WO2014198083A1 - 一种像素电路及其驱动方法、显示装置 - Google Patents

一种像素电路及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2014198083A1
WO2014198083A1 PCT/CN2013/081292 CN2013081292W WO2014198083A1 WO 2014198083 A1 WO2014198083 A1 WO 2014198083A1 CN 2013081292 W CN2013081292 W CN 2013081292W WO 2014198083 A1 WO2014198083 A1 WO 2014198083A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
pixel circuit
control line
pole
type
Prior art date
Application number
PCT/CN2013/081292
Other languages
English (en)
French (fr)
Inventor
尹静文
吴仲远
段立业
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/236,283 priority Critical patent/US9099417B2/en
Publication of WO2014198083A1 publication Critical patent/WO2014198083A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a pixel circuit, a driving method thereof, and a display device.
  • OLED Organic Light Emitting Diode
  • PMOLED Passive Matrix Driving OLED
  • AMOLED Active Matrix Driving OLED
  • each OLED includes a plurality of TFTCTliin Film Transistor (TFT) switching circuits.
  • TFT switching circuits fabricated on large-area glass substrates are often Non-uniformity occurs in electrical parameters such as threshold voltage, mobility, etc., so that the current flowing through the AMOLED not only changes with the on-voltage stress generated by the long-time conduction of the TFT, but also with the TFT The threshold voltage drifts differently. As a result, the brightness uniformity and brightness constant of the display will be affected.
  • the AMOLED in the operating state will also be in a bias state for a long time, the rate of attenuation of the display device is accelerated, thereby reducing the life of the display device.
  • Embodiments of the present invention provide a pixel circuit, a driving method thereof, and a display device for compensating for threshold voltage drift of a TFT, improving unevenness of display brightness of the display device, and extending the display device The use of Shouyi.
  • the invention provides a pixel circuit, including:
  • a first transistor a second transistor, a third transistor, a fourth transistor, a fifth transistor, a storage capacitor, a second storage capacitor, and a light emitting device
  • a gate of the first transistor is connected to a first pole of the third transistor, a first pole of the first transistor is connected to a second pole of the fifth transistor, and a second pole of the first transistor is connected a voltage
  • the second transistor The gate is connected to the -, the first pole of the first : is connected to the second pole of the fourth transistor, and the second pole of the second transistor is connected to the second pole of the fifth transistor;
  • the third transistor gate is connected to the first control line, the first pole of the second transistor is connected to the first storage electric end, and the second pole of the second transistor is connected to a variable voltage; a four transistor ⁇ gate is connected to the second control line, and a first pole of the fourth transistor is connected to the data line;
  • the fifth transistor ⁇ is connected to the light-emitting control line, and the first electrode of the fifth transistor is connected to the anode of the light-emitting device;
  • the second storage end is connected to the other end of the first storage capacitor, and the other end of the second storage capacitor is connected to the variable voltage;
  • the cathode of the light emitting device is connected to a second voltage.
  • a display device comprising the pixel device as described above, according to still another aspect of the present invention, a method for driving a pixel circuit, comprising: turning on a second transistor and a third transistor a fourth transistor, a fifth transistor, turning off the first transistor, simultaneously inputting a low level to the data line, and removing the charge of the anode of the light emitting device;
  • the light emitting device emits light.
  • the pixel circuit and the driving method thereof and the display device provided by the embodiment of the invention can perform switching and charge and discharge control on the circuit through a plurality of transistors and capacitors, so that the storage capacitor can maintain the gate source between the gate and the source of the first transistor.
  • the voltage is constant, so that the current through the first transistor is independent of the threshold voltage and the first voltage of the first transistor, thereby compensating for the inconsistency or drift of the threshold voltage of the first transistor, and avoiding the resistance voltage drop of the first voltage (IR drap) has an effect on the current flowing through the light-emitting device, which significantly improves the uniformity of the display brightness of the display device.
  • the charge of the anode of the light-emitting device is removed, and the light-emitting device is prevented from being in a positive bias state for a long time. Therefore, the rate of attenuation of the light emitting device is effectively slowed down, and the service life of the display device is greatly improved.
  • FIG. 1 is a schematic diagram of a connection structure of a pixel circuit according to an embodiment of the present invention
  • FIG. 2 is a timing chart of each signal line when the pixel circuit shown in FIG. 1 is driven;
  • FIG. 3 is an equivalent circuit diagram of the pixel circuit shown in FIG. 1 in an initialization phase
  • FIG. 4 is a schematic diagram of an equivalent circuit of the pixel circuit shown in FIG.
  • FIG. 5 is an equivalent circuit diagram of the pixel circuit shown in FIG. 1 in a data input stage
  • FIG. 6 is an equivalent circuit diagram of the pixel circuit shown in FIG.
  • FIG. 7 is a schematic flowchart diagram of a pixel circuit driving method according to an embodiment of the present invention. detailed description
  • the pixel circuit 1 provided by the embodiment of the present invention, as shown in FIG. 1, includes:
  • the gate of the first transistor T1 is connected to the first pole of the third transistor T3, the first pole of the first transistor T1 is connected to the second pole of the fifth transistor T5, and the second pole of the first transistor T1 is connected to the first voltage (Vdd)
  • the gate of the second transistor T2 is connected to the first control line Sti-1, the first electrode of the second transistor T2 is connected to the second electrode of the fourth transistor T4, and the second electrode of the second transistor T2 is connected to the second electrode of the fifth transistor T5. pole.
  • the gate of the second transistor T3 is connected to the first control line Sn-1, the first terminal of the third transistor T3 is connected to one end of the first storage capacitor C1, and the second pole thereof is connected to the variable voltage (Vref).
  • the gate of the fourth transistor T4 is connected to the second control line Sn, and the first electrode of the fourth transistor T4 is connected to the data line Data.
  • the gate of the fifth transistor T5 is connected to the light emission control line Em, and the first electrode of the fifth transistor T5 is connected to the anode of the light emitting device L.
  • One end of the second storage capacitor C2 is connected to the other end of the first storage capacitor CI, and the other end of the second storage capacitor C2 is connected to a variable voltage (Vref).
  • the cathode of the light-emitting device L is connected to a second voltage (Vss).
  • the light-emitting device L in the embodiment of the present invention may be a plurality of current-driven illuminations including LED (Light Emitting Diode) or OLED (Organic Light Emitting Diode) in the prior art. Device.
  • LED Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the description is made by taking the 0 LED as an example.
  • the pixel circuit and the driving method thereof and the display device provided by the embodiment of the invention can perform switching and charge and discharge control on the circuit through a plurality of transistors and capacitors, so that the storage capacitor can maintain the gate source between the gate and the source of the first transistor.
  • the voltage is constant, so that the current through the first transistor is independent of the threshold voltage and the first voltage of the first transistor, thereby compensating for the inconsistency or drift of the threshold voltage of the first transistor, and avoiding the resistance voltage drop of the first voltage (IR drap) convection through the light emitting device
  • the effect of the current significantly improves the uniformity of the display brightness of the display device.
  • the light-emitting device is prevented from being in a positive bias state for a long time, thereby effectively reducing the attenuation of the light-emitting device.
  • the rate greatly increases the life of the display device.
  • the voltage Vdd may refer to a high voltage
  • the voltage Vss may be a low voltage or a ground.
  • the type of the first transistor T! is the same as or different from the type of the second transistor T2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5.
  • the first transistor ⁇ !, the second transistor ⁇ 2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may all be ⁇ -type transistors; or the first transistor ⁇ !
  • the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may both be ⁇ -type transistors; or the first transistor Ti, the second transistor T2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may be both
  • the first transistor T1 may be a ⁇ -type transistor
  • the second transistor ⁇ 2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may all be ⁇ -type transistors.
  • the external control signals of the pixel circuits are also different.
  • the first transistor T1, the second transistor ⁇ 2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may each be a ⁇ type.
  • the first pole Ti, the second transistor T2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may each be referred to as a source, and the second pole may be referred to as a drain.
  • the first transistor Ti, the second transistor T2, the second transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 are all ⁇ -type depletion TFTs, and the working process of the pixel circuit provided by the embodiment of the present invention is detailed. Description.
  • Fig. 2 is a timing chart of each signal line during the operation of the pixel circuit shown in Fig. 1.
  • the initialization phase, the acquisition phase, the data input phase, and the illumination phase are correspondingly represented by Pr, PI, P2, and P3, respectively.
  • the first phase is the initialization phase.
  • the equivalent circuit of this phase is shown in Figure 3.
  • the actual power-on line and device are indicated by solid lines, and the unpowered cells are indicated by dashed lines.
  • the following equivalent circuit diagrams are shown. The representation is the same as the figure.
  • the first control line Sn-1, the second control line Sn, and the light emission control line Em are input to a high level, and the variable voltage (Vref) and the data voltage (Vdata) output from the data line Daia are at a low level.
  • Vref variable voltage
  • Vdata data voltage
  • the second transistor T2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 are turned on, the first transistor T1 is turned off, and the first storage capacitor C1 and the second storage capacitor C2 are reset.
  • the voltage at the node b of the first electrode of the second transistor T2 and the second electrode of the fourth transistor T4 is a low voltage (Vdata), so the anode potential of the light-emitting device L is the low potential (Vdata), so the light-emitting device
  • the charge stored on L is output through the turned-on fifth transistor T5, the second transistor ⁇ 2, and the fourth transistor ⁇ 4, so that the charge stored between the OLED anode and the anode can be removed, thereby ensuring that it is not in positive
  • the bias state which slows down the OLED attenuation, increases the life of the display device.
  • the second phase is the acquisition phase, and the equivalent circuit of this phase is shown in Figure 4.
  • the variable voltage (Vref) and the data voltage (Vdata) of the data line Data output are at a high level
  • the first control line Sn-1 inputs a high level, a second control line Sn, and an illumination control line Em input.
  • Low level As shown in FIG. 4, the fourth transistor T4 and the fifth transistor T5 are turned off, the second transistor T2 and the third transistor T3 are turned on, and the high level of the variable voltage (Vref) input causes the first transistor Ti to be turned on.
  • the voltage at the node a of the gate of the first transistor Ti connected to the first pole of the second transistor T3 is a high voltage (Vref) because the voltage causes the first transistor T1 to be just turned on, thereby making the first storage capacitor
  • Vref high voltage
  • the third stage is the data input stage, and the equivalent circuit of this stage is shown in Figure 5.
  • the variable voltage (Vref) and the data line (Vdata) of the data line Data output are at a high level
  • the second control line Sn is input to a high level
  • the first control line Sn i and the light emission control line Em are input to a low level.
  • the second transistor T2, the second transistor ⁇ 3, and the fifth transistor ⁇ 5 are turned off, the fourth transistor ⁇ 4 is turned on
  • the data voltage (Vdata) output from the data line Data is stored in the second storage capacitor C2.
  • the voltage of node b is (Vdata). Since the threshold voltage Vth of the first transistor in the second stage is already stored in the first storage capacitor C1, the potential of the node a is raised to:
  • the fourth stage is the lighting stage, and the equivalent circuit of this stage is shown in Figure 6.
  • the variable voltage (Vref) the illumination control line Em is at a high level
  • the first control line Sn-1 the second control line Sn
  • the data voltage (Vdata) output from the data line Data is input low.
  • the second transistor T2, the third transistor ⁇ 3, and the fourth transistor ⁇ 4 are turned off, and the first transistor T1 and the fifth transistor ⁇ 5 are turned on.
  • Vdata is the data voltage
  • Vref is the variable voltage
  • Vth is the threshold voltage of the transistor.
  • the Vth between different pixel units is not the same, and the Vth in the same pixel may drift over time, which will cause a difference in display brightness. Since this difference is related to the previously displayed image, it is often Presented as an afterimage phenomenon.
  • the current IOLED for driving the OLED light emission is independent of the threshold voltage Vth of the first transistor T1, and the current is also not controlled by the first voltage (Vdd). Therefore, the effect of the transistor threshold voltage non-uniformity and the first voltage drop (I-R drop) on the display effect is eliminated.
  • the storage capacitor can keep the gate-source voltage between the gate and the source of the first transistor unchanged, thereby making the current through the first transistor and the first
  • the threshold voltage of the transistor is independent of the first voltage, thereby compensating for the inconsistency or drift of the threshold voltage of the first transistor, avoiding the influence of the IR drop of the first voltage on the current flowing through the light emitting device, and significantly improving the display of the display device.
  • the light-emitting device is prevented from being in a positive bias state for a long time, thereby effectively slowing down the rate of attenuation of the light-emitting device and greatly improving the service life of the display device.
  • the transistors are all described by taking an N-type depletion TFT as an example.
  • an N-type enhancement type TFT can be used in the same manner, in that, for a depletion type TFT, the threshold voltage Vth is a negative value, and for an enhancement type TFT, the threshold voltage Vth is a positive value.
  • the first transistor T1 may also adopt an N-type transistor
  • the second transistor T2 the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may each be a ⁇ -type transistor, and drive an external signal of the pixel circuit of such a structure.
  • the timing of the timing should also be adjusted accordingly, wherein the timings of the first control line Sn-1, the second control line Sn, and the illumination control line Em are corresponding to the corresponding signals shown in FIG.
  • the timing of the numbers is reversed (ie, the phase difference between the two is 180 degrees).
  • the first transistor T1, the second transistor ⁇ 2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 are all ⁇ -type transistors, and the timing of driving external signals of the pixel circuit of such a structure should also be corresponding.
  • the timing of the first control line Sn-1, the second control line Sru variable voltage (Vref), the data voltage (Vdata), and the illumination control line Em is opposite to the timing of the corresponding signal shown in FIG. 2 (ie, The phase difference between the two is 180 degrees).
  • the first transistor T1 is a P-type transistor
  • the second transistor T2 the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 are all ⁇ -type transistors, and the timing of driving an external signal of the pixel circuit of such a structure is also Corresponding adjustments should be made in which the timing of the variable voltage Vref and the data voltage (Vdata) is opposite to the timing of the corresponding signal shown in Fig. 2 (i.e., the phase difference between the two is 180 degrees).
  • the embodiment of the invention further provides a display device comprising any of the pixel circuits as described above.
  • the display device may comprise a plurality of pixel cell arrays, each pixel cell comprising any one of the pixel circuits as described above.
  • the display device provided by the embodiment of the present invention may be a display device having a current-driven light-emitting device including an LED display or an OLED display.
  • the display device provided by the embodiment of the invention includes a pixel circuit, and the switching, charging and discharging control of the circuit by using a plurality of transistors and capacitors enables the storage capacitor to maintain the gate-source voltage between the gate and the source of the first transistor. Therefore, the current passing through the first transistor is independent of the threshold voltage and the first voltage of the first transistor, thereby compensating for the inconsistency or drift of the first transistor voltage, avoiding the flow of the first voltage I-R drop The influence of the current of the light-emitting device significantly improves the uniformity of the display brightness of the display device.
  • the light-emitting device is prevented from being in a positive bias state for a long time, thereby effectively reducing the light-emitting device.
  • the rate of attenuation greatly increases the life of the display device.
  • the pixel circuit driving method provided by the embodiment of the present invention can be applied to the pixel circuit provided in the foregoing embodiment. As shown in FIG. 7, the method includes:
  • Step S701 guiding the second transistor, the second transistor, the fourth transistor, and the fifth transistor to turn off the first transistor, simultaneously inputting a low level to the data line, and clearing the charge of the anode of the light emitting device.
  • Step S702 turning off the fourth transistor and the fifth transistor, turning on the second transistor and the third transistor, the variable voltage control first transistor is turned on, and the first transistor threshold voltage is stored in the first storage capacitor;
  • Step S703 turning on the fourth transistor, turning off the second transistor, the third transistor, and the fifth transistor, and storing the high level input to the data line in the second storage capacitor;
  • Step S704 turning off the second transistor, the third transistor and the fourth transistor, turning on the first transistor and the fifth transistor, and driving the light emitting device to emit light through currents of the first transistor and the fifth transistor.
  • the pixel circuit driving method provided by the embodiment of the invention can perform switching and charge and discharge control on the circuit through a plurality of transistors and capacitors, so that the storage capacitor can keep the gate-source voltage between the gate and the source of the first transistor unchanged, thereby
  • the current passing through the first transistor is independent of the threshold voltage and the first voltage of the first transistor, thereby compensating for the inconsistency or drift of the threshold voltage of the first transistor, and avoiding the current flowing through the light emitting device by the IR drop of the first voltage
  • the effect is significantly improved the uniformity of the display brightness of the display device.
  • the light-emitting device is prevented from being in a positive bias state for a long time, thereby effectively reducing the rate of attenuation of the light-emitting device. , greatly improving the service life of the display device.
  • the light emitting device in the embodiment of the present invention may be a plurality of current driving light emitting devices including LEDs or 0LEDs in the prior art.
  • the type of the first transistor T1 is the same as or different from the type of the second transistor T2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5.
  • the first transistor, the second transistor, the third transistor, the fourth transistor, and the fifth transistor may each be a ⁇ -type transistor; or the first transistor is a ⁇ -type transistor, the second transistor ⁇ 2, the third transistor ⁇ 3, and the fourth transistor
  • the first transistor T1, the second transistor T2, the third transistor T3, the fourth transistor T4, and the fifth transistor T5 are all germanium transistors; or the first transistor T1 is The ⁇ -type transistor, the second transistor ⁇ 2, the second transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 are all ⁇ -type transistors.
  • the first transistor T1, the second transistor ⁇ 2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 may each be a ⁇ type.
  • the timing of the control signal may be as shown in FIG. 2, including:
  • Initialization phase input a high level to the first control line, the second control line, and the illumination control line, and input a low level to the variable voltage and the data line;
  • Acquisition phase input a low level to the second control line and the illumination control line, and input a high level to the first control line, the variable voltage, and the data line;
  • Data input phase input low level to the first control line and the light control line, and input high level to the second control line, the variable voltage and the data line;
  • Illumination phase Input a low level to the first control line, the second control line, and the data line, and input a high level to the variable voltage and the illumination control line.
  • step S70I may specifically include:
  • This step is an initialization phase.
  • the first control line Sn-1, the second control line Sn, and the illumination control line Em input a high level, a variable voltage (Vref), and a data line Data.
  • the output data voltage (Vdata) is low.
  • the second transistor T2, the third transistor ⁇ 3, the fourth transistor ⁇ 4, and the fifth transistor ⁇ 5 are turned on, the first transistor T1 is turned off, and the first storage capacitor C1 and the second storage capacitor C2 are reset.
  • the voltage at the node b of the first electrode of the second transistor T2 and the second electrode of the fourth transistor T4 is a low voltage (Vdata), so the anode potential of the light-emitting device L is the low voltage (Vdata), so the light-emitting device
  • the charge stored on L is output through the turned-on fifth transistor T5, the second transistor ⁇ 2, and the fourth transistor ⁇ 4, so that the charge stored for a long time in the OLED anode can be removed, thereby ensuring that it is not in a positive bias. The state, thereby slowing down the speed of OLED attenuation and increasing the life of the display device.
  • step S702 may specifically include:
  • the step is an acquisition phase in which the variable voltage (Vref) and the data voltage (Vdata) of the data line Data output are at a high level, and the first control line Sn-1 is input with a high level to the second control.
  • the line Sn and the light emission control line Em are input to a low level.
  • the fourth transistor T4 is turned off, the fifth transistor T5, the second transistor T2, and the third transistor T3 are turned away, and the high level of the variable voltage (Vref) input causes the first transistor Ti to be turned on.
  • Gate of the first transistor T1 and the second transistor The voltage at the node a connected to the first pole of T3 is a high voltage (Vref) because the voltage causes the first transistor T! to be turned on, so that the potential at the same point as the other end of the first storage capacitor is raised to Vref ⁇ Vih, where Vih is the threshold voltage of the first transistor, which is stored in the first storage capacitor C!.
  • Step S703 specifically includes:
  • This step is a data input phase in which the variable voltage (Vref) and the data voltage (Vdata) of the data line Data output are at a high level, and a high level is input to the second control line Sn, to the first control line Sii. l and the light control line Em input low level.
  • the second transistor T2, the third transistor ⁇ 3, and the fifth transistor ⁇ 5 are turned off, the fourth transistor ⁇ 4 is turned on, and the data voltage (Vdata) output from the data line Data is stored in the second storage capacitor C2.
  • the voltage of node b is (Vdata). Since the threshold voltage Vth of the first transistor in the second stage is already stored in the first storage capacitor C1, the potential of the node a is raised to:
  • Step S704 specifically includes:
  • This step is a light-emitting phase.
  • the variable voltage (Vref) and the light-emission control line Em are at a high level, and the data voltage (Vdata) output to the first control line Sn-1, the second control line Sn, and the data line Data (Vdata) ) Input low level.
  • the second transistor T2, the second transistor ⁇ 3, and the fourth transistor ⁇ 4 are turned off, and the first transistor T1 and the fifth transistor ⁇ 5 are turned on.
  • the voltage at which the first transistor is turned on is the voltage at the node a in the second phase, that is, Vgs::::Vdata+Vth, so the current flowing through the first transistor T1 drives the OLED to emit light, and the current IOLED and the first
  • the threshold voltage Vth of a transistor T1 is independent, and the current is also not controlled by the first voltage (Vdd). Therefore, the transistor threshold voltage non-uniformity and the resistance voltage drop of the first voltage I-R drop are eliminated.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素电路及其驱动方法、显示装置,其中像素电路包括:第一晶体管(T1)、第二晶体管(T2)、第三晶体管(T3)、第四晶体管(T4)、第五晶体管(T5)、第一存储电容(C1)、第二存储电容(C2)以及发光器件(L)。该像素电路通过对第一晶体管(T1)的阈值电压漂移进行补偿,改善了显示装置显示亮度的不均匀性,延长了显示装置的使用寿命。

Description

本发明涉及显示技术领域, 尤其涉及一种像素电路及其驱动方法、 显示 装置。
随着显示技术的急速进步, 作为显示装置核心的半导体元件技术也随之 得到了飞跃性的进步。 对于现有的显示装置而言, 有机发光二极管 (Organie Light Emitting Diode, OLED) 作为一种电流型发光器件, 因其所具有的自发 光、 快速响应、 宽视角和可制作在柔性衬底上等特点而越来越多地被应用于 高性能显示领域当中。 OLED 按驱动方式可分为 PMOLED (Passive Matrix Driving OLED, 无源矩阵驱动有机发光二极管) 和 AMOLED ( Active Matrix Driving OLED, 有源矩阵驱动有机发光二极管) 两种, 由于 AMOLED显示 器具有低制造成本、 高应答速度、 省电、 可用于便携式设备的直流驱动、 工 作温度范围大等优点而可望成为取代 LCD(Hquid crystal display, 液晶显示器) 的下一代新型平面显示器。
在现有的 AMOLED显示面板中,每个 OLED均包括多个 TFTCTliin Film Transistor, 薄膜晶体管) 开关电路, 由于生产工艺和制作水平等的限制, 导 致在大面积玻璃基板上制作的 TFT开关电路常常在诸如阈值电压、 迁移率等 电学参数上出现非均匀性, 从而使得流经 AMOLED的电流不仅会随着 TFT 长时间导通所产生的导通电压应力的变化而改变, 而且还会随着 TFT的阈值 电压漂移而有所不同。 如此一来, 将会影响到显示器的亮度均匀性与亮度恒 定性。 另一方面, 由于工作状态下的 AMOLED还将长时间处于偏压状态, 因此, 加快了显示装置衰减的速率, 从而降低了显示装置的寿命。
本发明的实施例提供一种像素电路及其驱动方法、显示装置,用以对 TFT 阈值电压漂移进行补偿, 改善显示装置显示亮度的不均匀性, 延长显示装置 的使用寿叩。
为达到上述目的, 本发明的实施例采用如下技术方案:
发明实施 面, 提供一种像素电路, 包括:
第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管、 第五晶体管、 第 存储电容、 第二存储电容及发光器件;
所述第一晶体管的栅极连接所述第三晶体管的第 -极, 所述第一晶体管 的第一极连接所述第五晶体管的第二极, 所述第 :管的第二极连接第一 电压;
所述第二晶体管 !栅极连接第- , 所述第 :的第一极连 所述第四晶体管的第二极, 所述第二晶体管的第二极连接所述第五晶体管的 第二极;
所述第三晶体管 栅极连接所述第一控制线, 所述第≡晶体管的第一极 连接所述第一存储电 一端, 所述第≡晶体管的第二极连接可变电压; 所述第四晶体管 ό 栅极连接第二控制线, 所述第四晶体管的第一极连接 数据线;
所述第五晶体管 ό 栅极连接发光控制线, 所述第五晶体管的第一极连接 所述发光器件的阳极;
所述第二存储电 一端与所述第一存储电容的另一端相连, 所述第二 存储电容的另一端连接所述可变电压;
所述发光器件的阴极连接第二电压。
本发明实施例的另一方面, 提供一种显示装置, 包括如上所述的像素电 本发明实施例的又一方面, 提供一种像素电路驱动方法, 包括: 导通第二晶体管、 第三晶体管、 第四晶体管、 第五晶体管, 关闭第一晶 体管, 同时向数据线输入低电平, 并清除发光器件阳极的电荷;
关闭所述第四晶体管和所述第五晶体管, 导通所述第二晶体管和所述第 三晶体管, 可变电压控制所述第一晶体管导通-, 将所述第一晶体管阐值电压 存储在第一存储电容中;
导通所述第四晶体管, 关闭所述第二晶体管、 所述第≡晶体管、 所述第 五晶体管, 将数据线输入的高电平储存在第二存储电容中;
关闭所述第二晶体管、 所述第三晶体管和所述第四晶体管, 导通所述第 一晶体管、 所述第五晶体管, 通过所述第一晶体管和所述第五晶体管的电流 驱动所述发光器件发光。
本发明实施例提供的像素电路及其驱动方法、 显示装置, 通过多个晶体 管和电容对电路进行开关和充放电控制, 可以使得存储电容保持第一晶体管 的栅极和源极之间的栅源电压不变, 从而使得通过第一晶体管的电流与该第 一晶体管的阈值电压及第一电压无关, 从而对第一晶体管阈值电压的不一致 或漂移进行了补偿, 避免了第一电压的电阻压降(I R drap)对流过发光器件 的电流所造成的影响, 显著改善了显示装置显示亮度的均匀性, 另一方面, 遥过清除发光器件阳极的电荷, 避免了发光器件长时间处于正偏压状态, 从 而有效减缓了发光器件衰减的速率, 大大提高了显示装置的使用寿命。
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的^图作简单地介绍, 显而易见地, 下面 描述中的^图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种像素电路的连接结构示意图;
图 2为驱动图 1所示像素电路时各信号线的时序图;
图 3为图 1所示像素电路在初始化阶段的等效电路示意图;
图 4为图 i所示像素电路在采集阶段的等效电路示意图;
图 5为图 1所示像素电路在数据输入阶段的等效电路示意图;
图 6为图 i所示像素电路在发光阶段的等效电路示意图;
图 7为本发明实施例提供的一种像素电路驱动方法的流程示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的像素电路 1, 如图 1所示, 包括:
第一晶体管 Tl、 第二晶体管 Τ2、 第三晶体管 Τ3、 第四晶体管 Τ4、 第五 晶体管 Τ5、 第一存储电容 Cl、 第二存储电容 C2以及发光器件 L。
第一晶体管 T1 的栅极连接第三晶体管 T3的第一极, 第一晶体管 T1 的 第一极连接第五晶体管 T5的第二极, 第一晶体管 T1的第二极连接第一电压 (Vdd
第二晶体管 T2的栅极连接第一控制线 Sti- 1, 第二晶体管 T2的第一极连 接第四晶体管 T4的第二极, 第二晶体管 T2的第二极连接第五晶体管 T5的 第二极。
第≡晶体管 T3的栅极连接第一控制线 Sn- 1 , 第三晶体管 T3的第一极连 接第一存储电容 C1的一端, 其第二极连接可变电压 (Vref)。
第四晶体管 T4的栅极连接第二控制线 Sn,第四晶体管 T4的第一极连接 数据线 Data。
所述第五晶体管 T5的栅极连接发光控制线 Em, 所述第五晶体管 T5的 第一极连接发光器件 L的阳极。
第二存储电容 C2的一端与第一存储电容 CI的另一端相连, 第二存储电 容 C2的另一端连接可变电压 (Vref)。
发光器件 L的阴极连接第二电压 (Vss)。
需要说明的是, 本发明实施例中的发光器件 L 可以是现有技术中包括 LED (Light Emitting Diode, 发光二极管) 或 OLED (Organic Light Emitting Diode,有机发光二极管)在内的多种电流驱动发光器件。在本发明实施例中, 是以 0LED为例进行的说明。
本发明实施例提供的像素电路及其驱动方法、 显示装置, 通过多个晶体 管和电容对电路进行开关和充放电控制, 可以使得存储电容保持第一晶体管 的栅极和源极之间的栅源电压不变, 从而使得通过第一晶体管的电流与该第 一晶体管的阈值电压及第一电压无关, 从而对第一晶体管阈值电压的不一致 或漂移进行了补偿, 避免了第一电压的电阻压降(I R drap)对流过发光器件 的电流所造成的影响, 显著改善了显示装置显示亮度的均匀性, 另一方面, 通过清除发光器件阳极的电荷, 避免了发光器件长时间处于正偏压状态, 从 而有效减缓了发光器件衰减的速率, 大大提高了显示装置的使用寿命。
需要说明的是,在本发明实施例中, 电压 Vdd可以是指高电压, 电压 Vss 可以是低电压或接地端。
其中, 第一晶体管 T!的类型与第二晶体管 T2、 第三晶体管 Τ3、 第四晶 体管 Τ4和第五晶体管 Τ5的类型相同或者不同。例如, 第一晶体管 Τ!、第二 晶体管 Τ2、 第三晶体管 Τ3、 第四晶体管 Τ4和第五晶体管 Τ5可以均为 Ν型 晶体管; 或者第一晶体管 Τ!可以为N型晶体管, 第二晶体管 Τ2、 第三晶体 管 Τ3、第四晶体管 Τ4以及第五晶体管 Τ5可以均为 Ρ型晶体管; 或者第一晶 体管 Ti、 第二晶体管 T2、 第三晶体管 Τ3、 第四晶体管 Τ4和第五晶体管 Τ5 可以均为 Ρ型晶体管; 或者第一晶体管 T1可以为 Ρ型晶体管, 第二晶体管 Τ2、 第三晶体管 Τ3、 第四晶体管 Τ4以及第五晶体管 Τ5可以均为 Ν型晶体 管。 当采用不同类型的晶体管时, 像素电路的外部控制信号也各不相同。
例如, 以 Ν型晶体管为例, 在本发明实施例所提供的像素电路中, 第一 晶体管 Tl、第二晶体管 Τ2、第三晶体管 Τ3、第四晶体管 Τ4以及第五晶体管 Τ5均可以为 Ν型增强型 TFT (Thin Film Transistor, 薄膜晶体管) 或 N型耗 尽型 TFT。 其中, 第一晶体管 Ti、 第二晶体管 T2、 第三晶体管 Τ3、 第四晶 体管 Τ4和第五晶体管 Τ5的第一极均可以指的是源极, 第二极则均可以指的 是漏极。
以下以第一晶体管 Ti、 第二晶体管 T2、 第≡晶体管 Τ3、 第四晶体管 Τ4 和第五晶体管 Τ5均为 Ν型耗尽型 TFT为例, 对本发明实施例提供的像素电 路的工作过程进行详细说明。
图 1所示的像素电路工作时, 其工作过程具体可以分为四个阶段, 分别 为: 初始化阶段、 采集阶段、 数据输入阶段和发光阶段。 图 2是图 1所示像 素电路工作过程中各信号线的时序图。 如图 2所示, 在图中分别用 Pr、 PI、 P2和 P3来相应地表示初始化阶段、 采集阶段、 数据输入阶段和发光阶段。
第一阶段为初始化阶段, 该阶段的等效电路如图 3所示, 其中, 实际通 电线路和器件采用实线表示, 未通电单元采用虚线表示, 以下各等效电路图 与该图的表示方式相同。 在初始化阶段, 第一控制线 Sn-1、 第二控制线 Sn 和发光控制线 Em输入高电平, 可变电压 (Vref) 和数据线 Daia输出的数据 电压 (Vdata) 为低电平。 如图 3所示第二晶体管 T2、 第三晶体管 Τ3、 第四 晶体管 Τ4、 第五晶体管 Τ5被导通, 第一晶体管 T1被关闭, 第一存储电容 C1和第二存储电容 C2被重置, 并且第二晶体管 Τ2的第一极与第四晶体管 Τ4的第二极相连的节点 b处的电压为低电压 (Vdata), 所以发光器件 L的阳 极电位为该低电位 (Vdata) , 所以发光器件 L上储存的电荷通过被导通的第 五晶体管 T5、 第二晶体管 Τ2及第四晶体管 Τ4输出, 这样一来, 可以使得 OLED 阳极长日寸间存储的电荷被清除, 从而确保其不处于正偏压状态, 认而 减缓 OLED衰减的速度, 提高显示装置的寿命。
第二阶段为采集阶段, 该阶段的等效电路如图 4所示。 在该采集阶段, 可变电压(Vref)和数据线 Data输出的数据电压(Vdata) 为高电平, 第一控 制线 Sn- 1输入高电平、第二控制线 Sn和发光控制线 Em输入低电平。如图 4 所示, 第四晶体管 T4和第五晶体管 T5被关闭, 第二晶体管 T2和第三晶体 管 T3被导通, 可变电压 (Vref) 输入的高电平使得第一晶体管 Ti导通, 第 一晶体管 Ti的栅极与第≡晶体管 T3的第一极相连的节点 a处的电压为高电 压 (Vref), 因为该电压使得第一晶体管 T1 刚好导通, 从而使得与第一存储 电容的另一端电位相同的 c点电位升为 VrefVth, 其中 Vth为第一晶体管的 阈值电压, 其被存储在第一存储电容 C1中。
第≡阶段为数据输入阶段, 该阶段的等效电路如图 5所示。 在这个阶段 可变电压(Vref)和数据线 Data输出的数据电压(Vdata)为高电平, 第二控 制线 Sn输入高电平、第一控制线 Sn i和发光控制线 Em输入低电平。如图 5 所示, 第二晶体管 T2、 第≡晶体管 Τ3、 第五晶体管 Τ5被关闭, 第四晶体管 Τ4被导通, 数据线 Data输出的数据电压 (Vdata) 存储于第二存储电容 C2 中。 此时, 节点 b的电压为 (Vdata)。 因为第二阶段中第一晶体管的阈值电 压 Vth已存储于第一存储电容 C1中, 从而使得节点 a的电位提升为:
A::::Vref+Vdata- VrefH-Vth Vdata+Vtli。
第四阶段为发光阶段, 该阶段的等效电路如图 6所示。 在这个阶段, 可 变电压(Vref)、 发光控制线 Em为高电平, 第一控制线 Sn- 1、 第二控制线 Sn 和数据线 Data输出的数据电压 (Vdata) 输入低电平。 如图 6所示, 第二晶 体管 T2、第三晶体管 Τ3、 第四晶体管 Τ4被关闭, 第一晶体管 Tl、第五晶体 管 Τ5被导通。此时, 使得第一晶体管导通的电压为第三阶段中节点 a处的电 压, 即 Vgs=Vdata+Vth, 因此流过第一晶体管 T1的电流驱动 OLED发光, 该 电流 IOLED为:
】 - τχ ^ x ( v^ f ) 2 = x x ( v^ + v^ " v^ 2
· 2 ( 1 )
= x K x ( v^ } 2
其中, K为关联于第一晶体管 Tl的电流常数, Vdata为数据电压, Vref 为可变电压, Vth 为晶体管的阈值电压。 现有技术中, 不同像素单元之间的 Vth不尽相同, i同一像素中的 Vth还有可能随时间发生漂移, 这将造成显 示亮度差异, 由于这种差异与之前显示的图像有关, 因此常呈现为残影现象。
由以上公式 ( 1 ) 可知, 用于驱动 OLED发光的电流 IOLED与第一晶体 管 T1的阈值电压 Vth无关, 而且该电流也不受第一电压 (Vdd) 的控制。 因 此消除了晶体管阈值电压非均匀型及第一电压的电阻压降(I- R drop)对显示 效果的影响。 通过多个晶体管和电容对电路进行开关和充放电控制, 可以使 得存储电容保持第一晶体管的栅极和源极之间的栅源电压不变, 从而使得通 过第一晶体管的电流与该第一晶体管的阈值电压及第一电压无关, 从而对第 一晶体管阈值电压的不一致或漂移进行了补偿, 避免了第一电压的 I-R drop 对流过发光器件的电流所造成的影响, 显著改善了显示装置显示亮度的均匀 性, 另一方面, 通过清除发光器件阳极的电荷, 避免了发光器件长时间处于 正偏压状态, 从而有效减缓了发光器件衰减的速率, 大大提高了显示装置的 使用寿命。
需要说明的是, 在上述实施例中, 晶体管均是以 N型耗尽型 TFT为例进 行的说明。 或者, 同样可以釆用 N型增强型 TFT, 其不同之处在于, 对于耗 尽型 TFT, 阈值电压 Vth为负值, 而对于增强型 TFT, 阈值电压 Vth为正值。
此外, 第一晶体管 T1还可以采用 N型晶体管, 第二晶体管 T2、 第三晶 体管 Τ3、第四晶体管 Τ4以及第五晶体管 Τ5均可以为 Ρ型晶体管,驱动这样 一种结构的像素电路的外部信号的时序也应当做相应的调整, 其中, 第一控 制线 Sn- 1、第二控制线 Sn以及发光控制线 Em的时序与图 2中所示的相应信 号的时序相反 (即二者的相位差为 180度)。
或者, 第一晶体管 Tl、 第二晶体管 Τ2、 第三晶体管 Τ3、 第四晶体管 Τ4 和第五晶体管 Τ5均为 Ρ型晶体管,驱动这样一种结构的像素电路的外部信号 的时序也应当做相应的调整, 其中, 第一控制线 Sn-1、 第二控制线 Sru 可变 电压(Vref)、 数据电压 (Vdata) 以及发光控制线 Em的时序与图 2中所示的 相应信号的时序相反 (即二者的相位差为 180度)。
或者, 第一晶体管 T1为 P型晶体管, 第二晶体管 T2、 第三晶体管 Τ3、 第四晶体管 Τ4以及第五晶体管 Τ5均为 Ν型晶体管,驱动这样一种结构的像 素电路的外部信号的时序也应当做相应的调整, 其中, 可变电压 Vref和数据 电压(Vdata) 的时序与图 2中所示的相应信号的时序相反 (即二者的相位差 为 180度)。
本发明实施例还提供一种显示装置,包括如上所述的任意一种像素电路。 所述显示装置可以包括多个像素单元阵列, 每一个像素单元包括如上所述的 任意一个像素电路。 具有与本发明前述实施例提供的像素电路相同的有益效 果, 由于像素电路在前述实施例中已经进行了详细说明, 此处不再赘述。
具体的, 本发明实施例所提供的显示装置可以是包括 LED 显示器或 OLED显示器在内的具有电流驱动发光器件的显示装置。
本发明实施例提供的显示装置, 包括像素电路, 通过多个晶体管和电容 对电路进行开关和充放电控制, 可以使得存储电容保持第一晶体管栅极和源 极之间的栅源电压不变, 从而使得通过第一晶体管的电流与该第一晶体管的 阈值电压及第一电压无关, 从而对第一晶体管阐值电压的不一致或漂移进行 了补偿, 避免了第一电压的 I- R drop对流过发光器件的电流所造成的影响, 显著改善了显示装置显示亮度的均匀性, 另一方面, 通过清除发光器件阳极 的电荷, 避免了发光器件长时间处于正偏压状态, 从而有效减缓了发光器件 衰减的速率, 大大提高了显示装置的使用寿命。
本发明实施例提供的像素电路驱动方法, 可以应用于前述实施例中所提 供的像素电路, 如图 7所示, 包括:
歩骤 S701 , 导遥第二晶体管、 第≡晶体管、 第四晶体管、 第五晶体管, 关闭第一晶体管, 同时向数据线输入低电平, 并清除发光器件阳极的电荷。 步骤 S702, 关闭第四晶体管和第五晶体管, 导通第二晶体管和第三晶体 管, 可变电压控制第一晶体管导通, 第一晶体管阈值电压存储在第一存储电 容中;
步骤 S703、 导通第四晶体管, 关闭第二晶体管、 第三晶体管、 第五晶体 管, 向数据线输入的高电平储存在第二存储电容中;
步骤 S704、 关闭第二晶体管、 第三晶体管和第四晶体管, 导通第一晶体 管和第五晶体管, 通过第一晶体管和第五晶体管的电流驱动所述发光器件发 光。
本发明实施例提供的像素电路驱动方法, 通过多个晶体管和电容对电路 进行开关和充放电控制, 可以使得存储电容保持第一晶体管的栅极和源极之 间的栅源电压不变, 从而使得通过第一晶体管的电流与该第一晶体管的阈值 电压及第一电压无关, 从而对第一晶体管阈值电压的不一致或漂移进行了补 偿, 避免了第一电压的 I-R drop对流过发光器件的电流所造成的影响, 显著 地改善了显示装置显示亮度的均匀性, 另一方面, 通过清除发光器件阳极的 电荷, 避免了发光器件长时间处于正偏压状态, 从而有效减缓了发光器件衰 减的速率, 大大提高了显示装置的使用寿命。
需要说明的是, 本发明实施例中的发光器件可以是现有技术中包括 LED 或 0LED在内的多种电流驱动发光器件。
其中, 第一晶体管 T1的类型与第二晶体管 T2、 第三晶体管 Τ3、 第四晶 体管 Τ4和第五晶体管 Τ5的类型相同或者不同。 例如, 第一晶体管、 第二晶 体管、 第三晶体管、 第四晶体管以及第五晶体管均可以为 Ν型晶体管; 或者 第一晶体管为 Ν型晶体管, 第二晶体管 Τ2、 第三晶体管 Τ3、 第四晶体管 Τ4 以及第五晶体管 Τ5均可以为 Ρ型晶体管; 或者第一晶体管 Tl、 第二晶体管 Τ2、 第三晶体管 Τ3、 第四晶体管 Τ4和第五晶体管 Τ5均为 Ρ型晶体管; 或 者第一晶体管 T1为 Ρ型晶体管, 第二晶体管 Τ2、 第≡晶体管 Τ3、 第四晶体 管 Τ4以及第五晶体管 Τ5均为 Ν型晶体管。
例如, 以 Ν型晶体管为例, 在本发明实施例所提供的像素电路中, 第一 晶体管 Tl、第二晶体管 Τ2、第三晶体管 Τ3、第四晶体管 Τ4以及第五晶体管 Τ5均可以为 Ν型增强型 TFT或 Ν型耗尽型 TFT。 需要说明的是, 当第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管 以及第五晶体管均为 N型耗尽型晶体管时,控制信号的时序可以如图 2所示, 包括:
初始化阶段: 向第一控制线、 第二控制线和发光控制线输入高电平, 向 可变电压和数据线输入低电平;
采集阶段: 向第二控制线和发光控制线输入低电平, 向第一控制线、 可 变电压和数据线输入高电平;
数据输入阶段: 向第一控制线和发光控制线输入低电平, 向第二控制线、 可变电压和数据线输入高电平;
发光阶段: 向第一控制线、 第二控制线和数据线输入低电平, 向可变电 压和发光控制线输入高电平。
例如, 当该第一晶体管、 第二晶体管、 第三晶体管、 第四晶体管以及第 五晶体管均为 N型耗尽型薄膜晶体管时, 步骤 S70I具体可以包括:
该步骤为初始化阶段, 参照图 2所示, 在初始阶段中, 第一控制线 Sn- 1、 第二控制线 Sn和发光控制线 Em输入高电平,可变电压(Vref)和数据线 Data 输出的数据电压 (Vdata) 为低电平。 如图 3所示第二晶体管 T2、 第三晶体 管 Τ3、 第四晶体管 Τ4、 第五晶体管 Τ5被导通, 第一晶体管 T1被关闭, 第 一存储电容 C1和第二存储电容 C2被重置, 并且第二晶体管 Τ2的第一极与 第四晶体管 Τ4的第二极相连的节点 b处的电压为低电压(Vdata), 所以发光 器件 L的阳极电位为该低电压 (Vdata), 所以发光器件 L上储存的电荷通过 被导通的第五晶体管 T5、 第二晶体管 Τ2及第四晶体管 Τ4输出, 这样一来, 可以使得 OLED阳极长时间存储的电荷被清除, 从而确保其不处于正偏压状 态, 从而减缓 OLED衰减的速度, 提高显示装置的寿命。
相应的, 步骤 S702具体可以包括:
该步骤为采集阶段, 在该采集阶段, 可变电压 (Vref) 和数据线 Data输 出的数据电压 (Vdata) 为高电平, 向第一控制线 Sn- 1 输入高电平、 向第二 控制线 Sn和发光控制线 Em输入低电平。 如图 4所示, 第四晶体管 T4被关 闭、第五晶体管 T5,第二晶体管 T2、第三晶体管 Τ3被导遥,可变电压(Vref) 输入的高电平使得第一晶体管 Ti导通, 第一晶体管 T1的栅极与第≡晶体管 T3的第一极相连的节点 a处的电压为高电压(Vref), 因为该电压使得第一晶 体管 T!刚好导通,从而使与第一存储电容的另一端电位相同的 c点电位升为 Vref~Vih, 其中 Vih为第一晶体管的阈值电压, 其被存储在第一存储电容 C! 中。
步骤 S703具体可以包括:
该步骤为数据输入阶段, 在这个阶段, 可变电压 (Vref) 和数据线 Data 输出的数据电压 (Vdata) 为高电平, 向第二控制线 Sn输入高电平、 向第一 控制线 Sii l和发光控制线 Em输入低电平。如图 5所示, 第二晶体管 T2、第 三晶体管 Τ3、 第五晶体管 Τ5被关闭, 第四晶体管 Τ4被导通, 数据线 Data 输出的数据电压 (Vdata) 存储于第二存储电容 C2中。 此时, 节点 b的电压 为 (Vdata)。 因为第二阶段中第一晶体管的阈值电压 Vth 已存储于第一存储 电容 C1中, 从而使得节点 a的电位提升为:
A::::Vref+Vdata- Vref+Vth::::Vdata+Vtli。
歩骤 S704具体可以包括:
该步骤为发光阶段, 在这个阶段, 可变电压 (Vref)、 发光控制线 Em为 高电平, 向第一控制线 Sn- 1、 第二控制线 Sn和数据线 Data输出的数据电压 (Vdata) 输入低电平。 如图 6所示, 第二晶体管 T2、 第≡晶体管 Τ3、 第四 晶体管 Τ4被关闭, 第一晶体管 Tl、 第五晶体管 Τ5被导通。 此时, 使得第一 晶体管导通的电压为第≡阶段中节点 a处的电压, 即 Vgs::::Vdata+Vth, 因此 流过第一晶体管 T1的电流驱动 OLED发光,该电流 IOLED与第一晶体管 T1 的阈值电压 Vth无关, 而且该电流也不受第一电压 (Vdd) 的控制。 因此消 除了晶体管阈值电压非均匀型及第一电压的电阻压降 I- R drop对显示效果的 影响。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一 算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

-种像素电路, 其特征在于, 包括:
第 '晶体管、 第二晶体管、 第三晶体管、 第四晶' :管、 第五晶'
-存储电容、 第二存储电容及发光器件;
所述第一晶体管的栅极连接所述第三晶体管的第 -极, 所述第一晶体管 的第一极连接所述第五晶体管的第二极, 所述第- :管的第二极连接第一 电压;
所述第二晶体管的栅极连接第- 所述第 :的第一极连 所述第四晶体管的第二极, 所述第二晶体管的第二极连接所述第五晶体管的 第二极;
所述第三晶体管 栅极连接所述第一控制线, 所述第≡晶体管的第一极 连接所述第一存储电 一端, 所述第≡晶体管的第二极连接可变电压; 所述第四晶体管 ό 栅极连接第二控制线, 所述第四晶体管的第一极连接 数据线;
所述第五晶体管 ό 栅极连接发光控制线, 所述第五晶体管的第一极连接 所述发光器件的阳极;
所述第二存储 一端与所述第一存储电容的另一端相连, 所述第二 存储电容的另一端连接所述可变电压;
所述发光器件的阴极连接第二电压。
2. 根据权利要求 1所述的像素电路, 其特征在于, 所述第一晶体管的类 型与所述第二晶体管、 所述第≡晶体管、 所述第四晶体管和所述第五晶体管 的类型相同或者不同。
3. 根据权利要求 2所述的像素电路, 其特征在于, 所述第一晶体管、 所 述第二晶体管、 所述第≡晶体管、 所述第四晶体管和所述第五晶体管均为 Ν 型晶体管或 Ρ型晶体管。
4. 根据权利要求 2所述的像素电路, 其特征在于,
所述第一晶体管为 Ν型晶体管, 所述第二晶体管、 所述第 晶体管、 所 述第四晶体管、 所述第五晶体管均为 Ρ型晶体管; 或, 所述第一晶体管为 P型晶体管, 所述第二晶体管、 所述第三晶体管、 所 述第四晶体管、 所述第五晶体管均为 N型晶体管。
5. 根据权利要求 1所述的像素电路, 其特征在于, 所述第一晶体管、 所 述第二晶体管、 所述第三晶体管、 所述第四晶体管和所述第五晶体管的第一 极均为源级, 第二极均为漏级。
6. 根据权利要求 1或 5所述的像素电路, 其特征在于, 所述晶体管包括 耗尽型薄膜晶体管或增强型薄膜晶体管。
7. 根据权利要求 1或 5所述的像素电路, 其特征在于, 所述发光器件为 有机发光二极管。
8. 一种显示装置, 其特征在于, 包括根据权利要求 1至 7中任意一项所 述的像素电路。
9. 一种像素电路驱动方法, 其特征在于, 包括:
导通第二晶体管、 第三晶体管、 第四晶体管、 第五晶体管, 关闭第一晶 体管, 同时向数据线输入低电平, 并清除发光器件阳极的电荷;
关闭所述第四晶体管和所述第五晶体管, 导遥所述第二晶体管和所述第 三晶体管, 可变电压控制所述第一晶体管导通, 将所述第一晶体管阈值电压 存储在第一存储电容中;
导通所述第四晶体管, 关闭所述第二晶体管、 所述第≡晶体管、 所述第 五晶体管, 将数据线输入的高电平储存在第二存储电容中;
关闭所述第二晶体管、 所述第三晶体管和所述第四晶体管, 导通所述第 一晶体管、 所述第五晶体管, 通过所述第一晶体管和所述第五晶体管的电流 驱动所述发光器件发光。
10. 根据权利要求 9所述的像素电路驱动方法, 其特征在于, 所述第一 晶体管的类型与所述第二晶体管、 所述第三晶体管、 所述第四晶体管和所述 第五晶体管的类型相同或者不同。
11. 根据权利要求 10所述的像素电路驱动方法, 其特征在于, 所述第一 晶体管、 所述第二晶体管、 所述第三晶体管、 所述第四晶体管和所述第五晶 体管均为 N型晶体管或 P型晶体管。
12. 根据权利要求 10所述的像素电路驱动方法, 其特征在于, 所述第一晶体管为 N型晶体管, 所述第二晶体管、 所述第三晶体管、 所 述第四晶体管、 所述第五晶体管均为 P型晶体管; 或,
所述第一晶体管为 P型晶体管, 所述第二晶体管、 所述第三晶体管、 所 述第四晶体管、 所述第五晶体管均为 N型晶体管。
13. 根据权利要求 9或 10所述的像素电路驱动方法, 其特征在于, 所述 第一晶体管、 所述第二晶体管、 所述第三晶体管、 所述第四晶体管和所述第 五晶体管的第一极均为源级, 第二极均为漏级。
14. 根据权利要求 9或 10所述的像素电路驱动方法, 其特征在于, 所述 晶体管包括耗尽型薄膜晶体管或增强型薄膜晶体管。
15. 根据权利要求!4所述的像素电路驱动方法, 其特征在于, 当所述第 一晶体管、 所述第二晶体管、 所述第≡晶体管、 所述第四晶体管以及所述第 五晶体管均为 N型耗尽型薄膜晶体管时, 控制信号的时序包括:
初始化阶段: 向第一控制线、第二控制线和所述发光控制线输入高电平, 向所述可变电压和所述数据线输入低电平;
采集阶段: 向所述第二控制线和所述发光控制线输入低电平, 向所述第 一控制线、 所述可变电压和所述数据线输入高电平;
数据输入阶段: 向所述第一控制线和所述发光控制线输入低电平, 向所 述第二控制线、 所述可变电压和所述数据线输入高电平;
发光阶段: 向所述第一控制线、 所述第二控制线、 所述可变电压和所述 数据线输入低电平, 向所述发光控制线输入高电平。
PCT/CN2013/081292 2013-06-09 2013-08-12 一种像素电路及其驱动方法、显示装置 WO2014198083A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/236,283 US9099417B2 (en) 2013-06-09 2013-08-12 Pixel circuit, driving method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310231385.8A CN103310732B (zh) 2013-06-09 2013-06-09 一种像素电路及其驱动方法、显示装置
CN201310231385.8 2013-06-09

Publications (1)

Publication Number Publication Date
WO2014198083A1 true WO2014198083A1 (zh) 2014-12-18

Family

ID=49135893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081292 WO2014198083A1 (zh) 2013-06-09 2013-08-12 一种像素电路及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US9099417B2 (zh)
CN (1) CN103310732B (zh)
WO (1) WO2014198083A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205491A (zh) * 2016-07-11 2016-12-07 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088152A1 (ko) * 2013-12-10 2015-06-18 네오뷰코오롱 주식회사 유기발광 표시장치의 휘도 편차 보상장치 및 보상방법
CN103839520B (zh) 2014-02-28 2017-01-18 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板和显示装置
TWI546795B (zh) 2014-08-29 2016-08-21 友達光電股份有限公司 有機發光二極體像素電路
CN104318899B (zh) * 2014-11-17 2017-01-25 京东方科技集团股份有限公司 像素单元驱动电路和方法、像素单元和显示装置
CN104575378B (zh) * 2014-12-23 2017-07-28 北京大学深圳研究生院 像素电路、显示装置及显示驱动方法
CN105096819B (zh) * 2015-04-21 2017-11-28 北京大学深圳研究生院 一种显示装置及其像素电路
CN104916257A (zh) * 2015-07-15 2015-09-16 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示面板和显示装置
KR102481520B1 (ko) * 2015-07-31 2022-12-27 삼성디스플레이 주식회사 화소 및 이를 포함하는 유기발광 표시장치
CN106128363A (zh) 2016-08-31 2016-11-16 深圳市华星光电技术有限公司 一种用于驱动amoled像素的电路和方法
CN106847182A (zh) * 2016-12-28 2017-06-13 深圳市华星光电技术有限公司 像素驱动电路及有机发光显示装置
CN107068060B (zh) * 2017-06-14 2019-09-24 深圳市华星光电半导体显示技术有限公司 Amoled像素驱动电路及像素驱动方法
CN107610604B (zh) * 2017-09-25 2020-03-17 上海九山电子科技有限公司 一种led芯片、阵列基板、显示面板和显示装置
CN107808636B (zh) * 2017-11-10 2020-09-04 武汉华星光电半导体显示技术有限公司 一种像素驱动电路及液晶显示装置
CN108806591B (zh) * 2018-04-26 2020-05-26 北京大学深圳研究生院 像素装置、像素装置的驱动方法以及显示设备
TWI674569B (zh) * 2018-06-07 2019-10-11 友達光電股份有限公司 畫素電路
CN108962145B (zh) * 2018-06-29 2021-03-23 北京大学深圳研究生院 显示装置及其像素电路和驱动方法
CN109523951A (zh) * 2018-12-29 2019-03-26 云谷(固安)科技有限公司 一种像素电路和显示装置
CN110544455B (zh) * 2019-02-27 2021-01-29 友达光电股份有限公司 像素电路与其驱动方法
CN113129807B (zh) * 2019-12-31 2022-10-14 敦泰电子股份有限公司 发光二极管像素显示单元、发光二极管显示设备及其亮度调整方法
CN111179840B (zh) * 2020-02-26 2022-06-03 昆山国显光电有限公司 一种像素驱动电路以及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251632A (ja) * 2005-03-14 2006-09-21 Sony Corp 画素回路及び表示装置
CN101256732A (zh) * 2007-03-02 2008-09-03 三星Sdi株式会社 有机发光显示器
KR20100072645A (ko) * 2008-12-22 2010-07-01 엘지디스플레이 주식회사 유기전계발광표시장치와 이의 구동방법
US20100220038A1 (en) * 2009-02-27 2010-09-02 Bo-Yong Chung Pixel and Organic Light Emitting Display Device Including the Same
CN101866614A (zh) * 2009-04-17 2010-10-20 三星移动显示器株式会社 像素和使用这种像素的有机发光显示装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516745A (ja) * 2003-01-24 2006-07-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ アクティブマトリクス表示装置
JP4734529B2 (ja) * 2003-02-24 2011-07-27 奇美電子股▲ふん▼有限公司 表示装置
EP1604347A1 (en) * 2003-03-12 2005-12-14 Koninklijke Philips Electronics N.V. Light emissive active matrix display devices with optical feedback effective on the timing, to counteract ageing
GB0400213D0 (en) * 2004-01-07 2004-02-11 Koninkl Philips Electronics Nv Electroluminescent display devices
GB0412586D0 (en) * 2004-06-05 2004-07-07 Koninkl Philips Electronics Nv Active matrix display devices
WO2006030994A1 (en) * 2004-09-15 2006-03-23 Jin Jang Circuit and method for driving organic light emitting diode
US9275579B2 (en) * 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8576217B2 (en) * 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
KR100653846B1 (ko) * 2005-04-11 2006-12-05 실리콘 디스플레이 (주) 유기 발광 다이오드의 구동 회로 및 구동 방법
KR20080032072A (ko) * 2005-06-08 2008-04-14 이그니스 이노베이션 인크. 발광 디바이스 디스플레이 구동 방법 및 시스템
CA2518276A1 (en) * 2005-09-13 2007-03-13 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
US7692610B2 (en) * 2005-11-30 2010-04-06 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101295876B1 (ko) * 2007-01-17 2013-08-12 엘지디스플레이 주식회사 유기 발광다이오드 표시장치 및 그 구동방법
ITMI20070100A1 (it) * 2007-01-24 2008-07-25 St Microelectronics Srl Circuito di pilotaggio di un diodo oled (diodo organico ed emissione di luce), in particolare per applicazione a display di tipo am-oled
KR101404547B1 (ko) * 2007-12-26 2014-06-09 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
WO2010041426A1 (ja) * 2008-10-07 2010-04-15 パナソニック株式会社 画像表示装置およびその制御方法
EP2450869B1 (en) * 2009-07-01 2018-11-28 Sharp Kabushiki Kaisha Active matrix substrate and organic el display device
CN101996579A (zh) * 2010-10-26 2011-03-30 华南理工大学 有源有机电致发光显示器的像素驱动电路及其驱动方法
JP5781544B2 (ja) * 2011-08-09 2015-09-24 株式会社Joled 画像表示装置
CN102982767B (zh) * 2012-12-10 2015-02-25 京东方科技集团股份有限公司 一种像素单元驱动电路、驱动方法及显示装置
CN103198794B (zh) * 2013-03-29 2015-12-02 京东方科技集团股份有限公司 像素电路及其驱动方法、有机发光显示面板及显示装置
KR20140120167A (ko) * 2013-04-02 2014-10-13 삼성디스플레이 주식회사 수리된 화소를 갖는 유기전계발광 표시장치 및 그의 화소 수리방법
CN203288217U (zh) * 2013-06-09 2013-11-13 京东方科技集团股份有限公司 一种像素电路及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251632A (ja) * 2005-03-14 2006-09-21 Sony Corp 画素回路及び表示装置
CN101256732A (zh) * 2007-03-02 2008-09-03 三星Sdi株式会社 有机发光显示器
KR20100072645A (ko) * 2008-12-22 2010-07-01 엘지디스플레이 주식회사 유기전계발광표시장치와 이의 구동방법
US20100220038A1 (en) * 2009-02-27 2010-09-02 Bo-Yong Chung Pixel and Organic Light Emitting Display Device Including the Same
CN101866614A (zh) * 2009-04-17 2010-10-20 三星移动显示器株式会社 像素和使用这种像素的有机发光显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205491A (zh) * 2016-07-11 2016-12-07 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置
CN106205491B (zh) * 2016-07-11 2018-09-11 京东方科技集团股份有限公司 一种像素电路、其驱动方法及相关装置

Also Published As

Publication number Publication date
US20150028765A1 (en) 2015-01-29
CN103310732A (zh) 2013-09-18
US9099417B2 (en) 2015-08-04
CN103310732B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2014198083A1 (zh) 一种像素电路及其驱动方法、显示装置
US10796641B2 (en) Pixel unit circuit, pixel circuit, driving method and display device
WO2015180278A1 (zh) 像素电路及其驱动方法、显示装置
US9812082B2 (en) Pixel circuit, driving method, display panel and display device
KR101788432B1 (ko) 픽셀 회로, 유기 전계 발광 표시 패널, 표시 장치 및 그 구동 방법
WO2016127639A1 (zh) 像素电路的驱动方法及其驱动装置
US9269304B2 (en) Pixel circuit for organic light emitting display and driving method thereof, organic light emitting display
WO2016155471A1 (zh) 像素电路及其驱动方法、显示装置
CN104036725B (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
US10283042B2 (en) Pixel driving circuit, pixel driving method, and display device
WO2016165529A1 (zh) 像素电路及其驱动方法、显示装置
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
US20160307509A1 (en) Amoled pixel driving circuit
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2014153820A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
US10235940B2 (en) Pixel-driving circuit, the driving method thereof, and display device
WO2014153815A1 (zh) Amoled像素单元及其驱动方法、显示装置
WO2013104236A1 (zh) 一种像素电路及其驱动方法
JP2012242838A (ja) 画素ユニット回路及びoled表示装置
WO2015085702A1 (zh) 像素电路及其驱动方法、显示装置
WO2015096390A1 (zh) 像素驱动电路、阵列基板、显示装置和像素驱动方法
WO2013123795A1 (zh) 一种像素单元驱动电路和方法、像素单元以及显示装置
WO2015051682A1 (zh) 像素电路及其驱动方法、薄膜晶体管背板
WO2013037295A1 (zh) Oled像素结构及驱动方法
WO2013064028A1 (zh) 一种像素单元驱动电路及其驱动方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14236283

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/04/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13886737

Country of ref document: EP

Kind code of ref document: A1