the second expansion valve, and the gas vent valve, the liquid sealing of the receiver can be prevented without providing the liquid sealing prevention pipe.
  • An air conditioner according to an eighth aspect is the air conditioner according to any of the fifth to seventh aspects, wherein the ambient temperature at the place where the receiver, the first expansion valve, the openable / closable valve, and the gas vent valve are installed
  • the biasing force of the spring when fully closed is set so that the sum of the maximum saturation pressure, which is the saturation pressure of the refrigerant corresponding to the maximum value, and the difference in counter-valve opening pressure is less than the pressure resistance of the receiver .
  • the pressure resistance of the receiver is a pressure value obtained by multiplying the design pressure of the receiver by the safety factor in the air conditioner according to the fourth or eighth aspect.
  • the pressure resistance is obtained based on the design pressure of the receiver, the reverse pressure opening pressure difference between the first expansion valve, the second expansion valve and / or the gas vent valve provided in the first arrangement state That is, the biasing force of the spring when fully closed can be set appropriately.
  • An air conditioner according to a tenth aspect is the air conditioner according to the first or fifth aspect, wherein the openable / closable valve is between the second expansion valve and the second expansion valve and the indoor heat exchanger.
  • the second expansion valve a fully closed type expansion valve that is fully closed when the needle is seated on the valve seat is used as the second expansion valve.
  • the refrigerant in the second expansion valve is in a second arrangement state in which the refrigerant from the receiver flows in from the needle separating direction side of the valve seat and flows out from the needle traveling direction side of the valve seat through the gap between the needle and the valve seat. Provided in the circuit.
  • the second expansion valve provided in the refrigerant circuit in the second arrangement state has a spring that urges the needle seated against the valve seat in the needle traveling direction when fully closed.
  • the force that pushes the needle in the needle separation direction due to the reverse pressure opening valve pressure difference which is the pressure difference of the refrigerant pressure in the space in the needle travel direction side of the valve seat with respect to the refrigerant pressure in the needle separation direction side space,
  • the urging force in the needle traveling direction is overcome, the needle is released from the seated state with respect to the valve seat.
  • the refrigerant in the portion of the refrigerant circuit between the liquid side closing valve and the second expansion valve In order to prevent the liquid sealing of the portion between the liquid side closing valve and the second expansion valve, the refrigerant in the portion of the refrigerant circuit between the liquid side closing valve and the second expansion valve. When the pressure of the refrigerant increases, it is necessary to allow the refrigerant present in the portion of the refrigerant circuit between the liquid side closing valve and the second expansion valve to escape to the other portion of the refrigerant circuit.
  • the receiver is provided with the first expansion valve (the first expansion valve and / or the gas vent valve in the case where a gas vent valve is also present) in the refrigerant circuit in the first arrangement state.
  • the refrigerant from the receiver flows into the second expansion valve from the needle separating direction side of the valve seat, and flows out to the needle traveling direction side of the valve seat through the gap between the needle and the valve seat.
  • Two refrigerants are provided in the refrigerant circuit.
  • the reverse pressure opening valve is a pressure difference between the refrigerant pressure in the space in the needle traveling direction side of the valve seat and the refrigerant pressure in the space in the needle separation direction side of the valve seat.
  • the refrigerant circuit configured by connecting the compressor, the outdoor heat exchanger, the first expansion valve, the receiver, the second expansion valve, the liquid side closing valve, and the indoor heat exchanger.
  • a gas vent valve is also present (including a gas vent valve)
  • the liquid seal of the receiver is prevented without providing a liquid seal prevention tube, and the liquid between the liquid side closing valve and the second expansion valve is prevented. Sealing can be prevented.
  • An air conditioner according to an eleventh aspect is the air conditioning apparatus according to the tenth aspect, wherein the refrigerant saturation pressure corresponds to the maximum ambient temperature at the place where the second expansion valve and the liquid side shut-off valve are installed.
  • the sum of a certain maximum saturation pressure and the difference between the reverse pressure opening pressures of the second expansion valve is equal to or less than the minimum value of the pressure resistance of the components constituting the part from the second expansion valve to the liquid side closing valve in the refrigerant circuit.
  • the biasing force of the spring when fully closed is the maximum saturation pressure that is the saturation pressure of the refrigerant corresponding to the maximum value of the ambient temperature at the place where the second expansion valve is installed, and the reverse pressure opening valve.
  • the sum of the pressure difference is set to be equal to or less than the minimum value of the pressure resistance of components constituting the part from the second expansion valve to the liquid side closing valve in the refrigerant circuit.
  • the refrigerant existing in the portion between the liquid side closing valve and the second expansion valve in the refrigerant circuit is used as the pressure resistance of the components constituting the portion from the second expansion valve to the liquid side closing valve in the refrigerant circuit. Before exceeding, it can escape to the receiver side and can prevent the liquid sealing between a liquid side closing valve and a 2nd expansion valve.
  • the refrigerant released to the receiver side may cause an increase in the pressure of the receiver, but the first expansion valve (the first expansion valve and / or the gas vent valve when a gas vent valve is also present) ) Is provided in the first arrangement state, so that it is released to the outdoor heat exchanger side (in the case where a venting valve is also present, the outdoor heat exchanger side or the compressor side) before exceeding the pressure resistance of the receiver. Will be.
  • the receiver is prevented from being sealed without providing a liquid seal prevention pipe, and the pressure resistance of components constituting the part from the second expansion valve to the liquid side shut-off valve in the refrigerant circuit. Therefore, the liquid seal between the liquid side closing valve and the second expansion valve can be appropriately prevented.
  • An air conditioner according to a twelfth aspect is the air conditioner according to the eleventh aspect, wherein the pressure resistance of components constituting the part from the second expansion valve to the liquid side shutoff valve in the refrigerant circuit is Of these, the pressure value is obtained by multiplying the design pressure of the parts constituting the part from the second expansion valve to the liquid side closing valve by the safety factor.
  • the pressure-resistant pressure is obtained based on the design pressure of the parts constituting the portion from the second expansion valve to the liquid side closing valve in the refrigerant circuit, the second expansion provided in the second arrangement state is obtained.
  • the reverse valve opening pressure difference between the valves, that is, the biasing force of the spring when fully closed can be set appropriately.
  • FIG. 1 It is a schematic block diagram of the air conditioning apparatus concerning one Embodiment of this invention. It is a figure which shows the 1st expansion valve, the receiver, the 2nd expansion valve, and the liquid side closing valve vicinity. It is a schematic sectional drawing of an expansion valve. It is a schematic sectional drawing which shows the needle vicinity of an expansion valve at the time of full closure (back pressure valve opening non-operation). It is a schematic sectional drawing which shows the needle vicinity of an expansion valve at the time of full closure (back pressure valve opening action
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 1.
  • FIG. It is a schematic block diagram of the air conditioning apparatus concerning the modification 2. It is a schematic block diagram of the air conditioning apparatus concerning the modification 3. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, 2nd expansion valve, and liquid side closing valve vicinity concerning the modification 3.
  • FIG. It is a schematic block diagram of the air conditioning apparatus concerning the modification 5. It is a schematic block diagram of the air conditioning apparatus concerning the modification 5. It is a figure which shows the 1st expansion valve, receiver, and liquid side closing valve vicinity concerning the modification 5.
  • FIG. 5 It is a figure which shows the 1st expansion valve, receiver, and liquid side closing valve vicinity concerning the modification 5.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, and liquid side closing valve vicinity concerning the modification 5.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, and liquid side closing valve vicinity concerning the modification 5.
  • FIG. It is a figure which shows the 1st expansion valve, receiver, and liquid side closing valve vicinity concerning the modification 5.
  • FIG. 1 is a schematic configuration diagram of an air conditioner 1 according to an embodiment of the present invention.
  • the air conditioner 1 is a device that can cool and heat a room such as a building by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 is mainly configured by connecting an outdoor unit 2 and an indoor unit 4.
  • the outdoor unit 2 and the indoor unit 4 are connected via a liquid refrigerant communication tube 5 and a gas refrigerant communication tube 6.
  • the vapor compression refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 4 via the refrigerant communication pipes 5 and 6.
  • Various refrigerants can be used as the refrigerant sealed in the refrigerant circuit 10, but here, R32, which is a kind of HFC refrigerant, is enclosed as the refrigerant.
  • the indoor unit 4 is installed indoors and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4 mainly has an indoor heat exchanger 41.
  • the indoor heat exchanger 41 is a heat exchanger that functions as a refrigerant evaporator during cooling operation to cool room air, and functions as a refrigerant radiator during heating operation to heat indoor air.
  • the liquid side of the indoor heat exchanger 41 is connected to the liquid refrigerant communication tube 5, and the gas side of the indoor heat exchanger 41 is connected to the gas refrigerant communication tube 6.
  • the indoor unit 4 has an indoor fan 42 for sucking indoor air into the indoor unit 4 and exchanging heat with the refrigerant in the indoor heat exchanger 41 and supplying the indoor air as supply air.
  • the indoor fan 42 is driven by an indoor fan motor 43.
  • the indoor unit 4 has an indoor side control unit 44 that controls the operation of each unit constituting the indoor unit 4.
  • the indoor side control unit 44 includes a microcomputer, a memory, and the like provided for controlling the indoor unit 4, and exchanges control signals and the like with a remote controller (not shown). Control signals and the like can be exchanged with the outdoor unit 2 via the transmission line 8a.
  • the outdoor unit 2 is installed outside and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 2 mainly includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, a first expansion valve 24, a receiver 25, a second expansion valve 26 (openable / closable valve), a liquid A side closing valve 27 (openable / closable valve) and a gas side closing valve 28 are provided.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle until it reaches a high pressure.
  • the compressor 21 has a hermetic structure in which a rotary type or scroll type positive displacement compression element (not shown) is rotationally driven by a compressor motor 21a controlled by an inverter.
  • the compressor 21 has a suction pipe 31 connected to the suction side and a discharge pipe 32 connected to the discharge side.
  • the suction pipe 31 is a refrigerant pipe that connects the suction side of the compressor 21 and the first port 22 a of the four-way switching valve 22.
  • the suction pipe 31 is provided with an accumulator 29.
  • the discharge pipe 32 is a refrigerant pipe that connects the discharge side of the compressor 21 and the second port 22 b of the four-way switching valve 22.
  • the discharge pipe 32 is provided with a check valve 32a.
  • the four-way switching valve 22 is a switching valve for switching the direction of refrigerant flow in the refrigerant circuit 10.
  • the four-way switching valve 22 causes the outdoor heat exchanger 23 to function as a radiator for the refrigerant compressed in the compressor 21 and the indoor heat exchanger 41 for the refrigerant that has radiated heat in the outdoor heat exchanger 23.
  • the discharge side of the compressor 21 (here, the discharge pipe 32) and the gas side of the outdoor heat exchanger 23 (here, the first gas refrigerant pipe 33) are connected (four-way switching valve in FIG. 1). (See 22 solid line).
  • the suction side (here, the suction pipe 31) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34) are connected (solid line of the four-way switching valve 22 in FIG. 1). See).
  • the four-way switching valve 22 causes the outdoor heat exchanger 23 to function as an evaporator of the refrigerant that has radiated heat in the indoor heat exchanger 41 during the heating operation, and the indoor heat exchanger 41 is compressed in the compressor 21.
  • the four-way switching valve 22 switches between the second port 22b and the fourth port 22d and the first port 22a and the third port 22c during the heating operation.
  • the discharge side (here, the discharge pipe 32) of the compressor 21 and the gas refrigerant communication pipe 6 side (here, the second gas refrigerant pipe 34) are connected (of the four-way switching valve 22 in FIG. 1). (See dashed line).
  • the suction side of the compressor 21 here, the suction pipe 31
  • the gas side of the outdoor heat exchanger 23 here, the first gas refrigerant pipe 33
  • the first gas refrigerant pipe 33 is a refrigerant pipe that connects the third port 22 c of the four-way switching valve 22 and the gas side of the outdoor heat exchanger 23.
  • the second gas refrigerant pipe 33 is a refrigerant pipe connecting the fourth port 22d of the four-way switching valve 22 and the gas refrigerant communication pipe 6 side.
  • the outdoor heat exchanger 23 is a heat exchanger that functions as a refrigerant radiator that uses outdoor air as a cooling source during cooling operation, and that functions as a refrigerant evaporator that uses outdoor air as a heating source during heating operation.
  • the outdoor heat exchanger 23 has a liquid side connected to the liquid refrigerant pipe 35 and a gas side connected to the first gas refrigerant pipe 33.
  • the liquid refrigerant pipe 35 is a refrigerant pipe that connects the liquid side of the outdoor heat exchanger 23 and the liquid refrigerant communication pipe 5 side.
  • the first expansion valve 24 is a valve that reduces the high-pressure refrigerant in the refrigeration cycle that has dissipated heat in the outdoor heat exchanger 23 to the intermediate pressure in the refrigeration cycle during the cooling operation.
  • the first expansion valve 24 is a valve for reducing the intermediate pressure refrigerant in the refrigeration cycle stored in the receiver 25 to a low pressure in the refrigeration cycle during heating operation.
  • the first expansion valve 24 is provided in a portion of the liquid refrigerant pipe 35 between the outdoor heat exchanger 23 and the receiver 25.
  • a portion of the liquid refrigerant pipe 35 that connects the outdoor heat exchanger 23 and the first expansion valve 24 is a first liquid refrigerant pipe 35a, and among the liquid refrigerant pipe 35, the first expansion valve 24 and the receiver 25 are connected.
  • the portion connecting the two is the second liquid refrigerant pipe 35b.
  • an electric expansion valve is used as the first expansion valve 24.
  • the detailed structure of the first expansion valve 24 will be described later.
  • the receiver 25 is provided between the first expansion valve 24 and the second expansion valve 26.
  • the receiver 25 is a container that can store an intermediate-pressure refrigerant in the refrigeration cycle during cooling operation and heating operation.
  • the second expansion valve 26 (openable / closable valve) is a valve for reducing the intermediate-pressure refrigerant in the refrigeration cycle stored in the receiver 25 to a low pressure in the refrigeration cycle during cooling operation.
  • the second expansion valve 26 is a valve that reduces the high-pressure refrigerant in the refrigeration cycle that has radiated heat in the indoor heat exchanger 41 to the intermediate pressure in the refrigeration cycle during the heating operation.
  • the second expansion valve 26 is provided in a portion of the liquid refrigerant pipe 35 between the receiver 25 and the liquid side closing valve 27.
  • a portion of the liquid refrigerant pipe 35 that connects the receiver 25 and the second expansion valve 26 is a third liquid refrigerant pipe 35c, and among the liquid refrigerant pipe 35, the second expansion valve 26 and the liquid side closing valve 27 are provided.
  • the fourth liquid refrigerant pipe 35d is connected to the first liquid refrigerant pipe 35d.
  • an electric expansion valve is used as the second expansion valve 26. The detailed structure of the second expansion valve 26 will be described later.
  • the liquid side shut-off valve 27 (openable / closable valve) and the gas side shut-off valve 28 are valves provided at connection ports with external devices and pipes (specifically, the liquid refrigerant communication pipe 5 and the gas refrigerant communication pipe 6). It is.
  • the liquid side closing valve 27 is provided at the end of the liquid refrigerant pipe 35 (more specifically, the fourth liquid refrigerant pipe 35d).
  • the gas side closing valve 28 is provided at the end of the second gas refrigerant pipe 34.
  • the outdoor unit 2 has an outdoor fan 36 for sucking outdoor air into the outdoor unit 2, exchanging heat with the refrigerant in the outdoor heat exchanger 23, and then discharging the air to the outside.
  • the outdoor fan 36 is driven by an outdoor fan motor 37.
  • the outdoor unit 2 includes an outdoor control unit 38 that controls the operation of each unit constituting the outdoor unit 2.
  • the outdoor control unit 38 includes a microcomputer and a memory provided for controlling the outdoor unit 2, and exchanges control signals and the like with the indoor unit 4 via the transmission line 8 a. Can be done.
  • Refrigerant communication pipes 5 and 6 are refrigerant pipes constructed on site when the air conditioner 1 is installed at an installation location such as a building, and installation conditions such as the installation location and a combination of an outdoor unit and an indoor unit. Those having various lengths and tube diameters are used.
  • the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2, the indoor unit 4, and the refrigerant communication pipes 5 and 6.
  • the air conditioner 1 switches the four-way switching valve 22 to the cooling cycle state, thereby allowing the compressor 21, the outdoor heat exchanger 23, the first expansion valve 24, the receiver 25, the second expansion valve 26 (openable / closable valve),
  • the cooling operation is performed in which the refrigerant is circulated in the order of the liquid side closing valve 27 (openable / closable valve) and the indoor heat exchanger 41.
  • the air conditioner 1 switches the four-way switching valve 22 to the heating cycle state, whereby the compressor 21, the indoor heat exchanger 41, the liquid side closing valve 26 (openable / closable valve), and the second expansion valve 26 (opening / closing).
  • the heating operation for circulating the refrigerant in the order of the possible valve), the receiver 25, the first expansion valve 24, and the outdoor heat exchanger 23 is performed.
  • the cooling operation and the heating operation can be switched, but the four-way switching valve is not provided, and only the cooling operation or the heating operation is possible. It may be a configuration.
  • the air conditioner 1 can control each device of the outdoor unit 2 and the indoor unit 4 by the control unit 8 including the indoor side control unit 44 and the outdoor side control unit 38. That is, the control unit 8 that performs operation control of the entire air conditioner 1 including the cooling operation and the heating operation described above is configured by the transmission line 8a that connects between the indoor side control unit 44 and the outdoor side control unit 38. Has been.
  • the air conditioner 1 can perform a cooling operation and a heating operation as basic operations.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed after being compressed to a high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 41 through the four-way switching valve 22, the gas side closing valve 28 and the gas refrigerant communication pipe 6.
  • the high-pressure gas refrigerant sent to the indoor heat exchanger 41 radiates heat by exchanging heat with indoor air supplied as a cooling source by the indoor fan 42 in the indoor heat exchanger 41 to become a high-pressure liquid refrigerant. . Thereby, indoor air is heated, and indoor heating is performed by being supplied indoors after that.
  • the high-pressure liquid refrigerant radiated by the indoor heat exchanger 41 is sent to the second expansion valve 26 through the liquid refrigerant communication pipe 5 and the liquid side closing valve 27.
  • the high-pressure liquid refrigerant sent to the second expansion valve 26 is depressurized to the intermediate pressure in the refrigeration cycle by the second expansion valve 26, and becomes an intermediate-pressure gas-liquid two-phase refrigerant.
  • the intermediate-pressure gas-liquid two-phase refrigerant decompressed by the second expansion valve 26 is temporarily stored in the receiver 25 and then sent to the first expansion valve 24.
  • the intermediate-pressure gas-liquid two-phase refrigerant sent to the first expansion valve 24 is depressurized by the first expansion valve 24 to a low pressure in the refrigeration cycle, and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the first expansion valve 24 is sent to the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant sent to the outdoor heat exchanger 23 evaporates in the outdoor heat exchanger 23 by exchanging heat with the outdoor air supplied as a heating source by the outdoor fan 36. Become a gas refrigerant.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is again sucked into the compressor 21 through the four-way switching valve 22.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed after being compressed to a high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 through the four-way switching valve 22.
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger 23 performs heat exchange with the outdoor air supplied as a cooling source by the outdoor fan 36 in the outdoor heat exchanger 23 to dissipate heat to become a high-pressure liquid refrigerant. .
  • the high-pressure liquid refrigerant that has radiated heat in the outdoor heat exchanger 23 is sent to the first expansion valve 24.
  • the high-pressure liquid refrigerant sent to the first expansion valve 24 is depressurized to the intermediate pressure in the refrigeration cycle by the first expansion valve 24, and becomes an intermediate-pressure gas-liquid two-phase refrigerant.
  • the intermediate-pressure gas-liquid two-phase refrigerant decompressed by the first expansion valve 24 is temporarily stored in the receiver 25 and then sent to the second expansion valve 26.
  • the intermediate-pressure gas-liquid two-phase refrigerant sent to the second expansion valve 26 is depressurized to a low pressure in the refrigeration cycle by the second expansion valve 26 to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the second expansion valve 26 is sent to the indoor heat exchanger 41 through the liquid side closing valve 27 and the liquid refrigerant communication pipe 5.
  • the low-pressure gas-liquid two-phase refrigerant sent to the indoor heat exchanger 41 evaporates in the indoor heat exchanger 41 by exchanging heat with indoor air supplied as a heating source by the indoor fan 42. As a result, the room air is cooled and then supplied to the room to cool the room.
  • the low-pressure gas refrigerant evaporated in the indoor heat exchanger 41 is again sucked into the compressor 21 through the gas refrigerant communication pipe 6, the gas side closing valve 28 and the four-way switching valve 22.
  • the first expansion valve 24 and the second expansion valve 26 mainly have a valve main body 51, a needle 61, and a case 71 as shown in FIG.
  • the first expansion valve 24 and the second expansion valve 26 are arranged so that the moving direction of the needle 61 is directed in the vertical direction, an example will be described. However, this does not limit the arrangement in which the moving direction of the needle 61 is directed in another direction such as the lateral direction.
  • the direction of movement of the needle 61 when the needle 61 is seated on the valve seat 55 here, the downward direction
  • the direction of movement of the needle 61 when the needle 61 is separated from the valve seat 55 (Here, the upward direction) is the needle separation direction.
  • valve body 51 is a substantially cylindrical member extending in the vertical direction (that is, the moving direction of the needle 61), and a valve chamber 52 is formed.
  • the valve chamber 52 has a large-diameter upper valve chamber 52a and a small-diameter lower valve chamber 52b located below the upper valve chamber 52a.
  • the valve main body 51 includes a first refrigerant port 53 that opens toward the side of the valve chamber 52 (here, the upper valve chamber 52a) and a lower portion of the valve chamber 52 (here, the lower valve chamber 52b).
  • a second refrigerant port 54 opening toward the top is formed.
  • the valve body 51 is provided with a valve seat 55.
  • the valve seat 55 is provided in the valve main body 51 so as to partition the upper valve chamber 52a and the lower valve chamber 52b. Accordingly, the upper valve chamber 52a constitutes a space on the needle separation direction side of the valve seat 55 (here, the upper space), and the lower valve chamber 52b constitutes a space on the needle traveling direction side of the valve seat 55 (here, the lower space). Side space). Also, here, of the two refrigerant ports 53, 54, the first refrigerant port 53 is provided on the needle separating direction side of the valve seat 55, and the second refrigerant port 54 is provided on the needle traveling direction side of the valve seat 55. Will be.
  • the valve seat 55 is formed with an orifice hole 55a that opens to communicate the upper valve chamber 52a and the lower valve chamber 52b in the moving direction of the needle 61 (here, the vertical direction).
  • a substantially cylindrical female thread forming member 56 is fixed to the inner peripheral surface of the valve main body 51 by press fitting or the like. The upper part of the female thread forming member 56 projects upward from the valve body 51, and a female thread 56a is formed on the inner peripheral surface.
  • a substantially cylindrical needle guide 57 is fixed to the lower portion of the female screw forming member 56 by press fitting or the like.
  • the needle 61 is a member that advances and retreats in the vertical direction (that is, the movement direction of the needle) with respect to the valve seat 55, and is inserted into the inner peripheral side of the needle guide 57 while being movable in the vertical direction.
  • the needle 61 is connected to a valve shaft 64 disposed above the needle 61 via a spring 62 and a spring receiving member 63 described later.
  • the valve shaft 64 is a substantially rod-shaped member extending from the valve body 51 to the case 71 in the vertical direction (that is, the needle moving direction). The lower end of the valve shaft 64 is inserted in the inner peripheral side of the needle guide 57 so as to be movable in the vertical direction (that is, the moving direction of the needle) and in a rotatable state.
  • a male screw 64 a that meshes with the female screw 56 a of the female screw forming member 56 is formed on the outer peripheral surface of the central portion of the valve shaft 64 in the vertical direction (that is, the moving direction of the needle).
  • a substantially cylindrical rotor 81 made of a permanent magnet is fixed to the upper side of the male screw 64 a of the valve shaft 64 via a bush 65.
  • the case 71 is a substantially cylindrical member whose upper end is closed.
  • the case 71 is fixed to the upper end of the valve main body 51 via a fixing bracket (not shown).
  • a substantially cylindrical sleeve 72 extending downward is provided on the inner surface of the upper end of the case 71.
  • the upper end of the valve shaft 64 is inserted so as to be movable in the vertical direction (that is, the moving direction of the needle) and rotatable.
  • the outer peripheral surface of the rotor 81 is opposed to the inner peripheral surface of the case 71 with a slight gap.
  • a stator 82 made of an electromagnet is provided on the outer peripheral side of the case 71 at a position facing the rotor 81.
  • the stator 82 and the rotor 81 function as a stepping motor, and the rotor 81 rotates according to the energization amount (pulse value).
  • the valve shaft 64 that rotates integrally with the rotor 81 also rotates.
  • the male screw 64a of the valve shaft 64 is engaged with the female screw 56a of the female screw forming member 56. Therefore, when the valve shaft 64 is screwed to the valve body 51, the valve shaft 64 is rotated. Moves in the vertical direction (that is, the direction of movement of the needle).
  • the needle 61 connected to the valve shaft 64 also moves in the up-and-down direction (that is, the moving direction of the needle).
  • size of the clearance gap between the needle 61 and the valve seat 55 can be adjusted, and the flow volume of the refrigerant
  • the refrigerant from the receiver 25 flows into the first expansion valve 24 from the needle traveling direction side of the valve seat 55 (here, the lower side of the valve seat 55).
  • the refrigerant circuit 10 is provided in a first arrangement state in which it flows out to the needle separating direction side of the valve seat 55 (here, the upper side of the valve seat 55) through the gap therebetween (see FIGS. 2 and 3).
  • a first liquid refrigerant pipe 35 a connecting between the outdoor heat exchanger 23 and the first refrigerant port 53 of the first expansion valve 24 is connected to the first refrigerant valve 53.
  • a second liquid refrigerant pipe 35b that connects the receiver 25 to the second refrigerant port 54 of the expansion valve 24 is connected.
  • the first expansion valve 24 provided in the refrigerant circuit 10 in the first arrangement state uses the force Fu that pushes the needle 61 in the needle separating direction by such a reverse pressure opening pressure difference ⁇ P.
  • a spring 62 is provided to urge the needle 61 seated on the valve seat 55 in the needle traveling direction (here, downward), and the needle 61 is moved away from the needle by the reverse pressure opening pressure difference ⁇ P.
  • the pressing force Fu overcomes the urging force Fd of the spring 62 in the needle traveling direction, a configuration is provided in which the needle 61 is released from the seated state with respect to the valve seat 55 (FIGS. 4 and 5). reference). Specifically, as shown in FIGS.
  • a spring receiving member 63 is connected to the lower end of the valve shaft 64 so as to move integrally in the moving direction of the needle 61 (herein, the vertical direction), and the spring receiving member
  • the vertical direction between 63 and the needle 61 is connected by a spring 62.
  • a coil spring that can be expanded and contracted in the moving direction of the needle 61 is used as the spring 62.
  • the movement of the valve shaft 64 in the vertical direction allows the needle 61 to move in the vertical direction while the distance between the valve shaft 64 and the needle 61 can be elastically expanded and contracted.
  • the spring 62 contracts more than the free length and has a contraction allowance.
  • a reverse pressure open valve inoperative state As a result, the spring 62 generates a force Fd that urges the needle 61 seated against the valve seat 55 in the needle traveling direction, and the needle 61 is pressed against the valve seat 55 by the urging force Fd of the spring 62. Yes. Then, when fully closed, if the force Fu that pushes the needle 61 generated by the reverse pressure opening pressure difference ⁇ P in the direction away from the needle overcomes the biasing force Fd of the spring 61 in the needle traveling direction, as shown in FIG.
  • the needle 61 moves away from the valve seat 55 in the needle separation direction (here, upward).
  • the spring 62 is further contracted in the reverse pressure open valve non-operation state).
  • the needle 61 is released from the state where the needle 61 is seated on the valve seat 55 (hereinafter, this state is referred to as a “back pressure opening operation state”).
  • this state is referred to as a “back pressure opening operation state”.
  • the length of the spring 62 contracts from the length L0 in the reverse pressure valve open operation state to the length L in the reverse pressure valve open operation state.
  • the urging force Fd of the spring 62 when fully closed is a refrigerant corresponding to the maximum value of the atmospheric temperature at the place where the first and second expansion valves 24 and 26 (here, the outdoor unit 2) are installed. Is set so that the sum of the maximum saturation pressure Psm and the reverse pressure opening pressure difference ⁇ P is equal to or less than the pressure resistance Prm of the receiver 25. Specifically, the highest atmospheric temperature (for example, about 50 ° C.) that can be assumed at the place where the first and second expansion valves 24 and 26 (here, the outdoor unit 2) are installed as the maximum saturation pressure Psm. Use the value converted to the saturation pressure of the refrigerant.
  • the pressure pressure pressure is the highest among the first expansion valve 24, the receiver 25 and the second expansion valve 26 which are parts constituting the portion between the two expansion valves 24 and 26 including the receiver 25 in the refrigerant circuit 10.
  • a low pressure resistance of the receiver 25 is used.
  • the pressure resistance Prm of the receiver 25 is obtained by multiplying the design pressure of the receiver 25 by a safety factor (for example, about 1.5 times corresponding to the pressure resistance test pressure).
  • the spring 62 the needle generated when the biasing force Fd in the non-operating state of the reverse pressure opening valve assumes that the pressure difference obtained by subtracting the maximum saturation pressure Psm from the pressure resistance Prm of the receiver 25 has acted on the needle 61.
  • the spring constant L0 and the spring length L0 (that is, the contraction length from the free length) in the non-operating state of the reverse pressure open valve are set so that the force 61 pushes the needle 61 away from the needle Fum.
  • the pressure difference corresponding to the urging force Fd in the valve opening inoperative state is defined as a reverse pressure valve opening pressure difference ⁇ P.
  • the reverse pressure opening pressure difference ⁇ P that is, the biasing force of the spring when fully closed Fd can be set appropriately.
  • the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 in the refrigerant circuit 10 is released to the outdoor heat exchanger 23 side before exceeding the pressure resistance Prm of the receiver 25, and the receiver 25 liquid sealing can be prevented.
  • the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 in the refrigerant circuit 10 is allowed to escape to the outdoor heat exchanger 23 side, whereby two expansion valves including the receiver 25 in the refrigerant circuit 10.
  • the first expansion valve 24 When the pressure of the refrigerant in the portion between 24 and 26 decreases, the force Fu that pushes the needle 61 in the direction away from the needle generated by the reverse pressure opening pressure difference ⁇ P decreases, and the first expansion valve 24 again opens the reverse pressure opening valve. Return to the inactive state. As a result, the first expansion valve 24 can be kept to the minimum necessary for the reverse pressure opening operation state.
  • the compressor 21, the outdoor heat exchanger 23, the first expansion valve 24, the receiver 25, the second expansion valve 26 (openable / closable valve), and the indoor heat exchanger 41 are connected.
  • the liquid seal of the receiver 25 is prevented without providing a liquid seal prevention pipe even though the fully closed expansion valves are used as the first expansion valve 24 and the second expansion valve 26. can do.
  • the liquid sealing of the receiver 25 can be appropriately prevented in consideration of the pressure resistance Prm of the receiver 25.
  • the liquid side closing valve 27 and the second expansion valve 26 in the refrigerant circuit 10 When the pressure of the refrigerant in the intermediate portion increases, the refrigerant existing in the portion between the liquid side closing valve 27 and the second expansion valve 26 in the refrigerant circuit 10 may be released to the other portion of the refrigerant circuit 10. It needs to be possible.
  • the first expansion valve 24 is provided in the refrigerant circuit 10 in the first arrangement state to prevent liquid sealing of the receiver 25.
  • the second expansion valve 26 is connected to the receiver 25. From the needle seating direction side of the valve seat 55 (here, the upper side of the valve seat 55) flows through the gap between the needle 61 and the valve seat 55 (here, the valve traveling direction side of the valve seat 55 (here, the valve seat 55)).
  • the refrigerant circuit 10 is provided in the second arrangement state that flows out to the lower side of the seat 55 (see FIGS. 2 and 3). Specifically, as shown in FIGS.
  • a third liquid refrigerant pipe 35 c that connects the receiver 25 to the first refrigerant port 53 of the second expansion valve 26 is connected to the second expansion valve 26.
  • a fourth liquid refrigerant pipe 35d that connects between the second refrigerant port 54 and the liquid side shut-off valve 27 is connected.
  • a spring 62 is provided to urge the needle 61 seated on the valve seat 55 in the needle traveling direction (here, downward), and the needle 61 is moved away from the needle by the reverse pressure opening pressure difference ⁇ P.
  • the pressing force Fu overcomes the urging force Fd of the spring 62 in the needle traveling direction, a configuration is provided in which the needle 61 is released from the seated state with respect to the valve seat 55 (FIGS. 4 and 5). reference). Specifically, as shown in FIGS.
  • a spring receiving member 63 is connected to the lower end of the valve shaft 64 so as to move integrally in the moving direction of the needle 61 (herein, the vertical direction), and the spring receiving member
  • the vertical direction between 63 and the needle 61 is connected by a spring 62.
  • a coil spring that can be expanded and contracted in the moving direction of the needle 61 is used as the spring 62.
  • the movement of the valve shaft 64 in the vertical direction allows the needle 61 to move in the vertical direction while the distance between the valve shaft 64 and the needle 61 can be elastically expanded and contracted.
  • the spring 62 contracts more than the free length and has a contraction allowance.
  • a reverse pressure open valve inoperative state As a result, the spring 62 generates a force Fd that urges the needle 61 seated against the valve seat 55 in the needle traveling direction, and the needle 61 is pressed against the valve seat 55 by the urging force Fd of the spring 62. Yes. Then, when fully closed, if the force Fu that pushes the needle 61 generated by the reverse pressure opening pressure difference ⁇ P in the direction away from the needle overcomes the biasing force Fd of the spring 61 in the needle traveling direction, as shown in FIG.
  • the needle 61 moves away from the valve seat 55 in the needle separation direction (here, upward).
  • the spring 62 is further contracted in the reverse pressure open valve non-operation state).
  • the needle 61 is released from the state where the needle 61 is seated on the valve seat 55 (hereinafter, this state is referred to as a “back pressure opening operation state”).
  • this state is referred to as a “back pressure opening operation state”.
  • the length of the spring 62 contracts from the length L0 in the reverse pressure valve open operation state to the length L in the reverse pressure valve open operation state.
  • the biasing force Fd of the spring 62 when fully closed is the saturation pressure of the refrigerant corresponding to the maximum value of the ambient temperature at the place where the second expansion valve 26 (here, the outdoor unit 2) is installed.
  • the sum of the maximum saturation pressure Psm and the reverse pressure opening pressure difference ⁇ P is equal to or less than the minimum pressure value Phm of the pressure resistance of the parts constituting the refrigerant circuit 10 from the second expansion valve 26 to the liquid side closing valve 27. It is set as follows. Specifically, as the maximum saturation pressure Psm, the highest ambient temperature (for example, about 50 ° C.) that can be assumed at the place where the second expansion valve 26 (in this case, the outdoor unit 2) is installed is used as the saturation pressure of the refrigerant.
  • the pressure pressure of the component with the lowest pressure pressure among the 26 is used.
  • a strainer, a pipe joint, etc. exist as components which comprise the part from the 2nd expansion valve 26 to the liquid side closing valve 27 in the refrigerant circuit 10
  • voltage resistant pressure also including these components Use Phm.
  • the pressure resistance is the safety factor (for example, 1.5 corresponding to the pressure test pressure) of the design pressure of the parts constituting the part from the second expansion valve 26 to the liquid side closing valve 27 in the refrigerant circuit 10. Multiplied by 2).
  • the spring 62 the needle generated when the biasing force Fd in the non-operating state of the reverse pressure opening valve assumes that a pressure difference obtained by subtracting the maximum saturation pressure Psm from the minimum pressure value Phm acts on the needle 61.
  • the spring constant L0 and the spring length L0 that is, the contraction length from the free length) in the non-operating state of the reverse pressure open valve are set so that the force 61 pushes the needle 61 away from the needle Fum.
  • the pressure difference corresponding to the urging force Fd in the valve opening inoperative state is defined as a reverse pressure valve opening pressure difference ⁇ P.
  • ⁇ P The opening valve pressure difference ⁇ P, that is, the biasing force Fd of the spring when fully closed can be set appropriately.
  • the condition of the ambient temperature is so high that the refrigerant existing in the portion of the refrigerant circuit 10 between the liquid side closing valve 27 and the second expansion valve 26 rises to the maximum saturation pressure Psm.
  • the force Fu pushing the needle in the needle separating direction overcomes the urging force Fd of the spring 62 in the needle traveling direction, and the second expansion valve 26 enters the reverse pressure opening operation state.
  • the refrigerant existing in the part between the liquid side closing valve 27 and the second expansion valve 26 in the refrigerant circuit 10 is used, and the part from the second expansion valve 26 to the liquid side closing valve 27 in the refrigerant circuit 10 is used.
  • the refrigerant released to the receiver 25 side may cause an increase in the pressure of the receiver 25.
  • the first expansion valve 24 is provided in the first arrangement state, the pressure resistance Prm of the receiver 25 is provided. Before exceeding, it will be escaped to the outdoor heat exchanger 23 side. Further, the refrigerant existing in the portion between the liquid side closing valve 27 and the second expansion valve 26 in the refrigerant circuit 10 is released to the receiver 25 side, whereby the liquid side closing valve 27 and the second expansion valve in the refrigerant circuit 10 are escaped.
  • the liquid seal of the receiver 25 is prevented without providing a liquid seal prevention tube, and the liquid side closing valve 27 and the second expansion valve 26 are provided. It is possible to prevent liquid sealing between the two.
  • At least one of the first expansion valve 24 and the second expansion valve 26 may be provided in the refrigerant circuit 10 in the first arrangement state.
  • the first expansion valve 24 can be provided in the second arrangement state
  • the second expansion valve 26 can be provided in the first arrangement state.
  • the pressure of the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 in the refrigerant circuit 10 increases, the refrigerant The refrigerant present in the portion between the two expansion valves 24 and 26 including the receiver 25 in the circuit 10 can be released to the indoor heat exchanger 41 side, and the liquid sealing of the receiver 25 can be prevented.
  • the first expansion valve 24 and the second expansion valve 26 can be provided in the first arrangement state.
  • the pressure of the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 in the refrigerant circuit 10 increases.
  • the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 in the refrigerant circuit 10 is released to the outdoor heat exchanger 23 side and the indoor heat exchanger 41 side, so that the liquid sealing of the receiver 25 is performed. Can be prevented.
  • the compressor 21, the outdoor heat exchanger 23, the first expansion valve 24, the receiver 25, the second expansion valve 26 (openable / closable valve), and the indoor heat exchanger 41 are connected.
  • the liquid seal of the receiver 25 is prevented without providing a liquid seal prevention pipe even though the fully closed expansion valves are used as the first expansion valve 24 and the second expansion valve 26. can do.
  • a gas vent valve 30a for draining the refrigerant from the upper space of the receiver 25 may be provided.
  • the refrigerant circuit 10 is provided with a gas vent pipe 30 that guides the intermediate-pressure gas refrigerant in the refrigeration cycle accumulated in the receiver 25 to the suction pipe 31 of the compressor 21.
  • the gas vent pipe 30 is provided so as to connect between the upper part of the receiver 25 and the middle part of the suction pipe 31.
  • the gas vent valve 30a is provided in the gas vent pipe 30 together with the capillary tube 30b and the check valve 30c.
  • the degassing valve 30a is a valve capable of opening / closing control for turning on / off the flow of the refrigerant in the degassing pipe 30, and here, an electromagnetic valve is used.
  • the capillary tube 30b is a mechanism that depressurizes the gas refrigerant accumulated in the receiver 25 to a low pressure in the refrigeration cycle.
  • a capillary tube having a diameter smaller than that of the gas vent tube 30 is used.
  • the check valve 30c is a valve mechanism that allows only a refrigerant flow from the receiver 25 side to the suction pipe 31 side, and a check valve is used here.
  • the receiver 25 may be liquid-sealed.
  • At least one of the first expansion valve 24 and the second expansion valve 26 is placed in the first arrangement state in the refrigerant circuit 10. (See FIGS. 2, 6 and 7).
  • the compressor 21, the outdoor heat exchanger 23, the first expansion valve 24, the receiver 25, the second expansion valve 26 (openable / closable valve), the indoor heat exchanger 41, and the gas vent valve 30a In the refrigerant circuit 10 constructed by connecting the two, the receiver 25 without providing a liquid seal prevention pipe, although the fully closed expansion valves are used as the first expansion valve 24 and the second expansion valve 26. Can be prevented. Also here, the first expansion valve 24 is provided in the first arrangement state, and the second expansion valve 26 is provided in the second arrangement state, thereby preventing liquid sealing of the receiver 25 without providing a liquid sealing prevention tube. Further, liquid sealing between the liquid side closing valve 27 (openable / closable valve) and the second expansion valve 26 (openable / closable valve) can be prevented (see FIG. 2).
  • the gas vent valve 30a is the same as the first expansion valve 24 and the second expansion valve 26 (openable / closable valve). It is conceivable to use a closed expansion valve.
  • a fully closed type expansion valve having the same structure as the first expansion valve 24 and the second expansion valve 26 is used (see FIGS. 3 to 5).
  • the first expansion valve 24 can be provided in the first arrangement state
  • the second expansion valve 26 and the gas vent valve 30a can be provided in the second arrangement state.
  • the maximum saturation pressure used for setting the biasing force of the spring 62 is a place where the receiver 25, the first expansion valve 24, the second expansion valve 26, and the gas vent valve 30a are installed (here, the outdoor unit 2). ) Is the saturation pressure of the refrigerant corresponding to the maximum value of the atmospheric temperature.
  • the refrigerant present in the portion between the two expansion valves 24 and 26 including the receiver 25 and the gas vent valve 30a in the refrigerant circuit 10 is released to the outdoor heat exchanger 23 side to prevent liquid sealing of the receiver 25. can do.
  • the second expansion valve 26 since the second expansion valve 26 is provided in the second arrangement state, the liquid sealing of the receiver 25 is prevented, and the liquid side closing valve 27 (openable / closable valve) and the second expansion valve 26 are provided. It is possible to prevent the liquid sealing between.
  • the second expansion valve 26 can be provided in the first arrangement state, and the second expansion valve 26 and the gas vent valve 30a can be provided in the second arrangement state.
  • the second expansion valve 26 is provided in the first arrangement state, when the pressure of the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 and the gas vent valve 30a in the refrigerant circuit 10 increases.
  • the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 and the gas vent valve 30a in the refrigerant circuit 10 is released to the indoor heat exchanger 41 side to prevent liquid sealing of the receiver 25. Can do.
  • the gas vent valve 30a can be provided in the first arrangement state, and the first expansion valve 24 and the second expansion valve 26 can be provided in the second arrangement state.
  • the degassing valve 30a is provided in the first arrangement state, when the pressure of the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 and the degassing valve 30a in the refrigerant circuit 10 increases.
  • the refrigerant present in the portion between the two expansion valves 24 and 26 including the receiver 25 and the gas vent valve 30a in the refrigerant circuit 10 can be released to the compressor 21 side to prevent liquid sealing of the receiver 25.
  • the second expansion valve 26 is provided in the second arrangement state, the liquid sealing of the receiver 25 is prevented and the liquid sealing between the liquid side closing valve 27 and the second expansion valve 26 is prevented. Can be prevented.
  • the first expansion valve 24 and the gas vent valve 30a can be provided in the first arrangement state, and the second expansion valve 26 can be provided in the second arrangement state.
  • the first expansion valve 24 and the gas vent valve 30a are provided in the first arrangement state, the refrigerant present in the portion between the two expansion valves 24 and 26 and the gas vent valve 30a including the receiver 25 in the refrigerant circuit 10 is provided.
  • the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 and the vent valve 30a in the refrigerant circuit 10 is released to the outdoor heat exchanger 23 side and the compressor 21 side.
  • the liquid sealing of the receiver 25 can be prevented.
  • the second expansion valve 26 is provided in the second arrangement state, the liquid sealing of the receiver 25 is prevented and the liquid sealing between the liquid side closing valve 27 and the second expansion valve 26 is prevented. Can be prevented.
  • the second expansion valve 26 and the gas vent valve 30a can be provided in the first arrangement state, and the first expansion valve 24 can be provided in the second arrangement state.
  • the refrigerant present in the portion between the two expansion valves 24, 26 and the gas vent valve 30a including the receiver 25 in the refrigerant circuit 10 is provided.
  • the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 and the gas vent valve 30a in the refrigerant circuit 10 is released to the indoor heat exchanger 41 side and the compressor 21 side. The liquid sealing of the receiver 25 can be prevented.
  • the first expansion valve 24 and the second expansion valve 26 can be provided in the first arrangement state, and the gas vent valve 30a can be provided in the second arrangement state.
  • the refrigerant existing in the portion between the two expansion valves 24 and 26 including the receiver 25 and the vent valve 30a in the refrigerant circuit 10 is removed from the outdoor heat exchanger 23 side and the indoor heat exchanger 41 side.
  • the liquid sealing of the receiver 25 can be prevented.
  • the first expansion valve 24, the second expansion valve 26, and the gas vent valve 30a can be provided in the first arrangement state.
  • the refrigerant circuit 10 exists in a portion between the two expansion valves 24 and 26 including the receiver 25.
  • the refrigerant present in the portion between the two expansion valves 24 and 26 including the receiver 25 in the refrigerant circuit 10 is removed from the outdoor heat exchanger 23 side, the indoor heat exchanger 41 side, and the compressor 21. It can escape to the side and the liquid sealing of the receiver 25 can be prevented.
  • the compressor 21, the outdoor heat exchanger 23, the first expansion valve 24, the receiver 25, the second expansion valve 26 (openable / closable valve), the indoor heat exchanger 41, and the gas vent valve 30a In the refrigerant circuit 10 constructed by connecting the two, the liquid expansion prevention pipe is used in spite of the use of the fully closed type expansion valve as the first expansion valve 24, the second expansion valve 26 and the gas vent valve 30a.
  • the liquid sealing of the receiver 25 can be prevented without providing it.
  • the first expansion valve 24 and / or the gas vent valve 30a are provided in the first arrangement state, and the second expansion valve 26 is provided in the second arrangement state, so that the receiver 25 can be provided without providing a liquid seal prevention tube. Liquid sealing, and liquid sealing between the liquid side closing valve 27 (openable / closable valve) and the second expansion valve 26 can be prevented.
  • the first expansion valve 24 gas venting
  • the receiver 25 may be liquid-sealed, specifically, a first expansion valve composed of a fully-closed expansion valve. 24 is provided in the second arrangement state (when the degassing valve 30a including a fully-closed expansion valve is also provided, the degassing valve 30a is also provided in the second arrangement state), and is formed of a fully-closed expansion valve.
  • the second expansion valve 26 is provided in the first arrangement state (see FIGS. 6 and 11) can be considered.
  • the first expansion valve 24 composed of a fully-closed expansion valve is provided in the first arrangement state (fully closed-type).
  • the gas vent valve 30a comprising the expansion valve is also provided, it is preferable to provide the first expansion valve 24 and / or the gas vent valve 30a in the first arrangement state (FIGS. 2, 7, 10, and 12). To FIG. 16).
  • the first expansion valve 24 composed of a fully-closed expansion valve and the gas vent valve 30a composed of a fully-closed expansion valve are provided in the first arrangement state.
  • the degassing valve 30a composed of a fully-closed expansion valve is not provided (see FIG. 17)
  • the first expansion valve 24 is provided in the first arrangement state as shown in FIG.
  • the degassing valve 30a formed of a closed expansion valve is provided (see FIG. 18), as shown in FIGS. 20 to 22, the first expansion valve 24 and / or the degassing valve 30a are in the first arrangement state. I am trying to provide it.
  • the air conditioner 1 is configured by connecting the compressor 21, the outdoor heat exchanger 23, the first expansion valve 24, the receiver 25, the liquid side closing valve 27, and the indoor heat exchanger 41.
  • a fully closed type expansion valve is used as the first expansion valve 24 (in the case of having the gas vent valve 30a, the gas Although the fully-enclosed expansion valve is used as the drain valve 30a), the liquid sealing of the receiver 25 can be prevented without providing a liquid sealing prevention tube.
  • the present invention is widely applicable to an air conditioner having a refrigerant circuit configured by connecting a compressor, an outdoor heat exchanger, a first expansion valve, a receiver, an openable / closable valve, and an indoor heat exchanger. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)
  • Safety Valves (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 圧縮機、室外熱交換器、第1膨張弁(24)、レシーバ(25)、開閉可能弁、室内熱交換器が接続されることによって構成された冷媒回路を有する空気調和装置において、全閉型の第1膨張弁(24)を、レシーバ(25)からの冷媒が弁座(55)のニードル進行方向側から流入する第1配置状態で冷媒回路(10)に設ける。第1配置状態で設けられた第1膨張弁(24)は、ニードル(61)をニードル進行方向に付勢するバネ(62)を有する。

Description

空気調和装置
 本発明は、空気調和装置、特に、圧縮機、室外熱交換器、第1膨張弁、レシーバ、開閉可能弁、室内熱交換器が接続されることによって構成された冷媒回路を有する空気調和装置に関する。
 従来、特許文献1(特開平10-132393号公報)に示すように、レシーバの上流側及び下流側に膨張弁が設けられた冷媒回路を有する空気調和装置がある。具体的には、空気調和装置は、圧縮機、室外熱交換器、第1膨張弁、レシーバ、第2膨張弁(開閉可能弁)、室内熱交換器が接続されることによって構成された冷媒回路を有している。
 ここで、レシーバの上流側及び下流側に設けられた膨張弁として全閉型の膨張弁を使用すると、2つの膨張弁が全閉した状態になると、レシーバが液封になるおそれがある。ここで、「液封」とは、冷媒回路の所定空間が液冷媒で満たされて液冷媒が所定空間内に封じ込められた状態になって、温度上昇によって当該所定空間を構成する機器が破裂等することである。すなわち、ここでは、冷媒回路のうちレシーバを含む2つの膨張弁間の部分が液冷媒で満たされて液冷媒がこの部分に封じ込められた状態になって、温度上昇によってこの部分を構成するレシーバ等の機器が破裂等するおそれがある。また、特許文献1の構成では、レシーバの上部空間から冷媒を抜き出して圧縮機にインジェクションするインジェクション管が設けられており、このインジェクション管に設けられたガス抜き弁として全閉型の膨張弁を使用することも考えられるが、この場合においても、3つの膨張弁が全閉した状態になると、レシーバが液封になるおそれがある。また、レシーバの上流側及び下流側の一方に全閉型の膨張弁(例えば、第1膨張弁)を設け、レシーバの上流側及び下流側の他方に液側閉鎖弁を設けた構成においても、第1膨張弁及び液側閉鎖弁が全閉した状態になると、レシーバが液封になるおそれがある。
 このようなレシーバの液封を防止するためには、レシーバの上部空間から冷媒をいつでも逃がすことを可能にする液封防止管を別途設ける必要があるが、このような液封防止管を設けると、コストアップや設置スペースの問題が発生することから、液封防止管を設けることなく、レシーバの液封を防止できるようにすることが好ましい。
 本発明の課題は、圧縮機、室外熱交換器、第1膨張弁、レシーバ、開閉可能弁、室内熱交換器が接続されることによって構成された冷媒回路を有する空気調和装置において、全閉型の膨張弁を使用し、かつ、液封防止管を設けることなく、レシーバの液封を防止できるようにすることにある。
 第1の観点にかかる空気調和装置は、圧縮機、室外熱交換器、第1膨張弁、レシーバ、開閉可能弁、室内熱交換器が接続されることによって構成された冷媒回路を有する空気調和装置である。ここでは、第1膨張弁として、ニードルが弁座に対して着座することによって全閉される全閉型の膨張弁を使用するとともに、第1膨張弁を、ニードルが弁座に着座する際のニードルの移動方向をニードル進行方向とし、かつ、ニードルが弁座から離反する際のニードルの移動方向をニードル離反方向とすると、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。そして、第1配置状態で冷媒回路に設けられた第1膨張弁は、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを有しており、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除されるように構成されている。
 第1膨張弁として全閉型の膨張弁を使用した場合において、第1膨張弁及び開閉可能弁が全閉した状態になっても、液封防止管を設けることなくレシーバの液封を防止できるようにするためには、冷媒回路のうちレシーバを含む第1膨張弁と開閉可能弁との間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁と開閉可能弁との間の部分に存在する冷媒を冷媒回路の他の部分に逃がすことができるようにする必要がある。
 そこで、ここでは、上記のように、第1膨張弁を、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。これにより、第1配置状態で冷媒回路に設けられた第1膨張弁では、全閉時において、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差が発生すると、ニードルをニードル離反方向へ押す力が作用することになる。そして、ここでは、このような逆圧開弁圧力差によってニードルをニードル離反方向へ押す力を利用して、第1配置状態で冷媒回路に設けられた第1膨張弁に、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを設けておき、逆圧開弁圧力差によってニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除される構成を設けるようにしている。これにより、冷媒回路のうちレシーバを含む第1膨張弁と開閉可能弁との間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁と開閉可能弁との間の部分に存在する冷媒を室外熱交換器側に逃がすことが可能な構成を得ることができる。
 このように、この空気調和装置では、圧縮機、室外熱交換器、第1膨張弁、レシーバ、開閉可能弁、室内熱交換器が接続されることによって構成された冷媒回路において、第1膨張弁として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバの液封を防止することができる。
 第2の観点にかかる空気調和装置は、第1の観点にかかる空気調和装置において、開閉可能弁が液側閉鎖弁である。
 すなわち、ここでは、レシーバの上流側及び下流側の一方に全閉型の第1膨張弁が設けられ、レシーバの上流側及び下流側の他方に液側閉鎖弁が設けられた冷媒回路が構成されている。このため、第1膨張弁及び液側閉鎖弁が全閉した状態になると、レシーバが液封になるおそれがある。
 そこで、ここでは、上記のように、全閉型の第1膨張弁をレシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けるようにしている。このため、冷媒回路のうちレシーバを含む第1膨張弁と液側閉鎖弁との間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁と液側閉鎖弁との間の部分に存在する冷媒を室外熱交換器側に逃がすことが可能な構成を得ることができる。
 このように、この空気調和装置では、圧縮機、室外熱交換器、第1膨張弁、レシーバ、液側閉鎖弁、室内熱交換器が接続されることによって構成された冷媒回路において、第1膨張弁として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバの液封を防止することができる。
 第3の観点にかかる空気調和装置は、第1の観点にかかる空気調和装置において、開閉可能が第2膨張弁であり、第2膨張弁として、ニードルが弁座に対して着座することによって全閉される全閉型の膨張弁を使用している。この場合においては、第1膨張弁及び第2膨張弁の少なくとも1つを、ニードルが弁座に着座する際のニードルの移動方向をニードル進行方向とし、かつ、ニードルが弁座から離反する際のニードルの移動方向をニードル離反方向とすると、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。そして、第1配置状態で冷媒回路に設けられた第1膨張弁及び/又は第2膨張弁は、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを有しており、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除されるように構成されている。
 すなわち、ここでは、レシーバの上流側及び下流側の一方に全閉型の第1膨張弁が設けられ、レシーバの上流側及び下流側の他方に全閉型の第2膨張弁が設けられた冷媒回路が構成されている。このように、第1及び第2膨張弁として全閉型の膨張弁を使用した場合において、2つの膨張弁が全閉した状態になっても、液封防止管を設けることなくレシーバの液封を防止できるようにするためには、冷媒回路のうちレシーバを含む2つの膨張弁間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む2つの膨張弁間の部分に存在する冷媒を冷媒回路の他の部分に逃がすことができるようにする必要がある。
 そこで、ここでは、上記のように、第1膨張弁及び第2膨張弁の少なくとも1つを、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。これにより、第1配置状態で冷媒回路に設けられた第1膨張弁及び/又は第2膨張弁では、全閉時において、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差が発生すると、ニードルをニードル離反方向へ押す力が作用することになる。そして、ここでは、このような逆圧開弁圧力差によってニードルをニードル離反方向へ押す力を利用して、第1配置状態で冷媒回路に設けられた第1膨張弁及び/又は第2膨張弁に、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを設けておき、逆圧開弁圧力差によってニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除される構成を設けるようにしている。これにより、冷媒回路のうちレシーバを含む2つの膨張弁間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む2つの膨張弁間の部分に存在する冷媒を室外熱交換器側や室内熱交換器側に逃がすことが可能な構成を得ることができる。
 このように、この空気調和装置では、圧縮機、室外熱交換器、第1膨張弁、レシーバ、第2膨張弁、室内熱交換器が接続されることによって構成された冷媒回路において、第1膨張弁及び第2膨張弁として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバの液封を防止することができる。
 第4の観点にかかる空気調和装置は、第1~第3の観点のいずれかにかかる空気調和装置において、レシーバ、第1膨張弁及び開閉可能弁が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と逆圧開弁圧力差との合計が、レシーバの耐圧圧力以下になるように、全閉時におけるバネの付勢力が設定されている。
 ここでは、上記のように、全閉時におけるバネの付勢力を、第1膨張弁及び開閉可能弁が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と逆圧開弁圧力差との合計が、レシーバの耐圧圧力以下になるように設定している。これにより、冷媒回路のうちレシーバを含む第1膨張弁と開閉可能弁との間の部分に存在する冷媒が最高飽和圧力まで上昇するほどの高温の雰囲気温度の条件を想定した場合であっても、レシーバの耐圧圧力を超える前に、逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つようになり、ニードルを弁座に対して着座した状態から解除することができる。このため、冷媒回路のうちレシーバを含む第1膨張弁と開閉可能弁との間の部分に存在する冷媒を、レシーバの耐圧圧力を超える前に、室外熱交換器側や室内熱交換器側に逃がして、レシーバの液封を防止することができる。
 このように、この空気調和装置では、レシーバの耐圧圧力を考慮して適切にレシーバの液封を防止することができる。
 第5の観点にかかる空気調和装置は、第1の観点にかかる空気調和装置において、冷媒回路が、レシーバの上部空間から冷媒を抜くためのガス抜き弁をさらに有しており、ガス抜き弁として、ニードルが弁座に対して着座することによって全閉される全閉型の膨張弁を使用している。この場合においては、第1膨張弁及びガス抜き弁の少なくとも1つを、ニードルが弁座に着座する際のニードルの移動方向をニードル進行方向とし、かつ、ニードルが弁座から離反する際のニードルの移動方向をニードル離反方向とすると、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。そして、第1配置状態で冷媒回路に設けられた第1膨張弁及び/又はガス抜き弁は、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを有しており、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除されるように構成されている。
 すなわち、ここでは、レシーバの上流側及び下流側の一方に全閉型の第1膨張弁が設けられ、レシーバの上流側及び下流側の他方に開閉可能弁が設けられ、レシーバに全閉型のガス抜き弁が設けられた冷媒回路が構成されている。このように、第1膨張弁及びガス抜き弁として全閉型の膨張弁を使用した場合において、第1膨張弁、開閉可能弁及びガス抜き弁が全閉した状態になっても、液封防止管を設けることなくレシーバの液封を防止できるようにするためには、冷媒回路のうちレシーバを含む第1膨張弁、開閉可能弁及びガス抜き弁間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁、開閉可能弁及びガス抜き弁間の部分に存在する冷媒を冷媒回路の他の部分に逃がすことができるようにする必要がある。
 そこで、ここでは、上記のように、第1膨張弁及びガス抜き弁の少なくとも1つを、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。これにより、第1配置状態で冷媒回路に設けられた第1膨張弁及び/又はガス抜き弁では、全閉時において、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差が発生すると、ニードルをニードル離反方向へ押す力が作用することになる。そして、ここでは、このような逆圧開弁圧力差によってニードルをニードル離反方向へ押す力を利用して、第1配置状態で冷媒回路に設けられた第1膨張弁及び/又はガス抜き弁に、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを設けておき、逆圧開弁圧力差によってニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除される構成を設けるようにしている。これにより、冷媒回路のうちレシーバを含む第1膨張弁、開閉可能弁及びガス抜き弁間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁、開閉可能弁及びガス抜き弁間の部分に存在する冷媒を室外熱交換器側や室内熱交換器側、圧縮機側に逃がすことが可能な構成を得ることができる。
 このように、この空気調和装置では、圧縮機、室外熱交換器、第1膨張弁、レシーバ、開閉可能弁、室内熱交換器、ガス抜き弁が接続されることによって構成された冷媒回路において、第1膨張弁及びガス抜き弁として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバの液封を防止することができる。
 第6の観点にかかる空気調和装置は、第5の観点にかかる空気調和装置において、開閉可能弁が液側閉鎖弁である。
 すなわち、ここでは、レシーバの上流側及び下流側の一方に全閉型の第1膨張弁が設けられ、レシーバの上流側及び下流側の他方に液側閉鎖弁が設けられた冷媒回路が構成されている。このため、第1膨張弁及び液側閉鎖弁が全閉した状態になると、レシーバが液封になるおそれがある。
 そこで、ここでは、上記のように、全閉型の第1膨張弁及び/又はガス抜き弁をレシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けるようにしている。このため、冷媒回路のうちレシーバを含む第1膨張弁、液側閉鎖弁及びガス抜き弁間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁、液側閉鎖弁及びガス抜き弁間の部分に存在する冷媒を室外熱交換器側や圧縮機側に逃がすことが可能な構成を得ることができる。
 このように、この空気調和装置では、圧縮機、室外熱交換器、第1膨張弁、レシーバ、液側閉鎖弁、室内熱交換器、ガス抜き弁が接続されることによって構成された冷媒回路において、第1膨張弁及びガス抜き弁として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバの液封を防止することができる。
 第7の観点にかかる空気調和装置は、第1の観点にかかる空気調和装置において、開閉可能弁が第2膨張弁であり、冷媒回路が、レシーバの上部空間から冷媒を抜くためのガス抜き弁をさらに有しており、第2膨張弁及びガス抜き弁として、ニードルが弁座に対して着座することによって全閉される全閉型の膨張弁を使用している。この場合においては、第1膨張弁、第2膨張弁及びガス抜き弁の少なくとも1つを、ニードルが弁座に着座する際のニードルの移動方向をニードル進行方向とし、かつ、ニードルが弁座から離反する際のニードルの移動方向をニードル離反方向とすると、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。そして、第1配置状態で冷媒回路に設けられた第1膨張弁、第2膨張弁及び/又はガス抜き弁は、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを有しており、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除されるように構成されている。
 すなわち、ここでは、レシーバの上流側及び下流側に全閉型の第1及び第2膨張弁が設けられ、レシーバに全閉型のガス抜き弁が設けられた冷媒回路が構成されている。このように、第1膨張弁、第2膨張弁及びガス抜き弁として全閉型の膨張弁を使用した場合において、第1膨張弁、第2膨張弁及びガス抜き弁が全閉した状態になっても、液封防止管を設けることなくレシーバの液封を防止できるようにするためには、冷媒回路のうちレシーバを含む第1膨張弁、第2膨張弁及びガス抜き弁間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁、第2膨張弁及びガス抜き弁間の部分に存在する冷媒を冷媒回路の他の部分に逃がすことができるようにする必要がある。
 そこで、ここでは、上記のように、第1膨張弁、第2膨張弁及びガス抜き弁の少なくとも1つを、レシーバからの冷媒が弁座のニードル進行方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル離反方向側に流出する第1配置状態で冷媒回路に設けている。これにより、第1配置状態で冷媒回路に設けられた第1膨張弁、第2膨張弁及び/又はガス抜き弁では、全閉時において、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差が発生すると、ニードルをニードル離反方向へ押す力が作用することになる。そして、ここでは、このような逆圧開弁圧力差によってニードルをニードル離反方向へ押す力を利用して、第1配置状態で冷媒回路に設けられた第1膨張弁、第2膨張弁及び/又はガス抜き弁に、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを設けておき、逆圧開弁圧力差によってニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除される構成を設けるようにしている。これにより、冷媒回路のうちレシーバを含む第1膨張弁、第2膨張弁及びガス抜き弁間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路のうちレシーバを含む第1膨張弁、第2膨張弁及びガス抜き弁間の部分に存在する冷媒を室外熱交換器側や室内熱交換器側、圧縮機側に逃がすことが可能な構成を得ることができる。
 このように、この空気調和装置では、圧縮機、室外熱交換器、第1膨張弁、レシーバ、第2膨張弁、室内熱交換器、ガス抜き弁が接続されることによって構成された冷媒回路において、第1膨張弁、第2膨張弁及びガス抜き弁として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバの液封を防止することができる。
 第8の観点にかかる空気調和装置は、第5~第7の観点のいずれかにかかる空気調和装置において、レシーバ、第1膨張弁、開閉可能弁及びガス抜き弁が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と逆圧開弁圧力差との合計が、レシーバの耐圧圧力以下になるように、全閉時におけるバネの付勢力が設定されている。
 ここでは、上記のように、全閉時におけるバネの付勢力を、第1膨張弁、開閉可能弁及びガス抜き弁が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と逆圧開弁圧力差との合計が、レシーバの耐圧圧力以下になるように設定している。これにより、冷媒回路のうちレシーバを含む第1膨張弁、開閉可能弁及びガス抜き弁間の部分に存在する冷媒が最高飽和圧力まで上昇するほどの高温の雰囲気温度の条件を想定した場合であっても、レシーバの耐圧圧力を超える前に、逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つようになり、ニードルを弁座に対して着座した状態から解除することができる。このため、冷媒回路のうちレシーバを含む第1膨張弁、開閉可能弁及びガス抜き弁間の部分に存在する冷媒を、レシーバの耐圧圧力を超える前に、室外熱交換器側や室内熱交換器側、圧縮機側に逃がして、レシーバの液封を防止することができる。
 このように、この空気調和装置では、レシーバの耐圧圧力を考慮して適切にレシーバの液封を防止することができる。
 第9の観点にかかる空気調和装置は、第4又は第8の観点にかかる空気調和装置において、レシーバの耐圧圧力が、レシーバの設計圧力に安全率を乗じて得られる圧力値である。
 ここでは、耐圧圧力をレシーバの設計圧力に基づいて得るようにしているため、第1配置状態で設けられた第1膨張弁、第2膨張弁及び/又はガス抜き弁の逆圧開弁圧力差、すなわち、全閉時におけるバネの付勢力を適切に設定することができる。
 第10の観点にかかる空気調和装置は、第1又は第5の観点にかかる空気調和装置において、開閉可能弁が、第2膨張弁、及び、第2膨張弁と室内熱交換器との間に接続された液側閉鎖弁であり、第2膨張弁として、ニードルが弁座に対して着座することによって全閉される全閉型の膨張弁を使用している。ここでは、第2膨張弁を、レシーバからの冷媒が弁座のニードル離反方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル進行方向側から流出する第2配置状態で冷媒回路に設けている。そして、第2配置状態で冷媒回路に設けられた第2膨張弁は、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを有しており、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除されるように構成されている。
 第2膨張弁として全閉型の膨張弁を使用した場合において、液側閉鎖弁や第2膨張弁の誤操作等によって液側閉鎖弁及び第2膨張弁の両方を全閉した状態になると、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分の液封が発生するおそれがある。すなわち、ここでは、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分が液冷媒で満たされて液冷媒がこの部分に封じ込められた状態になって、温度上昇によってこの部分を構成する液側閉鎖弁や第2膨張弁等の機器が破裂等するおそれがある。このような液側閉鎖弁と第2膨張弁との間の部分の液封を防止できるようにするためには、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分における冷媒の圧力が上昇した際に、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分に存在する冷媒を冷媒回路の他の部分に逃がすことができるようにする必要がある。
 そこで、ここでは、上記のように、第1膨張弁(ガス抜き弁も存在する場合には、第1膨張弁及び/又はガス抜き弁)を、第1配置状態で冷媒回路に設けることでレシーバの液封を防止するとともに、第2膨張弁を、レシーバからの冷媒が弁座のニードル離反方向側から流入しニードルと弁座との間の隙間を通じて弁座のニードル進行方向側に流出する第2配置状態で冷媒回路に設けている。これにより、第2膨張弁では、全閉時において、弁座のニードル離反方向側の空間における冷媒の圧力に対する弁座のニードル進行方向側の空間における冷媒の圧力の圧力差である逆圧開弁圧力差が発生すると、ニードルをニードル離反方向へ押す力が作用することになる。そして、ここでは、このような逆圧開弁圧力差によってニードルをニードル離反方向へ押す力を利用して、第2配置状態で冷媒回路に設けられた第2膨張弁に、全閉時において、弁座に対して着座したニードルをニードル進行方向に付勢するバネを設けておき、逆圧開弁圧力差によってニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つと、ニードルが弁座に対して着座した状態から解除される構成を設けるようにしている。これにより、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分における冷媒の圧力が上昇した際に、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分に存在する冷媒をレシーバ側に逃がすことが可能な構成を得ることができる。
 このように、この空気調和装置では、圧縮機、室外熱交換器、第1膨張弁、レシーバ、第2膨張弁、液側閉鎖弁、室内熱交換器が接続されることによって構成された冷媒回路(ガス抜き弁も存在する場合には、ガス抜き弁も含む)において、液封防止管を設けることなくレシーバの液封を防止するとともに、液側閉鎖弁と第2膨張弁との間の液封を防止することができる。
 第11の観点にかかる空気調和装置は、第10の観点にかかる空気調和装置において、第2膨張弁及び液側閉鎖弁が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と第2膨張弁の逆圧開弁圧力差との合計が、冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の耐圧圧力の最小値以下になるように、全閉時における第2膨張弁のバネの付勢力が設定されている。
 ここでは、上記のように、全閉時におけるバネの付勢力を、第2膨張弁が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と逆圧開弁圧力差との合計が、冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の耐圧圧力の最小値以下になるように設定している。これにより、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分に存在する冷媒が最高飽和圧力まで上昇するほどの高温の雰囲気温度の条件を想定した場合であっても、冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の耐圧圧力の最小値を超える前に、逆圧開弁圧力差によって発生するニードルをニードル離反方向へ押す力が、バネのニードル進行方向への付勢力に打ち勝つようになり、ニードルを弁座に対して着座した状態から解除することができる。このため、冷媒回路のうち液側閉鎖弁と第2膨張弁との間の部分に存在する冷媒を、冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の耐圧圧力を超える前に、レシーバ側に逃がして、液側閉鎖弁と第2膨張弁との間の液封を防止することができる。ここで、レシーバ側に逃がされた冷媒は、レシーバの圧力上昇を発生させるおそれがあるが、第1膨張弁(ガス抜き弁も存在する場合には、第1膨張弁及び/又はガス抜き弁)が第1配置状態で設けられているため、レシーバの耐圧圧力を超える前に、室外熱交換器側(ガス抜き弁も存在する場合には、室外熱交換器側や圧縮機側)に逃がされることになる。
 このように、この空気調和装置では、液封防止管を設けることなくレシーバの液封を防止するとともに、冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の耐圧圧力を考慮して適切に液側閉鎖弁と第2膨張弁との間の液封を防止することができる。
 第12の観点にかかる空気調和装置は、第11の観点にかかる空気調和装置において、冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の耐圧圧力が、冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の設計圧力に安全率を乗じて得られる圧力値である。
 ここでは、耐圧圧力を冷媒回路のうち第2膨張弁から液側閉鎖弁までの部分を構成する部品の設計圧力に基づいて得るようにしているため、第2配置状態で設けられた第2膨張弁の逆圧開弁圧力差、すなわち、全閉時におけるバネの付勢力を適切に設定することができる。
本発明の一実施形態にかかる空気調和装置の概略構成図である。 第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 膨張弁の概略断面図である。 全閉時(逆圧開弁不作動)における膨張弁のニードル付近を示す概略断面図である。 全閉時(逆圧開弁作動)における膨張弁のニードル付近を示す概略断面図である。 変形例1にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例1にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例2にかかる空気調和装置の概略構成図である。 変形例3にかかる空気調和装置の概略構成図である。 変形例3にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例3にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例3にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例3にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例3にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例3にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例3にかかる第1膨張弁、レシーバ、第2膨張弁及び液側閉鎖弁付近を示す図である。 変形例5にかかる空気調和装置の概略構成図である。 変形例5にかかる空気調和装置の概略構成図である。 変形例5にかかる第1膨張弁、レシーバ及び液側閉鎖弁付近を示す図である。 変形例5にかかる第1膨張弁、レシーバ及び液側閉鎖弁付近を示す図である。 変形例5にかかる第1膨張弁、レシーバ及び液側閉鎖弁付近を示す図である。 変形例5にかかる第1膨張弁、レシーバ及び液側閉鎖弁付近を示す図である。
 以下、本発明にかかる空気調和装置の実施形態及びその変形例について、図面に基づいて説明する。尚、本発明にかかる空気調和装置の具体的な構成は、下記の実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 (1)空気調和装置の構成
 図1は、本発明の一実施形態にかかる空気調和装置1の概略構成図である。
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房及び暖房を行うことが可能な装置である。空気調和装置1は、主として、室外ユニット2と、室内ユニット4とが接続されることによって構成されている。ここで、室外ユニット2と室内ユニット4とは、液冷媒連絡管5及びガス冷媒連絡管6を介して接続されている。すなわち、空気調和装置1の蒸気圧縮式の冷媒回路10は、室外ユニット2と、室内ユニット4とが冷媒連絡管5、6を介して接続されることによって構成されている。また、この冷媒回路10に封入される冷媒としては、種々のものが使用可能であるが、ここでは、冷媒として、HFC系冷媒の一種であるR32が封入されている。
 <室内ユニット>
 室内ユニット4は、室内に設置されており、冷媒回路10の一部を構成している。室内ユニット4は、主として、室内熱交換器41を有している。
 室内熱交換器41は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の放熱器として機能して室内空気を加熱する熱交換器である。室内熱交換器41の液側は液冷媒連絡管5に接続されており、室内熱交換器41のガス側はガス冷媒連絡管6に接続されている。
 室内ユニット4は、室内ユニット4内に室内空気を吸入して、室内熱交換器41において冷媒と熱交換させた後に、供給空気として室内に供給するための室内ファン42を有している。室内ファン42は、室内ファン用モータ43によって駆動される。
 室内ユニット4は、室内ユニット4を構成する各部の動作を制御する室内側制御部44を有している。そして、室内側制御部44は、室内ユニット4の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、リモコン(図示せず)との間で制御信号等のやりとりを行ったり、室外ユニット2との間で伝送線8aを介して制御信号等のやりとりを行うことができるようになっている。
 <室外ユニット>
 室外ユニット2は、室外に設置されており、冷媒回路10の一部を構成している。室外ユニット2は、主として、圧縮機21と、四路切換弁22と、室外熱交換器23と、第1膨張弁24と、レシーバ25と、第2膨張弁26(開閉可能弁)と、液側閉鎖弁27(開閉可能弁)と、ガス側閉鎖弁28とを有している。
 圧縮機21は、冷凍サイクルにおける低圧の冷媒を高圧になるまで圧縮する機器である。圧縮機21は、ロータリ式やスクロール式等の容積式の圧縮要素(図示せず)をインバータにより制御される圧縮機用モータ21aによって回転駆動する密閉式構造となっている。圧縮機21は、吸入側に吸入管31が接続されており、吐出側に吐出管32が接続されている。吸入管31は、圧縮機21の吸入側と四路切換弁22の第1ポート22aとを接続する冷媒管である。吸入管31には、アキュムレータ29が設けられている。吐出管32は、圧縮機21の吐出側と四路切換弁22の第2ポート22bとを接続する冷媒管である。吐出管32には、逆止弁32aが設けられている。
 四路切換弁22は、冷媒回路10における冷媒の流れの方向を切り換えるための切換弁である。四路切換弁22は、冷房運転時には、室外熱交換器23を圧縮機21において圧縮された冷媒の放熱器として機能させ、かつ、室内熱交換器41を室外熱交換器23において放熱した冷媒の蒸発器として機能させる冷房サイクル状態への切り換えを行う。すなわち、四路切換弁22は、冷房運転時には、第2ポート22bと第3ポート22cとを連通させ、かつ、第1ポート22aと第4ポート22dとを連通させる切り換えを行う。これにより、圧縮機21の吐出側(ここでは、吐出管32)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の四路切換弁22の実線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の四路切換弁22の実線を参照)。また、四路切換弁22は、暖房運転時には、室外熱交換器23を室内熱交換器41において放熱した冷媒の蒸発器として機能させ、かつ、室内熱交換器41を圧縮機21において圧縮された冷媒の放熱器として機能させる暖房サイクル状態への切り換えを行う。すなわち、四路切換弁22は、暖房運転時には、第2ポート22bと第4ポート22dとを連通させ、かつ、第1ポート22aと第3ポート22cとを連通させる切り換えを行う。これにより、圧縮機21の吐出側(ここでは、吐出管32)とガス冷媒連絡管6側(ここでは、第2ガス冷媒管34)とが接続される(図1の四路切換弁22の破線を参照)。しかも、圧縮機21の吸入側(ここでは、吸入管31)と室外熱交換器23のガス側(ここでは、第1ガス冷媒管33)とが接続される(図1の四路切換弁22の破線を参照)。第1ガス冷媒管33は、四路切換弁22の第3ポート22cと室外熱交換器23のガス側とを接続する冷媒管である。第2ガス冷媒管33は、四路切換弁22の第4ポート22dとガス冷媒連絡管6側とを接続する冷媒管である。
 室外熱交換器23は、冷房運転時には室外空気を冷却源とする冷媒の放熱器として機能し、暖房運転時には室外空気を加熱源とする冷媒の蒸発器として機能する熱交換器である。室外熱交換器23は、液側が液冷媒管35に接続されており、ガス側が第1ガス冷媒管33に接続されている。液冷媒管35は、室外熱交換器23の液側と液冷媒連絡管5側とを接続する冷媒管である。
 第1膨張弁24は、冷房運転時には、室外熱交換器23において放熱した冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける中間圧まで減圧する弁である。また、第1膨張弁24は、暖房運転時には、レシーバ25に溜められた冷凍サイクルにおける中間圧の冷媒を冷凍サイクルにおける低圧まで減圧する弁である。第1膨張弁24は、液冷媒管35のうち室外熱交換器23とレシーバ25との間の部分に設けられている。ここで、液冷媒管35のうち室外熱交換器23と第1膨張弁24とを接続する部分が第1液冷媒管35aであり、液冷媒管35のうち第1膨張弁24とレシーバ25とを接続する部分が第2液冷媒管35bである。また、ここでは、第1膨張弁24として、電動膨張弁が使用されている。尚、第1膨張弁24の詳細構造については、後述する。
 レシーバ25は、第1膨張弁24と第2膨張弁26との間に設けられている。レシーバ25は、冷房運転時及び暖房運転時には、冷凍サイクルにおける中間圧の冷媒を溜めることが可能な容器である。
 第2膨張弁26(開閉可能弁)は、冷房運転時には、レシーバ25に溜められた冷凍サイクルにおける中間圧の冷媒を冷凍サイクルにおける低圧まで減圧する弁である。また、第2膨張弁26は、暖房運転時には、室内熱交換器41において放熱した冷凍サイクルにおける高圧の冷媒を冷凍サイクルにおける中間圧まで減圧する弁である。第2膨張弁26は、液冷媒管35のうちレシーバ25と液側閉鎖弁27との間の部分に設けられている。ここで、液冷媒管35のうちレシーバ25と第2膨張弁26とを接続する部分が第3液冷媒管35cであり、液冷媒管35のうち第2膨張弁26と液側閉鎖弁27とを接続する部分が第4液冷媒管35dである。また、ここでは、第2膨張弁26として、電動膨張弁が使用されている。尚、第2膨張弁26の詳細構造については、後述する。
 液側閉鎖弁27(開閉可能弁)及びガス側閉鎖弁28は、外部の機器・配管(具体的には、液冷媒連絡管5及びガス冷媒連絡管6)との接続口に設けられた弁である。液側閉鎖弁27は、液冷媒管35(より具体的には、第4液冷媒管35d)の端部に設けられている。ガス側閉鎖弁28は、第2ガス冷媒管34の端部に設けられている。
 室外ユニット2は、室外ユニット2内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、外部に排出するための室外ファン36を有している。室外ファン36は、室外ファン用モータ37によって駆動される。
 室外ユニット2は、室外ユニット2を構成する各部の動作を制御する室外側制御部38を有している。そして、室外側制御部38は、室外ユニット2の制御を行うために設けられたマイクロコンピュータやメモリ等を有しており、室内ユニット4との間で伝送線8aを介して制御信号等のやりとりを行うことができるようになっている。
 <冷媒連絡管>
 冷媒連絡管5、6は、空気調和装置1を建物等の設置場所に設置する際に、現地にて施工される冷媒管であり、設置場所や室外ユニットと室内ユニットとの組み合わせ等の設置条件に応じて種々の長さや管径を有するものが使用される。
 以上のように、室外ユニット2と、室内ユニット4と、冷媒連絡管5、6とが接続されることによって、空気調和装置1の冷媒回路10が構成されている。空気調和装置1は、四路切換弁22を冷房サイクル状態に切り換えることによって、圧縮機21、室外熱交換器23、第1膨張弁24、レシーバ25、第2膨張弁26(開閉可能弁)、液側閉鎖弁27(開閉可能弁)、室内熱交換器41の順に冷媒を循環させる冷房運転を行うようになっている。また、空気調和装置1は、四路切換弁22を暖房サイクル状態に切り換えることによって、圧縮機21、室内熱交換器41、液側閉鎖弁26(開閉可能弁)、第2膨張弁26(開閉可能弁)、レシーバ25、第1膨張弁24、室外熱交換器23の順に冷媒を循環させる暖房運転を行うようになっている。尚、ここでは、冷房運転と暖房運転とを切り換えて運転することが可能な構成になっているが、四路切換弁を有しておらず、冷房運転だけ、又は、暖房運転だけが可能な構成であってもよい。
 <制御部>
 空気調和装置1は、室内側制御部44と室外側制御部38とから構成される制御部8によって、室外ユニット2及び室内ユニット4の各機器の制御を行うことができるようになっている。すなわち、室内側制御部44と室外側制御部38との間を接続する伝送線8aとによって、上記の冷房運転や暖房運転等を含む空気調和装置1全体の運転制御を行う制御部8が構成されている。
 (2)空気調和装置の基本動作
 次に、空気調和装置1の基本動作について、図1を用いて説明する。空気調和装置1は、基本動作として、冷房運転及び暖房運転を行うことが可能である。
 <暖房運転>
 暖房運転時には、四路切換弁22が暖房サイクル状態(図1の破線で示される状態)に切り換えられる。
 冷媒回路10において、冷凍サイクルにおける低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルにおける高圧になるまで圧縮された後に吐出される。
 圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22、ガス側閉鎖弁28及びガス冷媒連絡管6を通じて、室内熱交換器41に送られる。
 室内熱交換器41に送られた高圧のガス冷媒は、室内熱交換器41において、室内ファン42によって冷却源として供給される室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内空気は加熱され、その後に、室内に供給されることで室内の暖房が行われる。
 室内熱交換器41で放熱した高圧の液冷媒は、液冷媒連絡管5及び液側閉鎖弁27を通じて、第2膨張弁26に送られる。
 第2膨張弁26に送られた高圧の液冷媒は、第2膨張弁26によって冷凍サイクルにおける中間圧まで減圧されて、中間圧の気液二相状態の冷媒になる。
 第2膨張弁26で減圧された中間圧の気液二相状態の冷媒は、レシーバ25に一時的に溜められた後に、第1膨張弁24に送られる。
 第1膨張弁24に送られた中間圧の気液二相状態の冷媒は、第1膨張弁24によって冷凍サイクルにおける低圧まで減圧されて、低圧の気液二相状態の冷媒になる。
 第1膨張弁24で減圧された低圧の気液二相状態の冷媒は、室外熱交換器23に送られる。
 室外熱交換器23に送られた低圧の気液二相状態の冷媒は、室外熱交換器23において、室外ファン36によって加熱源として供給される室外空気と熱交換を行って蒸発して、低圧のガス冷媒になる。
 室外熱交換器23で蒸発した低圧の冷媒は、四路切換弁22を通じて、再び、圧縮機21に吸入される。
 <冷房運転>
 冷房運転時には、四路切換弁22が冷房サイクル状態(図1の実線で示される状態)に切り換えられる。
 冷媒回路10において、冷凍サイクルにおける低圧のガス冷媒は、圧縮機21に吸入され、冷凍サイクルにおける高圧になるまで圧縮された後に吐出される。
 圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22を通じて、室外熱交換器23に送られる。
 室外熱交換器23に送られた高圧のガス冷媒は、室外熱交換器23において、室外ファン36によって冷却源として供給される室外空気と熱交換を行って放熱して、高圧の液冷媒になる。
 室外熱交換器23において放熱した高圧の液冷媒は、第1膨張弁24に送られる。
 第1膨張弁24に送られた高圧の液冷媒は、第1膨張弁24によって冷凍サイクルにおける中間圧まで減圧されて、中間圧の気液二相状態の冷媒になる。
 第1膨張弁24で減圧された中間圧の気液二相状態の冷媒は、レシーバ25に一時的に溜められた後に、第2膨張弁26に送られる。
 第2膨張弁26に送られた中間圧の気液二相状態の冷媒は、第2膨張弁26によって冷凍サイクルにおける低圧まで減圧されて、低圧の気液二相状態の冷媒になる。
 第2膨張弁26で減圧された低圧の気液二相状態の冷媒は、液側閉鎖弁27及び液冷媒連絡管5を通じて、室内熱交換器41に送られる。
 室内熱交換器41に送られた低圧の気液二相状態の冷媒は、室内熱交換器41において、室内ファン42によって加熱源として供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却され、その後に、室内に供給されることで室内の冷房が行われる。
 室内熱交換器41において蒸発した低圧のガス冷媒は、ガス冷媒連絡管6、ガス側閉鎖弁28及び四路切換弁22を通じて、再び、圧縮機21に吸入される。
 (3)膨張弁の詳細構造及び動作
 <膨張弁の基本構造>
 空気調和装置1において、レシーバ25の上流側及び下流側に設けられた第1膨張弁24及び第2膨張弁26として、溝付きニードル型の膨張弁を使用すると、冷房運転や暖房運転の起動時に、液冷媒が圧縮機21に戻る液バックが発生するおそれがある。これに対して、第1膨張弁24及び第2膨張弁26として、ニードルに溝が形成されておらず、ニードルが弁座に対して着座することによって全閉される全閉型の膨張弁を使用することが考えられる。
 ここで、まず、全閉型の膨張弁からなる第1膨張弁24及び第2膨張弁26の基本構造及び動作について説明する。
 第1膨張弁24及び第2膨張弁26は、図3に示すように、主として、弁本体51と、ニードル61と、ケース71とを有している。尚、ここでは、ニードル61の移動方向が上下方向を向くように第1膨張弁24及び第2膨張弁26を配置した状態を例にして説明するが。但し、このことは、ニードル61の移動方向が横方向等の他の方向を向くように配置することを制限するものではない。そして、ここでは、ニードル61が弁座55に着座する際のニードル61の移動方向(ここでは、下方向)をニードル進行方向とし、ニードル61が弁座55から離反する際のニードル61の移動方向(ここでは、上方向)をニードル離反方向とする。
 弁本体51は、ここでは、上下方向(すなわち、ニードル61の移動方向)に延びる略筒状の部材であり、弁室52が形成されている。弁室52は、大径の上部弁室52aと、上部弁室52aの下側に位置する小径の下部弁室52bとを有している。また、弁本体51には、弁室52(ここでは、上部弁室52a)の側方に向かって開口する第1冷媒口53と、弁室52(ここでは、下部弁室52b)の下方に向かって開口する第2冷媒口54とが形成されている。また、弁本体51には、弁座55が設けられている。具体的には、弁座55は、上部弁室52aと下部弁室52bとを仕切るように弁本体51に設けられている。これにより、上部弁室52aが弁座55のニードル離反方向側の空間(ここでは、上側の空間)を構成し、下部弁室52bが弁座55のニードル進行方向側の空間(ここでは、下側の空間)を構成していることになる。また、ここでは、2つの冷媒口53、54のうち第1冷媒口53が弁座55のニードル離反方向側に設けられており、第2冷媒口54が弁座55のニードル進行方向側に設けられていることになる。弁座55には、上部弁室52aと下部弁室52bとをニードル61の移動方向(ここでは、上下方向)に連通するように開口したオリフィス穴55aが形成されている。また、弁本体51の内周面には、略筒状の雌ネジ形成部材56が圧入等によって固定されている。雌ネジ形成部材56の上部は、弁本体51よりも上方に突出しており、内周面に雌ネジ56aが形成されている。雌ネジ形成部材56の下部には、略筒状のニードルガイド57が圧入等によって固定されている。
 ニードル61は、ここでは、弁座55に対して上下方向(すなわち、ニードルの移動方向)に進退する部材であり、上下方向に移動可能な状態でニードルガイド57の内周側に挿入されている。ニードル61は、後述のバネ62及びバネ受け部材63を介して、ニードル61の上方に配置された弁軸64に連結されている。弁軸64は、弁本体51からケース71に渡って上下方向(すなわち、ニードルの移動方向)に延びる略棒状の部材ある。弁軸64の下端は、上下方向(すなわち、ニードルの移動方向)に移動可能で、かつ、回転可能な状態でニードルガイド57の内周側に挿入されている。弁軸64の上下方向(すなわち、ニードルの移動方向)の中央部分の外周面には、雌ネジ形成部材56の雌ネジ56aに噛み合う雄ネジ64aが形成されている。弁軸64の雄ネジ64aの上側には、ブッシュ65を介して、永久磁石からなる略筒状のロータ81が固定されている。
 ケース71は、ここでは、上端が閉じられた略筒状の部材である。ケース71は、図示しない固定金具等を介して、弁本体51の上端に固定されている。ケース71の上端の内面には、下方に向かって延びる略筒状のスリーブ72が設けられている。スリーブ72の内周側には、弁軸64の上端が上下方向(すなわち、ニードルの移動方向)に移動可能で、かつ、回転可能な状態で挿入されている。ロータ81の外周面は、ケース71の内周面との間に僅かな隙間を空けて対向している。ケース71の外周側には、ロータ81に対向する位置に、電磁石からなるステータ82が設けられている。
 そして、このような構成において、ステータ82に通電を行うと、ステータ82及びロータ81がステッピングモータとして機能して、通電量(パルス値)に応じてロータ81が回転する。ロータ81が回転すると、ロータ81と一体回転する弁軸64も回転する。弁軸64が回転すると、弁軸64の雄ネジ64aが雌ネジ形成部材56の雌ネジ56aに噛み合っているため、弁軸64が弁本体51に対してネジ送りされることによって、弁軸64が上下方向(すなわち、ニードルの移動方向)に移動する。弁軸64が上下方向(すなわち、ニードルの移動方向)に移動すると、弁軸64に連結されたニードル61も上下方向(すなわち、ニードルの移動方向)に移動する。これにより、ニードル61と弁座55との間の隙間の大きさを調節して、冷媒を減圧しつつ第1膨張弁24や第2膨張弁26を通過する冷媒の流量を制御することができるようになっている。このため、弁軸64が弁本体51に対してネジ送りされることによって、ニードル61が弁座55に対して着座すると、ニードル61と弁座55との間の隙間がなくなり、第1膨張弁24や第2膨張弁26が全閉されることになる(図3参照)。
 <レシーバの液封を防止するための構造>
 しかし、第1膨張弁24及び第2膨張弁26(開閉可能弁)として全閉型の膨張弁を使用すると、2つの膨張弁24、26が全閉した状態になると、レシーバ25が液封になるおそれがある。このため、第1及び第2膨張弁24、26として全閉型の膨張弁を使用した場合において、2つの膨張弁24、26が全閉した状態になっても、液封防止管を設けることなくレシーバ25の液封を防止できるようにするためには、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒を冷媒回路10の他の部分に逃がすことができるようにする必要がある。
 そこで、ここでは、まず、第1膨張弁24を、レシーバ25からの冷媒が弁座55のニードル進行方向側(ここでは、弁座55の下側)から流入しニードル61と弁座55との間の隙間を通じて弁座55のニードル離反方向側(ここでは、弁座55の上側)に流出する第1配置状態で冷媒回路10に設けている(図2及び図3参照)。具体的には、図2及び図3に示すように、第1膨張弁24の第1冷媒口53に室外熱交換器23との間を接続する第1液冷媒管35aを接続し、第1膨張弁24の第2冷媒口54にレシーバ25との間を接続する第2液冷媒管35bを接続している。これにより、第1配置状態で冷媒回路10に設けられた第1膨張弁24では、全閉時において、弁座55のニードル離反方向側の空間(ここでは、上部弁室52a)における冷媒の圧力P1に対する弁座55のニードル進行方向側の空間(ここでは、下部弁室52b)における冷媒の圧力P2の圧力差である逆圧開弁圧力差ΔP(=P2-P1)が発生すると、ニードル61をニードル離反方向へ押す力Fu(ここでは、上方へ押し上げる力)が作用することになる(図4参照)。そして、ここでは、このような逆圧開弁圧力差ΔPによってニードル61をニードル離反方向へ押す力Fuを利用して、第1配置状態で冷媒回路10に設けられた第1膨張弁24に、全閉時において、弁座55に対して着座したニードル61をニードル進行方向(ここでは、下方)に付勢するバネ62を設けておき、逆圧開弁圧力差ΔPによってニードル61をニードル離反方向へ押す力Fuが、バネ62のニードル進行方向への付勢力Fdに打ち勝つと、ニードル61が弁座55に対して着座した状態から解除される構成を設けるようにしている(図4及び図5参照)。具体的には、図3~図5に示すように、弁軸64の下端にバネ受け部材63をニードル61の移動方向(ここでは、上下方向)に一体移動するように連結し、バネ受け部材63とニードル61との上下方向間を、バネ62によって連結するようにしている。ここでは、バネ62として、ニードル61の移動方向に伸縮可能なコイルバネが使用されている。これにより、弁軸64の上下方向の移動によって、弁軸64とニードル61との上下方向間の距離が弾性的に伸縮可能な状態で、ニードル61が上下方向に移動する構成を得ている。そして、図4に示すように、全閉時において、弁軸64の下端が可動範囲の最下位置まで達すると、バネ62が自由長よりも収縮し、かつ、収縮代を有する状態で、ニードル61が弁座55に対して着座した状態になるようにしている(以下、この状態を「逆圧開弁不作動状態」とする)。これにより、バネ62は、弁座55に対して着座したニードル61をニードル進行方向に付勢する力Fdを発生し、ニードル61は、バネ62の付勢力Fdによって、弁座55に押し付けられている。そうすると、全閉時において、逆圧開弁圧力差ΔPによって発生するニードル61をニードル離反方向へ押す力Fuが、バネ61のニードル進行方向への付勢力Fdに打ち勝つと、図5に示すように、弁軸64がニードル離反方向(ここでは、上方)に移動しない状態で、バネ62を逆圧開弁不作動状態よりもさらに収縮させながら、ニードル61が弁座55からニードル離反方向(ここでは、上方)に離れて、ニードル61が弁座55に対して着座した状態から解除される(以下、この状態を「逆圧開弁作動状態」とする)。このとき、バネ62の長さは、逆圧開弁不作動状態における長さL0から逆圧開弁作動状態における長さLまで収縮する。これにより、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒の圧力(圧力P2に相当)が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒を室外熱交換器23側に逃がすことができるようになる(図5の冷媒の流れを示す矢印参照)。
 しかも、ここでは、全閉時におけるバネ62の付勢力Fdを、第1及び第2膨張弁24、26(ここでは、室外ユニット2)が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力Psmと逆圧開弁圧力差ΔPとの合計が、レシーバ25の耐圧圧力Prm以下になるように設定している。具体的には、最高飽和圧力Psmとして、第1及び第2膨張弁24、26(ここでは、室外ユニット2)が設置される場所において想定され得る最高の雰囲気温度(例えば、50℃程度)を冷媒の飽和圧力に換算した値を使用する。耐圧圧力Prvとして、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分を構成する部品である第1膨張弁24、レシーバ25及び第2膨張弁26のうち最も耐圧圧力が低いレシーバ25の耐圧圧力を使用する。また、ここでは、レシーバ25の耐圧圧力Prmを、レシーバ25の設計圧力に安全率(例えば、耐圧試験圧力に対応する1.5倍程度)を乗じることによって得るようにしている。そして、バネ62については、逆圧開弁不作動状態における付勢力Fdが、レシーバ25の耐圧圧力Prmから最高飽和圧力Psmを差し引いた圧力差がニードル61に作用したと想定した場合に発生するニードル61をニードル離反方向へ押す力Fum以下になるように、バネ定数、及び、逆圧開弁不作動状態におけるバネ長さL0(すなわち、自由長からの収縮長さ)を設定し、この逆圧開弁不作動状態における付勢力Fdに対応する圧力差を逆圧開弁圧力差ΔPとする。尚、ここでは、上記のように、レシーバ25の耐圧圧力Prmをレシーバ25の設計圧力に基づいて得るようにしているため、逆圧開弁圧力差ΔP、すなわち、全閉時におけるバネの付勢力Fdを適切に設定することができる。これにより、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒が最高飽和圧力Phmまで上昇するほどの高温の雰囲気温度の条件を想定した場合であっても、レシーバ25の耐圧圧力Prmを超える前に、逆圧開弁圧力差ΔPによって発生するニードル61をニードル離反方向へ押す力Fuが、バネ62のニードル進行方向への付勢力Fdに打ち勝つようになり、第1膨張弁24が逆圧開弁作動状態になる。このため、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒を、レシーバ25の耐圧圧力Prmを超える前に、室外熱交換器23側に逃がして、レシーバ25の液封を防止することができる。また、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒を室外熱交換器23側に逃がすことによって、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分における冷媒の圧力が低下すると、逆圧開弁圧力差ΔPによって発生するニードル61をニードル離反方向へ押す力Fuが小さくなり、再び、第1膨張弁24が逆圧開弁不作動状態に復帰する。これにより、第1膨張弁24が逆圧開弁作動状態になることを必要最小限に止めることができる。
 このように、空気調和装置1では、圧縮機21、室外熱交換器23、第1膨張弁24、レシーバ25、第2膨張弁26(開閉可能弁)、室内熱交換器41が接続されることによって構成された冷媒回路10において、第1膨張弁24及び第2膨張弁26として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバ25の液封を防止することができる。しかも、空気調和装置1では、レシーバ25の耐圧圧力Prmを考慮して適切にレシーバ25の液封を防止することができる。
 <液側閉鎖弁と第2膨張弁との間の部分の液封を防止するための構造>
 また、第2膨張弁26(開閉可能弁)として全閉型の膨張弁を使用した場合において、液側閉鎖弁27(開閉可能弁)や第2膨張弁26の誤操作等によって液側閉鎖弁27及び第2膨張弁26の両方を全閉した状態になると、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分の液封が発生するおそれがある。このような液側閉鎖弁27と第2膨張弁26との間の部分の液封を防止できるようにするためには、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分における冷媒の圧力が上昇した際に、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分に存在する冷媒を冷媒回路10の他の部分に逃がすことができるようにする必要がある。
 そこで、ここでは、上記のように、第1膨張弁24を、第1配置状態で冷媒回路10に設けることでレシーバ25の液封を防止するとともに、まず、第2膨張弁26を、レシーバ25からの冷媒が弁座55のニードル離反方向側(ここでは、弁座55の上側)から流入しニードル61と弁座55との間の隙間を通じて弁座55のニードル進行方向側(ここでは、弁座55の下側)に流出する第2配置状態で冷媒回路10に設けている(図2及び図3参照)。具体的には、図2及び図3に示すように、第2膨張弁26の第1冷媒口53にレシーバ25との間を接続する第3液冷媒管35cを接続し、第2膨張弁26の第2冷媒口54に液側閉鎖弁27との間を接続する第4液冷媒管35dを接続している。これにより、第2配置状態で冷媒回路10に設けられた第2膨張弁26では、全閉時において、弁座55のニードル離反方向側の空間(ここでは、上部弁室52a)における冷媒の圧力P1に対する弁座55のニードル進行方向側の空間(ここでは、下部弁室52b)における冷媒の圧力P2の圧力差である逆圧開弁圧力差ΔP(=P2-P1)が発生すると、ニードル61をニードル離反方向へ押す力Fu(ここでは、上方へ押し上げる力)が作用することになる(図4参照)。そして、ここでは、このような逆圧開弁圧力差ΔPによってニードル61をニードル離反方向へ押す力Fuを利用して、第2配置状態で冷媒回路10に設けられた第2膨張弁26に、全閉時において、弁座55に対して着座したニードル61をニードル進行方向(ここでは、下方)に付勢するバネ62を設けておき、逆圧開弁圧力差ΔPによってニードル61をニードル離反方向へ押す力Fuが、バネ62のニードル進行方向への付勢力Fdに打ち勝つと、ニードル61が弁座55に対して着座した状態から解除される構成を設けるようにしている(図4及び図5参照)。具体的には、図3~図5に示すように、弁軸64の下端にバネ受け部材63をニードル61の移動方向(ここでは、上下方向)に一体移動するように連結し、バネ受け部材63とニードル61との上下方向間を、バネ62によって連結するようにしている。ここでは、バネ62として、ニードル61の移動方向に伸縮可能なコイルバネが使用されている。これにより、弁軸64の上下方向の移動によって、弁軸64とニードル61との上下方向間の距離が弾性的に伸縮可能な状態で、ニードル61が上下方向に移動する構成を得ている。そして、図4に示すように、全閉時において、弁軸64の下端が可動範囲の最下位置まで達すると、バネ62が自由長よりも収縮し、かつ、収縮代を有する状態で、ニードル61が弁座55に対して着座した状態になるようにしている(以下、この状態を「逆圧開弁不作動状態」とする)。これにより、バネ62は、弁座55に対して着座したニードル61をニードル進行方向に付勢する力Fdを発生し、ニードル61は、バネ62の付勢力Fdによって、弁座55に押し付けられている。そうすると、全閉時において、逆圧開弁圧力差ΔPによって発生するニードル61をニードル離反方向へ押す力Fuが、バネ61のニードル進行方向への付勢力Fdに打ち勝つと、図5に示すように、弁軸64がニードル離反方向(ここでは、上方)に移動しない状態で、バネ62を逆圧開弁不作動状態よりもさらに収縮させながら、ニードル61が弁座55からニードル離反方向(ここでは、上方)に離れて、ニードル61が弁座55に対して着座した状態から解除される(以下、この状態を「逆圧開弁作動状態」とする)。このとき、バネ62の長さは、逆圧開弁不作動状態における長さL0から逆圧開弁作動状態における長さLまで収縮する。これにより、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分における冷媒の圧力(圧力P2に相当)が上昇した際に、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分に存在する冷媒をレシーバ25側に逃がすことができるようになる(図5の冷媒の流れを示す矢印参照)。
 しかも、ここでは、全閉時におけるバネ62の付勢力Fdを、第2膨張弁26(ここでは、室外ユニット2)が設置される場所において雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力Psmと逆圧開弁圧力差ΔPとの合計が、冷媒回路10のうち第2膨張弁26から液側閉鎖弁27までの部分を構成する部品の耐圧圧力の最小値Phm以下になるように設定している。具体的には、最高飽和圧力Psmとして、第2膨張弁26(ここでは、室外ユニット2)が設置される場所において想定され得る最高の雰囲気温度(例えば、50℃程度)を冷媒の飽和圧力に換算した値を使用する。耐圧圧力の最小値Phmとして、冷媒回路10のうち第2膨張弁26から液側閉鎖弁27までの部分を構成する部品である液側閉鎖弁27、第4液冷媒管35d及び第2膨張弁26のうち最も耐圧圧力が低い部品の耐圧圧力を使用する。尚、冷媒回路10のうち第2膨張弁26から液側閉鎖弁27までの部分を構成する部品として、ストレーナや管継手等が存在する場合には、これらの部品も含めた耐圧圧力の最小値Phmを使用する。また、ここでは、耐圧圧力を、冷媒回路10のうち第2膨張弁26から液側閉鎖弁27までの部分を構成する部品の設計圧力に安全率(例えば、耐圧試験圧力に対応する1.5倍程度)を乗じることによって得るようにしている。そして、バネ62については、逆圧開弁不作動状態における付勢力Fdが、耐圧圧力の最小値Phmから最高飽和圧力Psmを差し引いた圧力差がニードル61に作用したと想定した場合に発生するニードル61をニードル離反方向へ押す力Fum以下になるように、バネ定数、及び、逆圧開弁不作動状態におけるバネ長さL0(すなわち、自由長からの収縮長さ)を設定し、この逆圧開弁不作動状態における付勢力Fdに対応する圧力差を逆圧開弁圧力差ΔPとする。尚、ここでは、上記のように、耐圧圧力を冷媒回路10のうち第2膨張弁26から液側閉鎖弁27までの部分を構成する部品の設計圧力に基づいて得るようにしているため、逆圧開弁圧力差ΔP、すなわち、全閉時におけるバネの付勢力Fdを適切に設定することができる。これにより、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分に存在する冷媒が最高飽和圧力Psmまで上昇するほどの高温の雰囲気温度の条件を想定した場合であっても、冷媒回路10のうち第2膨張弁26から液側閉鎖弁27までの部分を構成する部品の耐圧圧力の最小値Phmを超える前に、逆圧開弁圧力差ΔPによって発生するニードル61をニードル離反方向へ押す力Fuが、バネ62のニードル進行方向への付勢力Fdに打ち勝つようになり、第2膨張弁26が逆圧開弁作動状態になる。このため、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分に存在する冷媒を、冷媒回路10のうち第2膨張弁26から液側閉鎖弁27までの部分を構成する部品の耐圧圧力を超える前に、レシーバ25側に逃がして、液側閉鎖弁27と第2膨張弁26との間の液封を防止することができる。ここで、レシーバ25側に逃がされた冷媒は、レシーバ25の圧力上昇を発生させるおそれがあるが、第1膨張弁24が第1配置状態で設けられているため、レシーバ25の耐圧圧力Prmを超える前に、室外熱交換器23側に逃がされることになる。また、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分に存在する冷媒をレシーバ25側に逃がすことによって、冷媒回路10のうち液側閉鎖弁27と第2膨張弁26との間の部分における冷媒の圧力が低下すると、逆圧開弁圧力差ΔPによって発生するニードル61をニードル離反方向へ押す力Fuが小さくなり、再び、第2膨張弁26が逆圧開弁不作動状態に復帰する。これにより、第2膨張弁26が逆圧開弁作動状態になることを必要最小限に止めることができる。
 このように、空気調和装置1では、圧縮機21、室外熱交換器23、第1膨張弁24、レシーバ25、第2膨張弁26(開閉可能弁)、液側閉鎖弁27(開閉可能弁)、室内熱交換器41が接続されることによって構成された冷媒回路10において、液封防止管を設けることなくレシーバ25の液封を防止するとともに、液側閉鎖弁27と第2膨張弁26との間の液封を防止することができる。
 (4)変形例1
 上記実施形態の空気調和装置1(図1及び図2参照)では、レシーバ25の上流側及び下流側に全閉型の第1膨張弁24及び第2膨張弁26(開閉可能弁)が設けられた構成において、レシーバ25の液封とともに、液側閉鎖弁27(開閉可能弁)と第2膨張弁26との間の液封を防止するために、第1膨張弁24を第1配置状態で設けるとともに、第2膨張弁26を第2配置状態で設けている。
 しかし、レシーバ25の液封だけに着目すれば、第1膨張弁24及び第2膨張弁26の少なくとも1つを第1配置状態で冷媒回路10に設ければよい。
 例えば、図6に示すように、第1膨張弁24を第2配置状態で設けるとともに、第2膨張弁26を第1配置状態で設けることができる。そして、第2膨張弁26を第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒を室内熱交換器41側に逃がして、レシーバ25の液封を防止することができる。
 また、図7に示すように、第1膨張弁24及び第2膨張弁26を第1配置状態で設けることができる。そして、第1及び第2膨張弁24、26を第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒を室外熱交換器23側及び室内熱交換器41側に逃がして、レシーバ25の液封を防止することができる。
 このように、本変形例においては、圧縮機21、室外熱交換器23、第1膨張弁24、レシーバ25、第2膨張弁26(開閉可能弁)、室内熱交換器41が接続されることによって構成された冷媒回路10において、第1膨張弁24及び第2膨張弁26として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバ25の液封を防止することができる。
 (5)変形例2
 上記実施形態及び変形例1の空気調和装置1(図1参照)において、図8に示すように、レシーバ25の上部空間から冷媒を抜くためのガス抜き弁30aを設けることがある。
 例えば、レシーバ25内に溜まった冷凍サイクルにおける中間圧のガス冷媒を圧縮機21の吸入管31に導くガス抜き管30を冷媒回路10に設ける。ガス抜き管30は、レシーバ25の上部と吸入管31の途中部分との間を接続するように設けられる。ガス抜き弁30aは、キャピラリーチューブ30b、及び、逆止弁30cとともに、ガス抜き管30に設けられる。ガス抜き弁30aは、ガス抜き管30の冷媒の流れをON/OFFする開閉制御可能な弁であり、ここでは、電磁弁が使用されている。キャピラリーチューブ30bは、レシーバ25内に溜まったガス冷媒を冷凍サイクルにおける低圧まで減圧する機構であり、ここでは、ガス抜き管30よりも細径のキャピラリーチューブが使用される。逆止弁30cは、レシーバ25側から吸入管31側への冷媒の流れのみを許容する弁機構であり、ここでは、逆止弁が使用される。
 このような構成においても、第1膨張弁24及び第2膨張弁26(開閉可能弁)とともにガス抜き弁30aが全閉した状態になると、レシーバ25が液封になるおそれがある。
 そこで、このようなガス抜き弁30aを有する構成においても、上記実施形態及び変形例1と同様に、第1膨張弁24及び第2膨張弁26の少なくとも1つを第1配置状態で冷媒回路10に設けるようにしている(図2、図6及び図7参照)。
 このように、本変形例においては、圧縮機21、室外熱交換器23、第1膨張弁24、レシーバ25、第2膨張弁26(開閉可能弁)、室内熱交換器41、ガス抜き弁30aが接続されることによって構成された冷媒回路10において、第1膨張弁24及び第2膨張弁26として全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバ25の液封を防止することができる。また、ここでも、第1膨張弁24を第1配置状態で設け、第2膨張弁26を第2配置状態で設けることによって、液封防止管を設けることなくレシーバ25の液封を防止するとともに、液側閉鎖弁27(開閉可能弁)と第2膨張弁26(開閉可能弁)との間の液封を防止することができる(図2参照)。
 (6)変形例3
 上記変形例2の空気調和装置1(図8参照)において、図9に示すように、ガス抜き弁30aとして、第1膨張弁24や第2膨張弁26(開閉可能弁)と同様に、全閉型の膨張弁を使用することが考えられる。ここで、ガス抜き弁30aについても、第1膨張弁24や第2膨張弁26と同じ構造を有する全閉型の膨張弁が使用される(図3~図5参照)。
 このような構成において、レシーバ25の液封だけに着目すれば、第1膨張弁24、第2膨張弁26及びガス抜き弁30aの少なくとも1つを第1配置状態で冷媒回路10に設ければよい。
 例えば、まず、図10に示すように、第1膨張弁24を第1配置状態で設けるとともに、第2膨張弁26及びガス抜き弁30aを第2配置状態で設けることができる。ここで、バネ62の付勢力の設定に使用される最高飽和圧力は、レシーバ25、第1膨張弁24、第2膨張弁26及びガス抜き弁30aが設置される場所(ここでは、室外ユニット2)における雰囲気温度の最高値に対応する冷媒の飽和圧力である。そして、第1膨張弁24を第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒を室外熱交換器23側に逃がして、レシーバ25の液封を防止することができる。また、この場合には、第2膨張弁26が第2配置状態で設けられるため、レシーバ25の液封を防止するとともに、液側閉鎖弁27(開閉可能弁)と第2膨張弁26との間の液封を防止することができる。
 また、図11に示すように、第2膨張弁26を第1配置状態で設けるとともに、第2膨張弁26及びガス抜き弁30aを第2配置状態で設けることができる。第2膨張弁26を第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒を室内熱交換器41側に逃がして、レシーバ25の液封を防止することができる。
 また、図12に示すように、ガス抜き弁30aを第1配置状態で設けるとともに、第1膨張弁24及び第2膨張弁26を第2配置状態で設けることができる。ガス抜き弁30aを第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒を圧縮機21側に逃がして、レシーバ25の液封を防止することができる。また、この場合には、第2膨張弁26が第2配置状態で設けられるため、レシーバ25の液封を防止するとともに、液側閉鎖弁27と第2膨張弁26との間の液封を防止することができる。
 また、図13に示すように、第1膨張弁24及びガス抜き弁30aを第1配置状態で設けるとともに、第2膨張弁26を第2配置状態で設けることができる。第1膨張弁24及びガス抜き弁30aを第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒を室外熱交換器23側及び圧縮機21側に逃がして、レシーバ25の液封を防止することができる。また、この場合には、第2膨張弁26が第2配置状態で設けられるため、レシーバ25の液封を防止するとともに、液側閉鎖弁27と第2膨張弁26との間の液封を防止することができる。
 また、図14に示すように、第2膨張弁26及びガス抜き弁30aを第1配置状態で設けるとともに、第1膨張弁24を第2配置状態で設けることができる。第2膨張弁26及びガス抜き弁30aを第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒を室内熱交換器41側及び圧縮機21側に逃がして、レシーバ25の液封を防止することができる。
 また、図15に示すように、第1膨張弁24及び第2膨張弁26を第1配置状態で設けるとともに、ガス抜き弁30aを第2配置状態で設けることができる。第1膨張弁24及び第2膨張弁26を第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26及びガス抜き弁30a間の部分に存在する冷媒を室外熱交換器23側及び室内熱交換器41側に逃がして、レシーバ25の液封を防止することができる。
 また、図16に示すように、第1膨張弁24、第2膨張弁26及びガス抜き弁30aを第1配置状態で設けることができる。そして、第1、第2膨張弁24、26及びガス抜き弁30aを第1配置状態で設ける場合には、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒の圧力が上昇した際に、冷媒回路10のうちレシーバ25を含む2つの膨張弁24、26間の部分に存在する冷媒を室外熱交換器23側、室内熱交換器41側及び圧縮機21側に逃がして、レシーバ25の液封を防止することができる。
 このように、本変形例においては、圧縮機21、室外熱交換器23、第1膨張弁24、レシーバ25、第2膨張弁26(開閉可能弁)、室内熱交換器41、ガス抜き弁30aが接続されることによって構成された冷媒回路10において、第1膨張弁24、第2膨張弁26及びガス抜き弁30aとして全閉型の膨張弁を使用するにもかかわらず、液封防止管を設けることなくレシーバ25の液封を防止することができる。また、ここでも、第1膨張弁24及び/又はガス抜き弁30aを第1配置状態で設け、第2膨張弁26を第2配置状態で設けることによって、液封防止管を設けることなくレシーバ25の液封を防止するとともに、液側閉鎖弁27(開閉可能弁)と第2膨張弁26との間の液封を防止することができる。
 (7)変形例4
 上記実施形態及び変形例1~3の空気調和装置1(図1~図16参照)では、レシーバ25の上流側及び下流側に全閉型の膨張弁からなる第1膨張弁24及び第2膨張弁26(開閉可能弁)が設けられ(ガス抜き弁30aを有する構成も含む)、そして、第2膨張弁26と室内熱交換器41との間に液側閉鎖弁27(開閉可能弁)が設けられた構成を前提として、レシーバ25の液封を防止するための構造(第1膨張弁24、第2膨張弁26及び/又はガス抜き弁30aを第1配置状態で設置)を採用している。
 しかし、レシーバ25の液封だけに着目すれば、第2膨張弁26が開いた状態であっても、液側閉鎖弁27(開閉可能弁)の誤操作等によって、第1膨張弁24(ガス抜き弁30aを有する及び液側閉鎖弁27の両方を全閉した状態になると、レシーバ25が液封になる場合も想定される。具体的には、全閉型の膨張弁からなる第1膨張弁24を第2配置状態で設け(全閉型の膨張弁からなるガス抜き弁30aも有する場合には、ガス抜き弁30aも第2配置状態で設け)、かつ、全閉型の膨張弁からなる第2膨張弁26を第1配置状態で設ける場合(図6及び図11参照)が考えられる。
 このように、液側閉鎖弁27の誤操作等によってレシーバ25が液封になる場合も想定すると、全閉型の膨張弁からなる第1膨張弁24を第1配置状態で設けること(全閉型の膨張弁からなるガス抜き弁30aも有する場合には、第1膨張弁24及び/又はガス抜き弁30aを第1配置状態で設けること)が好ましい(図2、図7、図10及び図12~図16参照)。
 (8)変形例5
 上記変形例4のように、液側閉鎖弁27(開閉可能弁)の誤操作等によってレシーバ25が液封になる場合も考慮すると、図17及び図18に示すような、第2膨張弁26(開閉可能弁)を有しない構成を前提とする場合にも、レシーバ25の液封を想定して、全閉型の膨張弁からなる第1膨張弁24(全閉型の膨張弁からなるガス抜き弁30aを有する場合には、ガス抜き弁30a)を配置する必要がある。
 そこで、ここでは、全閉型の膨張弁からなる第1膨張弁24や全閉型の膨張弁からなるガス抜き弁30aを第1配置状態で設けるようにしている。具体的には、全閉型の膨張弁からなるガス抜き弁30aを有しない場合(図17参照)には、図19に示すように、第1膨張弁24を第1配置状態で設け、全閉型の膨張弁からなるガス抜き弁30aを有する場合(図18参照)には、図20~図22に示すように、第1膨張弁24及び/又はガス抜き弁30aを第1配置状態で設けるようにしている。
 このように、この空気調和装置1では、圧縮機21、室外熱交換器23、第1膨張弁24、レシーバ25、液側閉鎖弁27、室内熱交換器41が接続されることによって構成された冷媒回路10(ガス抜き弁30aを有する場合には、ガス抜き弁30aも含む)において、第1膨張弁24として全閉型の膨張弁を使用する(ガス抜き弁30aを有する場合には、ガス抜き弁30aとして全閉型の膨張弁を使用する)にもかかわらず、液封防止管を設けることなくレシーバ25の液封を防止することができる。
 本発明は、圧縮機、室外熱交換器、第1膨張弁、レシーバ、開閉可能弁、室内熱交換器が接続されることによって構成された冷媒回路を有する空気調和装置に対して、広く適用可能である。
 1   空気調和装置
 10  冷媒回路
 21  圧縮機
 23  室外熱交換器
 41  室内熱交換器
 24  第1膨張弁
 26  第2膨張弁(開閉可能弁)
 27  液側閉鎖弁(開閉可能弁)
 30a ガス抜き弁
 52a 上部弁室(弁座のニードル離反方向側の空間)
 52b 下部弁室(弁座のニードル進行方向側の空間)
 55  弁座
 61  ニードル
 62  バネ
特開平10-132393号公報

Claims (12)

  1.  圧縮機(21)、室外熱交換器(23)、第1膨張弁(24)、レシーバ(25)、開閉可能弁(26、27)、室内熱交換器(41)が接続されることによって構成された冷媒回路(10)を有する空気調和装置において、
     前記第1膨張弁として、ニードル(61)が弁座(55)に対して着座することによって全閉される全閉型の膨張弁を使用するとともに、前記第1膨張弁を、前記ニードルが前記弁座に着座する際の前記ニードルの移動方向をニードル進行方向とし、かつ、前記ニードルが前記弁座から離反する際の前記ニードルの移動方向をニードル離反方向とすると、前記レシーバからの冷媒が前記弁座の前記ニードル進行方向側から流入し前記ニードルと前記弁座との間の隙間を通じて前記弁座の前記ニードル離反方向側に流出する第1配置状態で前記冷媒回路に設け、
     前記第1配置状態で前記冷媒回路に設けられた前記第1膨張弁は、前記全閉時において、前記弁座に対して着座した前記ニードルを前記ニードル進行方向に付勢するバネ(62)を有しており、前記弁座の前記ニードル離反方向側の空間(52a)における冷媒の圧力に対する前記弁座の前記ニードル進行方向側の空間(52b)における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生する前記ニードルを前記ニードル離反方向へ押す力が、前記バネの前記ニードル進行方向への付勢力に打ち勝つと、前記ニードルが前記弁座に対して着座した状態から解除されるように構成されている、
    空気調和装置(1)。
  2.  前記開閉可能弁は、液側閉鎖弁(27)である、
    請求項1に記載の空気調和装置(1)。
  3.  前記開閉可能弁は、第2膨張弁(26)であり、
     前記第2膨張弁として、ニードル(61)が弁座(55)に対して着座することによって全閉される全閉型の膨張弁を使用しており、
     この場合においては、前記第1膨張弁(24)及び前記第2膨張弁の少なくとも1つを、前記ニードルが前記弁座に着座する際の前記ニードルの移動方向をニードル進行方向とし、かつ、前記ニードルが前記弁座から離反する際の前記ニードルの移動方向をニードル離反方向とすると、前記レシーバからの冷媒が前記弁座の前記ニードル進行方向側から流入し前記ニードルと前記弁座との間の隙間を通じて前記弁座の前記ニードル離反方向側に流出する第1配置状態で前記冷媒回路(10)に設け、
     前記第1配置状態で前記冷媒回路に設けられた前記第1膨張弁及び/又は前記第2膨張弁が、前記全閉時において、前記弁座に対して着座した前記ニードルを前記ニードル進行方向に付勢するバネ(62)を有しており、前記弁座の前記ニードル離反方向側の空間(52a)における冷媒の圧力に対する前記弁座の前記ニードル進行方向側の空間(52b)における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生する前記ニードルを前記ニードル離反方向へ押す力が、前記バネの前記ニードル進行方向への付勢力に打ち勝つと、前記ニードルが前記弁座に対して着座した状態から解除されるように構成されている、
    請求項1に記載の空気調和装置(1)。
  4.  前記レシーバ(25)、前記第1膨張弁(24)及び前記開閉可能弁(26、27)が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と前記逆圧開弁圧力差との合計が、前記レシーバの耐圧圧力以下になるように、前記全閉時における前記バネの付勢力が設定されている、
    請求項1~3のいずれか1項に記載の空気調和装置(1)。
  5.  前記冷媒回路(10)は、前記レシーバ(25)の上部空間から冷媒を抜くためのガス抜き弁(30a)をさらに有しており、
     前記ガス抜き弁として、ニードル(61)が弁座(55)に対して着座することによって全閉される全閉型の膨張弁を使用しており、
     この場合においては、前記第1膨張弁(24)及び前記ガス抜き弁の少なくとも1つを、前記ニードルが前記弁座に着座する際の前記ニードルの移動方向をニードル進行方向とし、かつ、前記ニードルが前記弁座から離反する際の前記ニードルの移動方向をニードル離反方向とすると、前記レシーバからの冷媒が前記弁座の前記ニードル進行方向側から流入し前記ニードルと前記弁座との間の隙間を通じて前記弁座の前記ニードル離反方向側に流出する第1配置状態で前記冷媒回路に設け、
     前記第1配置状態で前記冷媒回路に設けられた前記第1膨張弁及び/又は前記ガス抜き弁が、前記全閉時において、前記弁座に対して着座した前記ニードルを前記ニードル進行方向に付勢するバネ(62)を有しており、前記弁座の前記ニードル離反方向側の空間(52a)における冷媒の圧力に対する前記弁座の前記ニードル進行方向側の空間(52b)における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生する前記ニードルを前記ニードル離反方向へ押す力が、前記バネの前記ニードル進行方向への付勢力に打ち勝つと、前記ニードルが前記弁座に対して着座した状態から解除されるように構成されている、
    請求項1に記載の空気調和装置(1)。
  6.  前記開閉可能弁は、液側閉鎖弁(27)である、
    請求項5に記載の空気調和装置(1)。
  7.  前記開閉可能弁は、第2膨張弁(26)であり、
     前記冷媒回路(10)は、前記レシーバ(25)の上部空間から冷媒を抜くためのガス抜き弁(30a)をさらに有しており、
     前記第2膨張弁及び前記ガス抜き弁として、ニードル(61)が弁座(55)に対して着座することによって全閉される全閉型の膨張弁を使用しており、
     この場合においては、前記第1膨張弁(24)、前記第2膨張弁及び前記ガス抜き弁の少なくとも1つを、前記ニードルが前記弁座に着座する際の前記ニードルの移動方向をニードル進行方向とし、かつ、前記ニードルが前記弁座から離反する際の前記ニードルの移動方向をニードル離反方向とすると、前記レシーバからの冷媒が前記弁座の前記ニードル進行方向側から流入し前記ニードルと前記弁座との間の隙間を通じて前記弁座の前記ニードル離反方向側に流出する第1配置状態で前記冷媒回路に設け、
     前記第1配置状態で前記冷媒回路に設けられた前記第1膨張弁、前記第2膨張弁及び/又は前記ガス抜き弁が、前記全閉時において、前記弁座に対して着座した前記ニードルを前記ニードル進行方向に付勢するバネ(62)を有しており、前記弁座の前記ニードル離反方向側の空間(52a)における冷媒の圧力に対する前記弁座の前記ニードル進行方向側の空間(52b)における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生する前記ニードルを前記ニードル離反方向へ押す力が、前記バネの前記ニードル進行方向への付勢力に打ち勝つと、前記ニードルが前記弁座に対して着座した状態から解除されるように構成されている、
    請求項1に記載の空気調和装置(1)。
  8.  前記レシーバ(25)、前記第1膨張弁(24)、前記開閉可能弁(26、27)及び前記ガス抜き弁(30a)が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と前記逆圧開弁圧力差との合計が、前記レシーバの耐圧圧力以下になるように、前記全閉時における前記バネの付勢力が設定されている、
    請求項5~7のいずれか1項に記載の空気調和装置(1)。
  9.  前記レシーバ(25)の前記耐圧圧力は、前記レシーバの設計圧力に安全率を乗じて得られる圧力値である、
    請求項4又は8に記載の空気調和装置(1)。
  10.  前記開閉可能弁は、第2膨張弁(26)、及び、前記第2膨張弁と前記室内熱交換器(41)との間に接続された液側閉鎖弁(27)であり、
     前記第2膨張弁として、ニードル(61)が弁座(55)に対して着座することによって全閉される全閉型の膨張弁を使用するとともに、前記第2膨張弁を、前記レシーバ(25)からの冷媒が前記弁座の前記ニードル離反方向側から流入し前記ニードルと前記弁座との間の隙間を通じて前記弁座の前記ニードル進行方向側から流出する第2配置状態で前記冷媒回路(10)に設け、
     前記第2配置状態で前記冷媒回路に設けられた前記第2膨張弁は、前記全閉時において、前記弁座に対して着座した前記ニードルを前記ニードル進行方向に付勢するバネ(62)を有しており、前記弁座の前記ニードル離反方向側の空間(52a)における冷媒の圧力に対する前記弁座の前記ニードル進行方向側の空間(52b)における冷媒の圧力の圧力差である逆圧開弁圧力差によって発生する前記ニードルを前記ニードル離反方向へ押す力が、前記バネの前記ニードル進行方向への付勢力に打ち勝つと、前記ニードルが前記弁座に対して着座した状態から解除されるように構成されている、
    請求項1又は5に記載の空気調和装置(1)。
  11.  前記第2膨張弁(26)及び前記液側閉鎖弁(27)が設置される場所における雰囲気温度の最高値に対応する冷媒の飽和圧力である最高飽和圧力と前記第2膨張弁の前記逆圧開弁圧力差との合計が、前記冷媒回路(10)のうち前記第2膨張弁から前記液側閉鎖弁までの部分を構成する部品の耐圧圧力の最小値以下になるように、前記全閉時における前記第2膨張弁の前記バネの付勢力が設定されている、
    請求項10に記載の空気調和装置(1)。
  12.  前記冷媒回路(10)のうち前記第2膨張弁(26)から前記液側閉鎖弁(27)までの部分を構成する部品の前記耐圧圧力は、前記冷媒回路のうち前記第2膨張弁から前記液側閉鎖弁までの部分を構成する部品の設計圧力に安全率を乗じて得られる圧力値である、
    請求項11に記載の空気調和装置(1)。
PCT/JP2014/064613 2013-06-11 2014-06-02 空気調和装置 WO2014199855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480033387.9A CN105308400B (zh) 2013-06-11 2014-06-02 空调装置
ES14810377.3T ES2673875T3 (es) 2013-06-11 2014-06-02 Aire acondicionado
AU2014279254A AU2014279254C1 (en) 2013-06-11 2014-06-02 Air conditioning apparatus
EP14810377.3A EP3009773B1 (en) 2013-06-11 2014-06-02 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-122800 2013-06-11
JP2013122800 2013-06-11

Publications (1)

Publication Number Publication Date
WO2014199855A1 true WO2014199855A1 (ja) 2014-12-18

Family

ID=52022153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064613 WO2014199855A1 (ja) 2013-06-11 2014-06-02 空気調和装置

Country Status (6)

Country Link
EP (1) EP3009773B1 (ja)
JP (1) JP5862704B2 (ja)
CN (1) CN105308400B (ja)
AU (1) AU2014279254C1 (ja)
ES (1) ES2673875T3 (ja)
WO (1) WO2014199855A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678270A (zh) * 2020-06-11 2020-09-18 南京航空航天大学 一种带自力式容量调节储液器的热管与蒸气压缩复合系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015114309B4 (de) * 2015-08-28 2020-01-30 Hanon Systems Bidirektionales elektronisches Expansionsorgan
JP7123020B2 (ja) * 2019-09-03 2022-08-22 株式会社鷺宮製作所 電動弁及び冷凍サイクルシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132393A (ja) 1996-10-31 1998-05-22 Daikin Ind Ltd 冷凍装置
JP2001133055A (ja) * 1999-10-29 2001-05-18 Daikin Ind Ltd 冷凍装置
JP2005121333A (ja) * 2003-10-20 2005-05-12 Hitachi Ltd 空気調和装置
WO2007083794A1 (ja) * 2006-01-20 2007-07-26 Sanyo Electric Co., Ltd. 空気調和装置
JP2008057828A (ja) * 2006-08-30 2008-03-13 Daikin Ind Ltd 冷凍装置
WO2011049767A2 (en) * 2009-10-23 2011-04-28 Carrier Corporation Refrigerant vapor compression system operation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363483B2 (ja) * 2007-11-30 2009-11-11 ダイキン工業株式会社 冷凍装置
JP6174314B2 (ja) * 2012-12-14 2017-08-02 シャープ株式会社 冷凍システム装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132393A (ja) 1996-10-31 1998-05-22 Daikin Ind Ltd 冷凍装置
JP2001133055A (ja) * 1999-10-29 2001-05-18 Daikin Ind Ltd 冷凍装置
JP2005121333A (ja) * 2003-10-20 2005-05-12 Hitachi Ltd 空気調和装置
WO2007083794A1 (ja) * 2006-01-20 2007-07-26 Sanyo Electric Co., Ltd. 空気調和装置
JP2008057828A (ja) * 2006-08-30 2008-03-13 Daikin Ind Ltd 冷凍装置
WO2011049767A2 (en) * 2009-10-23 2011-04-28 Carrier Corporation Refrigerant vapor compression system operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678270A (zh) * 2020-06-11 2020-09-18 南京航空航天大学 一种带自力式容量调节储液器的热管与蒸气压缩复合系统

Also Published As

Publication number Publication date
AU2014279254B9 (en) 2016-12-01
EP3009773A1 (en) 2016-04-20
EP3009773B1 (en) 2018-04-04
AU2014279254B2 (en) 2016-11-24
AU2014279254C1 (en) 2017-03-23
EP3009773A4 (en) 2016-05-18
AU2014279254A1 (en) 2016-02-04
ES2673875T3 (es) 2018-06-26
JP2015017795A (ja) 2015-01-29
CN105308400B (zh) 2017-10-27
JP5862704B2 (ja) 2016-02-16
CN105308400A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2018105102A1 (ja) ヒートポンプ装置
JP5327351B2 (ja) 空気調和装置
EP2068096A1 (en) Refrigeration device
EP2944898A1 (en) Liquid line charge compensator
WO2013189120A1 (zh) 一种电子膨胀阀
US10976090B2 (en) Air conditioner
JPWO2007083794A1 (ja) 空気調和装置
JP5862704B2 (ja) 空気調和装置
JP2013221640A (ja) 空気調和装置
JP2012172749A (ja) バルブ装置
US20160252290A1 (en) Heat-source-side unit and air-conditioning apparatus
EP3441696B1 (en) Refrigeration cycle device
WO2015136707A1 (ja) 空気調和装置
JP2010249247A (ja) 電動弁及びそれが用いられた冷凍サイクル
US9733000B2 (en) Refrigeration apparatus
JP3835478B1 (ja) 空気調和機
CN113841017A (zh) 冷冻装置用单元、热源单元、利用单元以及冷冻装置
JP6257812B2 (ja) 空気調和装置
WO2021140589A1 (ja) 空気調和装置
JP2007127327A (ja) エンジン駆動式ヒートポンプの高圧上昇回避手段
JP2015132441A (ja) ヒートポンプサイクル
JP6024222B2 (ja) 空気調和装置
KR100310362B1 (ko) 공조기기및그의균압방법
JPH05288414A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033387.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014810377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014279254

Country of ref document: AU

Date of ref document: 20140602

Kind code of ref document: A