WO2014199592A1 - Multilayer substrate and method for manufacturing multilayer substrate - Google Patents

Multilayer substrate and method for manufacturing multilayer substrate Download PDF

Info

Publication number
WO2014199592A1
WO2014199592A1 PCT/JP2014/002941 JP2014002941W WO2014199592A1 WO 2014199592 A1 WO2014199592 A1 WO 2014199592A1 JP 2014002941 W JP2014002941 W JP 2014002941W WO 2014199592 A1 WO2014199592 A1 WO 2014199592A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass cloth
insulating layer
multilayer substrate
prepreg
Prior art date
Application number
PCT/JP2014/002941
Other languages
French (fr)
Japanese (ja)
Inventor
英二 藪田
俊浩 中村
祐紀 眞田
正英 辰己
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014199592A1 publication Critical patent/WO2014199592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/0959Plated through-holes or plated blind vias filled with insulating material

Definitions

  • the present disclosure relates to a multilayer substrate and a method for manufacturing the multilayer substrate.
  • a plurality of conductors arranged on the surface of the insulating layer are spaced apart from each other, and the surface side of the insulating layer and the surface side of the insulating layer are sealed so as to seal the plurality of conductors.
  • the prepreg is configured to include a glass cloth and to seal both sides of the glass cloth with a resin material.
  • a resin material is embedded between each of the plurality of conductors.
  • the prepreg is made of a resin material mixed with many fillers in order to increase the thermal conductivity of the prepreg, the fluidity of the resin material constituting the prepreg becomes low.
  • the prepreg when the resin material constituting the prepreg is filled between each of the plurality of conductors, even if the prepreg is laminated on the surface side of the insulating layer and the prepreg is pressed against the insulating layer, the prepreg is interposed between the plurality of conductors. A sufficient amount of resin material cannot be supplied. For this reason, there exists a possibility that the unfilled part of a resin material, ie, a void, may generate
  • a multilayer substrate includes an insulating layer made of an electrically insulating material, a conductor provided on the surface of the insulating layer, spaced apart, a first glass cloth, and a first glass.
  • a prepreg having a resin layer that seals both surfaces of the cloth with a resin material, and a build-up layer that is laminated on the insulating layer so as to cover the surface of the insulating layer together with the conductor, and on the surface side of the insulating layer
  • the conductor is sealed in a state where the resin material constituting the resin layer is filled in the region constituting the interval, and the first glass cloth is formed so as to continuously cover the conductor and the region constituting the interval.
  • interval among the 1st glass cloths is a multilayer substrate bent so that it may approach the insulating layer side rather than the part which covers a conductor among 1st glass cloths.
  • a conductor disposed at an interval includes, in addition to a plurality of conductors spaced apart from each other, a conductor having two portions facing each other through a gap. Defined. In the case where a plurality of conductors are arranged apart from each other, a region between two adjacent conductors among the plurality of conductors is defined as a “region forming a gap”. In the case of one conductor having two parts facing each other through a gap, an area between the two parts is defined as an “area constituting an interval”.
  • the resin material constituting the prepreg is pushed into the region constituting the interval by the glass cloth. Therefore, a sufficient amount of the resin material can be filled in the region constituting the interval. For this reason, generation
  • conductors arranged at intervals are formed on the surface of an insulating layer made of an electrically insulating material, and both surfaces of the glass cloth and the glass cloth are made of a resin material.
  • the resin material constituting the prepreg is pushed into the region constituting the interval by the glass cloth, similarly to the multilayer substrate described above. Therefore, a sufficient amount of the resin material can be filled in the region constituting the interval. For this reason, generation
  • FIG. 1 is a cross-sectional view of the electronic device according to the first embodiment.
  • FIG. 2 is an enlarged view of a II part of the core layer in FIG. 3 (a) is a front view of the glass cloth in FIG. 2, and
  • FIG. 3 (b) is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3 (a).
  • FIG. 4 is an enlarged view of a portion IV in FIG.
  • FIG. 5 is an enlarged view of a portion V in FIG. 6 (a) to 6 (d) are cross-sectional views showing manufacturing steps of the multilayer substrate of FIG. 7A to 7D are cross-sectional views illustrating the manufacturing process of the multilayer substrate subsequent to FIG.
  • FIGS. 8A to 8D are cross-sectional views showing the manufacturing process of the multilayer substrate following FIG.
  • FIG. 9 is a flowchart showing manufacturing steps of the multilayer substrate according to the first embodiment.
  • FIG. 10 is a diagram showing a prepreg in a comparative example.
  • FIGS. 11A and 11B are cross-sectional views illustrating the manufacturing process of the multilayer substrate according to the second embodiment.
  • FIGS. 12A and 12B are cross-sectional views illustrating the manufacturing process of the multilayer substrate according to the third embodiment.
  • FIGS. 13A and 13B are cross-sectional views showing the manufacturing process of the multilayer substrate according to the fourth embodiment.
  • FIG. 14 is a cross-sectional view showing a multilayer substrate according to the fifth embodiment.
  • the electronic device according to the present embodiment is preferably mounted on a vehicle such as an automobile, for example, and applied to drive various electronic devices for the vehicle. 2 to 4, a part of the mold resin layer 150, the solder resist 110, and the like are omitted.
  • the electronic device includes a multilayer substrate 10 having one surface 10a and another surface 10b, and electronic components 121 to 123 mounted on the one surface 10a of the multilayer substrate 10.
  • An electronic device is configured by forming a mold resin layer member 150 that seals the one surface 10a side of the multilayer substrate 10 and the electronic components 121 to 123 with a mold resin layer.
  • the multilayer substrate 10 includes a core layer 20, a buildup layer 30 on the front surface 20a side disposed on the front surface 20a of the core layer 20, and a buildup layer 40 on the back surface 20b side disposed on the back surface 20b side of the core layer 20. Is a laminated substrate.
  • the core layer 20 is configured as a prepreg layer made of an electrically insulating prepreg. As shown in FIG. 2, the core layer 20 includes a glass cloth 1 a and resin layers 21 and 22.
  • the resin layer 21 is formed by sealing the surface on the buildup layer 30 side of the glass cloth 1a with a resin material.
  • the resin layer 22 is formed by sealing the surface on the buildup layer 40 side of the glass cloth 1a with a resin material.
  • a resin material constituting the resin layers 21 and 22 a thermosetting resin material (for example, epoxy resin) having electrical insulation is used.
  • filler 3 made of ceramic having electrical insulation and thermal conductivity such as alumina and silica and excellent heat dissipation is mixed.
  • the glass cloth 1a is woven using a plurality of horizontal yarns 33 and a plurality of vertical yarns 34, as shown in FIG.
  • the horizontal yarn 33 is a bundle of a plurality of glass fibers extending in the horizontal direction (first direction).
  • the vertical yarn 34 is a bundle of a plurality of glass fibers extending in the vertical direction (second direction) orthogonal to the horizontal yarn 33.
  • Glass fiber has electrical insulation.
  • the central portion in the width direction is formed to have the largest thickness dimension.
  • the central part in the width direction is formed so as to have the largest thickness dimension.
  • the glass cloth 1a includes a plurality of bellies 35 and a plurality of basket holes 36.
  • the plurality of antinodes 35 are portions where the horizontal yarn 33 and the vertical yarn 34 overlap in the thickness direction.
  • the plurality of basket holes 36 are holes surrounded by two adjacent horizontal yarns 33 of the plurality of horizontal yarns 33 and two adjacent vertical yarns 34 of the plurality of vertical yarns 34.
  • the plurality of basket holes 36 are provided at positions surrounded by the four adjacent stomachs 35 among the plurality of stomachs 35.
  • FIG. 3A eight bells 35 are shown, and four basket holes 36 are shown.
  • the buildup layers 30 and 40 in FIG. 1 are configured as prepreg layers made of prepreg.
  • the buildup layer 30 includes a glass cloth 1 b and resin layers 31 and 32.
  • the resin layer 31 is formed by sealing the surface of the glass cloth 1b on the surface side surface layer wirings 61 to 63 (indicated by 61 and 62 in FIG. 4) with a resin material.
  • the resin layer 32 is formed by sealing the surface of the glass cloth 1b on the surface side inner layer wiring 511, 512 (shown 512 in FIG. 4) side with a resin material.
  • thermosetting resin material for example, epoxy resin
  • fillers made of ceramics having electrical insulation and thermal conductivity, such as alumina and silica, and excellent in heat dissipation are mixed.
  • the build-up layer 40 includes a glass cloth 1 c and resin layers 41 and 42.
  • the resin layer 41 is formed by sealing the surface of the glass cloth 1c on the rear surface layer wirings 71 and 72 (shown 71 in FIG. 5) side with a resin material.
  • the resin layer 42 is formed by sealing the surfaces of the glass cloth 1c on the back side inner layer wirings 521 and 522 (shown 522 in FIG. 5) with a resin material.
  • a thermosetting resin material for example, epoxy resin
  • the resin material constituting the resin layers 41 and 42 is mixed with a filler (not shown) made of ceramic having electrical insulation and thermal conductivity, such as alumina and silica, and excellent heat dissipation.
  • the glass cloths 1b and 1c of the present embodiment are woven using a plurality of horizontal yarns and a plurality of vertical yarns similarly to the glass cloth 1a. For this reason, the glass cloths 1b and 1c have a plurality of bellies 35 and a plurality of basket holes 36 (see FIG. 3A).
  • the plurality of surface-side inner layer wirings 511 and 512 are formed on the surface 20 a of the core layer 20 at the interface between the core layer 20 and the buildup layer 30.
  • the plurality of front-side inner layer wirings 511 and 512 are arranged separately on the surface 20 a of the core layer 20. That is, the plurality of front-side inner layer wirings 511 and 512 are arranged on the surface 20a of the core layer 20 with a space therebetween.
  • a region between two adjacent surface-side inner layer wirings among the plurality of surface-side inner layer wirings 511 and 512 is referred to as a region 513.
  • the plurality of back surface inner layer wirings 521 and 522 are formed on the back surface 20 b of the core layer 20 at the interface between the core layer 20 and the buildup layer 40.
  • the plurality of back side inner layer wirings 521 and 522 are arranged separately on the back side 20 b of the core layer 20. That is, the plurality of back surface inner layer wirings 521 and 522 are arranged on the back surface 20b of the core layer 20 with a space therebetween.
  • a region between two adjacent back surface side inner layer wirings among the plurality of back surface side inner layer wirings 521 and 522 (that is, a region between back surface side inner layer wirings forming an interval) is referred to as a region 514.
  • the build-up layer 30 is laminated on the core layer 20 so as to cover the surface 20a of the core layer 20 together with the plurality of surface-side inner layer wirings 511 and 512.
  • the buildup layer 40 is laminated on the core layer 20 so as to cover the back surface 20b of the core layer 20 together with the plurality of back surface side inner layer wirings 521 and 522.
  • the resin layer 32 of the buildup layer 30 seals the plurality of front side inner layer wirings 511 and 512 in a state where the plurality of regions 513 are filled. Then, on the back surface 20 b of the core layer 20, the resin layers 40 b of the build-up layer 40 seal the plurality of back surface inner layer wirings 521 and 522 in a state where the plurality of regions 514 are filled.
  • the surface side surface wirings 61 to 63 are formed on the surface 30 a of the buildup layer 30.
  • the surface-side surface layer wirings 61 to 63 are bonded electrically connected to the mounting land 61 on which the electronic components 121 to 123 are mounted and the electronic components 121 and 122 via the bonding wires 141 and 142.
  • backside surface layer wirings 71 and 72 are formed on the surface 40 a of the buildup layer 40.
  • the back surface layer wirings 71 and 72 are a back surface pattern 71 connected to the back surface inner layer wirings 521 and 522 through filled vias, which will be described later, and a heat sink pattern 72 provided with a heat sink for heat dissipation. .
  • the inner layer wirings 511, 512, 521, and 522 constitute conductors.
  • the surface 30 a of the buildup layer 30 is one surface of the buildup layer 30 opposite to the core layer 20, and is a surface that becomes the one surface 10 a of the multilayer substrate 10.
  • the surface 40 a of the buildup layer 40 is one surface of the buildup layer 40 opposite to the core layer 20, and is a surface that becomes the other surface 10 b of the multilayer substrate 10.
  • the inner layer wirings 511, 512, 521, 522, the surface side surface layer wirings 61 to 63, and the back side surface layer wirings 71 and 72 are specifically described later, but a metal foil such as copper or metal plating is appropriately laminated. Consists of conductors.
  • the inner layer wirings 511, 512, 521, 522, the surface side surface layer wirings 61 to 63, and the back surface side surface layer wirings 71 and 72 have a thickness dimension of 35 ⁇ m or more.
  • the front side inner layer wirings 511 and 512 and the rear side inner layer wirings 521 and 522 are electrically and thermally connected through a through via 81 provided through the core layer 20.
  • the through via 81 is configured such that a through electrode 81b such as copper is formed on the wall surface of the through hole 81a penetrating the core layer 20 in the thickness direction, and a filler 81c is filled in the through hole 81a. Has been.
  • front side inner layer wirings 511 and 512, the front side surface layer wirings 61 to 63, and the rear side inner layer wirings 521 and 522 and the rear side surface layer wirings 71 and 72 are appropriately connected to the buildup layers 30 and 40 in the thickness direction. They are electrically and thermally connected through filled vias 91 and 101 provided therethrough.
  • the filled vias 91 and 101 are configured such that through holes 91a and 101a penetrating the build-up layers 30 and 40 in the thickness direction are filled with through electrodes 91b and 101b such as copper.
  • the through electrodes 81b, 91b, and 101b are made of metal plating such as copper.
  • the solder resist 110 that covers the front surface pattern 63 and the back surface pattern 71 is formed on the front surfaces 30a and 40a of the buildup layers 30 and 40.
  • the solder resist 110 that covers the surface pattern 63 is formed with an opening that exposes a portion of the surface pattern 63 that is connected to an external circuit in a cross section different from that in FIG.
  • the electronic parts 121 to 123 are passive power elements 121 such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductors Field-Effect Transistors), control elements 122 such as microcomputers, and chip capacitors and resistors. Element 123.
  • passive power elements 121 such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductors Field-Effect Transistors), control elements 122 such as microcomputers, and chip capacitors and resistors.
  • control elements 122 such as microcomputers, and chip capacitors and resistors.
  • the electronic components 121 to 123 are mounted on the land 61 via the solder 130 and are electrically and mechanically connected to the land 61.
  • the power element 121 and the control element 122 are also electrically connected to the land 62 formed in the periphery via bonding wires 141 and 142 such as Al and Au.
  • the first wiring groups 511 and 521 described above are the front and back inner layer wirings 511 and 521 connected to the power element 121 having a relatively large current, while the second wiring groups 512 and 522 described above. These are front and back inner layer wirings 512 and 522 connected to the control element 122 and the passive element 123 having a relatively small current.
  • the power element 121, the control element 122, and the passive element 123 are described as examples of the electronic components 121 to 123, but the electronic components 121 to 123 are not limited to these.
  • the mold resin layer 150 seals the lands 61 and 62 and the electronic components 121 to 123, and a general mold material such as an epoxy resin is formed by a transfer mold method using a mold, a compression mold method, or the like. It is a thing.
  • the mold resin layer 150 is formed only on the one surface 10a of the multilayer substrate 10. That is, the electronic device of this embodiment has a so-called half mold structure. Further, on the other surface 10b side of the multilayer substrate 10, although not particularly shown, a heat sink is provided on the heat sink pattern 72 via heat radiation grease or the like.
  • the glass cloth 1b is formed so as to continuously cover the plurality of surface-side inner layer wirings 511 and 512 and the plurality of regions 513.
  • region 513 among the glass cloth 1b is bent so that it may approach the core layer 20 side rather than the part which covers the some surface side inner layer wiring 511,512 among the glass cloth 1b.
  • the portion of the glass cloth 1b that covers the region 513 is located closer to the core layer 20 than the upper surfaces 512a of the plurality of front-side inner-layer wirings 511 and 512.
  • the upper surface 512 a is an end portion on the opposite side to the core layer 20 among the plurality of front surface side inner layer wirings 511 and 512.
  • the portion of the glass cloth 1 b that covers the region 513 enters the core layer 20 side from the extension line Y ⁇ b> 1 (dashed line in FIG. 4) of the upper surface 512 a of the two surface side inner layer wirings 512 adjacent to the region 513.
  • An example is shown.
  • the thickness dimension L1 is the thickness dimension of the central portion of the belly 35 constituting the glass cloth 1b.
  • the central portion of the belly 35 is a portion where the central portion in the width direction of the horizontal yarn 33 overlaps with the central portion in the width direction of the vertical yarn 34, and is the portion of the belly 35 having the largest thickness dimension.
  • the reference position of the glass cloth 1b for setting the thickness dimension L2 is the upper part of the glass cloth 1b.
  • the upper part of the glass cloth 1b is the central part of the antinode 35 located on the surface side surface layer wiring 61 to 63 side among the antinodes 35.
  • the glass cloth 1c is formed so as to continuously cover the plurality of back side inner layer wirings 521 and 522 and the plurality of regions 514.
  • region 514 among the glass cloth 1c is bent so that it may approach the core layer 20 side rather than the part which covers the some back surface side inner layer wiring 521,522 of the glass cloth 1c.
  • the portion of the glass cloth 1c that covers the region 514 enters the core layer 20 side from the lower surfaces 522a of the plurality of back surface inner layer wirings 521 and 522.
  • the said lower surface is a surface on the opposite side to the core layer 20 among the plurality of back side inner layer wirings 521 and 522.
  • the portion of the glass cloth 1 c that covers the region 514 enters the core layer 20 side from the extension line Y ⁇ b> 2 (dashed line in FIG. 5) on the lower surface of the two surface-side inner layer wirings 522 adjacent to the region 514.
  • An example is shown.
  • the thickness dimension L3 is the thickness dimension of the central portion of the belly 35 constituting the glass cloth 1c.
  • the central portion of the belly 35 is a portion where the central portion in the width direction of the horizontal yarn 33 overlaps with the central portion in the width direction of the vertical yarn 34, and is the portion of the belly 35 having the largest thickness dimension.
  • the reference position of the glass cloth 1c for setting the dimension L4 is the lower part of the glass cloth 1c.
  • the lower part of the glass cloth 1c is a central portion of the belly 35 located on the back surface side surface wiring 71, 72 side among the plurality of belly 35.
  • the thickness dimensions L3 and L4 of the glass cloths 1b and 1c of the present embodiment are set to 10 ⁇ m to 30 ⁇ m.
  • the basket holes of the glass cloths 1 b and 1 c are smaller than the basket holes of the glass cloth 1 a of the core layer 20.
  • the basket holes of the glass cloths 1b and 1c have a diameter set to 100 ⁇ m or less.
  • the ratio (wt%) occupied by the mass of the resin material in the mass of the buildup layer 30 is set to be 80% or more.
  • the ratio (wt%) occupied by the mass of the resin material in the mass of the buildup layer 40 is set to be 80% or more.
  • the ratio (wt%) of the mass of the buildup layer 30 occupied by the filler mass (wt%) is larger than the ratio (wt%) of the mass of the core layer 20 occupied by the filler.
  • the ratio (wt%) of the mass of the buildup layer 40 occupied by the filler mass (wt%) is larger than the ratio (wt%) of the mass of the core layer 20 occupied by the filler.
  • the ratio (wt%) of the mass of the filler to the mass of the buildup layers 30 and 40 is set to 50% or more.
  • FIGS. 5, 6, and 7 are cross-sectional views of the vicinity of a portion where the power element 121 is mounted in the multilayer substrate 10.
  • FIG. 6 (a) a structure in which metal foils 161 and 162 such as copper foil are arranged on the front surface 20a and the back surface 20b of the core layer 20 is prepared. Then, as shown in FIG. 6B, a through hole 81a penetrating the metal foil 161, the core layer 20, and the metal foil 162 is formed by a drill or the like.
  • electroless plating or electroplating is performed to form a metal plating 163 such as copper on the wall surface of the through hole 81a and the metal foils 161 and 162.
  • a through electrode 81b composed of the metal plating 163 is formed on the wall surface of the through hole 81a.
  • catalysts such as palladium.
  • a filler 81 c is arranged in a space surrounded by the metal plating 163.
  • the through via 81 having the through hole 81a, the through electrode 81b, and the filler 81c is formed.
  • lid plating is performed by electroless plating, electroplating, or the like, and metal plating 164, 165 such as copper is formed on the metal plating 163 and the filler 81c.
  • the metal layer M1 in which the metal foil 161, the metal plating 163, and the metal plating 164 are sequentially laminated is formed on the front surface 20a side of the core layer 20, and on the back surface 20b side, A metal layer M2 in which a metal foil 162, a metal plating 163, and a metal plating 165 are sequentially laminated is formed.
  • a resist (not shown) is disposed on the metal platings 164 and 165. Then, wet etching or the like is performed using the resist as a mask, and the metal plating 164, the metal plating 163, and the metal foil 161 are appropriately patterned to form a plurality of surface side inner layer wirings 511 and 512, and the metal plating 165 and the metal plating 163.
  • the metal foil 162 is appropriately patterned to form a plurality of back surface inner layer wirings 521 and 522.
  • the plurality of front surface side inner layer wirings 511 and 512 are configured by the metal layer M1 in which the metal foil 161, the metal plating 163, and the metal plating 164 are laminated, and the plurality of back surface side inner layer wirings 521 and 522 are
  • the metal layer 162 includes a metal foil 162, a metal plating 163, and a metal plating 165.
  • the plurality of front surface side inner layer wirings 511 and 512 are arranged on the front surface 20a of the core layer 20, and are arranged on the rear surface 20b of the plurality of back surface side inner layer wirings 521 and 522 core layer 20 (step 100).
  • the metal foil 161, the metal plating 163, the metal plating 164, the metal foil 162, the metal plating 163, and the metal plating 165 are collectively shown as one layer.
  • prepregs 30A and 40A are prepared (step 110).
  • the prepreg 30A is composed of resin layers 31 and 32 and a glass cloth 1b.
  • the prepreg 40A is composed of resin layers 41 and 42 and a glass cloth 1c.
  • a prepreg 30 ⁇ / b> A and a metal plate 166 such as copper are laminated on the surface-side inner layer wirings 511 and 512 on the surface 20 a side in the core layer 20. Further, on the back surface 20 b side of the core layer 20, a prepreg 40 ⁇ / b> A and a metal plate 167 such as copper are laminated on the back surface inner layer wirings 521 and 522.
  • the laminate 168 in which the metal plate 166, the prepreg 30A, the front surface inner layer wirings 511 and 512, the core layer 20, the back surface inner layer wirings 521 and 522, the prepreg 40A, and the metal plate 167 are sequentially stacked from the top.
  • the resin material constituting the prepregs 30A and 40A is temporarily cured and has fluidity.
  • the laminated body 168 is heated while being pressed in the laminating direction (step 120). That is, the laminate 168 is heated to flow the resin material constituting the prepregs 30A and 40A, one of the core layer 20 and the prepreg 30A is pressed against the other, and one of the core layer 20 and the prepreg 40A is pressed to the other Press against.
  • the portion of the glass cloth 1b of the build-up layer 30 that covers the region 513 is bent so as to be closer to the core layer 20 than the portion of the glass cloth 1b that covers the plurality of front side inner layer wirings 511 and 512.
  • region 513 among the glass cloth 1b penetrates into the core layer 20 side rather than the upper surface of the some surface side inner layer wiring 511,512.
  • the resin material constituting the prepreg 30 ⁇ / b> A is filled in a region other than the plurality of surface side inner layer wirings 511 and 512 in the surface 20 a of the core layer 20. Thereby, the resin material constituting the prepreg 30 ⁇ / b> A is embedded between the plurality of regions 513. Further, a resin material constituting the prepreg 40 ⁇ / b> A is embedded between the plurality of regions 514.
  • the prepregs 30A and 40A are cured to integrate the laminate 168.
  • the cured prepreg 30 ⁇ / b> A is formed as the buildup layer 30
  • the cured prepreg 40 ⁇ / b> A is formed as the buildup layer 40.
  • a through hole 91a that penetrates the metal plate 166 and the build-up layer 30 and reaches the surface-side inner-layer wirings 511 and 512 is formed by a laser or the like.
  • a through hole 101a that penetrates through the metal plate 167 and the buildup layer 40 and reaches the back surface inner wirings 521 and 522 is formed.
  • the through electrode 91b and the through electrode 101b shown in FIG. 1 are configured by the metal plating 169 embedded in the through holes 91a and 101a formed in the buildup layer 30. Further, filled vias 91 and 101 in which through electrodes 91b and 101b are embedded in the through holes 91a and 101a are formed.
  • the metal plate 166 and the metal plating 169 are collectively shown as one layer.
  • a resist (not shown) is disposed on the metal plates 166 and 167.
  • the metal plates 166 and 167 are patterned by performing wet etching or the like using a resist as a mask, and the surface side surface layer wirings 61 to 63 and the back side surface layer wirings 71 and 72 are formed by appropriately forming metal plating.
  • the front surface side wirings 61 to 63 are configured to have the metal plate 166 and the metal plating 169
  • the back surface side wirings 71 and 72 are configured to have the metal plate 167 and the metal plating 169. ing.
  • the multilayer substrate 10 is manufactured by arranging the solder resist 110 on the surfaces 30a and 40a of the buildup layers 30 and 40, respectively, and appropriately patterning them. 8D, all of the solder resist 110 on the surface 30a has been removed, but the solder resist 110 remains in other regions as shown in FIG. Yes.
  • the electronic components 121 to 123 are mounted on the land 61 via the solder 130. Then, wire bonding is performed between the power element 121 and the control element 122 and the land 62, and the power element 121 and the control element 122 and the land 62 are electrically connected. Subsequently, the mold resin layer 150 is formed by a transfer molding method using a mold, a compression molding method, or the like so that the lands 61 and 62 and the electronic components 121 to 123 are sealed.
  • the plurality of surface-side inner-layer wirings 511 and 512 are arranged at intervals on the surface 20 a of the core layer 20.
  • a plurality of back surface side inner layer wirings 521 and 522 are arranged on the back surface 20b of the core layer 20 with a space therebetween.
  • a prepreg 30A formed by sealing both surfaces of the glass cloth 1b with a resin material and a prepreg 40A formed by sealing both surfaces of the glass cloth 1c with a resin material are prepared.
  • the prepreg 30 ⁇ / b> A is opposed to the front surface 20 a of the core layer 20, and the prepreg 40 ⁇ / b> A is opposed to the back surface 20 b of the core layer 20.
  • the glass cloth 1b is formed so as to continuously cover the plurality of surface-side inner layer wirings 511 and 512 and the plurality of regions 513.
  • the glass cloth 1c is formed so as to continuously cover the plurality of back surface side inner layer wirings 521 and 522 and the plurality of regions 513. Then, pressure is applied to the prepreg 30A, the core layer 20, and the prepreg 40A in the stacking direction.
  • region 513 among the glass cloth 1b is bent so that it may approach the core side 20 rather than the site
  • the portion of the glass cloth 1c that covers the region 514 is bent so as to be closer to the core side 20 than the portion of the glass cloth 1c that covers the plurality of back side inner layer wirings 521 and 522. Therefore, the part which covers the area
  • the ratio “wt%” of the mass of the resin material out of the mass of the buildup layers 30 and 40 is set to be 80% or more. For this reason, since the resin material of sufficient quantity can be supplied with respect to the area
  • the thickness dimension L1 of the glass cloth 1b is smaller than the distance L2 between the upper part of the glass cloth 1b and the surface-side surface wirings 61 to 63.
  • the thickness dimension L3 of the glass cloth 1c is smaller than the distance L4 between the lower part of the glass cloth 1c and the back surface side wirings 71 and 72. For this reason, even if it pressurizes in a manufacturing process, it can fully curve corresponding to field 513,514.
  • the basket holes of the glass cloths 1b and 1c are set to have a diameter of 100 ⁇ m or less.
  • the basket hole of the glass cloth 1 is set to have a diameter larger than 100 ⁇ m, when the laminate 168 is pressed, the basket hole is passed through the basket hole from the resin layer 31 side as indicated by the thick line arrow in FIG. The resin material moves to the resin layer 32 side. Therefore, no pressure is applied from the resin layer 31 to the glass cloth 1. For this reason, the glass cloth 1 cannot be curved.
  • the basket holes of the glass cloths 1b and 1c are set to have a diameter of 100 ⁇ m or less as described above. For this reason, when the laminated body 168 is pressurized, it becomes difficult for the resin material to move from the resin layer 31 side to the resin layer 32 side through the basket hole. Therefore, sufficient pressure can be applied from the resin layer 31 to the glass cloths 1b and 1c. Thereby, the glass cloth 1b, 1c can be curved sufficiently.
  • the diameter of the basket hole of the glass cloth 1b, 1c is smaller than the diameter of the basket hole of the glass cloth 1a. For this reason, compared with the case where the diameter of the basket hole of the glass cloth 1b, 1c is larger than the diameter of the basket hole of the glass cloth 1a, the resin is passed through the basket hole from the resin layer 31 side when the laminate 168 is pressed. It becomes difficult for the resin material to move to the layer 32 side. Therefore, sufficient pressure can be applied from the resin layer 31 to the glass cloths 1b and 1c. Thereby, the glass cloth 1b, 1c can be curved sufficiently.
  • the ratio “wt%” of the mass of the buildup layers 30 and 40 occupied by the filler mass is larger than the ratio “wt%” of the mass of the core layer 20 occupied by the filler. .
  • the viscosity of the resin material mixed with filler can be increased. Therefore, when the laminated body 168 is pressurized, sufficient pressure can be applied from the resin layer 31 to the glass cloths 1b and 1c. Thereby, the glass cloth 1b, 1c can be curved sufficiently. In addition, sufficient thermal conductivity can be secured in the buildup layers 30 and 40.
  • the glass cloth 1b is formed so as to continuously cover the plurality of front side inner layer wirings 511 and 512 and the plurality of regions 513. For this reason, the strength of the buildup layer 30 can be increased. In addition to this, when a crack occurs in the resin layer 31 in the build-up layer 30, the crack occurs in the resin layer 31 from the resin layer 31 side through the cut of the glass cloth 1 b due to the crack in the resin layer 31. Progress can be suppressed.
  • the glass cloth 1c is formed so as to continuously cover the plurality of back surface side inner layer wirings 521 and 522 and the plurality of regions 514. For this reason, the same effect as the buildup layer 30 is obtained in the buildup layer 40.
  • FIGS. 11A and 11B show a part of the manufacturing process of the multilayer substrate 10 of the present embodiment.
  • the metal plate 166 is provided with a convex portion 166a.
  • the convex portion 166a is formed so as to protrude from the portion corresponding to the region 513 in the metal plate 166 to the core layer 20 side.
  • the metal plate 166 pressurizes the prepreg 30 ⁇ / b> A toward the core layer 20 by the convex portion 166 a. That is, the metal plate 166 is pressed against the prepreg 30 ⁇ / b> A from the opposite side of the core layer 20. Thereby, the convex part 166a can press the part which covers the area
  • the portion of the glass cloth 1b that covers the region 513 is reliably bent so as to be closer to the core layer 20 side than the portion of the glass cloth 1b that covers the plurality of front-side inner layer wirings 511 and 512. it can. Thereby, the resin material which comprises the prepreg 30A can be reliably filled in the some area
  • the example using the metal plate 166 provided with the convex portion 166a has been described, but in addition to this, the metal plate 167 provided with the convex portion may be used.
  • transformation of the glass sheet 1c of the prepreg 40A can be urged
  • the resin material which comprises the prepreg 40A can be reliably filled in the some area
  • FIGS. 12A and 12B show a part of the manufacturing process of the multilayer substrate 10 of the present embodiment.
  • a press machine 600 including a convex mold 601 is used.
  • the molding die 601 is a metal mold body 603 provided with a metal convex portion 604.
  • the convex portion 604 is formed so as to protrude from the portion corresponding to the region 513 in the mold body 603 to the core layer 20 side.
  • the mold 601 is disposed on the upper side of the metal base 602.
  • the laminated body 168 is configured by laminating the surface side inner layer wirings 511 and 512 excluding the metal plates 166 and 167, the prepreg 30A, and the like on the core layer 20. Then, with the release sheet 620 made of a Teflon (registered trademark) sheet or the like sandwiched between the laminate 168 and the mold 600, the release sheet 620 and the laminate 168 are replaced with the mold 600 and the metal. It arrange
  • molding die 600 can urge the curve of the site
  • the release sheet 620 is removed from the upper surface 300 of the prepreg 30 ⁇ / b> A after the laminate 168 is pressed. Then, by further laminating a resin layer on the upper surface 300 of the prepreg 30A, the upper surface 300 side of the prepreg 30A is flattened.
  • the base 610 is provided with the convex portion.
  • a thing may be used.
  • the deformation of the glass sheet 1c of the prepreg 40A can be urged by the convex portion.
  • the resin material which comprises the prepreg 40A can be reliably filled in the some area
  • FIGS. 13A and 13B show a part of the manufacturing process of the multilayer substrate 10 of the present embodiment.
  • a hydrostatic press 600A including a molding die 601A made of a rubber mold formed in a balloon shape is used.
  • the pressure applied with respect to the prepreg 30A can be made uniform in a surface direction. Therefore, as in the second and third embodiments, the portion of the glass cloth 1b that covers the region 513 can be reliably bent.
  • the glass cloth 1b shape of the prepreg 30A can be made to follow the unevenness
  • the upper surface 300 side of the prepreg 30A may be flattened by pressurizing the prepreg 30A and then laminating a resin layer on the upper surface 300 of the prepreg 30A.
  • the portion of the glass cloth 1b that covers the region 513 is bent, and the portion of the glass cloth 1b that covers the region 513 is closer to the core layer 20 than the upper surface 512a of the surface-side inner layer wirings 511 and 512.
  • the present invention is not limited to this, and the following may be used.
  • the portion of the glass cloth 1 b that covers the region 513 is bent so that it is closer to the core side 20 than the portion of the glass cloth 1 b that covers the plurality of front surface inner layer wirings 511 and 512.
  • a portion of the glass cloth 1b that covers the region 513 may be positioned on the opposite side of the core layer 20 with respect to the upper surface 512a of the front-side inner-layer wirings 511 and 512.
  • the example using the core layer 20 made of the prepreg layer has been described.
  • the core layer 20 made of ceramic or the like may be used as the insulating layer.
  • the embodiment according to the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope of the technical idea of the present disclosure.
  • the above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. Also, the above embodiments are not limited to the illustrated examples. Absent.

Abstract

Provided is a multilayer substrate (10) such that occurrence of voids is suppressed, and a method for manufacturing the multilayer substrate. According to one embodiment, in the manufacturing of the multilayer substrate (10), a pre-preg (30A) is brought into opposition with a surface (20a) of a core layer (20). A glass cloth (1b) is formed so as to continuously cover a plurality of surface-side inner-layer wires (511 and 512) and a plurality of regions (513). Subsequently, pressure is applied to the pre-preg (30A), the core layer (20), and a pre-preg (40A) in the direction of stacking. By bending the portions of the glass cloth (1b)at regions (513) forming gaps so as to be closer to the core layer side than the portions of the glass cloth (1b) at the regions covering the plurality of surface-side inner-layer wires (511 and 512) are, resin material is filled within the regions (513) forming the gaps.

Description

多層基板、および多層基板の製造方法Multilayer substrate and method for manufacturing multilayer substrate 関連出願の相互参照Cross-reference of related applications
 本出願は、2013年6月13日に出願された日本国特許出願2013-124969号に基づくものであり、ここにこれを参照により援用する。 This application is based on Japanese Patent Application No. 2013-124969 filed on June 13, 2013, which is incorporated herein by reference.
 本開示は、多層基板、および多層基板の製造方法に関するものである。 The present disclosure relates to a multilayer substrate and a method for manufacturing the multilayer substrate.
 従来、多層基板では、絶縁層の表面上にそれぞれ間隔を空けて配置されている複数の導体と、絶縁層の表面側および複数の導体を封止するように絶縁層の表面側に積層されているプリプレグとを備えるものがある(例えば、特許文献1参照)。 Conventionally, in a multilayer substrate, a plurality of conductors arranged on the surface of the insulating layer are spaced apart from each other, and the surface side of the insulating layer and the surface side of the insulating layer are sealed so as to seal the plurality of conductors. Some prepregs are provided (see, for example, Patent Document 1).
 プリプレグは、ガラスクロスを備えてこのガラスクロスの両面側を樹脂材料によって封止するように構成されている。そして、複数の導体のそれぞれの間には樹脂材料が埋め込まれている。 The prepreg is configured to include a glass cloth and to seal both sides of the glass cloth with a resin material. A resin material is embedded between each of the plurality of conductors.
特開2007-176169号公報JP 2007-176169 A
 上記特許文献1の基板において、プリプレグの熱伝導率を高めるために、多くのフィラが混ざった樹脂材料でプリプレグを構成すると、プリプレグを構成する樹脂材料の流動性が低くなる。 In the substrate of Patent Document 1, if the prepreg is made of a resin material mixed with many fillers in order to increase the thermal conductivity of the prepreg, the fluidity of the resin material constituting the prepreg becomes low.
 このため、プリプレグを構成する樹脂材料を複数の導体のそれぞれの間に充填する場合、絶縁層の表面側にプリプレグを積層して絶縁層にプリプレグを押し付けても、複数の導体のそれぞれの間に十分な量の樹脂材料を供給することができない。このため、上記それぞれの間に、樹脂材料の未充填部分、すなわちボイドが発生する恐れがある。 Therefore, when the resin material constituting the prepreg is filled between each of the plurality of conductors, even if the prepreg is laminated on the surface side of the insulating layer and the prepreg is pressed against the insulating layer, the prepreg is interposed between the plurality of conductors. A sufficient amount of resin material cannot be supplied. For this reason, there exists a possibility that the unfilled part of a resin material, ie, a void, may generate | occur | produce between said each.
 本開示は上記点に鑑みて、ボイドの発生を抑制するようにした多層基板、および多層基板の製造方法を提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a multilayer substrate and a method for manufacturing the multilayer substrate that suppress generation of voids.
 本開示の一例に係る多層基板は、電気絶縁材料からなる絶縁層と、絶縁層の表面に設けられたもので、間隔を空けて配置された導体と、第1のガラスクロスと第1のガラスクロスの両面側を樹脂材料で封止する樹脂層とを備えるプリプレグを、導体と共に絶縁層の表面を覆うように絶縁層に積層されてなるビルドアップ層と、を備え、絶縁層の表面側では、樹脂層を構成する樹脂材料が間隔を構成する領域内に充填された状態で導体を封止しており、第1のガラスクロスが導体および間隔を構成する領域を連続して覆うように形成されており、第1のガラスクロスのうち間隔を構成する領域を覆う部位は、第1のガラスクロスのうち導体を覆う部位よりも絶縁層側に近づくように曲がっている多層基板である。 A multilayer substrate according to an example of the present disclosure includes an insulating layer made of an electrically insulating material, a conductor provided on the surface of the insulating layer, spaced apart, a first glass cloth, and a first glass. A prepreg having a resin layer that seals both surfaces of the cloth with a resin material, and a build-up layer that is laminated on the insulating layer so as to cover the surface of the insulating layer together with the conductor, and on the surface side of the insulating layer The conductor is sealed in a state where the resin material constituting the resin layer is filled in the region constituting the interval, and the first glass cloth is formed so as to continuously cover the conductor and the region constituting the interval. The part which covers the area | region which comprises a space | interval among the 1st glass cloths is a multilayer substrate bent so that it may approach the insulating layer side rather than the part which covers a conductor among 1st glass cloths.
 本開示において、「間隔を空けて配置された導体」とは、それぞれ離れて配置されている複数の導体以外に、1つの導体において隙間を介して対向する2つの部位を有するものを含むものとして定義される。複数の導体がそれぞれ離れて配置されている場合には、複数の導体のうち隣接する2つの導体の間を「間隔を構成する領域」と定義する。1つの導体において隙間を介して対向する2つの部位を有するものの場合には、2つの部位の間の領域を「間隔を構成する領域」と定義する。 In the present disclosure, “a conductor disposed at an interval” includes, in addition to a plurality of conductors spaced apart from each other, a conductor having two portions facing each other through a gap. Defined. In the case where a plurality of conductors are arranged apart from each other, a region between two adjacent conductors among the plurality of conductors is defined as a “region forming a gap”. In the case of one conductor having two parts facing each other through a gap, an area between the two parts is defined as an “area constituting an interval”.
 上記多層基板によれば、プリプレグを構成する樹脂材料がガラスクロスによって間隔を構成する領域内に押し込まれる形となる。よって、間隔を構成する領域内に十分な量の樹脂材料を充填することができる。このため、ボイドの発生を抑制することができる。 According to the multilayer substrate, the resin material constituting the prepreg is pushed into the region constituting the interval by the glass cloth. Therefore, a sufficient amount of the resin material can be filled in the region constituting the interval. For this reason, generation | occurrence | production of a void can be suppressed.
 本開示の一例に係る多層基板の製造方法は、間隔を空けて配置された導体を、電気絶縁材料からなる絶縁層の表面に形成することと、ガラスクロスとガラスクロスの両面側を樹脂材料で封止する樹脂層とを備えるプリプレグを用意することと、絶縁層の表面側における導体と間隔を構成する領域とをガラスクロスが連続して覆うように絶縁層およびプリプレグを対向させることと、絶縁層およびプリプレグを対向させた後に、絶縁層およびプリプレグのうち一方を他方に対して加圧して、ガラスクロスのうち間隔を構成する領域を覆う部位を、ガラスクロスのうち導体を覆う部位よりも縁層側に近づくように曲げることにより、樹脂層を構成する樹脂材料を間隔を構成する領域内に充填することと、を備える。 In the method for manufacturing a multilayer substrate according to an example of the present disclosure, conductors arranged at intervals are formed on the surface of an insulating layer made of an electrically insulating material, and both surfaces of the glass cloth and the glass cloth are made of a resin material. Preparing a prepreg having a resin layer to be sealed, making the insulating layer and the prepreg face each other so that a glass cloth continuously covers a conductor and a region forming a space on the surface side of the insulating layer, and insulating After the layer and the prepreg are made to face each other, one of the insulating layer and the prepreg is pressed against the other, and the part of the glass cloth that covers the region forming the interval is bordered more than the part of the glass cloth that covers the conductor Filling the resin material constituting the resin layer into the region constituting the interval by bending the layer so as to approach the layer side.
 このような多層基板の製造方法によれば、上述の多層基板と同様に、間隔を構成する領域内に、プリプレグを構成する樹脂材料がガラスクロスによって押し込まれる。よって、間隔を構成する領域内に十分な量の樹脂材料を充填することができる。このため、ボイドの発生を抑制することができる。 According to such a method for manufacturing a multilayer substrate, the resin material constituting the prepreg is pushed into the region constituting the interval by the glass cloth, similarly to the multilayer substrate described above. Therefore, a sufficient amount of the resin material can be filled in the region constituting the interval. For this reason, generation | occurrence | production of a void can be suppressed.
図1は、第1実施形態にかかる電子装置の断面図である。FIG. 1 is a cross-sectional view of the electronic device according to the first embodiment. 図2は、図1中のコア層のII部の拡大図である。FIG. 2 is an enlarged view of a II part of the core layer in FIG. 図3(a)は、図2中のガラスクロスの正面図であり、図3(b)は、図3(a)中のIIIB-IIIB線断面図である。3 (a) is a front view of the glass cloth in FIG. 2, and FIG. 3 (b) is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3 (a). 図4は、図1中のIV部の拡大図である。FIG. 4 is an enlarged view of a portion IV in FIG. 図5は、図1中のV部の拡大図である。FIG. 5 is an enlarged view of a portion V in FIG. 図6(a)~(d)は、図1の多層基板の製造工程を示す断面図である。6 (a) to 6 (d) are cross-sectional views showing manufacturing steps of the multilayer substrate of FIG. 図7(a)~(d)は、図6に続く多層基板の製造工程を示す断面図である。7A to 7D are cross-sectional views illustrating the manufacturing process of the multilayer substrate subsequent to FIG. 図8(a)~(d)は、図7に続く多層基板の製造工程を示す断面図である。8A to 8D are cross-sectional views showing the manufacturing process of the multilayer substrate following FIG. 図9は、第1実施形態の多層基板の製造工程を示すフローチャートである。FIG. 9 is a flowchart showing manufacturing steps of the multilayer substrate according to the first embodiment. 図10は、比較例におけるプリプレグを示す図である。FIG. 10 is a diagram showing a prepreg in a comparative example. 図11(a)と(b)は、第2実施形態にかかる多層基板の製造工程を示す断面図である。FIGS. 11A and 11B are cross-sectional views illustrating the manufacturing process of the multilayer substrate according to the second embodiment. 図12(a)と(b)は、第3実施形態にかかる多層基板の製造工程を示す断面図である。FIGS. 12A and 12B are cross-sectional views illustrating the manufacturing process of the multilayer substrate according to the third embodiment. 図13(a)と(b)は、第4実施形態にかかる多層基板の製造工程を示す断面図である。FIGS. 13A and 13B are cross-sectional views showing the manufacturing process of the multilayer substrate according to the fourth embodiment. 図14は、第5実施形態にかかる多層基板を示す断面図である。FIG. 14 is a cross-sectional view showing a multilayer substrate according to the fifth embodiment.
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。 Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings in order to simplify the description.
 (第1実施形態)
 以下、第1実施形態にかかる電子装置について、図1、図2を参照して説明する。本実施形態にかかる電子装置は、例えば、自動車等の車両に搭載され、車両用の各種電子装置を駆動するために適用されると好適である。なお、図2~図4では、モールド樹脂層150やソルダーレジスト110等を一部省略してある。
(First embodiment)
Hereinafter, the electronic device according to the first embodiment will be described with reference to FIGS. 1 and 2. The electronic device according to the present embodiment is preferably mounted on a vehicle such as an automobile, for example, and applied to drive various electronic devices for the vehicle. 2 to 4, a part of the mold resin layer 150, the solder resist 110, and the like are omitted.
 図1に示されるように、電子装置は、一面10aおよび他面10bを有する多層基板10と、多層基板10の一面10a上に搭載された電子部品121~123と、を備えている。そして、多層基板10の一面10a側と電子部品121~123とをモールド樹脂層によって封止するモールド樹脂層部材150を構成することにより、電子装置が構成されている。 As shown in FIG. 1, the electronic device includes a multilayer substrate 10 having one surface 10a and another surface 10b, and electronic components 121 to 123 mounted on the one surface 10a of the multilayer substrate 10. An electronic device is configured by forming a mold resin layer member 150 that seals the one surface 10a side of the multilayer substrate 10 and the electronic components 121 to 123 with a mold resin layer.
 多層基板10は、コア層20と、コア層20の表面20aに配置された表面20a側のビルドアップ層30と、コア層20の裏面20b側に配置された裏面20b側のビルドアップ層40とを備える積層基板である。 The multilayer substrate 10 includes a core layer 20, a buildup layer 30 on the front surface 20a side disposed on the front surface 20a of the core layer 20, and a buildup layer 40 on the back surface 20b side disposed on the back surface 20b side of the core layer 20. Is a laminated substrate.
 コア層20は、電気絶縁性を有するプリプレグよりなるプリプレグ層として構成されている。コア層20は、図2に示すように、ガラスクロス1aと、樹脂層21、22とから構成されている。樹脂層21は、ガラスクロス1aのうちビルドアップ層30側の面を樹脂材料で封止してなるものである。樹脂層22は、ガラスクロス1aのうちビルドアップ層40側の面を樹脂材料で封止してなるものである。樹脂層21、22を構成する樹脂材料としては、電気絶縁性を有する熱硬化性樹脂材料(例えば、エポキシ樹脂)が用いられる。樹脂層21、22を構成する樹脂材料中には、アルミナやシリカ等の電気絶縁性かつ熱伝導性を有し、放熱性に優れたセラミックよりなるフィラ3が混ざっている。 The core layer 20 is configured as a prepreg layer made of an electrically insulating prepreg. As shown in FIG. 2, the core layer 20 includes a glass cloth 1 a and resin layers 21 and 22. The resin layer 21 is formed by sealing the surface on the buildup layer 30 side of the glass cloth 1a with a resin material. The resin layer 22 is formed by sealing the surface on the buildup layer 40 side of the glass cloth 1a with a resin material. As a resin material constituting the resin layers 21 and 22, a thermosetting resin material (for example, epoxy resin) having electrical insulation is used. In the resin material constituting the resin layers 21 and 22, filler 3 made of ceramic having electrical insulation and thermal conductivity such as alumina and silica and excellent heat dissipation is mixed.
 ガラスクロス1aは、図3(a)に示されるように、複数本の横ヤーン33と複数本の縦ヤーン34とを用いて織られたものである。横ヤーン33は、横方向(第1方向)に延びる複数本のガラス繊維を束にしたものである。縦ヤーン34は、横ヤーン33に直交する縦方向(第2方向)に延びる複数本のガラス繊維を束にしたものである。ガラス繊維は、電気絶縁性を有するものである。 The glass cloth 1a is woven using a plurality of horizontal yarns 33 and a plurality of vertical yarns 34, as shown in FIG. The horizontal yarn 33 is a bundle of a plurality of glass fibers extending in the horizontal direction (first direction). The vertical yarn 34 is a bundle of a plurality of glass fibers extending in the vertical direction (second direction) orthogonal to the horizontal yarn 33. Glass fiber has electrical insulation.
 縦ヤーン34では、図3(b)における図3(a)中のIIIB-IIIB断面図に示されるように、幅方向中央部が、厚み寸法が最も大きくなるように形成されている。同様に、横ヤーン33では、幅方向中央部が、厚み寸法が最も大きくなるように形成されている。 In the vertical yarn 34, as shown in the IIIB-IIIB cross-sectional view in FIG. 3A in FIG. 3B, the central portion in the width direction is formed to have the largest thickness dimension. Similarly, in the horizontal yarn 33, the central part in the width direction is formed so as to have the largest thickness dimension.
 ガラスクロス1aは、複数の腹35および複数のバスケットホール36を備える。複数の腹35は、横ヤーン33と縦ヤーン34とが厚み方向に重なる部分である。複数のバスケットホール36は、複数本の横ヤーン33のうち隣り合う2本の横ヤーン33と複数本の縦ヤーン34のうち隣り合う2本の縦ヤーン34とによって囲まれる穴部である。すなわち、複数のバスケットホール36は、複数の腹35のうち隣接する4つの腹35に囲まれる位置に設けられている。なお、図3(a)では、8つの腹35を示し、4つのバスケットホール36を示している。 The glass cloth 1a includes a plurality of bellies 35 and a plurality of basket holes 36. The plurality of antinodes 35 are portions where the horizontal yarn 33 and the vertical yarn 34 overlap in the thickness direction. The plurality of basket holes 36 are holes surrounded by two adjacent horizontal yarns 33 of the plurality of horizontal yarns 33 and two adjacent vertical yarns 34 of the plurality of vertical yarns 34. In other words, the plurality of basket holes 36 are provided at positions surrounded by the four adjacent stomachs 35 among the plurality of stomachs 35. In FIG. 3A, eight bells 35 are shown, and four basket holes 36 are shown.
 図1のビルドアップ層30、40は、プリプレグよりなるプリプレグ層として構成されている。ビルドアップ層30は、図4に示されるように、ガラスクロス1bと、樹脂層31、32とから構成されている。樹脂層31は、ガラスクロス1bのうち表面側表層配線61~63(図4中61、62を示す)側の面を樹脂材料で封止してなるものである。樹脂層32は、ガラスクロス1bのうち表面側内層配線511、512(図4中512を示す)側の面を樹脂材料で封止してなるものである。 The buildup layers 30 and 40 in FIG. 1 are configured as prepreg layers made of prepreg. As shown in FIG. 4, the buildup layer 30 includes a glass cloth 1 b and resin layers 31 and 32. The resin layer 31 is formed by sealing the surface of the glass cloth 1b on the surface side surface layer wirings 61 to 63 (indicated by 61 and 62 in FIG. 4) with a resin material. The resin layer 32 is formed by sealing the surface of the glass cloth 1b on the surface side inner layer wiring 511, 512 (shown 512 in FIG. 4) side with a resin material.
 樹脂層31、32を構成する樹脂材料としては、電気絶縁性を有する熱硬化性樹脂材料(例えば、エポキシ樹脂)が用いられる。樹脂層31、32を構成する樹脂材料中には、アルミナやシリカ等の電気絶縁性かつ熱伝導性を有し、放熱性に優れたセラミックよりなるフィラ(図示省略)が混ざっている。 As the resin material constituting the resin layers 31 and 32, a thermosetting resin material (for example, epoxy resin) having electrical insulation is used. In the resin material constituting the resin layers 31 and 32, fillers (not shown) made of ceramics having electrical insulation and thermal conductivity, such as alumina and silica, and excellent in heat dissipation are mixed.
 ビルドアップ層40は、図5に示されるように、ガラスクロス1cと、樹脂層41、42とから構成されている。樹脂層41は、ガラスクロス1cのうち裏面側表層配線71、72(図5中71を示す)側の面を樹脂材料で封止してなるものである。樹脂層42は、ガラスクロス1cのうち裏面側内層配線521、522(図5中522を示す)側の面を樹脂材料で封止してなるものである。樹脂層41、42を構成する樹脂材料としては、電気絶縁性を有する熱硬化性樹脂材料(例えば、エポキシ樹脂)が用いられる。樹脂層41、42を構成する樹脂材料中には、アルミナやシリカ等の電気絶縁性かつ熱伝導性を有し、放熱性に優れたセラミックよりなるフィラ(図示省略)が混ざっている。 As shown in FIG. 5, the build-up layer 40 includes a glass cloth 1 c and resin layers 41 and 42. The resin layer 41 is formed by sealing the surface of the glass cloth 1c on the rear surface layer wirings 71 and 72 (shown 71 in FIG. 5) side with a resin material. The resin layer 42 is formed by sealing the surfaces of the glass cloth 1c on the back side inner layer wirings 521 and 522 (shown 522 in FIG. 5) with a resin material. As the resin material constituting the resin layers 41 and 42, a thermosetting resin material (for example, epoxy resin) having electrical insulation is used. The resin material constituting the resin layers 41 and 42 is mixed with a filler (not shown) made of ceramic having electrical insulation and thermal conductivity, such as alumina and silica, and excellent heat dissipation.
 本実施形態のガラスクロス1b、1cは、ガラスクロス1aと同様に、複数本の横ヤーンと複数本の縦ヤーンとを用いて織られたものである。このため、ガラスクロス1b、1cは、複数の腹35および複数のバスケットホール36(図3(a)参照)を有することになる。 The glass cloths 1b and 1c of the present embodiment are woven using a plurality of horizontal yarns and a plurality of vertical yarns similarly to the glass cloth 1a. For this reason, the glass cloths 1b and 1c have a plurality of bellies 35 and a plurality of basket holes 36 (see FIG. 3A).
 図1に示されるように、複数の表面側内層配線511、512は、コア層20とビルドアップ層30との間の界面において、コア層20の表面20aに形成されている。複数の表面側内層配線511、512は、それぞれ、コア層20の表面20a上にて離れて配置されている。つまり、複数の表面側内層配線511、512は、それぞれ、コア層20の表面20a上にて間隔を空けて配置されている。本実施形態では、複数の表面側内層配線511、512のうち隣接する2つの表面側内層配線の間の領域(すなわち、間隔を構成する表面側内層配線の間の領域)を領域513という。 As shown in FIG. 1, the plurality of surface-side inner layer wirings 511 and 512 are formed on the surface 20 a of the core layer 20 at the interface between the core layer 20 and the buildup layer 30. The plurality of front-side inner layer wirings 511 and 512 are arranged separately on the surface 20 a of the core layer 20. That is, the plurality of front-side inner layer wirings 511 and 512 are arranged on the surface 20a of the core layer 20 with a space therebetween. In the present embodiment, a region between two adjacent surface-side inner layer wirings among the plurality of surface-side inner layer wirings 511 and 512 (that is, a region between the surface-side inner layer wirings forming the interval) is referred to as a region 513.
 複数の裏面側内層配線521、522は、コア層20とビルドアップ層40との間の界面において、コア層20の裏面20bに形成されている。複数の裏面側内層配線521、522は、それぞれ、コア層20の裏面20b上にて離れて配置されている。つまり、複数の裏面側内層配線521、522は、それぞれ、コア層20の裏面20b上にて間隔を空けて配置されている。本実施形態では、複数の裏面側内層配線521、522のうち隣接する2つの裏面側内層配線の間の領域(すなわち、間隔を構成する裏面側内層配線の間の領域)を領域514という。 The plurality of back surface inner layer wirings 521 and 522 are formed on the back surface 20 b of the core layer 20 at the interface between the core layer 20 and the buildup layer 40. The plurality of back side inner layer wirings 521 and 522 are arranged separately on the back side 20 b of the core layer 20. That is, the plurality of back surface inner layer wirings 521 and 522 are arranged on the back surface 20b of the core layer 20 with a space therebetween. In the present embodiment, a region between two adjacent back surface side inner layer wirings among the plurality of back surface side inner layer wirings 521 and 522 (that is, a region between back surface side inner layer wirings forming an interval) is referred to as a region 514.
 ビルドアップ層30は、複数の表面側内層配線511、512と共にコア層20の表面20aを覆うようにコア層20に積層されている。ビルドアップ層40は、複数の裏面側内層配線521、522と共にコア層20の裏面20bを覆うようにコア層20に積層されている。 The build-up layer 30 is laminated on the core layer 20 so as to cover the surface 20a of the core layer 20 together with the plurality of surface-side inner layer wirings 511 and 512. The buildup layer 40 is laminated on the core layer 20 so as to cover the back surface 20b of the core layer 20 together with the plurality of back surface side inner layer wirings 521 and 522.
 コア層20の表面20aにおいて、ビルドアップ層30の樹脂層32が、複数の領域513に充填された状態で複数の表面側内層配線511、512を封止している。そして、コア層20の裏面20bにおいて、ビルドアップ層40の樹脂層40bが、複数の領域514に充填された状態で複数の裏面側内層配線521、522を封止している。 On the surface 20 a of the core layer 20, the resin layer 32 of the buildup layer 30 seals the plurality of front side inner layer wirings 511 and 512 in a state where the plurality of regions 513 are filled. Then, on the back surface 20 b of the core layer 20, the resin layers 40 b of the build-up layer 40 seal the plurality of back surface inner layer wirings 521 and 522 in a state where the plurality of regions 514 are filled.
 また、表面側表層配線61~63は、ビルドアップ層30の表面30aに形成されている。本実施形態では、表面側表層配線61~63は、電子部品121~123が搭載される搭載用のランド61、電子部品121、122とボンディングワイヤ141、142を介して電気的に接続されるボンディング用のランド62、外部回路と電気的に接続される表面パターン63とされている。 Further, the surface side surface wirings 61 to 63 are formed on the surface 30 a of the buildup layer 30. In the present embodiment, the surface-side surface layer wirings 61 to 63 are bonded electrically connected to the mounting land 61 on which the electronic components 121 to 123 are mounted and the electronic components 121 and 122 via the bonding wires 141 and 142. Land 62 for use, and a surface pattern 63 electrically connected to an external circuit.
 同様に、裏面側表層配線71、72がビルドアップ層40の表面40aに形成されている。本実施形態では、裏面側表層配線71、72は、後述するフィルドビアを介して裏面側内層配線521、522と接続される裏面パターン71、放熱用のヒートシンクが備えられるヒートシンク用パターン72とされている。 Similarly, backside surface layer wirings 71 and 72 are formed on the surface 40 a of the buildup layer 40. In this embodiment, the back surface layer wirings 71 and 72 are a back surface pattern 71 connected to the back surface inner layer wirings 521 and 522 through filled vias, which will be described later, and a heat sink pattern 72 provided with a heat sink for heat dissipation. .
 なお、内層配線511、512、521、522は、導体を構成している。ビルドアップ層30の表面30aとは、ビルドアップ層30のうちコア層20と反対側の一面のことであり、多層基板10の一面10aとなる面のことである。また、ビルドアップ層40の表面40aとは、ビルドアップ層40のうちコア層20と反対側の一面のことであり、多層基板10の他面10bとなる面のことである。 The inner layer wirings 511, 512, 521, and 522 constitute conductors. The surface 30 a of the buildup layer 30 is one surface of the buildup layer 30 opposite to the core layer 20, and is a surface that becomes the one surface 10 a of the multilayer substrate 10. Further, the surface 40 a of the buildup layer 40 is one surface of the buildup layer 40 opposite to the core layer 20, and is a surface that becomes the other surface 10 b of the multilayer substrate 10.
 そして、内層配線511、512、521、522、表面側表層配線61~63、裏面側表層配線71、72は、具体的には後述するが、銅等の金属箔や金属メッキが適宜積層された導体から構成されている。 The inner layer wirings 511, 512, 521, 522, the surface side surface layer wirings 61 to 63, and the back side surface layer wirings 71 and 72 are specifically described later, but a metal foil such as copper or metal plating is appropriately laminated. Consists of conductors.
 なお、内層配線511、512、521、522、表面側表層配線61~63、裏面側表層配線71、72は、それぞれの厚み方向の寸法が35μm以上になっている。 The inner layer wirings 511, 512, 521, 522, the surface side surface layer wirings 61 to 63, and the back surface side surface layer wirings 71 and 72 have a thickness dimension of 35 μm or more.
 また、表面側内層配線511、512と裏面側内層配線521、522とは、コア層20を貫通して設けられた貫通ビア81を介して電気的および熱的に接続されている。具体的には、貫通ビア81は、コア層20を厚さ方向に貫通する貫通孔81aの壁面に銅等の貫通電極81bが形成され、貫通孔81aの内部に充填材81cが充填されて構成されている。 Also, the front side inner layer wirings 511 and 512 and the rear side inner layer wirings 521 and 522 are electrically and thermally connected through a through via 81 provided through the core layer 20. Specifically, the through via 81 is configured such that a through electrode 81b such as copper is formed on the wall surface of the through hole 81a penetrating the core layer 20 in the thickness direction, and a filler 81c is filled in the through hole 81a. Has been.
 また、表面側内層配線511、512と表面側表層配線61~63、および裏面側内層配線521、522と裏面側表層配線71、72とは、適宜各ビルドアップ層30、40を厚さ方向に貫通して設けられたフィルドビア91、101を介して電気的および熱的に接続されている。 Further, the front side inner layer wirings 511 and 512, the front side surface layer wirings 61 to 63, and the rear side inner layer wirings 521 and 522 and the rear side surface layer wirings 71 and 72 are appropriately connected to the buildup layers 30 and 40 in the thickness direction. They are electrically and thermally connected through filled vias 91 and 101 provided therethrough.
 具体的には、フィルドビア91、101は、各ビルドアップ層30、40を厚さ方向に貫通する貫通孔91a、101aが銅等の貫通電極91b、101bによって充填された構成とされている。 Specifically, the filled vias 91 and 101 are configured such that through holes 91a and 101a penetrating the build-up layers 30 and 40 in the thickness direction are filled with through electrodes 91b and 101b such as copper.
 なお、充填材81cは、樹脂、セラミック、金属等が用いられるが、本実施形態では、エポキシ樹脂とされている。また、貫通電極81b、91b、101bは、銅等の金属メッキにて構成されている。 In addition, although resin, ceramic, metal, etc. are used for the filler 81c, it is set as the epoxy resin in this embodiment. The through electrodes 81b, 91b, and 101b are made of metal plating such as copper.
 そして、各ビルドアップ層30、40の表面30a、40aには、表面パターン63および裏面パターン71を覆うソルダーレジスト110が形成されている。なお、表面パターン63を覆うソルダーレジスト110には、図1とは別断面において、表面パターン63のうち外部回路と接続される部分を露出させる開口部が形成されている。 The solder resist 110 that covers the front surface pattern 63 and the back surface pattern 71 is formed on the front surfaces 30a and 40a of the buildup layers 30 and 40. The solder resist 110 that covers the surface pattern 63 is formed with an opening that exposes a portion of the surface pattern 63 that is connected to an external circuit in a cross section different from that in FIG.
 電子部品121~123は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等の発熱が大きいパワー素子121、マイコン等の制御素子122、チップコンデンサや抵抗等の受動素子123である。 The electronic parts 121 to 123 are passive power elements 121 such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductors Field-Effect Transistors), control elements 122 such as microcomputers, and chip capacitors and resistors. Element 123.
 そして、各電子部品121~123は、はんだ130を介してランド61上に搭載されてランド61と電気的、機械的に接続されている。また、パワー素子121および制御素子122は、周囲に形成されているランド62ともAlやAu等のボンディングワイヤ141、142を介して電気的に接続されている。 The electronic components 121 to 123 are mounted on the land 61 via the solder 130 and are electrically and mechanically connected to the land 61. The power element 121 and the control element 122 are also electrically connected to the land 62 formed in the periphery via bonding wires 141 and 142 such as Al and Au.
 ここで、上記した第1の配線群511、521は、比較的大電流のパワー素子121に接続されている表裏の内層配線511、521であり、一方、上記した第2の配線群512、522は、比較的小電流の制御素子122、受動素子123に接続されている表裏の内層配線512、522である。 Here, the first wiring groups 511 and 521 described above are the front and back inner layer wirings 511 and 521 connected to the power element 121 having a relatively large current, while the second wiring groups 512 and 522 described above. These are front and back inner layer wirings 512 and 522 connected to the control element 122 and the passive element 123 having a relatively small current.
 なお、ここでは、電子部品121~123としてパワー素子121、制御素子122、受動素子123を例に挙げて説明したが、電子部品121~123はこれらに限定されるものではない。 Here, the power element 121, the control element 122, and the passive element 123 are described as examples of the electronic components 121 to 123, but the electronic components 121 to 123 are not limited to these.
 モールド樹脂層150は、ランド61、62および電子部品121~123を封止するものであり、エポキシ樹脂等の一般的なモールド材料が金型を用いたトランスファーモールド法やコンプレッションモールド法等により形成されたものである。 The mold resin layer 150 seals the lands 61 and 62 and the electronic components 121 to 123, and a general mold material such as an epoxy resin is formed by a transfer mold method using a mold, a compression mold method, or the like. It is a thing.
 なお、本実施形態では、モールド樹脂層150は、多層基板10の一面10aのみに形成されている。つまり、本実施形態の電子装置は、いわゆるハーフモールド構造とされている。また、多層基板10の他面10b側には、特に図示していないが、ヒートシンク用パターン72に放熱グリス等を介してヒートシンクが備えられている。 In the present embodiment, the mold resin layer 150 is formed only on the one surface 10a of the multilayer substrate 10. That is, the electronic device of this embodiment has a so-called half mold structure. Further, on the other surface 10b side of the multilayer substrate 10, although not particularly shown, a heat sink is provided on the heat sink pattern 72 via heat radiation grease or the like.
 次に、本実施形態のビルドアップ層30、40の構造の詳細について図4~図6を用いて説明する。 Next, details of the structure of the build-up layers 30 and 40 of the present embodiment will be described with reference to FIGS.
 図4のビルドアップ層30において、ガラスクロス1bは、複数の表面側内層配線511、512、および複数の領域513を連続して覆うように形成されている。 4, the glass cloth 1b is formed so as to continuously cover the plurality of surface-side inner layer wirings 511 and 512 and the plurality of regions 513.
 ガラスクロス1bのうち領域513を覆う部位は、ガラスクロス1bのうち複数の表面側内層配線511、512を覆う部位よりもコア層20側に近づくように曲がっている。具体的には、ガラスクロス1bのうち領域513を覆う部位は、複数の表面側内層配線511、512の上面512aよりもコア層20側に入り込んでいる。当該上面512aとは、複数の表面側内層配線511、512のうちコア層20に対して反対側端部のことである。図4では、ガラスクロス1bのうち領域513を覆う部位は、当該領域513に隣接する2つの表面側内層配線512の上面512aの延長線Y1(図4中鎖線)よりもコア層20側に入り込んでいる例を示している。 The part which covers the area | region 513 among the glass cloth 1b is bent so that it may approach the core layer 20 side rather than the part which covers the some surface side inner layer wiring 511,512 among the glass cloth 1b. Specifically, the portion of the glass cloth 1b that covers the region 513 is located closer to the core layer 20 than the upper surfaces 512a of the plurality of front-side inner- layer wirings 511 and 512. The upper surface 512 a is an end portion on the opposite side to the core layer 20 among the plurality of front surface side inner layer wirings 511 and 512. In FIG. 4, the portion of the glass cloth 1 b that covers the region 513 enters the core layer 20 side from the extension line Y <b> 1 (dashed line in FIG. 4) of the upper surface 512 a of the two surface side inner layer wirings 512 adjacent to the region 513. An example is shown.
 図4のビルドアップ層30において、ガラスクロス1bの厚み寸法をL1とし、樹脂層31のうちコア層20の反対側面31aとガラスクロス1bとの間の寸法(すなわち、最短距離)をL2とすると、L1、L2は、L1<L2を満足する。 In the buildup layer 30 of FIG. 4, when the thickness dimension of the glass cloth 1b is L1, and the dimension (that is, the shortest distance) between the opposite side surface 31a of the core layer 20 and the glass cloth 1b in the resin layer 31 is L2. , L1 and L2 satisfy L1 <L2.
 本実施形態において、厚み寸法L1は、ガラスクロス1bを構成する腹35の中央部の厚み寸法である。腹35の中央部とは、横ヤーン33の幅方向中央部と縦ヤーン34の幅方向中央部とが重なる部分であって、腹35のうち最も厚み寸法が大きくなる部位である。厚み寸法L2を設定するためのガラスクロス1bの基準位置を、ガラスクロス1bの上部としている。ガラスクロス1bの上部は、複数の腹35のうち最も表面側表層配線61~63側に位置する腹35の中央部である。 In the present embodiment, the thickness dimension L1 is the thickness dimension of the central portion of the belly 35 constituting the glass cloth 1b. The central portion of the belly 35 is a portion where the central portion in the width direction of the horizontal yarn 33 overlaps with the central portion in the width direction of the vertical yarn 34, and is the portion of the belly 35 having the largest thickness dimension. The reference position of the glass cloth 1b for setting the thickness dimension L2 is the upper part of the glass cloth 1b. The upper part of the glass cloth 1b is the central part of the antinode 35 located on the surface side surface layer wiring 61 to 63 side among the antinodes 35.
 図5のビルドアップ層40において、ガラスクロス1cは、複数の裏面側内層配線521、522、および複数の領域514を連続して覆うように形成されている。 In the build-up layer 40 of FIG. 5, the glass cloth 1c is formed so as to continuously cover the plurality of back side inner layer wirings 521 and 522 and the plurality of regions 514.
 ガラスクロス1cのうち領域514を覆う部位は、ガラスクロス1cのうち複数の裏面側内層配線521、522を覆う部位よりもコア層20側に近づくように曲がっている。具体的には、ガラスクロス1cのうち領域514を覆う部位は、複数の裏面側内層配線521、522の下面522aよりもコア層20側に入り込んでいる。当該下面とは、複数の裏面側内層配線521、522のうちコア層20に対して反対側の面のことである。図5では、ガラスクロス1cのうち領域514を覆う部位は、当該領域514に隣接する2つの表面側内層配線522の下面の延長線Y2(図5中鎖線)よりもコア層20側に入り込んでいる例を示している。 The part which covers the area | region 514 among the glass cloth 1c is bent so that it may approach the core layer 20 side rather than the part which covers the some back surface side inner layer wiring 521,522 of the glass cloth 1c. Specifically, the portion of the glass cloth 1c that covers the region 514 enters the core layer 20 side from the lower surfaces 522a of the plurality of back surface inner layer wirings 521 and 522. The said lower surface is a surface on the opposite side to the core layer 20 among the plurality of back side inner layer wirings 521 and 522. In FIG. 5, the portion of the glass cloth 1 c that covers the region 514 enters the core layer 20 side from the extension line Y <b> 2 (dashed line in FIG. 5) on the lower surface of the two surface-side inner layer wirings 522 adjacent to the region 514. An example is shown.
 図5のビルドアップ層40において、ガラスクロス1cの厚み寸法をL3とし、樹脂層41のうちコア層20の反対側面41aとガラスクロス1cとの間の寸法(すなわち、最短距離)をL4とすると、L3、L4の大小関係は、L3<L4を満足する。 In the buildup layer 40 of FIG. 5, when the thickness dimension of the glass cloth 1c is L3, and the dimension (that is, the shortest distance) between the opposite side surface 41a of the core layer 20 and the glass cloth 1c in the resin layer 41 is L4. , L3, and L4 satisfy the relationship L3 <L4.
 本実施形態において、厚み寸法L3は、ガラスクロス1cを構成する腹35の中央部の厚み寸法である。腹35の中央部とは、横ヤーン33の幅方向中央部と縦ヤーン34の幅方向中央部とが重なる部分であって、腹35のうち最も厚み寸法が大きくなる部位である。寸法L4を設定するためのガラスクロス1cの基準位置を、ガラスクロス1cの下部としている。ガラスクロス1cの下部は、複数の腹35のうち最も裏面側表層配線71、72側に位置する腹35の中央部である。 In the present embodiment, the thickness dimension L3 is the thickness dimension of the central portion of the belly 35 constituting the glass cloth 1c. The central portion of the belly 35 is a portion where the central portion in the width direction of the horizontal yarn 33 overlaps with the central portion in the width direction of the vertical yarn 34, and is the portion of the belly 35 having the largest thickness dimension. The reference position of the glass cloth 1c for setting the dimension L4 is the lower part of the glass cloth 1c. The lower part of the glass cloth 1c is a central portion of the belly 35 located on the back surface side surface wiring 71, 72 side among the plurality of belly 35.
 本実施形態のガラスクロス1b、1cの厚み寸法L3、L4は、10μm~30μmに設定されている。ガラスクロス1b、1cのバスケットホールは、コア層20のガラスクロス1aのバスケットホールよりも小さくなっている。ガラスクロス1b、1cのバスケットホールは、直径が100μm以下に設定されている。ビルドアップ層30の質量のうち樹脂材料の質量が占める比率(wt%)が80%以上になるように設定されている。ビルドアップ層40の質量のうち樹脂材料の質量が占める比率(wt%)が80%以上になるように設定されている。 The thickness dimensions L3 and L4 of the glass cloths 1b and 1c of the present embodiment are set to 10 μm to 30 μm. The basket holes of the glass cloths 1 b and 1 c are smaller than the basket holes of the glass cloth 1 a of the core layer 20. The basket holes of the glass cloths 1b and 1c have a diameter set to 100 μm or less. The ratio (wt%) occupied by the mass of the resin material in the mass of the buildup layer 30 is set to be 80% or more. The ratio (wt%) occupied by the mass of the resin material in the mass of the buildup layer 40 is set to be 80% or more.
 ビルドアップ層30の質量のうちフィラの質量が占める比率(wt%)は、コア層20の質量のうちフィラの質量が占める比率(wt%)よりも大きくなっている。ビルドアップ層40の質量のうちフィラの質量が占める比率(wt%)は、コア層20の質量のうちフィラの質量が占める比率(wt%)よりも大きくなっている。例えば、ビルドアップ層30、40の質量のうちフィラの質量が占める比率(wt%)は、50%以上に設定されている。 The ratio (wt%) of the mass of the buildup layer 30 occupied by the filler mass (wt%) is larger than the ratio (wt%) of the mass of the core layer 20 occupied by the filler. The ratio (wt%) of the mass of the buildup layer 40 occupied by the filler mass (wt%) is larger than the ratio (wt%) of the mass of the core layer 20 occupied by the filler. For example, the ratio (wt%) of the mass of the filler to the mass of the buildup layers 30 and 40 is set to 50% or more.
 以上が本実施形態における電子装置の構成である。次に、上記電子装置の製造方法について図5、図6、図7を参照しつつ説明する。なお、図5、図6、図7は、多層基板10のうちパワー素子121が搭載される部分近傍の断面図である。 The above is the configuration of the electronic device in the present embodiment. Next, a method for manufacturing the electronic device will be described with reference to FIGS. 5, 6, and 7 are cross-sectional views of the vicinity of a portion where the power element 121 is mounted in the multilayer substrate 10.
 まず、図6(a)に示されるように、コア層20の表面20aおよび裏面20bに銅箔等の金属箔161、162が配置されたものを用意する。そして、図6(b)に示されるように、ドリル等によって金属箔161、コア層20、金属箔162を貫通する貫通孔81aを形成する。 First, as shown in FIG. 6 (a), a structure in which metal foils 161 and 162 such as copper foil are arranged on the front surface 20a and the back surface 20b of the core layer 20 is prepared. Then, as shown in FIG. 6B, a through hole 81a penetrating the metal foil 161, the core layer 20, and the metal foil 162 is formed by a drill or the like.
 その後、図6(c)に示されるように、無電解メッキや電気メッキを行い、貫通孔81aの壁面および金属箔161、162上に銅等の金属メッキ163を形成する。これにより、貫通孔81aの壁面に、金属メッキ163にて構成される貫通電極81bが形成される。なお、無電解メッキおよび電気メッキを行う場合には、パラジウム等の触媒を用いて行うことが好ましい。 Then, as shown in FIG. 6C, electroless plating or electroplating is performed to form a metal plating 163 such as copper on the wall surface of the through hole 81a and the metal foils 161 and 162. As a result, a through electrode 81b composed of the metal plating 163 is formed on the wall surface of the through hole 81a. In addition, when performing electroless plating and electroplating, it is preferable to carry out using catalysts, such as palladium.
 続いて、図6(d)に示されるように、金属メッキ163で囲まれる空間に充填材81cを配置する。これにより、貫通孔81a、貫通電極81b、充填材81cを有する上記貫通ビア81が形成される。 Subsequently, as shown in FIG. 6 (d), a filler 81 c is arranged in a space surrounded by the metal plating 163. Thus, the through via 81 having the through hole 81a, the through electrode 81b, and the filler 81c is formed.
 その後、図7(a)に示されるように、無電解メッキおよび電気メッキ等でいわゆる蓋メッキを行い、金属メッキ163および充填材81c上に銅等の金属メッキ164、165を形成する。 Thereafter, as shown in FIG. 7A, so-called lid plating is performed by electroless plating, electroplating, or the like, and metal plating 164, 165 such as copper is formed on the metal plating 163 and the filler 81c.
 こうして、図7(a)に示されるように、コア層20の表面20a側では、金属箔161、金属メッキ163、金属メッキ164が順次積層された金属層M1が形成され、裏面20b側では、金属箔162、金属メッキ163、金属メッキ165が順次積層された金属層M2が形成される。 Thus, as shown in FIG. 7A, the metal layer M1 in which the metal foil 161, the metal plating 163, and the metal plating 164 are sequentially laminated is formed on the front surface 20a side of the core layer 20, and on the back surface 20b side, A metal layer M2 in which a metal foil 162, a metal plating 163, and a metal plating 165 are sequentially laminated is formed.
 次に、図7(b)に示されるように、金属メッキ164、165上に図示しないレジストを配置する。そして、当該レジストをマスクとしてウェットエッチング等を行い、金属メッキ164、金属メッキ163、金属箔161を適宜パターニングして複数の表面側内層配線511、512を形成すると共に、金属メッキ165、金属メッキ163、金属箔162を適宜パターニングして複数の裏面側内層配線521、522を形成する。 Next, as shown in FIG. 7B, a resist (not shown) is disposed on the metal platings 164 and 165. Then, wet etching or the like is performed using the resist as a mask, and the metal plating 164, the metal plating 163, and the metal foil 161 are appropriately patterned to form a plurality of surface side inner layer wirings 511 and 512, and the metal plating 165 and the metal plating 163. The metal foil 162 is appropriately patterned to form a plurality of back surface inner layer wirings 521 and 522.
 つまり、本実施形態では、複数の表面側内層配線511、512は、金属箔161、金属メッキ163、金属メッキ164が積層された金属層M1によって構成され、複数の裏面側内層配線521、522は、金属箔162、金属メッキ163、金属メッキ165が積層された金属層M2によって構成されている。このことにより、複数の表面側内層配線511、512がコア層20の表面20aに配列され、複数の裏面側内層配線521、522コア層20の裏面20bに配列されることになる(ステップ100)。図7(c)以降では、金属箔161、金属メッキ163、金属メッキ164、および金属箔162、金属メッキ163、金属メッキ165をまとめて1層として示してある。 That is, in the present embodiment, the plurality of front surface side inner layer wirings 511 and 512 are configured by the metal layer M1 in which the metal foil 161, the metal plating 163, and the metal plating 164 are laminated, and the plurality of back surface side inner layer wirings 521 and 522 are The metal layer 162 includes a metal foil 162, a metal plating 163, and a metal plating 165. As a result, the plurality of front surface side inner layer wirings 511 and 512 are arranged on the front surface 20a of the core layer 20, and are arranged on the rear surface 20b of the plurality of back surface side inner layer wirings 521 and 522 core layer 20 (step 100). . In FIG. 7C and thereafter, the metal foil 161, the metal plating 163, the metal plating 164, the metal foil 162, the metal plating 163, and the metal plating 165 are collectively shown as one layer.
 その後、プリプレグ30A、40Aを用意する(ステップ110)。プリプレグ30Aは、樹脂層31、32およびガラスクロス1bから構成されている。プリプレグ40Aは、樹脂層41、42およびガラスクロス1cから構成されている。 Thereafter, prepregs 30A and 40A are prepared (step 110). The prepreg 30A is composed of resin layers 31 and 32 and a glass cloth 1b. The prepreg 40A is composed of resin layers 41 and 42 and a glass cloth 1c.
 次に、図7(c)に示されるように、コア層20における表面20a側において、表面側内層配線511、512上にプリプレグ30Aおよび銅等の金属板166を積層する。さらに、コア層20における裏面20b側において、裏面側内層配線521、522上にプリプレグ40Aおよび銅等の金属板167を積層する。 Next, as shown in FIG. 7C, a prepreg 30 </ b> A and a metal plate 166 such as copper are laminated on the surface-side inner layer wirings 511 and 512 on the surface 20 a side in the core layer 20. Further, on the back surface 20 b side of the core layer 20, a prepreg 40 </ b> A and a metal plate 167 such as copper are laminated on the back surface inner layer wirings 521 and 522.
 このようにして、上から順に、金属板166、プリプレグ30A、表面側内層配線511、512、コア層20、裏面側内層配線521、522、プリプレグ40Aおよび金属板167が順に積層された積層体168を構成する。なお、プリプレグ30A、40Aを構成する樹脂材料は、この状態では、仮硬化されたもので流動性を有している。 In this way, the laminate 168 in which the metal plate 166, the prepreg 30A, the front surface inner layer wirings 511 and 512, the core layer 20, the back surface inner layer wirings 521 and 522, the prepreg 40A, and the metal plate 167 are sequentially stacked from the top. Configure. In this state, the resin material constituting the prepregs 30A and 40A is temporarily cured and has fluidity.
 続いて、積層体168を一体化するために、図7(d)に示されるように、積層体168を積層方向に加圧しつつ加熱する(ステップ120)。つまり、積層体168を加熱してプリプレグ30A、40Aを構成する樹脂材料を流動させ、コア層20およびプリプレグ30Aのうち一方を他方に対して押し付け、かつコア層20およびプリプレグ40Aのうち一方を他方に対して押し付ける。 Subsequently, in order to integrate the laminated body 168, as shown in FIG. 7D, the laminated body 168 is heated while being pressed in the laminating direction (step 120). That is, the laminate 168 is heated to flow the resin material constituting the prepregs 30A and 40A, one of the core layer 20 and the prepreg 30A is pressed against the other, and one of the core layer 20 and the prepreg 40A is pressed to the other Press against.
 これに伴い、ビルドアップ層30のガラスクロス1bのうち領域513を覆う部位が、ガラスクロス1bのうち複数の表面側内層配線511、512を覆う部位よりもコア層20側に近づくように曲がる。このため、ガラスクロス1bのうち領域513を覆う部位が、複数の表面側内層配線511、512の上面よりもコア層20側に入り込む。 Accordingly, the portion of the glass cloth 1b of the build-up layer 30 that covers the region 513 is bent so as to be closer to the core layer 20 than the portion of the glass cloth 1b that covers the plurality of front side inner layer wirings 511 and 512. For this reason, the site | part which covers the area | region 513 among the glass cloth 1b penetrates into the core layer 20 side rather than the upper surface of the some surface side inner layer wiring 511,512.
 これに伴い、プリプレグ30Aを構成する樹脂材料がコア層20の表面20aのうち複数の表面側内層配線511、512のうち以外の領域に充填される。これにより、プリプレグ30Aを構成する樹脂材料を複数の領域513間に埋め込む。さらに、プリプレグ40Aを構成する樹脂材料を複数の領域514間に埋め込む。 Accordingly, the resin material constituting the prepreg 30 </ b> A is filled in a region other than the plurality of surface side inner layer wirings 511 and 512 in the surface 20 a of the core layer 20. Thereby, the resin material constituting the prepreg 30 </ b> A is embedded between the plurality of regions 513. Further, a resin material constituting the prepreg 40 </ b> A is embedded between the plurality of regions 514.
 そして、積層体168を加熱することにより、プリプレグ30A、40Aを硬化して積層体168を一体化する。このとき、プリプレグ30Aを硬化したものがビルドアップ層30として形成され、かつプリプレグ40Aを硬化したものがビルドアップ層40として形成されることになる。 Then, by heating the laminate 168, the prepregs 30A and 40A are cured to integrate the laminate 168. At this time, the cured prepreg 30 </ b> A is formed as the buildup layer 30, and the cured prepreg 40 </ b> A is formed as the buildup layer 40.
 次に、図8(a)に示されるように、レーザ等により、金属板166、ビルドアップ層30を貫通して表面側内層配線511、512に達する貫通孔91aを形成する。同様に、図8(a)とは別断面において、金属板167、ビルドアップ層40を貫通して裏面側内層配線521、522に達する貫通孔101aを形成する。 Next, as shown in FIG. 8A, a through hole 91a that penetrates the metal plate 166 and the build-up layer 30 and reaches the surface-side inner- layer wirings 511 and 512 is formed by a laser or the like. Similarly, in a cross section different from that shown in FIG. 8A, a through hole 101a that penetrates through the metal plate 167 and the buildup layer 40 and reaches the back surface inner wirings 521 and 522 is formed.
 そして、図8(b)に示されるように、無電解メッキや電気メッキ等でいわゆるフィルドメッキを行い、貫通孔91a、101aを金属メッキ169で埋め込む。これにより、ビルドアップ層30に形成された貫通孔91a、101aに埋め込まれた金属メッキ169にて貫通電極91bおよび図1に示した貫通電極101bが構成される。また、貫通孔91a、101aに貫通電極91b、101bが埋め込まれたフィルドビア91、101が形成される。なお、次の図8(c)以降では、金属板166および金属メッキ169をまとめて1層として示してある。 Then, as shown in FIG. 8B, so-called filled plating is performed by electroless plating, electroplating, or the like, and the through holes 91a and 101a are embedded with metal plating 169. Thus, the through electrode 91b and the through electrode 101b shown in FIG. 1 are configured by the metal plating 169 embedded in the through holes 91a and 101a formed in the buildup layer 30. Further, filled vias 91 and 101 in which through electrodes 91b and 101b are embedded in the through holes 91a and 101a are formed. In FIG. 8C and subsequent figures, the metal plate 166 and the metal plating 169 are collectively shown as one layer.
 続いて、図8(c)に示されるように、金属板166、167上に図示しないレジストを配置する。そして、レジストをマスクとしてウェットエッチング等を行って金属板166、167をパターニングすると共に、適宜金属メッキを形成することにより、表面側表層配線61~63および裏面側表層配線71、72を形成する。 Subsequently, as shown in FIG. 8C, a resist (not shown) is disposed on the metal plates 166 and 167. Then, the metal plates 166 and 167 are patterned by performing wet etching or the like using a resist as a mask, and the surface side surface layer wirings 61 to 63 and the back side surface layer wirings 71 and 72 are formed by appropriately forming metal plating.
 つまり、本実施形態では、表面側表層配線61~63は、金属板166および金属メッキ169を有する構成とされ、裏面側表層配線71、72は、金属板167および金属メッキ169を有する構成とされている。 That is, in the present embodiment, the front surface side wirings 61 to 63 are configured to have the metal plate 166 and the metal plating 169, and the back surface side wirings 71 and 72 are configured to have the metal plate 167 and the metal plating 169. ing.
 次に、図8(d)に示されるように、ビルドアップ層30、40の表面30a、40aにそれぞれソルダーレジスト110を配置して適宜パターニングすることにより、上記多層基板10が製造される。なお、図8(d)に示される範囲内において、表面30a上のソルダーレジスト110がすべて除去されているが、図1に示すように他の領域においてソルダーレジスト110が残された状態になっている。 Next, as shown in FIG. 8D, the multilayer substrate 10 is manufactured by arranging the solder resist 110 on the surfaces 30a and 40a of the buildup layers 30 and 40, respectively, and appropriately patterning them. 8D, all of the solder resist 110 on the surface 30a has been removed, but the solder resist 110 remains in other regions as shown in FIG. Yes.
 その後は、特に図示しないが、はんだ130を介して電子部品121~123をランド61に搭載する。そして、パワー素子121および制御素子122とランド62との間でワイヤボンディングを行い、パワー素子121および制御素子122とランド62とを電気的に接続する。続いて、ランド61、62および電子部品121~123が封止されるように、金型を用いたトランスファーモールド法やコンプレッションモールド法等によってモールド樹脂層150を形成する。 Thereafter, although not particularly shown, the electronic components 121 to 123 are mounted on the land 61 via the solder 130. Then, wire bonding is performed between the power element 121 and the control element 122 and the land 62, and the power element 121 and the control element 122 and the land 62 are electrically connected. Subsequently, the mold resin layer 150 is formed by a transfer molding method using a mold, a compression molding method, or the like so that the lands 61 and 62 and the electronic components 121 to 123 are sealed.
 以上説明した本実施形態によれば、多層基板10の製造過程において、コア層20の表面20aに間隔を空けて複数の表面側内層配線511、512を配置する。コア層20の裏面20bに間隔を空けて複数の裏面側内層配線521、522を配置する。次に、ガラスクロス1bの両面側を樹脂材料で封止してなるプリプレグ30Aとガラスクロス1cの両面側を樹脂材料で封止してなるプリプレグ40Aとを用意する。これに伴い、コア層20の表面20aにプリプレグ30Aを対向させ、かつコア層20の裏面20bにプリプレグ40Aを対向させる。このとき、ガラスクロス1bは、複数の表面側内層配線511、512および複数の領域513を連続して覆うように形成されている。ガラスクロス1cは、複数の裏面側内層配線521、522および複数の領域513を連続して覆うように形成されている。その後、プリプレグ30A、コア層20、およびプリプレグ40Aを積層方向に圧力を加える。これにより、ガラスクロス1bのうち領域513を覆う部位を、ガラスクロス1bのうち複数の表面側内層配線511、512を覆う部位よりもコア側20に近づくように曲げる。よって、ガラスクロス1bのうち領域513を覆う部位が表面側内層配線511、512の上面512aよりもコア層20側に入り込む。したがって、プリプレグ30Aを構成する樹脂材料がガラスクロス1bによって複数の領域513内に押し込まれる。よって、複数の領域513内に十分な量の樹脂材料を充填することができる。 According to the present embodiment described above, in the manufacturing process of the multilayer substrate 10, the plurality of surface-side inner- layer wirings 511 and 512 are arranged at intervals on the surface 20 a of the core layer 20. A plurality of back surface side inner layer wirings 521 and 522 are arranged on the back surface 20b of the core layer 20 with a space therebetween. Next, a prepreg 30A formed by sealing both surfaces of the glass cloth 1b with a resin material and a prepreg 40A formed by sealing both surfaces of the glass cloth 1c with a resin material are prepared. Accordingly, the prepreg 30 </ b> A is opposed to the front surface 20 a of the core layer 20, and the prepreg 40 </ b> A is opposed to the back surface 20 b of the core layer 20. At this time, the glass cloth 1b is formed so as to continuously cover the plurality of surface-side inner layer wirings 511 and 512 and the plurality of regions 513. The glass cloth 1c is formed so as to continuously cover the plurality of back surface side inner layer wirings 521 and 522 and the plurality of regions 513. Then, pressure is applied to the prepreg 30A, the core layer 20, and the prepreg 40A in the stacking direction. Thereby, the site | part which covers the area | region 513 among the glass cloth 1b is bent so that it may approach the core side 20 rather than the site | part which covers several surface side inner layer wiring 511,512 among the glass cloth 1b. Therefore, the part which covers the area | region 513 among the glass cloth 1b penetrates into the core layer 20 side rather than the upper surface 512a of the surface side inner layer wiring 511,512. Therefore, the resin material constituting the prepreg 30A is pushed into the plurality of regions 513 by the glass cloth 1b. Therefore, a sufficient amount of resin material can be filled in the plurality of regions 513.
 さらに、ガラスクロス1cのうち領域514を覆う部位を、ガラスクロス1cのうち複数の裏面側内層配線521、522を覆う部位よりもコア側20に近づくように曲げる。よって、ガラスクロス1cのうち領域514を覆う部位が裏面側内層配線521、522の下面522aよりもコア層20側に入り込む。したがって、プリプレグ40Aを構成する樹脂材料がガラスクロス1cによって複数の領域514内に押し込まれる。よって、複数の領域514内に十分な量の樹脂材料を充填することができる。以上により、領域513、514に十分な量の樹脂材料を充填することができるので、領域513、514でボイドの発生を抑制することができる。 Further, the portion of the glass cloth 1c that covers the region 514 is bent so as to be closer to the core side 20 than the portion of the glass cloth 1c that covers the plurality of back side inner layer wirings 521 and 522. Therefore, the part which covers the area | region 514 among the glass cloth 1c penetrates into the core layer 20 side rather than the lower surface 522a of the back surface side inner layer wiring 521,522. Therefore, the resin material constituting the prepreg 40A is pushed into the plurality of regions 514 by the glass cloth 1c. Therefore, a sufficient amount of resin material can be filled in the plurality of regions 514. As described above, since a sufficient amount of the resin material can be filled in the regions 513 and 514, generation of voids in the regions 513 and 514 can be suppressed.
 本実施形態では、ビルドアップ層30、40の質量のうち樹脂材料の質量が占める比率「wt%」が80%以上になるように設定されている。このため、ビルドアップ層30、40としては領域513、514に対して十分な量の樹脂材料を供給することができるので、樹脂材料によって領域513、514を確実に埋め込むことができる。このため、ボイドの発生を確実に抑制することができる。 In the present embodiment, the ratio “wt%” of the mass of the resin material out of the mass of the buildup layers 30 and 40 is set to be 80% or more. For this reason, since the resin material of sufficient quantity can be supplied with respect to the area | regions 513 and 514 as the buildup layers 30 and 40, the area | regions 513 and 514 can be reliably embedded with a resin material. For this reason, generation | occurrence | production of a void can be suppressed reliably.
 本実施形態では、ガラスクロス1bの厚み寸法L1は、ガラスクロス1bの上部と表面側表層配線61~63との間の距離L2よりも小さくなっている。ガラスクロス1cの厚み寸法L3は、ガラスクロス1cの下部と裏面側表層配線71、72との間の距離L4よりも小さくなっている。このため、製造過程で加圧されても、領域513、514に対応して十分に湾曲することができる。 In this embodiment, the thickness dimension L1 of the glass cloth 1b is smaller than the distance L2 between the upper part of the glass cloth 1b and the surface-side surface wirings 61 to 63. The thickness dimension L3 of the glass cloth 1c is smaller than the distance L4 between the lower part of the glass cloth 1c and the back surface side wirings 71 and 72. For this reason, even if it pressurizes in a manufacturing process, it can fully curve corresponding to field 513,514.
 本実施形態では、ガラスクロス1b、1cのバスケットホールは、直径が100μm以下に設定されている。例えば、ガラスクロス1のバスケットホールを、直径が100μmよりも大きくなるように設定すると、積層体168を加圧した際に、図10中の太線の矢印の如く、樹脂層31側からバスケットホールを通して樹脂層32側に樹脂材料が移動してしまう。よって、樹脂層31からガラスクロス1に圧力が加わらない。このため、ガラスクロス1を湾曲させることができない。 In this embodiment, the basket holes of the glass cloths 1b and 1c are set to have a diameter of 100 μm or less. For example, if the basket hole of the glass cloth 1 is set to have a diameter larger than 100 μm, when the laminate 168 is pressed, the basket hole is passed through the basket hole from the resin layer 31 side as indicated by the thick line arrow in FIG. The resin material moves to the resin layer 32 side. Therefore, no pressure is applied from the resin layer 31 to the glass cloth 1. For this reason, the glass cloth 1 cannot be curved.
 これに対して、ガラスクロス1b、1cのバスケットホールは、上述の如く、直径が100μm以下に設定されている。このため、積層体168を加圧した際に、樹脂層31側からバスケットホールを通して樹脂層32側に樹脂材料が移動し難くなる。よって、樹脂層31からガラスクロス1b、1cに十分に圧力を加えることができる。これにより、ガラスクロス1b、1cを十分に湾曲させることができる。 On the other hand, the basket holes of the glass cloths 1b and 1c are set to have a diameter of 100 μm or less as described above. For this reason, when the laminated body 168 is pressurized, it becomes difficult for the resin material to move from the resin layer 31 side to the resin layer 32 side through the basket hole. Therefore, sufficient pressure can be applied from the resin layer 31 to the glass cloths 1b and 1c. Thereby, the glass cloth 1b, 1c can be curved sufficiently.
 本実施形態では、ガラスクロス1b、1cのバスケットホールの直径は、ガラスクロス1aのバスケットホールの直径よりも小さくなっている。このため、ガラスクロス1b、1cのバスケットホールの直径が、ガラスクロス1aのバスケットホールの直径よりも大きい場合に比べて、積層体168を加圧した際に、樹脂層31側からバスケットホールを通して樹脂層32側に樹脂材料が移動し難くなる。よって、樹脂層31からガラスクロス1b、1cに十分に圧力を加えることができる。これにより、ガラスクロス1b、1cを十分に湾曲させることができる。 In this embodiment, the diameter of the basket hole of the glass cloth 1b, 1c is smaller than the diameter of the basket hole of the glass cloth 1a. For this reason, compared with the case where the diameter of the basket hole of the glass cloth 1b, 1c is larger than the diameter of the basket hole of the glass cloth 1a, the resin is passed through the basket hole from the resin layer 31 side when the laminate 168 is pressed. It becomes difficult for the resin material to move to the layer 32 side. Therefore, sufficient pressure can be applied from the resin layer 31 to the glass cloths 1b and 1c. Thereby, the glass cloth 1b, 1c can be curved sufficiently.
 本実施形態では、ビルドアップ層30、40の質量のうちフィラの質量が占める比率「wt%」は、コア層20の質量のうちフィラの質量が占める比率「wt%」よりも大きくなっている。これにより、ビルドアップ層30、40において、フィラが混ざった樹脂材料の粘度を高めることができる。したがって、積層体168を加圧した際に、樹脂層31からガラスクロス1b、1cに十分に圧力を加えることができる。これにより、ガラスクロス1b、1cを十分に湾曲させることができる。これに加えて、ビルドアップ層30、40において十分な熱伝導率を確保することができる。 In the present embodiment, the ratio “wt%” of the mass of the buildup layers 30 and 40 occupied by the filler mass is larger than the ratio “wt%” of the mass of the core layer 20 occupied by the filler. . Thereby, in the buildup layers 30 and 40, the viscosity of the resin material mixed with filler can be increased. Therefore, when the laminated body 168 is pressurized, sufficient pressure can be applied from the resin layer 31 to the glass cloths 1b and 1c. Thereby, the glass cloth 1b, 1c can be curved sufficiently. In addition, sufficient thermal conductivity can be secured in the buildup layers 30 and 40.
 本実施形態では、ガラスクロス1bは、複数の表面側内層配線511、512および複数の領域513を連続して覆うように形成されている。このため、ビルドアップ層30の強度を増すことができる。これに加えて、ビルドアップ層30において樹脂層31にクラックが生じた場合、樹脂層31のクラックが起因して、樹脂層31側からガラスクロス1bの切れ目を介して樹脂層32側にクラックが進展することを抑制することができる。 In the present embodiment, the glass cloth 1b is formed so as to continuously cover the plurality of front side inner layer wirings 511 and 512 and the plurality of regions 513. For this reason, the strength of the buildup layer 30 can be increased. In addition to this, when a crack occurs in the resin layer 31 in the build-up layer 30, the crack occurs in the resin layer 31 from the resin layer 31 side through the cut of the glass cloth 1 b due to the crack in the resin layer 31. Progress can be suppressed.
 さらに、ガラスクロス1cは、複数の裏面側内層配線521、522および複数の領域514を連続して覆うように形成されている。このため、ビルドアップ層40においてビルドアップ層30と同様の効果が得られる。 Furthermore, the glass cloth 1c is formed so as to continuously cover the plurality of back surface side inner layer wirings 521 and 522 and the plurality of regions 514. For this reason, the same effect as the buildup layer 30 is obtained in the buildup layer 40.
 (第2実施形態)
 本第2実施形態では、凸部を設けた金属板166を用いてプリプレグ30Aのガラスクロス1bの変形を加勢する例について説明する。
(Second Embodiment)
In the second embodiment, an example in which the deformation of the glass cloth 1b of the prepreg 30A is energized using the metal plate 166 provided with the convex portions will be described.
 図11(a)、(b)に本実施形態の多層基板10の製造過程の一部を示す。 FIGS. 11A and 11B show a part of the manufacturing process of the multilayer substrate 10 of the present embodiment.
 本実施形態の多層基板10では、金属板166に凸部166aが設けられている。凸部166aは、金属板166のうち領域513に対応する部位からコア層20側に突起するように形成されている。 In the multilayer substrate 10 of the present embodiment, the metal plate 166 is provided with a convex portion 166a. The convex portion 166a is formed so as to protrude from the portion corresponding to the region 513 in the metal plate 166 to the core layer 20 side.
 このため、コア層20にプリプレグ30A、および金属板166等を積層して積層体168を構成して、積層体168を積層方向に加圧しつつ加熱した際に、
金属板166が凸部166aによってプリプレグ30Aをコア層20側に加圧することになる。つまり、金属板166がプリプレグ30Aに対してコア層20の反対側から押し付けることになる。これにより、凸部166aがプリプレグ30Aのうち領域513を覆う部分を押し付けてガラスクロス1bの変形を加勢することができる。
For this reason, when the prepreg 30A and the metal plate 166 are laminated on the core layer 20 to form the laminated body 168, and the laminated body 168 is heated while being pressed in the laminating direction,
The metal plate 166 pressurizes the prepreg 30 </ b> A toward the core layer 20 by the convex portion 166 a. That is, the metal plate 166 is pressed against the prepreg 30 </ b> A from the opposite side of the core layer 20. Thereby, the convex part 166a can press the part which covers the area | region 513 among prepreg 30A, and can energize the deformation | transformation of the glass cloth 1b.
 以上により、ガラスクロス1bのうち領域513を覆う部分を、ガラスクロス1bのうち複数の表面側内層配線511、512を覆う部位よりもコア層20側に近づくように湾曲させることを確実に行うことできる。これにより、複数の領域513内にプリプレグ30Aを構成する樹脂材料を確実に充填することができる。 As described above, the portion of the glass cloth 1b that covers the region 513 is reliably bent so as to be closer to the core layer 20 side than the portion of the glass cloth 1b that covers the plurality of front-side inner layer wirings 511 and 512. it can. Thereby, the resin material which comprises the prepreg 30A can be reliably filled in the some area | region 513. FIG.
 なお、図11(a)、(b)では、積層体168のうちプリプレグ30A、および金属板166以外の裏面側内層配線521、522、プリプレグ40Aおよび金属板167の図示を省略している。 11A and 11B, the illustration of the prepreg 30A and the backside inner layer wirings 521 and 522 other than the metal plate 166, the prepreg 40A, and the metal plate 167 in the laminated body 168 is omitted.
 上記第2実施形態では、凸部166aを設けた金属板166を用いた例について説明したが、これに加えて、凸部を設けた金属板167を用いてもよい。これにより、凸部によってプリプレグ40Aのガラスシート1cの変形を加勢することができる。これにより、複数の領域514内にプリプレグ40Aを構成する樹脂材料を確実に充填することができる。 In the second embodiment, the example using the metal plate 166 provided with the convex portion 166a has been described, but in addition to this, the metal plate 167 provided with the convex portion may be used. Thereby, a deformation | transformation of the glass sheet 1c of the prepreg 40A can be urged | biased by a convex part. Thereby, the resin material which comprises the prepreg 40A can be reliably filled in the some area | region 514. FIG.
 (第3実施形態)
 本第3実施形態では、凸部の成形型を備えるプレス機を用いて積層体168を加圧することにより、プリプレグ30Aのガラスクロス1bの変形を加勢する例について説明する。
(Third embodiment)
In the third embodiment, an example will be described in which the deformation of the glass cloth 1b of the prepreg 30A is urged by pressurizing the laminated body 168 using a press provided with a convex mold.
 図12(a)、(b)に本実施形態の多層基板10の製造過程の一部を示す。 FIGS. 12A and 12B show a part of the manufacturing process of the multilayer substrate 10 of the present embodiment.
 本実施形態では、積層体168を加圧する際に、図12(a)に示されるように、凸状の成形型601を備えるプレス機600を用いる。成形型601は、金属製の金型本体603に金属製の凸部604が設けられたものである。凸部604は、金型本体603のうち領域513に対応する部位からコア層20側に突起するように形成されている。成形型601は、金属製のベース602の上側に配置されている。 In this embodiment, when pressurizing the laminated body 168, as shown in FIG. 12A, a press machine 600 including a convex mold 601 is used. The molding die 601 is a metal mold body 603 provided with a metal convex portion 604. The convex portion 604 is formed so as to protrude from the portion corresponding to the region 513 in the mold body 603 to the core layer 20 side. The mold 601 is disposed on the upper side of the metal base 602.
 本実施形態では、金属板166、167を除いた表面側内層配線511、512、プリプレグ30A等をコア層20に積層して積層体168を構成する。そして、積層体168と成形型600との間に、テフロン(登録商標)シート等からなる離型性シート620を挟んだ状態で、離型性シート620および積層体168を、成形型600および金属製のベース610の間に配置する。このとき、積層体168を加熱しつつ、積層体168を成形型600およびベース610によって加圧する。したがって、成形型600の凸部601がガラスクロス1bのうち領域513を覆う部位の湾曲を加勢することができる。よって、上記第2実施形態と同様に、ガラスクロス1bのうち領域513を覆う部位を確実に湾曲させることできる。これにより、複数の領域513内にプリプレグ30Aを構成する樹脂材料を確実に充填することができる。 In this embodiment, the laminated body 168 is configured by laminating the surface side inner layer wirings 511 and 512 excluding the metal plates 166 and 167, the prepreg 30A, and the like on the core layer 20. Then, with the release sheet 620 made of a Teflon (registered trademark) sheet or the like sandwiched between the laminate 168 and the mold 600, the release sheet 620 and the laminate 168 are replaced with the mold 600 and the metal. It arrange | positions between the bases 610 made from. At this time, the laminate 168 is pressed by the mold 600 and the base 610 while the laminate 168 is heated. Therefore, the convex part 601 of the shaping | molding die 600 can urge the curve of the site | part which covers the area | region 513 among the glass cloth 1b. Therefore, the part which covers the area | region 513 among the glass cloth 1b can be curved reliably like the said 2nd Embodiment. Thereby, the resin material which comprises the prepreg 30A can be reliably filled in the some area | region 513. FIG.
 なお、本実施形態では、成形型600およびベース610によって積層体168を加圧するため、成形型600の形状に沿うようにプリプレグ30Aの上面300が変形する。そこで、積層体168の加圧後に、プリプレグ30Aの上面300から離型性シート620を外す。そして、プリプレグ30Aの上面300に更に樹脂層を積層することにより、プリプレグ30Aの上面300側を平坦にする。 In this embodiment, since the laminate 168 is pressed by the mold 600 and the base 610, the upper surface 300 of the prepreg 30A is deformed along the shape of the mold 600. Therefore, the release sheet 620 is removed from the upper surface 300 of the prepreg 30 </ b> A after the laminate 168 is pressed. Then, by further laminating a resin layer on the upper surface 300 of the prepreg 30A, the upper surface 300 side of the prepreg 30A is flattened.
 上記第3実施形態では、積層体168を加圧する際に、成形型600に凸部601を設けたプレス機を用いた例について説明したが、これに加えて、ベース610に凸部を設けたものを用いてもよい。凸部によってプリプレグ40Aのガラスシート1cの変形を加勢することができる。これにより、複数の領域514内にプリプレグ40Aを構成する樹脂材料を確実に充填することができる。 In the third embodiment, the example in which the press machine provided with the convex portion 601 is provided in the mold 600 when pressing the laminated body 168 has been described, but in addition to this, the base 610 is provided with the convex portion. A thing may be used. The deformation of the glass sheet 1c of the prepreg 40A can be urged by the convex portion. Thereby, the resin material which comprises the prepreg 40A can be reliably filled in the some area | region 514. FIG.
 (第4実施形態)
 上記第3実施形態では、金属製の成形型600を用いたプレス機を用いた例について説明したが、これに代えて、静水圧成形法により積層体168を加圧してもよい。
(Fourth embodiment)
Although the said 3rd Embodiment demonstrated the example using the press using the metal shaping | molding die 600, it may replace with this and you may pressurize the laminated body 168 by an isostatic pressing method.
 図13(a)、(b)に本実施形態の多層基板10の製造過程の一部を示す。 FIGS. 13A and 13B show a part of the manufacturing process of the multilayer substrate 10 of the present embodiment.
 本実施形態では、積層体168を加圧する際に、図13(a)に示されるように、バルーン状に形成されているゴム型からなる成形型601Aを備える静水圧プレス機600Aを用いる。これにより、プリプレグ30Aに対して加える圧力を面方向に均一にすることができる。よって、上記第2、3の実施形態と同様に、ガラスクロス1bのうち領域513を覆う部位を確実に湾曲させることができる。これにより、複数の領域513および表面側内層配線511、512から構成されるコア層20の表面側の凹凸にプリプレグ30Aのガラスクロス1b形状を追従させることができる。よって、複数の領域513内にプリプレグ30Aを構成する樹脂材料を確実に充填することができる。 In this embodiment, when pressurizing the laminate 168, as shown in FIG. 13A, a hydrostatic press 600A including a molding die 601A made of a rubber mold formed in a balloon shape is used. Thereby, the pressure applied with respect to the prepreg 30A can be made uniform in a surface direction. Therefore, as in the second and third embodiments, the portion of the glass cloth 1b that covers the region 513 can be reliably bent. Thereby, the glass cloth 1b shape of the prepreg 30A can be made to follow the unevenness | corrugation of the surface side of the core layer 20 comprised from the some area | region 513 and the surface side inner layer wiring 511,512. Accordingly, the resin material constituting the prepreg 30 </ b> A can be reliably filled in the plurality of regions 513.
 なお、上記第3の実施形態と同様に、プリプレグ30Aを加圧後、プリプレグ30Aの上面300に樹脂層を積層することにより、プリプレグ30Aの上面300側を平坦にしてもよい。 As in the third embodiment, the upper surface 300 side of the prepreg 30A may be flattened by pressurizing the prepreg 30A and then laminating a resin layer on the upper surface 300 of the prepreg 30A.
 (第4実施形態)
 上記第1~3実施形態では、ガラスクロス1bのうち領域513を覆う部位を曲げて、ガラスクロス1bのうち領域513を覆う部位が表面側内層配線511、512の上面512aよりもコア層20側に入り込むようにした例について説明したが、これに限らず、次のようにしてもよい。
(Fourth embodiment)
In the first to third embodiments, the portion of the glass cloth 1b that covers the region 513 is bent, and the portion of the glass cloth 1b that covers the region 513 is closer to the core layer 20 than the upper surface 512a of the surface-side inner layer wirings 511 and 512. Although the example of entering is described, the present invention is not limited to this, and the following may be used.
 すなわち、図14に示すように、ガラスクロス1bのうち領域513を覆う部位が、ガラスクロス1bのうち複数の表面側内層配線511、512を覆う部位よりもコア側20に近づくように曲げるのであれば、ガラスクロス1bのうち領域513を覆う部位が表面側内層配線511、512の上面512aに対してコア層20と反対側に位置してもよい。 That is, as shown in FIG. 14, the portion of the glass cloth 1 b that covers the region 513 is bent so that it is closer to the core side 20 than the portion of the glass cloth 1 b that covers the plurality of front surface inner layer wirings 511 and 512. For example, a portion of the glass cloth 1b that covers the region 513 may be positioned on the opposite side of the core layer 20 with respect to the upper surface 512a of the front-side inner- layer wirings 511 and 512.
 (他の実施形態)
 上記第1~第4の実施形態では、プリプレグ層からなるコア層20を用いた例について説明したが、これに代えて、絶縁層としては、セラミック等からコア層20を用いてもよい。
(Other embodiments)
In the first to fourth embodiments, the example using the core layer 20 made of the prepreg layer has been described. However, instead of this, the core layer 20 made of ceramic or the like may be used as the insulating layer.
 上記第1~第4の実施形態では、「間隔を空けて配置された導体」としての複数の表面側内層配線511、512をそれぞれ離れて配置した例について説明したが、これに代えて、互いに対向する2つの部位を有するように湾曲した1つの導体を表面側内層配線として用いてもよい。この場合、2つの部位の間の領域が本発明の「間隔を構成する領域」になる。同様に、互いに対向する2つの部位を有するように湾曲した1つの導体を裏面側内層配線として用いてもよい。この場合も、2つの部位の間の領域が本発明の「間隔を構成する領域」になる。 In the first to fourth embodiments described above, examples in which the plurality of front side inner layer wirings 511 and 512 as “conductors arranged at intervals” are arranged apart from each other have been described. One conductor curved so as to have two portions facing each other may be used as the front-side inner layer wiring. In this case, the region between the two parts is the “region constituting the interval” in the present invention. Similarly, a single conductor curved so as to have two portions facing each other may be used as the back side inner layer wiring. Also in this case, the region between the two parts is the “region constituting the interval” of the present invention.
 また、本開示に係る実施形態は、上記した実施形態に限定されるものではなく、本開示の技術思想の範囲内において適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能であり、また、上記各実施形態は、上記の図示例に限定されるものではない。 Further, the embodiment according to the present disclosure is not limited to the above-described embodiment, and can be appropriately changed within the scope of the technical idea of the present disclosure. The above embodiments are not irrelevant to each other, and can be combined as appropriate unless the combination is clearly impossible. Also, the above embodiments are not limited to the illustrated examples. Absent.

Claims (10)

  1.  電気絶縁材料からなる絶縁層(20)と、
     前記絶縁層の表面(20a、20b)に設けられたもので、間隔を空けて配置された導体(511、512、521、522)と、
     第1のガラスクロス(1b、1c)と前記第1のガラスクロスの両面側を樹脂材料で封止する樹脂層(31、32、41、42)とを備えるプリプレグ(30A、40A)を、前記導体と共に前記絶縁層の表面を覆うように前記絶縁層に積層されてなるビルドアップ層(30、40)と、を備え、
     前記絶縁層の表面側では、前記樹脂層を構成する樹脂材料が前記間隔を構成する領域(513、514)内に充填された状態で前記導体を封止しており、
     前記第1のガラスクロスが前記導体および前記間隔を構成する領域を連続して覆うように形成されており、
     前記第1のガラスクロスのうち前記間隔を構成する領域を覆う部位は、前記第1のガラスクロスのうち前記導体を覆う部位よりも前記絶縁層側に近づくように曲がっている多層基板。
    An insulating layer (20) made of an electrically insulating material;
    Conductors (511, 512, 521, 522) provided on the surfaces (20a, 20b) of the insulating layer and spaced apart; and
    A prepreg (30A, 40A) comprising a first glass cloth (1b, 1c) and resin layers (31, 32, 41, 42) for sealing both surfaces of the first glass cloth with a resin material, A buildup layer (30, 40) laminated on the insulating layer so as to cover the surface of the insulating layer together with the conductor, and
    On the surface side of the insulating layer, the conductor is sealed in a state in which the resin material constituting the resin layer is filled in the regions (513, 514) constituting the gap,
    The first glass cloth is formed so as to continuously cover the conductor and the region constituting the interval,
    A portion of the first glass cloth that covers a region that forms the interval is a multilayer substrate that is bent so as to be closer to the insulating layer than a portion of the first glass cloth that covers the conductor.
  2.  前記第1のガラスクロスのうち前記間隔を構成する領域を覆う部位は、前記導体のうち前記絶縁層の反対側端部(512a、522a)よりも前記絶縁層側に入り込んでいる請求項1に記載の多層基板。 The part which covers the area | region which comprises the said space | interval among the said 1st glass cloth has penetrated into the said insulating layer side rather than the opposite side edge part (512a, 522a) of the said insulating layer among the said conductors. The multilayer substrate described.
  3.  前記ビルドアップ層の厚み方向において前記ビルドアップ層のうち前記絶縁層の反対側の面(31a、41a)と前記第1のガラスクロスとの間の寸法よりも、前記第1のガラスクロスの厚さ寸法の方が小さい請求項1または2に記載の多層基板。 The thickness of the first glass cloth is larger than the dimension between the first glass cloth and the surface (31a, 41a) opposite to the insulating layer in the buildup layer in the thickness direction of the buildup layer. The multilayer substrate according to claim 1 or 2, wherein the thickness dimension is smaller.
  4.  前記絶縁層は、第2のガラスクロス(1a)と前記第2のガラスクロスの両面側を樹脂材料で封止する樹脂層(21、22)を備えるプリプレグから構成されている請求項1ないし3のいずれか1つに記載の多層基板。 The said insulating layer is comprised from the prepreg provided with the resin layer (21, 22) which seals the double-sided side of the 2nd glass cloth (1a) and the said 2nd glass cloth with a resin material. A multilayer substrate according to any one of the above.
  5.  前記第1、第2のガラスクロスは、第1方向に延びるガラス繊維からそれぞれ構成される複数本の第1のヤーン(33)と、前記第1方向に直交する第2方向に延びるガラス繊維からそれぞれ構成される複数本の第2のヤーン(34)とを備え、前記複数本の第1のヤーンのうち隣り合う2本の第1のヤーンと前記複数本の第2のヤーンのうち隣り合う2本の第2のヤーンとが穴(36)を囲むように織られたものであり、
     前記第1のガラスクロスの前記穴は、前記第2のガラスクロスの前記穴よりも小さい請求項4に記載の多層基板。
    The first and second glass cloths include a plurality of first yarns (33) each composed of glass fibers extending in a first direction, and glass fibers extending in a second direction orthogonal to the first direction. A plurality of second yarns (34) each configured, and adjacent to each other between the two first yarns adjacent to each other among the plurality of first yarns and the plurality of second yarns. Two second yarns are woven to surround the hole (36),
    The multilayer substrate according to claim 4, wherein the hole of the first glass cloth is smaller than the hole of the second glass cloth.
  6.  前記ビルドアップ層の前記樹脂層を構成する樹脂材料には、第1のフィラが混ざっており、
     前記絶縁層の前記樹脂層を構成する樹脂材料には、第2のフィラが混ざっており、
     前記ビルドアップ層の質量のうち前記第1のフィラの質量が占める比率は、前記絶縁層の質量のうち前記第2のフィラの質量が占める比率よりも大きい請求項4または5に記載の多層基板。
    The resin material constituting the resin layer of the build-up layer is mixed with a first filler,
    The resin material constituting the resin layer of the insulating layer is mixed with a second filler,
    The multilayer substrate according to claim 4 or 5, wherein a ratio of the mass of the first filler to a mass of the buildup layer is larger than a ratio of the mass of the second filler to the mass of the insulating layer. .
  7.  前記ビルドアップ層の質量のうち前記樹脂材料の質量が占める比率は、80%以上である請求項1ないし6のいずれか1つに記載の多層基板。 The multilayer substrate according to any one of claims 1 to 6, wherein a ratio of the mass of the resin material to the mass of the buildup layer is 80% or more.
  8.  間隔を空けて配置された導体(511、512、521、522)を、電気絶縁材料からなる絶縁層(20)の表面(20a、20b)に形成すること(S100)と、
     ガラスクロス(1b、1c)と前記ガラスクロスの両面側を樹脂材料で封止する樹脂層(31、32、41、42)とを備えるプリプレグ(30A、40A)を用意すること(S110)と、
     前記絶縁層の表面側における前記導体と前記間隔を構成する領域(513、514)とを前記ガラスクロスが連続して覆うように前記絶縁層および前記プリプレグを対向させること(S120)と、
     前記絶縁層および前記プリプレグを対向させた後に、前記絶縁層および前記プリプレグのうち一方を他方に対して加圧して、前記ガラスクロスのうち前記間隔を構成する領域を覆う部位を、前記ガラスクロスのうち前記導体を覆う部位よりも前記縁層側に近づくように曲げることにより、前記樹脂層を構成する樹脂材料を前記間隔を構成する領域内に充填すること(S120)と、を備える多層基板の製造方法。
    Forming spaced apart conductors (511, 512, 521, 522) on the surface (20a, 20b) of the insulating layer (20) made of an electrically insulating material (S100);
    Preparing a prepreg (30A, 40A) comprising a glass cloth (1b, 1c) and resin layers (31, 32, 41, 42) for sealing both surfaces of the glass cloth with a resin material (S110);
    Making the insulating layer and the prepreg face each other so that the glass cloth continuously covers the conductor on the surface side of the insulating layer and the region (513, 514) constituting the gap;
    After making the insulating layer and the prepreg face each other, pressurize one of the insulating layer and the prepreg against the other to cover a portion of the glass cloth that covers the region of the gap. And filling the resin material constituting the resin layer into the region constituting the gap by bending the portion closer to the edge layer side than the portion covering the conductor (S120). Production method.
  9.  前記樹脂層を構成する樹脂材料を前記間隔を構成する領域内に充填する際には、前記ガラスクロスのうち前記間隔を構成する領域を覆う部位を、前記導体のうち前記絶縁層の反対側端部(512a、522a)よりも前記絶縁層側に入れ込む請求項8に記載の多層基板の製造方法。 When the resin material constituting the resin layer is filled in the region constituting the gap, the portion of the glass cloth covering the region constituting the gap is arranged on the opposite end of the conductor to the insulating layer. The method for manufacturing a multilayer substrate according to claim 8, wherein the multilayer substrate is inserted closer to the insulating layer than the portions (512 a, 522 a).
  10.  前記樹脂層を構成する樹脂材料を前記間隔を構成する領域内に充填する際には、前記間隔を構成する領域に向けて凸となる凸部(166a)が設けられた金属板(166)を、前記プリプレグに対して前記絶縁層の反対側に配置して、前記金属板が前記凸部によって前記プリプレグのうち前記間隔を構成する領域に対応する部位を前記絶縁層側に加圧する請求項8または9に記載の多層基板の製造方法。 When the resin material constituting the resin layer is filled in the region constituting the interval, the metal plate (166) provided with the convex portion (166a) protruding toward the region constituting the interval is provided. The metal plate is arranged on the opposite side of the insulating layer with respect to the prepreg, and the metal plate pressurizes a portion corresponding to a region constituting the interval in the prepreg to the insulating layer side by the convex portion. Or a method for producing a multilayer substrate according to 9.
PCT/JP2014/002941 2013-06-13 2014-06-03 Multilayer substrate and method for manufacturing multilayer substrate WO2014199592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-124969 2013-06-13
JP2013124969A JP6127756B2 (en) 2013-06-13 2013-06-13 Multilayer substrate and method for manufacturing multilayer substrate

Publications (1)

Publication Number Publication Date
WO2014199592A1 true WO2014199592A1 (en) 2014-12-18

Family

ID=52021910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002941 WO2014199592A1 (en) 2013-06-13 2014-06-03 Multilayer substrate and method for manufacturing multilayer substrate

Country Status (2)

Country Link
JP (1) JP6127756B2 (en)
WO (1) WO2014199592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041568A (en) * 2015-08-20 2017-02-23 富士通株式会社 Wiring substrate, electronic apparatus and manufacturing method of wiring substrate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344887A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Printed-wiring board and manufacturing method therefor
JP2013089745A (en) * 2011-10-18 2013-05-13 Panasonic Corp Multi-layer printed wiring board and manufacturing method of the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344887A (en) * 2005-06-10 2006-12-21 Mitsubishi Electric Corp Printed-wiring board and manufacturing method therefor
JP2013089745A (en) * 2011-10-18 2013-05-13 Panasonic Corp Multi-layer printed wiring board and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041568A (en) * 2015-08-20 2017-02-23 富士通株式会社 Wiring substrate, electronic apparatus and manufacturing method of wiring substrate

Also Published As

Publication number Publication date
JP2015002215A (en) 2015-01-05
JP6127756B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
WO2014091869A1 (en) Wiring substrate and production method therefor
JP2006165299A5 (en)
WO2014174827A1 (en) Multi-layer substrate, electronic device using multi-layer substrate, manufacturing method for multi-layer substrate, substrate, and electronic device using substrate
KR20140031998A (en) Multi-layer wiring board and method for producing multi-layer wiring board
JP6111832B2 (en) Multilayer substrate, electronic device using the same, and method for manufacturing electronic device
WO2014199592A1 (en) Multilayer substrate and method for manufacturing multilayer substrate
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
CN108353508A (en) The manufacturing method of substrate and substrate
JP6011472B2 (en) Substrate and electronic device using the same
JP5983523B2 (en) Multilayer substrate, electronic device using the same, and method for manufacturing electronic device
JP2014220429A (en) Multilayer substrate and electronic device using the same
JP2008198747A (en) Printed circuit board and manufacturing method thereof
JP2015207620A (en) Electronic device
JP2014220337A (en) Multilayer board, and method of manufacturing multilayer board
JP2015015355A (en) Wiring board, electronic device using the same, and manufacturing method of wiring board
JP2016195192A (en) Printed circuit board and electronic device
JP2009267061A (en) Method of manufacturing wiring board
JP6075187B2 (en) Multilayer substrate and electronic device using the same
JP2014220304A (en) Multilayer board and electronic device using the same
JP6111833B2 (en) Multilayer substrate manufacturing method
JP2005294496A (en) Connecting structure of wiring board and its manufacturing method
JP6323011B2 (en) Multilayer board
JP2014220308A (en) Multilayer board and electronic device using the same
JP2014220306A (en) Printed circuit board, electronic device using the same and method of manufacturing printed circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810156

Country of ref document: EP

Kind code of ref document: A1