WO2014196821A1 - 하이브리드 나노 소재를 포함하는 투명 전도성 필름 및 이것의 제조방법 - Google Patents

하이브리드 나노 소재를 포함하는 투명 전도성 필름 및 이것의 제조방법 Download PDF

Info

Publication number
WO2014196821A1
WO2014196821A1 PCT/KR2014/004998 KR2014004998W WO2014196821A1 WO 2014196821 A1 WO2014196821 A1 WO 2014196821A1 KR 2014004998 W KR2014004998 W KR 2014004998W WO 2014196821 A1 WO2014196821 A1 WO 2014196821A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
nanowires
carbon nanotubes
hybrid nanomaterial
Prior art date
Application number
PCT/KR2014/004998
Other languages
English (en)
French (fr)
Inventor
한창수
이종수
우주연
김주태
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2014196821A1 publication Critical patent/WO2014196821A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a transparent conductive film having low resistance and high transparency and having excellent flexibility, and a method of manufacturing the same.
  • transparent conductive film is used as an essential component of electrical and electronic devices such as transparent electrodes in various display fields such as LCD, OLED, FED, PDP, flexible display or electronic paper
  • the transparent conductive film material currently used mainly is ITO ( Inorganic oxide conductive materials such as indium-tin oxide), ATO (antimony-tin oxide), and AZO (antimony-zinc oxide) are used.
  • ITO Inorganic oxide conductive materials such as indium-tin oxide), ATO (antimony-tin oxide), and AZO (antimony-zinc oxide) are used.
  • the materials used in the transparent conductive film have a problem in that the resistance is rapidly increased in several bending experiments due to low bending resistance. Therefore, the flexibility of the material is very important, representatively known carbon nanotubes and graphene is a material that is in the spotlight because of its flexible and mechanical and electrical properties.
  • these carbon nanobuttes and graphene generally have a value of 100 to 500 ⁇ / sq at a transmittance of 80 to 95%.
  • a transparent conductive film made of a new material has a transmittance of 90% or more and a 100 ⁇ / sq or less. Applications are very limited due to failure to meet requirements or process difficulties.
  • Patent Document 1 Korean Patent Publication No. 2011-0003388
  • Patent Document 2 Korean Patent Publication No. 2012-0050431
  • An object of the present invention is to implement a transparent conductive film maximizing flexibility while achieving low resistance in a high transmittance state.
  • the present invention provides a highly transparent transparent conductive film prepared by adding carbon nanotubes to nanowires, maintaining a total transmittance of 90% or more.
  • the transparent conductive film of the present invention by using a plasmonic welding (plasmonic welding) process, to form a junction between the nanowires, the carbon nanotubes connected to the nanowire junction is also buried during the welding process between the nanowires Alternatively, the bonding force between the carbon nanotubes and the nanowires may be improved.
  • plasmonic welding plasmonic welding
  • the present invention is a transparent substrate; And a network of a plurality of carbon nanotubes and a plurality of nanowires formed on an upper surface of the transparent substrate, wherein a junction portion is formed between the nanowires of the network, and the junction portion is formed by plasmonic welding. It provides a transparent conductive film of a hybrid nanomaterial characterized in that the physically fused.
  • the carbon nanotubes are preferably contained in 1 to 25% by weight of the nanowires.
  • the carbon nanotubes refer to nanomaterials made of carbon in the form of tubes having a crystalline structure.
  • the carbon nanotubes may include multi-walled carbon nanotubes, single-walled carbon nanotubes, or carbon fibers.
  • the nanowires are characterized in that the elongated structure that can form a film in a physically fused form with each other.
  • the nanowires may be made of metal.
  • the metal may be one or more selected from the group consisting of Ag, Ni, Cu, and Au.
  • the nanowires are made of Ag.
  • the nanowires may include semiconductors or polymers in addition to metals.
  • the metal preferably contains at least 50% by weight of the nanowires.
  • the semiconductor may be one or more selected from the group consisting of Si, InP, GaN, and ZnO.
  • the polymer may be one or more selected from the group consisting of polyacetylene, polyaniline, polypyrrole, polythiophene, and poly sulfur nitride.
  • the network may have a structure in which the nanowires and the carbon nanotubes are completely mixed with each other.
  • the network may have a layer-by-layer structure in which the nanowires and the carbon nanotubes cross each other.
  • a polymer or the like may be additionally coated on the transparent conductive film.
  • Such a polymer material may improve the bonding force between the nanomaterials and the substrate, and in some cases, may improve the conductivity.
  • the polymer that can be additionally coated on the transparent conductive film may be graphene, reduced graphene oxide, reduced graphene oxide, graphene oxide or metal particles (Ag, Ni, Cu, Au, etc.).
  • the present invention is a transparent substrate; And it provides a method for producing a transparent conductive film of a hybrid nanomaterial comprising a network of a plurality of carbon nanotubes and a plurality of nanowires formed on the upper surface of the transparent substrate.
  • a method for producing a transparent conductive film of a hybrid nanomaterial according to the present invention comprises the steps of: (i) applying a nanowire on a transparent substrate; (ii) applying carbon nanotubes; And (iii) fusion bonding nanowires applied on the transparent substrate through plasmonic welding.
  • Steps (i) and (ii) may be performed simultaneously or sequentially.
  • a method for producing a transparent conductive film of a hybrid nanomaterial includes (i) mixing nanowires with carbon nanotubes; (ii) applying the mixture onto a transparent substrate; And (iii) fusion bonding the mixture applied on the transparent substrate through plasmonic welding.
  • the plasmonic welding is a method for physically fusion of nanowires using surface plasmon effects to improve adhesion between nanowires or between nanowires and carbon nanotubes.
  • the plasmonic welding is characterized in that it is performed for 2 to 5 minutes at room temperature.
  • the transparent conductive film of the present invention is a structure in which nanowires and carbon nanotubes are mixed while maintaining a high transmittance of 90% or more, and have a low resistance compared to high transmittance.
  • the flexibility is very increased, and the nanowires are combined through plasmonic welding, thereby minimizing the resistance change due to bending of the film.
  • Figure 1a is a schematic diagram of a method for manufacturing a transparent conductive film of a hybrid nanomaterial according to an embodiment of the present invention.
  • Figure 1b is a schematic diagram of a method for producing a transparent conductive film of a hybrid nanomaterial according to another embodiment of the present invention.
  • Figure 2a is a scanning electron microscope (SEM) picture of the transparent conductive film prepared from Comparative Example 1
  • Figure 2b is a scanning electron microscope (SEM) picture of the transparent conductive film prepared from Example 1
  • Figure 2c is Example 2 Scanning electron microscope (SEM) picture of the transparent conductive film prepared from
  • Figure 2d is a transmission electron microscope (TEM) picture of the transparent conductive film prepared from Example 2.
  • FIG. 3A is an electrostatic force microscopy (EMF) photograph of the transparent conductive film prepared from Comparative Example 1
  • FIG. 3B is an electrostatic force microscopy (EMF) photograph of the transparent conductive film prepared from Example 2.
  • EMF electrostatic force microscopy
  • Figure 4 is a graph showing the change in surface resistance and transmittance according to the transparent conductive film prepared from Comparative Example 1 and Example 2.
  • Example 6 is a graph measuring surface resistance change according to the degree of bending of the transparent conductive films prepared from Example 2 and Comparative Example 2 before being bonded by plasmonic weliding.
  • Figure 7 is a bending of the transparent conductive film prepared from Example 2 and Comparative Example 2 before and after plasmonic weliding in order to confirm the effect of the presence or absence of plasmonic welding on the surface resistance of the transparent conductive film according to the present invention It is a graph showing the change in surface resistance according to the degree.
  • 8A is a scanning electron microscope to confirm the surface state of the transparent conductive film prepared from Comparative Example 1 (before welding) and after the bending test of the transparent conductive film prepared after Example (after welding) is finished. Picture taken with (SEM).
  • FIG. 9A is a schematic diagram showing the surface state of the transparent conductive film (before welding) prepared from Comparative Example 1 and FIG. 9B is the transparent conductive film (after welding) prepared from Example 2.
  • FIG. 9B is the transparent conductive film (after welding) prepared from Example 2.
  • FIG. 10 is a graph showing surface resistance according to bending applied with two moments in two directions of the transparent conductive film prepared in Example 2.
  • FIG. 10 is a graph showing surface resistance according to bending applied with two moments in two directions of the transparent conductive film prepared in Example 2.
  • FIG. 11 is an optical image according to the bending of the transparent conductive film made from Example 2 in combination with an LED integrated circuit.
  • Example 12 is a current-voltage graph according to the degree of bending of the transparent conductive film prepared from Example 2 in combination with an LED integrated circuit.
  • the present invention relates to a high permeability transparent conductive film prepared by adding carbon nanotubes to nanowires and maintaining a total transmittance of 90% or more.
  • the transmittance is 95% or more.
  • the transparent conductive film of the present invention is characterized in that it has a form bonded between the nanowires or through the plasmonic welding (plasmonic welding) to improve the bonding force between the nanowires or carbon nanotubes and nanowires.
  • plasmonic welding plasmonic welding
  • the plasmonic welding process forms a junction portion using the plasmon effect between the nanowires of the transparent conductive film, but the junction is not formed between the nanowires and the carbon nanotubes by welding.
  • the carbon nanotubes adjacent to the nanowire junctions are buried during the plasmonic welding process, the bonds are formed with the nanowires, thereby causing a binding force between the carbon nanotubes and the nanowires. Therefore, the transparent conductive film of the present invention consisting of a combination of carbon nanotubes and nanowires than the transparent conductive film using nanowires alone is not only low resistance due to excellent bonding strength between the nanowires or between the carbon nanotubes and the nanowires, The electrical and mechanical stability of the physical change of the substrate is much better.
  • the nanomaterial used in the present invention should be interpreted to include all nano-sized structures such as nanotubes, nanowires, and the like, all of which are within the scope of the present invention. That is, the present invention includes a material composed of carbon nanotubes, metal nanowires (for example, silver nanowires, Cu nanowires, etc.), and combinations thereof as “nanomaterials”.
  • the nanomaterial film is manufactured by transferring the nanomaterial filtered through the membrane filter in a silver solution state onto a substrate. Therefore, the nanomaterial according to the present invention is a solution-based nanomaterial that can be dispersed in a solution, and can not be uniformly adsorbed to the membrane filter by not passing through the pores of the membrane filter.
  • the present invention is a transparent substrate; And it provides a transparent conductive film of a hybrid nanomaterial comprising a network of a plurality of carbon nanotubes and a plurality of nanowires formed on the upper surface of the transparent substrate.
  • the network is characterized in that the junction portion is formed between the nanowires, which is formed by physically fusion by plasmonic welding.
  • the surface contact between nanowires formed by a simple coating method of nanowires and carbon nanotubes is easily slipped or broken by bending, resulting in low electrical and mechanical stability.
  • the transparent conductive film of the hybrid nanomaterial of the present invention has a low resistance and high permeability as the above-described bonding portion is formed in the network and at the same time does not easily fall off due to physical deformation such as bending, and maintains mechanical and electrical connection stability. high.
  • the carbon nanotubes are preferably contained in 1 to 25% by weight of the nanowires.
  • the carbon nanotubes refer to nanomaterials made of carbon in the form of tubes having a crystalline structure.
  • the carbon nanotubes may include multi-walled carbon nanotubes, single-walled carbon nanotubes, or carbon fibers.
  • the nanowires are characterized in that the elongated structure that can form a film in a physically fused form with each other.
  • the nanowires may be made of metal.
  • the metal may be Ag, Ni, Cu or Au, preferably Ag.
  • the nanowires may be made of a pure metal, and preferably contain at least 50% of the metal.
  • the nanowires may include other metals or semiconductors or polymer materials in addition to the metals.
  • the network may have a structure in which the nanowires and the carbon nanotubes are completely mixed with each other.
  • the network may have a layer-by-layer structure in which the nanowires and the carbon nanotubes cross each other.
  • a polymer or the like may be additionally coated on the transparent conductive film.
  • Such a polymer material may improve the bonding force between the nanomaterials and the substrate, and in some cases, may improve the conductivity.
  • graphene, reduced graphene oxide, graphene oxide or metal particles may be further coated on the transparent conductive film.
  • the present invention is a transparent substrate; And it provides a method of manufacturing a hybrid nanomaterial based transparent conductive substrate comprising a network of a plurality of carbon nanotubes and a plurality of nanowires formed on the upper surface of the transparent conductive substrate.
  • the method for producing a transparent conductive film of a hybrid nanomaterial comprises the steps of: (i) applying a nanowire on a transparent substrate; (ii) applying carbon nanotubes; And (iii) fusion bonding nanowires applied on the transparent substrate by plasmonic welding.
  • Steps (i) to (iii) may be performed simultaneously or sequentially.
  • a method for producing a transparent conductive film of a hybrid nanomaterial includes (i) mixing nanowires with carbon nanotubes; (ii) applying the mixture onto a transparent substrate; And (iii) fusion bonding the mixture applied on the transparent substrate by plasmonic welding.
  • the plasmonic welding generates a plasmon wave only at the contact region where two nanowires overlap by irradiating light onto the mixture coated on the transparent substrate using UV-lamp, halogen lamp, and laser.
  • heat is generated at the contact sites (intersected sites) of the two nanowires, and the two nanowires are welded, and the carbon nanotubes adjacent to the nanowire contact sites are buried in the welding process. It forms a bond with the nanowires, thereby strengthening the binding force between the carbon nanotubes and the nanowires.
  • the manufacturing of transparent conductive films using carbon nanotubes or nanowires has advantages, but using them together may generate new synergies that can combine the advantages of both materials. That is, in the case of carbon nanotubes, it is easy to make a transparent conductive film, but it is very difficult to maintain a low surface resistance at high permeability, and thus it is difficult to use in applications requiring high permeability.
  • nanowires can produce transparent conductive films with very low resistance, but it is still very difficult to form thin films with high permeability, and the flexibility is relatively lower than that of carbon nanotubes. The resistance may change. Therefore, there is a disadvantage in that it is difficult to apply to a new flexible device that requires flexibility. Very usefully, if a small amount of nanowires and carbon nanotubes are mixed or sequentially formed to have high permeability, low resistance can be obtained at high permeability that is difficult to reach with two nanomaterials.
  • Such nanowires may be nanowires made of pure Ag, or may be coated with a chemical such as PVP on the surface of Ag nanowires, or some other metal or semiconductor material attached thereto.
  • a transparent conductive substrate various transparent polymer substrates such as PC, PET, PMMA, and PE may be used, and glass-based transparent substrates such as soda lime glass and quartz may be used.
  • a method of manufacturing a hybrid nanomaterial-based transparent conductive film according to the present invention may include applying carbon nanotubes and nanowires on a transparent conductive substrate.
  • plasmonic welding utilizes the characteristics of nanowires that are sintered at a high temperature, and under certain conditions such as surface plasmon effect, only the contact portions of the nanowires heat up to be fused to each other.
  • UV-lamp, halogen lamp, laser, etc. can be used. This fusion is more effective in the case of containing carbon nanotubes, and when the flexible substrate is bent or folded, the resistance change with respect to the increasing tension is relatively small, which is very advantageous for making transparent electrodes for flexible devices. .
  • the plasmonic welding is performed at room temperature for 2 to 5 minutes, which takes much lower temperature and shorter time than conventional processes such as mechanical and thermal compression, and the transparent conductive film prepared under the above conditions It has low surface resistance of less than 100 mW / sq and high transmittance of more than 90%. In addition, the increase rate of the surface resistance hardly changed even after performing the 200 bending tests.
  • the bonding strength between nanowires can be improved, and the bonding strength between the nanowires can also be improved.
  • Figure 1a is a schematic diagram showing the process sequence of the present invention.
  • 1B is a schematic view showing a process sequence according to another embodiment of the present invention.
  • the present invention produced a nanomaterial film on a substrate by a so-called transfer method in which a nanomaterial physically uniformly formed on a membrane filter (Anodic Aluminum Oxide, AAO filter) is transferred to a substrate.
  • the silver nanowire solution dispersed at a concentration of 5 mg / mL and CNT solution dispersed at a concentration of 45 ⁇ g / mL were fixed at 5 ⁇ g / ⁇ l of the silver nanowire, and only the carbon nanotube content was changed (each 0.225 ⁇ g / ⁇ l, 0.45 ⁇ g / ⁇ l, 0.9 ⁇ g / ⁇ l, 1.35 ⁇ g / ⁇ l, 2.25 ⁇ g / ⁇ l, 4.5 ⁇ g / ⁇ l) were mixed.
  • AgNW was purchased from Nanopyxis Co. (Korea) and suspended in deionized water to prepare an AgNW dispersion. AgNWs average about 50 nm in diameter and 20-30 ⁇ m in length. The concentration of AgNW in the dispersion was about 5.0 mg ⁇ ml ⁇ 1 . SWCNT was manufactured by Top Nanosys Inc. (Korea) and had a length in the range of 1 to 5 ⁇ m and was 1.5 nm.
  • AgNW is fixed at 5 ⁇ l (25 ⁇ g) or 6 ⁇ l (30 ⁇ g), and SWCNT is 5, 10, 20, 30, 50, 100 ⁇ l (0.1, 0.2, 0.4, 0.6, 1, 2 ⁇ g).
  • vacuum filtration aluminum aluminum oxide, AAO
  • AAO aluminum oxide
  • Electrode VE-11, JEIO Electrode VE-11, JEIO
  • AgNW present in the transparent conductive film was welded by a polasmonic nano-welding process.
  • AgNW / SWCNT transparent conductive film formed on a PET (poly (ethyleneterephthalate)) substrate was prepared by irradiating broadband with a 21 Ushio tungsten halogen lamp having a light emission power density of 30 W / cm 2.
  • the transparent conductive film produced in Example 1 was cut at an aspect ratio of 1: 1 to form an electrode at the anode end, and then a digital multimeter was bitten at both ends, and then placed on a rod having a bending radius of 5 mm, and the bending and bending was performed. Was repeated to record the measurement data.
  • AgNW transparent conductive films were prepared in the same manner as in Example 2 except that the volume of the mixed SWCNTs was 0 ⁇ l.
  • the SWCNT transparent conductive film was prepared in the same manner as in Example 2 except that the AgNW dispersion was not mixed and only the SWCNT dispersion was mixed.
  • Figure 2a is a scanning electron microscope (SEM) picture of the transparent conductive film prepared from Comparative Example 1
  • Figure 2b is a scanning electron microscope (SEM) picture of the transparent conductive film prepared from Example 1
  • Figure 2c is Example 2 Scanning electron microscope (SEM) picture of the transparent conductive film prepared from
  • Figure 2d is a transmission electron microscope (TEM) picture of the transparent conductive film prepared from Example 2.
  • the transparent conductive films of Examples 1, 2 and Comparative Example 1 used a silicon wafer instead of a PET substrate as a substrate.
  • Example 1 serves as a cross-linking role of the carbon nanotubes (SWCNT) to connect the unconnected portion between the silver nanowires, it can be seen that the resistance is reduced, and the mechanical bonding force and stability are increased. .
  • the transparent conductive film of Example 2 has similar advantages as carbon nanotubes are added, like the transparent conductive film of Example 1, but is different from the transparent conductive film of Example 1 due to a plasmonic weliding process. It can be seen from the photograph that adjacent portions between other silver nanowires form a fused structure. For this reason, it can be seen that it has better characteristics than the transparent conductive film of Example 1.
  • FIG. 3A is an electrostatic force microscopy (EMF) photograph of the transparent conductive film prepared from Comparative Example 1
  • FIG. 3B is an electrostatic force microscopy (EMF) photograph of the transparent conductive film prepared from Example 2.
  • EMF electrostatic force microscopy
  • EFM is a device for measuring electrical characteristics such as charge and conductivity of a sample surface by using electrostatic force.
  • a silver coated AFM probe was used and a voltage of 5 V was applied.
  • the transparent conductive film prepared from Example 2 of Figure 3b was confirmed that the addition of the carbon nanotubes (SWCNT) also brightened the unconnected portion between the silver nanowires. That is, since the carbon nanotubes (SWCNT) plays a role of crosslinking to increase the electrical connection between the silver nanowires, it can be seen that the electrical stability is excellent because it is not easily separated even if mechanical or mechanical changes such as bending occur.
  • SWCNT carbon nanotubes
  • Figure 4 is a graph showing the surface resistance and transmittance of the transparent conductive film prepared from Comparative Example 1 and Example 2,
  • Figure 4a is fixed with 5 ⁇ l (25 ⁇ g) of silver nanowires, the mixture of carbon nanotubes (SWCNT) Prepared with varying volume to 0, 5, 10, 20, 30, 50, 100 ⁇ l (0, 0.1, 0.2, 0.4, 0.6, 1, 2 ⁇ g)
  • FIG. 4b shows 6 ⁇ l of silver nanowires (30 ⁇ g) Prepared by changing the volume of carbon nanotubes (SWCNT) to 0, 5, 10, 20, 30, 50, 100 ⁇ l (0, 0.1, 0.2, 0.4, 0.6, 1, 2 ⁇ g). will be.
  • the transparent conductive film of Comparative Example 1 has a very high surface resistance when the volume of the silver nanowires to be mixed is 5 ⁇ l (25 ⁇ g), but when the volume of the silver nanowires to be mixed is 6 ⁇ l (30 ⁇ g), the carbon nanotubes ( It was confirmed that the surface resistance was considerably lowered even if SWCNT) was not added. This result is considered to be because the transparent conductive film of Comparative Example 1 having a volume of 6 ⁇ l (30 ⁇ g) of the silver nanowires formed a three-dimensional conductive network of percolation due to a random direction.
  • the volume of silver nanowire is 6 ⁇ l (30 ⁇ g), it may be possible to obtain a very low surface resistance even without adding carbon nanotubes, but stability against mechanical changes such as adhesion and bending between the substrate or silver nanowires It is significantly lower than the transparent conductive film containing carbon nanotubes.
  • the surface resistance of 6 ⁇ l (30 ⁇ g) was lower than that of 5 ⁇ l (25 ⁇ g) of silver nanowires, but overall, about 5 ⁇ l of carbon nanotubes.
  • the surface resistance was significantly reduced. That is, it can be seen that the carbon nanotubes in the transparent conductive film play a role of crosslinking electrically connecting the silver nanowires.
  • 5 is an optical transmittance spectrum of the transparent conductive film prepared from Comparative Example 1, Comparative Example 2 and Example 2, wherein 5 ⁇ l of silver nanowires (25 ⁇ g), carbon in the transparent conductive film prepared from Example 2 A transparent conductive film (NW with SWCNT_low concentration) prepared at a low concentration of 5 ⁇ l (0.1 ⁇ g) of nanotubes, 6 ⁇ l (30 ⁇ g) of silver nanowires, and 100 ⁇ l (2 ⁇ g) of carbon nanotubes A transparent conductive film (NW with SWCNT_high concentration) was used. Comparative Example 1 is labeled “NW” on the graph, and Comparative Example 2 is labeled "SWCNT" on the graph.
  • the transmittance is affected by reflectance in the nanowire itself IR region.
  • the transparent conductive film (low concentration, high concentration) of Example 2 has a similar or low transmittance to the transparent conductive film of Comparative Example 2, and , It can be seen that the transparent conductive film of Comparative Example 1 has a low transmittance.
  • the transparent conductive film of Example 2 is superior in transparency to the transparent conductive film of Comparative Example 1.
  • Example 6 is a graph measuring surface resistance change according to the degree of bending of the transparent conductive films prepared from Example 2 and Comparative Example 2 before being bonded by plasmonic weliding. The flex resistance test was carried out with a radius of 5 mm.
  • SWCNT 0 indicated on the graph is a transparent conductive film of Comparative Example 2 before welding
  • SWCNT 5" to “SWCNT 100” is Example 2 before welding according to the volume of carbon nanotubes (5 to 100 ⁇ l).
  • transparent conductive film is a transparent conductive film of Comparative Example 2 before welding
  • SWCNT 5" to “SWCNT 100” is Example 2 before welding according to the volume of carbon nanotubes (5 to 100 ⁇ l).
  • Example 7 is a transparent conductive material prepared from Example 2 and Comparative Example 2 before and after joining by plasmonic weliding in order to confirm the effect of the presence or absence of plasmonic welding on the surface resistance of the transparent conductive film according to the present invention It is a graph showing the change in surface resistance according to the degree of bending of the film. The flex resistance test was carried out with a radius of 5 mm.
  • NW indicated on the graph is the transparent conductive film of Comparative Example 1 before welding
  • NW + SWCNT is the transparent conductive film of Example 2 before welding
  • NW with welding is the comparative example 1 of welding. It is a transparent conductive film
  • NW + SWCNT with welding refers to the transparent conductive film of Example 2 after welding.
  • the transparent conductive film of Comparative Example 1 had a sheet resistance of 53 ⁇ due to problems such as separation, break, and slip of the silver nanowires with the substrate as the number of bending increased before welding. Sqe- 1 to 478 ⁇ sqe- 1 increased significantly. Even after welding, the transparent conductive film of Comparative Example 1 significantly increased from 61 ⁇ ⁇ sqe ⁇ 1 to 309 ⁇ ⁇ sqe -1 .
  • the transparent conductive film of Example 2 before welding increased from 73 ⁇ ⁇ sqe ⁇ 1 to 203 ⁇ ⁇ sqe -1 as the number of bending increased. This means that the bending characteristics are improved due to the addition of carbon nanotubes.
  • the transparent conductive film of Example 2 after welding, had the lowest initial surface resistance of 26 ⁇ ⁇ sqe ⁇ 1 , and showed an increase amount less than 3.9% after the bending number increased to 27 ⁇ ⁇ sqe -1 .
  • the transparent conductive film composed of only silver nanowires before and after welding, and the transparent conductive film composed of carbon nanotubes and silver nanowires before welding were easily separated or deformed by physical changes such as bending of a substrate such as PET. As a result, the electrical coupling to the silver nanowires is broken, increasing the resistance.
  • the transparent conductive film of Example 2 which is welded by plasmonic welding, is welded with silver nanowires to form a strong bond, so that it is not easily broken or separated even by physical changes of the substrate, thereby providing excellent mechanical and electrical stability.
  • Figure 8a is a scanning electron microscope (FIG. 8A) to check the surface state of the transparent conductive film (pre-welding) prepared from Comparative Example 1 and
  • Figure 8B is a transparent conductive film (after welding) prepared from Example 2 It is a photograph taken by SEM), and the schematic diagram which showed these surface states is shown to FIG. 9A and 9B.
  • the transparent conductive film before welding composed of silver nanowires only (Comparative Example 1) recorded a significant change in resistance from 27 ⁇ ⁇ sqe -1 to 531 ⁇ ⁇ sqe -1 in repeated bending tests of surface bending and back bending. It can be seen that as the number of bending increases, the deviation becomes larger.
  • the transparent conductive film composed of carbon nanotubes and silver nanowires (Example 2) showed a low resistance change from 26 ⁇ ⁇ sqe -1 to 29 ⁇ ⁇ sqe -1 in repeated bending tests of surface bending and back bending. Increasing the number of bends did not change significantly. Through this, it was confirmed that the transparent conductive film welded by the plasmonic welding process was remarkably excellent in mechanical and electrical stability.
  • FIG. 11 is an optical image taken of the bending of a transparent conductive film made from Example 2 combined with an LED integrated circuit
  • FIG. 12 is taken from Example 2 combined with an LED integrated circuit. It is a current-voltage graph according to the degree of bending of the prepared transparent conductive film. At this time, the transparent conductive film prepared from Example 2 combined with the LED integrated circuit (bending by 0, 1, 50, 100, 150, 200 of each line of the graph) is shown.
  • the transparent conductive film of the hybrid nanomaterial according to the present invention includes nanowires and carbon nanotubes, and has a high permeability and a low resistance of 90% or more since the junction is formed between the nanowires through plasmonic welding. Therefore, the transparent conductive film according to the present invention can be used in various industrial fields such as RFID, print memory, display (OLED, EL, electronic paper, flexible display, etc.), sensor, battery (secondary battery, solar cell).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 투명 전도성 필름에 관한 것으로서, 투명 기판; 및 상기 투명 기판의 상면에 형성된 복수의 탄소나노튜브와 복수의 나노와이어의 네트워크를 포함하고, 상기 네트워크의 상기 나노와이어 상호간 접합부분이 형성되며, 상기 접합부분은 플라즈모닉 용접(plasmonic welding)에 의해 물리적으로 융착된 것을 특징으로 하며, 90 %이상의 높은 투과도를 유지하면서 나노와이어와 탄소나노튜브가 섞여있는 구조로서 높은 투과도에 비해 낮은 저항을 가지는 것을 특징으로 한다. 또한 유연성이 매우 증대되어 있으며, 플라즈모닉 용접(plasmonic welding)을 통해 나노와이어가 결합된 구조로 제작되어 있어서 필름의 굽힘에 의한 저항변화를 최소화할 수 있는 장점이 있다.

Description

하이브리드 나노 소재를 포함하는 투명 전도성 필름 및 이것의 제조방법
본 발명은 낮은 저항과 고투명도를 가지면서 우수한 유연성을 가진 투명 전도성 필름 및 이것의 제조방법에 관한 것이다.
일반적으로 투명 전도성 필름은 LCD, OLED, FED, PDP, 플렉서블 디스플레이 또는 전자 종이 등 각종 디스플레이 분야의 투명전극 등 전기전자기기의 필수적인 구성요소로 사용되고 있으며, 현재 주로 사용되고 있는 투명 전도성 필름 소재로는 ITO(인듐-주석산화물), ATO(안티모니-주석산화물), AZO(안티모니-아연산화물) 등과 같은 무기 산화물 도전성 소재를 사용하고 있다. 투명 전도성 필름에 사용되고 있는 상기 소재들은 내굴곡성이 낮아 몇 번의 굽힘 실험에서 저항이 급격히 상승하는 문제점이 있다. 따라서, 소재의 유연성이 매우 중요한데, 대표적으로 널리 알려진 탄소나노튜브와 그래핀은 유연하면서도 기계적 열적 전기적 성질이 좋아 각광받고 있는 소재이다. 하지만 이러한 탄소나노뷰트와 그래핀은 80~95%의 투과도에서 일반적으로 100~500 Ω/sq 값을 가지는데 특히 새로운 물질로 이루어진 투명 전도성 필름의 경우에는 90 % 이상의 투과도와 100 Ω/sq 이하의 요구조건을 만족하지 못하거나 공정의 어려움 때문에 응용분야가 매우 제한적이다.
(특허문헌 1) 한국공개특허 제2011-0003388호
(특허문헌 2) 한국공개특허 제2012-0050431호
본 발명의 목적은 투과도가 높은 상태에서 낮은 저항을 구현함과 동시에 유연성을 극대화한 투명 전도성 필름을 구현하는데 있다.
상기한 목적을 달성하기 위하여, 본 발명은 나노와이어에 탄소나노튜브를 첨가하여 제조된, 전체 투과도 90 %이상을 유지하는 고투과도의 투명 전도성 필름을 제공한다.
또한, 본 발명의 투명 전도성 필름은 플라즈모닉 용접(plasmonic welding) 공정을 이용함으로써, 상기 나노와이어 상호간에 접합부분을 형성하고, 상기 나노와이어 접합부분에 연결된 탄소나노튜브 또한 용접 공정 중에 묻혀 나노와이어 상호간 또는 탄소나노튜브와 나노와이어 간의 결합력이 향상되는 것을 특징으로 한다.
본 발명의 일 구체예에 따르면, 본 발명은 투명 기판; 및 상기 투명 기판의 상면에 형성된 복수의 탄소나노튜브와 복수의 나노와이어의 네트워크를 포함하고, 상기 네트워크의 상기 나노와이어 상호간에 접합부분이 형성되며, 상기 접합부분은 플라즈모닉 용접(plasmonic welding)에 의해 물리적으로 융착된 것을 특징으로 하는 하이브리드 나노소재의 투명 전도성 필름을 제공한다.
상기 탄소나노튜브는 나노와이어의 1 내지 25 중량%로 함유하는 것이 바람직하다.
상기 탄소나노튜브는 결정성의 구조를 가진 튜브형태의 탄소로 이루어진 나노물질을 의미한다. 상기 탄소나노튜브는 다중벽 탄소나노튜브, 단일벽 탄소나노튜브 또는 탄소 화이버를 포함할 수 있다.
상기 나노와이어는 서로 물리적으로 융착된 형태로 막을 이룰 수 있는 가늘고 긴 구조인 것을 특징으로 한다. 상기 나노와이어는 금속으로 이루어질 수 있다. 상기 금속은 Ag, Ni, Cu 및 Au로 이루어진 군에서 선택되는 하나 또는 그 이상일 수 있다. 바람직하게는 상기 나노와이어는 Ag로 이루어진다.
또는 상기 나노와이어는 금속 이외에 반도체 또는 폴리머를 포함할 수 있다. 상기 금속은 상기 나노와이어의 50 중량% 이상을 포함하는 것이 바람직하다. 상기 반도체는 Si, InP, GaN 및 ZnO로 이루어진 군에서 선택되는 하나 또는 그 이상일 수 있다. 상기 폴리머는 폴리아세틸렌(Polyacetylene), 폴리아닐린(Polyaniline), 폴리피롤(Polypyrrole), 폴리티오펜(polythiophene) 및 폴리설퍼니트리드(poly sulfur nitride)로 이루어진 군에서 선택되는 하나 또는 그 이상일 수 있다.
상기 네트워크는 상기 나노와이어와 상기 탄소나노튜브가 서로 완전히 섞여있는 구조일 수 있다. 또는 상기 네트워크는 상기 나노와이어와 상기 탄소나노튜브가 교차적으로 층층이 겹쳐진(layer-by-layer) 구조일 수 있다.
또한, 본 발명의 다른 구체예로서, 상기 투명 전도성 필름에 추가적으로 고분자 등을 코팅할 수 있다. 이러한 고분자 물질은 나노물질들과 기판과의 결합력을 향상시킬 수 있으며, 경우에 따라서는 전도도를 향상시킬 수 있다.
상기 투명 전도성 필름에 추가적으로 코팅할 수 있는 고분자 등은 그래핀, 환원된 그래핀 산화물(reduced graphene oxide), 그래핀 산화물 또는 금속 입자(Ag, Ni, Cu, Au 등)일 수 있다.
본 발명의 다른 구체예로서, 본 발명은 투명 기판; 및 상기 투명 기판의 상면에 형성된 복수의 탄소나노튜브와 복수의 나노와이어의 네트워크를 포함하는 하이브리드 나노소재의 투명 전도성 필름의 제조 방법을 제공한다.
본 발명의 일 구체예로서, 본 발명에 따른 하이브리드 나노소재의 투명 전도성 필름의 제조방법은 (i) 투명 기판 위에 나노와이어를 도포하는 단계; (ii) 탄소나노튜브를 도포하는 단계; 및 (iii) 상기 투명 기판 상에 도포된 나노와이어를 플라즈모닉 용접(plasmonic welding)을 통해 융착시키는 단계;를 포함한다.
상기 (i) 및 (ii) 단계는 동시 또는 순차적으로 진행될 수 있다.
본 발명의 또 다른 구체예로서, 하이브리드 나노소재의 투명 전도성 필름의 제조방법은 (i) 나노와이어와 탄소나노튜브를 혼합하는 단계; (ii) 상기 혼합물을 투명 기판 상에 도포하는 단계; 및 (iii) 상기 투명 기판 상에 도포된 혼합물을 플라즈모닉 용접(plasmonic welding)을 통해 융착시키는 단계;를 포함한다.
상기 플라즈모닉 용접(plasmonic welding)은 나노와이어 상호간 또는 나노와이어와 탄소나노튜브 상호간에 접착력을 향상하기 위해 표면 플라즈몬 효과를 이용해 나노와이어를 물리적으로 융착시키는 방법이다.
상기 (iii) 단계에서 상기 플라즈모닉 용접(plasmonic welding)은 상온에서 2 내지 5 분 동안 수행되는 것을 특징으로 한다.
본 발명의 투명 전도성 필름은 90 %이상의 높은 투과도를 유지하면서 나노와이어와 탄소나노튜브가 섞여있는 구조로서 높은 투과도에 비해 낮은 저항을 가지는 것을 특징으로 한다. 또한 유연성이 매우 증대되어 있으며, 플라즈모닉 용접(plasmonic welding)을 통해 나노와이어가 결합된 구조로 제작되어 있어서 필름의 굽힘에 의한 저항변화를 최소화할 수 있는 장점이 있다.
도 1a는 본 발명의 일 실시예에 따른 하이브리드 나노소재의 투명 전도성 필름을 제조하는 방법에 대한 모식도이다.
도 1b는 본 발명의 다른 실시예에 따른 하이브리드 나노소재의 투명 전도성 필름을 제조하는 방법에 대한 모식도이다.
추가적인 접합공정에 의해 나노와이어 간의 결합이 향상된 SEM(전자주사현미경) 이미지이다.
도 2a는 비교예 1로부터 제조된 투명 전도성 필름의 주사전자현미경(SEM) 사진이고, 도 2b는 실시예 1로부터 제조된 투명 전도성 필름의 주사전자현미경(SEM) 사진이며, 도 2c는 실시예 2로부터 제조된 투명 전도성 필름의 주사전자현미경(SEM)사진이며, 도 2d는 실시예 2로부터 제조된 투명 전도성 필름의 투과전자현미경(TEM) 사진이다.
도 3a는 비교예 1로부터 제조된 투명 전도성 필름의 정전기력 현미경(Electrostatic force microscopy, EFM) 사진이고, 도 3b는 실시예 2로부터 제조된 투명 전도성 필름의 정전기력 현미경(Electrostatic force microscopy, EFM) 사진이다.
도 4는 비교예 1 및 실시예 2로부터 제조된 투명 전도성 필름에 따른 표면저항 및 투과도 변화를 나타낸 그래프이다.
도 5는 비교예 1, 비교예 2 및 실시예 2로부터 제조된 투명 전도성 필름의 광학 투과도 스펙트럼이다.
도 6은 플라즈모닉 용접(plasmonic weliding)으로 접합되기 전 실시예 2 및 비교예 2로부터 제조된 투명 전도성 필름의 굽힘 정도에 따른 표면저항 변화를 측정한 그래프이다.
도 7은 본 발명에 따른 투명 전도성 필름의 표면저항에 플라즈모닉 용접유무가 미치는 영향을 확인하기 위해서, 플라즈모닉 용접(plasmonic weliding)전과 후의 실시예 2 및 비교예 2로부터 제조된 투명 전도성 필름의 굽힘 정도에 따른 표면저항 변화를 나타낸 그래프이다.
도 8a는 비교예 1로부터 제조된 투명 전도성 필름(용접 전)과 도 8b는 실시예 2로부터 제조된 투명 전도성 필름(용접 후)의 굽힘실험이 종료된 후에 대한 표면 상태를 확인하기 위하여 주사전자현미경(SEM)으로 촬영한 사진이다.
굽힘실험이 종료된 후, 도 9a는 비교예 1로부터 제조된 투명 전도성 필름(용접 전)과 도 9b는 실시예 2로부터 제조된 투명 전도성 필름(용접 후)의 표면 상태를 나타낸 모식도이다.
도 10은 실시예 2로부터 제조된 투명 전도성 필름의 두 가지 방향의 모멘트를 적용한 굽힘에 따른 표면저항을 나타낸 그래프이다.
도 11은 LED 집적회로(integrated circuit)와 결합된 실시예 2로부터 제조된 투명 전도성 필름의 굽힘에 따른 광학 이미지이다.
도 12는 LED 집적회로(integrated circuit)와 결합된 실시예 2로부터 제조된 투명 전도성 필름의 굽힘 정도에 따른 전류-전압 그래프이다.
본 발명은 나노와이어에 탄소나노튜브를 첨가하여 제조된, 전체 투과도 90 %이상을 유지하는 고투과도의 투명 전도성 필름에 관한 것이다. 바람직하게는 투과도가 95 %이상인 것을 특징으로 한다.
또한, 본 발명의 투명 전도성 필름은 나노와이어 상호간 또는 탄소나노튜브와 나노와이어 간의 결합력을 향상시키기 위해 플라즈모닉 용접(plasmonic welding)을 통하여 상기 나노와이어 간에 접합된 형태를 가지는 것을 특징으로 한다.
보다 구체적으로, 상기 플라즈모닉 용접(plasmonic welding) 공정은 상기 투명 전도성 필름의 나노와이어 상호간에 플라즈몬 효과를 이용하여 접합부분을 형성하나, 나노와이어와 탄소나노튜브 간에는 용접에 의해 접합이 형성되지 않는다. 다만, 상기 나노와이어 접합부분에 인접한 탄소나노튜브는 상기 플라즈모닉 용접 공정 중에 묻혀 나노와이어와 결합이 형성되므로, 이로 인해 탄소나노튜브와 나노와이어 간에는 결속력이 발생한다. 따라서, 나노와이어를 단독으로 사용한 투명 전도성 필름보다 탄소나노튜브와 나노와이어의 조합으로 이루어진 본 발명의 투명 전도성 필름은 나노와이어 상호간 또는 탄소나노튜브와 나노와이어 간에 결합력이 우수하여 저항이 낮을 뿐만 아니라, 기판의 물리적 변화에 따른 전기적ㅇ기계적 안정성이 훨씬 우수하다.
본 발명에서 사용되는 "나노소재"는 나노튜브, 나노와이어, 등의 나노사이즈의 구조체를 모두 포함하는 것으로 해석되어야 하며, 이는 모두 본 발명의 범위에 속한다. 즉, 본 발명은 탄소나노튜브(carbon nanotube), 메탈나노와이어(metal nanowire; 예를 들면, Silver nanowire, Cu nanowire 등), 이들의 조합으로도 구성된 물질을 "나노소재"로 포함하며, 본 발명은 용액 상태에서 멤브레인 필터를 통해 걸러진 나노소재를 기판에 전사시키는 방식으로 나노소재 필름을 제조한다. 따라서, 본 발명에 따른 나노소재는 용액에 분산될 수 있는 용액 기반의 나노소재로서, 멤브레인 필터의 기공을 통과하지 못함으로써 멤브레인 필터에 여과물(filtrate) 균일하게 흡착될 수 있다.
본 발명의 일 구체예에 따르면, 본 발명은 투명 기판; 및 상기 투명 기판의 상면에 형성된 복수의 탄소나노튜브와 복수의 나노와이어의 네트워크를 포함하는 하이브리드 나노소재의 투명 전도성 필름을 제공한다.
상기 네트워크는 상기 나노와이어 상호간에 접합부분이 형성되는 것을 특징으로 하는데, 이는 플라즈모닉 용접(plasmonic welding)에 의해 물리적으로 융착되어 형성된다.
다시 말해, 나노와이어와 탄소나노튜브의 단순 도포 방식으로 형성된 나노와이어간 표면접촉은 굽힘에 의해 손쉽게 탈락(slide, broken)되거나 분리되어 전기적, 기계적 안정성이 낮다. 그러나, 본 발명의 하이브리드 나노소재의 투명 전도성 필름은 상술한 바와 같은 접합부분이 네트워크 내에 형성되어 낮은 저항과 높은 투과도를 갖는 동시에 굽힘과 같은 물리적 변형에도 쉽게 탈락되지 않고 기계적, 전기적 연결을 유지하므로 안정성이 높다.
상기 탄소나노튜브는 상기 나노와이어의 1 내지 25 중량%로 함유하는 것이 바람직하다.
상기 탄소나노튜브는 결정성의 구조를 가진 튜브 형태의 탄소로 이루어진 나노물질을 의미한다. 상기 탄소나노튜브는 다중벽 탄소나노튜브, 단일벽 탄소나노튜브 또는 탄소 화이버를 포함할 수 있다.
상기 나노와이어는 서로 물리적으로 융착된 형태로 막을 이룰 수 있는 가늘고 긴 구조인 것을 특징으로 한다.
상기 나노와이어는 금속으로 이루어질 수 있다. 상기 금속은 Ag, Ni, Cu 또는 Au일 수 있으며, 바람직하게는 Ag이다. 상기 나노와이어는 순수한 금속으로 이루어질 수 있으며, 상기 금속을 50 % 이상 포함하는 것이 바람직하다.
또는 상기 나노와이어는 상기 금속 이외에 다른 금속 또는 반도체 또는 폴리머 물질을 포함할 수 있다.
상기 네트워크는 상기 나노와이어와 상기 탄소나노튜브가 서로 완전히 섞여있는 구조일 수 있다. 또는 상기 네트워크는 상기 나노와이어와 상기 탄소나노튜브가 교차적으로 층층이 겹쳐진(layer-by-layer) 구조일 수 있다.
본 발명의 다른 구체예로서, 상기 투명 전도성 필름에 추가적으로 고분자 등을 코팅할 수 있다. 이러한 고분자 물질은 나노물질들과 기판과의 결합력을 향상시킬 수 있으며, 경우에 따라서는 전도도를 향상시킬 수 있다.
상기 투명 전도성 필름의 전도도를 향상시키기 위하여, 상기 투명 전도성 필름 위에 그래핀, 환원된 그래핀 산화물, 그래핀 산화물 또는 금속 입자(Ag, Ni, Cu, Au 등) 등을 추가로 코팅할 수 있다.
본 발명의 다른 구체예로서, 본 발명은 투명 기판; 및 상기 투명 전도성 기판의 상면에 형성된 복수의 탄소나노튜브와 복수의 나노와이어의 네트워크를 포함하는 하이브리드 나노소재 기반 투명 전도성 기판의 제조 방법을 제공한다.
구체적으로, 본 발명에 따른 하이브리드 나노소재의 투명 전도성 필름의 제조방법은 (i) 투명 기판 위에 나노와이어를 도포하는 단계; (ii) 탄소나노튜브를 도포하는 단계; 및 (iii) 상기 투명 기판 상에 도포된 나노와이어를 플라즈모닉 용접(plasmonic welding)으로 융착시키는 단계;를 포함한다.
상기 (i) 내지 (iii) 단계는 동시 또는 순차적으로 진행될 수 있다.
본 발명의 또 다른 구체예로서, 하이브리드 나노소재의 투명 전도성 필름의 제조방법은 (i) 나노와이어와 탄소나노튜브를 혼합하는 단계; (ii) 상기 혼합물을 투명 기판 상에 도포하는 단계; 및 (iii) 상기 투명 기판 상에 도포된 혼합물을 플라즈모닉 용접(plasmonic welding)으로 융착시키는 단계;를 포함한다.
상기 플라즈모닉 용접(plasmonic welding)은 상기 투명 기판 상에 도포된 혼합물에 UV-lamp, Halogen Lamp, Laser를 이용하여 빛을 조사함으로써, 두 나노와이어가 겹쳐진 접촉 부위에서만 플라즈몬파(plasmon wave)를 발생시키고, 이러한 표면 플라즈몬 효과에 의해 두 나노와이어의 접촉 부위(교차되는 부위)에서 열이 발생되어 두 나노와이어는 용접(welding)되고, 상기 나노와이어 접촉 부위에 인접한 탄소나노튜브는 상기 용접 과정에 묻혀서 나노와이어와 결합을 형성하게 되고, 이로 인해 탄소나노튜브와 나노와이어 간의 결속력이 강화된다.
나노와이어간 또는 나노와이어와 탄소나노튜브 상호간에 접착력을 향상하여 접촉저항을 줄이고, 유연성과 신축성을 증가시키기 위해 표면 플라즈몬 효과를 이용해 나노와이어를 물리적으로 융착시킨다.
탄소나노튜브나 나노와이어를 이용해 투명전도성 필름을 제조하게 되면 각각 장점이 있지만 이를 함께 사용하게 되면 두 물질이 가지는 장점을 결합할 수 있는 새로운 시너지효과가 발생할 수 있다. 즉, 탄소나노튜브의 경우에는 투명전도성 필름을 만들기 용이하지만 높은 투과도에서 표면저항을 낮게 유지하는 것이 매우 어려워서 고투과도가 요구되는 응용분야에 사용이 어렵다. 또한 나노와이어는 매우 낮은 저항을 갖는 투명전도성 필름을 제조할 수 있지만 여전히 고투과도를 가지는 박막을 형성하기가 매우 어려우며, 또한 유연성이 상대적으로 탄소나노튜브에 비해 떨어져서 공정이나 작업 중에 나노와이어가 부러지거나 저항이 변화되기도 한다. 따라서 유연성을 필요로 하는 새로운 유연 소자에는 적용이 어렵다는 단점이 있다. 매우 유용하게도 높은 투과도를 가지도록 적은 분량의 나노와이어와 탄소나노튜브를 혼합하거나 순차적으로 막을 만들게 되면, 오히려 두 나노물질로 도달하기 어려운 높은 투과도에서 낮은 저항을 얻을 수 있게 된다.
이는 일반적으로 나노와이어가 높은 투과도에서는 퍼콜레이션(percolation)이 어려운 반면, 탄소나노튜브는 매우 유연해서 이러한 나노와어를 감싸게 되어 전체적으로 퍼콜레이션 네트워크(percolation network)를 잘 이루도록 만들게 된다. 그런데 이러한 탄소나노튜브는 미량을 넣었을 경우에는 거의 투과도에는 영향을 미치지 않게 되어 전체적으로 높은 투과도와 낮은 저항을 가지는 투명전도성 필름이 가능하게 되는 것이다.
이러한 나노와이어로는 순수한 Ag로 이루어진 나노와이어일 수 있으며, 또는 Ag 나노와이어의 표면에 PVP와 같은 화학물질로 코팅된 것이나 다른 금속 또는 반도체 물질이 일부 부착된 형태일 수 있다.
투명 전도성 기판의 경우에는 PC, PET, PMMA, PE 등 다양한 투명 폴리머기판이 사용될 수 있으며, 소다석회유리, 석영 등 유리계열의 투명한 기판이 사용될 수 있다.
본 발명에 따른 하이브리드 나노소재 기반 투명전도성 필름의 제조 방법으로서, 투명 전도성 기판 위에 탄소나노튜브와 나노와이어를 도포하는 단계를 포함할 수 있다.
상기 제조 방법에서 플라즈모닉 용접(plasmonic welding)은 고온에서 소결(sintering)되는 나노와이어의 특성을 이용한 것으로, 표면 플라즈몬 효과와 같이 특정한 조건 하에서는 나노와이어의 접촉 부분만 열이 높이 올라서 서로 융착되도록 하는 기술로, UV-lamp, Halogen Lamp, Laser 등을 이용할 수 있다. 이러한 융착은 탄소나노튜브가 들어있는 경우에 더욱 큰 효과를 발휘하게 되어 유연한 기판을 구부리거나 접었을 때, 늘어나는 인장에 대해 저항변화가 상대적으로 매우 적게 줄어들게 되어 유연소자를 위한 투명전극을 만드는데 매우 유리하다.
또한, 상기 플라즈모닉 용접(plasmonic welding)은 상온에서 2 분 내지 5 분간 수행되는데, 이는 기계적, 열적 압착과 같은 종래 공정보다 훨씬 낮은 온도, 짧은 시간이 소요될뿐더러, 상기 조건 하에서 제조된 투명 전도성 필름은 100 Ω/sq 이하의 낮은 표면저항과 90%이상의 높은 투과도를 가진다. 또한, 200회 굽힘 시험을 수행한 후에도 표면저항의 증가율이 거의 변함이 없었다.
또한 기계적으로 고온에서 물리적인 힘을 가해 압착하는 것으로 나노와이어간의 결합력을 향상시킬 수 있으며, 또한 고분자 등의 코팅을 통해서도 상호간의 결합력을 향상시킬 수 있다.
도 1a는 본 발명의 공정 순서를 모식도로 나타낸 것이고. 도 1b는 본 발명의 다른 실시예에 따른 공정 순서를 모식도로 나타낸 것이다. 적은 양의 탄소나노튜브가 첨가됨으로써 나노와이어 사이에 접촉이 안 된 부분을 연결시켜 저항의 감소와 약간의 내굴곡성 향상을 가져오고 플라즈모닉 용접(plasmonic welding) 공정을 통해 나노와이어 접합 부분을 융착시켜 높은 투과도에서도 굽힘에 강한 투명 전도성 필름을 만들 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
실시예 1.
투명 전도성 필름 제조
본 발명은 멤브레인 필터(Anodic Aluminum Oxide, AAO filter)에 물리적으로 균일하게 형성된 나노소재를 기판으로 옮기는, 소위 전사(transfer) 방식으로 기판상에 나노소재 필름을 제조하였다. 5 ㎎/㎖의 농도로 분산된 실버 나노와이어 용액과 45 ㎍/㎖의 농도로 분산된 CNT 용액을 실버 나노와이어의 함량은 5 ㎍/㎕로 고정하고, 탄소나노튜브의 함량만 변화시켜 (각각 0.225 ㎍/㎕, 0.45 ㎍/㎕, 0.9 ㎍/㎕, 1.35 ㎍/㎕, 2.25 ㎍/㎕, 4.5 ㎍/㎕) 혼합하였다. 그 다음 알루미늄 양극 산화물(AAO, anodic aluminum oxide) 막에 진공여과 방식으로 혼합된 재료만 걸러낸 다음 수산화나트륨(NaOH) 수용액에 알루미늄 양극 산화물을 녹여 혼합된 재료의 박막만을 폴리에틸렌 테레프탈레이트(PET, polyethylene terephthalate) 필름 위에 전사시켜 투명 전도성 필름을 제작하였다.
실시예 2.
플라즈모닉 용접(plasmonic welding)공정을 이용한 투명 전도성 필름의 제조
AgNW를 Nanopyxis Co.(한국)에서 구입하여 탈이온수에 현탁하여 AgNW 분산액을 제조하였다. AgNW는 평균 약 50 nm 지름과 20-30 ㎛ 길이를 갖는다. 상기 분산액에서 AgNW의 농도는 약 5.0 ㎎·㎖-1이었다. SWCNT는 Top Nanosys Inc.(한국)에 의하여 제조된 것으로 1 내지 5 ㎛ 범위의 길이를 갖고 1.5 nm이었다. SWCNT 5 mg 및 나트륨 도데실 펄페이트(SDS, 시그마 알드리히) 500 mg의 혼합물을 50 mL 탈이온수에 분산시키고, 80 % 고도에서 프로브 소니케이션(Sonics VibracellTM)을 이용하여 30분간 팁-초음파 분산시켰다. 분산된 SWCNT 용액을 10,000 rpm에서 원심분리시켜 임의의 불순물을 제거하였고, 상층액을 조심스럽게 따라내서 옮겨 SWCNT 분산액을 제조하였다. 최종 SWCNT의 농도는 20 ㎍·㎖-1이었다. 상기 각각의 AgNW와 SWCNT의 분산액을 다양한 부피비로 혼합하였다. 여기서, 상기 AgNW는 5 ㎕(25 ㎍) 또는 6 ㎕(30 ㎍)로 고정되고, SWCNT는 고정된 각 AgNW 부피에 대해 5, 10, 20, 30, 50, 100 ㎕(0.1, 0.2, 0.4, 0.6, 1, 2 ㎍)로 혼합되었다. 상기 혼합된 AgNW/SWCNT 분산액을 투명 전도성 전극으로 제조하기 위해 우선, 0.2 ㎛ 직경의 기공을 갖는 알루미늄 양극 산화물(anodic aluminum oxide, AAO) 막에 진공여과(vacuum filtration)(Electroc Aspirator VE-11, JEIO Tech) 방식으로 혼합된 AgNW/SWCNT만을 걸러낸 다음, 3 몰랄 NaOH 용액으로 산화 알루미늄 양극막을 제거한 후, 기판상으로 옮기는 전사(transfer)방식으로 상기 기판 상에 AgNW/SWCNT 투명 전도성 필름을 제조하고, 플라즈모닉 나노-접합(polasmonic nano-welding)공정으로 상기 투명 전도성 필름 내에 존재하는 AgNW를 용접하였다. 이때, 30 W/㎠의 발광 파워 밀도를 갖는 21 Ushio 텅스텐 할로겐 램프를 이용하여 광대역으로 조사하여 PET(poly(ethyleneterephthalate)) 기판 상에 형성된 AgNW/SWCNT 투명 전도성 필름을 제조하였다.
실시예 3.
굽힘 실험
실시예 1에서 제작된 투명 전도성 필름을 종횡비(aspect ratio) 1:1의 비율로 잘라 양극단에 전극을 형성한 다음 양단에 디지털 멀티미터를 물린 다음 굽힘 반경이 5 mm 인 막대 위에 올려놓고 굽힘과 폄을 반복하여 그 측정 데이터를 기록하였다.
비교예 1.
혼합되는 SWCNT의 부피가 0 ㎕라는 것을 제외하고는 상기 실시예 2와 모두 동일하게 AgNW 투명 전도성 필름을 제조하였다.
비교예 2.
AgNW 분산액이 혼합되지 않고, SWCNT 분산액만 혼합된다는 것을 제외하고는 상기 실시예 2와 모두 동일하게 SWCNT 투명 전도성 필름을 제조하였다.
도 2a는 비교예 1로부터 제조된 투명 전도성 필름의 주사전자현미경(SEM) 사진이고, 도 2b는 실시예 1로부터 제조된 투명 전도성 필름의 주사전자현미경(SEM) 사진이며, 도 2c는 실시예 2로부터 제조된 투명 전도성 필름의 주사전자현미경(SEM)사진이며, 도 2d는 실시예 2로부터 제조된 투명 전도성 필름의 투과전자현미경(TEM) 사진이다. 이때, 상기 실시예 1, 2 및 비교예 1의 투명 전도성 필름은 PET 기판이 아닌 실리콘 웨이퍼를 기판으로 하였다.
상기 도 2에 나타난 바와 같이, 비교예 1의 투명 전도성 필름은 각 실버 나노와이어간에 융착된 부분없이 비규칙적으로 네트워크가 형성되어 실버 나노와이어와 인접한 다른 실버 나노와이어 또는 기판 사이에 결합력 및 접착력이 약하므로, 기계적 안정성이 현저히 낮다는 것을 알 수 있다.
반면, 실시예 1의 투명 전도성 필름은 탄소나노튜브(SWCNT)가 실버 나노와이어 사이에 연결이 안된 부분을 연결하는 가교역활을 하므로, 저항은 감소하고, 기계적 결합력 및 안정성은 증가한다는 것을 알 수 있다.
실시예 2의 투명 전도성 필름은 상기 실시예 1의 투명 전도성 필름과 같이, 탄소나노튜브가 첨가되므로 유사한 장점을 가지나, 플라즈모닉 용접(plasmonic weliding) 공정으로 인해 상기 실시예 1의 투명 전도성 필름과는 다른, 실버 나노와이어 간 인접하던 부분이 융착된 구조를 형성하고 있다는 것을 사진으로 확인할 수 있다. 이로 인해 상기 실시예 1의 투명 전도성 필름보다 우수한 특성을 가질 것을 알 수 있다.
도 3a는 비교예 1로부터 제조된 투명 전도성 필름의 정전기력 현미경(Electrostatic force microscopy, EFM) 사진이고, 도 3b는 실시예 2로부터 제조된 투명 전도성 필름의 정전기력 현미경(Electrostatic force microscopy, EFM) 사진이다.
EFM은 정전기력을 이용하여 샘플 표면의 전하, 전도도와 같은 전기적 특성을 측정하는 장치로, 본 발명에서는 은으로 코팅된 AFM 탐침을 사용하였고, 5 V의 전압을 걸어주었다.
도 3a 및 도 3b에 나타난 바와 같이, 표면의 전도도 차이는 사진의 명암을 통해 알 수 있는데, 비교예 1의 투명 전도성 필름과 상기 탐침 간 작용하는 정전기력(E-field)으로 인해 상기 비교예 1의 투명 전도성 필름 내에 존재하는 실버 나노와이어로 이루어진 네트워크에서 상 전이(phase shift)가 증가하였는데, 이는 실버 나노와이어 간에 이루어진 표면 접촉을 통해서만 전기적 흐름이 발생한다는 것을 알 수 있다. 그러나, 상기 실버 나노와이어 간의 표면 접촉은 굽힘과 같은 기계적 물리적 변화가 발생하게 되면 쉽게 분리되므로, 안정성이 낮다는 것을 알 수 있다.
반면, 도 3b의 실시예 2로부터 제조된 투명 전도성 필름은 탄소나노튜브(SWCNT)의 첨가로 인해 실버 나노와이어 사이에 연결이 안된 부분도 밝아진 것을 확인하였다. 즉, 탄소나노튜브(SWCNT)가 실버 나노와이어 사이에서 전기적 연결을 증가시키는 가교역할을 하고 있으므로, 굽힘과 같은 기계적 물리적 변화가 발생하여도 쉽게 분리되지 않아 전기적 안정성이 우수하다는 것을 알 수 있다.
도 4는 비교예 1 및 실시예 2로부터 제조된 투명 전도성 필름의 표면저항과 투과도를 나타낸 그래프이고, 도 4a는 실버 나노와이어 5 ㎕(25 ㎍)로 고정하고, 탄소나노튜브(SWCNT)의 혼합부피를 0, 5, 10, 20, 30, 50, 100 ㎕(0, 0.1, 0.2, 0.4, 0.6, 1, 2 ㎍)로 변화시키면서 제조한 것이고, 도 4b는 실버 나노와이어 6 ㎕(30 ㎍)로 고정하고, 탄소나노튜브(SWCNT)의 혼합부피를 0, 5, 10, 20, 30, 50, 100 ㎕(0, 0.1, 0.2, 0.4, 0.6, 1, 2 ㎍)로 변화시키면서 제조한 것이다.
우선, 비교예 1 및 실시예 2의 투명 전도성 필름에서 혼합되는 실버 나노와이어와 탄소나노튜브의 부피에 관계없이 모두 투과도가 90% 이상으로 확인되었다.
한편, 비교예 1의 투명 전도성 필름은 혼합되는 실버 나노와이어의 부피가 5 ㎕(25 ㎍)이면 표면저항이 상당히 높으나, 혼합되는 실버 나노와이어의 부피가 6 ㎕(30 ㎍)이면 탄소나노튜브(SWCNT)가 첨가하지 않아도 표면저항이 상당히 저하되는 것을 확인하였다. 이러한 결과는 상기 실버 나노와이어의 부피가 6 ㎕(30 ㎍)인 비교예 1의 투명 전도성 필름이 랜덤한 방향으로 인한 퍼콜레이션의 3차원 전도성 네트워크를 형성하였기 때문으로 여겨진다. 실버 나노와이어의 부피가 6 ㎕(30 ㎍)인 경우에는 탄소나노튜브가 첨가되지 않아도 현저히 낮은 표면저항을 얻을 수 있을수도 있으나, 기판 또는 실버 나노와이어 간의 접착력과 굽힘과 같은 기계적 변화에 대한 안정성이 탄소나노튜브가 포함된 투명 전도성 필름에 비해 현저히 낮다.
또한, 실시예 2의 투명 전도성 필름에서도, 실버 나노와이어의 부피가 5 ㎕(25 ㎍)인 것보다 6 ㎕(30 ㎍)인 것이 표면저항이 더 낮았으나, 전체적으로, 탄소나노튜브가 약 5 ㎕의 미량이라도 혼합된 경우에는 표면저항이 현저히 감소한 것을 확인하였다. 즉, 투명 전도성 필름 내에서 탄소나노튜브는 실버 나노와이어 사이를 전기적으로 연결하는 가교역할을 하고 있음을 알 수 있다.
도 5는 비교예 1, 비교예 2 및 실시예 2로부터 제조된 투명 전도성 필름의 광학 투과도 스펙트럼으로, 이때, 상기 실시예 2로부터 제조된 투명 전도성 필름 중에서 실버 나노와이어 5 ㎕(25 ㎍), 탄소나노튜브 5 ㎕(0.1 ㎍)의 낮은 농도로 제조된 투명 전도성 필름(NW with SWCNT_저농도)과 실버 나노와이어 6 ㎕(30 ㎍), 탄소나노튜브 100 ㎕(2 ㎍)의 높은 농도로 제조된 투명 전도성 필름(NW with SWCNT_고농도)을 이용하였다. 비교예 1은 그래프 상에 "NW", 비교예 2는 그래프 상에 "SWCNT"로 표기되었다.
투과도는 나노와이어 자체 IR 영역에서의 반사율에 영향을 받는데, 도 5에 나타난 바와 같이, 실시예 2의 투명 전도성 필름(낮은 농도, 높은 농도)은 비교예 2의 투명 전도성 필름과 투과도가 유사하거나 낮고, 비교예 1의 투명 전도성 필름이 투과도가 낮은 것을 확인할 수 있다.
즉, 실시예 2의 투명 전도성 필름(낮은 농도, 높은 농도)은 첨가된 탄소나노튜브가 나노와이어를 감싸므로 나노와이어의 표면 특성이 변화하게되고, 이는 나노와이어의 IR 영역의 반사율 증가를 억제한다. 따라서, 실시예 2의 투명 전도성 필름은 비교예 1의 투명 전도성 필름보다 투과도가 우수하다.
도 6은 플라즈모닉 용접(plasmonic weliding)으로 접합되기 전 실시예 2 및 비교예 2로부터 제조된 투명 전도성 필름의 굽힘 정도에 따른 표면저항 변화를 측정한 그래프이다. 내굴곡성의 시험은 반경 5 mm로 진행하였다.
이때, 그래프 상에 표기된 "SWCNT 0"는 용접 전 비교예 2의 투명 전도성 필름이고, "SWCNT 5" 내지 "SWCNT 100"은 탄소나노튜브의 부피(5~100 ㎕)에 따른 용접 전 실시예 2의 투명 전도성 필름을 나타낸다.
도 6에 나타난 바와 같이, 탄소나노튜브만으로 되어있는 투명 전도성 필름(비교예 2)의 굽힘 시험에서 횟수가 증가함에 따라 큰 폭으로 표면저항이 증가되는 것을 확인할 수 있으며, 실시예 2의 투명 전도성 필름의 경우 나노와이어만 있는 시료보다 저항의 증가가 적다는 걸 볼 수 있다. 이는 나노튜브가 첨가됨으로 인해서 굽힘으로 인한 기판과 나노와이어의 이탈, 분리, 박리 현상을 약간 잡아준다고 여겨진다.
도 7은 본 발명에 따른 투명 전도성 필름의 표면저항에 플라즈모닉 용접유무가 미치는 영향을 확인하기 위해서, 플라즈모닉 용접(plasmonic weliding)으로 접합하기 전과 후의 실시예 2 및 비교예 2로부터 제조된 투명 전도성 필름의 굽힘 정도에 따른 표면저항 변화를 나타낸 그래프이다. 내굴곡성의 시험은 반경 5 mm로 진행하였다.
이때, 그래프 상에 표기된 "NW"는 용접 전 비교예 1의 투명 전도성 필름이고, "NW+SWCNT"는 용접 전 실시예 2의 투명 전도성 필름이며, "NW with welding"은 용접 후 비교예 1의 투명 전도성 필름이며, "NW+SWCNT with welding"은 용접 후 실시예 2의 투명 전도성 필름을 나타낸다.
도 7에 나타난 바와 같이, 비교예 1의 투명 전도성 필름은 용접 전에는 굽힘 횟수가 증가할수록 실버 나노와이어의 기판과의 분리, 부서짐(break), 미끌림(slide)과 같은 문제로 인해서 면 저항이 53 Ω·sqe-1에서 478 Ω·sqe-1 현저히 증가하였다. 용접 후에도 비교예 1의 투명 전도성 필름은 61 Ω·sqe-1에서 309 Ω·sqe-1 현저히 증가하였다.
용접 전 실시예 2의 투명 전도성 필름은 굽힘 횟수가 증가함에 따라 73 Ω·sqe-1에서 203 Ω·sqe-1로 증가하였다. 이는 탄소나노튜브의 첨가로 인해 굽힘 특성이 향상되었음을 의미한다. 반면, 용접 후 실시예 2의 투명 전도성 필름은 초기 표면저항이 26 Ω·sqe-1으로 가장 낮았으며, 굽힘 횟수가 증가한 후에도 27 Ω·sqe-1로, 3.9%보다 낮은 증가량을 보였다.
상기 결과들을 종합하면 용접 전, 후의 실버 나노와이어만으로 구성된 투명 전도성 필름 및 용접 전의 탄소나노튜브와 실버 나노와이어로 구성된 투명 전도성 필름은 PET와 같은 기판의 굽힙과 같은 물리적 변화에 의해 쉽게 분리되거나 결함이 발생하므로, 실버 나노와이어로 연결된 전기적 결합이 끊어지게 되어 저항이 증가한다. 반면, 플라즈모닉 용접(plasmonic welding)을 통해 용접 된 실시예 2의 투명 전도성 필름은 실버 나노와이어끼리 융착되어 강한 접합을 형성하므로 기판의 물리적 변화에도 쉽게 부러지거나, 분리되지 않아 기계적, 전기적 안정성이 우수하다.
상기 굽힘 특성 실험 후, 도 8a는 비교예 1로부터 제조된 투명 전도성 필름(용접 전)과 도 8b는 실시예 2로부터 제조된 투명 전도성 필름(용접 후)의 표면 상태를 확인하기 위하여 주사전자현미경(SEM)으로 촬영한 사진이고, 이들의 표면 상태를 나타낸 모식도를 도 9a 및 도 9b에 나타내었다.
실시예 2로부터 제조된 투명 전도성 필름은 굽힘 특성에 따른 표면저항을 측정하기 위해서, 두 가지 방향의 모멘트를 적용하였다. 이를 도 10에 나타내었다. 이때, 굽힘의 각 방향의 정의는 투명 전도성 필름이 굽힘변형을 받을 때 볼록하게 되는 면이 표면이 될 때는 표면굽힘이라 하고, 이면이 될 때는 이면굽힘이라고 하며, 각 방향에 대해 200 회의 굽힘 실험을 수행하였다. 이때, 그래프 상에 표기된 "NW"는 비교예 1의 투명 전도성 필름이고, "NW+SWCNT with welding"은 용접 후 실시예 2의 투명 전도성 필름을 나타낸다.
실버 나노와이어만으로 구성된 용접 전의 투명 전도성 필름(비교예 1)은 표면굽힘과 이면굽힘의 반복적인 굽힘실험에서 27 Ω·sqe-1에서 531 Ω·sqe-1로 현저한 저항 변화량을 기록하였고, 이러한 차이는 굽힘 횟수가 증가할수록 편차가 더 커진다는 것을 알 수 있다.
반면, 카본나노튜브와 실버나노와이어로 구성된 투명 전도성 필름(실시예 2)은 표면굽힘과 이면굽힘의 반복적인 굽힘실험에서 26 Ω·sqe-1에서 29 Ω·sqe-1로 낮은 저항 변화량을 보였고, 굽힘횟수가 늘어나도 크게 변화하지 않았다. 이를 통해 플라즈모닉 용접 공정으로 용접된 투명 전도성 필름은 기계적, 전기적으로 안정성이 현저히 우수하다는 것을 확인하였다.
도 11은 LED 집적회로(integrated circuit)와 결합된 실시예 2로부터 제조된 투명 전도성 필름의 굽힘에 따른 광학적 이미지를 촬영한 것이고, 도 12는 LED 집적회로(integrated circuit)와 결합된 실시예 2로부터 제조된 투명 전도성 필름의 굽힘 정도에 따른 전류-전압 그래프이다. 이때, 그래프의 각 선의 0, 1, 50, 100, 150, 200 번으로 굽힘을 수행한 LED 집적회로(integrated circuit)와 결합된 실시예 2로부터 제조된 투명 전도성 필름을 나타낸다.
도 11 및 도 12에 나타난 바와 같이, 상기 LED 집적회로와 결합된 실시예 2의 투명 전도성 필름을 다양한 방향으로 굽혀도(표면굽힘과 이면굽힘) 밝기에 변화가 없으며, 다른 전압을 인가하여도 저항이 일정하다는 것을 알 수 있다.
본 발명에 따른 하이브리드 나노소재의 투명 전도성 필름은 나노와이어와 탄소나노튜브를 포함하고, 상기 나노와이어 간에 플라즈모닉 용접을 통해 접합부분이 형성되므로 90 %이상의 높은 투과도와 낮은 저항을 갖는다. 따라서, 본 발명에 따른 투명 전도성 필름은 RFID, 인쇄메모리, 디스플레이(OLED, EL, 전자종이, 플렉시블 디스플레이 등), 센서, 전지(이차전지, 태양전지) 등의 다양한 산업분야에 사용이 가능하다.

Claims (15)

  1. 투명 기판; 및 상기 투명 기판의 상면에 형성된 복수의 탄소나노튜브와 복수의 나노와이어의 네트워크를 포함하고,
    상기 네트워크의 상기 나노와이어 상호간 접합부분이 형성되며, 상기 접합부분은 플라즈모닉 용접(plasmonic welding)에 의해 물리적으로 융착된 것을 특징으로 하는 하이브리드 나노소재의 투명 전도성 필름.
  2. 제1항에 있어서,
    상기 탄소나노튜브는 상기 나노와이어의 1 내지 25 중량%로 함유되는 것인 하이브리드 나노소재의 투명 전도성 필름.
  3. 제1항에 있어서,
    상기 탄소나노튜브는 다중벽 탄소나노튜브, 단일벽 탄소나노튜브 및 탄소 화이버로 이루어진 군에서 선택되는 하나 또는 그 이상인 것인 하이브리드 나노소재의 투명 전도성 필름.
  4. 제1항에 있어서,
    상기 나노와이어는 Ag, Ni, Cu 및 Au로 이루어진 군에서 선택되는 하나 또는 그 이상의 금속을 포함하는 것인 하이브리드 나노소재의 투명 전도성 필름.
  5. 제4항에 있어서,
    상기 나노와이어는 상기 금속 이외에 반도체 또는 폴리머를 추가로 포함하는 것인 하이브리드 나노소재의 투명 전도성 필름.
  6. 제5항에 있어서,
    상기 반도체는 Si, InP, GaN 및 ZnO 이루어진 군에서 선택되는 하나 또는 그 이상인 것인 하이브리드 나노소재의 투명 전도성 필름.
  7. 제5항에 있어서,
    상기 폴리머는 폴리아세틸렌(Polyacetylene), 폴리아닐린(Polyaniline), 폴리피롤(Polypyrrole), 폴리티오펜(polythiophene) 및 폴리설퍼니트리드(poly sulfur nitride)로 이루어진 군에서 선택되는 하나 또는 그 이상인 것인 하이브리드 나노소재의 투명 전도성 필름.
  8. 제1항에 있어서,
    상기 네트워크는 상기 복수의 나노와이어와 상기 복수의 탄소나노튜브가 서로 섞여있는 구조인 것인 하이브리드 나노소재의 투명 전도성 필름.
  9. 제1항에 있어서,
    상기 네트워크는 상기 복수의 나노와이어와 상기 복수의 탄소나노튜브가 교차적으로 층층이 겹쳐진(layer-by-layer) 구조인 것인 하이브리드 나노소재의 투명 전도성 필름.
  10. 제1항에 있어서,
    상기 투명 전도성 필름은 고분자, 그래핀, 환원된 그래핀 산화물(reduced graphene oxide), 그래핀 산화물 및 금속 입자로 이루어진 군에서 선택되는 하나 또는 그 이상을 추가로 포함하는 것인 하이브리드 나노소재의 투명 전도성 필름.
  11. 제1항에 있어서,
    상기 투명 전도성 필름은 투과도가 95 %이상이고, 표면저항이 100 Ω/sq 이하인 것을 특징으로 하는 하이브리드 나노소재의 투명 전도성 필름.
  12. (i) 투명 기판 위에 나노와이어를 도포하는 단계;
    (ii) 탄소나노튜브를 도포하는 단계; 및
    (iii) 상기 투명 기판 상에 도포된 나노와이어를 플라즈모닉 용접(plasmonic welding)으로 융착시키는 단계;를 포함하는 하이브리드 나노소재의 투명 전도성 필름의 제조 방법.
  13. 제12항에 있어서,
    상기 (i) 및 (ii) 단계는 동시 또는 순차적으로 진행될 수 있는 것을 특징으로 하는 하이브리드 나노소재의 투명 전도성 필름의 제조 방법.
  14. (i) 나노와이어와 탄소나노튜브를 혼합하는 단계;
    (ii) 상기 혼합물을 투명 기판 상에 도포하는 단계; 및
    (iii) 상기 투명 기판 상에 도포된 혼합물을 플라즈모닉 용접(plasmonic welding)으로 융착시키는 단계;를 포함하는 하이브리드 나노소재의 투명 전도성 필름의 제조 방법.
  15. 제12항 내지 제14항 중 어느 한 항에 있어서,
    상기 (iii) 단계에서 상기 플라즈모닉 용접(plasmonic welding)은 상온에서 2 내지 5 분 동안 수행되는 것을 특징으로 하는 하이브리드 나노소재의 투명 전도성 필름의 제조방법.
PCT/KR2014/004998 2013-06-05 2014-06-05 하이브리드 나노 소재를 포함하는 투명 전도성 필름 및 이것의 제조방법 WO2014196821A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130064778 2013-06-05
KR10-2013-0064778 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014196821A1 true WO2014196821A1 (ko) 2014-12-11

Family

ID=52008390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004998 WO2014196821A1 (ko) 2013-06-05 2014-06-05 하이브리드 나노 소재를 포함하는 투명 전도성 필름 및 이것의 제조방법

Country Status (2)

Country Link
KR (1) KR20140143337A (ko)
WO (1) WO2014196821A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105989911A (zh) * 2015-02-10 2016-10-05 北京大学 一种石墨烯和金属纳米线复合透明导电塑料薄膜及其制备方法与应用
CN106611627A (zh) * 2015-10-23 2017-05-03 苏州汉纳材料科技有限公司 高质量碳纳米管透明导电膜及其制备方法与应用
CN107170507A (zh) * 2017-04-13 2017-09-15 湖南文理学院 一种复合导电薄膜及其制备方法
CN109037362A (zh) * 2018-07-04 2018-12-18 中国科学院上海高等研究院 用于异质结太阳电池的透明导电层及异质结太阳电池
CN111326280A (zh) * 2020-03-20 2020-06-23 广州新视界光电科技有限公司 一种石墨烯导电薄膜及其制备方法和应用
US20220256694A1 (en) * 2014-04-11 2022-08-11 C3 Nano, Inc. Display device including formable transparent conductive films with metal nanowires

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109954644B (zh) * 2017-12-22 2022-10-14 重庆元石盛石墨烯薄膜产业有限公司 常温等离子熔接式石墨烯材料层设置方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070660A (ja) * 2007-09-12 2009-04-02 Kuraray Co Ltd 透明導電膜およびその製造方法
KR20100114399A (ko) * 2009-04-15 2010-10-25 한국과학기술연구원 메탈와이어를 이용한 전도성필름 제조방법 및 전도성필름
KR20100125986A (ko) * 2009-05-22 2010-12-01 엘지디스플레이 주식회사 탄소나노튜브를 이용한 표시장치용 투명금속막의 제조방법
JP2011527809A (ja) * 2008-06-09 2011-11-04 三星電子株式会社 改善されたcntの/トップコートの工程

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070660A (ja) * 2007-09-12 2009-04-02 Kuraray Co Ltd 透明導電膜およびその製造方法
JP2011527809A (ja) * 2008-06-09 2011-11-04 三星電子株式会社 改善されたcntの/トップコートの工程
KR20100114399A (ko) * 2009-04-15 2010-10-25 한국과학기술연구원 메탈와이어를 이용한 전도성필름 제조방법 및 전도성필름
KR20100125986A (ko) * 2009-05-22 2010-12-01 엘지디스플레이 주식회사 탄소나노튜브를 이용한 표시장치용 투명금속막의 제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220256694A1 (en) * 2014-04-11 2022-08-11 C3 Nano, Inc. Display device including formable transparent conductive films with metal nanowires
CN105989911A (zh) * 2015-02-10 2016-10-05 北京大学 一种石墨烯和金属纳米线复合透明导电塑料薄膜及其制备方法与应用
CN105989911B (zh) * 2015-02-10 2017-07-21 北京大学 一种石墨烯和金属纳米线复合透明导电塑料薄膜及其制备方法与应用
CN106611627A (zh) * 2015-10-23 2017-05-03 苏州汉纳材料科技有限公司 高质量碳纳米管透明导电膜及其制备方法与应用
CN107170507A (zh) * 2017-04-13 2017-09-15 湖南文理学院 一种复合导电薄膜及其制备方法
CN109037362A (zh) * 2018-07-04 2018-12-18 中国科学院上海高等研究院 用于异质结太阳电池的透明导电层及异质结太阳电池
CN111326280A (zh) * 2020-03-20 2020-06-23 广州新视界光电科技有限公司 一种石墨烯导电薄膜及其制备方法和应用

Also Published As

Publication number Publication date
KR20140143337A (ko) 2014-12-16

Similar Documents

Publication Publication Date Title
WO2014196821A1 (ko) 하이브리드 나노 소재를 포함하는 투명 전도성 필름 및 이것의 제조방법
JP5694427B2 (ja) 透明電極及びこれを含む電子材料
Woo et al. Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors
Lee et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite
WO2013094824A1 (ko) 메탈나노와이어 및 탄소나노튜브를 포함하는 적층형 투명전극
KR101456838B1 (ko) 복합 투명 도전체 및 그 제조 방법
Guo et al. Flexible transparent conductors based on metal nanowire networks
Im et al. A high-performance, flexible and robust metal nanotrough-embedded transparent conducting film for wearable touch screen panels
US8785763B2 (en) Joined nanostructures and methods therefor
Fuh et al. Pattern transfer of aligned metal nano/microwires as flexible transparent electrodes using an electrospun nanofiber template
Huang et al. A transparent, conducting tape for flexible electronics
WO2014010779A1 (ko) 투명 전극을 구비하는 발광소자 및 그 제조 방법
CN102781816A (zh) 富勒烯掺杂的纳米结构及其方法
KR101677339B1 (ko) 은나노와이어 투명전극 제조방법
WO2014133232A1 (ko) 투명 전극을 구비하는 수광소자 및 그 제조 방법
WO2011162461A1 (ko) 투명 전극 및 이의 제조 방법
JP4726725B2 (ja) 太陽電池の製造に使用するための繊維およびリボン
WO2018080083A1 (ko) 플렉시블 전극 및 이의 제조방법
KR101442458B1 (ko) 투명 전극 및 이를 포함하는 전자 재료
CN103871684A (zh) 应用石墨烯的结构及其制造方法
WO2017074049A1 (ko) 투광성 기판의 제조방법 및 이를 통해 제조된 투광성 기판
WO2016144091A1 (ko) 그래파이트 접착 물질을 이용한 전계 방출 소자 및 그 제조 방법
WO2013172511A1 (ko) 투명 전극 형성 방법 및 이를 이용하여 제조된 반도체 장치
WO2014088186A1 (ko) 투명전극용 조성물 및 이 조성물로 형성된 투명전극
WO2017222311A1 (ko) 금속 나노와이어와 금속입자가 용접된 금속복합구조체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807054

Country of ref document: EP

Kind code of ref document: A1