WO2014198223A1 - 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用 - Google Patents

一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用 Download PDF

Info

Publication number
WO2014198223A1
WO2014198223A1 PCT/CN2014/079710 CN2014079710W WO2014198223A1 WO 2014198223 A1 WO2014198223 A1 WO 2014198223A1 CN 2014079710 W CN2014079710 W CN 2014079710W WO 2014198223 A1 WO2014198223 A1 WO 2014198223A1
Authority
WO
WIPO (PCT)
Prior art keywords
psma
monoclonal antibody
cells
cell
seq
Prior art date
Application number
PCT/CN2014/079710
Other languages
English (en)
French (fr)
Inventor
段小波
Original Assignee
广州康合生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州康合生物科技有限公司 filed Critical 广州康合生物科技有限公司
Publication of WO2014198223A1 publication Critical patent/WO2014198223A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3069Reproductive system, e.g. ovaria, uterus, testes, prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • PSMA prostate specific membrane antigen
  • the invention belongs to the field of genetic engineering and relates to a monoclonal antibody against prostate specific membrane antigen (PSMA) and its application in preparing diagnostic and therapeutic drugs for prostate cancer and other PSMA positive tumors.
  • PSMA prostate specific membrane antigen
  • Prostate cancer is one of the most serious malignant tumors in human health today. Prostate cancer accounts for 11% of all male cancer patients, accounting for 9% of all male cancer deaths. According to the World Health Organization, nearly one million people are diagnosed with prostate cancer each year, and mortality is second only to lung cancer. About 20% of patients with clinically diagnosed prostate cancer die from this disease. When it develops beyond the resectable range, most patients develop symptoms such as late or d metastasis of the genus W., and there is currently no cure. Therefore, prostate cancer The early diagnosis and treatment is still a medical problem that needs to be overcome.
  • PSMA Prostate-specific membrane antigen
  • PCa prostate cancer
  • PSA prostate specific antigen
  • PSMA is short on chromosomes 10-11 ; upper (O'Keefe DS et al, 1998), where: ⁇
  • PSM Prostate-specific membrane antigen
  • PSMA protein splicing
  • mRNA a type II transmembrane glycoprotein containing 750 amino acids
  • It is also a spherical macromolecular metal peptidase with a molecular weight of 100 Kda and is a member of the zn-dependent exopeptidase superfamily (Carter RE, 1996; Pinto JT et al 1996).
  • PSMA is specifically expressed in the prostate epithelium, with only a small amount of expression in the extra-prostatic tissue. Expression in the normal prostate secretory epithelium is heterogeneous or low expression.
  • PSMA Yi Da Zeng, in the expression of metastatic and hormone-refractory tumors 1 1 1 (Kawakami M et al 1993; Israeli RS et al, 1994; Sweat SD et al, 1998; Wright GL et al, 1996; Burger MJ et al 2002; Ross JS et al 2003).
  • PSMA is overexpressed in prostate cancer tissues and newly formed blood vessels of various solid tumors, but not in normal tissues, and is a relatively specific tumor vascular endothelial cell marker.
  • PSMA levels were also elevated in the blood cleansing of patients with stage I adenocarcinoma (Horoszewicz JS et al 1987; Holmes EH et al 1996; Troyer JK, 1995; Sokoloff RL, 2000).
  • the sensitivity and specificity of PSMA in distinguishing between prostate cancer and other types of malignant tumors are 65.9% and 94.5%, respectively, so PSMA remains a fairly sensitive, highly specific antigenic substance on prostate cancer cells.
  • the expression of PSMA is also up-regulated in prostate cancer cells in the antiandrogen state, and its expression level may be consistent with the clinical consequences of prostate cancer.
  • Today, targeted formulations have become a trend in the formulation industry.
  • PSMA can be used as a useful target molecule for immunotherapy because it meets the following criteria: (1) expression is mainly restricted to the prostate; (2) PSMA is a protein that is abundantly expressed at all stages of the disease; (3) it is located on the cell surface, but Does not fall off into the circulation; (4) Expression is related to enzyme activity or signaling activity.
  • PSMA is divided into three parts: the intracellular portion (amino acid sequence 1-18), the transmembrane portion (19_143), and the extracellular region (44-750). Due to the targeted specificity of PSMA, it has become an important antigen for the development of monoclonal antibodies (mAbs) in the diagnosis and therapeutic applications of prostate cancer.
  • mAbs monoclonal antibodies
  • m In-labeled monoclonal antibody 7E11 has been approved by the US FDA for the detection of metastatic prostate cancer in soft tissue, marketed under the trade name ProstaScintTM (Cytogen, Philadelphia, PA;). However, because monoclonal antibody 7E11 recognizes only epitopes in PSMA cells (Troyer JK et al, 1995), that is, such antibodies can only bind to tumor cells after death, cell membrane rupture, and cytoplasmic PSMA exposure. Such antibodies fail to bind to living cells, making them less valuable as a therapeutic and diagnostic method for cancer.
  • ProstaScint does indeed have a sensitivity to ii soft tissue vascular metastasis lesions rather than: ⁇ bone lesion sensitivity many times ft (Rosenthal SAet al 2001). Therefore, current research has focused on the development of therapeutic antibodies that are more accessible to tumors in the extracellular region of PSMA molecules, with fewer side effects and faster clearance. Human or humanized antibodies that currently bind to PSMA have been reported (Yao.D et al.
  • Anti-PSMA antibodies have been used to image prostate cancer cells (Yao. D et al. (2002) Semin. Urol. Oncol. 20:211-218; Bander NH et al. (2003) J.Urol. l70: 1717-1721).
  • Anti-PSMA antibodies have also been used in therapeutic interventions in the treatment of prostate cancer and are generally used in combination with chemotherapeutic agents or radioisotopes.
  • the use of monoclonal antibodies to bind radiopharmaceutical targets to the extracellular domain of PSMA and cytotoxin-based immunotherapy for PSMA have been extensively studied.
  • the present invention uses a complete LNcaP tumor cell to immunize a mouse by using a cell membrane protein-specific monoclonal antibody cell ELISA
  • cELISA cELISA
  • proteomic analysis were screened to prepare a monoclonal antibody that recognizes the extracellular epitope of PSMA and can bind to living cells expressing PSMA.
  • This antibody is highly specific and recognizes a highly stable antigenic determinant of PSMA that binds only to PSMA positive cells. It has a blood vessel that can selectively target non-prostate solid tumors for imaging diagnosis and biological targeted therapy, radioisotope-labeled bone and soft tissue metastases that can accurately locate prostate cancer, and tumor-specific preparation as a vector.
  • the broad application prospects of sex antibody drugs are examples of sex antibody drugs.
  • PSMA prostate specific membrane antigen
  • Another object of the invention is to provide a gene encoding the monoclonal antibody.
  • Another object of the present invention is to provide a recombinant vector, expression cassette, transgenic cell line or recombinant strain containing the gene encoding the above monoclonal antibody.
  • Another object of the present invention is to provide use of the above monoclonal antibody for the preparation of a diagnostic or therapeutic agent for prostate cancer or/and other PSMA-positive tumors.
  • a monoclonal antibody consisting of a light chain and a heavy chain, wherein the amino acid sequences of the three complementarity determining regions (CDRs) of the light chain variable region are:
  • CDR3 as shown in SEQ ID NO: 5;
  • CDRs complementarity determining regions
  • CDR3 as shown in SEQ ID NO: 8.
  • the amino acid sequence of the light chain variable region is set forth in SEQ ID NO: 1, and the amino acid sequence of the heavy chain variable region is set forth in SEQ ID NO: 2.
  • a gene encoding the amino acid sequence of the light chain variable region of the above monoclonal antibody is provided.
  • a gene encoding the amino acid sequence of the heavy chain variable region of the above monoclonal antibody is provided.
  • a cell line that secretes the above monoclonal antibodies secretes the above monoclonal antibodies.
  • LNcaP cell-specific monoclonal antibody Prostate cancer LNcaP tumor cells were obtained in vitro, and inactivated in vitro, Balb/c mice were immunized; 96-well cell culture plates fixed with LNcaP tumor cells were used to establish specific cells. The specific antibody response of the immunized mice was determined by ELISA (cELISA); after several booster immunizations, the spleens of the high-valent antibody-responsive mice were isolated, the spleen lymphocytes were isolated, and the hybridization with the mouse myeloma cell line NSO-1 was performed in vitro. Tumor cells; using prostate cancer tumor cells PC3, DU145 and BPH-1 as negative controls, using LNcaP specific cell ELISA
  • cELISA screened LNcaP-specific positive cell lines; obtained stable hybridoma cell lines by linear dilution method; prepared specific monoclonal antibodies in vitro; assayed by flow cytometry, ELISA, immunoblotting and immunoprecipitation in vitro
  • the reactivity of these monoclonal antibodies with various human normal cells and tumor cells screening for LNcaP cell-specific monoclonal antibodies; identification of specific monoclonal antibody types and subtypes.
  • LNcaP cell membrane-specific monoclonal antibody biotinylated labeled LNcaP cell membrane protein; use LNcaP cell membrane-specific monoclonal antibody for immunoprecipitation, determine the molecular weight of target membrane protein by SDS-PAGE electrophoresis and immunoblotting; LNcaP cells were lysed, and LNcaP cell membrane-specific monoclonal antibody was used for immunoprecipitation to capture target membrane protein molecules in vitro; target membrane protein was excised from the gel after antibody-target membrane protein complex SDS-PAGE electrophoresis, and digested with restriction enzyme digestion. Thereafter, the target membrane protein was obtained by MASCOTTM LC-MSMS analysis, and the target membrane protein molecule was determined by egg scorpion omics analysis.
  • LNcaP cell membrane-specific monoclonal antibodies Purification in vitro Preparation of specific monoclonal antibodies.
  • the PSMA gene cDNA was synthesized and cloned into an expression vector to prepare PSMA recombinant protein.
  • the reactivity of LNcaP cell membrane-specific monoclonal antibody with PSMA was determined by SDS-PAGE and Western blotting.
  • the monoclonal antibody of the same subtype was used as a control, and the monoclonal antibody was used for immunohistochemistry to determine the specificity of prostate cancer cells and tumor tissue sections.
  • the monoclonal antibody against LNcaP cell membrane was labeled with biotin and fluorescein. Reactivity with living cells.
  • the total rnRNA is amplified in advance, and the specific antibody mRNA gene encoding IgG is amplified by RT-PCR, and the gene sequences of the heavy and light chains of the variable region are determined, and the coding is determined.
  • the amino acid sequence of the antibody CDRs is determined.
  • a recombinant vector Based on the amino acid sequence of the monoclonal antibody against prostate specific membrane antigen (PSMA) and the coding gene sequence thereof, a recombinant vector, an expression cassette, a transgenic cell line, a transgenic animal or plant, or a biological product such as a recombinant protein, a virus, and a bacterium can be constructed. It is used to produce genetically engineered antibodies and to prepare diagnostic polymers for the diagnosis and treatment of various drugs, isotopes, nanoparticles, toxins and enzymes.
  • PSMA prostate specific membrane antigen
  • the anti-PSMA specific monoclonal antibody of the present invention is a monoclonal antibody having high specificity and affinity. Unlike other PSMA monoclonal antibodies, this monoclonal antibody is prepared by using intact tumor cells as antigens to confer the ability to recognize PSMA antigens that have a native conformation in vivo.
  • anti-tumor monoclonal antibody immunoconjugates such as radioimmunoconjugates, chemical immunoconjugates and immunotoxins for cancer treatment.
  • Figure 1 shows the expression preparation of recombinant PSMA egg tl (A: expression of recombinant PSMA protein in E. coli, where M: protein molecular weight marker, 1: E. coli cell lysate, 2-4: nickel column affinity chromatography purification Recombinant PSMA protein eluate, 5: Nickel column affinity chromatography; B: Expression of recombinant PSMA protein in HEK293, where M: protein molecular weight marker, 1-3: Recombinant PSMA purified by nickel column affinity chromatography Protein eluent).
  • A expression of recombinant PSMA protein in E. coli, where M: protein molecular weight marker, 1: E. coli cell lysate, 2-4: nickel column affinity chromatography purification Recombinant PSMA protein eluate, 5: Nickel column affinity chromatography
  • B Expression of recombinant PSMA protein in HEK293, where M: protein molecular weight marker, 1-3: Recombinant PSMA purified
  • Figure 2 shows the purity of the specific monoclonal antibody mAb L-186 purified by Protein G affinity chromatography by SDS-PAGE electrophoresis (M: protein molecular weight marker; 1-2: specific monoclonal antibody mAb L-186; 3- 4: Controlled with mouse IgG).
  • Figure 3 is a Western blot analysis of whole cell lysates of LNCaP cells in supernatant of mAb L-186 hybridoma cells (1: molecular weight markers, 2-13 in order: DU145 cells, PC3 cells, He3907 cells, OKAR5 cells, A2780 Cells, SKOV4 cells, OVAR3 cells, MCF7 cells, 518A2 cells, colo320 cells, SW480 cells, MDA cells, whole cell lysates of HT29 cells, 14 are LNCaP cell whole cell lysates).
  • Figure 4 shows a purified specific monoclonal anti-happiness mAb L-186 immunoprecipitated from a LNCaP cell lysate containing ⁇ ⁇ .
  • Figure 5 shows the mass spec analysis of immunoprecipitated specific egg mass from LNCaP cell lysate by single-gram anti-response mAb L-186.
  • Figure 6 shows the reactivity of the specific cloned antibody mAb L-186 3 ⁇ 4 L PSMA ifi by Western blot (1: specific monoclonal antibody detection of PSMA LNCaP cell lysate; 2: recombinant PSMA protein; 3: anti-His tag antibody detection of recombinant PSMA protein).
  • Figure 7 shows flow cytometry analysis of different concentrations of monoclonal antibody mAb L-186 and
  • Figure 8 shows the reactivity of the fluorescently labeled d-cloning anti-residue mAb L-186 with
  • Figure 9 shows the specific cloned antibody mAb L-186 staining PSMA-positive LNCaP cells.
  • Reagents, plasmids and strains used in the following steps Restriction enzyme, PfU DNA polymerase, T4 DNA ligase purchased from Promega; Exp Taq DNA polymerase, DNA maker purchased from Takara; pET-22b (+) vector, large intestine Bacillus Rosetta (DE3) was purchased from Novagen; E.coli DH5 ⁇ , Ni-NTA Agarose kit was purchased from Invitrogen; incomplete DMEM medium was purchased from Thermo Fisher; horseradish peroxidase (HRP) labeled goat anti-mouse The antibody was purchased from Dr. De; TMB was purchased from eBioscience; the myeloma cell NSO-1 was purchased from ATCC; the other kits were routinely marketed.
  • LNcaP purchased from the United States ATCC Corporation (LNCaP clone FGC, ATCC number
  • mice BALB/c female rats were purchased from the United States
  • the molecular biology experimental techniques used in the following examples include PCR amplification, plasmid extraction, plasmid transformation, DNA fragment ligation, restriction enzyme digestion, gel electrophoresis, etc., unless otherwise specified, usually in accordance with conventional methods, see " Molecular Cloning Experimental Guide (Third Edition) (Sambrook J, Russell DW, Janssen K, Argentine J. Huang Peitang et al., 2002, Beijing: Science Press), or in accordance with the conditions recommended by the manufacturer.
  • Human prostate cancer cells LNcaP were purchased from ATCC (LNCaP clone FGC, ATCC No. CRL-1740). RNA isolation and cDNA synthesis were performed according to the kit protocol. Primers were designed according to the human PSMA sequence published in GenBank (GenBank accession number: NM_001193471.1): PL5'-CACCAAATCCTCCAATGAAGCTACTAAC- (SEQ ID NO: 9), P2: 5"-TTAGGCTACTTCACTCAAAGTCTCTG-3 ' (SEQ ID NO: 10) (The 6-amino acid His-tag was introduced into the primer), and the primer was synthesized by Nanjing Jinsrui Biotechnology Co., Ltd.
  • the reverse transcription cDNA strand was used as a template for PCR, a 2, 136-base PCR product and gel electrophoresis. After purification, it was cloned into pENTR/D-TOPO vector (Invitrogen), and then shuttled into expression vectors pDEST17 and P pTT5 to obtain recombinant expression vectors pDEST17-PSMA and pTT5-PSMA, which were respectively transferred into E. coli DH5 ⁇ competent cells. The positive clones were screened for DNA sequencing, and the sequencing results showed that the recombinant expression vectors pDEST17-PSMA and pTT5-PSMA were successfully constructed.
  • HEK-293 EBNA1 cells were seeded in Ex-Cell 293 medium at a density of 3 x 10 5 /ml, placed in a 100 rpm shake flask or 75 rpm spinner flask for 3 days at 37 ° C, 5% CO 2 . , transfection subsequent work in the case where the cell density was increased to 1.5 ⁇ 2x l0 6 / ml, and cell viability greater than 95%. All cell fluids were removed in a sterile environment, centrifuged at 1000 rpm for 5 min, all culture supernatants were discarded and the cell pellet was resuspended in fresh Ex-Cell 293 medium, and the cell density was adjusted to 20 ⁇ 10 6 cells/ml.
  • the high-density cell suspension is placed in a shake flask to maintain a low-speed oscillation state to prevent cell clumps.
  • the amount is 100 ⁇ ⁇ / ⁇ 1, and place the high concentration of transfected cell solution.
  • the cell suspension was placed in an environment of 37 ° C, 5% CO 2 shake flask or spinner flask for 5 days to collect.
  • the nuclei and cells and debris were removed by centrifugation at 8000 rpm for 30 minutes, stored at 4 ° C overnight, and purified by nickel column affinity chromatography the next day.
  • the pellet was washed 3 times with inclusion body washing buffer (50 mM Tris, 100 mM NaCK 2M urea, 1 mM dithiothreitol pH 8.5), centrifuged at 6000 °C for 10 minutes at 4 ° C, and the supernatant was discarded.
  • inclusion body precipitate was dissolved in inclusion body lysate (50 mM Tris, 100 mM NaCK 8 M urea, 1 mM dithiothreitol pH 8.5), and stirred at room temperature for 1 hour.
  • the cultured LNCaP cells were rinsed twice with pre-cooled PBS, fixed with pre-cooled 4% paraformaldehyde (Paraformaldehyde PFA) PBS for 10 minutes at room temperature, and rinsed twice with pre-cooled PBS.
  • the fixed LNCaP cells were diluted to a final concentration of 1 ⁇ 10 7 cells per ml.
  • 0.5ml cells were mixed with an equal volume of complete Freund's adjuvant, mixed thoroughly to form a water-in-oil form, and 8-10 weeks old BALB/c female mice were used for primary immunization. Each mouse was injected intraperitoneally and subcutaneously at intervals of lOOuL.
  • LNCaP cells fixed in the same dose were mixed with an equal volume of incomplete Freund's adjuvant.
  • Preparation method of spleen cells After the above-mentioned immunized BALB/c mice were collected, the spleen was aseptically taken, passed through a 200-mesh cell sieve, and the spleen cell suspension was collected, and the sediment was discarded after being placed in an ice bath for 10 min. Centrifuge at 750g for 10 minutes at 4°C, collect the cells, add 1 mL of red blood cell lysate (0.155MH 4 C1, 10mM KHCO 3 , 0.1mM Na 2 EDTA pH 7.4) for 5 minutes, add 20 mL of incomplete DMEM medium. Stop the reaction.
  • Method for detecting antibody titer by LNCaP cell ELISA After forming a 90% monolayer of LNCaP cells cultured on a 96-well cell culture plate, the cell culture medium is aspirated; after gently rinsing twice with 200 ul of pre-cooled PBS per well, Add 100 ⁇ l of pre-cooled 4% paraformaldehyde (PFA) PBS to each well for 10 minutes at room temperature, wash 3 times with PBST (0.05% Tween20-PBS, pH 7.4), block with 1% BSA, incubate at 37 °C. hour.
  • PFA paraformaldehyde
  • the ratio of the AOD450 in the experimental group to the AOD450 in the negative control group was more than 5 times positive.
  • Mouse peritoneal macrophages were prepared on the day before cell fusion.
  • the 8-week BALB/c mice were dissected and sacrificed. Under aseptic operation, the abdomen was cut open, 5 mL of DMEM incomplete medium was infused into the abdominal cavity, the abdominal cavity was repeatedly washed, and the washing solution was aspirated and washed twice with DMEM incomplete medium. 4. Centrifuge at 300 g for 10 min, collect the cells and resuspend the cells in DMEM complete medium containing 10% calf serum to a concentration of 2 ⁇ 10 5 /mL, add 96-well plates, 100 ul per well, 37 ° C, 5% C0 Culture under 2 conditions.
  • the myeloma cell NSO-1 was resuscitated, and the HGPRT-deficient strain was screened with 8-azaguanine.
  • the cells were in the logarithmic growth phase when the cells were fused, and washed with incomplete DMEM medium before the fusion, 4 times. Centrifuge at 300 g for 10 minutes, collect the cells and resuspend in incomplete DMEM medium.
  • the spleen cells and myeloma cells NSO-1 of the prepared immunized mice were taken in a centrifuge tube, and 10 8 and 2.5 x 10 7 were taken, respectively, and washed once with incomplete DMEM medium. After centrifugation, discard the supernatant, gently scatter the cells, add 0.7 mL of PEG (molecular weight 1500) solution at 40 ° C, the final concentration of PEG is 50% (W / V), 60 seconds after the start of 40 ° C preheating Incomplete DMEM medium (5 minutes addition), first add 1 mL, add 4 mL after 1 minute, add 20 mL after two minutes.
  • PEG molecular weight 1500
  • hybridoma cell clones When hybridoma cell clones were observed to grow, they were cultured in DMEM medium containing 20% calf serum and detected for secretion of antibodies by LNCaP cell ELISA. Then sieve with limited dilution Positive clones were selected, and hybridoma cell lines were obtained after multiple screenings. After continuous in vitro culture for more than 2 months or after 6 months of cryopreservation, the cell line can still stably and massively secrete anti-human PSMA protein antibody, thereby obtaining a hybridoma cell line named mAb L-186.
  • the proliferation culture method the hybridoma cells are cultured in vitro for 2-3 days, and the culture supernatant is collected in a large amount, and the supernatant contains a high concentration of monoclonal antibodies.
  • Method 2 mouse peritoneal inoculation method, first 500 sterile liquid paraffin was intraperitoneally immunized 8-10 weeks old BALB/C mice, one week after intraperitoneal injection of lx lO 6 hybridoma cells, 7-10 days to collect ascites, high speed The supernatant was collected by centrifugation.
  • the antibody obtained by the above method was purified by Protein G affinity chromatography and subjected to SDS-PAGE to confirm the antibody purity, as shown in Fig. 2.
  • the purity of the purified monoclonal antibody is higher than ⁇ %, the heavy chain of the antibody is about ⁇ kDa, and the light chain is about 21 kDa.
  • the monoclonal antibody mAb L-186 subtype was identified as IgG1 and the light chain type was ⁇ chain using the mouse monoclonal antibody immunoglobulin subtype identification kit.
  • These cells include: prostate cancer cell lines (PC3, DU145 and BPH-1), ovarian cancer cell lines (He3907, OKAR5, A2780, SKOV4 and OVAR3), breast cancer cell line (MCF7), skin cancer cell line (518A2, FBI) ), colon cancer cell lines (colo320, SW480, MDA, CAC02, RKO and HT29), lung cancer cell line (A549), bladder cancer cell line (SW780, UMUC, J82, RT4), human bone cell line (MG92), monkey cell Line (COS-1), hamster cell line (BHK21, G9) and mouse cell line (OSE 1.2.2, Shinoqi).
  • the cells were cultured on a 96-well cell culture plate. After the cells were formed into 80-90% monolayers, the cell culture medium was aspirated; after each well was added with 200 ul of pre-cooled PBS, the cells were gently rinsed twice, and 100 ⁇ l of pre-cooled per well was added. The cells containing 4% paraformaldehyde (PFA) in PBS were fixed at room temperature for 10 minutes, washed 3 times with PBST (0.05% Tween 20-PBS, pH 7.4), blocked with 1% BSA, and incubated at 37 °C for 2 hours.
  • PFA paraformaldehyde
  • the ratio of the AOD450 in the experimental group to the AOD450 in the negative control group was more than 5 times positive.
  • the results showed that the monoclonal antibody mAbL-186 only reacted with LNCaP tumor cells and did not cross-react with other cells.
  • the cultured LNCaP cells were rinsed twice with pre-cooled PBS, and protease and phosphatase inhibitors were added to the lysate (Nonidet-P40 (P40) buffer); PBS was added and pre-cooled lysate was added ((1 ml per 107 cells/100mm dish/150cm2 flask; 0.5ml per 5x106 cells/60mm dish/75cm2 flask;). Scrub the adherent cells with a cell scraper, gently transfer the cells and lysate to the pre-cooled microcentrifuge tube. Shake for 30 min at 4 ° C. Centrifuge at 12,000 rpm for 20 min at 4 ° C. Gently pipette the supernatant and transfer to a freshly pre-cooled microcentrifuge tube on ice for a protein sample and discard the pellet.
  • P40 Nonidet-P40
  • a 10% separation gel was prepared.
  • Cell lysates and recombinant protein samples were mixed with 5X sample buffer (20 ul + 5 ul) in an Eppendorf tube. Heat at 100 °C for 5-10 minutes, take the supernatant and sample. 8.0 ml, mix; add approximately 20 ⁇ l of molecular weight markers, cell lysates, and recombinant protein samples to separate sample wells. After loading, the voltage is 200V. When bromophenol blue just runs out of the separation gel, stop electrophoresis, about ⁇ lhr.
  • the egg yolk sample separated by PAGE was transferred to «acid cellulose thin glue. 100V, 1 current is about 0.3 ⁇ ).
  • the membrane was washed with 25 ml of TBS for 5 min at room temperature and shaken.
  • the membrane was placed in 25 ml of blocking buffer (5% skim milk powder) for 1 h, shaking at room temperature. Wash with 15ml TBS/T (Tris buffer containing 0.5% Tween-20, 3 times (5 min/T).
  • the primary antibody of dilution (Anti-His Tag antibody) was incubated at room temperature for 1-2 h or 4 ° C overnight and shaken slowly. Wash 3 times (5 min/T) with 15 ml TBS/T.
  • Horseradish peroxidase (HRP)-labeled secondary antibody like anti-mouse IgG-HRP
  • HRP horseradish peroxidase
  • the chemiluminescence self-developing kit (Peerce product of the United States) was applied, and the substrate was auto-developed on an X-ray film.
  • single-gram anti-response mAb L-186 recognizes only LNCaP cells, and detects an egg A band of approximately 110 kDa, lilj several other tumor cells - DU145, PC3, He3907, OKAR5, A2780, SKOV4 , OVAR3, MCF7, 518A2, colo320, SW480, MDA, HT29 whole cell lysate did not respond.
  • cell IP lysis buffer containing protease inhibitor
  • lyse for 2-5 minutes in ice bath, centrifuge at 12,000 g for 30 min at 4 ° C, and take a live; take a small amount of lysate
  • the remaining lysate was added to the cell lysate with lg corresponding antibody and 10-50 ⁇ M protein A/G-beads, and shaken overnight at 4 ° C; after immunoprecipitation, at 4.
  • FIG. 4 shows the specific monoclonal anti-shock mAb L-186 immunoprecipitation (IP) from a LNCaP cell lysate containing biotin-labeled membrane IfiA, a 110 kDa protein.
  • the cultured LNCaP cells were rinsed twice with pre-cooled PBS, and then an appropriate amount of cell IP lysis buffer (containing egg enzyme inhibitor) was added. The cells were lysed for 30 minutes at 4 ° C, centrifuged at 12,000 g for 30 min, and then taken up - a small amount of lysate was taken for Western blot analysis, and the remaining lysate was added with lg corresponding antibody and 10-50 ⁇ M protein A/G-beads.
  • cell IP lysis buffer containing egg enzyme inhibitor
  • the 110 kD protein was excised from the gel. band.
  • the gel was ground in PBS buffer to release the protein; the gel fragments were removed by centrifugation, and BSA was used as a standard curve to determine the protein concentration by the Bradford method.
  • the digested polypeptide was separated using a nanoscale/capillary liquid chromatography system Ultimate (DIO EX, USA) using a pepmapl00 C18 column, buffer A: 0.1% formic acid solution. Buffer B: 95% acetonitrile solution containing 0.1% formic acid. Each solution was filtered (0.22 ⁇ filter) before the test and degassed on-line. The system is divided before the column, set the flow rate after splitting is 200 nl-min-l, the injection volume is 6 ⁇ 1, the autosampler is injected, and the room temperature is run. After loading, the valve is switched so that the sample is flushed separately to the precolumn, and then the precolumn is switched to the analytical column flow path to begin elution.
  • Elution method 3% ⁇ liquid balance column, 8% ⁇ 50% ⁇ solution eluted for 30 min after loading, 50% ⁇ 60%B solution eluted for 4 min, 60% ⁇ 95% B solution eluted for 4 min , 95% B liquid gradient elution for 6 min.
  • the eluted fraction was directly ion-ionized by electrospray into mass spectrometry.
  • Tandem mass spectrometry was performed by electrospray-tandem quadrupole-time-of-flight mass spectrometry ESI-Q-TOF (Bruker, Germany): All measurements were performed in positive ion mode.
  • the atomizing gas is nitrogen
  • the collision gas is nitrogen
  • the collision energy is related to the precursor ion.
  • the number of charges is differently intelligently optimized.
  • the TOF accelerating voltage is 190V
  • the MCP detector voltage is 1 900 V
  • the capillary voltage is 4 200 V.
  • the MS spectral quality scan range is 0 ⁇ 2 400 Da, and the scan time is 2 s. The first two peptides with the highest intensity and response value greater than 1 000 in each MS spectrum were selected for tandem mass spectrometry.
  • the MS/MS spectral mass scanning range was 0 ⁇ 2400 Da, and the scanning time was 2 s.
  • the precursor ion was subjected to the dynamic exclusion principle during MS/MS scanning, and the precursor ion analyzed by the cascade analysis was not repeated for 5 min.
  • the MS/MS data is searched for by the MASCOT (http://www. matrixscience.com) NCBInr and P EST database. Search conditions: Trypsin digestion, 1 maximum missing enzyme cleavage site, peptide mass accuracy ⁇ 0.1, MS/MS mass accuracy ⁇ 0.1, fixed modification Carbamidomethyl (C).
  • MASCOT http://www. matrixscience.com
  • NCBInr NCBInr
  • P EST database Search conditions: Trypsin digestion, 1 maximum missing enzyme cleavage site, peptide mass accuracy ⁇ 0.1, MS/MS mass accuracy ⁇ 0.1, fixed modification Carbamidomethyl (C).
  • C Carbamidomethyl
  • the mAb L-186 monoclonal antibody not only specifically binds to the PSMA recombinant protein, but also binds to the degraded PSMA recombinant protein fragment, indicating that the mAb L-186 monoclonal antibody recognizes a stable epitope. .
  • FCM Flow Cytometer
  • FCM detects the fluorescence emitted by the fluorescein of the superscript id. It is shown that the mAb L-186 antibody is capable of 3 ⁇ 4 PSMA-positive LNCaP fine-junction, and does not appear to bind to PSMA-negative PC3 cells.
  • the coverslips were placed in 6-well plates to culture LNCaP and PC3 cells. After about 80% of the monolayer cells were formed, the coverslips were rinsed 3 times with ice-cold PBS for 5 minutes each time; fixed in 4% paraformaldehyde fixative for half an hour; washed 3 times with PBS for 5 minutes each time; B 10% blocked serum or 1-10% BSA, room temperature, 30-60 minutes; diluted mABL-186 antibody (3% BSA, PBS), 4 ° C, overnight; wash PBS 3 times, each 5 minutes; Add 1: 1000 dilution of fluorescently labeled goat anti-mouse antibody (3% BSA, PBS), room temperature for 30-60 minutes; wash 3 times with PBS for 5 minutes at room temperature; stain with Hoechst, 5-10 minutes, room temperature; PBS Wash 3 times, 5 minutes each time; finally observe the test under a fluorescence microscope. As shown in Figure 8, mAb L-186 anti-shock can be combined with PSMA ⁇ ⁇ LNC
  • prostate tumors diagnosed as prostate cancer tumors and 5 benign tumors were used to detect the specificity of mAB-186 for recognizing human tissue prostate cancer. Both the prostate cancer tissue and the adjacent liver tissue are made into wax. All waxes were cut into 5 ⁇ slices and attached to FISHER slides. A piece of known PSMA positive tissue was used as a positive control.
  • the sections were dried at 56 ° C for 2 h, dewaxed in xylene (3 minutes each) 2 times and hydrated in 5 gradients of alcohol and 2 deionized waters (100%, 100%, 90%, 70) %, 50%, 0%, 0%, every 5 minutes), soaked in 3% hydrogen peroxide/methanol for 30 minutes to inactivate endogenous peroxidase activity, then in deionized water (5 times each time) Minutes) and PBS (3 each time) Minutes) 2 washes each.
  • the sections were immersed in 10 mmol/L, pH 6.0 citrate buffer, and subjected to microwave irradiation for 10 minutes (control microwave power to make the buffer temperature at 92 ° C to 98 ° C) for antigen retrieval.
  • Sections were then dehydrated in 5 gradient alcohols (50%, 70%, 90%, 100%, 100%), transparent in 2 xylenes, sealed with a neutral gum under a coverslip, and under an optical microscope Read the film.
  • the substrate used for the enzyme acts such that the positive PSMA protein appears as a fine brown particle.
  • the results showed that mAb L-186 can specifically recognize human prostate cancer tissue and is used for immunohistochemistry. It is positive in all tumor tissues from 10 patients diagnosed with prostate cancer, and 5 benign. The prostate tissue of the tumor was negative.
  • the hybridoma cell line secreting the anti-monoclonal antibody mAb L-186 was resuscitated, and the cells were harvested after passage to the 3rd generation so that the number of cells reached 2.8 ⁇ 10 7 /L. After extracting RNA with TRIzolTM Reagents (available from TaKaRa Co., Ltd.), chloroform and isopropanol, it was precipitated with absolute ethanol. The first strand of cDNA was synthesized by reverse transcription using ⁇ ⁇ as a template and Oligo (dT) 20 as a random primer.
  • PCR was carried out using a mouse IgG primer library kit (product of USBiological, USA) in a 25-reaction system by adding two copies of the cDNA 2 ⁇ , Back and For primers. Amplification was carried out on a GeneAmp PCR System (Perlin Elmer), and the reaction parameters were: denaturation at 94 ° C for 60 minutes, annealing at 55 ° C for 60 minutes, extension at 72 ° C for 60 minutes, 30 cycles. The PCR product was recovered by 1.5% low melting agarose gel electrophoresis.
  • the PCR-product recovered by agarose gel electrophoresis was purified (Qiagen, gel extraction kit), cloned into pEGMR-T Vector with terminal T overhang, transformed competent CM1601, selected positive clones, extracted plasmid DNA, T7 and The SP6 universal primer was bidirectionally sequenced at the 310 A Fully Automatic DNA Sequence Analyzer (ABI).
  • the obtained sequences were analyzed by IMGT/V-QUEST sequence analysis software from IMGT Web (the international ImMunoGeneTics information system®, http://www.imgt.org.); VH or VL DNA sequences were separately used with GenBank using BLAST Base local homology comparisons with the sequence already included in the EMBL database.
  • the complementarity determining regions (CDRs) of the heavy and light chains of the antibody are then determined by comparing the deduced amino acid sequences of VH and VL with the amino acid sequence classification of the known murine antibody variable regions summarized by Kabat et al.
  • the sequencing result showed that the antibody light chain variable region gene is 330 bp in length and encodes 110 amino acids (SEQ ID NO: 1).
  • the heavy chain variable region gene of this antibody is 354 bp in length and encodes 118 amino acids (SEQ. ID NO: 2).
  • CDRs complementarity determining regions
  • CDR3 as shown in SEQ ID NO: 5;
  • CDRs complementarity determining regions
  • CDR3 as shown in SEQ ID NO: 8.
  • a recombinant vector Based on the amino acid sequence of the monoclonal antibody against prostate specific membrane antigen (PSMA) and the coding gene sequence thereof, a recombinant vector, an expression cassette, a transgenic cell line, a transgenic animal or plant, or a biological product such as a recombinant protein, a virus, and a bacterium can be constructed. It is used to produce genetically engineered antibodies and to prepare diagnostic polymers for the diagnosis and treatment of various drugs, isotopes, nanoparticles, toxins and enzymes.
  • PSMA prostate specific membrane antigen

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Cell Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种抗前列腺特异性膜抗原(PSMA)的单克隆抗体,其轻、重链的互补决定区(CDR)的氨基酸序列分别如SEQ ID NOs:3-8所示。该单克隆抗体能特异性结合活的肿瘤细胞表面胞膜外的PSMA抗原,并识别该抗原的一个保守决定簇,还能与降解的抗原片段结合。该单克隆抗体仅识别肿瘤组织和细胞,是理想的识别肿瘤特异标志物的抗体,在癌症诊断和治疗上具有应用前景。

Description

一种抗前列腺特异性膜抗原(PSMA) 的单克隆抗体及其应用 技术领域
本发明属于基因工程领域, 涉及一种抗前列腺特异性膜抗原 (PSMA) 的单克隆抗体, 及其在制备前列腺癌和其它 PSMA阳性肿瘤诊断和治疗药物中的应用。
背景技术
前列腺癌是当今严重危害人类健康的恶性肿瘤之一, 前列腺癌占全部男性癌症患者的 11%, 占全部男性癌症死亡人数的 9%。 根据世界卫生组织的数据, 每年有近百万人被诊断为 前列腺癌患者, 死亡率仅次于肺癌占第二位。 大约 20%临床诊断前列腺癌的患 死于此病, 当其发展至超过可切除范围时, 多数患者出现症状吋 W部巳属晚期或 d 转移, 目前没有治 愈性的治疗方法, 因此, 前列腺癌的早期诊断和治疗仍然是目前有待攻克的医学难题。
前列腺特异性膜抗原 (prostate-specific membrane antigen, PSMA) 是一种较前列腺特异 性抗原 (PSA) 更加敏感和特异的前列腺癌 (PCa) 肿瘤标记物。 PSMA 冈位十 -11号染色体 的短 ;上 (O'Keefe DS et al , 1998), 所:仃|¾'列腺组织都表达 PSMA (Silver DA, 1997)。 在正 常的前列腺 I:皮细胞, PSMA主要表达成一种称为 PSM的细胞质 ift A (Su L, 1995)。 在前列 腺癌中, PSMA mRNA的不 M剪接 致. 达成为一种含有 750 个氨基酸的 II型跨膜糖蛋白 (Israeli RS et al, 1993; Schmittgen TD et al 2003; Ghosh A et al 2004)。 它也是一个球形大分子金 属肽酶,分子量为 100Kda,是 zn依赖的外肽酶超家族成员之一 (Carter RE, 1996; Pinto JT et al 1996)。 PSMA特异的表达于前列腺上皮, 在前列腺外组织只有少量表达。 在正常前列腺分泌 上皮中表达呈异质性或低表达。 随病情进展, PSMA的:衣达增《, 在转移性和激素难治性肿 瘤 111的表达丄¾卨 (Kawakami M et al 1993; Israeli RS et al, 1994; Sweat SD et al, 1998; Wright GL et al, 1996; Burger MJ et al 2002; Ross JS et al 2003)。 PSMA在前列腺癌组织和多种实体瘤新形 成的血管中会过度表达, 而不表达于正常组织中的血管, 是一种比较特异的肿瘤新生血管内 皮细胞标记物。 PSMA水平在 i 列腺癌患者血洁中也升 W(Horoszewicz JS et al 1987; Holmes EH et al 1996; Troyer JK, 1995; SokoloffRL, 2000)。 PSMA在区分前列腺癌和其它类型恶性肿 瘤的敏感度和特异性分别是 65.9%和 94.5 %, 所以 PSMA仍然是前列腺癌细胞上一个相当敏感 的、 高度特异性的抗原物质。 PSMA在抗雄激素的状态下的前列腺癌细胞上表达还会上调, 其表达水平可能与前列腺癌不良的临床后果一致。 如今, 靶向制剂已成为制剂行业的潮流。 PSMA可以作为免疫治疗的有用靶标分子, 因为它符合以下标准: (1 ) 表达主要局限于前列 腺; (2) PSMA是在疾病的所有阶段都大量表达的蛋白质; (3 ) 它位于细胞表面, 但不会脱 落进入循环; (4) 表达与酶活性或信号传导活性相关。 PSMA的肿瘤 Π关的血管内皮细胞的 表达的特异性、 在前列腺癌及其转移灶增高, 使其成为具有较高前列腺组织器官特异性的新 型肿瘤标志物, 是前列腺基因治疗的理想靶标, 已成为前列腺癌的研究热点, 尤其以它为目 标靶向治疗前列腺癌和其它癌症给人们带来很大的希望 (Schiilke N et al 2003)。
PSMA分为三个部分: 胞内部分 (氨基酸序列 1一 18), 跨膜部分 (19_143), 胞外区域 (44一 750)。 由于 PSMA的靶向特异性, 使其成为开发前列腺癌的诊断和治疗应用中的单克隆 抗体(mAb)的重要抗原。 PSMA最初是被单抗 7E11、C5识别并定义的 (Horoszewicz et al., 1987, Anticancer Res. 7:927-935; U.S. Pat. No. 5,162,504).。 mIn—标记的单抗 7E11已获美国 FDA批准, 用于检测软组织中转移性前列腺癌,在市场上的商品名为 ProstaScint™ (Cytogen, Philadelphia, PA;)。但是, 因为单抗 7E11只识别 PSMA细胞内的抗原决定基 (Troyer JK et al, 1995), 也就是说 只有在肿瘤细胞死亡、 细胞膜破裂、 细胞质 PSMA暴露出来后, 此类抗体才能与之结合。 此 类抗体无法结合活的细胞,使它们作为肿瘤治疗和诊断的价值大打折扣。也巳发现, ProstaScint 的确在确) ii软組织血管转移病灶的敏感性往往比确: ί骨病灶的敏感性 ft许多倍 (Rosenthal SAet al 2001)。 因此, 目前的研究集中在研发针对 PSMA分子胞外区域更易接近肿瘤、副作用 更少、 清除率更快的治疗性抗体。 目前与 PSMA结合的人或人源化抗体已有报道(Yao.D等人
(2002) Semin.Urol.Oncol.20:211-218;专利: WO 02/098897 WO 01/034903、 WO 03/064606), 这些抗体已经用于对前列腺癌细胞成像 (Yao.D等人 (2002) Semin.Urol. Oncol.20 :211-218; Bander N.H.等人 (2003 ) J.Urol. l70: 1717-1721 )。 抗 -PSMA抗体也已经在前列腺癌治疗中用 于治疗性干预, 一般与化疗剂或放射性同位素联合使用。 利用单克隆抗体结合放射性药物靶 向 PSMA胞外区域, 以细胞毒素为基础的针对 PSMA的免疫疗法等都已得到深入研究。证明它 对前列腺癌动物模型显示了有效的抗癌效应。 这些抗 PSMA抗休在休外使 LNCaP细胞的球粒 减小, 1 J以诱导表达 PSMA的细胞凋亡, ^剂 M放射性标记的 PSMA特^性 ^克隆抗体能够使 异种移植荷瘤小鼠的肿瘤休积平均减少 15-90%, 并且这个剂量对动物没有产生毒性; 单克隆 抗体一 auristatin (来源于海洋生物的环肽衍生物)结合物在体外和体内的雄性激素非依赖的前 列腺癌模型上都有有效的和选择性的抗肿瘤活性 (Lopes AD et al 1990; McDevitt MR et al 2000; Ballangmd AM et al, 2001; Smith-Jones PM et al, 2003; Bander H et al, 2003;
Vallabhajosula S et al, 2004; Fracasso G et al, 2002)。 同时, 这 *抗休可以使 PSMA能快速地内 陷,这不仅可以促进抗体依赖免疫细胞 ADCs进入肿瘤内部, lilj且使抗体一药物结合物更容易 进入细胞内部。 然而, 与许多抗肿瘤抗休药物- t-, 所 这 PSMA抗休, 由 Τ其 k人的分 T' (> 150kDa), 将面临难以渗透到固体肿瘤。 为了解决这个问题, 已有研究选择性地结合到 i 列腺特异性膜抗原的多肽和核酸迠休等较小的配休(<15 kDa的) 的报逍 (Aggarwal S et al, 2006; Lupoid SE et al, 2002)„ fl , 迄今为止这些 ft!体还没有已被证明 nj以作为试剂或药物 来提 M iW列腺癌的诊断和治疗效力。 因为, 这 *小配休 临人源化、 休内快速被沽除和易 T 产生耐药性等凼难, 使它们难于开发成为真 ιΗ意义 I:的治疗药物。
本发明应用完整 LNcaP肿瘤细胞免疫小鼠, 通过应用细胞膜蛋白特异单抗的细胞 ELISA
(cELISA) 和蛋白质组学分析, 筛选制备了可一株识别 PSMA胞外的抗原决定基, 且可以结 合有表达 PSMA的活细胞的单克隆抗体。此抗体高度特异, 它识别 PSMA的一个高度稳定的抗 原决定簇, 只结合 PSMA阳性细胞。 它具有可以选择性地靶向非前列腺实体瘤新生的血管, 用于影像学诊断和生物靶向治疗, 放射性同位素标记的能精确定位前列腺癌的骨和软组织转 移灶和做为载体制备的肿瘤特异性抗体药物的广阔应用前景。
发明内容
本发明的一个目的在于提供一种抗前列腺特异性膜抗原 (PSMA) 的单克隆抗体。
本发明的另一个目的是提供该单克隆抗体的编码基因。
本发明的另一个目的是提供含有上述单克隆抗体的编码基因的重组载体、 表达盒、 转基 因细胞系或重组菌。
本发明的另一个目的是提供上述单克隆抗体在制备前列腺癌或 /和其它 PSMA 阳性肿瘤 的诊断试剂或治疗药物中的应用。
本发明所采用的技术方案是:
一种单克隆抗体, 由轻链和重链组成, 其特征在于, 所述轻链可变区的 3个互补决定区 (CDR) 的氨基酸序列为: 一
CDR1: 如 SEQ ID NO:3所示,
CDR2: 如 SEQ ID NO:4所示,
CDR3: 如 SEQ ID N0 5所示;
所述重链可变区的 3个互补决定区 (CDR) 的氨基酸序列为:
CDR1: 如 SEQ ID NO:6所示,
CDR2: 如 SEQ ID NO:7所示,
CDR3: 如 SEQ ID NO:8所示。
所述轻链可变区的氨基酸序列如 SEQ ID ΝΟ: 1 所示, 所述重链可变区的氨基酸序列如 SEQ ID NO:2所示。 所述的单克隆抗体在制备前列腺癌或 /和其它 PSMA 阳性肿瘤的诊断试剂或治疗药物中 的应用。
编码上述单克隆抗体轻链可变区氨基酸序列的基因。
编码上述单克隆抗体重链可变区氨基酸序列的基因。
编码上述单克隆抗体的基因。
含有编码上述单克隆抗体轻链可变区氨基酸序列 /重链可变区氨基酸序列 /单克隆抗体氨 基酸序列的基因的重组载体、 表达盒、 转基因细胞系, 转基因动植物或重组病毒和细菌。
分泌上述单克隆抗体的细胞系。
所述的基因、 重组载体、 表达盒、 转基因细胞系或重组菌、 细胞系在制备前列腺癌或 / 和其它 PSMA阳性肿瘤的诊断试剂或治疗药物中的应用。
具体技术手段包括:
1. 制备 LNcaP细胞特异性单克隆抗体: 体外培养获得前列腺癌 LNcaP肿瘤细胞, 体外 固定灭活后, 免疫 Balb/c 小鼠; 应用 LNcaP肿瘤细胞单层固定的 96孔细胞培养板, 建立特 异细胞 ELISA (cELISA) 测定免疫小鼠的特异性抗 体应答; 数次强化免疫后, 取高效价抗 体应答小鼠的脾脏, 分离脾脏淋巴细胞, 在体外与小鼠骨髓瘤细胞系 NSO-1融合制备杂交瘤 细胞;以前列腺癌肿瘤细胞 PC3, DU145 和 BPH-1为阴性对照,应用 LNcaP特异细胞 ELISA
(cELISA)筛选出 LNcaP特异阳性细胞株; 通过线性稀释法获得稳定的杂交瘤细胞系; 体外 培养制备特异性单克隆抗体; 在体外通过流式细胞仪、 ELISA、 免疫印迹和免疫沉淀等实验 测定这些单克隆抗体与各种人正常细胞和肿瘤细胞的反应性,筛选出 LNcaP细胞特异单克隆 抗体; 鉴定特异单克隆抗体的型和亚型。
2. 鉴定 LNcaP细胞膜特异性单克隆抗体的靶标分子: 生物素化标记 LNcaP细胞膜蛋白; 应用 LNcaP细胞膜特异性单克隆抗体做免疫沉淀, 通过 SDS-PAGE电泳和免疫印迹确定靶 标膜蛋白的分子量;体外裂解 LNcaP细胞,应用 LNcaP细胞膜特异性单克隆抗体做免疫沉淀, 在体外俘获靶标膜蛋白分子; 从抗体-靶标膜蛋白分子复合物 SDS-PAGE 电泳后的凝胶上切 取靶标膜蛋白, 酶切消化后, 在 MASCOT™ LC-MSMS 分析获得靶标膜蛋白多. tt, 通过蛋 ΰ质组学分析确定靶标膜蛋白分子。
3. LNcaP细胞膜特异性单克隆抗体的特异性和在诊断前列腺癌上的应用: 体外培养纯化 制备特异性单克隆抗体。 合成 PSMA基因 cDNA, 克隆到表达载体, 制备 PSMA重组蛋白, 通过 SDS-PAGE电泳和免疫印迹实验测定 LNcaP细胞膜特异性单克隆抗体与 PSMA的反应 性。 以同一亚型的小鼠抗体做对照, 用此单克隆抗体在前列腺癌细胞和肿瘤组织切片做免疫 组化测定其特异性; 用生物素和荧光素标记 LNcaP细胞膜特异性单克隆抗体, 测定其与活细 胞的反应性。 从分泌 LNcaP细胞膜特异性单克隆抗体的杂交瘤细胞系提前总 rnRNA, 通过 RT-PCR扩增编码 IgG的特异性抗体 mRNA基因, 测定其可变区的重链和轻链的基因序列, 确定编码抗体 CDRs的氨基酸序列。
基于上述抗前列腺特异性膜抗原 (PSMA) 的单克隆抗体的氨基酸序列和其编码基因序 列, 可构建重组载体、 表达盒、 转基因细胞系、 转基因动植物或重组蛋白、 病毒和细菌等生 物制品, 用于生产基因工程抗体和制备各种药物、 同位素、 纳米颗粒、 毒素和酶等具有诊断 和治疗意义的靶向聚合物。
本发明的有益效果在于:
本发明的抗 PSMA特异单克隆抗体是一株具有高特异性和亲和力的单克隆抗体。 与其它 PSMA单克隆抗体的制备方法不同, 这株单抗是以完整肿瘤细胞作为抗原制备的, 使其具备 识别结合体内具有天然构象的 PSMA抗原的能力。 实验表明, 它不仅能特异性的结合活的肿 瘤细胞表面胞膜外的 PSMA抗原, 而且还能识别 PSMA分子上一个稳定保守的抗原决定族, 使 其还能够与降解的 PSMA蛋白片段结合; 通过现有抗体基因数据库的对比发现, 此抗体具有 独特的抗原结合位点 (CDRs)和构象; 它具有高度的肿瘤特异性: 它只识别肿瘤组织和细胞, 而与正常人体组织细胞没有反应。因此,它是一个理想的识别肿瘤特异标志物的单克隆抗体, 在癌症治疗和诊断上都具有广泛的重要应用前景: 它不仅可以作为特异的 PSMA抗体试剂, 用于检查 PSMA抗原的各种免疫学诊断、 免疫组化病理诊断、 体内外肿瘤细胞靶向诊断和捕 获肿瘤干细胞等外, 它还可以通过人缘化改造, 赋予其具有直接启动生长抑制信号或诱导凋 亡或间接激活宿主防御机制发挥抗肿瘤的活性;通过作为肿瘤特异靶向载体, 与放射性核素、 药物和毒素偶联制备抗肿瘤单克隆抗体免疫偶联物, 如放射免疫偶联物、 化学免疫偶联物和 免疫毒素等用于癌症治疗。
附图说明
图 1为重组 PSMA蛋 tl的表达制备(A: 重组 PSMA蛋白在大肠杆菌的表达, 其中, M: 蛋白分子量标志, 1 : 大肠杆菌细胞裂解液, 2-4: 镍柱亲和层析纯化的重组 PSMA蛋白洗脱 液, 5 : 镍柱亲和层析过滤液; B : 重组 PSMA蛋白在 HEK293的表达, 其中, M: 蛋白分子 量标志, 1-3: 镍柱亲和层析纯化的重组 PSMA蛋白洗脱液)。
图 2为 SDS-PAGE 电泳分析特异单克隆抗体 mAb L-186经 Protein G亲和层析纯化后的 纯度 (M: 蛋白分子量标志物; 1-2: 特异单克隆抗体 mAb L-186; 3-4: 和小鼠 IgG对照) 。
图 3为 mAb L-186杂交瘤细胞上清液对 LNCaP细胞全细胞裂解液的蛋白质印迹分析( 1 : 分子量标志物, 2-13依次为: DU145细胞, PC3细胞, He3907细胞, OKAR5细胞, A2780 细胞, SKOV4细胞, OVAR3细胞, MCF7细胞, 518A2细胞, colo320细胞, SW480细胞, MDA 细胞, HT29细胞的全细胞裂解液, 14为 LNCaP细胞全细胞裂解液)。
图 4为纯化的特异单克隆抗休 mAb L-186从含 ·Υ.牛物素标 id胶蛋 0的 LNCaP细胞裂解 液屮免疫沉淀一个 110 kDa蛋 -l。
图 5为单克降抗休 mAb L-186从 LNCaP细胞裂解液中免疫沉淀特异蛋 0质的质 iff分析。 图 6为 Western blot分析特异 ^克隆抗体 mAb L-186 ¾ L PSMA ifi 的反应性( 1: 特 异单克隆抗体检测 PSMA LNCaP细胞裂解液; 2: 重组 PSMA蛋白; 3 : 抗 His标签抗体检测 重组 PSMA蛋白)。
图 7为不同浓度单克隆抗体 mAb L-186与 |¾'列腺癌 LNCaP细胞和 PC细胞的流式细胞仪 分析。
图 8为荧光标 d的単克隆抗休 mAb L-186与 |¾'列腺癌 LNCaP细胞和 PC细胞的反应性。 图 9为特异 克隆抗体 mAb L-186染色 PSMA阳性的 LNCaP细胞。
具体難方式
下面结合实施例对本发明作进一步的说明, 但并不局限于此。
以下步骤所用到的试剂、 质粒及菌株: 限制性内切酶、 PfU DNA多聚酶、 T4 DNA连接 酶购自 Promega; Exp Taq DNA聚合酶、 DNA maker购自 Takara; pET-22b ( + ) 载体、 大肠 杆菌 Rosetta (DE3 ) 购自 Novagen; E.coli DH5 α、 Ni-NTA Agarose试剂盒购自 Invitrogen; 不完全 DMEM培养基购自赛默飞; 辣根过氧化物酶(HRP )标记的羊抗鼠抗体购自博士德; TMB购自 eBioscience 公司;骨髓瘤细胞 NSO- 1 购自 ATCC;其它所用试剂盒为常规市售产
P 人前列腺癌细胞 LNcaP购自购自美国 ATCC公司 (LNCaP clone FGC, ATCC编号
CRL-1740 ) 。 实验动物: BALB/c 雌鼠购自美 |κ| Charles River公司, 体重 20g左右, 8周龄。
以下实施例中所采用的分子生物学实验技术包括 PCR扩增、质粒提取、质粒转化、 DNA 片段连接、 酶切、 凝胶电泳等, 如无特殊说明, 通常按照常规方法操作, 具体可参见 《分子 克隆实验指南》(第三版)(Sambrook J, Russell DW, Janssen K, Argentine J. 黄培堂等译, 2002, 北京: 科学出版社) , 或按照制造厂商所建议的条件进行。
1. PSMA抗原制备
1.1 PSMA cDNA 扩增及重组表达载体 pDEST17-PSMA 和高效瞬时表达载体 pTT5-PSMA的构建
人前列腺癌细胞 LNcaP 购自购自美国 ATCC 公司 ( LNCaP clone FGC, ATCC 编号 CRL-1740 ), RNA的分离及 cDNA的合成均按试剂盒操作指南进行。 根据 GenBank上公布 的 人 PSMA 序 列 ( GenBank 登 录 号 为 : NM_001193471.1 ) 设 计 引 物 : PL5'-CACCAAATCCTCCAATGAAGCTACTAAC- ( SEQ ID NO :9 ) , P2: 5"-TTAGGCTACTTCACTCAAAGTCTCTG-3 ' ( SEQ ID NO: 10) (引物中引入 6个氨基酸的 His标签), 引物由南京金斯瑞生物科技有限公司公司合成。 取反转录 cDNA链为模板进行 PCR, 一个 2, 136 碱基的 PCR产物和经凝胶电泳纯化后, 克隆到 pENTR/D-TOPO 载体 (Invitrogen), 再穿梭克隆到表达载体 pDEST17 禾 P pTT5,得到重组表达载体 pDEST17-PSMA 和 pTT5-PSMA。分别转入大肠杆菌 DH5 α感受态细胞中。筛选阳性克隆进行 DNA测序鉴定, 测序结果表明重组表达载体 pDEST17-PSMA和 pTT5-PSMA构建成功。
1.2 重组 PSMA蛋白在大肠杆菌的诱导表达
将 pDEST17-PSMA转入大肠杆菌 Rosetta (DE3 ) 感受态细胞中, 挑选单克隆菌落接种 于含有 50 ^glmL氨苄青霉素和 34 g/mL氯霉素的 LB培养基中,置于 37°C摇床中,200 r/min 培养至 OD6QQnm=0.6〜0.8时, 加入 ImM IPTG, 继续培养 4〜6小时诱导蛋白表达。
1.3 PSMA重组蛋白在人胚胎肾细胞 HEK293EBNA高效瞬时表达:
将 HEK-293 EBNA1 细胞以 3 x l05个 /ml的密度接种于 Ex-Cell 293培养基中, 放置于 lOOrpm摇瓶或 75rpm转瓶中在 37°C、 5%C02的环境下培养 3天,当细胞密度增为 1.5~2x l06 个 /ml, 细胞活力大于 95%的情况下进行后续的转染工作。在无菌环境下取出所有细胞液, 以 lOOOrpm的转速离心 5min, 弃去所有培养上清并用新鲜的 Ex-Cell 293培养基重悬细胞沉淀, 同时调整细胞密度为 20X 106个 /ml, 将高密度的细胞悬液置于摇瓶中保持低速振荡状态以免 细胞抱团。 缓慢向细胞液中滴加待转质粒 pTT5-PSMA, 用量为 50μ§/ιη1; 质粒滴加完毕后, 同样缓慢滴加 ΡΕΙ,用量为 100μ§/ιη1,将高浓度的转染细胞液置于摇瓶或转瓶中振荡孵育 4h。 孵育完毕后,使用 Ex-Cell 293培养基稀释转染细胞的密度至 l x lO6个 /ml,再加入 1%的 Pluronic F68完成整个转染过程。将细胞悬液置于 37°C、 5% C02摇瓶或转瓶的环境中培养 5天即可收 液。 8000rpm离心 30分钟除去细胞核及细胞及碎片, 置于 4°C保存过夜, 次日用镍柱亲和层 析纯化。
1.4 重组 PSMA蛋白的纯化
4°C、 8000 rpm离心 5 min, 弃上清, 用高压灭菌的 PBS洗涤菌体, 重复一次。 菌体用 1/20菌液体积的 PBS重悬, 置冰上进行超声波破碎 (功率 400 W, 工作 5 s, 间隔 10 s) 80 次。 超声后的悬液 4°C、 8000 rpm离心 5 min, 分别收集上清和沉淀, 作 SDS-PAGE电泳分 析,观察目的蛋白在上清和沉淀中的含量, 以此判定该蛋白以可溶形式还是包涵体形式表达。 本发明表达的蛋白是以包涵体形式存在。 取沉淀用包涵体洗涤缓冲液 (50mM Tris、 lOOmM NaCK 2M尿素、 ImM二硫苏糖醇 pH8.5 ) 洗涤 3次, 每次 4°C、 6000g 离心 10 分钟, 弃 上清。 包涵体沉淀用包涵体裂解液(50mM Tris、 lOOmM NaCK 8M尿素、 ImM二硫苏糖醇 pH8.5 ) 溶解, 室温搅拌 1 小时。 4°C、 12000g 离心 10 分钟, 取上清, 以 1 : 500 比例缓 慢加入到复性缓冲液 (50mM Tris、 lOOmM NaCK 0.5M L-精氨酸、 3mM还原型谷胱甘肽、 0.3mM氧化性谷胱甘肽 pH 9.5 )中, 4°C静置 48小时, 复性蛋白用 Millpore 公司的 LabScale TEF system -100 kDa浓缩膜进行浓缩, 蛋白浓缩液在透析缓冲液(50mM Tris、 lOOmM NaCl pH9.0) 中透析过夜。
用镍柱亲和层析 (Ni-NTA Agarose试剂盒) 纯化大肠杆菌表达浓缩后的复性蛋白和人胚 胎肾细胞 HEK293EBNA高效瞬时表达的重组 PSMA蛋白, 不同浓度的咪唑洗脱目的蛋白, 在咪唑洗脱目洗脱液中得到纯度较高复性效果较好的 PSMA蛋白洗脱液。将含有目的蛋白的 洗脱液用 Millipore浓缩管进行浓缩和 Bio-Rad 蛋白定量试剂盒进行定量, 最后可以得到纯 度大于 85%、 浓度为 1 mg/mL的 PSMA重组蛋白。 如图 1重组 PSMA蛋白的表达所示。
2. 抗人 PSMA蛋白单克隆抗体的制备 2.1 小鼠免疫及脾细胞的制备
培养的 LNCaP 细胞经预冷的 PBS 漂洗 2 次后, 用预冷的含 4% 多聚甲醛 (Paraformaldehyde PFA) PBS室温固定 10分钟,经预冷的 PBS漂洗 2 次。将固定的 LNCaP 细胞稀释到终浓度为 1X107 细胞每毫升。 0.5ml 细胞与等体积完全弗氏佐剂混合, 充分混 匀形成油包水状, 取 8-10周龄的 BALB/c 雌鼠进行初次免疫, 每只小鼠腹腔和皮下各注射 lOOuL 以后间隔 2周免疫一次, 使用相同剂量固定的 LNCaP细胞与等体积不完全弗氏佐剂 混合。 免疫 5次后, LNCaP细胞 ELIS A检测小鼠血清效价不低于 1 : 100,000时, 小鼠腹 腔注射 2X106 LNCaP细胞, 三天后取小鼠脾细胞。
脾细胞的制备方法: 将上述免疫后的 BALB/c小鼠眼眶采血后脱白处死, 无菌取脾脏, 过 200目细胞筛, 收集脾细胞悬液, 冰浴中放置 10 min后弃沉降物, 4°C, 750g 离心 10 分 钟, 收集细胞, 加入 1 mL红细胞裂解液 (0.155M H4C1, 10mM KHCO3, 0.1mM Na2EDTA pH7.4)作用 5 分钟,加入 20 mL不完全 DMEM培养基中止反应。 4°C , 750g 离心 10 分钟, 弃上清,细胞沉淀用 20 mL不完全 DMEM培养基洗涤 2 次,每次 4°C, 750g 离心 10 分钟。 弃上清, 细胞沉淀用不完全 DMEM培养基重悬。
LNCaP细胞 ELISA检测抗体效价的方法: 在 96孔细胞培养板上培养的 LNCaP细胞形成 90%的单层后, 吸掉细胞培养液; 每孔加 200ul预冷的 PBS轻轻漂洗 2 次后, 每孔加 lOOul预 冷的含 4% 多聚甲醛 (Paraformaldehyde, PFA) PBS室温固定 10分钟, 用 PBST ( 0.05% Tween20-PBS, pH 7.4) 清洗 3 遍, 1%BSA封闭, 37°C 孵育 2 小时。 PBST 清洗 3遍, 加入 待测 4倍比稀释的小鼠血清 (实验组) , 设置 6-7 个梯度, 未免疫小鼠做阴性对照, ΙΟΟμΙ 每 孔, 37°C孵育 1 小时。 PBST 清洗 3 遍, 每孔加入 100 辣根过氧化物酶 (HRP) 标记的羊 抗鼠抗体 C1 : 10000 稀释), 37°C孵育 1小时。 PBST 清洗 3 遍后加入 TMB底物, 100 每孔, 避光显色 10-15 分钟, 加入终止液 (1M HC1) ΙΟΟ μί每孔, 终止后立即用酶标仪进行检测, 读取波长 450nm 的吸光值 (OD45。) 及 630nm 的吸光值 (OD63。), 计算 ΔΟΟ450 =
OD450-OD630。 与 PBS 孔相比, 实验组 AOD450 与阴性对照组 AOD450 的比值大于 5倍的为 阳性。
2.2 饲养细胞的制备
在细胞融合的前一天, 制备小鼠腹腔巨噬细胞。 将 8 周 BALB/c小鼠脱臼处死, 无菌操 作下, 剪开腹部, 吸取 5mL DMEM不完全培养基注入腹腔, 反复冲洗腹腔, 吸回冲洗液并 用 DMEM不完全培养基洗涤 2 次, 每次 4。C 300g 离心 10 分钟, 收集细胞用含 10%小牛血 清的 DMEM完全培养基重悬细胞,使浓度为 2x l05/mL,加入 96 孔板中,每孔 100ul, 37°C , 5% C02 条件下培养。
2.3 骨髓瘤细胞 NSO-1的培养
复苏骨髓瘤细胞 NSO-1 ,用 8-氮鸟嘌吟筛选 HGPRT 缺陷株, 细胞融合时细胞要处于对数 生长期, 融合前用不完全的 DMEM培养基洗涤, 每次 4。C 300g 离心 10 分钟, 收集细胞并用 不完全的 DMEM培养基重悬。
2.4 细胞融合剂杂交瘤细胞的制备
取制备好的免疫小鼠的脾细胞和骨髓瘤细胞 NSO-1 于离心管中, 分别取 108和 2.5x l07, 用不完全的 DMEM培养基洗涤一次。 离心后弃上清, 轻轻弹散细胞, 加入 0.7 mL 40°C的 PEG (分子量 1500 ) 溶液, PEG的终浓度为 50% (W/V), 60 秒之后开始加入 40°C预热的不完全 DMEM培养基(5分钟加完),首先加 1 mL, 1 分钟后加 4 mL,二分钟后加入 20 mL。 4°C 300g 离心 10 分钟收集细胞, 用 2XHAT 培养基轻轻悬起细胞, 使浓度为 2x l06/mL。 100 每孔加 到含饲养细胞的 96 孔板中, 继续培养。 每两天吸出上清 100 μί, 加入等体积的 HAT 培养基 (20% FCS 10mM sodium hypoxanthine 40mM aminopterin 1.6mM thymidine 的 DMEM培 养基)。 一周后, 用 HT培养基(包含 20% FCS、 10mM sodiumhypoxanthine 1.6mM thymidine 的 DMEM 培养基) 培养 2-3 周。 当观察到杂交瘤细胞克隆长出时, 用含 20%小牛血清的 DMEM培养基培养, 并用 LNCaP 细胞 ELISA法检测是否有抗体分泌。接着用有限稀释法筛 选阳性克隆, 多次筛选后获得杂交瘤细胞株。 连续体外培养 2个月以上或者冻存 6个月之后, 细胞株仍能稳定和大量分泌抗人 PSMA蛋白抗体, 从而获取杂交瘤细胞株命名为 mAb L-186。
2.5 单克隆抗体的制备
单克隆抗体的大量制备一般有两种方法, 方法一, 增殖培养法, 杂交瘤细胞体外低血清 培养 2-3 天后大量收培养上清, 上清中含有较高浓度的单克隆抗体。 方法二, 小鼠腹腔接种 法, 首先 500 无菌的液体石蜡通过腹腔免疫 8-10 周龄的 BALB/C 鼠, 一周之后腹腔注射 l x lO6 杂交瘤细胞, 7-10 天左右收集腹水, 高速离心收集上清。 通过上述方法获得的抗体, 用 Protein G亲和层析方法纯化并进行 SDS-PAGE 鉴定抗体纯度, 如图 2所示。 经过纯化的 单克隆抗体纯度高于^ %, 抗体的重链约为^ kDa, 轻链约为 21kDa。 用小鼠单抗免疫球蛋 白亚型鉴定试剂盒鉴定单克隆抗体 mAb L-186 亚型为 IgGl, 轻链类型为 κ链。
3. 单克隆抗体 mAbL-186靶标分子的鉴定
3.1. 单克隆抗体 mAbL-186与肿瘤细胞的反应性
应用细胞 ELISA法,对单克隆抗体 mAbL-186与在 96孔细胞培养板上培养的 LNCaP细 胞和其它 33 肿瘤细胞以及人和动物细胞系的反应性进行了检测。 这些细胞包括: 前列腺癌 细胞系 (PC3, DU145和 BPH-1),卵巢癌细胞系 (He3907, OKAR5 , A2780, SKOV4和 OVAR3), 乳腺癌细胞系 (MCF7),皮肤癌细胞系 (518A2, FBI),结肠癌细胞系 (colo320, SW480, MDA, CAC02, RKO和 HT29), 肺癌细胞系 (A549), 膀胱癌细胞系 (SW780, UMUC, J82, RT4), 人骨细胞系 (MG92) , 猴子细胞系 (COS-1) , 仓鼠细胞系 (BHK21 , G9) 和小鼠细胞系 (OSE1.2.2, Shinoqi)。在 96孔细胞培养板上培养这些细胞, 当细胞形成 80-90%的单层后, 吸 掉细胞培养液; 每孔加 200ul预冷的 PBS轻轻漂洗 2 次后, 每孔加 lOOul预冷的含 4% 多聚 甲醛 (Paraformaldehyde, PFA) PBS室温固定 10分钟, 用 PBST ( 0.05% Tween20-PBS, pH 7.4) 清洗 3 遍, 1%BSA封闭, 37°C 孵育 2 小时。 PBST 清洗 3遍, 加入待测 4倍比稀释 的小鼠血清 (实验组) , 设置 6-7 个梯度, 未免疫小鼠做阴性对照, ΙΟΟμΙ 每孔, 37°C孵育 1 小时。 PBST 清洗 3 遍, 每孔加入 100 辣根过氧化物酶 (HRP) 标记的羊抗鼠抗体 (1 : 10000稀释), 37°C孵育 1小时。 PBST 清洗 3 遍后加入 TMB底物, 100 每孔, 避光显色 10-15 分钟, 加入终止液 (1M HC1) ΙΟΟ μί每孔, 终止后立即用酶标仪进行检测, 读取波长 450nm 的吸光值 ( OD450) 及 630nm 的吸光值 (OD63。), 计算 AOD450 = OD450-OD630。 与 PBS 孔相比, 实验组 AOD450 与阴性对照组 AOD450 的比值大于 5倍的为阳性。结果表明, 单克隆抗体 mAbL-186只与 LNCaP肿瘤细胞反应, 而与其它细胞没有交叉反应。
3.2. 制备 LNCaP细胞裂解物
培养的 LNCaP细胞经预冷的 PBS漂洗 2 次, 裂解液(Nonidet-P40 ( P40)缓冲液) 中加 入蛋白酶和磷酸酶抑制剂; 吸净 PBS, 加入预冷的裂解液, ((1 ml per 107 cells/100mm dish/150cm2 flask; 0.5ml per 5x106 cells/60mm dish/75cm2 flask;)。 用细胞刮子刮取贴壁细胞, 将细胞及裂解液温和地转移至预冷的微量离心管中, 4°C摇动 30 min。 4°C离心 12,000 rpm, 20 min。 轻轻吸取上清, 转移至新预冷的微量离心管中置于冰上, 即为蛋白样本, 弃沉淀。
3.3. SDS-聚丙烯酰胺凝胶电泳 (SDS-PAGE)
制备 10 %分离胶。 将细胞裂解物和重组蛋白质样品与 5 X样品缓冲液 (20ul+5ul) 在一 个 Eppendorf管中混合。 放入 100 °C加热 5— 10min, 取上清点样。 8.0 ml, 混匀; 在不同的 样品槽内分别加约 20μ1分子量标志物、细胞裂解物和重组蛋白质样品。上样后, 稳压 200V, 溴酚蓝刚跑出分离胶时, 停止电泳, 约需〜 lhr。 卸下胶板, 剥离胶放入染色液中, 室温染 色 1〜2 hr; 加入脱色液, 置于 80 rpm脱色摇床上, 每 20 min更换一次脱色液 ( 10 ml 冰乙 酸; 45 ml乙醇; 45 ml蒸熘水) 至完全脱净。
3.4. 蛋白免疫印迹杂交 (Western Blot WB )
过 PAGE分离的蛋 ΰ质样品, 转移到 «酸纤維素薄胶上。 100V, 1 电流约为 0.3Α)。 用 25 ml TBS 洗膜 5min, 室温, 摇动。 置膜于 25 ml 封闭缓冲液 (5%脱脂奶粉) 中 lh, 室温, 摇动。 用 15mlTBS/T (含 0.5% Tween-20的 Tris 缓冲液, 洗 3次 (5 min/T)。 加入合适 稀释度的一抗 (Anti-His Tag抗体) , 室温孵育 l-2h或 4°C过夜, 缓慢摇动。 用 15mlTBS/T 洗 3次 (5 min/T)。加入 1 :5,000稀释度的辣根过氧化酶 (HRP)标记的二抗(样抗鼠 IgG-HRP), 室温孵育 lh, 缓慢摇动。 用 15mlTBS/T洗 3次 (5 min/T)。 应用化学发光自显影试剂盒(美国 Peierce产品) , 加入底物后在 X-光片自显影。 如图 3 所示, 单克降抗休 mAb L-186只识别 LNCaP 细胞, 检测到一个约 110 kDa 的蛋 A条带, lilj 其它几种肿瘤细胞 -DU145, PC3 , He3907, OKAR5 , A2780, SKOV4, OVAR3 , MCF7, 518A2, colo320, SW480, MDA, HT29全细胞裂解液没有反应。
3.5. 特异性单克隆抗体 mAbL-186免疫沉淀 LNcaP细胞膜特异蛋白质
培养的 LNCaP细胞经预冷的 PBS漂洗 2 次后, 加 8ml含有 40ul/ml生物素化试剂 (美 国, Amersham ECL Protein Biotinylation Module Cat #2202), 在平面摇动器上 4。C培养 30分 钟。 经预冷的 PBS漂洗 2 次后, 加入 5ml细胞 IP裂解缓冲液 (含蛋白酶抑制剂) , 冰浴裂 解 2-5分钟, 4°C, 12,000g离心30 min后取上活; 取少量裂解液以备 Western blot分析, 剩余 裂解液将 l g相应的抗体和 10-50 μΐ protein A/G-beads加入到细胞裂解液, 4°C缓慢摇 孵育 过夜;免疫沉淀反应后,在 4。C 以 3,000 g速度离心 5 min,将 protein A/G-beads离心, 管底; 将 I:清小心吸去, protein G-beads用 1ml裂解缓冲液洗 3-4次;最后加入 15μ1的 2><SDS 加样 缓冲液, 沸水煮 10分钟; 进行 SDS-PAGE, Western blotting分析。 图 4 示特异单克隆抗休 mAb L-186从含有生物素标记膜 IfiA的 LNCaP细胞裂解液屮免疫沉淀 (IP)—个 110 kDa蛋 白。
3.6. 应用特异性单克隆抗体 mAbL-186免疫沉淀 LNcaP细胞中特异蛋白质
为了用特异性单克隆抗体 mAbL-186免疫沉淀制备大量 LNcaP细胞中特异蛋白质, 培养 的 LNCaP细胞经预冷的 PBS漂洗 2 次后,加入适量细胞 IP裂解缓冲液(含蛋 酶抑制剂), 冰浴裂解 30分钟, 4°C , 12,000g离心 30 min后取上洁-;取少量裂解液以备 Western blot分析, 剩余裂解液将 l g相应的抗体和 10-50 μΐ protein A/G-beads加入到细胞裂解液, 4°C缓慢摇兄 孵育过夜; 免疫沉淀反应后, 在 4°C 以 3,000 g速度离心 5 mi 将 protein A/G-beads离心至 管底;将上清小心吸去, protein G-beads川 lml裂解缓冲液洗 3-4次; ϋ后加入 15μ1的 2xSDS 加样缓冲液, 沸水煮 10分钟; 进行 SDS-PAGE。 从抗体-靶标膜蛋白分子复合物在分离胶浓 度 12%, 浓缩胶浓度 4%的 SDS-P AGE电泳分离抗体和靶标膜蛋白, 考马氏亮蓝染色后, 从 凝胶上切取 110kD的蛋白带。 在 PBS缓冲液中研磨凝胶释放出蛋白质; 离心沉淀除去凝胶 碎片, 采用 BSA作标准曲线, 用 Bradford法测定蛋白浓度。
3.7 单克隆抗体 mAbL-186靶标分子的质谱分析鉴定
3.7.1 样品酶解:
取蛋白上清液复溶在 20 μΐ 50mmol-L-l H4HC03 溶液中, 加入 1 μΐ 20 mmol-L-lDTT, 60°C水浴 45 min;加入 2 μΐ 20 mmol-L-l 碘乙酰胺溶液,避光室温放置 30 min;再加入 2 μΐ 20 mmol-L-lDTT, 601水浴30 1^ 加入乙腈, 终浓度达到 10%左右; 加入 20 ng-μΐ-ΐ 胰蛋白 酶 10 μ1, 37°C酶解 12 h; 加入 Ο. ΐ μΐ 甲酸终止反应。
3.7.2 样品液相色谱分离:
用纳升级 /毛细管液相色谱系统 Ultimate (美国 DIO EX 公司) 分离消化后的多肽, 采 用 pepmapl00 C18 柱, 缓冲液 A: 0.1%甲酸溶液。 缓冲液 B: 含 0.1%甲酸的 95%乙腈溶液。 试验前将各溶液过滤 (0.22 μιη滤膜) , 在线脱气。 系统为柱前分流, 设置分流后流速 200 nl-min-l , 进样体积 6 μ1, 自动进样器进样, 室温运行。 上样后, 阀切换使上样液单独冲洗预 柱, 随后将预柱切换到分析柱流路开始洗脱。 洗脱方法: 3%Β 液平衡色谱柱, 上样后 8%〜 50%Β 液洗脱 30 min, 50%〜60%B 液洗脱 4 min, 60%〜95%B液洗脱 4 min, 95%B 液等 梯度洗脱 6 min。 洗脱组分直接经电喷雾离子化进入质谱检测。
3.7.3 样品液相质谱分析:
用电喷雾-串联四极杆-飞行时间质谱 ESI-Q-TOF (德国 Bruker 公司)进行串联质谱分析: 所有测定均在正离子方式下进行。 雾化气体为氮气, 碰撞气体为氮气, 碰撞能量随前体离子 电荷数不同智能优化。 TOF 加速电压 190V, MCP 检测器电压 1 900 V,毛细管电压 4 200 V。 MS 谱质量扫描范围在 0〜2 400 Da, 扫描时间 2 s。 选择每个 MS 谱中前 2 个强度最大且响 应值大于 1 000的肽段作串联质谱, MS/MS 谱质量扫描范围在 0〜2400 Da, 扫描时间 2 s。 MS/MS 扫描时前体离子采用了动态排除原则, 经串级分析的前体离子在 5 min 内不再重复 扫描。
3.7.4数据库检索:
MS/MS 数据通过 MASCOT ( http://www. matrixscience.com ) 搜索 NCBInr禾 P EST数据 库。 搜索条件: 胰酶消化, 最大遗漏酶切位点 1个, 肽段质量精确度 ±0.1, MS/MS 质量精确 度 ±0.1, 固定修饰 Carbamidomethyl ( C) 。 通过蛋白质组学分析 mAb L-186的靶标确定为前 列腺特异膜蛋白抗原 (prostate-specific membrane antigen, human folate hydrolase 1 isoform 1)
(图 5 ) 。
4. PSMA特异单克隆抗体 mAb L-186的鉴定
4.1 蛋白免疫印迹杂交 (Western Blot WB ) 分析特异^克隆抗体 mAb L-186 J原核和 真核细胞.表达的重组 PSMA蛋 ΰ的反应性
将 10ug在大肠朴 表达的 PSMA ig組 ifiA, 放«在室温过夜, 使部分¾ 蛋^质降解。 分别取 lug在人肠杆菌表达的和在 HEK293细胞. 达的 PSMA重组蛋 0以及 5ul降解后的蛋 质, 按照 3.3所描述的方法在 10% SDS-聚丙烯酰胺凝胶做电泳 CSDS-PAGE)。 然后, 转移 到 Λ酸纤维素薄胶—-匕 按照 3.4所描述的方法进行蛋白免疫印迹杂交 (Western Blot WB ) 。 如图 6所示, mAb L-186 单克隆抗体不但能够特异性的结合 PSMA重组蛋白, 而且能够与降 解后的 PSMA重组蛋白片段结合, 说明 mAb L-186 单克隆抗体识别一个稳定的抗原决定簇。
4.2 PSMA特异单克隆抗体 mAb L-186与活 LNCaP肿瘤细胞的结合性
4.2.1流式细胞仪 (Flow Cytometer, FCM) 分析: 用胰酶从细胞培养瓶消化分离 LNCaP 和 PC3单层细胞,用冰冷的含 0.01%叠氮钠的 PBS洗 3次; 取一 ) ϊ:的 LNCaP和 PC3细胞 (约 1X106 细胞 / ml ) 到离心 中, 分别加入合 lug/ml , 0. lug/ml , 0.01ug/ml 和 0.001ug/ml, 特异的 mAb L-186抗体或小鼠 IgGl冰冷的 PBS (含 0.01%叠氮钠); 在冰浴放 置 1小吋, 待反应 后用冰冷的含 0.01%叠氮钠的 PBS洗 3次, 洗去未结介抗休; W加入 光标记的羊抗鼠 IgG抗体, 在冰浴放賈 1小时, 成抗原-抗体-抗抗体 合物, 待反应 后用冰冷的含 0.01%叠氮钠的 PBS洗 3次, 洗去 结' 抗休; 以 FCM检测^上标 id的荧 光素被激发后发出的荧光。 顯 7所小, mAb L-186抗体能够 ¾ PSMA阳性的 LNCaP细應 结' , 似不与 PSMA阴性的 PC3 细胞结合。
4.2.2免疫荧光显微镜分析:
将盖玻片放置在 6孔板中培养 LNCaP和 PC3细胞。 待形成约 80%单层细胞后, 用冰冷 的 PBS漂洗盖玻片 3次, 每次 5分钟; 在 4%多聚甲醛固定液中固定半小时; PBS洗 3次, 每次 5分钟; 力 B 10%封闭血清或者 1-10%BSA, 室温, 30-60分钟; 加稀释的 mABL-186抗 体 (3%BSA, PBS), 4°C, 过夜; PBS洗 3次, 每次 5分钟; 加 1 : 1000稀释的荧光标记羊抗 鼠抗体 (3%BSA, PBS ), 室温 30-60分钟; PBS洗 3次, 每次 5分钟, 室温; 用 Hoechst染 色, 5-10分钟, 室温; PBS洗 3次, 每次 5分钟; 最后在荧光显微镜下观察检测。 如图 8 所示, mAb L-186抗休能够结合到 PSMA Ι Ί性的 LNCaP细跑胶,似不与 PSMA阴性的 PC3 细 腿 口 :|
4.3 PSMA特异单克隆抗体 mAb L-186针对 |¾'列腺癌组织的免疫组化 (HIC) 分析:
10份诊断为前列腺癌的肿瘤和 5份良性瘤的活体采取的前列腺组织用于检测 mAB-186识别 人体组织前列腺癌的特异性。将前列腺癌组织和癌旁肝组织均做成蜡快。所有的蜡快均切成 5 岬厚的切片, 附贴在 FISHER载玻片上。 用一片已知的 PSMA阳性的组织作为阳性对照。 切片 在 56°C烘干 2 h, 在二甲苯中脱蜡 (每次 3分钟) 2次并在 5个梯度酒精和 2个去离子水中进行水化 (100% , 100 % , 90 % , 70 % , 50 % , 0 % , 0 % , 每个 5分钟), 在 3 %的双氧水 /甲醇中 浸泡 30分钟以灭活内源性过氧化物酶的活性, 然后在去离子水中 (每次 5分钟)和 PBS中 (每次 3 分钟)各清洗 2次。 将切片浸于 10mmol / L, pH6. 0的柠檬酸缓冲液中, 微波照射 10分钟 (控制 微波功率以使缓冲液温度在 92°C〜98°C)进行抗原修复。等缓冲液自然冷却至室温, 将切片置 于湿盒中, 按以下顺序进行温育, 间隔 在 PBS中的清洗 (5分钟 x4): 与用 PBS / 2%BSA稀释 的 5 %的正常羊血清在室温中温育 30分钟以阻断非特异性的蛋白结合, 与用 PBS / 2%BSA稀 释的 1 : 50的一抗 (mAb L-186或鼠 IgGl对照)在 4°C 温育过夜, 与二抗 (生物素标记的羊抗小鼠 抗体)在室温中温育 10分钟, 与过氧化物酶标记的链霉卵白素在室温中温育 10分钟, 与酶作用 底物 (新配制的用 PBS稀释的 50% DAB, 0.04 % 氯化镍, 0 002%过氧化氢)在室温中温育 15 分钟, 最后用去离子水清洗以终止温育过程。 切片然后在 5个梯度酒精中脱水 (50%, 70% , 90% , 100% , 100%), 在 2个二甲苯中透明, 用中性树胶封于盖玻片下, 在光学显微镜下进 行读片。 所用的酶作用底物使得阳性 PSMA蛋白表现为棕色的细致颗粒。 切片的免疫组化染 色程度被判为一, +, ++, 分别代表阴性 (0%), 阳性 (<10%), 强阳性 (> =10%)。 结果显示, mAb L-186能够特异性的识别人体前列腺癌组织, 用于免疫组化的检测, 它在所有来自 10位 诊断为前列腺癌患者的肿瘤组织均成不同程度的阳性, 而 5份良性瘤的前列腺组织为阴性。
4.4 PSMA特异单克隆抗体 mAb L-186的序列分析
复苏分泌抗单克隆抗体 mAb L-186的杂交瘤细胞株, 传至 3代使细胞数目达 2.8x l07/L 后收获细胞。 用 TRIzol™ Reagents (购自 TaKaRa公司)、 氯仿和异丙醇抽提 RNA后, 以无 水乙醇沉淀。 以 ΙΟμί ΚΝΑ为模板, 以 Oligo (dT) 20为随机引物, 反转录合成 cDNA第 1 链。 用小鼠 IgG引物库试剂盒 (美国 USBiological公司产品), 在 25 反应体系中, 加入 CDNA2 μί, Back和 For引物各 1 进行 PCR。 在 GeneAmp PCR System (Perlin Elmer公司 产品) 上进行扩增, 反应参数为: 94°C变性 60分, 55°C退火 60分, 72°C 延伸 60分, 30次 循环。 PCR产物用 1.5%低熔点琼脂糖凝胶电泳回收。 将琼脂糖凝胶电泳回收的 PCR_产物纯 化 (Qiagen,gel extraction kit) 后, 克隆在末端 T突出的 pEGMR-T Vector中, 转化感受态细菌 CM1601 , 挑选阳性克隆, 抽提质粒 DNA, T7及 SP6通用引物在 310 A全自动 DNA序列分 析仪 (ABI)公司双向测序。 通过 IMGT Web (the international ImMunoGeneTics information system®, http://www.imgt.org. ) 的 IMGT/V-QUEST序列分析软件对获得的序列进行分析; 使用 BLAST分别将 VH或 VL DNA序列与 GenBank和 EMBL数据库已收录序列进行碱基局 部同源性比较。 然后, 以推导的 VH和 VL氨基酸序列与 Kabat等总结的已知鼠抗体可变区氨 基酸序列分类进行对比, 确定抗体重链和轻链的互补决定区(CDRs)。 测序结果表明, 该抗 体轻链可变区基因的长度为 330 bp, 编码 110个氨基酸 (SEQ ID NO: l), 该抗体重链可变区 基因的长度为 354 bp, 编码 118个氨基酸 (SEQ ID NO:2)。
轻链可变区的 3个互补决定区 (CDR) 的氨基酸序列为:
CDR1: 如 SEQ ID NO:3所示,
CDR2: 如 SEQ ID NO:4所示,
CDR3: 如 SEQ ID N0 5所示;
所述重链可变区的 3个互补决定区 (CDR) 的氨基酸序列为:
CDR1: 如 SEQ ID NO:6所示,
CDR2: 如 SEQ ID NO:7所示,
CDR3: 如 SEQ ID NO:8所示。
基于上述抗前列腺特异性膜抗原 (PSMA) 的单克隆抗体的氨基酸序列和其编码基因序 列, 可构建重组载体、 表达盒、 转基因细胞系、 转基因动植物或重组蛋白、 病毒和细菌等生 物制品, 用于生产基因工程抗体和制备各种药物、 同位素、 纳米颗粒、 毒素和酶等具有诊断 和治疗意义的靶向聚合物。

Claims

权 利 要 求 书
1. 一种单克隆抗体, 由轻链和重链组成, 其特征在于, 所述轻链可变区的 3 个互补决定区
( CDR) 的氨基酸序列为: 一
CDR1: 如 SEQ ID NO:3所示,
CDR2: 如 SEQ ID NO:4所示,
CDR3: 如 SEQ ID N0 5所示;
所述重链可变区的 3个互补决定区 (CDR) 的氨基酸序列为:
CDR1: 如 SEQ ID NO:6所示,
CDR2: 如 SEQ ID NO:7所示,
CDR3: 如 SEQ ID NO:8所示。
2. 根据权禾 ^要求 1所述的单克隆抗体,其特征在于,所述轻链可变区的氨基酸序列如 SEQ ID ΝΟ: 1所示, 所述重链可变区的氨基酸序列如 SEQ ID NO:2所示。
3. 编码权利要求 1或 2所述单克隆抗体轻链可变区氨基酸序列的基因。
4. 编码权利要求 1或 2所述单克隆抗体重链可变区氨基酸序列的基因。
5. 编码权利要求 1或 2所述单克隆抗体的基因。
6. 含有权利要求 3〜5任一项所述基因的重组载体、 表达盒、 转基因细胞系, 转基因动植物 或重组病毒和细菌。
7. 分泌权利要求 1或 2所述单克隆抗体的细胞系。
8. 权利要求 1或 2所述的单克隆抗体在制备前列腺癌或 /和其它 PSMA阳性肿瘤的诊断试剂 或治疗药物中的应用。
9. 权利要求 3〜5任一项所述的基因、 权利要求 6所述的重组载体、 表达盒、 转基因细胞系 或重组菌、 权利要求 8所述的细胞系在制备前列腺癌或 /和其它 PSMA阳性肿瘤的诊断试 剂或治疗药物中的应用。
PCT/CN2014/079710 2013-06-14 2014-06-12 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用 WO2014198223A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310237161.8 2013-06-14
CN2013102371618A CN103333249A (zh) 2013-06-14 2013-06-14 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用

Publications (1)

Publication Number Publication Date
WO2014198223A1 true WO2014198223A1 (zh) 2014-12-18

Family

ID=49241468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079710 WO2014198223A1 (zh) 2013-06-14 2014-06-12 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用

Country Status (2)

Country Link
CN (1) CN103333249A (zh)
WO (1) WO2014198223A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018134691A2 (en) 2017-01-20 2018-07-26 Juno Therapeutics Gmbh Cell surface conjugates and related cell compositions and methods
WO2018187791A1 (en) 2017-04-07 2018-10-11 Juno Therapeutics, Inc Engineered cells expressing prostate-specific membrane antigen (psma) or a modified form thereof and related methods
US11236174B2 (en) 2016-01-12 2022-02-01 Crescendo Biologics Limited Therapeutic molecules
US11401342B2 (en) 2017-07-10 2022-08-02 Crescendo Biologics Limited Therapeutic molecules binding PSMA
US11814429B2 (en) 2017-01-06 2023-11-14 Crescendo Biologics Limited Single domain antibodies to programmed cell death (PD-1)
US11866510B2 (en) 2016-05-06 2024-01-09 Crescendo Biologics Limited Chimeric antigen receptor with single domain antibody
US11951172B2 (en) 2018-02-16 2024-04-09 Crescendo Biologics Limited Therapeutic molecules that bind to LAG3 and PD1

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103333249A (zh) * 2013-06-14 2013-10-02 广州康合生物科技有限公司 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用
KR20180012740A (ko) * 2015-03-10 2018-02-06 소렌토 쎄라퓨틱스, 인코포레이티드 Psma에 결합하는 항체 치료제
CN116462762B (zh) * 2023-06-14 2023-08-25 天健生物制药(天津)有限公司 一种抗前列腺特异性抗原单克隆抗体及其应用
CN116769029B (zh) * 2023-08-16 2023-10-27 天健生物制药(天津)有限公司 一种抗孕酮单克隆抗体及其应用
CN117736331B (zh) * 2024-02-04 2024-05-07 南昌大学第一附属医院 一种特异性结合psma胞外段的单克隆抗体及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652821A (zh) * 2002-01-28 2005-08-10 米德列斯公司 抗前列腺特异性膜抗原(psma)的人单克隆抗体
CN103333249A (zh) * 2013-06-14 2013-10-02 广州康合生物科技有限公司 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1652821A (zh) * 2002-01-28 2005-08-10 米德列斯公司 抗前列腺特异性膜抗原(psma)的人单克隆抗体
CN103333249A (zh) * 2013-06-14 2013-10-02 广州康合生物科技有限公司 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236174B2 (en) 2016-01-12 2022-02-01 Crescendo Biologics Limited Therapeutic molecules
US11746158B2 (en) 2016-01-12 2023-09-05 Crescendo Biologics Limited Therapeutic molecules
US11866510B2 (en) 2016-05-06 2024-01-09 Crescendo Biologics Limited Chimeric antigen receptor with single domain antibody
US11814429B2 (en) 2017-01-06 2023-11-14 Crescendo Biologics Limited Single domain antibodies to programmed cell death (PD-1)
WO2018134691A2 (en) 2017-01-20 2018-07-26 Juno Therapeutics Gmbh Cell surface conjugates and related cell compositions and methods
US11517627B2 (en) 2017-01-20 2022-12-06 Juno Therapeutics Gmbh Cell surface conjugates and related cell compositions and methods
WO2018187791A1 (en) 2017-04-07 2018-10-11 Juno Therapeutics, Inc Engineered cells expressing prostate-specific membrane antigen (psma) or a modified form thereof and related methods
US11401342B2 (en) 2017-07-10 2022-08-02 Crescendo Biologics Limited Therapeutic molecules binding PSMA
US11951172B2 (en) 2018-02-16 2024-04-09 Crescendo Biologics Limited Therapeutic molecules that bind to LAG3 and PD1

Also Published As

Publication number Publication date
CN103333249A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
WO2014198223A1 (zh) 一种抗前列腺特异性膜抗原(psma)的单克隆抗体及其应用
US7189816B1 (en) Compounds
JP2023109883A (ja) 癌診断に有用なクローディン18.2に対する抗体
JP5328155B2 (ja) Adam−9モジュレータ
ES2927090T3 (es) Anticuerpo anti-TROP-2 humano que muestra actividad antitumoral in vivo
WO2008146911A9 (ja) IL13Ra2に対する抗体およびこれを含む診断・治療薬
ES2527521T3 (es) Anticuerpos antihumanos frente a Dlk-1 que tienen actividad antitumoral
JP6781507B2 (ja) がん細胞特異的な抗体、抗がん剤、及びがんの検査方法
JP2001503601A (ja) 前立腺特異的膜抗原の細胞外ドメインに対して特異的なモノクローナル抗体
JP7063623B2 (ja) 治療用抗体およびその使用
CN108997499B (zh) 一种抗人pd-l1抗体及其应用
CN106916227B (zh) 一种tpbg抗体及其制备方法、其偶联物和应用
CN115433283B (zh) 用于癌症诊断的抗体
JP6958817B2 (ja) 抗tmem−180抗体、抗がん剤、及びがんの検査方法
WO2012128377A1 (ja) 膵臓癌の治療用及び診断用の組成物
JP7229503B2 (ja) CADM1v9認識抗体
JP2019050737A (ja) Cd44陽性tmem−180陽性のがん細胞由来微粒子、これを用いた抗tmem−180抗体療法が有効ながん患者の選別方法、選別された患者に対する抗tmem−180抗体を含む抗がん剤、および前記方法に用いるキット
MXPA02008315A (es) Anticuerpo novedoso con especifidad para cancer de color.
JP5956424B2 (ja) 抗体、乳がんの治療に用いられる医薬組成物、腫瘍検査方法、及び、腫瘍検査用試薬
RU2815883C1 (ru) Антитела, пригодные в диагностике рака
WO2017147247A1 (en) Anti-sas1b antibodies and methods of use
TWI766877B (zh) 與tmem132a結合的抗體、抗癌劑、及癌的檢查方法
KR20190107967A (ko) 한국인 위암 연관 유전자 단클론 항체 및 이의 제조방법
Byrne The generation of anti-prostate cancer-specific antibodies for improved disease diagnosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810523

Country of ref document: EP

Kind code of ref document: A1