WO2014199572A1 - 光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器 - Google Patents

光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器 Download PDF

Info

Publication number
WO2014199572A1
WO2014199572A1 PCT/JP2014/002711 JP2014002711W WO2014199572A1 WO 2014199572 A1 WO2014199572 A1 WO 2014199572A1 JP 2014002711 W JP2014002711 W JP 2014002711W WO 2014199572 A1 WO2014199572 A1 WO 2014199572A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical coupling
refractive index
coupling structures
sheet
Prior art date
Application number
PCT/JP2014/002711
Other languages
English (en)
French (fr)
Inventor
青児 西脇
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015522501A priority Critical patent/JP5970660B2/ja
Publication of WO2014199572A1 publication Critical patent/WO2014199572A1/ja
Priority to US14/630,275 priority patent/US9494742B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094019Side pumped fibre, whereby pump light is coupled laterally into the fibre via an optical component like a prism, or a grating, or via V-groove coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present application relates to a light capturing sheet and a light capturing rod that capture light using diffraction, and a light receiving device, a light emitting device, and an optical fiber amplifier using the same.
  • FIGS. 23A and 23B are explanatory views showing the principle of the grating coupling method, and show a cross-sectional view and a plan view of the translucent layer 20 provided with a linear grating with a pitch ⁇ on the surface.
  • FIG. 23A when light 23a having a wavelength ⁇ is incident on the grating at a specific incident angle ⁇ , it can be coupled to the waveguide light 23B propagating through the light transmitting layer 20.
  • One non-limiting aspect of the present disclosure provides a light capturing sheet and a light capturing rod capable of capturing light in a wide wavelength range from a wide area at a wide incident angle.
  • a light receiving device, a light emitting device, and an optical fiber amplifier using them are provided.
  • a light capturing sheet includes a light transmitting sheet having first and second main surfaces, and a light transmitting sheet in the light transmitting sheet, the first and second main surfaces respectively having first and second main surfaces.
  • a plurality of optical coupling structures disposed inside at a second distance or more, wherein each of the plurality of optical coupling structures includes a first light transmissive layer, a second light transmissive layer, and the first light transmissive layer.
  • a third light-transmitting layer sandwiched between the second light-transmitting layers, and the refractive index of the first and second light-transmitting layers is smaller than the refractive index of the light-transmitting sheet.
  • the refractive index of the third light-transmitting layer is larger than the refractive index of the first and second light-transmitting layers, and each of the plurality of optical coupling structures includes the first and second light-transmitting sheets.
  • a plurality of the optical coupling structures arranged in the first and second directions form a group of optical coupling structures, and the plurality of optical coupling structures arranged in the first and second directions on another plane parallel to the plane.
  • Another group of optical coupling structures is formed by the optical coupling structure, and the group of optical coupling structures and the other group of optical coupling structures are adjacent to each other in the third direction, and the group of light coupling structures.
  • Each optical coupling structure constituting the coupling structure and each optical coupling structure constituting the other group of optical coupling structures do not overlap in the third direction, and are included in the group of optical coupling structures.
  • the third light-transmitting layer in one optical coupling structure and the other The third light transmitting layer in the second light coupling structure included in the group optical coupling structure and adjacent to the first light coupling structure is made of the same material as the third light transmitting layer. They are connected to each other by a connecting portion.
  • a light capturing rod includes a main surface and a translucent rod having a circular or elliptical cross section, and the inner portion of the translucent rod that is separated from the main surface by a first distance or more.
  • a plurality of optical coupling structures arranged, and each of the plurality of optical coupling structures includes a first light transmissive layer, a second light transmissive layer, the first light transmissive layer, and the second light transmissive layer.
  • the refractive index is larger than the refractive indexes of the first and second light-transmitting layers
  • each of the plurality of optical coupling structures has a diffraction grating parallel to the central axis of the light-transmitting rod.
  • the coupling structure is different from each other on the cylindrical side surface at a predetermined distance from the central axis of the rod.
  • the first and second directions and a third direction from the cylindrical side surface toward the central axis are three-dimensionally arranged, and a plurality of the first and second directions are arranged on the cylindrical side surface.
  • a group of optical coupling structures is constituted by the optical coupling structure, and a plurality of the lights arranged in the first and second directions on another cylindrical side surface different from the cylindrical side surface by a distance from the central axis of the rod.
  • the coupling structure forms another group of optical coupling structures, and the group of optical coupling structures and the other group of optical coupling structures are adjacent to each other in the third direction, and the group of optical coupling structures is
  • Each optical coupling structure constituting and each optical coupling structure constituting the other group of optical coupling structures do not overlap in the third direction, and the first light included in the group of optical coupling structures
  • the third light-transmitting layer in the second light-coupling structure included in another group of light-coupling structures and adjacent to the first light-coupling structure is made of the same material as the third light-transmitting layer Are connected to each other by a connecting portion.
  • the light capturing sheet or light capturing rod according to the present disclosure can capture light in a wide wavelength range from a wide area at a wide incident angle.
  • (A) is typical sectional drawing which shows 1st Embodiment of the light capture sheet
  • (b) is a figure which expands and shows a part of optical coupling structure in a translucent sheet
  • (C) is a top view which shows the position of the 4th area
  • (A) And (b) is typical sectional drawing and top view which show the optical coupling structure of 1st Embodiment
  • (c) is a cross section which shows the mode of the light which injects into the end surface of an optical coupling structure
  • (D) is sectional drawing which shows the mode of the light which injects into the optical coupling structure which extracted the 3rd translucent layer 3c
  • (e) is another figure of optical coupling structure It is sectional drawing which shows a structural example. It is a figure which shows arrangement
  • (a) to (c) shows the relationship between the incident angle of light and the transmittance to the outside of the sheet
  • (d) It is a graph which shows the relationship between the groove depth of a diffraction grating, and the light extraction efficiency out of a sheet
  • (A) to (e) is a diagram showing the light intensity distribution of the sheet cross section under the condition of the position shown by the arrows in FIGS. 4 (a) to (c).
  • the refractive index of the first light-transmitting layer 3a and the second light-transmitting layer 3b is matched with the refractive index of the light-transmitting sheet, and the refractive index of the third light-transmitting layer 3c is 2.0.
  • (A) to (c) show the relationship between the incident angle and the transmittance to the outside of the sheet, and (d) shows the groove depth of the diffraction grating and the outside of the sheet. It is a graph which shows the relationship with the light extraction efficiency to.
  • (A) to (i) is a schematic cross-sectional view showing a manufacturing procedure of the light capturing sheet of the first embodiment.
  • (A) And (b) is typical sectional drawing which shows the other manufacturing procedure of the light acquisition sheet
  • (A) to (d) is a diagram showing the shape and arrangement of the optical coupling structure in the xy plane. It is a typical sectional view showing an embodiment of a photo acceptance unit by this indication.
  • FIG. 17 is a schematic diagram illustrating a manufacturing procedure of the light capturing rod illustrated in FIG. 16.
  • (A) to (d) is a schematic view showing another manufacturing procedure of the light capturing rod shown in FIG. 16. It is a typical top view which shows the mask pattern used for manufacture of the light intake rod shown in FIG. It is a typical sectional view showing an embodiment of a light emitting device by this indication.
  • FIG. 20 is a cross-sectional view illustrating a state of incidence of light on a cross section of the light capturing rod of the light emitting device illustrated in FIG. 19.
  • (A) And (b) is a typical block diagram which shows embodiment of the amplifier for optical fibers. It is typical sectional drawing which shows other embodiment of the light-emitting device by this indication.
  • (A) And (b) is sectional drawing and a top view of the linear grating for taking in light with a grating coupling
  • (c) And (d) is a figure which shows the principle of a grating coupling
  • FIG. 23C shows a vector diagram of light incident on the grating provided in the light transmissive layer 20.
  • circles 21 and 22 are centered on the point O, the radius of the circle 21 is equal to the refractive index n 0 of the environmental medium 1 surrounding the translucent layer 20, and the radius of the circle 22 is equivalent to the waveguide light 23B. It is equal to the refractive index n eff .
  • the equivalent refractive index n eff is dependent on the thickness of the transparent layer 20, it takes a specific value between the refractive index n 0 of the environmental medium 1 to the refractive index n 1 of the light transmitting layer 20 according to the guided mode .
  • FIG. 23D shows the relationship between the effective film thickness t eff and the equivalent refractive index n eff when light propagates through the translucent layer 20 in the TE mode.
  • the effective film thickness is the film thickness itself of the light transmitting layer 20 when there is no grating, and is the film thickness of the light transmitting layer 20 plus the average height of the grating when there is a grating. is there.
  • the guided light to be excited has modes such as 0th order, 1st order, and 2nd order, and the characteristic curves are different as shown in FIG.
  • a point P is a point drawn from the point O along the incident angle ⁇ and intersects with the circle 21, and a point P ′ is a perpendicular foot of the point P to the x-axis, points Q, Q 'Is the intersection of the circle 22 and the x-axis.
  • the light coupling condition in the x-axis positive direction is that the length of P′Q is equal to an integral multiple of ⁇ / ⁇ , and the light coupling condition in the negative direction is an integer in which the length of P′Q ′ is ⁇ / ⁇ . Expressed by being equal to double. Where ⁇ is the wavelength of light and ⁇ is the pitch of the grating. That is, the light coupling condition is expressed by the equation (1).
  • Equation (1) q is the diffraction order represented by an integer.
  • the substantial pitch of the grating of the light transmitting layer 20 with respect to the light 23aa incident on the light transmitting layer 20 at the azimuth angle ⁇ shifted from the incident direction of the light 23a by the angle ⁇ is ⁇ / cos ⁇ .
  • the light 23a incident in a different direction can satisfy the light coupling condition even at an incident angle ⁇ and a wavelength different from the condition defined by the expression (1). That is, in the case where the change in the direction of light incident on the light transmitting layer 20 is allowed, the light coupling condition expressed by the equation (1) becomes wide to some extent.
  • the incident light cannot be coupled to the guided light 23B in a wide wavelength range and all incident angles.
  • the guided light 23B radiates light 23b 'in the same direction as the reflected light with respect to the incident light 23a while propagating through the grating region. For this reason, even if it is incident at a position far from the end 20a of the grating and can propagate through the light transmitting layer 20 as the guided light 23B, it is attenuated when it reaches the end 20a of the grating. Therefore, only the light 23a incident at a position close to the end portion 20a of the grating can propagate through the light transmitting layer 20 as the guided light 23B without being attenuated by radiation.
  • the inventor of the present application has come up with a novel light capturing sheet.
  • One aspect of the light capturing sheet, the light capturing rod, the light receiving device, the light emitting device, and the optical fiber amplifier of the present application is as follows.
  • a light capturing sheet includes a light transmitting sheet having first and second main surfaces, and a light transmitting sheet in the light transmitting sheet, the first and second main surfaces respectively having first and second main surfaces.
  • a plurality of optical coupling structures disposed inside at a second distance or more, wherein each of the plurality of optical coupling structures includes a first light transmissive layer, a second light transmissive layer, and the first light transmissive layer.
  • a third light-transmitting layer sandwiched between the second light-transmitting layers, and the refractive index of the first and second light-transmitting layers is smaller than the refractive index of the light-transmitting sheet.
  • the refractive index of the third light-transmitting layer is larger than the refractive index of the first and second light-transmitting layers, and each of the plurality of optical coupling structures includes the first and second light-transmitting sheets.
  • a plurality of the optical coupling structures arranged in the first and second directions form a group of optical coupling structures, and the plurality of optical coupling structures arranged in the first and second directions on another plane parallel to the plane.
  • Another group of optical coupling structures is formed by the optical coupling structure, and the group of optical coupling structures and the other group of optical coupling structures are adjacent to each other in the third direction, and the group of light coupling structures.
  • Each optical coupling structure constituting the coupling structure and each optical coupling structure constituting the other group of optical coupling structures do not overlap in the third direction, and are included in the group of optical coupling structures.
  • the third light-transmitting layer in one optical coupling structure and the other The third light transmitting layer in the second light coupling structure included in the group optical coupling structure and adjacent to the first light coupling structure is made of the same material as the third light transmitting layer. They are connected to each other by a connecting portion.
  • each of the first light transmitting layer and the second light transmitting layer is in a direction parallel to the first and second main surfaces of the light transmitting sheet.
  • a plurality of high refractive index portions and a plurality of low refractive index portions alternately arranged along the plurality of high refractive index portions and the plurality of low refractive index portions of the first and second light-transmitting layers.
  • the refractive index is smaller than the refractive index of the light transmissive sheet
  • the refractive index of the third light transmissive layer is the plurality of high refractive index portions and the plurality of low refractive indexes of the first and second light transmissive layers.
  • the refractive index of the plurality of high refractive index portions may be larger than the refractive index of the plurality of low refractive index portions.
  • the first light-transmitting layer in the first light-coupling structure and the first light-transmitting layer in the second light-coupling structure may include the first light-transmitting layer.
  • the second light-transmitting layer in the first light-coupling structure and the second light-transmitting structure in the second light-coupling structure which are connected to each other by a connection portion made of the same material as the one light-transmitting layer.
  • the layers may be connected to each other by a connection portion made of the same material as the second light transmissive layer.
  • each of the group of light coupling structures and the other group of light coupling structures has a rectangular shape in a plane parallel to the first and second main surfaces.
  • Each of the group of optical coupling structures and the other group of optical coupling structures are arranged in a checker pattern so as not to overlap each other when viewed from a direction perpendicular to the first and second main surfaces. May be.
  • each of the group of light coupling structures and the other group of light coupling structures has a hexagonal shape in a plane parallel to the first and second main surfaces.
  • the first translucent layer, the second translucent layer, and the third translucent layer may be connected to each other.
  • the first light transmissive layer, the second light transmissive layer, and the third light transmissive layer may be connected to each other.
  • the pitch of the diffraction grating is 0.1 ⁇ m or more and 3 ⁇ m or less, and the surfaces of the first and second light-transmitting layers in the optical coupling structure are 100 ⁇ m or less.
  • Each of the plurality of optical coupling structures may have a size circumscribing a circle having a diameter, and may be 3 ⁇ m or less.
  • directions in which the diffraction gratings extend may be different from each other, or pitches of the diffraction gratings may be different from each other. Good.
  • a surface of the first and second light transmissive layers in contact with the light transmissive sheet, and the first A concavo-convex structure having a pitch and a height of 1/3 or less of the center wavelength of light incident on the optical coupling structure may be disposed on either the main surface or the second main surface.
  • a light capturing rod includes a main surface and a translucent rod having a circular or elliptical cross section, and the inner portion of the translucent rod that is separated from the main surface by a first distance or more.
  • a plurality of optical coupling structures arranged, and each of the plurality of optical coupling structures includes a first light transmissive layer, a second light transmissive layer, the first light transmissive layer, and the second light transmissive layer.
  • the refractive index is larger than the refractive indexes of the first and second light-transmitting layers
  • each of the plurality of optical coupling structures has a diffraction grating parallel to the central axis of the light-transmitting rod.
  • the coupling structure is different from each other on the cylindrical side surface at a predetermined distance from the central axis of the rod.
  • the first and second directions and a third direction from the cylindrical side surface toward the central axis are three-dimensionally arranged, and a plurality of the first and second directions are arranged on the cylindrical side surface.
  • a group of optical coupling structures is constituted by the optical coupling structure, and a plurality of the lights arranged in the first and second directions on another cylindrical side surface different from the cylindrical side surface by a distance from the central axis of the rod.
  • the coupling structure forms another group of optical coupling structures, and the group of optical coupling structures and the other group of optical coupling structures are adjacent to each other in the third direction, and the group of optical coupling structures is
  • Each optical coupling structure constituting and each optical coupling structure constituting the other group of optical coupling structures do not overlap in the third direction, and the first light included in the group of optical coupling structures
  • the third light-transmitting layer in the second light-coupling structure included in another group of light-coupling structures and adjacent to the first light-coupling structure is made of the same material as the third light-transmitting layer Are connected to each other by a connecting portion.
  • each of the first light transmitting layer and the second light transmitting layer is alternately arranged along a direction parallel to the main surface of the light transmitting rod.
  • a plurality of high refractive index portions and a plurality of low refractive index portions, and the refractive indices of the plurality of high refractive index portions and the plurality of low refractive index portions of the first and second light-transmitting layers are The refractive index of the third light transmissive layer is smaller than the refractive index of the plurality of high refractive index portions and the plurality of low refractive index portions of the first and second light transmissive layers.
  • the refractive index of the plurality of high refractive index portions may be larger than the refractive index of the plurality of low refractive index portions.
  • the first light-transmitting layer in the first optical coupling structure and the first light-transmitting layer in the second optical coupling structure are The second light-transmitting layer in the first light-coupling structure and the second light-transmitting structure in the second light-coupling structure, which are connected to each other by a connection portion made of the same material as the one light-transmitting layer.
  • the layers may be connected to each other by a connection portion made of the same material as the second light transmissive layer.
  • each of the group of optical coupling structures and the other group of optical coupling structures has a rectangular shape in a plane parallel to the main surface, and Each of the optical coupling structure and the other group of optical coupling structures may be arranged in a checker pattern so as not to overlap each other when viewed from a direction perpendicular to the main surface.
  • each of the group of optical coupling structures and the other group of optical coupling structures has a hexagonal shape in a plane parallel to the main surface, and
  • the first light-transmitting layer, the second light-transmitting layer, and the third light-transmitting layer are connected to each other in at least two adjacent optical coupling structures of each of the optical coupling structure and the other group of optical coupling structures May be.
  • the first light transmissive layer, the second light transmissive layer, and the third light transmissive layer may be connected to each other.
  • the pitch of the diffraction grating may be 0.1 ⁇ m or more and 3 ⁇ m or less
  • the surfaces of the first and second light-transmitting layers in the optical coupling structure are:
  • the optical coupling structure may have a size circumscribing a circle having a diameter of 100 ⁇ m or less, and each optical coupling structure may have a thickness of 3 ⁇ m or less.
  • the extending directions of the diffraction gratings may be different from each other, or the pitches of the diffraction gratings may be different from each other. Good.
  • a concavo-convex structure having a pitch and a height of 1/3 or less of the center wavelength of light incident on the optical coupling structure may be arranged.
  • a light receiving device includes the light capturing sheet according to any one of the above, the first main surface, the second main surface, the first main surface, and the first of the light capturing sheet. And a photoelectric conversion unit provided on one of end faces adjacent to the main surface.
  • the light receiving device may further include any one of the other light capturing sheets described above, and the photoelectric conversion unit may be provided on the first main surface of the light capturing sheet. An end surface of the other light capturing sheet may be connected to the second main surface of the sheet.
  • a light receiving device includes the light capturing sheet according to any one of the above, a concavo-convex structure or a prism sheet provided on the first main surface or the second main surface of the light capturing sheet. And a photoelectric conversion unit that receives light emitted from the concavo-convex structure or the prism sheet.
  • a light receiving device includes the light capturing sheet according to any one of the above, and an uneven structure provided on a part of the first main surface or the second main surface of the light capturing sheet.
  • a light emitting device includes a light capturing sheet according to any one of the above and a light source provided in proximity to one of the first main surface or the second main surface of the light capturing sheet. And a concavo-convex structure provided on the other of the first main surface or the second main surface of the light capturing sheet, and a prism sheet arranged so that light emitted from the concavo-convex structure is incident thereon. .
  • a light-emitting device includes the light capturing rod according to any one of the above, and at least one light source disposed in the vicinity of the first main surface of the light-transmitting rod.
  • the light emitting device may include a plurality of the light sources, and the light sources may emit visible light or infrared light.
  • the light emitting device may further include a prism sheet or a concavo-convex structure provided on a part of the first main surface of the translucent rod.
  • An optical fiber amplifier includes an excitation light source including the light capturing rod according to any one of the above, and at least one infrared light source disposed in proximity to a main surface of the translucent rod; A multiplexer for combining light from the excitation light source and signal light; and an optical fiber optically coupled to the multiplexer and having erbium added to the core.
  • the light incident on the light transmitting sheet or the light transmitting rod is incident on the light coupling structure disposed inside, and the third diffraction grating in the light coupling structure causes the third. It is converted into light propagating in a direction along the light transmitting layer, and is emitted from the end face of the optical coupling structure.
  • the optical coupling structure is in a positional relationship parallel to the surface of the translucent sheet or the rod central axis, and the surface of the optical coupling structure is covered with an environmental medium having a low refractive index such as air.
  • the diffraction grating includes various pitches and orientations, it is possible to capture light at a wide incident angle, for example, all incident angles over a wide region, a wide wavelength range, for example, the entire visible light region.
  • FIG. 1A is a schematic cross-sectional view of the light capturing sheet 51.
  • the light capturing sheet 51 includes a light transmitting sheet 2 having a first main surface 2p and a second main surface 2q, and at least one light coupling structure 3 disposed in the light transmitting sheet 2.
  • the translucent sheet 2 is made of a transparent material that transmits light having a desired wavelength or a desired wavelength range according to the application. For example, it is made of a material that transmits visible light (wavelength: 0.4 ⁇ m or more and 0.7 ⁇ m or less).
  • the thickness of the translucent sheet 2 is, for example, about 0.03 mm to 1 mm.
  • a cover sheet 2e is bonded on the light transmitting sheet 2 with a spacer 2d interposed therebetween. Accordingly, most of the first main surface 2p of the translucent sheet 2 is in contact with the buffer layer 2f.
  • the spacer 2d is made of a material having a low refractive index such as airgel.
  • the cover sheet 2e may be formed on the second main surface 2q of the translucent sheet 2 or may be formed on both sides.
  • the optical coupling structure 3 is equal to or more than the first distance d1 and the second distance d2 from the first main surface 2p and the second main surface 2q, respectively. It is arranged inside the space. Therefore, in the translucent sheet 2, the first main surface 2 p is in contact with the first region 2 a and the second main surface 2 q having the first distance d 1 in thickness, and the second distance d 2 is thick.
  • the optical coupling structure 3 is not disposed in the second region 2b, and the optical coupling structure 3 is disposed in the third region 2c sandwiched between the first region 2a and the second region 2b. Has been.
  • the light coupling structure 3 is arranged in a three-dimensional manner in the third region 2c of the translucent sheet 2. Specifically, the optical coupling structure 3 is two-dimensionally arranged in the first and second directions on a plane parallel to the first main surface 2p and the second main surface 2q, and two-dimensionally. A plurality of arranged optical coupling structures 3 are laminated in the thickness direction which is a third direction non-parallel to the first and second directions of the translucent sheet 2.
  • the optical coupling structure 3 is arranged at a predetermined density in the x and y axis directions (first and second directions) and the z axis direction (third direction). For example, a density of for example, 10 to 103 per 1mm on the x-axis direction 10 to 103 per 1mm on the y-axis direction is 10 to 10 3 about per 1mm in the z-axis direction.
  • a density of for example, 10 to 103 per 1mm on the x-axis direction 10 to 103 per 1mm on the y-axis direction is 10 to 10 3 about per 1mm in the z-axis direction.
  • the arrangement density of the bonding structures 3 may be independently uniform. However, the arrangement of the light coupling structures 3 in the translucent sheet 2 may not be uniform depending on the use or the distribution of light applied to the first main surface 2p and the second main surface 2q of the translucent sheet 2. It may have a predetermined distribution.
  • FIG. 1B shows an enlarged part of the light coupling structure 3 in the translucent sheet 2.
  • each optical coupling structure 3 is It does not overlap in the z direction.
  • the optical coupling structure 3 includes a first light-transmitting layer 3a, a second light-transmitting layer 3b, and a third light-transmitting layer 3c sandwiched between them.
  • the third light transmissive layer 3c includes a diffraction grating 3d having a linear grating with a pitch ⁇ disposed on a reference plane.
  • the linear grating of the diffraction grating 3d may be constituted by unevenness provided at the interface between the third light transmitting layer 3c and the first light transmitting layer 3a or the second light transmitting layer 3b.
  • the diffraction grating may be provided in the third light-transmitting layer 3c, or may be provided in the first light-transmitting layer 3a and the second light-transmitting layer 3b.
  • the first light transmissive layers 3a ′ are alternately arranged along the direction parallel to the first and second main surfaces 2p, 2q of the light transmissive sheet 2.
  • a diffraction grating having a plurality of high refractive index portions 3a H and a plurality of low refractive index portions 3a L is included.
  • the second light transmissive layer 3b ′ includes a plurality of high refractive index portions 3b H arranged alternately along the direction parallel to the first and second main surfaces 2p, 2q of the light transmissive sheet 2.
  • a diffraction grating having a plurality of low refractive index portions 3b L is included.
  • the refractive index of the high refractive index portion 3a H is larger than the refractive index of the low refractive index portion 3a L
  • the refractive index of the high refractive index portion 3b H is larger than the refractive index of the low refractive index portion ba L.
  • FIG. 2B shows each optical coupling structure 3 in the group 3G optical coupling structure 3 in the zy plane and another group 3G ′ optical coupling structure 3 adjacent in the z direction.
  • the third translucent layer 3c is connected by a connecting portion 3cc made of the same material as the third translucent layer 3c.
  • 3a is connected by the connection part 3ac comprised with the same material as the 1st translucent layer 3a.
  • the optical layer 3b is connected by a connecting portion 3bc made of the same material as the second light transmissive layer 3b.
  • FIG. 2B shows a cross section in the y direction, but also in the X direction, the first light transmissive layer 3a, the second light transmissive layer 3b, and
  • the third light-transmitting layer 3c includes the first light-transmitting layer 3a, the second light-transmitting layer 3b, and the third light-transmitting layer 3c of each optical coupling structure that constitutes the optical coupling structure 3 of the other group 3G ′.
  • connection portions 3ac, 3bc, 3cc are connected by connection portions 3ac, 3bc, 3cc.
  • FIG. 8A shows the arrangement of the group 3G optical coupling structure 3 and the other group 3G ′ optical coupling structure 3 in the xy plane.
  • each optical coupling structure constituting the group 3G optical coupling structure 3 is arranged in the region 35A
  • each optical coupling structure constituting the other group 3G ′ optical coupling structure 3 is arranged in the region 35B.
  • the third light transmissive layer 3c of each optical coupling structure 3 constituting the optical coupling structure 3 of the group 3G includes the optical coupling structure 3 of the other group 3G ′ adjacent in the z direction via the connection portion 3cc. Are connected to the third light-transmitting layers 3c of the four adjacent optical coupling structures 3 in the x-direction and the y-direction.
  • the third light-transmitting layer 3c of each optical coupling structure constituting the optical coupling structure 3 of the other group 3G ' extends in the y direction, whereas the connection portion 3cc extends in the z direction.
  • the connection portion 3cc extends in the z direction.
  • the connection portion 3cc The direction in which light can propagate is bent 90 degrees. For this reason, as will be described below, the light transmitted through the third light transmissive layer 3c of the optical coupling structure 3 is not transmitted to the other optical coupling structures 3 via the connection portion 3cc, and each optical coupling is performed.
  • Structure 3 can be treated as an independent optical element. Therefore, in the following description, each optical coupling structure 3 will be described as an independent optical element.
  • the optical coupling structure 3 is disposed in the light transmitting sheet 2 so that the diffraction grating 3d of the third light transmitting layer 3c is parallel to the first main surface 2p and the second main surface 2q of the light capturing sheet 51.
  • the diffraction grating is parallel to the first main surface 2p and the second main surface 2q means that the reference plane on which the grating is disposed is the first main surface 2p and the second main surface 2q. Means parallel.
  • the thicknesses of the first light transmissive layer 3a, the second light transmissive layer 3b, and the third light transmissive layer 3c are a, b, and t, respectively, and the steps of the linear diffraction grating of the third light transmissive layer 3c ( Depth) is d.
  • the surface of the third translucent layer 3c is parallel to the first main surface 2p and the second main surface 2q of the translucent sheet 2, and the first translucent layer 3a and the second translucent layer 3b are Surfaces 3p and 3q located on the side opposite to the third light transmitting layer 3c are also parallel to the first main surface 2p and the second main surface 2q of the light transmitting sheet 2.
  • the light capturing sheet 51 includes a plurality of light coupling structures 3 so that light of different wavelengths incident on the light capturing sheet can be captured, and in at least two of the plurality of light coupling structures.
  • the extending directions of the diffraction grating 3d may be different from each other.
  • the pitches ⁇ of the diffraction gratings 3d may be different from each other.
  • a combination thereof may be used.
  • the refractive index of the 1st translucent layer 3a and the 2nd translucent layer 3b is smaller than the refractive index of the translucent sheet 2, and the refractive index of the 3rd translucent layer 3c is the 1st translucent layer 3a and the 1st translucent layer. It is larger than the refractive index of the light transmissive layer 3b.
  • the first light-transmitting layer 3a and the second light-transmitting layer 3b are air and the refractive index is 1.
  • the third light transmissive layer 3c is made of the same medium as the light transmissive sheet 2 and has the same refractive index.
  • the refractive indexes of the high refractive index portion 3a H and the low refractive index portion 3a L are the same as the refractive index of the translucent sheet 2 and the third refractive index. It is smaller than the refractive index of the translucent layer 3c.
  • the refractive indexes of the high refractive index portion 3b H and the low refractive index portion 3b L are smaller than the refractive index of the light transmitting sheet 2 and the refractive index of the third light transmitting layer 3c.
  • the surfaces 3p and 3q of the first light transmitting layer 3a and the second light transmitting layer 3b of the optical coupling structure 3 are, for example, rectangles having lengths W and L as two sides, and W and L are 3 ⁇ m or more and 100 ⁇ m. It is as follows. That is, the surfaces of the first light transmitting layer 3a and the second light transmitting layer 3b of the optical coupling structure 3 have a size that circumscribes a circle having a diameter of 3 ⁇ m or more and 100 ⁇ m or less. Moreover, the thickness (a + t + d + b) of the optical coupling structure 3 is 3 ⁇ m or less. As shown in FIG. 2A (b), in this embodiment, the optical coupling structure 3 has a rectangular shape in the xy plane, but has another shape, for example, a polygon, a circle, or an ellipse. Also good.
  • the light capturing sheet 51 is used surrounded by an environmental medium.
  • the light capturing sheet 51 is used in the air.
  • the refractive index of the environmental medium is 1.
  • the refractive index of the translucent sheet 2 and n s.
  • the light 4 from the environmental medium passes through the cover sheet 2e and the buffer layer 2f, and enters the light transmitting sheet 2 from the first main surface 2p or the second main surface 2q of the light transmitting sheet 2.
  • the buffer layer 2f is made of the same medium as the environmental medium, and its refractive index is 1.
  • the refractive index of the spacer 2d is almost equal to 1.
  • An AR coat or a non-reflective nanostructure may be formed on both surfaces of the cover sheet 2e, the first main surface 2p, and the second main surface 2q in order to increase the transmittance of the incident light 4.
  • the non-reflective nanostructure includes a fine concavo-convex structure whose pitch and height are 1/3 or less of the design wavelength, such as a moth-eye structure.
  • the design wavelength is a wavelength of light used when designing each element so that the light capturing sheet 51 exhibits a predetermined function. In the non-reflective nanostructure, Fresnel reflection is reduced, but total reflection exists.
  • the angle ⁇ formed by the propagation direction and the normal line of the translucent sheet 2 (lines perpendicular to the first main surface 2p and the second main surface 2q).
  • the propagation angle is called a sin ⁇ ⁇ 1 / n s light critical angle within the light satisfying, sin ⁇ ⁇ 1 / n s optical light outside the critical angle satisfying.
  • FIG. 1A when there is light 5a within the critical angle inside the translucent sheet 2, a part thereof is converted into light 5b outside the critical angle by the optical coupling structure 3, and this light is the first main light.
  • the light 5c outside the critical angle stays inside the sheet after totally reflecting the surface 2p.
  • the optical coupling structure 3 is disposed in the third region 2c in the translucent sheet 2 as shown in FIG.
  • One or more fourth regions 2h may be provided. That is, the optical coupling structure 3 is disposed only in the third region 2c excluding the fourth region 2h.
  • the fourth region 2h connects the first region 2a and the second region 2b.
  • the fourth region 2h extends from the first region 2a to the second region 2b or along the opposite direction, and the direction of an arbitrary straight line passing through the fourth region 2h is the refractive index of the translucent sheet. And an angle larger than the critical angle defined by the refractive index of the environmental medium around the translucent sheet. That is, the refractive index of the environment medium 1, if the refractive index of the translucent sheet 2 and n e, any straight lines extending direction 2hx penetrating the fourth region 2h makes with the normal line of the light-transmitting sheet 2 angle ⁇ 'is, sin ⁇ ' meets ⁇ 1 / n s.
  • the straight line penetrating through the fourth region 2h means that the straight line passes through the surface of the fourth region 2h in contact with the first region 2a and the second region 2b of the fourth region 2h. .
  • the optical coupling structure 3 When the optical coupling structure 3 has the structure shown in FIG. 2A (f), it functions similarly.
  • the light 5a within the critical angle can enter the inside of the first light-transmitting layer 3a ′ or the second light-transmitting layer 3b ′, and enters the first light-transmitting layer 3a ′ or the second light-transmitting layer 3b ′.
  • the guided light 5B can be excited by the diffraction grating constituted by the provided low refractive index portion and high refractive index portion.
  • the light 6a outside the critical angle is almost totally reflected at the surface of the first light transmitting layer 3a ′ or the second light transmitting layer 3b ′, and the first light transmitting layer 3a ′ or the second light transmitting layer 3b. Since the depth which penetrates into 'is extremely small, it is not affected by the diffraction grating formed inside the first light-transmitting layer 3a' or the second light-transmitting layer 3b '.
  • FIG. 1C is a plan view of the light capturing sheet 51 and shows the arrangement of the fourth region 2h.
  • a plurality of fourth regions 2h are provided in the translucent sheet 2, for example. Since the fourth region 2h extends from the first region 2a to the second region 2b or in the opposite direction at an angle larger than the critical angle, the first region 2a and the second region of the translucent sheet 2 Of the light propagating through the region 2b, only light outside the critical angle can pass through the fourth region 2h and pass from the first region 2a to the second region 2b or vice versa. For this reason, the bias of the light distribution in the light capturing sheet 51 can be prevented.
  • the light 5a within the critical angle is transmitted through the surface 3q of the second light transmitting layer 3b, and a part of the light 5a is within the third light transmitting layer 3c by the action of the diffraction grating 3d. Is converted into guided light 5B propagating through. The remainder is transmitted light or diffracted light mainly as light 5a ′ within the critical angle and transmitted through the optical coupling structure 3, or as reflected light, light 5r within the critical angle is transmitted through the optical coupling structure 3. To do. There is also light 6b outside the critical angle that reflects the surface 3q when incident on the second light-transmitting layer 3b. However, if a non-reflective nanostructure is formed on the surfaces 3q and 3p, most of the light is transmitted. be able to.
  • the coupling to the guided light 5B is the same as the principle of the conventional grating coupling method.
  • a part of the guided light 5B is emitted in the same direction as the light 5r within the critical angle until reaching the end face 3S of the third light transmitting layer 3c to become the light 5r 'within the critical angle, and the rest is guided.
  • the light 5c is emitted from the end face 3S of the third light-transmitting layer 3c and is outside the critical angle.
  • the light 6a outside the critical angle is totally reflected on the surface 3q of the second light transmitting layer 3b, and all of the light 6a becomes the light 6b outside the critical angle.
  • the light outside the critical angle incident on the surface of the optical coupling structure 3 (the surface 3p of the first light-transmitting layer 3a and the surface 3q of the second light-transmitting layer 3b) is directly reflected as light outside the critical angle. A part of the light within the critical angle is converted to light outside the critical angle.
  • the guided light 5B is all emitted before reaching the end face 3S. If it is too short, the coupling efficiency to the guided light 5B is not sufficient.
  • the ease with which the guided light 5B is radiated is represented by a radiation loss coefficient ⁇ , and the intensity of the guided light 5B becomes exp ( ⁇ 2 ⁇ L) times at the propagation distance L. Assuming that the value of ⁇ is 10 (1 / mm), the light intensity is 0.8 times with 10 ⁇ m propagation.
  • the wavelength of light is ⁇
  • the equivalent refractive index n eff of the guided light 5B is n 1
  • the duty of the diffraction grating 3d is 0.5.
  • d c is given by the following equation (2).
  • the radiation loss coefficient ⁇ is proportional to the square of d. Accordingly, the length of the diffraction grating 3d, that is, the length (dimensions W and L) of the third light transmitting layer 3c is determined by the radiation loss coefficient ⁇ and depends on the depth d of the diffraction grating 3d. If the depth d is adjusted to set the value of ⁇ in the range of 2 to 100 (1 / mm) and the attenuation ratio is 0.5, W and L are about 3 ⁇ m to 170 ⁇ m. For this reason, as described above, if W and L are 3 ⁇ m or more and 100 ⁇ m or less, radiation loss can be suppressed by adjusting the depth d, and high coupling efficiency can be obtained.
  • Table 1 shows whether light is coupled.
  • the light coupling range when the pitch is 0.4 ⁇ m, light with a wavelength of 0.4 ⁇
  • the polarity of the incident angle ⁇ is related to the light coupling direction. Therefore, when ignoring the coupling direction of light and focusing only on the presence or absence of coupling, if the incident angle range can cover either 0 to 90 degrees or -90 to 0 degrees, coupling is performed for all incident angles. That's right. Therefore, from Table 1, in order for light to combine for all visible light wavelengths and all incident angles, for example, from 0.18 ⁇ m to 0.56 ⁇ m (0 to 90 degrees) or from 0.30 ⁇ m It can be seen that the optical coupling structure 3 having the diffraction grating 3d having a pitch ⁇ of 2.80 ⁇ m ( ⁇ 90 degrees to 0 degrees) may be used in combination.
  • the pitch of the diffraction grating 3d may be approximately 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the pitch of the diffraction grating 3d with respect to the light 5a within the critical angle incident in the direction perpendicular to the direction in which the diffraction grating 3d extends is ⁇ , but is incident at the azimuth angle ⁇ .
  • the effective pitch of the diffraction grating 3d with respect to the light 5aa is ⁇ / cos ⁇ . For example, when the incident azimuth angle ⁇ of the light 5aa is 0 to 87 degrees, the effective pitch is ⁇ to 19 ⁇ .
  • both the pitch of the diffraction grating 3d and the extending direction of the diffraction grating 3d may be different.
  • FIG. 2A (d) shows the third light-transmitting layer 3c extracted from the optical coupling structure 3, and the space after the extraction is filled with the same air as the first light-transmitting layer 3a and the second light-transmitting layer 3b.
  • the optical path is shown.
  • the behavior is complicated, and even if light outside the critical angle is incident on the end face, it is not always emitted as light outside the critical angle.
  • the size of the surface is made sufficiently larger than the size of the end surface, the influence on the end surface becomes sufficiently small, and light transmission or reflection on the surfaces 3p and 3q is transmitted or reflected on the entire optical coupling structure 3. Behave and behave.
  • the optical coupling structure 3 holds the light outside the critical angle as the light outside the critical angle, while exhibiting the function of irreversibly converting the light within the critical angle to the light outside the critical angle. Is sufficiently set, all the light incident on the light capturing sheet 51 can be converted into light outside the critical angle, that is, light confined in the sheet.
  • FIG. 3 shows a cross-sectional structure of the light capturing sheet used in the analysis for confirming the effect of light confinement in the light capturing sheet 51.
  • a light capturing sheet including one light coupling structure was used.
  • a light source S (indicated by a broken line) having a width of 5 ⁇ m is set in parallel to a position of 1.7 ⁇ m from the second main surface 2q of the translucent sheet 2, and a distance of 0.5 ⁇ m is set above it.
  • the second light-transmitting layer 3b having a width of 6 ⁇ m was arranged in parallel, and the third light-transmitting layer 3c and the first light-transmitting layer 3a having the same width were arranged thereon.
  • seat 2 exists in the position of 2.5 micrometers from the surface of the 1st translucent layer 3a.
  • a polarized plane wave having an angle of 45 degrees with respect to the paper surface is emitted from the light source S in an orientation that forms an angle ⁇ with respect to the normal line of the second main surface 2q, and the center of the incident light is the second light transmitting layer.
  • the positions of the first light-transmitting layer 3a, the second light-transmitting layer 3b, and the third light-transmitting layer 3c were shifted laterally according to the angle ⁇ so as to transmit the center of the surface of 3b.
  • the thickness a of the first light transmitting layer 3a is 0.3 ⁇ m
  • the thickness c of the second light transmitting layer 3b is 0.3 ⁇ m
  • the thickness t of the third light transmitting layer 3c is 0.4 ⁇ m
  • the depth d of the diffraction grating was 0.18 ⁇ m
  • the pitch ⁇ of the diffraction grating was 0.36 ⁇ m.
  • the refractive index of the translucent sheet 2 and the third translucent layer 3c was 1.5
  • the refractive index of the environmental medium, the first translucent layer 3a and the second translucent layer 3b was 1.0.
  • 4A shows the calculation result when the wavelength ⁇ of the light source is 0.45 ⁇ m
  • FIG. 4B shows the calculation result when the wavelength ⁇ is 0.55 ⁇ m
  • FIG. 4C shows the calculation result when the wavelength ⁇ is 0.65 ⁇ m. Show.
  • the results are also plotted under conditions where the optical coupling structure 3 is not present (configuration consisting of only the translucent sheet 2 and the light source S).
  • the former is within a critical angle (41.8 degrees) than the latter.
  • the transmittance decreases in the range, and both become almost zero at higher angles.
  • the transmittance in the former becomes smaller within the critical angle because the light incident on the surface 3q of the second light transmissive layer 3b is refracted, and a part of the light is refracted. This is because the light is emitted from the end face 3s as light outside the critical angle.
  • the former case as described with reference to FIGS.
  • the structure in the case of d 0 has conversion to light outside the critical angle, while conversion to light within the critical angle also has a small effect of confining light as a whole.
  • FIG. 4D shows a standard value (value divided by 90) obtained by integrating the curves of FIGS. 4A, 4B, and 4C with respect to the incident angle ⁇ , and the diffraction grating depth d as a parameter. Is shown. Since the analysis model is two-dimensional, this integrated value is equal to the efficiency with which the light in the light capturing sheet is extracted out of the sheet.
  • FIG. 5 shows a light intensity distribution diagram in the light capturing sheet under the conditions indicated by arrows a, b, c, d, and e in FIG.
  • the third light transmissive layer 3c functions as a waveguide layer, and the incident light is coupled to the guided light propagating through the third light transmissive layer 3c by the action of the diffraction grating.
  • the light transmitting layer 3c is radiated into the light transmitting sheet 2 from the end faces 3r and 3s. This emitted light is light outside the critical angle, and is totally reflected by the first main surface 2p and the second main surface 2q of the translucent sheet 2 and confined in the translucent sheet 2.
  • the incident light is coupled to the guided light propagating through the third light-transmitting layer 3c by the action of the diffraction grating.
  • This emitted light is light outside the critical angle, and is totally reflected by the first main surface 2p and the second main surface 2q of the translucent sheet 2 and confined in the translucent sheet 2.
  • the emitted light is divided into two parts, and the combined light is first-order mode guided light whose phase is inverted above and below the cross section of the waveguide layer.
  • the radiated light is in a collective state, and the combined light is 0th-order mode guided light.
  • FIG. 6 shows that the refractive index of the first light transmitting layer 3a and the second light transmitting layer 3b in the structure shown in FIG. 3 is the same as the refractive index of the light transmitting sheet 2, and the refractive index of the third light transmitting layer 3c.
  • the analysis result when changing to 2.0 is shown. Other conditions are the same as the conditions when the analysis result shown in FIG. 4 is obtained.
  • the optical coupling structure 3 in order for the third light transmissive layer 3c to be a light guide layer, the refractive index thereof is higher than the refractive indexes of the first light transmissive layer 3a and the second light transmissive layer 3b.
  • the refractive index of the first light transmitting layer 3a and the second light transmitting layer 3b is smaller than the refractive index of the light transmitting sheet 2. It turns out that it is preferable.
  • the refractive index of the first light transmitting layer 3a and the second light transmitting layer 3b and the refraction of the light transmitting sheet are preferable. It is preferable that the difference in rate is large.
  • the refractive index of the first light transmitting layer 3a and the second light transmitting layer 3b is preferably 1.
  • the light capturing sheet of the present embodiment As described above, according to the light capturing sheet of the present embodiment, light incident on the first main surface and the second main surface of the light transmitting sheet at various angles becomes light within a critical angle. Is incident on the optical coupling structure disposed therein, and part of the light is converted into guided light propagating in the third light-transmitting layer by the diffraction grating in the optical coupling structure, and is emitted from the end face of the optical coupling structure. It becomes light outside the critical angle. Since the pitch of the diffraction grating is different depending on the optical coupling structure or the orientation of the diffraction grating is different, this conversion is performed over all orientations, a wide wavelength range, for example, the entire visible light range.
  • the length of the diffraction grating is short, the radiation loss of guided light can be reduced. Therefore, all the light within the critical angle existing in the translucent sheet is converted into light outside the critical angle by the plurality of optical coupling structures. Since the refractive index of the first and second transmission layers of the optical coupling structure is smaller than the refractive index of the transparent sheet, light outside the critical angle is totally reflected on the surface of the optical coupling structure, and this light is reflected by other optical coupling structures. The total reflection is repeated between the surface or the surface of the translucent sheet, and is confined in the translucent sheet. In this way, the optical coupling structure irreversibly converts light within the critical angle to light outside the critical angle, while maintaining the light outside the critical angle in a state outside the critical angle. Therefore, if the density of the optical coupling structure is sufficiently set, all light incident on the light capturing sheet can be converted into light outside the critical angle, that is, light confined in the sheet.
  • the first main surface 2p of the translucent sheet 2 is covered with a cover sheet 2e via a buffer layer 2f. Accordingly, the foreign matter 2g such as a water droplet adheres to the surface of the cover sheet 2e and prevents it from coming into contact with the first main surface 2p. If the foreign matter 2g comes into contact with the first main surface 2p, the relationship of total reflection is lost at the contact surface, and light outside the critical angle confined in the translucent sheet 2 leaks outside through the foreign matter 2g. Will come out.
  • the foreign matter 2g such as a water droplet adheres to the surface of the cover sheet 2e and prevents it from coming into contact with the first main surface 2p. If the foreign matter 2g comes into contact with the first main surface 2p, the relationship of total reflection is lost at the contact surface, and light outside the critical angle confined in the translucent sheet 2 leaks outside through the foreign matter 2g. Will come out.
  • the spacer 2d is also in contact with the first main surface 2p, but its refractive index is almost the same as the refractive index of the environmental medium, so that the relationship of total reflection is maintained at the contact surface, and light outside the critical angle passes through the spacer 2d. Will not leak outside. Moreover, when the surface area of a translucent sheet
  • the light capturing sheet 51 can be manufactured, for example, by the following method.
  • (A) to (i) of FIG. 7A are schematic cross-sectional configuration diagrams illustrating a manufacturing procedure of the light capturing sheet 51.
  • a low refractive index film 25a such as SiO 2 is formed on the surface of a high refractive index film 24 such as SiN.
  • a resist is applied thereon, exposure is performed with the mask pattern shown in FIG. 8A, and the resist in the photosensitive portion is removed. Then, the low refractive index film is etched using the high refractive index film 24 as a stopper, and the remaining portions are etched. By removing the resist, the cross-sectional structure shown in FIG. 7A (b) is obtained.
  • the low refractive index film 25a has a pattern including a region 25A where the high refractive index film 24 is exposed by etching and a region 25B remaining without being etched. The level difference between these two regions is, for example, 1 ⁇ m to 3 ⁇ m.
  • a low refractive index film 25a such as SiO 2 is deposited again so as to cover the region 25A and the region 25B, and a low refractive index film 25a is provided on the bottom of the region 25A as shown in FIG. 7A (c).
  • the thickness of the low refractive index film 25a in the region 25A is, for example, 0.4 ⁇ m or more.
  • the etching amount of the low refractive index film 25a may be adjusted so that the low refractive index film 25a of 0.4 ⁇ m or more remains in the region 25A.
  • the structure shown in FIG. 7A (c) can be obtained directly by one etching.
  • a high refractive index film 24a having a thickness of 0.4 ⁇ m or more is formed on the entire surface of the low refractive index film 25a. Further, a resist is applied to the surface of the high refractive index film 24a, and the resist is exposed by exposure using a two-beam interference exposure method. According to the two-beam interference exposure method, it is possible to form a stripe-shaped exposure region without using a mask by causing two laser beams to cross and interfere with each other. In addition, since the direction or pitch of the stripe can be changed by adjusting the incident azimuth or incident angle of the laser beam, a striped exposure region extending in one direction is formed in each of the plurality of regions 25A and 25B. be able to.
  • the exposed region (or non-exposed region) of the resist is removed, the remaining resist pattern is used to etch the high refractive index film 24a, and the resist pattern is removed, as shown in FIG. 7A (e). Then, a grating 24aG having a depth of 0.1 ⁇ m or more is formed on the surface of the high refractive index film 24a.
  • the film formation of the low refractive index film 25b (FIG. 7A (f)), the film formation of the high refractive index film 24b and the formation of the grating 24bG (FIG. 7A (g)) are repeated.
  • the orientation or pitch of the gratings 24aG, 24bG, etc. can be changed.
  • the thicknesses of the low refractive index film 25b and the high refractive index film 24b are each 0.4 ⁇ m or more, and the depths of the gratings 24aG and 24bG are 0.1 ⁇ m or more.
  • the outermost surface is smoothed as shown in FIG. 7A (h).
  • the high refractive index film 24c is formed on the low refractive index film 25c having a flat surface, and the light capturing sheet 51 shown in FIG. 7A (i) is completed.
  • the high refractive index film 24 may be formed on a transparent flat substrate in advance, and the finished product may be used integrally with the flat substrate or may be peeled off from the flat substrate.
  • the high-refractive-index film is continuous without a break, but is bent at the boundary between the region 25A and the region 25B, so that each optical coupling structure 3 is divided at the bent portion.
  • the high refractive index films 24, 24a, 24b, and 24c have a structure in which the low refractive index films 25a, 25b, and 25c are sandwiched in all regions, the surrounding high refractive index films 24, 24a, and 24b are arranged. , 24c can be completely separated. Accordingly, each optical coupling structure 3 functions independently as an optical element, and the light is incident on the high refractive index film (third light-transmitting layer 3c) and converted into guided light. It is emitted as light outside the critical angle.
  • the manufacturing method of this embodiment it is only the patterning of the first low-refractive index film 25a that needs to be exposed by the mask pattern, and the subsequent process is merely by repeating the steps of forming the entire surface and performing the interference exposure on the entire surface.
  • the subsequent process is merely by repeating the steps of forming the entire surface and performing the interference exposure on the entire surface.
  • a method for manufacturing a light capturing sheet provided with the light coupling structure 3 shown in FIG. 2A (f) will be described. Similar to the method with reference to FIG. 7A, SiO 2 to which GeO 2 is added is used as the material of the low refractive index films 25a, 25b, and 25c, and the process of forming the diffraction grating by the two-beam interference exposure method is omitted. As shown in FIG. 2, a light capturing sheet having no diffraction grating is completed. Thereafter, as shown in FIG.
  • a light-induced refractive index change is generated in the low refractive index films 25a, 25b, and 25c by a two-beam interference exposure method using an ultraviolet laser beam, and the refractive index is higher than that of the surroundings.
  • High refractive index portions are periodically formed in accordance with the light intensity distribution of the interference pattern. In FIG. 7B (b), this completes the light capturing sheet provided with the optical coupling structure 3 shown in FIG. 2A (f).
  • the high refractive index portions of the diffraction grating can be formed together, and it is not necessary to form the diffraction grating in the middle of manufacturing, so the manufacturing process is less than that of the above manufacturing method,
  • the light capturing sheet can be manufactured more efficiently.
  • the optical coupling structure 3 has a square shape on the xy plane.
  • the group 3G of optical coupling structures 3 at the same height in the z direction are arranged, for example, at a position indicated by a region 35A. That is, the group 3G of optical coupling structures 3 are arranged in a checker pattern, and the adjacent group 3G 'of optical coupling structures 3 are arranged in a checker pattern indicated by a region 35B.
  • the optical coupling structure 3 has a hexagonal shape in the xy plane, as shown in FIGS. 8B to 8D, the optical coupling structure 3 of the group 3G and the optical coupling structure 3 of the other group 3G ′. Can be arranged.
  • the group 3G of optical coupling structures 3 at the same height in the z-direction is, for example, 5B perpendicular to one side of the hexagon as illustrated by a region 35A. It may be formed continuously in the 'direction.
  • the optical coupling structures 3 of the group 3G are not separated in the 5B ′ direction, and the third light transmissive layer 3c is continuous. For this reason, of the light incident on the light capturing sheet from various directions, the light that is captured by the optical coupling structure 3 and travels in the 5B ′ direction propagates through the third light-transmitting layer 3c for a long time.
  • the light once taken into the third light-transmitting layer 3c is emitted as light within the critical angle to the outside of the optical coupling structure 3 by the diffraction grating 3d.
  • the light traveling in the 5B ′ direction propagates through the third light transmissive layer 3c long, and the light traveling in the other direction in the third light transmissive layer 3c is as described above. Then, it is emitted as light outside the critical angle and is confined in the light capturing sheet. Therefore, the decrease in light capturing efficiency in the entire light capturing sheet is not so great.
  • the optical coupling structure 3 in the group 3G optical coupling structure 3 may not be continuous in one direction.
  • FIG. 8C shows an arrangement when the number of continuous optical coupling structures 3 is 2 in the 5B ′ direction perpendicular to one side of the hexagon.
  • the optical coupling structure 3 continues in the 5B ′′ direction parallel to one side of the hexagon forming an angle of 30 degrees with the 5B ′ direction.
  • the probability of appearance of light that can propagate in the 5B ′′ direction is smaller than the arrangement shown in FIG. Therefore, a decrease in light capturing efficiency in the entire capturing sheet is suppressed.
  • FIG. 8D shows an arrangement when the number of continuous optical coupling structures 3 is 3 in the 5B ′ direction perpendicular to one side of the hexagon. In this case, five optical coupling structures 3 continue in the 5B ′′ direction, but there is no further direction in which the optical coupling structures 3 continue. Therefore, a decrease in light capturing efficiency in the entire capturing sheet is further suppressed.
  • FIG. 9 schematically shows a cross-sectional structure of the light receiving device 54 of the present embodiment.
  • the light receiving device 54 includes the light capturing sheet 51 and the photoelectric conversion unit 7 of the first embodiment.
  • the reflection film 11 is provided on the end faces 2 s and 2 r of the light capturing sheet 51.
  • the photoelectric conversion unit 7 is provided adjacent to the second main surface 2q of the light capturing sheet 51.
  • the reflection film 11 may be provided on all end surfaces.
  • a part of the second main surface 2q is in contact with the light receiving unit of the photoelectric conversion unit 7.
  • the photoelectric conversion unit 7 may be provided on a part of the first main surface 2 p of the light capturing sheet 51.
  • the light captured and sealed in the light capturing sheet 51 circulates in the light capturing sheet 51.
  • the photoelectric conversion unit 7 is a solar cell made of silicon. A plurality of photoelectric conversion units 7 may be attached to one light capturing sheet 51. Since the refractive index of silicon is about 5, normally, even when light is incident perpendicularly to the light receiving surface of the solar cell, about 40% of the incident light is reflected without being taken into the photoelectric conversion unit 7. Lost in. This reflection loss further increases when light is incident obliquely. In order to reduce the amount of reflection, an AR coat or a non-reflective nanostructure is formed on the surface of a commercially available solar cell, but sufficient performance is not obtained. Furthermore, there is a metal layer inside the solar cell, and a significant part of the light that reflects it is emitted to the outside. When there is an AR coat or non-reflective nanostructure, reflected light is emitted to the outside with high efficiency.
  • the light capturing sheet of the present disclosure captures all visible light wavelengths into the light capturing sheet at all incident angles and seals them. Therefore, in the light receiving device 54, light incident from the first main surface 2 p of the light capturing sheet 51 is captured by the light capturing sheet 51 and circulates in the light capturing sheet 51. Since the refractive index of silicon is larger than the refractive index of the translucent sheet 2, the light 5b ′ and 6b ′ outside the critical angle incident on the second main surface 2q is not totally reflected, and a part of the light 5b ′ and 6b ′ is refracted light 5d ′. 6d 'is transmitted to the photoelectric conversion unit 7 and converted into current in the photoelectric conversion unit.
  • the reflected light 5c 'and 6c' outside the critical angle propagates in the sheet and then enters the photoelectric conversion unit 7 again, and is used for photoelectric conversion until all the sealing light is eliminated.
  • the refractive index of the translucent sheet 2 is 1.5
  • the reflectance of light incident perpendicularly to the first main surface 2p is about 4%, and an AR coat or non-reflective nanostructure is formed on this surface. If so, the reflectance can be suppressed to 1 to 2% or less including wavelength dependency or angle dependency.
  • Other light enters the light capturing sheet 51 and is confined to be used for photoelectric conversion.
  • the light receiving device of this embodiment most of the incident light can be confined in the sheet and most of it can be used for photoelectric conversion. Therefore, the energy conversion efficiency of the photoelectric conversion unit can be greatly improved.
  • the light receiving area is determined by the area of the first main surface 2p, and all the light received by this surface enters the photoelectric conversion unit 7. For this reason, the area of the photoelectric conversion unit 7 can be reduced, the number of the photoelectric conversion units 7 can be reduced, and the cost of the light receiving device can be significantly reduced.
  • FIG. 10 schematically shows a cross-sectional structure of the light receiving device 55 of the present embodiment.
  • the light receiving device 55 includes the light capturing sheet 51 and the photoelectric conversion unit 7 of the first embodiment.
  • the light receiving device 55 is different from the light receiving device 54 of the second embodiment in that an uneven structure 8 is provided on the second main surface 2q and a gap is provided between the light receiving device 55 and the photoelectric conversion unit 7.
  • the concavo-convex structure 8 provided on the second main surface 2q has a concave and convex width of 0.1 ⁇ m or more, and may be a periodic pattern or a random pattern. Due to the concavo-convex structure 8, the light 5 b ′ and 6 b ′ outside the critical angle incident on the second main surface 2 q is not totally reflected, and part of the light travels toward the photoelectric conversion unit 7 as emitted light 5 d ′ and 6 d ′. And photoelectric conversion is performed.
  • the light reflected from the surface of the photoelectric conversion unit 7 is taken in from the second main surface 2q of the light capturing sheet 51, propagates through the light capturing sheet 51, and then photoelectrically converted again as emitted light 5d ′ and 6d ′.
  • the light travels toward part 7. Therefore, also in the light receiving device of this embodiment, most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Further, similarly to the second embodiment, the area of the photoelectric conversion unit 7 can be reduced or the number of the photoelectric conversion units 7 can be reduced. Therefore, it is possible to realize a low-cost light-receiving device with greatly improved energy conversion efficiency.
  • FIG. 11 schematically shows a cross-sectional structure of the light receiving device 56 of the present embodiment.
  • the light receiving device 56 includes the light capturing sheet 51, the photoelectric conversion unit 7, and the prism sheet 9 of the first embodiment.
  • the light receiving device 56 is different from the light receiving device 54 of the second embodiment in that a prism sheet 9 is provided between the second main surface 2q and the photoelectric conversion unit 7.
  • a prism sheet 9 is provided between the second main surface 2q and the photoelectric conversion unit 7.
  • the prism sheet 9 may be configured by stacking two sheets of triangular prism prisms orthogonally. Since the refractive index of the prism 10 is set to be larger than the refractive index of the prism sheet 9, the critical angle outside lights 5 b ′ and 6 b ′ incident on the surface of the prism sheet 9 are refracted on the prism surface to become 5 d ′ and 6 d ′.
  • the light receiving device of this embodiment most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Further, similarly to the second embodiment, the area of the photoelectric conversion unit 7 can be reduced, or the number of the photoelectric conversion units 7 can be reduced. Therefore, it is possible to realize a low-cost light receiving device with greatly improved energy conversion efficiency. In addition, since the number of light circulations in the sheet is small as compared with the second embodiment, it is less susceptible to the light sealing performance of the light capturing sheet.
  • FIG. 12 schematically shows a cross-sectional structure of the light receiving device 57 of the present embodiment.
  • the light receiving device 57 includes the light capturing sheet 51 and the photoelectric conversion unit 7 of the first embodiment.
  • the light receiving device 57 is different from the light receiving device 54 of the second embodiment in that the photoelectric conversion unit 7 covers the end faces 2s, 2r instead of the reflective film 11.
  • the photoelectric conversion units 7 may be provided on all end faces.
  • the fourth region 2 h may not be provided in the light capturing sheet 51.
  • the light 5c, 6c, 5c ′, and 6c ′ outside the critical angle are along the normal line of the light receiving surface of the photoelectric conversion unit 7.
  • the light enters the photoelectric conversion unit 7. For this reason, reflection on the surface of the photoelectric conversion unit 7 is small, and the number of light circulation in the light capturing sheet 51 can be reduced.
  • the light receiving device of this embodiment most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Therefore, it is possible to realize a light receiving device with greatly improved energy conversion efficiency.
  • the area of the photoelectric conversion unit 7 can be reduced as compared with the second embodiment, significant cost reduction can be realized.
  • the number of light circulations in the sheet is small as compared with the second embodiment, it is less susceptible to the light sealing performance of the light capturing sheet.
  • FIG. 13 schematically shows a cross-sectional structure of the light receiving device 58 of the present embodiment.
  • the light receiving device 58 includes light capturing sheets 51, 51 ′′ and a photoelectric conversion unit 7.
  • the fourth region 2h may not be provided in the light capturing sheet 51 ′′.
  • the light receiving device 58 is different from the second embodiment in that the light receiving device 58 is joined so that the end surface 2s of the light capturing sheet 51 is in contact with the first main surface 2p of the light receiving device 54 of the second embodiment.
  • the light capturing sheet 51 ′′ may be bonded orthogonally to the light capturing sheet 51.
  • the reflection film 11 is provided on the end surface 2r, and the first main surface 2p ′ and the second main surface 2q ′ in the vicinity of the end surface 2s joined to the light capturing sheet 51 are provided on the end surface 2r.
  • a reflective film 11 ′ may be provided.
  • the reflective film 11 ′ functions to reflect the light 6 b so that the light 6 b outside the critical angle from the light capturing sheet 51 does not leak out of the light capturing sheet 51 ′′.
  • the light 4 incident on the first main surface 2 p of the light capturing sheet 51 is captured in the light capturing sheet 51.
  • the light 4 ′ incident on the first main surface 2 p ′ and the second main surface 2 q ′ of the light capturing sheet 51 ′′ is captured in the light capturing sheet 51 ′′.
  • the light captured in the light capturing sheet 51 ′′ becomes the guided light 12 that propagates toward the end surface 2 s because the end surface 2 r is covered with the reflective film 11, and merges with the light in the light capturing sheet 51.
  • a part of the second main surface 2q in the light capturing sheet 51 is in contact with the surface of the photoelectric conversion unit 7, and the refractive index of silicon is larger than the refractive index of the translucent sheet 2, and therefore the second main surface 2q.
  • Light 5b ′ and 6b ′ outside the critical angle incident on the light is not totally reflected, and part of the light enters the photoelectric conversion unit 7 as refracted light 5d ′ and 6d ′, and is converted into current in the photoelectric conversion unit 7.
  • the reflected light 5c 'and 6c' outside the critical angle propagates in the light capturing sheet 51 and again enters the light receiving surface of the photoelectric conversion unit 7, and continues to be used for photoelectric conversion until most of the sealing light disappears.
  • the light receiving device of the present embodiment includes the light capturing sheet 51 ′′ perpendicular to the light receiving surface of the photoelectric conversion unit 7, the light incident on the first main surface 2p of the light capturing sheet 51 is incident obliquely. Even in such a case, the light is incident on the first main surface 2p ′ and the second main surface 2q ′ of the light capturing sheet 51 ′′ at an angle close to vertical. For this reason, it becomes easier to capture light in all directions.
  • the light receiving device of this embodiment most of the incident light can be confined in the light capturing sheet, and most of it can be used for photoelectric conversion. Further, similarly to the second embodiment, the area of the photoelectric conversion unit 7 can be reduced, or the number of the photoelectric conversion units 7 can be reduced. Therefore, it is possible to realize a low-cost light receiving device with greatly improved energy conversion efficiency.
  • FIG. 14 schematically shows a cross-sectional structure of the daylighting plate 59 of the present embodiment.
  • the daylighting plate 59 includes the light capturing sheet 51 of the first embodiment and the concavo-convex structure 8 provided on a part of the first main surface 2p and the second main surface 2q of the light capturing sheet 51.
  • the reflection film 11 is provided on the end faces 2r and 2s.
  • the concavo-convex structure 8 is formed on a part of the first main surface 2p, and forms a random pattern in which the width of the concave and convex portions is 0.1 ⁇ m or more.
  • the light captured by the light capturing sheet 51 propagates inside the light capturing sheet 51, and a part of the propagated light is emitted to the outside as emitted light 5 d ′ and 6 d ′ by the uneven structure 8.
  • the daylighting plate 59 is provided in a daylighting window of a building such as a house so that the first main surface 2p provided with the concavo-convex structure 8 is located on the indoor side.
  • the daylighting plate 59 takes in the light of the sun 13a from the second main surface 2q and radiates this light from the concave-convex structure 8 into the room. Thereby, it can be used as room lighting in which light is emitted from the concavo-convex structure 8.
  • the daylighting plate 59 takes in the light of the room illumination 13b from the first main surface 2p and radiates this light from the concavo-convex structure 8.
  • the daylighting plate 59 can be used to assist room lighting.
  • most incident light can be confined in a sheet
  • FIG. 15 schematically shows a cross-sectional structure of the light emitting device 60 of the present embodiment.
  • the light emitting device 60 includes a light capturing sheet 51, a light source 14, and a prism sheet 9.
  • the light source 14 such as an LED is provided adjacent to one of the first main surface 2p or the second main surface 2q of the light capturing sheet 51, and the concavo-convex structure 8 is provided on the other side.
  • the light source 14 is disposed adjacent to the first main surface 2p, and the concavo-convex structure 8 is provided on the second main surface 2q.
  • the reflection film 11 is provided on the end faces 2 s and 2 r of the light capturing sheet 51.
  • the concavo-convex structure 8 has a concave and convex width of 0.1 ⁇ m or more, and may be a periodic pattern or a random pattern.
  • the prism sheet 9 is disposed with a gap so as to face the concave-convex structure 8 on the second main surface 2q.
  • tetrahedral prisms 10 are arranged adjacent to each other.
  • the prism sheet 9 may be configured by stacking two sheets of triangular prism prisms orthogonally.
  • the light 4 emitted from the light source 14 is captured from the first main surface 2p of the light capturing sheet 51 and becomes the light 12 propagating through the light capturing sheet 51. A part of this light is radiated to the outside by the concavo-convex structure 8 as emitted light 5 d ′ and 6 d ′.
  • the emitted light is collected by the prism 10 in the prism sheet 9, and becomes light 4a having a substantially parallel wavefront.
  • the light emitted from the point light source can be confined in the light capturing sheet with a simple and thin structure, and the light can be extracted as a surface light source.
  • FIGS. 16A and 16B schematically show a cross-sectional structure parallel to the central axis and a cross-sectional structure perpendicular to the central axis of the light capturing rod 61 of the present embodiment.
  • the light capturing rod 61 includes a light transmitting rod 2 ′ and at least one light coupling structure 3 disposed inside the light transmitting rod 2 ′.
  • the translucent rod 2 ′ has a circular or oval cross-sectional shape in a plane perpendicular to the central axis C. Similar to the first embodiment, the translucent rod 2 ′ is made of a transparent material that transmits light having a desired wavelength according to the application or a desired wavelength range.
  • a cover sheet 2e is bonded to the outside of the translucent rod 2 'with a spacer 2d interposed therebetween. Therefore, most of the main surface 2u which is the surface of the translucent rod 2 'is in contact with the buffer layer 2f.
  • the spacer 2d is made of a material having a low refractive index such as airgel.
  • the diameter D in the cross section perpendicular to the central axis C of the translucent rod 2' is, for example, about 0.05 mm to 2 mm.
  • One or more optical coupling structures 3 are provided at a distance d3 or more in the direction toward the central axis C from the main surface 2u of the translucent rod 2 '.
  • the light capturing rod 61 may include a plurality of coupling structures 3.
  • the optical coupling structure 3 is arranged at a predetermined density in each of the axial direction, the radial direction, and the circumferential direction in the core region 2A.
  • the density of arrangement of the light coupling structure 3 is from 10 to 103 per 1mm axially 10 to 103 per 1mm in the radial direction and 10 to 10 3 about per 1mm in a circumferential direction.
  • the cross-sectional shape of the core region is circular or elliptical, and may be two or more annular zones.
  • the optical coupling structure 3 has the same structure as the optical coupling structure 3 of the first embodiment.
  • the optical coupling structure 3 is disposed in the core region 2A so that the diffraction grating of the third light transmitting layer 3c is parallel to the central axis C of the light transmitting rod 2 '.
  • the length L in the direction of the central axis C of the optical coupling structure 3 is 3 ⁇ m to 100 ⁇ m, and the length W in the direction perpendicular thereto is about 1/3 to 1/10 of L.
  • the refractive index of the environment medium surrounding the incoupling rod 61 is 1.0, the refractive index of the translucent rod 2 'and n s.
  • the light 4 from the environmental medium passes through the cover sheet 2e and the buffer layer 2f, and enters the inside of the light transmitting rod 2 ′ from the main surface 2u of the light transmitting rod 2 ′.
  • the buffer layer 2f is made of the same medium as the environmental medium, and its refractive index is 1.
  • the refractive index of the spacer 2d is almost equal to 1.
  • an AR coat or a non-reflective nanostructure (such as a moth-eye structure) may be formed.
  • the propagation direction and the angle theta (propagation angle) between the normal line of the rod surface sin ⁇ ⁇ 1 / n satisfy s light critical angle within the light, sin [theta ⁇ Light satisfying 1 / ns will be referred to as light outside the critical angle.
  • the light 5a within the critical angle is transmitted through the surface 3q of the second light-transmitting layer 3b, and a part of the light 5a is transmitted through the third light-transmitting layer by the action of the diffraction grating. It is converted into guided light 5B propagating in the layer 3c. The remaining light becomes transmitted light or diffracted light, which mainly becomes light 5a ′ within the critical angle and passes through the optical coupling structure 3, or becomes reflected light 5r within the critical angle, and the optical coupling structure 3 pass.
  • a part of the guided light 5B is emitted in the same direction as the light 5r within the critical angle until reaching the end face 3S of the third light transmitting layer 3c to become the light 5r 'within the critical angle, and the rest is guided.
  • the light 5c is emitted from the end face 3S of the third light-transmitting layer 3c and is outside the critical angle.
  • the light 6a outside the critical angle totally reflects the surface 3q of the second translucent layer 3b, and all of it becomes light 6b outside the critical angle.
  • the light outside the critical angle incident on the surface of the optical coupling structure 3 (the surface 3p of the first light transmissive layer 3a and the surface 3q of the second light transmissive layer 3b) remains outside the critical angle.
  • a part of the light within the critical angle is converted to light outside the critical angle.
  • the light entering the rod is classified into three types.
  • the light 15a passes through the core region 2A
  • the light 15b passes through the outer edge of the core region 2A
  • the light 15c passes through the outside of the core region 2A.
  • the light 15a is converted into light outside the critical angle that remains inside the rod in the cross section along the central axis of the rod as described above.
  • the light 15b is light incident on the main surface 2u of the rod at an angle ⁇ , and ⁇ satisfies the formula (3).
  • the incident angle of the light 15c on the main surface 2u is larger than ⁇ . Therefore, if Expression (4) is established, the light 15b is totally reflected by the first principal surface 2p of the rod, and the lights 15b and 15c are outside the critical angle that remains inside the translucent rod 2 ′ within the cross section orthogonal to the central axis. It becomes the light.
  • the main surface 2u of the translucent rod 2 ' is covered with a cover sheet 2e through a buffer layer 2f. Accordingly, the foreign matter 2g such as water droplets adheres to the surface of the cover sheet 2e and prevents it from coming into contact with the main surface 2u. If the foreign matter 2g comes into contact with the main surface 2u, the relationship of total reflection is broken at the contact surface, and light outside the critical angle confined in the translucent rod 2 ′ leaks to the outside through the foreign matter 2g. become.
  • the spacer 2d is also in contact with the main surface 2u, but its refractive index is almost the same as the refractive index of the environmental medium, so that the relationship of total reflection is maintained at the contact surface, and light outside the critical angle is transmitted to the outside via the spacer 2d. There is no leakage. Moreover, when the surface area of a translucent rod is small, the structure which forms the buffer layer 2f between the cover sheet 2e and the main surface 2u without interposing the spacer 2d is also considered.
  • FIG. 17 is a schematic cross-sectional configuration diagram showing a procedure for manufacturing the light capturing rod 61.
  • high refractive index films 24 and 24a and a low refractive index film 25a manufactured to the structure shown in FIG. 7A (e) are prepared by the same method as in the first embodiment.
  • the grating vectors of the diffraction gratings that form the optical coupling structure 3 on these laminated films are a combination of diffraction gratings of various pitches so that the pitch measured along the z-axis is 0.30 ⁇ m to 2.80 ⁇ m. Also good.
  • the size of the optical coupling structure 3 is such that the length L in the z-axis direction is 3 ⁇ m to 100 ⁇ m and the length W in the direction perpendicular to the length is L so that the coupled guided light can be emitted as much as possible along the central axis of the rod. It is set to be about / 2 to 1/10.
  • FIG. 18A is a schematic cross-sectional configuration diagram showing another manufacturing procedure of the light capturing rod 61
  • FIG. 18B is a schematic plan view showing a mask pattern for creating the rod.
  • a high refractive index film 24 such as SiN is formed on the surface of a transparent rod-shaped shaft 36, and a low refractive index film 25a such as SiO 2 is formed on the surface.
  • a resist is applied thereon, the mask pattern shown in FIG. 18B is exposed with the z-axis aligned, the resist in the photosensitive portion is removed, and then a low refractive index film is formed using the high refractive index film 24 as a stopper. Etching is performed to remove the remaining resist to obtain the structure shown in FIG. 18A (b).
  • the mask surface is divided into two areas of a transmission part 35A and a light shielding part 35B, and the areas 25A and 25B formed in FIG.
  • the film forming, exposing, and etching steps are performed while rotating the shaft 36 around the central axis as necessary.
  • the low refractive index film 25a has a pattern including a region 25A where the high refractive index film 24 is exposed by etching and a region 25B remaining without being etched. The level difference between these two regions is, for example, 1 ⁇ m to 3 ⁇ m.
  • the high refractive index film 24c is formed on the low refractive index film 25c having a flat surface.
  • the core region of the light capturing rod as shown in FIG. 18A (c) is completed.
  • the light capturing rod as shown in FIG. 18A (d) is completed by shielding the periphery with a transparent film having a low refractive index.
  • the high refractive index film is continuous without a break, but is bent at the boundary between the region 25A and the region 25B.
  • the waveguide layer is divided at the boundary.
  • the high refractive index film has a structure in which the low refractive index film is sandwiched in all regions, it can be completely separated from the surrounding high refractive index films. Accordingly, as described with reference to FIG. 16, light enters the high refractive index film (third light-transmitting layer 3c) and is converted into guided light, and this guided light is light outside the critical angle in the rod at the bent portion. Is emitted as.
  • the two-beam interference exposure method can be used for forming the diffraction grating.
  • the optical coupling structure 3 of the optical rod has the structure shown in FIG. 2A (f), it can be manufactured similarly by the manufacturing method described with reference to FIG. 7B.
  • FIG. 19 schematically shows a cross-sectional structure of the light emitting device 62 of the present embodiment.
  • the light emitting device 62 includes a light capturing rod 61 and light sources 14R, 14G, and 14B.
  • the light capturing rod 61 has the structure as described in the ninth embodiment.
  • the reflective film 11 is provided on the end surface 2r of the light capturing rod 61.
  • the main surface 2u on the end surface 2s side of the light capturing rod 61 may be provided with a taper 2v, and a waveguide 18 having a diameter smaller than that of the light transmitting rod 2 'may be connected thereto.
  • the light sources 14R, 14G, and 14B are configured by lasers or LEDs, for example, and emit red, green, and blue light, respectively. Light emitted from these light sources is collected by a lens and irradiated with light 4R, 4G, 4B toward the main surface 2u of the translucent rod 2 '. These lights are confined inside the translucent rod 2 ′ by the optical coupling structure 3 in the core region 2 A, and one end face 2 r is covered with the reflective film 11, so that the entire inside of the rod propagates in one direction. The guided light 12 becomes. The guided light 12 is narrowed without loss by the taper 2v in which the diameter of the translucent rod 2 'is gradually reduced, and becomes guided light propagating through the waveguide 18 having a small diameter.
  • the light 19 close to a point light source is emitted from the end face of the waveguide 18.
  • the lights 4R, 4G, and 4B are coherent lights.
  • the combined guided light 12 is incoherent.
  • the emitted light 19 is also incoherent light.
  • the emitted light 19 can be made white light.
  • red and blue semiconductor lasers have been realized, and if SHG is used, green lasers can also be used.
  • the position that needs to be adjusted is the position adjustment between the convergent light by the incident light 4R, 4G, and 4B and the translucent rod 2 '.
  • FIG. 20 is an explanatory cross-sectional view showing the state of incidence of light on the light intake rod 61, and point C is the center of the rod. If the refractive index of the translucent rod 2 ′ is 1.5, the light 16 a parallel to the straight line ACB becomes light 16 b that is refracted and condensed approximately at the point A. Assuming that the diameter of the core region 2A is larger than 1 / 1.5 of the diameter of the translucent rod 2 ′, the light 16b surely passes through the core region 2A and is confined in the translucent rod 2 ′ from Equation (4).
  • the incident light ray 17a for that purpose is light having an incident angle close to 90 degrees.
  • the incident light beam 17a corresponds to light at the outermost edge of light collection with a high numerical aperture.
  • all light rays having a general incident angle that is, light collected by a general numerical aperture, pass through the core region 2A and are confined in the translucent rod 2 '. This indicates that the positional adjustment of the incident light 4R, 4G, 4B and the translucent rod 2 'may be very rough, and the adjustment is easy.
  • the light sources 14R, 14G, and 14B may be infrared wavelengths used for optical communication, such as 0.98 ⁇ m or 1.48 ⁇ m.
  • the present embodiment can be realized as an optical fiber amplifier.
  • FIG. 21A shows a configuration of an amplifier in the optical communication of this embodiment.
  • the optical fiber amplifier includes excitation light sources 28 a and 28 b, multiplexers 29 a and 29 b, isolators 30 a and 30 b, and an optical fiber 31.
  • the light-emitting device 62 described above is used for the excitation light sources 28a and 28b.
  • an infrared light source of 0.98 ⁇ m or 1.48 ⁇ m is used for the light sources 14R, 14G, and 14B of the light emitting device 62.
  • the signal light 26 a and the excitation light 27 a from the 0.98 ⁇ m excitation light source 28 a are combined by the multiplexer 29 a, rectified by the isolator 30 a, and propagated through the fiber 31.
  • the excitation light 27b from the excitation light source 28b of 0.98 ⁇ m or 1.48 ⁇ m is synthesized by the multiplexer 29b and propagates through the fiber 31 in the reverse direction.
  • FIG. 21B is an explanatory diagram illustrating the principle of amplifying signal light in optical communication.
  • the Er 3+ ions absorb excitation light having a wavelength of 0.98 ⁇ m, the energy level transitions from the ground level 32 to the excitation level 33, and the excitation level 34 due to non-radiative relaxation.
  • the signal light 26a is amplified by stimulated emission (the amplified signal 26b).
  • the Er 3+ ions absorb the excitation light having a wavelength of 1.48 ⁇ m, the energy level transitions from the ground level 32 to the excitation level 34, and stimulates and emits to amplify the signal light 26a (the amplified signal). 26b).
  • the signal light is amplified in the fiber 31, rectified by the isolator 30b, and extracted as the amplified signal 26b.
  • the excitation light does not need to be coherent, but it is necessary to input 0.98 ⁇ m or 1.48 ⁇ m infrared light into the optical fiber.
  • high-density and high-intensity excitation light can be easily input into the optical fiber. Therefore, an amplifier with a high amplification factor can be provided easily.
  • FIG. 22 schematically shows a cross-sectional structure of the light emitting device 63 of the present embodiment.
  • the light emitting device 63 includes a light capturing rod 61, a light source 14, and a prism sheet 9.
  • the light capturing rod 61 has the structure as described in the ninth embodiment.
  • the reflective film 11 is provided on the end surface 2r of the light capturing rod 61. Further, the portion of the light intake rod 61 where the optical coupling structure 3 is not provided functions as the waveguide 18. A prism sheet 9 is provided on the main surface 2 u of the waveguide 18.
  • the light source 14 is made of a laser or LED and emits visible light.
  • the light emitted from this light source is collected by a lens, and the light 4 is transmitted through the translucent rod 2 ′.
  • These lights are confined inside the translucent rod 2 ′ by the optical coupling structure 3 in the core region 2 A, and one end face is covered with the reflective film 11. It becomes the light 12 propagating in the direction, and becomes the guided light propagating in the waveguide 18.
  • the prism sheet 9 is disposed in contact with the waveguide 18. In the prism sheet 9, tetrahedral prisms 10 are arranged adjacent to each other.
  • the sheets of the triangular prism array may be bonded orthogonally.
  • the refractive index of the prism 10 is larger than the refractive index of the prism sheet 9
  • the light leaking from the waveguide 18 and entering the prism sheet 9 is refracted and emitted from the prism sheet 9 to become parallel outgoing light 19.
  • the prism sheet 9 may be separated from the waveguide 18. In this case, light is emitted by forming an uneven structure on the surface of the waveguide 18 facing the prism sheet 9.
  • the light source is a laser
  • the light 4 is coherent light, but since the light emission from the individual optical coupling structures 3 is performed in a discrete phase, the waveguide light 12 synthesized from them is incoherent light. . Therefore, the emitted light 19 is also incoherent light.
  • red and blue semiconductor lasers have been realized, and if SHG is used, green lasers can also be used. When these light sources are used, red, green and blue line light sources can be obtained. For example, by bundling these linear light sources, a color backlight for a liquid crystal display can be provided with a very simple configuration.
  • the light capturing sheet and the light capturing rod of the present disclosure are not affected by water droplets, dust, dirt, and the like, and can capture light at all incident angles over a wide region and a wide wavelength range (for example, the entire visible light region).
  • the light-receiving device using them is useful for solar cells with high conversion efficiency.
  • the light receiving and light emitting device using the light capturing sheet and the light capturing rod of the present disclosure provides a new illumination or light source form, and uses recycled light using sunlight or illumination light, a highly efficient backlight, an It is useful as a coherent white light source and a signal amplifier in optical communication.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Photovoltaic Devices (AREA)
  • Lasers (AREA)

Abstract

 光取り込みシートは、透光シートと、その内部に配置された複数の光結合構造とを備える。光結合構造は、第1の透光層と、第2の透光層と、これらに挟まれた第3の透光層と、回折格子とを有する。第1、第2の透光層の屈折率は透光シートの屈折率より小さく、第3の透光層の屈折率は第1、第2の透光層の屈折率より大きい。光結合構造は、透光シートの主面と平行な一平面上の第1、第2の方向と、それらに非平行な第3の方向とに配置される。一平面上に配置された一群の光結合構造を構成する光結合構造と、他の平面上に配置され、一群の光結合構造と第3の方向に隣接する他の一群の光結合構造を構成する光結合構造とは、第3の方向に重なっていない。一群の光結合構造内の第1の光結合構造における第3の透光層と、他の一群の光結合構造内で、第1の光結合構造に隣接する第2の光結合構造における第3の透光層とは第3の透光層と同じ材料の接続部で接続される。

Description

光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器
 本願は、回折を利用して光の取り込みを行う光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器に関する。
 屈折率の異なる2つの光伝搬媒質の間で光を伝搬させる場合、界面において光の透過および反射が存在するため、高効率で一方の光伝播媒質から他方の光伝搬媒質に光を移し、この状態を保持することは、一般に難しい。空気などの環境媒質から、透明なシートに光を取り込む技術として、例えば、非特許文献1に示される従来のグレーティング結合法が挙げられる。図23(a)および(b)はグレーティング結合法の原理を示す説明図であって、表面にピッチΛの直線グレーティングが設けられた透光層20の断面図および平面図を示している。図23(a)に示すように、グレーティングに特定の入射角θで波長λの光23aを入射させると透光層20伝搬する導波光23Bに結合させることができる。
西原浩ほか著、「光集積回路」、オーム社、1985年2月25日、p94,p243
 本願発明者の検討によれば、従来のグレーティング結合法では、広い面積から、広い波長範囲の光を、広い入射角度で光を透明なシートに取り込むことが困難である。本開示の限定的ではない一態様は、広い面積から、広い波長範囲の光を、広い入射角度で取り込むことが可能な光取り込みシート、および光取り込みロッドを提供する。また、それらを用いた受光装置、発光装置および光ファイバー用増幅器を提供する。
 本開示の一態様に係る光取り込みシートは、第1および第2の主面を有する透光シートと、前記透光シート内であって、前記第1および第2の主面からそれぞれ第1および第2の距離以上隔てた内部に配置された複数の光結合構造とを備え、前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、前記第1の透光層および前記第2の透光層に挟まれた第3の透光層とを含み、前記第1および第2の透光層の屈折率は前記透光シートの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、前記複数の光結合構造のそれぞれは、前記透光シートの前記第1および第2の主面と平行な回折格子を有し、前記複数の光結合構造は、前記透光シート内において、前記第1および第2の主面と平行な平面上の互いに異なる第1および第2の方向と、前記第1および第2の方向に非平行な第3の方向とにおいて3次元に配置されており、前記平面上において前記第1および第2の方向に配置された複数の前記光結合構造により一群の光結合構造が構成され、前記平面と平行な他の平面上において前記第1および第2の方向に配置された複数の前記光結合構造により他の一群の光結合構造が構成され、前記一群の光結合構造と前記他の一群の光結合構造とは、前記第3の方向に隣接しており、前記一群の光結合構造を構成する各光結合構造と、前記他の一群の光結合構造を構成する各光結合構造とは、前記第3の方向に重なっておらず、前記一群の光結合構造に含まれる第1の光結合構造における前記第3の透光層と、前記他の一群の光結合構造に含まれ、前記第1の光結合構造に隣接する第2の光結合構造における前記第3の透光層とは、前記第3の透光層と同じ材料によって構成される接続部によって互いに接続されている。
 本開示の一態様に係る光取り込みロッドは、主面、および円または楕円の断面を有する透光ロッドと、前記透光ロッド内であって、前記主面から第1の距離以上隔てた内部に配置された複数の光結合構造とを備え、前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、前記第1の透光層および前記第2の透光層に挟まれた第3の透光層とを含み、前記第1および第2の透光層の屈折率は前記透光ロッドの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、前記複数の光結合構造のそれぞれは、前記透光ロッドの中心軸と平行な回折格子を有し、前記複数の光結合構造は、前記透光ロッド内において、前記ロッドの中心軸から所定の距離にある円柱側面上の互いに異なる第1および第2の方向と、前記円柱側面から中心軸へ向かう第3の方向とにおいて3次元に配置されており、前記円柱側面上において前記第1および第2の方向に配置された複数の前記光結合構造により一群の光結合構造が構成され、前記ロッドの中心軸からの距離が前記円柱側面と異なる他の円柱側面上において前記第1および第2の方向に配置された複数の前記光結合構造により他の一群の光結合構造が構成され、前記一群の光結合構造と前記他の一群の光結合構造とは、前記第3の方向に隣接しており、前記一群の光結合構造を構成する各光結合構造と、前記他の一群の光結合構造を構成する各光結合構造とは、前記第3の方向に重なっておらず、前記一群の光結合構造に含まれる第1の光結合構造における前記第3の透光層と、前記他の一群の光結合構造に含まれ、前記第1の光結合構造に隣接する第2の光結合構造における前記第3の透光層とは、前記第3の透光層と同じ材料によって構成される接続部によって互いに接続されている。
 なお、これらの包括的または具体的な態様は、システムまたは方法で実現されてもよく、システム、装置および方法の任意な組み合わせで実現されてもよい。
 本開示に係る光取り込みシートまたは光取り込みロッドは、広い面積から、広い波長範囲の光を、広い入射角度で取り込むことができる。
(a)は、本開示による光取り込みシートの第1の実施形態を示す模式的な断面図であり、(b)は透光シート内の光結合構造の一部を拡大して示す図であり、(c)は、第1の実施形態における第4の領域の位置を示す平面図である。 (a)および(b)は、第1の実施形態の光結合構造を示す模式的な断面図および平面図であり、(c)は、光結合構造の端面に入射する光の様子を示す断面図であり、(d)は、第3の透光層3cを抜き取った光結合構造に入射する光の様子を示す断面図であり、(e)、(f)は、光結合構造の他の構成例を示す断面図である。 隣接する複数の光結合構造の配置を示す図である。 第1の実施形態の光取り込みシートの解析に用いた構造を示す断面図である。 図3に示す構造を用いて行った解析結果を示すグラフであって、(a)から(c)は、光の入射角とシート外への透過率との関係を示し、(d)は、回折格子の溝深さとシート外への光取り出し効率との関係を示すグラフである。 (a)から(e)は、図4(a)から(c)の矢印で示す位置の条件におけるシート断面の光強度分布を示す図である。 図3に示す構造において、第1の透光層3aおよび第2の透光層3bの屈折率を透光シートの屈折率に一致させ、第3の透光層3cの屈折率を2.0にした場合における解析結果を示すグラフであって、(a)から(c)は、入射角とシート外への透過率との関係を示し、(d)は、回折格子の溝深さとシート外への光取り出し効率との関係を示すグラフである。 (a)から(i)は、第1の実施形態の光取り込みシートの製造手順を示す模式的な断面図である。 (a)および(b)は、第1の実施形態の光取り込みシートの、他の製造手順を示す模式的な断面図である。 (a)から(d)は、xy平面における光結合構造の形状および配置を示す図である。 本開示による受光装置の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による受光装置の他の実施形態を示す模式的な断面図である。 本開示による採光板の実施形態を示す模式的な断面図である。 本開示による発光装置の実施形態を示す模式的な断面図である。 (a)および(b)は、本開示による光取り込みロッドの実施形態を示す中心軸に平行および垂直な模式的断面図である。 図16に示す光取り込みロッドの製造手順を示す模式的な図である。 (a)から(d)は、図16に示す光取り込みロッドの、他の製造手順を示す模式的な図である。 図16に示す光取り込みロッドの製造に用いるマスクパターンを示す模式的な平面図である。 本開示による発光装置の実施形態を示す模式的な断面図である。 図19に示す発光装置の光取り込みロッドの断面における光の入射の様子を示す断面図である。 (a)および(b)は、光ファイバー用増幅器の実施形態を示す模式的な構成図である。 本開示による発光装置の他の実施形態を示す模式的な断面図である。 (a)および(b)は、グレーティング結合法により、光を取り込むための直線グレーティングの断面図および平面図であり、(c)および(d)は、グレーティング結合法の原理を示す図である。
 (本開示の基礎となった知見)
 本願発明者は、非特許文献1に開示された方法を詳細に検討した。検討結果によれば、透光層20には、決められた条件を満たす光のみを取り込むことができ、条件からずれた光は取り込まれない。図23(c)は、透光層20に設けられたグレーティングに入射する光のベクトルダイアグラムを示している。図23(c)において、円21、22は点Oを中心とし、円21の半径は透光層20を取り巻く環境媒質1の屈折率nに等しく、円22の半径は導波光23Bの等価屈折率neffに等しい。等価屈折率neffは透光層20の膜厚に依存し、導波モードに応じて環境媒質1の屈折率nから透光層20の屈折率nまでの間の特定の値をとる。図23(d)は、透光層20をTEモードで光が伝搬する場合における実効的な膜厚teffと等価屈折率neffとの関係を示す。実効的な膜厚とは、グレーティングがない場合には透光層20の膜厚そのものであり、グレーティングがある場合には、透光層20の膜厚にグレーティングの平均高さを加えたものである。励起される導波光には、0次、1次、2次などのモードが存在し、図23(d)に示すように、それぞれ特性カーブが異なる。図23(c)において、点Pは点Oから入射角θに沿って線を引き、円21と交わる点であり、点P’は点Pのx軸への垂線の足、点Q、Q’は円22とx軸との交点である。x軸正方向への光の結合条件はP’Qの長さがλ/Λの整数倍に等しいこと、負方向への光の結合条件はP’Q’の長さがλ/Λの整数倍に等しいことで表される。ただし、λは光の波長、Λはグレーティングのピッチである。すなわち、光の結合条件は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、qは整数で表わされる回折次数である。式(1)で定まるθ以外の入射角では、光は透光層20内に結合しない。また同じ入射角θであっても、波長が異なれば、やはり光は結合しない。
 なお、図23(b)に示すように、光23aの入射方向から角度φだけシフトした方位角φで透光層20に入射する光23aaに対する、透光層20のグレーティングの実質的なピッチはΛ/cosφとなる。このため、異なる方位で入射する光23aは、式(1)で規定される条件とは異なる入射角θおよび波長でも光の結合条件を満たし得る。つまり、透光層20に入射する光の方位の変化を許容する場合には、式(1)で示される光の結合条件は、ある程度広くなる。しかし、広い波長範囲および全ての入射角で入射光を導波光23Bに結合させることはできない。
 また導波光23Bはグレーティングの領域を伝搬する間に、入射する光23aに対する反射光と同じ方向に光23b’を放射する。このため、グレーティングの端部20aから遠い位置で入射し、導波光23Bとして透光層20を伝搬することができても、グレーティングの端部20aに至る時には減衰してしまう。したがって、グレーティングの端部20aに近い位置で入射する光23aのみが放射による減衰を受けることなく、導波光23Bとして透光層20内を伝搬することができる。つまり、多くの光を結合させるため、グレーティングの面積を大きくしても、グレーティングに入射する光の全てを導波光23Bとして伝搬させることはできない。このような課題に鑑み、本願発明者は新規な光取り込みシートを想到した。本願の光取り込みシート、光取り込みロッド、受光装置、発光装置および光ファイバー用増幅器の一態様は以下の通りである。
 本開示の一態様に係る光取り込みシートは、第1および第2の主面を有する透光シートと、前記透光シート内であって、前記第1および第2の主面からそれぞれ第1および第2の距離以上隔てた内部に配置された複数の光結合構造とを備え、前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、前記第1の透光層および前記第2の透光層に挟まれた第3の透光層とを含み、前記第1および第2の透光層の屈折率は前記透光シートの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、前記複数の光結合構造のそれぞれは、前記透光シートの前記第1および第2の主面と平行な回折格子を有し、前記複数の光結合構造は、前記透光シート内において、前記第1および第2の主面と平行な平面上の互いに異なる第1および第2の方向と、前記第1および第2の方向に非平行な第3の方向とにおいて3次元に配置されており、前記平面上において前記第1および第2の方向に配置された複数の前記光結合構造により一群の光結合構造が構成され、前記平面と平行な他の平面上において前記第1および第2の方向に配置された複数の前記光結合構造により他の一群の光結合構造が構成され、前記一群の光結合構造と前記他の一群の光結合構造とは、前記第3の方向に隣接しており、前記一群の光結合構造を構成する各光結合構造と、前記他の一群の光結合構造を構成する各光結合構造とは、前記第3の方向に重なっておらず、前記一群の光結合構造に含まれる第1の光結合構造における前記第3の透光層と、前記他の一群の光結合構造に含まれ、前記第1の光結合構造に隣接する第2の光結合構造における前記第3の透光層とは、前記第3の透光層と同じ材料によって構成される接続部によって互いに接続されている。
 本開示の他の態様に係る光取り込みシートにおいて、前記第1の透光層および第2の透光層のそれぞれは、前記透光シートの前記第1および第2の主面と平行な方向に沿って交互に配置された複数の高屈折率部および複数の低屈折率部を有し、前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率は、それぞれ前記透光シートの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率よりも大きく、前記複数の高屈折率部の屈折率は前記複数の低屈折率部の屈折率よりも大きくてもよい。
 本開示の他の態様に係る光取り込みシートにおいて、前記第1の光結合構造における前記第1の透光層と、前記第2の光結合構造における前記第1の透光層とは、前記第1の透光層と同じ材料によって構成される接続部によって互いに接続され、前記第1の光結合構造における前記第2の透光層と、前記第2の光結合構造における前記第2の透光層とは、前記第2の透光層と同じ材料によって構成される接続部によって互いに接続されていてもよい。
 本開示の他の態様に係る光取り込みシートにおいて、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記第1および第2の主面と平行な平面において、方形形状を有し、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記第1および第2の主面に対して垂直な方向からみて互いに重ならないように、チェッカーパターン状に配置されていてもよい。
 本開示の他の態様に係る光取り込みシートにおいて、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記第1および第2の主面と平行な平面において、六角形形状を有し、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれの少なくとも2つの隣接する光結合構造において、第1の透光層、第2の透光層および第3の透光層は互いにそれぞれ接続されていてもよい。
 本開示の他の態様に係る光取り込みシートにおける、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれの、前記六角形形状の1辺と垂直な方向に位置する2以上の光結合構造において、第1の透光層、第2の透光層および第3の透光層は互いにそれぞれ接続されていてもよい。
 本開示の他の態様に係る光取り込みシートにおいて、前記回折格子のピッチが0.1μm以上3μm以下であり、前記光結合構造における前記第1および第2の透光層の表面は、100μm以下の直径の円に外接する大きさを有し、前記複数の光結合構造のそれぞれの厚さは3μm以下であってもよい。
 本開示の他の態様に係る光取り込みシートにおける、前記複数の光結合構造のうち少なくとも2つにおいて、前記回折格子の伸びる方向は互いに異なっているか、または前記回折格子のピッチは互いに異なっていてもよい。
 本開示の他の態様に係る光取り込みシートにおける、前記複数の光結合構造の少なくとも1つにおいて、前記第1および第2の透光層の、前記透光シートと接する面、及び前記第1の主面、前記第2の主面のいずれかには、ピッチ及び高さが前記光結合構造に入射する光の中心波長の1/3以下の凹凸構造が配置されていてもよい。
 本開示の一態様に係る光取り込みロッドは、主面、および円または楕円の断面を有する透光ロッドと、前記透光ロッド内であって、前記主面から第1の距離以上隔てた内部に配置された複数の光結合構造とを備え、前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、前記第1の透光層および前記第2の透光層に挟まれた第3の透光層とを含み、前記第1および第2の透光層の屈折率は前記透光ロッドの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、前記複数の光結合構造のそれぞれは、前記透光ロッドの中心軸と平行な回折格子を有し、前記複数の光結合構造は、前記透光ロッド内において、前記ロッドの中心軸から所定の距離にある円柱側面上の互いに異なる第1および第2の方向と、前記円柱側面から中心軸へ向かう第3の方向とにおいて3次元に配置されており、前記円柱側面上において前記第1および第2の方向に配置された複数の前記光結合構造により一群の光結合構造が構成され、前記ロッドの中心軸からの距離が前記円柱側面と異なる他の円柱側面上において前記第1および第2の方向に配置された複数の前記光結合構造により他の一群の光結合構造が構成され、前記一群の光結合構造と前記他の一群の光結合構造とは、前記第3の方向に隣接しており、前記一群の光結合構造を構成する各光結合構造と、前記他の一群の光結合構造を構成する各光結合構造とは、前記第3の方向に重なっておらず、前記一群の光結合構造に含まれる第1の光結合構造における前記第3の透光層と、前記他の一群の光結合構造に含まれ、前記第1の光結合構造に隣接する第2の光結合構造における前記第3の透光層とは、前記第3の透光層と同じ材料によって構成される接続部によって互いに接続されている。
 本開示の他の態様に係る光取り込みロッドにおいて、前記第1の透光層および第2の透光層のそれぞれは、前記透光ロッドの前記主面と平行な方向に沿って交互に配置された複数の高屈折率部および複数の低屈折率部を有し、前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率は、それぞれ前記透光ロッドの屈折率よりも小さく、前記第3の透光層の屈折率は前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率よりも大きく、前記複数の高屈折率部の屈折率は前記複数の低屈折率部の屈折率よりも大きくてもよい。
 本開示の他の態様に係る光取り込みロッドにおいて、前記第1の光結合構造における前記第1の透光層と、前記第2の光結合構造における前記第1の透光層とは、前記第1の透光層と同じ材料によって構成される接続部によって互いに接続され、前記第1の光結合構造における前記第2の透光層と、前記第2の光結合構造における前記第2の透光層とは、前記第2の透光層と同じ材料によって構成される接続部によって互いに接続されていてもよい。
 本開示の他の態様に係る光取り込みロッドにおいて、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記主面と平行な面において、方形形状を有し、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記主面に対して垂直な方向からみて互いに重ならないように、チェッカーパターン状に配置されていてもよい。
 本開示の他の態様に係る光取り込みロッドにおいて、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記主面と平行な面において、六角形形状を有し、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれの少なくとも2つの隣接する光結合構造において、第1の透光層、第2の透光層および第3の透光層は互いにそれぞれ接続されていてもよい。
 本開示の他の態様に係る光取り込みロッドにおける、前記一群の光結合構造および前記他の一群の光結合構造のそれぞれの、前記六角形形状の1辺と垂直な方向に位置する2以上の光結合構造において、第1の透光層、第2の透光層および第3の透光層は互いにそれぞれ接続されていてもよい。
 本開示の他の態様に係る光取り込みロッドにおいて、前記回折格子のピッチが0.1μm以上3μm以下であってもよく、前記光結合構造における前記第1および第2の透光層の表面は、100μm以下の直径の円に外接する大きさを有し、前記光結合構造のそれぞれの厚さは3μm以下であってもよい。
 本開示の他の態様に係る光取り込みロッドにおける、前記複数の光結合構造のうち少なくとも2つにおいて、前記回折格子の伸びる方向は互いに異なっているか、または前記回折格子のピッチは互いに異なっていてもよい。
 本開示の他の態様に係る光取り込みロッドにおける、前記複数の光結合構造の少なくとも1つにおいて、前記第1および第2の透光層の、前記透光ロッドと接する面、および、前記主面のいずれかには、ピッチおよび高さが前記光結合構造に入射する光の中心波長の1/3以下の凹凸構造が配置されていてもよい。
 本開示の一態様に係る受光装置は、上記いずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面、前記第2の主面および前記第1の主面と前記第2の主面とに隣接する端面のいずれかに設けられた光電変換部とを備える。
 本開示の他の態様に係る受光装置において、上記いずれかに記載の他の光取り込みシートをさらに備え、前記光取り込みシートの前記第1の主面に前記光電変換部が設けられ、前記光取り込みシートの前記第2の主面に前記他の光取り込みシートの端面が接続されていてもよい。
 本開示の他の態様に係る受光装置は、上記いずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面に設けられた凹凸構造またはプリズムシート、前記凹凸構造または前記プリズムシートから出射する光を受光する光電変換部とを備える。
 本開示の他の態様に係る受光装置は、上記いずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面の一部に設けられた凹凸構造とを備える。
 本開示の一態様に係る発光装置は、上記いずれかに記載の光取り込みシートと、前記光取り込みシートの前記第1の主面または前記第2の主面の一方に近接して設けられた光源と、前記光取り込みシートの前記第1の主面または前記第2の主面の他方に設けられた凹凸構造と、前記凹凸構造から出射する光が入射するように配置されたプリズムシートとを備える。
 本開示の他の態様に係る発光装置は、上記いずれかに記載の光取り込みロッドと、前記透光ロッドの第1の主面に近接して配設された少なくとも1つの光源とを備える。
 本開示の他の態様に係る発光装置において、前記光源を複数備え、前記光源は可視光または赤外光を出射してもよい。
 本開示の他の態様に係る発光装置は、前記透光ロッドの第1の主面の一部に設けられたプリズムシートまたは凹凸構造をさらに備えていてもよい。
 本開示の一態様に係る光ファイバー用増幅器は、上記いずれかに記載の光取り込みロッド、および前記透光ロッドの主面に近接して配設された少なくとも1つの赤外光源を含む励起光源と、前記励起光源からの光および信号光を合成する合波器と、前記合波器と光学的に結合され、コアにエルビウムが添加された光ファイバーとを備える。
 本開示に係る光取り込みシートまたは光取り込みロッドによれば、透光シートまたは透光ロッドに入射した光は内部に配置された光結合構造に入射し、光結合構造内の回折格子により、第3の透光層に沿った方向に伝搬する光に変換され、光結合構造の端面から放射される。光結合構造は透光シート表面またはロッド中心軸と平行な位置関係にあり、光結合構造の表面は空気などの低屈折率の環境媒質に覆われている。そのため、一度放射された光は透光シートの表面、透光ロッドの表面、および他の光結合構造の表面の間で全反射を繰り返し、透光シート内または透光ロッド内に閉じ込められる。回折格子に様々なピッチ、方位が含まれるので、広い領域、広い波長範囲、例えば可視光全域に渡って、広い入射角、例えば全ての入射角で光を取り込むことが可能になる。
 (第1の実施形態)
 本開示による光取り込みシートの第1の実施形態を説明する。図1(a)は、光取り込みシート51の模式的な断面図である。光取り込みシート51は、第1の主面2pおよび第2の主面2qを有する透光シート2と透光シート2内に配設された少なくとも1つの光結合構造3を備える。
 透光シート2は、用途に応じた所望の波長、あるいは、所望の波長域内の光を透過する透明な材料によって構成されている。例えば、可視光(波長0.4μm以上0.7μm以下)を透過する材料によって構成されている。透光シート2の厚さは例えば0.03mm~1mm程度である。第1の主面2pおよび第2の主面2qの大きさに特に制限はなく、用途に応じた面積を有している。この透光シート2の上にはスペーサ2dを挟んで、カバーシート2eが接着されている。従って、透光シート2の第1の主面2pのほとんどはバッファー層2fに接している。スペーサ2dはエアロゲルのような屈折率が低い材料から構成されている。なお、カバーシート2eは透光シート2の第2の主面2qに形成してもよく、両面に形成してもよい。
 図1(a)に示すように、透光シート2内において、光結合構造3は、第1の主面2pおよび第2の主面2qからそれぞれ第1の距離d1および第2の距離d2以上隔てた内部に配置されている。このため、透光シート2において、第1の主面2pと接し、第1の距離d1を厚さに有する第1の領域2aおよび第2の主面2qと接し、第2の距離d2を厚さに有する第2の領域2bには光結合構造3は配設されておらず、第1の領域2aおよび第2の領域2bに挟まれた第3の領域2cに光結合構造3は配設されている。
 光結合構造3は、透光シート2の第3の領域2cにおいて、3次元に配列されている。具体的には、光結合構造3は、第1の主面2pおよび第2の主面2qに平行な面上において、第1および第2の方向に2次元に配列され、かつ、2次元に配列された一群の光結合構造3が、透光シート2の第1および第2の方向に非平行な第3の方向である厚さ方向に複数積層されている。
 光結合構造3はx、y軸方向(第1および第2の方向)およびz軸方向(第3の方向)に所定の密度で配置されている。例えば、その密度は例えばx軸方向に1mm当たり10~10個、y軸方向に1mm当たり10~10個、z軸方向に1mm当たり10~10個程度である。透光シート2の第1の主面2pおよび第2の主面2q全体に照射される光を効率よく取り込むためには、透光シート2のx軸方向、y軸方向およびz軸方向における光結合構造3の配置密度はそれぞれ独立して均一であってもよい。ただし、用途、または透光シート2の第1の主面2pおよび第2の主面2qに照射する光の分布によっては、透光シート2中の光結合構造3の配置は均一でなくてもよく、所定の分布を有していてもよい。
 図1(b)は透光シート2内の光結合構造3の一部を拡大して示している。図1(b)に示すように、xおよびy方向に配置された一群の光結合構造3Gと、z方向に隣接する他の一群の光結合構造3G’とにおいて、各光結合構造3は、z方向に重なっていない。
 図2A(a)および(b)は、光結合構造3の厚さ方向に沿った断面図およびそれに直交する平面図である。光結合構造3は、第1の透光層3aと第2の透光層3bとこれらに挟まれた第3の透光層3cとを含む。第3の透光層3cは、基準平面に配設されたピッチΛの直線格子を有する回折格子3dを含む。回折格子3dの直線格子は、第3の透光層3cと第1の透光層3aまたは第2の透光層3bとの界面に設けられた凹凸によって構成されていてもよいし、図2A(e)に示すように、第3の透光層3c内部に設けられていてもよい。また、凹凸による格子ではなく、屈折率差による格子であってもよい。この場合、回折格子は、第3の透光層3cに設けられていてもよいし、第1の透光層3aおよび第2の透光層3bに設けられていてもよい。たとえば、図2A(f)に示すように、第1の透光層3a’は、透光シート2の第1および第2の主面2p、2qと平行な方向に沿って交互に配置された複数の高屈折率部3aおよび複数の低屈折率部3aを有する回折格子を含む。同様に、第2の透光層3b’は、透光シート2の第1および第2の主面2p、2qと平行な方向に沿って交互に配置された複数の高屈折率部3bおよび複数の低屈折率部3bを有する回折格子を含む。高屈折率部3aの屈折率は、低屈折率部3aの屈折率よりも大きく、高屈折率部3bの屈折率は、低屈折率部baの屈折率よりも大きい。
 図2Bは、zy平面における一群3Gの光結合構造3およびz方向に隣接する他の一群3G’の光結合構造3における各光結合構造3を示している。図2Bに示すように、一群3Gの光結合構造3を構成する各光結合構造の第3の透光層3cと、他の一群3G’の光結合構造3を構成する各光結合構造の第3の透光層3cとは第3の透光層3cと同じ材料によって構成される接続部3ccによって接続されている。同様に一群3Gの光結合構造3を構成する各光結合構造の第1の透光層3aと、他の一群3G’の光結合構造3を構成する各光結合構造の第1の透光層3aとは第1の透光層3aと同じ材料によって構成される接続部3acによって接続されている。また、同様に一群3Gの光結合構造3を構成する各光結合構造の第2の透光層3bと、他の一群3G’の光結合構造3を構成する各光結合構造の第2の透光層3bとは第2の透光層3bと同じ材料によって構成される接続部3bcによって接続されている。
 図2Bは、y方向の断面を示しているが、X方向においても、一群3Gの光結合構造3を構成する各光結合構造の第1の透光層3a、第2の透光層3bおよび第3の透光層3cは、他の一群3G’の光結合構造3を構成する各光結合構造の第1の透光層3a、第2の透光層3bおよび第3の透光層3cと接続部3ac、3bc、3ccによって、接続されている。
 図8(a)は、一群3Gの光結合構造3および他の一群3G’の光結合構造3のxy平面における配置を示している。たとえば、一群3Gの光結合構造3を構成する各光結合構造は、領域35Aに配置され、他の一群3G’の光結合構造3を構成する各光結合構造は、領域35Bに配置される。一群3Gの光結合構造3を構成する各光結合構造3の第3の透光層3cは、接続部3ccを介して、z方向に隣接する他の一群3G’の光結合構造3のうちの、x方向およびy方向において、隣接する4つの光結合構造3の第3の透光層3cと接続されている。他の一群3G’の光結合構造3を構成する各光結合構造の第3の透光層3cも同様である。しかし、第3の透光層3cはy方向に伸びているのに対し、接続部3ccはz方向に伸びており、第3の透光層3cを導波路として見た場合、接続部3ccにおいて、光の伝搬し得る方向が90度折れ曲がる。このため、以下において説明するように、光結合構造3の第3の透光層3cを透過する光は、接続部3ccを介して、他の光結合構造3には透過せず、各光結合構造3は独立した光学素子として扱うことができる。したがって、以降の説明では、各光結合構造3を独立した光学要素であるとして説明する。
 光結合構造3は、第3の透光層3cの回折格子3dが光取り込みシート51の第1の主面2pおよび第2の主面2qと平行になるように、透光シート2内に配置されている。ここで、回折格子が第1の主面2pおよび第2の主面2qと平行であるとは、格子が配設されている基準平面が第1の主面2pおよび第2の主面2qと平行であることを意味する。
 第1の透光層3a、第2の透光層3bおよび第3の透光層3cの厚さはそれぞれa、b、tであり、第3の透光層3cの直線回折格子の段差(深さ)はdである。第3の透光層3cの表面は透光シート2の第1の主面2p、第2の主面2qと平行であり、第1の透光層3aおよび第2の透光層3bの、第3の透光層3cと反対側に位置する表面3p、3qも透光シート2の第1の主面2p、第2の主面2qと平行である。
 以下において説明するように、光取り込みシートに入射する異なる波長の光を取り込むことができるように、光取り込みシート51は複数の光結合構造3を備え、複数の光結合構造のうち少なくとも2つにおいて、回折格子3dの伸びる方向が互いに異なっていてもよい。あるいは、複数の光結合構造3のうち少なくとも2つにおいて、回折格子3dのピッチΛが互いに異なっていてもよい。あるいは、これらの組み合わせであっても良い。
 第1の透光層3aおよび第2の透光層3bの屈折率は透光シート2の屈折率よりも小さく、第3の透光層3cの屈折率は第1の透光層3aおよび第2の透光層3bの屈折率よりも大きい。以下では、第1の透光層3aおよび第2の透光層3bは空気であり、屈折率が1であるとする。また、第3の透光層3cは透光シート2と同じ媒質から構成されており、屈折率は互いに等しいとする。
 光結合構造3が、図2A(f)に示す構造を備えている場合には、高屈折率部3aおよび低屈折率部3aの屈折率は、透光シート2の屈折率および第3の透光層3cの屈折率よりも小さい。同様に、高屈折率部3bおよび低屈折率部3bの屈折率は、透光シート2の屈折率および第3の透光層3cの屈折率よりも小さい。
 光結合構造3の第1の透光層3aおよび第2の透光層3bの表面3p、3qは、例えば、長さWおよびLを2辺とする矩形であり、WおよびLは3μm以上100μm以下である。つまり、光結合構造3の第1の透光層3aおよび第2の透光層3bの表面は3μm以上、100μm以下の直径の円に外接する大きさを有している。また、光結合構造3の厚さ(a+t+d+b)は3μm以下である。図2A(b)に示すように、本実施形態では光結合構造3は、xy平面において方形形状を有しているが、他の形状、例えば、多角形、円または楕円形状を有していてもよい。
 光取り込みシート51は、環境媒質に囲まれて使用される。例えば、光取り込みシート51は空気中で使用される。この場合環境媒質の屈折率は1である。以下、透光シート2の屈折率をnとする。環境媒質からの光4はカバーシート2eとバッファー層2fを透過し、透光シート2の第1の主面2pまたは第2の主面2qから透光シート2の内部に入射する。バッファー層2fは環境媒質と同じ媒質で構成され、その屈折率は1である。また、スペーサ2dの屈折率もほとんど1に等しい。カバーシート2eの両面、第1の主面2pおよび第2の主面2qには入射した光4の透過率を高めるため、ARコートまたは無反射ナノ構造が形成されていてもよい。無反射ナノ構造には、モスアイ構造等、ピッチおよび高さが設計波長の1/3以下の微細な凹凸構造が含まれる。設計波長は、光取り込みシート51が所定の機能を発揮するように各要素を設計する際に用いる光の波長である。なお、無反射ナノ構造では、フレネル反射は低減するが、全反射は存在する。
 以下、透光シート2の内部に存在する光のうち、その伝搬方位と透光シート2の法線(第1の主面2pおよび第2の主面2qに垂直な線)とのなす角θ(以下、伝搬角と呼ぶ)がsinθ<1/nを満たす光を臨界角内の光、sinθ≧1/nを満たす光を臨界角外の光と呼ぶ。図1(a)において透光シート2の内部に臨界角内の光5aがある場合、その一部は光結合構造3により、臨界角外の光5bに変換され、この光は第1の主面2pを全反射して、シート内部にとどまる臨界角外の光5cとなる。また、臨界角内の光5aの残りの臨界角内の光5a’のうちの一部は別の光結合構造3により臨界角外の光5b’に変換され、この光は第2の主面2qを全反射して、シート内部にとどまる臨界角外の光5c’となる。このようにして臨界角内の光5aの全てが、光結合構造3が配置された第3の領域2c内で臨界角外の光5bまたは光5b’に変換される。
 一方、透光シート2に臨界角外の光6aがある場合、その一部は光結合構造3の表面を全反射して臨界角外の光6bとなり、この光は第1の主面2pを全反射して、シート内部にとどまる臨界角外の光6cとなる。また、光6aの残りの光の一部は光結合構造3が設けられた第3の領域2cを透過する臨界角外の光6b’となり、この光は第2の主面2qにおいて全反射し、透光シート2内部にとどまる臨界角外の光6c’となる。また図に示していないが、異なる光結合構造3の間と第1の主面2p、第2の主面2qの間を全反射しながらシート内部にとどまる臨界角外の光、つまり、第1の領域2a、第2の領域2b、あるいは第3の領域2cに止まって伝搬する光も存在する。この場合、第1の領域2a、および第2の領域2bを伝搬する光の分布に偏りが生じる可能性がある。透光シート2における光の分布の偏りが問題となる場合には、図1(a)に示すように、透光シート2内の第3の領域2cにおいて、光結合構造3が配設されていない第4の領域2hを1つ以上設けてもよい。つまり、光結合構造3は、第4の領域2hを除く第3の領域2c内にのみ配置されている。透光シート2において、第4の領域2hは第1の領域2aと第2の領域2bとを接続している。第4の領域2hは、第1の領域2aから第2の領域2bへまたは逆の方向に沿って伸びており、第4の領域2hを貫通する任意の直線の方位は透光シートの屈折率と透光シートの周囲の環境媒質の屈折率とで規定される臨界角よりも大きな角度に沿っている。すなわち、環境媒質の屈折率が1であり、透光シート2の屈折率をnとすれば、第4の領域2hを貫く任意の直線の延びる方向2hxが透光シート2の法線となす角度θ’は、sinθ’≧1/nを満たしている。ここで、直線が第4の領域2hを貫通するとは、第4の領域2hの第1の領域2aと接する面と、第4の領域2hの第2の領域2bとを直線が貫くことを言う。
 光結合構造3が図2A(f)に示す構造を有する場合も同様に機能する。臨界角内の光5aは第1の透光層3a’または第2の透光層3b’の内部に入ることができ、第1の透光層3a’または第2の透光層3b’に設けられた低屈折率部および高屈折率部によって構成される回折格子により、導波光5Bを励起できる。一方、臨界角外の光6aは第1の透光層3a’または第2の透光層3b’の表面でほとんど全反射し、第1の透光層3a’または第2の透光層3b’の内部に滲み込める深さは極めて小さくなるので、第1の透光層3a’または第2の透光層3b’の内部に形成された回折格子の影響をうけることはない。
 図1(c)は、光取り込みシート51の平面図であって、第4の領域2hの配置を示している。図1(c)に示すように、第4の領域2hは、例えば、透光シート2内に複数設けられている。第4の領域2hは、臨界角よりも大きな角度で第1の領域2aから第2の領域2bへまたは逆の方向に伸びているため、透光シート2の第1の領域2aおよび第2の領域2bを伝搬する光のうち、臨界角外の光のみが、第4の領域2hを透過し、第1の領域2aから第2の領域2bへまたは逆に透過し得る。このため、光取り込みシート51内での光分布の偏りを防ぐことができる。
 図2A(a)に示すように、臨界角内の光5aは、第2の透光層3bの表面3qを透過し、その一部は回折格子3dの作用で第3の透光層3c内を伝搬する導波光5Bに変換される。残りは透過光または回折光として、主に臨界角内の光5a’となって光結合構造3を透過するか、または、反射光として、臨界角内の光5rとなり、光結合構造3を通過する。第2の透光層3bへの入射の際、表面3qを反射する臨界角外の光6bもあるが、表面3q、3pに無反射ナノ構造を形成しておけば、ほとんどの光を透過させることができる。
 導波光5Bへの結合は、従来のグレーティング結合法の原理と同じである。導波光5Bは第3の透光層3cの端面3Sに至るまでにその一部が臨界角内の光5rと同じ方向に放射されて臨界角内の光5r’となり、残りは導波して第3の透光層3cの端面3Sから放射され、臨界角外の光5cとなる。一方、臨界角外の光6aは、第2の透光層3bの表面3qにおいて全反射し、その全てが臨界角外の光6bとなる。このように、光結合構造3の表面(第1の透光層3aの表面3pおよび第2の透光層3bの表面3q)に入射する臨界角外の光は臨界角外の光としてそのまま反射され、臨界角内の光はその一部が臨界角外の光に変換される。
 なお、第3の透光層3cの回折格子3dの長さが長すぎると、導波光5Bはその端面3Sに到達する前に全て放射される。また短すぎると導波光5Bへの結合効率が十分でない。導波光5Bの放射しやすさは放射損失係数αで表され、伝搬距離Lで導波光5Bの強度はexp(-2αL)倍になる。仮にαの値を10(1/mm)とすると、10μmの伝搬で0.8倍の光強度となる。放射損失係数αは回折格子3dの深さdに関係し、d≦dの範囲では単調増加し、d>dの範囲では飽和する。光の波長をλ、導波光5Bの等価屈折率neff、第3の透光層3cの屈折率をn、回折格子3dのデューティ(凸部の幅のピッチに対する比)を0.5とするとdは以下の式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 例えば、λ=0.55μm、neff=1.25、n=1.5とすると、d=0.107μmとなる。単調増加領域では放射損失係数αはdの2乗に比例する。したがって、回折格子3dの長さ、すなわち第3の透光層3cの長さ(寸法WとL)は、放射損失係数αにより決まり、回折格子3dの深さdに依存する。仮に、深さdを調整してαの値を2~100(1/mm)の範囲に設定し、減衰比を0.5とすると、WおよびLは3μmから170μm程度となる。このため、上述したようにWおよびLが3μm以上100μm以下であれば、深さdの調整で放射損失を抑制し、高い結合効率を得ることができる。
 導波光5Bの等価屈折率neffを1.25とした場合において、式(1)よりピッチΛ、入射角θに対して、どの可視光の波長(λ=0.4~0.7μm)の光が結合するかを(表1)に示す。点線の区間が結合の範囲である。例えば、ピッチ0.4μmの場合、θ=-14度で波長0.4μmの光、θ=30度で波長0.7μmの光が結合し、θ=-14度からθ=30度までが可視光の結合範囲となる。
Figure JPOXMLDOC01-appb-T000001
 入射角θの極性は光の結合方向に関係する。したがって、光の結合方向を無視して結合の有無のみに注目すると、入射角の範囲が0から90度、または、-90から0度のいずれかをカバーできれば、全ての入射角度に対する結合がなされたことになる。したがって、表1から、全ての可視光波長、全ての入射角度に対し、光が結合するためには、例えば、0.18μmから0.56μm(0度から90度)、または、0.30μmから2.80μm(-90度から0度)までのピッチΛの回折格子3dを有する光結合構造3を組み合わせて用いればよいことが分かる。等価屈折率の変化、または導波層もしくは回折格子を形成する際に生じ得る製造誤差を考慮すると、回折格子3dのピッチは概ね0.1μm以上3μm以下であればよい。
 また、図2A(b)に示すように、例えば、回折格子3dが伸びる方向と垂直な方向に入射する臨界角内の光5aに対する回折格子3dのピッチはΛであるが、方位角φで入射する光5aaに対する回折格子3dの実効的なピッチはΛ/cosφとなる。例えば、光5aaの入射方位角φが0~87度である場合、実効的なピッチはΛ~19Λとなる。このため、Λ=0.18μmに設定すると、同一の回折格子3dでも入射する光の方位によって0.18から2.80μmまでの実効的なピッチΛが実現でき、Λ=0.30μmに設定すると、0.30から2.80μmまでのピッチΛが実現できる。したがって、異なるピッチの回折格子3dを有する光結合構造3を組み合わせる以外に、単一のピッチの光結合構造3を、回折格子の伸びる方向(回折格子の方位)が0度から180度まで変わるように回転させて透光シート2内に配置することによっても、全ての可視光波長の光を全ての入射角度で取り込むことできることが分かる。さらに、複数の光結合構造3において、回折格子3dのピッチおよび回折格子3dの伸びる方向の両方を異ならせてもよい。
 次に、光結合構造3の表面3p、3qと垂直な端面3r、3s(第2の透光層3bの法線方向に沿った面)における光を検討する。図2A(c)に示すように、光結合構造3の端面3rに入射する光は、端面3rで反射する場合、端面3rを回折する場合、端面3rを透過して屈折する場合、端面3rを経て第3の透光層3cを導波する場合が考えられる。例えば、第1の透光層3aおよび第2の透光層3bの端面に入射しこれを透過する臨界角外の光6aは屈折して、臨界角内の光6a’となる。また、第3の透光層3cの端面に入射しこれを透過する光6Aの一部は、第3の透光層3c内を伝搬する導波光6Bに変換される。
 参考として、図2A(d)は光結合構造3から第3の透光層3cを抜き取り、抜き取った後の空間を第1の透光層3aおよび第2の透光層3bと同じ空気で埋めた場合の光路を示している。臨界角内の光5aが光結合構造3の表面3qに入射する場合、その入射位置が端面3sに近ければ、屈折の結果、端面3sで臨界角外の光5a’として出射する。また、臨界角内の光5aが光結合構造3の端面3rに入射する場合、端面3rで全反射する。臨界角外の光6aが光結合構造3の端面3rに入射する場合、その入射位置に寄らず、屈折の結果、表面3pから臨界角内の光6a’として出射する。また、臨界角外の光6aが光結合構造3の表面3qに入射する場合、表面3qで全反射する。
 このように、光結合構造3の端面3r、3sに入射する光の場合は振る舞いが複雑で、臨界角外の光が端面に入射しても臨界角外の光として出射するとは限らない。しかし、表面の大きさを端面の大きさよりも十分大きくしておけば、端面での影響は十分小さくなり、表面3p、3qにおける光の透過あるいは反射が光結合構造3全体における光の透過または反射の振る舞いとみなることができる。具体的には、第1の透光層3aの表面3pおよび第2の透光層3bの表面3qの幅Wまたは長さLが、光結合構造3の厚さの4倍以上であれば、十分に光結合構造3の端面3r、3sにおける光の影響を無視することができる。したがって、光結合構造3は臨界角外の光を臨界角外の光として保持する一方、臨界角内の光を非可逆的に臨界角外の光に変換する機能を発揮し、光結合構造3の密度を十分に設定しておけば、光取り込みシート51に入射した全ての光を臨界角外の光、すなわちシート内に閉じ込められた光に変換できる。
 図3は光取り込みシート51における光閉じ込めの効果を確認するための解析に用いた光取り込みシートの断面構造を示している。解析には、光結合構造を1つ含む光取り込みシートを用いた。図3に示すように、透光シート2の第2の主面2qから1.7μmの位置に平行に幅5μmの光源S(破線で表示)を設定し、その上方に0.5μmの距離をおいて幅6μmの第2の透光層3bを平行に配置し、この上に同じ幅の第3の透光層3cおよび第1の透光層3aを配置した。透光シート2の第1の主面2pは第1の透光層3aの表面から2.5μmの位置にある。光源Sから、第2の主面2qの法線に対しθの角をなす方位に、紙面に対し45度の角度をなす偏光の平面波が出射し、入射光の中心が第2の透光層3bの表面の中心を透過するように、角θに応じて第1の透光層3a、第2の透光層3bおよび第3の透光層3cの位置を横にシフトさせた。また、第1の透光層3aの厚さaを0.3μm、第2の透光層3bの厚さcを0.3μm、第3の透光層3cの厚さtを0.4μm、回折格子の深さdを0.18μm、回折格子のピッチΛを0.36μmとした。透光シート2および第3の透光層3cの屈折率を1.5とし、環境媒質、第1の透光層3aおよび第2の透光層3bの屈折率を1.0とした。
 図4(a)から(c)は図3に示す構造の光取り込みシートにおいて、光源Sから光結合構造3へ入射した光の入射角θと、光取り込みシート外へ出射した光の透過率との関係を示す解析結果である。解析に用いた構造は上述したとおりである。解析には2次元の時間領域差分法(FDTD)を用いた。したがって、図3に示す断面が紙面垂直方向に無限に続いている構造による解析結果である。透過率は安定時での計測であり、光源を取り巻く閉曲面を通過するPoynting Vectorの積分値に対する、解析領域最下面(z=0μm)、および最上面(z≒8μm)を通過するPoynting Vectorの積分値の比で定義した。一部に100%を超える計算結果があるが、これは光源のPoynting Vectorの計測に若干の誤差があるためである。図4(a)は光源の波長λが0.45μmの場合、図4(b)は波長λが0.55μmの場合、図4(c)は波長λが0.65μmの場合の計算結果を示している。それぞれ回折格子の深さdをパラメータにするとともに、光結合構造3がない条件(透光シート2と光源Sだけの構成)での結果もプロットしている。
 光結合構造3はあるが回折格子の深さd=0の場合の結果を、光結合構造がない場合の結果(Nothing)と比較すると、前者は後者より臨界角(41.8度)以内の範囲で透過率が小さくなり、それ以上の角度ではどちらもほぼゼロになる。臨界角以内で前者における透過率が小さくなるのは、図2A(d)を参照して説明したように、第2の透光層3bの表面3qに入射する光が屈折し、その一部が臨界角外の光として端面3sから出射するためである。ただし、前者の場合、同じく図2A(c)、(d)を参照して説明したように、光結合構造3の端面3rから入射する臨界角外の光はこの面を屈折した後、第1の透光層3aの表面3pを屈折して、透光シート2内で臨界角内の光になる。したがって、d=0の場合の構造には、臨界角外の光への変換がある一方、臨界角内の光への変換もあり、全体として光を閉じ込める効果は小さいといえる。
 一方、グレーティングの深さd=0.18μmの場合の結果をd=0の場合の結果と比較すると、前者の透過率は後者のそれにほぼ近接しているが、矢印a、b、c、d、eの位置で透過率が落ち込んでいる。図4(d)は、図4(a)、(b)、(c)の曲線を入射角θに関して積分した値の規格値(90で割った値)を、回折格子の深さdをパラメータにして示している。解析モデルが2次元であるため、この積分値は光取り込みシート内の光がシート外に取り出される効率に等しい。いずれの波長でも、dの増大に伴い(少なくともd=0、d=0.18の比較では)、取り出し効率は低減する。これは、単一の光結合構造による光閉じ込めの効果を現している。この効果は累積でき、光結合構造の数を増やせば、最終的に全ての光を閉じ込めることができる。なお、本解析は2次元のモデルであったが、実際のモデル(3次元モデル)では図2A(a)の平面図に示した任意の方位角φに対して結合条件である式(1)を満たす入射光が必ず存在するので、図4で示した透過率の曲線は矢印a、b、c、d、e等の局所的な範囲でなく全ての入射角θの範囲に関して落ち込むことになり、光結合構造による光閉じ込めの効果はより大きくなる。
 図5は、図4の矢印a、b、c、d、eに示す条件における光取り込みシート内での光強度分布図を示している。具体的には、図5(a)は波長λ=0.45μm、θ=5度における結果、図5(b)は波長λ=0.55μm、θ=0度における結果、図5(c)は波長λ=0.55μm、θ=10度における結果、図5(d)は波長λ=0.65μm、θ=10度における結果、図5(e)は波長λ=0.65μm、θ=20度における結果を示している。
 図5(a)、(b)に示す条件および入射角の場合、第3の透光層3cの屈折率がそれを取り巻く第1の透光層3aおよび第2の透光層3bの屈折率よりも高いため、第3の透光層3cは導波層として機能し、入射光が回折格子の作用で第3の透光層3c内を伝搬する導波光に結合し、この光が第3の透光層3cの端面3r、3sから透光シート2内に放射されている。この放射光は臨界角外の光であり、透光シート2の第1の主面2pおよび第2の主面2qで全反射し、透光シート2内に閉じ込められている。図5(c)、(d)、(e)に示す条件および入射角の場合も、入射光が回折格子の作用で第3の透光層3c内を伝搬する導波光に結合し、この光が第3の透光層3cの端面3rからシート内に放射されている。この放射光は臨界角外の光であり、透光シート2の第1の主面2pおよび第2の主面2qで全反射し、透光シート2内に閉じ込められている。なお、図5(a)、(c)、(e)では、放射光が二股に分かれており、結合した光は導波層断面の上下で位相が反転する1次モードの導波光である。一方、図5(b)、(d)では放射光がひとまとまりの状態にあり、結合した光は0次モードの導波光である。
 図6は、図3に示す構造において第1の透光層3aおよび第2の透光層3bの屈折率を透光シート2の屈折率と一致させ、第3の透光層3cの屈折率を2.0に変更した場合における解析結果を示している。他の条件は図4に示す解析結果が得られた場合の条件と同じである。図6(a)は光源の波長λ=0.45μmの場合、図6(b)は波長λ=0.55μmの場合、図6(c)は波長λ=0.65μmの場合の結果を示している。グレーティングの深さd=0.18μmの場合の結果をd=0の場合の結果と比較すると、前者の透過率は後者のそれに比べ、矢印a、b、c、d、e、fの位置で落ち込んでいる。これは、図4を参照して説明したのと同じ理由による。しかし臨界角以上の領域において、後者がゼロ近傍になるのに比べ、前者は大きく浮き上がってしまう。これは臨界角以上の入射角の光が光結合構造3の回折格子により回折し、その一部がシート内で臨界角内の光に変換されるためである。図6(d)は、図6(a)、(b)、(c)の曲線を入射角θに関して積分した値の規格値(90で割った値)を、溝深さdをパラメータにして示している。いくつかの条件で、dの増大に伴い取り出し効率はかえって増大しており、光閉じ込めの効果が得られない。これは臨界角以上の領域での特性が矢印a、b、c、d、e、fの位置における効果を打ち消していることを示す。
 図4および図6に示す解析結果を比較してみると、図4では臨界角以上で、透過率をゼロにできている。グレーティングの深さd=0.18μmの場合の結果をd=0の場合の結果と比較しても、臨界角以上での領域で差はなく、どちらもほぼゼロである。これは、第1の透光層3aおよび第2の透光層3bの屈折率を透光シート2の屈折率よりも小さくしたため、第2の透光層3bと透光シート2との界面である表面3qで全反射が発生し、入射角の大きい光が光結合構造3内の回折格子に入射できず、回折格子による回折光が発生しないためである。このように、光結合構造3として、第3の透光層3cが導光層となるためにはその屈折率が第1の透光層3aおよび第2の透光層3bの屈折率よりも大きく、臨界角外の光が第3の透光層3cに入射しないためには、第1の透光層3aおよび第2の透光層3bの屈折率が透光シート2の屈折率より小さいことが好ましいことが分かる。また、透光シート2と光結合構造との間の全反射に対する臨界角を小さくするためには、第1の透光層3aおよび第2の透光層3bの屈折率と透光シートの屈折率の差が大きいことが好ましく、例えば、第1の透光層3aおよび第2の透光層3bの屈折率が1であることが好ましいことが分かる。
 このように本実施形態の光取り込みシートによれば、透光シートの第1の主面および第2の主面に種々の角度で入射する光は、臨界角内の光となって透光シートの内部に配置された光結合構造に入射し、光結合構造内の回折格子によって、その一部が、第3の透光層内を伝搬する導波光に変換され、光結合構造の端面から放射されて、臨界角外の光となる。光結合構造によってその回折格子のピッチが異なっていたり、回折格子の方位が異なっているため、この変換は全ての方位、広い波長範囲、例えば可視光全域に渡って行われる。また回折格子の長さが短いため、導波光の放射損失を少なくできる。したがって、透光シート内に存在する臨界角内の光は、複数の光結合構造によって全て臨界角外の光に変換される。光結合構造の第1および第2の透過層の屈折率は透光シートの屈折率より小さいため、臨界角外の光は光結合構造の表面を全反射し、この光は他の光結合構造の表面または透光シートの表面の間で全反射を繰り返し、透光シート内に閉じ込められる。このように、光結合構造は臨界角内の光を非可逆的に臨界角外の光に変換する一方、臨界角外の光を臨界角外の状態のまま保持する。したがって、光結合構造の密度を十分に設定しておけば、光取り込みシートに入射した全ての光を臨界角外の光、すなわちシート内に閉じ込められた光に変換できる。
 なお図1(a)に於いて、透光シート2の第1の主面2pはバッファー層2fを介してカバーシート2eで覆われている。従って、水滴などの異物2gはカバーシート2eの表面に付着し、第1の主面2pに接触するのを防いでいる。もし、異物2gが第1の主面2pと接触すれば、その接触面で全反射の関係が崩れ、透光シート2内に閉じ込められた臨界角外の光が異物2gを介して外部に漏れ出ることになる。スペーサ2dも第1の主面2pと接するが、その屈折率が環境媒質の屈折率とほとんど変わらないので、その接触面で全反射の関係は維持され、臨界角外の光がスペーサ2dを介して外部に漏れ出ることはない。また、透光シートの表面積が小さい場合は、スペーサ2dを挟まずにカバーシート2eと第1の主面2pの間にバッファー層2fを形成する構成も考えられる。
 光取り込みシート51は例えば、以下の方法によって製造することができる。図7Aの(a)から(i)は、光取り込みシート51の製造手順を示す模式的な断面構成図である。
 図7A(a)に示すように、SiN等の高屈折率膜24の表面にSiO等の低屈折率膜25aを成膜する。この上にレジストを塗布し、図8(a)で示すマスクパターンで露光し、感光部のレジストを除去したあと、高屈折率膜24をストッパーとして用いて低屈折率膜をエッチングし、残りのレジストを除去することによって、図7A(b)に示す断面図の構造を得る。低屈折率膜25aはエッチングされて高屈折率膜24がむき出しになっている領域25Aと、エッチングされずに残っている領域25Bとを含むパターンを有する。これらの2つの領域の段差は、例えば1μmから3μmである。
 次に、領域25Aおよび領域25Bを覆うように、再度SiO等の低屈折率膜25aを堆積し、図7A(c)に示すように、領域25Aの底部に低屈折率膜25aを設ける。領域25Aにおける低屈折率膜25aの厚さはたとえば、0.4μm以上である。
 あるいは、低屈折率膜25aをエッチングする際、領域25Aにおいて0.4μm以上の低屈折率膜25aが残るように、低屈折率膜25aのエッチング量を調整してもよい。この場合、1回のエッチングによって、直接、図7A(c)に示す構造を得ることができる。
 次に、図7A(d)に示す様に、低屈折率膜25aの全面に0.4μm以上の厚さを有する高屈折率膜24aを形成する。さらに高屈折率膜24aの表面にレジスト塗布し、2光束干渉露光法による感光によって、レジストを露光する。2光束干渉露光法によれば、2つのレーザービームを互いに交差および干渉させることによって、マスクを用いることなくストライプ状の露光領域を形成することができる。また、レーザービームの入射方位または入射角を調整することで、ストライプの向きまたはピッチを変えることができるため、複数の領域25A、25Bのそれぞれにおいて、一方向に伸びるストライプ状の露光領域を形成することができる。
 露光後、レジストの露光領域(または非露光領域)を除去し、残ったレジストパターンを用いて、高屈折率膜24aをエッチングし、レジストパターンを除去することにより、図7A(e)に示すように、高屈折率膜24aの表面に深さ0.1μm以上のグレーティング24aGを形成する。
 この後、低屈折率膜25bの成膜(図7A(f))、高屈折率膜24bの成膜とグレーティング24bGの形成(図7A(g))を繰り返す。この際、グレーティング24aG、24bG等の方位またはピッチを変えることができる。低屈折率膜25bおよび高屈折率膜24bの厚さは、それぞれ0.4μm以上であり、グレーティング24aG,24bGの深さは0.1μm以上である。最後の低屈折率膜25cの成膜の後、図7A(h)に示すように、最表面に平滑化処理を施す。
 表面が平坦になった低屈折率膜25cの上に、高屈折率膜24cを成膜し、図7A(i)に示す光取り込みシート51が完成する。高屈折率膜24はあらかじめ透明な平面基板上に形成されていてもよく、完成品を平面基板と一体で使用しても、平面基板から引きはがして使用してもよい。
 上述したように、高屈折率膜は、切れ目なく連続しているが、領域25Aと領域25Bの境目で屈曲しているので、この屈曲部を境にして各光結合構造3は分断されている。また、高屈折率膜24、24a、24b、24cは全ての領域で、互いに低屈折率膜25a、25b、25cを挟んだ構造になっているので、周りの高屈折率膜24、24a、24b、24cとも完全に分離できている。従って各光結合構造3は、光学素子として独立して機能し、光は高屈折率膜(第3の透光層3c)に入射して導波光に変換され、この導波光は屈曲部でシート内に臨界角外の光として放射される。本実施形態の製造方法によれば、マスクパターンによる露光が必要なのは最初の低屈折率膜25aのパターニングだけであり、後のプロセスは、全面を成膜、全面を干渉露光する工程を繰り返すだけでよく、極めて単純である。
 次に、図2A(f)に示す光結合構造3を備えた光取り込みシートの製造方法を説明する。図7Aを参照した方法と同様、低屈折率膜25a、25b、25cの材料としてGeOを添加したSiOを用い、2光束干渉露光法による回折格子の形成プロセスを省き、図7B(a)に示すように、回折格子が形成されていない光取り込みシートを完成させる。この後、紫外レーザー光線を用いた2光束干渉露光法により、図7B(b)に示すように、低屈折率膜25a、25b、25cに光誘起屈折率変化を発生させ、周囲に比べ屈折率が高屈折率部(25aG、25bG、25cG等)を干渉パターンの光強度分布に合わせて周期的に形成する。図7B(b)では、これにより、図2A(f)に示す光結合構造3を備えた光取り込みシートが完成する。本実施形態の製造方法によれば、回折格子の高屈折率部をまとめて形成でき、製造途中に回折格子を形成しなくてもよいため、上述の製造方法のよりも製造工程が少なくなり、より効率的に光取り込みシートを製造することができる。
 なお、本実施形態において、光結合構造3はxy平面において方形形状を有していた。この場合、図8(a)に示すように、z方向において同じ高さ位置にある一群3Gの光結合構造3は、例えば、領域35Aで示す位置に配置されている。つまり、一群3Gの光結合構造3は、チェッカーパターンに配置され、隣接する、他の一群3G’の光結合構造3は、領域35Bで示すチェッカーパターンに配置される。
 これに対し、光結合構造3がxy平面において六角形形状を有する場合、図8(b)から(d)に示すように一群3Gの光結合構造3および他の一群3G’の光結合構造3を配置することができる。
 具体的には、図8(b)に示すように、z方向において同じ高さ位置にある一群3Gの光結合構造3は、例えば、領域35Aで示すように六角形の1辺と垂直な5B’方向において、連続して形成されていてもよい。この場合、一群3Gの光結合構造3のうち、5B’方向において、各光結合構造3は、分離しておらず、第3の透光層3cが連続する。このため、種々の方向から光取り込みシートへ入射する光のうち、光結合構造3に取り込まれ、5B’方向に進む光は、第3の透光層3cを長く伝搬する。このため、5B’方向に光が伝搬するうちに、いったん第3の透光層3cに取り込まれた光が、回折格子3dによって、光結合構造3の外部へ臨界角内の光として放射する場合がある。しかし、このように、長く第3の透光層3cを伝搬するのは、5B’方向に進む光だけであり、第3の透光層3cにおいて、他の方向に進む光は、上述したように、臨界角外の光として放射され、光取り込みシート内に閉じ込められる。したがって、光取り込みシート全体における光取り込み効率の低下はあまり大きくはならない。
 このような光取り込み効率の低下を抑制するには、一群3Gの光結合構造3において、光結合構造3を一方向に連続しないようにすればよい。たとえば図8(c)は、六角形の1辺と垂直な5B’方向において、連続する光結合構造3の数を2にした場合の配置を示している。この場合、5B’方向と30度の角度をなす6角形の1辺と平行な5B’’方向では、光結合構造3は連続する。しかし5B’’方向に伝搬できる光の出現確率は、図8(b)に示す配置に比べて小さくなる。よって、取り込みシート全体における光取り込み効率の低下が抑制される。
 また図8(d)は、六角形の1辺と垂直な5B’方向において、連続する光結合構造3の数を3にした場合の配置を示している。この場合、5B’’方向において、光結合構造3が5つ連続しているが、これ以上光結合構造3が連続する方向はない。よって、取り込みシート全体における光取り込み効率の低下がさらに抑制される。
 また、以降、第2から第8までの実施形態を取り上げるが、カバーシート2eに関する説明は第1の実施形態と同じであり、重複するので省略する。
 (第2の実施形態)
 本開示による受光装置の実施形態を説明する。図9は、本実施形態の受光装置54の断面構造を模式的に示している。受光装置54は、第1の実施形態の光取り込みシート51と光電変換部7とを備える。
 光取り込みシート51の端面2s、2rには、例えば、反射膜11が設けられている。光取り込みシート51の第2の主面2qに隣接して光電変換部7が設けられている。透光シート2に端面が複数ある場合には、全ての端面に反射膜11が設けられていてもよい。本実施形態では、第2の主面2qの一部と光電変換部7の受光部とが接している。光電変換部7は光取り込みシート51の第1の主面2pの一部に設けられてもよい。
 光取り込みシート51の端面2r、2sを反射膜11で覆うことで、光取り込みシート51内に取り込まれ、封止された光は光取り込みシート51内を循環することになる。
 光電変換部7は、シリコンによって構成される太陽電池である。1枚の光取り込みシート51に複数の光電変換部7を取り付けても良い。シリコンの屈折率は5程度であるため、通常、太陽電池の受光面に垂直に光を入射させた場合でも、入射の光のうち、40%前後の光が光電変換部7に取り込まれずに反射で失われる。斜めに光が入射する場合、さらにこの反射損失は増大する。この反射量を小さくするために、市販の太陽電池の表面にはARコートまたは無反射ナノ構造が形成されているが、十分な性能が得られていない。さらに、太陽電池内部には金属層が存在し、これを反射する光のかなりの部分が、外部に放出される。ARコートまたは無反射ナノ構造があると、反射光は高効率で外部に放出される。
 これに対し、本開示の光取り込みシートは全ての可視光波長の光を、全ての入射角度で光取り込みシート内に取り込み、封止する。このため、受光装置54において、光取り込みシート51の第1の主面2pから入射する光は、光取り込みシート51に取り込まれ、光取り込みシート51内を循環する。シリコンの屈折率は透光シート2の屈折率より大きいので、第2の主面2qに入射する臨界角外の光5b’、6b’は全反射せず、その一部が屈折光5d’、6d’として光電変換部7へ透過し、光電変換部において電流に変換される。反射した臨界角外の光5c’、6c’はシート内を伝搬したあと、再び光電変換部7に入射し、全ての封止光がなくなるまで、光電変換に利用される。透光シート2の屈折率を1.5とすると、第1の主面2pに垂直に入射する光の反射率は4%程度であるが、この面にはARコートまたは無反射ナノ構造が形成されていれば、波長依存性または角度依存性を含めて、反射率を1~2%以下に抑制できる。これ以外の光は光取り込みシート51に入射して閉じ込められ、光電変換に利用される。
 本実施形態の受光装置によれば、入射光のほとんどをシート内に閉じ込め、そのほとんどを光電変換に利用することができる。したがって、光電変換部のエネルギー変換効率を大幅に改善できる。また、受光面積は第1の主面2pの面積で決まり、この面で受光された光は全て光電変換部7へ入射する。このため、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくでき、受光装置の大幅な低コスト化が実現できる。
 (第3の実施形態)
 本開示による受光装置の他の実施形態を説明する。図10は、本実施形態の受光装置55の断面構造を模式的に示している。受光装置55は、第1の実施形態の光取り込みシート51と光電変換部7とを備える。
 受光装置55は、第2の主面2qに凹凸構造を8が設けられ、光電変換部7との間に隙間が設けられている点で第2の実施形態の受光装置54と異なる。第2の主面2qに設けられた凹凸構造8は凹部および凸部の幅が0.1μm以上あり、周期パターンであってもランダムパターンであってもよい。この凹凸構造8により、第2の主面2qへ入射する臨界角外の光5b’、6b’は全反射せず、その一部が出射光5d’、6d’として光電変換部7に向かう光となり、光電変換される。光電変換部7の表面を反射する光は、光取り込みシート51の第2の主面2qから内部に取り込まれ、光取り込みシート51内を伝搬したあと、再び出射光5d’、6d’として光電変換部7に向かう光となる。したがって、本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。また、第2の実施形態と同様に、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくできる。したがって、エネルギー変換効率が大幅に改善された、低コスト化の受光装置を実現できる。
 (第4の実施形態)
 本開示による受光装置の他の実施形態を説明する。図11は、本実施形態の受光装置56の断面構造を模式的に示している。受光装置56は、第1の実施形態の光取り込みシート51と光電変換部7とプリズムシート9とを備える。
 受光装置56は、第2の主面2qと光電変換部7との間にプリズムシート9が設けられている点で第2の実施形態の受光装置54と異なる。プリズムシート9の内部には4面体状のプリズム10が互いに隣接して配置されている。2枚の3角柱プリズム列のシートを直交して積層することで、プリズムシート9を構成してもよい。プリズム10の屈折率はプリズムシート9の屈折率より大きく設定されているため、プリズムシート9の表面に入射する臨界角外光5b’、6b’はプリズム表面で屈折して5d’、6d’となり、光電変換部7に向かう。光電変換部7への光の入射角が垂直に近くなるので、光電変換部7の受光面での反射を小さくでき、第2の実施形態に比べ光取り込みシート51内における光の循環数を少なくできる。
 本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。また、第2の実施形態と同様に、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくできる。したがって、エネルギー変換効率が大幅に改善された、低コスト化の受光装置を実現できる。また、第2の実施形態に比べ、シート内の光の循環数が少ないので、光取り込みシートの光封止性能の影響を受けにくい。
 (第5の実施形態)
 本開示による受光装置の他の実施形態を説明する。図12は、本実施形態の受光装置57の断面構造を模式的に示している。受光装置57は、第1の実施形態の光取り込みシート51と光電変換部7とを備える。
 受光装置57は、反射膜11に替えて光電変換部7が端面2s、2rを覆っている点で第2の実施形態の受光装置54と異なる。透光シート2の端面が複数ある場合には、全ての端面に光電変換部7を設けてもよい。本実施形態の場合、光取り込みシート51には第4の領域2hを設けなくてもよい。
 端面2s、2rに光電変換部7を設ける場合、第2の実施形態とは異なり、臨界角外の光5c、6c、5c’、6c’は光電変換部7の受光面の法線に沿って光電変換部7に入射する。このため光電変換部7の表面での反射が小さく、光取り込みシート51内における光の循環数を少なくできる。
 本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。したがって、エネルギー変換効率が大幅に改善された受光装置を実現できる。また、第2の実施形態に比べ、光電変換部7の面積を小さくできるため大幅な低コスト化が実現できる。また、第2の実施形態に比べ、シート内の光の循環数が少ないので、光取り込みシートの光封止性能の影響を受けにくい。
 (第6の実施形態)
 本開示による受光装置の他の実施形態を説明する。図13は、本実施形態の受光装置58の断面構造を模式的に示している。受光装置58は、光取り込みシート51、51’’と光電変換部7とを備える。本実施形態の場合、光取り込みシート51’’には第4の領域2hを設けなくてもよい。
 受光装置58は、第2の実施形態の受光装置54の第1の主面2pに光取り込みシート51の端面2sが接するように接合されている点で、第2の実施形態と異なる。光取り込みシート51’’は光取り込みシート51と直交に接合されていてもよい。また、光取り込みシート51’’において、端面2rには反射膜11が設けられ、光取り込みシート51と接合された端面2s近傍の第1の主面2p’および第2の主面2q’には反射膜11’が設けられていてもよい。反射膜11’は、光取り込みシート51からの臨界角外の光6bが光取り込みシート51’’外に漏れ出さないよう光6bを反射する働きがある。
 光取り込みシート51の第1の主面2pに入射する光4は光取り込みシート51内に取り込まれる。一方、光取り込みシート51’’の第1の主面2p’および第2の主面2q’に入射する光4’は光取り込みシート51’’内に取り込まれる。光取り込みシート51’’内に取り込まれた光は、端面2rが反射膜11で覆われているため、端面2s側に伝搬する導波光12となり、光取り込みシート51内の光に合流する。光取り込みシート51内の第2の主面2qの一部は光電変換部7の表面と接触しており、シリコンの屈折率が透光シート2の屈折率より大きいため、第2の主面2qに入射する臨界角外の光5b’、6b’は全反射せず、その一部が屈折光5d’、6d’として光電変換部7へ入射し、光電変換部7において電流に変換される。反射した臨界角外の光5c’、6c’は光取り込みシート51内を伝搬し、再び光電変換部7の受光面に入射し、ほとんどの封止光がなくなるまで、光電変換に利用され続ける。
 本実施形態の受光装置は光電変換部7の受光面に対して垂直な光取り込みシート51’’を備えているため、光取り込みシート51の第1の主面2pに対し斜めに入射する光であっても、光取り込みシート51’’の第1の主面2p’および第2の主面2q’には、垂直に近い角度で入射する。このため、全ての方位の光をより取り込みやすくなっている。
 本実施形態の受光装置においても、入射光のほとんどを光取り込みシート内に閉じ込め、そのほとんどを光電変換に利用することができる。また、第2の実施形態と同様に、光電変換部7の面積を小さくしたり、光電変換部7の数を少なくできる。したがって、エネルギー変換効率が大幅に改善された、低コスト化の受光装置を実現できる。
 (第7の実施形態)
 本開示による採光板の実施形態を説明する。図14は、本実施形態の採光板59の断面構造を模式的に示している。採光板59は、第1の実施形態の光取り込みシート51と、光取り込みシート51の第1の主面2pおよび第2の主面2qの一部に設けられた凹凸構造8とを備える。光取り込みシート51において、端面2r、2sには反射膜11が設けられている。
 凹凸構造8は第1の主面2pの一部に形成され、その凹部および凸部の幅が0.1μm以上あるランダムパターンをなす。光取り込みシート51に取り込まれた光は光取り込みシート51の内部を伝搬し、この凹凸構造8により、伝搬光の一部が出射光5d’、6d’として、外部に放射される。
 採光板59は、住宅などの建物の採光用窓に、凹凸構造8が設けられた第1の主面2pが室内側に位置するように設けられる。昼間、採光板59は、太陽13aの光を第2の主面2qから取り込み、この光を凹凸構造8から室内に放射する。これにより凹凸構造8から光が放射する室内照明として用いることができる。また、夜間、採光板59は、室内照明13bの光を第1の主面2pから取り込み、この光を凹凸構造8から放射する。これにより、採光板59を室内照明の補助にすることができる。このように本実施形態による採光板によれば、入射光のほとんどをシート内に閉じ込め、これを照明として再利用でき、エネルギーの有効利用を実現できる。
 (第8の実施形態)
 本開示による発光装置の実施形態を説明する。図15は、本実施形態の発光装置60の断面構造を模式的に示している。発光装置60は、光取り込みシート51と、光源14と、プリズムシート9とを備える。
 LEDなどの光源14は、光取り込みシート51の第1の主面2pまたは第2の主面2qの一方に隣接して設けられ、他方には凹凸構造8が設けられている。本実施形態では、光源14が第1の主面2pに隣接して配置されて、第2の主面2qに凹凸構造8が設けられている。また、光取り込みシート51の端面2s、2rには反射膜11が設けられている。凹凸構造8は凹部および凸部の幅が0.1μm以上あり、周期パターンであってもランダムパターンであってもよい。
 プリズムシート9は、第2の主面2qに凹凸構造8に対向するように間隙を隔てて配置されている。プリズムシート9の内部には4面体状のプリズム10が互いに隣接して配置されている。2枚の3角柱プリズム列のシートを直交して積層することで、プリズムシート9を構成してもよい。
 光源14から出射する光4は光取り込みシート51の第1の主面2pから取り込まれ、光取り込みシート51内を伝搬する光12となる。この光は凹凸構造8により、その一部が出射光5d’、6d’として、外部に放射される。放射された光はプリズムシート9内のプリズム10により集光され、ほぼ平行な波面の光4aとなる。
 本実施形態の発光素子によれば、簡単で薄い構成で、点光源から出射する光を光取り込みシート内に閉じ込め、その光を面光源として取り出すことができる。
 (第9の実施形態)
 本開示による光取り込みロッドの実施形態を説明する。図16(a)および(b)は、本実施形態の光取り込みロッド61の中心軸に平行な断面構造および中心軸に垂直な断面構造を模式的に示している。光取り込みロッド61は、透光ロッド2’と透光ロッド2’の内部に配置された少なくとも1つの光結合構造3を備える。
 透光ロッド2’は、中心軸Cに垂直な面において円または楕円の断面形状を有している。透光ロッド2’は第1の実施形態と同様、用途に応じた所望の波長、あるいは、所望の波長域内の光を透過する透明な材料によって構成されている。
 この透光ロッド2’の外側にはスペーサ2dを挟んで、カバーシート2eが接着されている。従って、透光ロッド2’の表面である主面2uのほとんどはバッファー層2fに接している。スペーサ2dはエアロゲルのような屈折率が低い材料から構成されている。
 透光ロッド2’の断面が円形状である場合、透光ロッド2’の中心軸Cに垂直な断面における直径Dは例えば0.05mm~2mm程度である。透光ロッド2’の主面2uから、中心軸Cに向かう方向に距離d3以上隔てて1つ以上の光結合構造3が設けられている。光取り込みロッド61は、複数の結合構造3を備えてもよい。透光ロッド2’は円または楕円の断面形状を有しており、光結合構造3は、透光ロッド2’の中心軸Cに垂直な面において、中心軸Cを中心とした直径d=D-2×d3の円形状を有し、中心軸C方向に添って伸びるコア領域2A内に配置される。
 光結合構造3は、コア領域2A内において、軸方向、径方向、および周方向のそれぞれに所定の密度で配置されている。例えば、光結合構造3の配置の密度は、軸方向に1mm当たり10~10個、径方向に1mm当たり10~10個、周方向に1mm当たり10~10個程度である。コア領域の断面形状は円形または楕円であり、2つ以上の輪帯形状であってもよい。
 光結合構造3は、第1の実施形態の光結合構造3と同じ構造を備える。
 光結合構造3は、第3の透光層3cの回折格子が、透光ロッド2’の中心軸Cに平行になるようにコア領域2A内配置されている。光結合構造3の中心軸C方向の長さLは3μm~100μmであり、それに直交する方向の長さWはLの1/3~1/10程度である。
 図16(a)および(b)において、光取り込みロッド61を囲む環境媒質の屈折率を1.0とし、透光ロッド2’の屈折率をnとする。環境媒質からの光4はカバーシート2eとバッファー層2fを透過し、透光ロッド2’の主面2uから透光ロッド2’の内部に入射する。バッファー層2fは環境媒質と同じ媒質で構成され、その屈折率は1である。また、スペーサ2dの屈折率もほとんど1に等しい。カバーシート2eの両面または主面2uには入射した光4の透過率を高めるため、ARコートまたは無反射ナノ構造(モスアイ構造等)が形成されていてもよい。ここで透光ロッド2’内部の光のうち、その伝搬方位とロッド表面の法線とのなす角θ(伝搬角)がsinθ<1/nを満たす光を臨界角内の光、sinθ≧1/nを満たす光を臨界角外の光と呼ぶことにする。
 まず、透光ロッド2’の中心軸Cに平行な断面での、光のベクトルを見てみる。この断面で、透光ロッド2’内部の臨界角内の光5aの一部は光結合構造3により臨界角外の光5bに変換され、この光は主面2uで全反射して、透光ロッド2’内部にとどまる臨界角外の光5cとなる。また、臨界角内光5aの残りの臨界角内の光5a’の内の一部は別の光結合構造3により臨界角外の光5b’に変換され、この光は主面2uで全反射して、ロッド内部にとどまる臨界角外の光5c’となる。このようにして臨界角内の光5aの全てが、光結合構造3が設けられたコア領域2A内で臨界角外の光5bまたは光5b’に変換される。一方、透光ロッド2’内部の臨界角外の光6aは、その一部は光結合構造3の表面で全反射して臨界角外の光6bとなり、この光は主面2uで全反射して、ロッド内部にとどまる臨界角外の光6cとなる。また、臨界角外の光6aの残りの光の一部は光結合構造3が設けられたコア領域2Aを透過し、この臨界角外の光6b’は主面2uを全反射して、透光ロッド2’内部にとどまる臨界角外の光6c’となる。また、図には示していないが、異なる光結合構造3の間と主面2uの間を全反射しながらシート内部にとどまる臨界角外の光も存在する。
 図2A(a)を参照して説明したように、臨界角内の光5aは、第2の透光層3bの表面3qを透過し、その一部は回折格子の作用で第3の透光層3c内を伝搬する導波光5Bに変換される。残りは透過光または回折光となって、主に臨界角内の光5a’となって光結合構造3を透過するか、または、反射光として臨界角内の光5rとなり、光結合構造3を通過する。導波光5Bは第3の透光層3cの端面3Sに至るまでにその一部が臨界角内の光5rと同じ方向に放射されて臨界角内の光5r’となり、残りは導波して第3の透光層3cの端面3Sから放射され、臨界角外の光5cとなる。一方、臨界角外の光6aは、第2の透光層3bの表面3qを全反射し、その全てが臨界角外の光6bとなる。このように、光結合構造3の表面(第1の透光層3aの表面3pおよび第2の透光層3bの表面3q)に入射する臨界角外の光は臨界角外のままであり、臨界角内の光はその一部が臨界角外の光に変換される。
 次に、ロッドの中心軸と直交する断面での、光のベクトルを見てみる。この断面ではロッド内部に入った光が3種類に分類される。コア領域2Aを通過する光15a、コア領域2Aの外縁を通過する光15b、そしてコア領域2Aの外を通過する光15cである。光15aは、前述したようにロッドの中心軸に沿った断面内でロッド内部にとどまる臨界角外の光に変換される。一方、光15bは、ロッドの主面2uに角度ψで入射する光であり、ψは式(3)を満たす。
Figure JPOXMLDOC01-appb-M000003
 当然、光15cの主面2uへの入射角はψよりも大きくなる。したがって、式(4)が成り立てば、光15bはロッドの第1の主面2pで全反射し、光15b、15cは中心軸と直交する断面内で透光ロッド2’内部にとどまる臨界角外の光になる。
Figure JPOXMLDOC01-appb-M000004
 したがって、透光ロッド2’の中心軸Cに対して平行な断面と透光ロッド2’の中心軸Cに対して直交する断面とを合わせて、式(4)を満足することが透光ロッド2’内部の全ての光が透光ロッド2’内部にとどまるための条件となる。
 なお図16に於いて、透光ロッド2’の主面2uはバッファー層2fを介してカバーシート2eで覆われている。従って、水滴などの異物2gはカバーシート2eの表面に付着し、主面2uに接触するのを防いでいる。もし、異物2gが主面2uと接触すれば、その接触面で全反射の関係が崩れ、透光ロッド2’内に閉じ込められた臨界角外の光が異物2gを介して外部に漏れ出ることになる。スペーサ2dも主面2uと接するが、その屈折率が環境媒質の屈折率とほとんど変わらないので、その接触面で全反射の関係は維持され、臨界角外の光がスペーサ2dを介して外部に漏れ出ることはない。また、透光ロッドの表面積が小さい場合は、スペーサ2dを挟まずにカバーシート2eと主面2uの間にバッファー層2fを形成する構成も考えられる。
 図17は光取り込みロッド61の作製手順を示す模式的な断面構成図である。図17に示すように第1の実施形態と同じ方法で、図7A(e)に示す構造まで作製した高屈折率膜24、24aおよび低屈折率膜25aを用意する。これらの積層膜上で光結合構造3を形成する回折格子の格子ベクトルは、z軸に沿って測ったピッチが0.30μmから2.80μmとなるように、様々なピッチの回折格子を組み合わせても良い。光結合構造3の大きさは、結合した導波光をできるだけロッドの中心軸にそって放射できるよう、z軸方向の長さLが3μm~100μm、それに直交する方向の長さWがLの1/2~1/10程度となるように設定する。この積層膜を表面に接着剤を塗布して、z軸の周りに回転しながら巻き込んでいくことにより、光取り込みロッド61のコア領域2Aが作製できる。その周りをさらに、無反射ナノ構造の形成された透明な保護層で包むことで、光取り込みロッド61が完成する。
 図18Aは光取り込みロッド61の、他の作製手順を示す模式的な断面構成図、図18Bはロッドを作成するためのマスクパターンを示す模式的な平面図である。
 図18Aに示すように、透明な棒状の軸36の表面にSiN等の高屈折率膜24を成膜し、その表面にSiO等の低屈折率膜25aを成膜する。この上にレジストを塗布し、図18Bで示すマスクパターンを、z軸を揃えた状態で露光し、感光部のレジストを除去したあと、高屈折率膜24をストッパーとして用いて低屈折率膜をエッチングし、残りのレジストを除去し、図18A(b)に示す構造を得る。図18Bにおいて、マスク表面は透過部35Aと遮光部35Bの2領域に分けられ、図18A(b)で形成される領域25A、25Bはマスクパターンの領域35A、35Bにそれぞれ対応する。成膜、露光、エッチングの工程は、必要に応じて軸36を中心軸周りに回転しながら行う。低屈折率膜25aはエッチングされて高屈折率膜24がむき出しになっている領域25Aと、エッチングされずに残っている領域25Bとを含むパターンを有する。これらの2つの領域の段差は、例えば1μmから3μmである。
 その後、図7Aを参照して説明した第1の実施形態の製造方法と同様の工程を行い、表面が平坦になった低屈折率膜25cの上に、高屈折率膜24cを成膜し、図18A(c)に示すような、光取り込みロッドのコア領域が完成する。さらに、その周りを低屈折率の透明膜でシールドすることで、図18A(d)に示すような光取り込みロッドが完成する。第1の実施形態で説明したように、高屈折率膜は、図16での説明とは違い、切れ目なく連続しているが、領域25Aと領域25Bの境目で屈曲しているので、この屈曲部を境にして導波層としては分断されている。また、高屈折率膜は全ての領域で、互いに低屈折率膜を挟んだ構造になっているので、周りの高屈折率膜とも完全に分離できている。従って図16での説明と同様に、光は高屈折率膜(第3の透光層3c)に入射して導波光に変換され、この導波光は屈曲部でロッド内に臨界角外の光として放射される。
 第1の実施形態で説明したように、回折格子の形成には2光束干渉露光法を用いることができる。また、光ロッドの光結合構造3が図2A(f)に示す構造を有する場合には、図7Bを参照して説明した製造方法によって、同様に製造することができる。
 (第10の実施形態)
 以降、第10から第11までの実施形態を取り上げるが、カバーシート2eに関する説明は第9の実施形態と同じであり、重複するので省略する。
 本開示による発光装置の実施形態を説明する。図19は、本実施形態の発光装置62の断面構造を模式的に示している。発光装置62は、光取り込みロッド61と、光源14R、14G、14Bとを備える。光取り込みロッド61は第9の実施形態で説明した通りの構造を備える。
 光取り込みロッド61の端面2rには、反射膜11が設けられている。光取り込みロッド61の端面2s側の主面2uには、テーパ2vが設けられ、透光ロッド2’よりも小さい直径の導波路18が接続されていてもよい。
 光源14R、14G、14BはレーザーまたはLEDなどによって構成されており、例えば、それぞれ赤、緑、青の光を発光する。これらの光源を出射する光をレンズにより集光し、透光ロッド2’の主面2uへ向けて光4R、4G、4Bを照射する。これらの光はコア領域2A内の光結合構造3により、透光ロッド2’内部に閉じ込められ、一方の端面2rが反射膜11で覆われていることから、全体としてロッド内部を一方向に伝搬する導波光12となる。この導波光12は、透光ロッド2’の径が徐々に小さくなっているテーパ2vにより損失なく絞られ、細い径を持つ導波路18内部を伝搬する導波光となる。これより、導波路18の端面から点光源に近い光19が出射する。光源がレーザーの場合、光4R、4G、4Bはコヒーレントな光であるが、個々の光結合構造3からの光放射がばらばらな位相で行われるので、それらが合成された導波光12はインコヒーレントな光となる。したがって、出射光19もインコヒーレントな光である。光4R、4G、4Bの光量を調整すれば、出射光19を白色光とすることができる。現在、赤、青の半導体レーザーは実現されており、SHGを使えば、緑のレーザーも利用できる。これらの光源から白色光を合成する場合、一般には複雑な光学構成が必要なうえ、レーザー光特有の可干渉性によりぎらついた光となる。しかし、本実施形態の発光装置62によれば、極めて簡単な構成で、ぎらつきのない、より自然な白色光の点光源を提供できる。
 本実施の形態の場合、調整の必要な個所は、入射した光4R、4G、4Bによる収束光と透光ロッド2’との位置調整である。図20は光取り込みロッド61への光の入射の様子を示す断面説明図であり、点Cはロッドの中心である。透光ロッド2’の屈折率を1.5とすると、直線ACBと平行な光16aは、屈折して近似的に点Aに集光する光16bとなる。コア領域2Aの直径が透光ロッド2’の直径の1/1.5よりも大きいとすると、式(4)より光16bは確実にコア領域2Aを通過し、透光ロッド2’内に閉じ込められる。反対に、コア領域2Aを通過しない光線を描くのは困難である。例えば、点Bに入射してコア領域を通過しない光17bを考えると、そのための入射光線17aは入射角が90度に近い光となってしまう。このとき、入射光線17aは、高い開口数による集光の最外縁の光に相当する。いいかえると、一般的な入射角の光線、即ち一般的な開口数での集光による光であれば、それらは全てコア領域2Aを通過し、透光ロッド2’内に閉じ込められる。このことは、入射した光4R、4G、4Bと透光ロッド2’との位置調整は非常にラフでよく、調整の容易性を示している。
 なお、本実施形態において、光源14R、14G、14Bは0.98μmまたは1.48μm等の、光通信用に用いられる赤外波長であってもいい。この場合、本実施形態は、光ファイバー用増幅器として実現し得る。
 図21(a)は、本実施形態の光通信における増幅器の構成を示す。光ファイバー用増幅器は、励起光源28a、28bと、合波器29a、29bとアイソレーター30a、30bと、光ファイバー31とを含む。励起光源28a、28bには、上述の発光装置62を用いる。また、発光装置62の光源14R、14G、14Bには0.98μmまたは1.48μmの赤外光源を用いる。
 信号光26aと0.98μmの励起光源28aからの励起光27aとは合波器29aで合成され、アイソレーター30aで整流されて、ファイバー31を伝搬する。一方、0.98μmまたは1.48μmの励起光源28bからの励起光27bは合波器29bで合成され、ファイバー31を逆方向に伝搬する。
 光ファイバー31のコアにはエルビウムが添加されている。図21(b)は光通信における、信号光を増幅させる原理を示す説明図である。図21(b)に示すように、Er3+イオンは波長0.98μmの励起光を吸収してエネルギー準位が基底準位32から励起準位33に遷移し、非放射緩和により励起準位34に戻り、誘導放出して信号光26aを増幅させる(増幅後の信号26b)。同様に、Er3+イオンは波長1.48μmの励起光を吸収してエネルギー準位が基底準位32から励起準位34に遷移し、誘導放出して信号光26aを増幅させる(増幅後の信号26b)。
 したがって、ファイバー31内で信号光は増幅され、アイソレーター30bで整流されて増幅信号26bとして取り出される。励起光は、コヒーレントである必要はないが、0.98μmまたは1.48μmの赤外光を光ファイバー内に入力する必要があり、ファイバー内の光強度が強いほど、信号光の増幅率を高められる。本実施形態によれば、簡単に高密度、高強度の励起光を光ファイバー内に入力することができる。よって、増幅率の高い増幅器を簡単に提供できる。
 (第11の実施形態)
 本開示による発光装置の他の実施形態を説明する。図22は、本実施形態の発光装置63の断面構造を模式的に示している。発光装置63は、光取り込みロッド61と、光源14と、プリズムシート9とを備える。光取り込みロッド61は第9の実施形態で説明した通りの構造を備える。
 光取り込みロッド61の端面2rには、反射膜11が設けられている。また、光取り込みロッド61は光結合構造3が設けられていない部分が導波路18として機能する。導波路18の主面2uにはプリズムシート9が設けられている。
 光源14はレーザーまたはLEDなどからできており、可視光を発光する。この光源を出射する光をレンズにより集光し、透光ロッド2’内を透過する光4とする。これらの光はコア領域2A内の光結合構造3により、透光ロッド2’内部に閉じ込められ、一方の端面が反射膜11で覆われていることから、全体として透光ロッド2’内部を一方向に伝搬する光12となり、導波路18内部を伝搬する導波光となる。導波路18にはプリズムシート9が接触して配置されている。プリズムシート9の内部には4面体状のプリズム10が互いに隣接して配置されている。3角柱プリズム列のシートを直交して貼り合わせても良い。このプリズム10の屈折率はプリズムシート9の屈折率より大きいので、導波路18から漏れ出てプリズムシート9に入射する光は屈折してプリズムシート9から出射し、平行な出射光19となる。なお、プリズムシート9を導波路18から離してもよく、この場合には導波路18の表面のプリズムシート9に面している側に凹凸構造を形成して光を出射させる。
 光源がレーザーの場合、光4はコヒーレントな光であるが、個々の光結合構造3からの光放射がばらばらな位相で行われるので、それらが合成された導波光12はインコヒーレントな光となる。したがって、出射光19もインコヒーレントな光である。現在、赤、青の半導体レーザーは実現されており、SHGを使えば、緑のレーザーも利用できる。これらの光源を用いると、赤、緑、青の線光源が得られる。例えば、これらの線光源を束ねることで、液晶ディスプレイ用のカラーバックライトを極めて簡単な構成で提供できる。
 本開示の光取り込みシートおよび光取り込みロッドは、水滴、埃、汚れ等の影響を受けず、広い領域、広い波長範囲(例えば可視光全域)に渡って、全ての入射角で光の取り込むことが可能であり、それらを用いた受光装置は高変換効率の太陽電池等に有用である。一方、本開示の光取り込みシートおよび光取り込みロッドを用いた受光および発光装置は、新たな照明または光源の形態を提供し、太陽光または照明光を利用したリサイクル照明、高効率のバックライト、インコヒーレントな白色光源、さらには光通信に於ける信号増幅器として有用である。
 2 透光シート
 2’ 透光ロッド
 2p 第1の主面
 2q 第2の主面
 2u 主面
 3,3’ 光結合構造
 3a 第1の透光層
 3b 第2の透光層
 3c 第3の透光層
 3d 回折格子
 3p,3q 表面
 5a,5a’ 臨界角内の光
 5b,5c,5b’,5c’ 臨界角外の光
 6a,6b,6c,6b’,6c’ 臨界角外の光
 9 プリズムシート
 10 プリズム
 11 反射膜
 14,14R,14G,14B 光源

Claims (20)

  1.  第1および第2の主面を有する透光シートと、
     前記透光シート内であって、前記第1および第2の主面からそれぞれ第1および第2の距離以上隔てた内部に配置された複数の光結合構造と
    を備え、
     前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、前記第1の透光層および前記第2の透光層に挟まれた第3の透光層とを含み、
     前記第1および第2の透光層の屈折率は前記透光シートの屈折率よりも小さく、
     前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、
     前記複数の光結合構造のそれぞれは、前記透光シートの前記第1および第2の主面と平行な回折格子を有し、
     前記複数の光結合構造は、前記透光シート内において、前記第1および第2の主面と平行な平面上の互いに異なる第1および第2の方向と、前記第1および第2の方向に非平行な第3の方向とにおいて3次元に配置されており、
     前記平面上において前記第1および第2の方向に配置された複数の前記光結合構造により一群の光結合構造が構成され、
     前記平面と平行な他の平面上において前記第1および第2の方向に配置された複数の前記光結合構造により他の一群の光結合構造が構成され、
     前記一群の光結合構造と前記他の一群の光結合構造とは、前記第3の方向に隣接しており、
     前記一群の光結合構造を構成する各光結合構造と、前記他の一群の光結合構造を構成する各光結合構造とは、前記第3の方向に重なっておらず、
     前記一群の光結合構造に含まれる第1の光結合構造における前記第3の透光層と、前記他の一群の光結合構造に含まれ、前記第1の光結合構造に隣接する第2の光結合構造における前記第3の透光層とは、前記第3の透光層と同じ材料によって構成される接続部によって互いに接続されている、光取り込みシート。
  2.  前記第1の透光層および第2の透光層のそれぞれは、前記透光シートの前記第1および第2の主面と平行な方向に沿って交互に配置された複数の高屈折率部および複数の低屈折率部を有し、
     前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率は、それぞれ前記透光シートの屈折率よりも小さく、
     前記第3の透光層の屈折率は前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率よりも大きく、
     前記複数の高屈折率部の屈折率は前記複数の低屈折率部の屈折率よりも大きい、請求項1記載の光取り込みシート。
  3.  前記第1の光結合構造における前記第1の透光層と、前記第2の光結合構造における前記第1の透光層とは、前記第1の透光層と同じ材料によって構成される接続部によって互いに接続され、
     前記第1の光結合構造における前記第2の透光層と、前記第2の光結合構造における前記第2の透光層とは、前記第2の透光層と同じ材料によって構成される接続部によって互いに接続されている、請求項1または2に記載の光取り込みシート。
  4.  前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記第1および第2の主面と平行な平面において、方形形状を有し、
     前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記第1および第2の主面に対して垂直な方向からみて互いに重ならないように、チェッカーパターン状に配置されている、請求項1から3のいずれかに記載の光取り込みシート。
  5.  前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記第1および第2の主面と平行な平面において、六角形形状を有し、
     前記一群の光結合構造および前記他の一群の光結合構造のそれぞれの少なくとも2つの隣接する光結合構造において、第1の透光層、第2の透光層および第3の透光層は互いにそれぞれ接続されている、請求項1から3のいずれかに記載の光取り込みシート。
  6.  前記複数の光結合構造のうち少なくとも2つにおいて、前記回折格子の伸びる方向は互いに異なっているか、または前記回折格子のピッチは互いに異なっている、請求項1から5のいずれかに記載の光取り込みシート。
  7.  前記複数の光結合構造の少なくとも1つにおける前記第1の透光層の、前記透光シートと接する面、前記複数の光結合構造の少なくとも1つにおける前記第2の透光層の、前記透光シートと接する面、前記第1の主面、および前記第2の主面のいずれかには、ピッチ及び高さが前記光結合構造に入射する光の中心波長の1/3以下の凹凸構造が配置されている、請求項1から6のいずれかに記載の光取り込みシート。
  8.  主面、および円または楕円の断面を有する透光ロッドと、
     前記透光ロッド内であって、前記主面から第1の距離以上隔てた内部に配置された複数の光結合構造と
    を備え、
     前記複数の光結合構造のそれぞれは、第1の透光層と、第2の透光層と、前記第1の透光層および前記第2の透光層に挟まれた第3の透光層とを含み、
     前記第1および第2の透光層の屈折率は前記透光ロッドの屈折率よりも小さく、
     前記第3の透光層の屈折率は前記第1および第2の透光層の屈折率よりも大きく、
     前記複数の光結合構造のそれぞれは、前記透光ロッドの中心軸と平行な回折格子を有し、
     前記複数の光結合構造は、前記透光ロッド内において、前記ロッドの中心軸から所定の距離にある円柱側面上の互いに異なる第1および第2の方向と、前記円柱側面から中心軸へ向かう第3の方向とにおいて3次元に配置されており、
     前記円柱側面上において前記第1および第2の方向に配置された複数の前記光結合構造により一群の光結合構造が構成され、
     前記ロッドの中心軸からの距離が前記円柱側面と異なる他の円柱側面上において前記第1および第2の方向に配置された複数の前記光結合構造により他の一群の光結合構造が構成され、
     前記一群の光結合構造と前記他の一群の光結合構造とは、前記第3の方向に隣接しており、
     前記一群の光結合構造を構成する各光結合構造と、前記他の一群の光結合構造を構成する各光結合構造とは、前記第3の方向に重なっておらず、
     前記一群の光結合構造に含まれる第1の光結合構造における前記第3の透光層と、前記他の一群の光結合構造に含まれ、前記第1の光結合構造に隣接する第2の光結合構造における前記第3の透光層とは、前記第3の透光層と同じ材料によって構成される接続部によって互いに接続されている、光取り込みロッド。
  9.  前記第1の透光層および第2の透光層のそれぞれは、前記透光ロッドの前記主面と平行な方向に沿って交互に配置された複数の高屈折率部および複数の低屈折率部を有し、
     前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率は、それぞれ前記透光ロッドの屈折率よりも小さく、
     前記第3の透光層の屈折率は前記第1および第2の透光層の前記複数の高屈折率部および複数の低屈折率部の屈折率よりも大きく、
     前記複数の高屈折率部の屈折率は前記複数の低屈折率部の屈折率よりも大きい、請求項8に記載の光取り込みロッド。
  10.  前記第1の光結合構造における前記第1の透光層と、前記第2の光結合構造における前記第1の透光層とは、前記第1の透光層と同じ材料によって構成される接続部によって互いに接続され、
     前記第1の光結合構造における前記第2の透光層と、前記第2の光結合構造における前記第2の透光層とは、前記第2の透光層と同じ材料によって構成される接続部によって互いに接続されている、請求項8または9に記載の光取り込みロッド。
  11.  前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記主面と平行な面において、方形形状を有し、
     前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記主面に対して垂直な方向からみて互いに重ならないように、チェッカーパターン状に配置されている、請求項8から10のいずれかに記載の光取り込みロッド。
  12.  前記一群の光結合構造および前記他の一群の光結合構造のそれぞれは、前記主面と平行な面において、六角形形状を有し、
     前記一群の光結合構造および前記他の一群の光結合構造のそれぞれの少なくとも2つの隣接する光結合構造において、第1の透光層、第2の透光層および第3の透光層は互いにそれぞれ接続されている、請求項8から10のいずれかに記載の光取り込みロッド。
  13.  前記複数の光結合構造のうち少なくとも2つにおいて、前記回折格子の伸びる方向は互いに異なっているか、または前記回折格子のピッチは互いに異なっている、請求項8から12のいずれかに記載の光取り込みロッド。
  14.  前記複数の光結合構造の少なくとも1つにおける前記第1の透光層の、前記透光ロッドと接する面、前記複数の光結合構造の少なくとも1つにおける前記第2の透光層の、前記透光ロッドと接する面、および前記主面のいずれかには、ピッチおよび高さが前記光結合構造に入射する光の中心波長の1/3以下の凹凸構造が配置されている、請求項8から13のいずれかに記載の光取り込みロッド。
  15.  請求項1から7のいずれかに記載の光取り込みシートと、
     前記光取り込みシートの前記第1の主面、前記第2の主面および前記第1の主面と前記第2の主面とに隣接する端面のいずれかに設けられた光電変換部と
    を備える受光装置。
  16.  請求項1から7のいずれかに記載の他の光取り込みシートをさらに備え、
     前記光取り込みシートの前記第1の主面に前記光電変換部が設けられ、
     前記光取り込みシートの前記第2の主面に前記他の光取り込みシートの端面が接続された、請求項15に記載の受光装置。
  17.  請求項1から7のいずれかに記載の光取り込みシートと、
     前記光取り込みシートの前記第1の主面または前記第2の主面の一部に設けられた凹凸構造と
    を備える受光装置。
  18.  請求項8から14のいずれかに記載の光取り込みロッドと、
     前記透光ロッドの第1の主面に近接して配設された少なくとも1つの光源と
    を備える発光装置。
  19.  前記透光ロッドの主面の一部に設けられたプリズムシート、または凹凸構造をさらに備える、請求項18に記載の発光装置。
  20.  請求項8から14のいずれかに記載の光取り込みロッド、および前記透光ロッドの主面に近接して配設された少なくとも1つの赤外光源を含む励起光源と、
     前記励起光源からの光および信号光を合成する合波器と、
     前記合波器と光学的に結合され、コアにエルビウムが添加された光ファイバーと
    を備える光ファイバー用増幅器。
PCT/JP2014/002711 2013-06-13 2014-05-23 光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器 WO2014199572A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015522501A JP5970660B2 (ja) 2013-06-13 2014-05-23 光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器
US14/630,275 US9494742B2 (en) 2013-06-13 2015-02-24 Light capturing sheet, light capturing rod, light receiving device using light capturing sheet or light capturing rod, light emitting device using light capturing sheet or light capturing rod, and optical-fiber amplifier using light capturing sheet or light capturing rod

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124786 2013-06-13
JP2013-124786 2013-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/630,275 Continuation US9494742B2 (en) 2013-06-13 2015-02-24 Light capturing sheet, light capturing rod, light receiving device using light capturing sheet or light capturing rod, light emitting device using light capturing sheet or light capturing rod, and optical-fiber amplifier using light capturing sheet or light capturing rod

Publications (1)

Publication Number Publication Date
WO2014199572A1 true WO2014199572A1 (ja) 2014-12-18

Family

ID=52021893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002711 WO2014199572A1 (ja) 2013-06-13 2014-05-23 光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器

Country Status (3)

Country Link
US (1) US9494742B2 (ja)
JP (1) JP5970660B2 (ja)
WO (1) WO2014199572A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044862B1 (ja) * 2015-06-09 2016-12-14 パナソニックIpマネジメント株式会社 光検出装置、および光検出システム
JP2017181256A (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 光検出装置および光検出システム
WO2018109966A1 (ja) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
JP2018098785A (ja) * 2016-12-08 2018-06-21 パナソニックIpマネジメント株式会社 撮像装置
WO2019078081A1 (ja) * 2017-10-20 2019-04-25 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
JP2019514219A (ja) * 2016-04-15 2019-05-30 ルミレッズ ホールディング ベーフェー 広帯域ミラー
US10605586B2 (en) 2016-12-08 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Photo-detection apparatus including light-shielding film, optically-coupled layer, photodetector, and optical system
US11067451B2 (en) 2016-12-08 2021-07-20 Panasonic Intellectual Property Management Co., Ltd. Photo-detection system comprising photo-detection apparatus including light-shielding film, optically-coupled layer, and photodetector and arithmetic circuit
JP2022530215A (ja) * 2019-09-30 2022-06-28 エルジー・ケム・リミテッド ホログラフィック光学素子およびその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069248A1 (ja) * 2011-11-08 2013-05-16 パナソニック株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
JP6706814B2 (ja) * 2016-03-30 2020-06-10 パナソニックIpマネジメント株式会社 光検出装置および光検出システム
EP3240046A1 (en) * 2016-04-29 2017-11-01 BASF Coatings GmbH Solar light collector
IT201900007722A1 (it) * 2019-05-31 2020-12-01 Powerglax S R L Film multistrato per concentratore solare.
US11698296B2 (en) * 2019-09-25 2023-07-11 Stmicroelectronics (Crolles 2) Sas Light sensor using pixel optical diffraction gratings having different pitches
US11822086B2 (en) * 2022-02-08 2023-11-21 Meta Platforms Technologies, Llc Lightguide based illuminator for reflective display panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069248A1 (ja) * 2011-11-08 2013-05-16 パナソニック株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297908B1 (en) * 1998-06-05 2001-10-02 Dai Nippon Printing Co., Ltd. Directional light-diffusing film, a method of manufacturing same, and a display device that uses same
CN1463368A (zh) * 2001-03-16 2003-12-24 东丽株式会社 光学功能性薄片
PL2024447T3 (pl) 2006-05-31 2011-11-30 Csem Ct Suisse Delectronique Microtechnique Sa Rech Developpement Osnowa zawierająca pigmenty o dyfrakcji zerowego rzędu
CN105445835B (zh) 2006-10-31 2021-07-27 莫迪里斯控股有限责任公司 照明装置及照明系统
JP5650752B2 (ja) 2010-10-04 2015-01-07 パナソニックIpマネジメント株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069248A1 (ja) * 2011-11-08 2013-05-16 パナソニック株式会社 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044862B1 (ja) * 2015-06-09 2016-12-14 パナソニックIpマネジメント株式会社 光検出装置、および光検出システム
JP2017003580A (ja) * 2015-06-09 2017-01-05 パナソニックIpマネジメント株式会社 光検出装置、および光検出システム
JP2017053866A (ja) * 2015-06-09 2017-03-16 パナソニックIpマネジメント株式会社 光検出装置、および光検出システム
JP2018066744A (ja) * 2015-06-09 2018-04-26 パナソニックIpマネジメント株式会社 光検出装置、および光検出システム
JP2017181256A (ja) * 2016-03-30 2017-10-05 パナソニックIpマネジメント株式会社 光検出装置および光検出システム
JP2019514219A (ja) * 2016-04-15 2019-05-30 ルミレッズ ホールディング ベーフェー 広帯域ミラー
JP2018098785A (ja) * 2016-12-08 2018-06-21 パナソニックIpマネジメント株式会社 撮像装置
US10605586B2 (en) 2016-12-08 2020-03-31 Panasonic Intellectual Property Management Co., Ltd. Photo-detection apparatus including light-shielding film, optically-coupled layer, photodetector, and optical system
US11067451B2 (en) 2016-12-08 2021-07-20 Panasonic Intellectual Property Management Co., Ltd. Photo-detection system comprising photo-detection apparatus including light-shielding film, optically-coupled layer, and photodetector and arithmetic circuit
WO2018109966A1 (ja) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
CN110073259A (zh) * 2016-12-15 2019-07-30 松下知识产权经营株式会社 波导片以及光电变换装置
JPWO2018109966A1 (ja) * 2016-12-15 2019-10-24 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
WO2019078081A1 (ja) * 2017-10-20 2019-04-25 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
CN111226148A (zh) * 2017-10-20 2020-06-02 松下知识产权经营株式会社 波导片及光电变换装置
JPWO2019078081A1 (ja) * 2017-10-20 2020-10-01 パナソニックIpマネジメント株式会社 導波シート及び光電変換装置
US11112552B2 (en) 2017-10-20 2021-09-07 Panasonic Intellectual Property Management Co., Ltd. Light-guide sheet and photoelectric conversion device
CN111226148B (zh) * 2017-10-20 2023-06-30 松下知识产权经营株式会社 波导片及光电变换装置
JP2022530215A (ja) * 2019-09-30 2022-06-28 エルジー・ケム・リミテッド ホログラフィック光学素子およびその製造方法

Also Published As

Publication number Publication date
US9494742B2 (en) 2016-11-15
US20150168651A1 (en) 2015-06-18
JP5970660B2 (ja) 2016-08-17
JPWO2014199572A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5970660B2 (ja) 光取り込みシートおよび光取り込みロッド、ならびにそれらを用いた受光装置、発光装置および光ファイバー用増幅器
JP5650752B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
JP6238203B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
JP5646748B2 (ja) 光取り込みシートおよびロッド、ならびに、それらを用いた受光装置および発光装置
JP5649725B2 (ja) 光取り込みシート、ならびに、それを用いた受光装置および発光装置
JP6132241B2 (ja) 光取り込みシートを備える受光装置
US20110292636A1 (en) Light emitting device and illumination device
JP2003329823A (ja) 1次元フォトニック結晶を用いた光学素子およびそれを用いた分光装置
JP2008251468A (ja) 集光素子と採光装置
JP5511674B2 (ja) シートおよび発光装置
US11112552B2 (en) Light-guide sheet and photoelectric conversion device
JP2019028083A (ja) 光学素子
JP2014206680A (ja) 光取り込みシート、ならびに、それを用いた受光装置および発光装置
JP4956741B2 (ja) フォトニック結晶導波路
JP5772436B2 (ja) 光結合器及び光デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810966

Country of ref document: EP

Kind code of ref document: A1