WO2014196519A1 - 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法 - Google Patents

加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法 Download PDF

Info

Publication number
WO2014196519A1
WO2014196519A1 PCT/JP2014/064711 JP2014064711W WO2014196519A1 WO 2014196519 A1 WO2014196519 A1 WO 2014196519A1 JP 2014064711 W JP2014064711 W JP 2014064711W WO 2014196519 A1 WO2014196519 A1 WO 2014196519A1
Authority
WO
WIPO (PCT)
Prior art keywords
hpmcas
drug
temperature
composition
melt extrusion
Prior art date
Application number
PCT/JP2014/064711
Other languages
English (en)
French (fr)
Inventor
彰吾 藁品
史枝 草木
一輝 菊池
栄 尾原
直亮 丸山
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50842156&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014196519(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2015521450A priority Critical patent/JP6007322B2/ja
Priority to KR1020157034116A priority patent/KR102228157B1/ko
Priority to CN201480030211.8A priority patent/CN105283203B/zh
Priority to EP14806945.3A priority patent/EP3006049B1/en
Priority to US14/892,421 priority patent/US10646573B2/en
Publication of WO2014196519A1 publication Critical patent/WO2014196519A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/193Mixed ethers, i.e. ethers with two or more different etherifying groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B11/00Preparation of cellulose ethers
    • C08B11/20Post-etherification treatments of chemical or physical type, e.g. mixed etherification in two steps, including purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/32Cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/32Cellulose ether-esters

Definitions

  • the present invention relates to a composition for hot melt extrusion and a method for producing a hot melt extruded product using the composition.
  • a preparation technique in which a mixture of a drug and a polymer is melt-extruded under heating has attracted attention.
  • a solid dispersion obtained by solidifying a poorly water-soluble drug and a polymer by a hot melt extrusion method is molecularly dispersed in a polymer carrier with the drug in an amorphous state. Solubility is apparently significantly increased and bioavailability is improved.
  • the hot melt extrusion method can avoid the use of a solvent, it can be applied to drugs that are unstable to water, safety and environmental considerations due to the absence of solvent recovery, and energy required for the solvent recovery process. Savings and improved safety for workers.
  • continuous production is possible, and attention is paid to the productivity per hour and the energy consumption.
  • an ether structure is formed by introducing two substituents of a methoxy group (—OCH 3 ) and a hydroxypropoxy group (—OC 3 H 6 OH) into a cellulose skeleton.
  • hypromellose acetate succinate is a polymer that introduces a total of four types of substituents by introducing two substituents, an acetyl group (—COCH 3 ) and a succinyl group (—COC 2 H 4 COOH), into an ester structure.
  • an acid ester hereinafter also referred to as “HPMCAS”.
  • HPMCAS acid ester
  • each substituent content of HPMCAS listed in the 16th revision Japanese Pharmacopoeia is defined as follows (Non-Patent Document 1).
  • Solid dispersion containing HPMCAS for example, by adding water of a solid dispersion composition by a hot melt extrusion method containing HPMCAS (commercial product AS-LF; molar substitution degree 0.16 to 0.35), A method of lowering the glass transition temperature and softening temperature of HPMCAS or a poorly water-soluble drug has been proposed (Patent Document 1).
  • posaconazole and HPMCAS are formulated by a hot melt extrusion method (Patent Document 2), A method of formulating a soluble drug lipid inhibitor CETP (cholesterol ester transfer protein) inhibitor and HPMCAS (commercially available AS-MF; degree of molar substitution 0.15-0.34) by a hot melt extrusion method has been proposed. (Patent Document 3).
  • the molar substitution degree of the poorly water-soluble drug and the hydroxypropoxy group is 0.25
  • the molar substitution degree of the succinyl group is 0.02 or more
  • the molar substitution degree of the acetyl group is 0.65 or more
  • the acetyl group and the succinyl group A method of spray-drying a solid dispersion composition using HPMCAS having a glass transition temperature of 131 to 146 ° C. with 0% RH having a total molar substitution degree of 0.85 or more has been proposed (Patent Document 4).
  • the molar substitution degree of the poorly water-soluble drug and the hydroxypropoxy group is 0.21 or less
  • the molar substitution degree of the methoxyl group is 1.45 or less
  • the total molar substitution degree of the acetyl group and the succinyl group is 1.25 or more.
  • the present invention has been made in view of the above circumstances, and by heating and extruding at a lower temperature than before, there is no inactivation of the drug due to heat, etc., preventing a decrease in solubility in the upper small intestine, and a spray drying method Provided is a method for producing a heat-melt extruded product from which a heat-melt extruded product can be obtained by a simpler method.
  • the present inventors set the ratio (molar ratio) of acetyl groups to hydroxypropoxy groups and succinyl groups among the four types of substituents of HPMCAS within a specific range.
  • Tg glass transition temperature
  • the present invention includes at least a hypromellose acetate succinate (HPMCAS) having a hydroxypropoxy group molar substitution degree of 0.40 or more and a ratio of acetyl groups to succinyl groups (molar ratio) of less than 1.6 and a drug.
  • HPMCAS hypromellose acetate succinate
  • a composition for hot melt extrusion is provided.
  • the present invention also relates to a heat-melting composition comprising at least a hypromellose acetate succinate having a hydroxypropoxy group molar substitution degree of 0.40 or more and an acetyl group-to-succinyl group ratio (molar ratio) of less than 1.6 and a drug.
  • the composition for extrusion is heated and melted at a temperature higher than the melting temperature of hypromellose acetate succinate or higher than the temperature at which the hypromellose acetate succinate and drug are melted together, and extruded.
  • a manufacturing method is provided.
  • the hypromellose acetate succinate can be used for the production of a composition for hot melt extrusion or a hot melt extruded product.
  • the drug is efficiently dissolved by staying in the small intestine for a long time in a dissolved state, or the elution in the upper part of the small intestine in order to increase the bioabsorbability of the drug having high absorbability in the upper part of the small intestine.
  • a hot melt extruded product with improved initial elution performance due to rapid drug release in the small intestine can be obtained.
  • heat melt extrusion can be performed at a lower temperature than before, and the heat melt extrudate can be obtained by a simpler method than the spray drying method without inactivation of the drug due to heat or the like.
  • the molar substitution degree of the hydroxypropoxy group of HPMCAS is 0.40 or more, preferably 0.40 to 1.50, more preferably 0.40 to 1.0, still more preferably 0.40 to 0.90.
  • the heat melt extrusion temperature becomes high, hydrolysis occurs due to thermal decomposition of the hypromellose acetate succinate, and some ester groups are released from the cellulose skeleton, Acetic acid and succinic acid are produced to inactivate the drug by interaction with the drug.
  • the substituent content of HPMCAS including a hydroxypropoxy group can be measured by the method described in each article “Hypromellose acetate succinate” in the 16th revised Japanese Pharmacopoeia First Supplement.
  • the glass transition temperature (Tg) of HPMCAS is preferably 115 ° C. or lower, more preferably 60 to 115 ° C., still more preferably 70 to 100 ° C. When the glass transition temperature is higher than 115 ° C., the heat melt extrusion temperature is also increased, and the above-described thermal decomposition may occur.
  • the glass transition temperature (Tg) is usually measured by a differential scanning calorimeter (DSC) as follows. Specifically, 10 mg of HPMCAS was raised from room temperature to 150 ° C. at a rate of temperature increase of 10 ° C./min from a room temperature, further cooled to 25 ° C. at a rate of temperature decrease of 10 ° C./min, and then again 230 ° C. at a rate of 10 ° C./min. The inflection point observed when the temperature is raised to is the glass transition temperature. The reason why the glass transition temperature is measured in such a completely dry state is that the moisture in the sample affects the measured value of Tg.
  • the molar substitution degree of the methoxy group which is a substituent other than the hydroxypropoxy group in HPMCAS is not particularly limited, but is preferably 0.70 to 2.90, more preferably 1.00 to 2.40, and still more preferably 1 .4 to 1.9.
  • the degree of molar substitution of the acetyl group in HPMCAS is not particularly limited, but is preferably 0.10 to 2.50, more preferably 0.10 to 1.00, still more preferably 0.16 to 0.96.
  • the degree of molar substitution of the succinyl group in HPMCAS is not particularly limited, but is preferably 0.10 to 2.50, more preferably 0.10 to 1.00, still more preferably 0.10 to 0.60.
  • the ratio of acetyl groups to succinyl groups is less than 1.6, preferably 0.6 to 1.5, more preferably 0.8 to 1.5, particularly preferably 0.8 to 1.3.
  • the viscosity of a dilute (0.1 mol / L) aqueous sodium hydroxide solution containing 2% by mass of HPMCAS at 20 ° C. is preferably 1.1 to 20 mPa ⁇ s, more preferably 1.5 to 3.6 mPa ⁇ s. .
  • the melt viscosity is too low at the time of heat-melt extrusion, and shear force is not applied, and it may be difficult to idle the piston or screw or to extrude from the discharge port.
  • the viscosity of the composition for hot melt extrusion becomes too high, the torque applied to the piston or screw becomes excessive, the piston or screw does not rotate, or the machine may stop safely. is there.
  • the measuring method of a viscosity can be measured by the method as described in the 16th revision Japanese Pharmacopoeia HPMCAS general test method.
  • HPMCAS can be produced, for example, using the method described in JP-A No. 54-61282.
  • Hypromellose also known as hydroxypropylmethylcellulose, hereinafter referred to as “HPMC”
  • HPMC hydroxypropylmethylcellulose
  • HPMC hydroxypropylmethylcellulose
  • the drug is not particularly limited as long as it is a drug that can be administered orally.
  • Such drugs include, for example, central nervous system drugs, circulatory drugs, respiratory drugs, digestive drugs, antibiotics, antitussives, antihistamines, antipyretic analgesics, diuretics, autonomic nervous agents, Antimalarial agents, antistatic agents, psychotropic agents, vitamins and their derivatives, and the like.
  • central nervous system drugs examples include diazepam, idebenone, aspirin, ibuprofen, paracetamol, naproxen, piroxicam, diclofenac, indomethacin, sulindac, lorazepam, nitrazepam, phenytoin, acetaminophen, etenzamide, ketoprofen and chlordiazepoxide.
  • circulatory drugs examples include molsidomine, vinpocetine, propranolol, methyldopa, dipyridamole, furosemide, triamterene, nifedibin, atenolol, spironolactone, metoprolol, vindolol, captopril, izorbitol nitrate, delapril hydrochloride, meclofenoxate hydrochloride, diltiazem hydrochloride, Examples include ethylephrine hydrochloride, digitoxin, propranolol hydrochloride, and alprenolol hydrochloride.
  • Examples of respiratory drugs include amlexanox, dextromethorphan, theophylline, pseudoephedrine, salbutamol and guaifenesin.
  • Examples of digestive drugs include 2-[[3-methyl-4- (2,2,2-trifluoroethoxy) -2-pyridyl] methylsulfinyl] benzimidazole and 5-methoxy-2-[(4 -Methoxy-3,5-dimethyl-2-pyridyl) methylsulfinyl] benzimidazole drugs having anti-ulcer activity such as cimetidine, ranitidine, pirenzepine hydrochloride, pancreatin, bisacodyl and 5-aminosalicylic acid .
  • antibiotics examples include tarampicillin hydrochloride, bacampicillin hydrochloride, cefaclor and erythromycin.
  • antitussive and expectorant examples include noscapine hydrochloride, carbetapentane citrate, dextromethorphan hydrobromide, isoaminyl citrate, and dimemorphan phosphate.
  • antihistamine examples include chlorpheniramine maleate, diphenhydramine hydrochloride, promethazine hydrochloride and the like.
  • antipyretic analgesic / anti-inflammatory agent examples include ibuprofen, diclofenac sodium, flufenamic acid, sulpyrine, aspirin and ketoprofen.
  • diuretic examples include caffeine.
  • Examples of the autonomic nervous agent include dihydrocodeine phosphate, dl-methylephedrine hydrochloride, propranolol hydrochloride, atropine sulfate, acetylcholine chloride, neostigmine and the like.
  • Examples of antimalarial agents include quinine hydrochloride.
  • Examples of the diastatic agent include loperamide hydrochloride and the like.
  • Examples of the psychotropic agent include chlorpromazine.
  • vitamins and derivatives thereof include vitamin A, vitamin B1, fursultiamine, vitamin B2, vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, vitamin K, calcium pantothenate and tranexamic acid. It is done.
  • the solubility of a poorly water-soluble drug can be improved by using the HPMCAS of the present invention as a carrier for a solid dispersion of a poorly water-soluble drug.
  • the poorly water-soluble drug refers to a drug described in the 16th revised Japanese Pharmacopoeia as “not easily soluble”, “extremely insoluble”, or “almost insoluble”. “Slightly soluble” refers to the degree to which 100 g or more and less than 1000 mL dissolve within 30 minutes when 1 g or 1 mL of solid drug is placed in a beaker and water is added and shaken vigorously for 30 seconds at 20 ⁇ 5 ° C. every 5 minutes. .
  • Extremely difficult to dissolve refers to the degree of dissolution within 30 minutes at 1000 mL or more and less than 10000 mL.
  • the term “almost insoluble” refers to a material that requires 10,000 mL or more to dissolve within 30 minutes.
  • dissolution of a poorly water-soluble drug means that the drug is dissolved or mixed in a solvent, and it means that even if fibers or the like are not recognized or not, they are very slight.
  • poorly water-soluble drugs include azole compounds such as itraconazole, ketoconazole, fluconazole, mitoconazole, nifedipine, nitrendipine, amlodipine, nicardipine, nilvadipine, felodipine, efonidipine and other dihydropyridine compounds, ibuprofen, ketoprofen, naproxen and the like.
  • indoleacetic acid-based compounds such as propionic acid compounds, indomethacin, and acemetacin, griseofulvin, phenytoin, carbamazepine, dipyridamole, and the like can be given.
  • the mass ratio of HPMCAS and drug is not particularly limited, but preferably from 1: 0.01 to 1: 100, more preferably from 1: 0.1 to 1:10, from the viewpoint of storage stability in an amorphous state. Preferably it is 1: 0.2 to 1: 5.
  • composition of the present invention may be added with additives such as plasticizers and surfactants in order to improve moldability during hot melt extrusion.
  • plasticizers include higher alcohols such as acetone, methanol, ethanol, isopropanol, cetyl alcohol, and stearyl alcohol, polyhydric alcohols such as mannitol, sorbitol, and glycerin, bees wax, triethyl citrate, polyethylene glycol, and propylene glycol.
  • Plasticizers such as alkylene glycol, triacetin, dibutyl sebacate, glycerol monostearate, monoglycerol acetate and the like can be mentioned.
  • the surfactant examples include anionic surfactants such as sodium lauryl sulfate, diglycerides, poloxamers, polyoxyethylene sorbitan fatty acid esters (twin 20, 60, 80), glycerin fatty acid esters, propylene glycol fatty acid esters, and the like.
  • anionic surfactants such as sodium lauryl sulfate, diglycerides, poloxamers, polyoxyethylene sorbitan fatty acid esters (twin 20, 60, 80), glycerin fatty acid esters, propylene glycol fatty acid esters, and the like.
  • examples thereof include ionic surfactants, natural surfactants such as lecithin and sodium taurocholate.
  • the blending amount is preferably 30% by mass or less for the plasticizer and 10% by mass or less for the surfactant with respect to HPMCAS.
  • the hot melt extruded product is blended with various additives that can be commonly used in this field, such as excipients, binders, disintegrants, lubricants, anti-aggregation agents, etc.
  • additives such as excipients, binders, disintegrants, lubricants, anti-aggregation agents, etc.
  • Oral solid preparations such as fine granules and capsules, and oral film preparations can be used.
  • excipient examples include sugars such as sucrose, lactose, mannitol, glucose, starch, crystalline cellulose and the like.
  • binder examples include polyvinyl alcohol, polyacrylic acid, polyvinyl pyrrolidone, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, macrogols, gum arabic, gelatin, starch and the like.
  • disintegrant include low-substituted hydroxypropylcellulose, carmellose or a salt thereof, croscarmellose sodium, sodium carboxymethyl starch, crospovidone, crystalline cellulose, crystalline cellulose / carmellose sodium, and the like.
  • lubricant and the aggregation inhibitor examples include talc, magnesium stearate, calcium stearate, colloidal silica, stearic acid, waxes, hardened oil, polyethylene glycols, sodium benzoate and the like.
  • the resulting oral solid preparation is coated with a water-soluble coating agent such as methylcellulose or hypromellose, or with an enteric coating agent such as hypromellose acetate succinate, hypromellose phthalate, or methacrylic acid acrylate copolymer. May be.
  • a water-soluble coating agent such as methylcellulose or hypromellose
  • an enteric coating agent such as hypromellose acetate succinate, hypromellose phthalate, or methacrylic acid acrylate copolymer. May be.
  • an HPMCAS having a hydroxypropoxy group molar substitution degree of 0.40 or more and a drug are mixed with other components as necessary to prepare a composition for hot melt extrusion.
  • the prepared composition for hot melt extrusion can be extruded by a hot melt extruder into a desired shape such as a columnar shape or a film shape in addition to a shape such as a circle or a quadrangle to obtain a molded body.
  • the heating melt extruder is not particularly limited as long as it is an extruder having a structure of extruding from a die after melting and kneading by applying a shearing force with a piston or screw while heating in a system such as HPMCAS and a drug.
  • a biaxial extruder is preferred. Specifically, Toyo Seiki Capillograph (uniaxial piston type extruder), Leistritz (Nano-16) (Twin screw type extruder), Thermo Fisher Scientific (Thermo Fisher Scientific) MiniLab (a twin screw extruder) and PharmaLab (a twin screw extruder) may be mentioned.
  • the heating and melting temperature is not particularly limited, but it is preferably performed in a temperature range in which the composition for heating and melting extrusion can be melted and extrusion can be performed without difficulty, and decomposition of the drug or polymer by heat can be avoided as much as possible. That is, when a solid dispersion is not manufactured, a temperature equal to or higher than the melting temperature of HPMCAS is preferable, and when a solid dispersion is manufactured, a temperature equal to or higher than a temperature at which both HPMCAS and the drug are melted is preferable. In addition, even when the melting point of HPMCAS is lowered by the addition of a drug, a temperature equal to or higher than the temperature at which both are melted is preferable.
  • the specific heating and melting temperature is preferably 50 to 250 ° C, more preferably 60 to 200 ° C, and still more preferably 90 to 190 ° C. If it is lower than 50 ° C, melting may be incomplete and extrusion may be difficult. If it exceeds 250 ° C, molecular weight may be reduced due to HPMCAS or drug decomposition, and substitution may be caused by hydrolysis.
  • the hot melt extrusion conditions are not particularly limited as long as the composition for hot melt extrusion having a viscosity at the time of hot melt extrusion of preferably 1 to 100,000 Pa ⁇ s can be extruded, but in the case of a single-screw piston extruder, the extrusion speed is The speed is preferably 1 to 1000 mm / min, more preferably 10 to 500 mm / min, and in the case of a twin screw type extruder, the screw speed is preferably 1 to 1000 rpm, more preferably 1 to 500 rpm.
  • the residence time in the system may become long and may be thermally decomposed, while the extrusion speed exceeds 10,000 mm / min or the clew speed is 1000 rpm. In the case where it exceeds 1, the heat-melting process in the kneading part becomes insufficient, and the molten state of the drug and the polymer in the heat-melt extruded product may become uneven.
  • the hot melt extruded product is cooled by natural cooling or cold air blowing at room temperature (1-30 ° C) from the die discharge port, but in order to minimize the thermal decomposition of the drug and in the case of an amorphous drug In order to suppress recrystallization, it is preferable to rapidly cool to 50 ° C. or lower, more preferably to room temperature or lower (30 ° C. or lower).
  • the heated melt-extruded product after cooling may be pelletized to 0.1 to 5 mm or less by a cutting machine, or may be further pulverized to adjust the particle size until it becomes granular and powdery.
  • an impact pulverizer such as a jet mill, a knife mill, or a pin mill is preferred because of the structure of the equipment.
  • HPMCAS is softened by heat and particles are fixed, it is preferable to grind under cold air.
  • the ratio (molar ratio) of the acetyl group to the succinyl group is preferably 1.6 to 4.0, more preferably 1.8 to 3.8 from the viewpoint of maintaining the supersaturated state of the drug for a longer time.
  • Tg glass transition temperature of HPMCAS-1 to 7
  • DSC3200SA differential scanning calorimeter manufactured by Bruker. That is, 10 mg of each HPMCAS was raised from room temperature to 150 ° C. at a rate of temperature increase of 10 ° C./min from a room temperature, further cooled to 25 ° C. at a rate of temperature decrease of 10 ° C./min, and again 230 ° C. at a rate of 10 ° C./min.
  • the temperature at the inflection point in the absorption / exotherm curve seen when the temperature was raised to 0 ° C., that is, the temperature at the inflection point measured at the second temperature rise was taken as the glass transition temperature.
  • Examples 1 to 5 and Comparative Examples 1 and 2> A dry HPMCAS-1-7 was dried in advance using a vacuum extruder (uniaxial piston type melting) under conditions of a die diameter of 1 mm, a height of 10 mm, and an extrusion speed of 50 mm / min so that the moisture in the measurement sample was less than 1% by mass.
  • the minimum extrusion temperature of HPMCAS-1 to 7 when extruded from the die of the discharge port was measured using an extrusion apparatus (Capillograph manufactured by Toyo Seiki Co., Ltd.). The results are shown in Table 3.
  • Examples 1 to 5 and Comparative Example 1 using HPMCAS having a hydroxypropoxy group molar substitution degree of 0.40 or more had a lower glass transition temperature and lower minimum extrusion temperature than Comparative Example 2 of less than 0.4. It was. From the above results, since the composition for hot melt extrusion can be extruded at a lower temperature, an extrudate can be obtained without the drug being deactivated by thermal decomposition.
  • a composition for hot melt extrusion was prepared using ascorbic acid, a water-soluble drug.
  • Ascorbic acid has a thermal decomposition temperature of 176 ° C., and is a model drug that is feared to be deactivated by thermal decomposition during hot melt extrusion.
  • a hot melt extruder (Thermo Fisher) of a biaxial screw (diameter: 5/14 mm, length: 109.5 mm, screw rotation speed 100 rpm, residence time 5 minutes) in the same direction. Heat-extrusion at 130 ° C. or higher was performed by HAAKE MiniLab), and the minimum extrusion temperature of the obtained heat-melt extruded product was measured in the same manner as in Example 1. Further, the obtained hot-melt extruded product was obtained by pulverizing at 20000 rpm using a pulverizer (Osaka Chemical Co., Ltd. Wonder Blender WB-1 type) and sieving with a 30-mesh (aperture 500 ⁇ m) sieve. The yellowness index (YI) of the powder and the hot melt extruded composition before molding was measured with an SM color computer (SM-T manufactured by Ska Test Instruments Co., Ltd.). The results are shown in Table 4.
  • SM color computer SM-T manufactured by Ska Test Instruments Co.,
  • the minimum extrusion temperature of Examples 6 to 10 and Comparative Example 3 using HPMCAS having a hydroxypropoxy group molar substitution degree of 0.40 or more is 26 ° C. or more lower than the thermal decomposition temperature (176 ° C.) of ascorbic acid.
  • Ascorbic acid was not thermally decomposed by hot melt extrusion and was not deactivated.
  • the HPMCAS of Comparative Example 4 has a minimum extrusion temperature of 160 ° C.
  • a solution prepared by dissolving 16 g of HPMCAS in 64 g of methylene chloride / ethanol solution (methylene chloride: ethanol 1: 1 mass ratio) was cast on a glass plate and dried at room temperature. The obtained film was dried at 80 ° C. for 2 hours, and then a 100 ⁇ m-thick portion was cut into 1 cm length and 1 cm width to prepare a test piece.
  • the test piece measured the dissolution time of the test piece according to the disintegration test method (auxiliary cylinder) described in the 16th revision Japanese Pharmacopoeia.
  • test pieces are a United States Pharmacopeia (US Pharmacopia 36) corresponding to the pH of the digestive juice in the upper to middle intestines was added to 1 L of the phosphate buffer solution (pH 6.0) described in 1), and the time until the test piece was dissolved and no undissolved material was observed was measured.
  • US Pharmacopia 36 United States Pharmacopeia
  • Comparative Example 5 in which the ratio (molar ratio) of the acetyl group to the succinyl group is 1.77 and the molar substitution degree of the hydroxypropoxy group is 0.84 requires a long time for dissolution, and remains undissolved after 120 minutes. The test piece was present. This is because the dissolution pH of HPMCAS was increased due to the high ratio of acetyl group to succinyl group (molar ratio) and the increase in the molar substitution degree of hydroxypropoxy group.
  • the time required for dissolution in the phosphate buffer and dissolution of the test piece was less than 53 minutes. From the above results, rapid elution at the upper part of the small intestine is possible by setting the ratio (molar ratio) of acetyl groups to succinyl groups within a specific range. In addition, in the case of HPMAS having a hydroxypropoxy group molar substitution degree of 0.4 or more, rapid elution at the upper part of the small intestine is possible despite an increase in HPMA dissolution pH.
  • a heated melt extruder manufactured by Thermo Fisher Co., Ltd.
  • a co-directional twin screw (diameter: 5/14 mm, length: 109.5 mm, screw rotation speed 100 rpm, residence time 5 minutes) HAAKE MiniLab) was heated and melt-extruded at 150 ° C.
  • the resulting hot-melt extruded product was pulverized at 20000 rpm using a pulverizer (Osaka Chemical Co., Ltd. Wonder Blender WB-1 type), and 30 mesh (mesh)
  • the dissolution test described in the 16th revision Japanese Pharmacopoeia was performed on the powder obtained by sieving with a sieve having an opening of 500 ⁇ m.
  • the elution rate (mass%) of ketoconazole eluted from 180 mg of this powder was determined by using 900 mL of phosphate buffer (pH 6.0) described in the US Pharmacopoeia (US Pharmacopia 36) and Japanese Pharmacopoeia. Using a dissolution tester (NTR-6100A type manufactured by Toyama Sangyo Co., Ltd.), the measurement was performed at a paddle rotation speed of 100 rpm. Ketoconazole was quantified by measuring the absorbance of UV (wavelength: 225 nm, optical path length: 10 mm) from an absorbance-converted straight line prepared at a known concentration in advance. The results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

ヒドロキシプロポキシ基のモル置換度が0.40以上かつスクシニル基に対するアセチル基の比率(モル比)が1.6未満であるヒプロメロース酢酸エステルコハク酸エステル(HPMCAS)と薬物を少なくとも含む加熱溶融押出用組成物を提供する。また、ヒドロキシプロポキシ基のモル置換度が0.40以上かつスクシニル基に対するアセチル基の比率(モル比)が1.6未満であるヒプロメロース酢酸エステルコハク酸エステルと薬物を少なくとも含む加熱溶融押出用組成物をヒプロメロース酢酸エステルコハク酸エステルの溶融温度以上、又はヒプロメロース酢酸エステルコハク酸エステル及び薬物の共に溶融することになる温度以上の加熱溶融温度で加熱溶融し、押出する工程を少なくとも含む加熱溶融押出成型物の製造方法を提供する。

Description

加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法
 本発明は、加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法に関する。
 薬物と高分子の混合物を加熱下で溶融押出する製剤手法が、最近注目されている。
 例えば、水難溶性薬物と高分子を加熱溶融押出法(ホットメルトエクストルージョン)により固化させた固体分散体は、薬物が非晶質(アモルファス)の状態で高分子担体中に分子分散し、薬物の溶解性が見かけ上顕著に上昇して生物学的利用能が改善される。また、加熱溶融押出法は溶媒の使用を回避することができるため、水に不安定な薬物に対して適用でき、溶剤回収不要なことによる安全性及び環境への配慮や溶剤回収工程にかかるエネルギーの節約、作業員への安全面での改善といった利点が挙げられる。更に、従来のバッチ生産システムとは異なり、連続的な製造が可能で、時間あたりの生産性、消費エネルギーの面からも着目されている。
 これら加熱溶融押出法に使用される高分子の一例として、セルロース骨格にメトキシ基(-OCH)とヒドロキシプロポキシ基(-OCOH)の2つの置換基を導入してエーテル構造とするほか、アセチル基(-COCH)とスクシニル基(-COCCOOH)の2つの置換基を導入してエステル構造として、計4種類の置換基を導入した高分子であるヒプロメロース酢酸エステルコハク酸エステル(以下、「HPMCAS」ともいう。)がある。
 ここで、第16改正日本薬局方に収載されているHPMCASの各置換基含有量は、以下の通りに規定されている(非特許文献1)。
Figure JPOXMLDOC01-appb-T000001
 HPMCASを含む固体分散体としては、例えば、HPMCAS(市販品のAS-LF;モル置換度0.16~0.35)を含む加熱溶融押出法による固体分散体組成物水を添加することにより、HPMCAS又は水難溶性薬物のガラス転移温度や軟化温度を下げる方法が提案されている(特許文献1)。
 また、水難溶性薬物のポサコナゾールとHPMCAS(市販品のAS-MF及びAS-MG;モル置換度0.15~0.34)を加熱溶融押出法により製剤化する方法や(特許文献2)、水難溶性薬物の脂質阻害剤CETP(コレステロールエステル転送タンパク)阻害剤とHPMCAS(市販品のAS-MF;モル置換度0.15~0.34)を加熱溶融押出法により製剤化する方法が提案されている(特許文献3)。
 更に、水難溶性薬物とヒドロキシプロポキシ基のモル置換度が0.25、スクシニル基のモル置換度が0.02以上で、かつアセチル基のモル置換度が0.65以上及びアセチル基とスクシニル基のモル置換度の合計が0.85以上である0%RHのガラス転移温度が131~146℃のHPMCASを用いた固体分散体組成物をスプレードライする方法が提案されている(特許文献4)。この他、水難溶性薬物とヒドロキシプロポキシ基のモル置換度が0.21以下、メトキシル基のモル置換度が1.45以下で、かつアセチル基とスクシニル基のモル置換度の合計が1.25以上であるHPMCASを用いた固体分散体組成物をスプレードライする方法も提案されている(特許文献5)。
国際公開2003/077827号公報 特表2011-516612号公報 特表2005-523895号公報 特表2008-501009号公報 国際公開2011/159626号公報
第16改正日本薬局方第一追補医薬品各条「ヒプロメロース酢酸エステルコハク酸エステル」
 近年、より簡便な方法で固体分散体を製造することが求められるようになり、加熱溶融押出法において、加熱溶融温度を低くする必要が生じてきた。
 しかし、特許文献1に記載の方法では、水は水難溶性薬物にとって貧溶媒であるため、場合によっては薬物の結晶性を高めて非晶化を妨げたり、熱や湿度によって高温処理時には水難溶性薬物が失活し、高湿度条件下では、薬物やキャリヤが熱と水の影響で加水分解を生じやすくなって失活するという不都合が生じる。
 一方、特許文献2~5に記載の方法では、高温の加熱溶融押し出しのために、HPMCASの熱分解による遊離酸が生じて酸による水難溶性薬物の失活や加熱による水難溶性薬物の熱分解の不都合が生じる。
 特に特許文献4に記載の方法では、スクシニル基に対するアセチル基の比率(モル比)が高く、HPMCASの小腸内での溶解性が低下するため、速やかな薬物の放出が困難である。その結果、薬物が溶解した状態で小腸内に長時間滞留させることが出来ず、薬物の生体吸収性が低下する。
 本発明は、上記事情に鑑みなされたもので、従来よりも低い温度で加熱溶融押出することにより、熱等による薬物の失活がなく、小腸上部での溶解性の低下を防ぎ、スプレードライ法よりも簡便な方法により加熱溶融押出成型物が得られる加熱溶融押出成型物の製造方法を提供する。
 本発明者らは、上記課題を解決するために鋭意検討した結果、HPMCASの4種類の置換基のうち、ヒドロキシプロポキシ基、及びスクシニル基に対するアセチル基の比率(モル比)を特定範囲にすることにより、従来よりも低いガラス転移温度(Tg)を有するHPMCASが得られること、より低い加熱溶融押出温度で加熱溶融押出成型物を製造すること、小腸上部での溶解性の低下を防いで小腸内での速やかな薬物の放出ができることを見出し、本発明を完成させた。
 従って、本発明は、ヒドロキシプロポキシ基のモル置換度が0.40以上かつスクシニル基に対するアセチル基の比率(モル比)が1.6未満のヒプロメロース酢酸エステルコハク酸エステル(HPMCAS)と薬物を少なくとも含む加熱溶融押出用組成物を提供する。また、本発明は、ヒドロキシプロポキシ基のモル置換度が0.40以上かつスクシニル基に対するアセチル基の比率(モル比)が1.6未満であるヒプロメロース酢酸エステルコハク酸エステルと薬物を少なくとも含む加熱溶融押出用組成物をヒプロメロース酢酸エステルコハク酸エステルの溶融温度以上又はヒプロメロース酢酸エステルコハク酸エステル及び薬物を共に溶融することになる温度以上の加熱溶融温度で加熱溶融し、押出する加熱溶融押出成型物の製造方法を提供する。前記ヒプロメロース酢酸エステルコハク酸エステルは、加熱溶融押出用組成物又は加熱溶融押出成型物の製造に使用できる。
 本発明によれば、薬物が溶解した状態で小腸内に長時間滞留させて薬物を効率的に吸収させたり、小腸上部において高い吸収性を示す薬物の生体吸収性を高めるべく小腸上部での溶出性の低下を改善し、小腸内での速やかな薬物の放出による初期の溶出性能が高い加熱溶融押出成型物が得られる。また、従来よりも低い温度で加熱溶融押出しが可能となり、熱等による薬物の失活もなく、スプレードライ法等よりも簡便な方法により加熱溶融押出成型物が得られる。
 以下、本発明につき更に詳しく説明する。
 HPMCASのヒドロキシプロポキシ基のモル置換度は、0.40以上、好ましくは0.40~1.50、より好ましくは0.40~1.0、更に好ましくは0.40~0.90である。ヒドロキシプロポキシ基のモル置換度が0.40未満の場合、加熱溶融押出温度が高温となり、ヒプロメロース酢酸エステルコハク酸エステルの熱分解により加水分解が生じて一部のエステル基がセルロース骨格から遊離し、酢酸及びコハク酸を生じて薬物との相互作用により薬物を失活させる。
 ヒドロキシプロポキシ基をはじめとするHPMCASの置換基含有量は、第16改正日本薬局方第一追補の医薬品各条「ヒプロメロース酢酸エステルコハク酸エステル」に記載されている方法により測定できる。
 HPMCASのガラス転移温度(Tg)は、好ましくは115℃以下であり、より好ましくは60~115℃、更に好ましくは70~100℃である。ガラス転移温度が115℃より高い場合、加熱溶融押出温度も高くなり、上述の熱分解が起こる可能性がある。
 ガラス転移温度(Tg)は、通常、示差走査熱量分析装置(DSC)により、以下のように測定される。即ち、HPMCAS10mgを窒素雰囲気下、室温から10℃/分の昇温度速度で150℃まで上げ、更に10℃/分の降温速度で25℃まで一旦冷却し、再度10℃/分の速度で230℃まで昇温したときに見られた変曲点をガラス転移温度とする。このように絶乾状態でガラス転移温度を測定するのは、試料中の水分がTgの測定値に影響するためである。
 HPMCASにおけるヒドロキシプロポキシ基以外の他の置換基であるメトキシ基のモル置換度は特に限定されないが、好ましくは0.70~2.90、より好ましくは1.00~2.40、更に好ましくは1.4~1.9である。
 HPMCASにおけるアセチル基のモル置換度も特に限定されないが、好ましくは0.10~2.50、より好ましくは0.10~1.00、更に好ましくは0.16~0.96である。
 HPMCASにおけるスクシニル基のモル置換度も特に限定されないが、好ましくは0.10~2.50、より好ましくは0.10~1.00、更に好ましくは0.10~0.60である。
 本発明者らは、ヒドロキシプロポキシ基の置換度が上記のように高くなると、HPMCASの溶解pHが上がるため、小腸下部に比べて低いpHである小腸上部におけるHPMCASの溶解性が低下しまうことを見出した。そのため、小腸上部での溶解性の低下を防ぐ観点から、スクシニル基に対するアセチル基の比率(モル比)は、1.6未満、好ましくは0.6~1.5、より好ましくは0.8~1.5、特に好ましくは0.8~1.3である。
 20℃における、HPMCASを2質量%含む希(0.1mol/L)水酸化ナトリウム水溶液の粘度は、好ましくは1.1~20mPa・s、より好ましくは1.5~3.6mPa・sである。粘度が1.1mPa・s未満の場合、加熱溶融押出時に溶融粘度が低すぎてせん断力がかからず、ピストン又はスクリューの空転や吐出口からの押出しが困難になる場合がある。一方、粘度が20mPa・sを超える場合は、加熱溶融押出用組成物の粘度が高くなり過ぎ、ピストン又はスクリューにかかるトルクが過大となり、ピストン又はスクリューが回らない又は機械が安全上停止する場合がある。粘度の測定方法は、第16改正日本薬局方のHPMCASの一般試験法に記載の方法により測定することができる。
 HPMCASは、例えば、特開昭54-61282号公報に記載の方法を用いて製造できる。原料となるヒプロメロース(別名ヒドロキシプロピルメチルセルロース、以下、「HPMC」ともいう。)を氷酢酸に溶解し、エステル化剤として無水酢酸と無水コハク酸、反応触媒として酢酸ナトリウムを添加して加熱反応させる。反応終了後、反応液に多量の水を添加してHPMCASを析出させ、その析出物を水洗後、乾燥する。このとき、ヒドロキシプロポキシ基のモル置換度が0.40以上のHPMCを使用すれば、生成するHPMCASのヒドロキシプロポキシ基のモル置換度も0.40以上となる。
 薬物は、経口投与可能な薬物であれば特に限定されるものではない。かかる薬物としては、例えば、中枢神経系薬物、循環器系薬物、呼吸器系薬物、消化器系薬物、抗生物質、鎮咳去たん剤、抗ヒスタミン剤、解熱鎮痛消炎剤、利尿剤、自律神経作用薬、抗マラリア剤、止潟剤、向精神剤、ビタミン類及びその誘導体等が挙げられる。
 中枢神経系薬物としては、例えば、ジアゼパム、イデベノン、アスピリン、イブプロフェン、パラセタモール、ナプロキセン、ピロキシカム、ジクロフェナック、インドメタシン、スリンダック、ロラゼパム、ニトラゼパム、フェニトイン、アセトアミノフェン、エテンザミド、ケトプロフェン及びクロルジアゼポキシド等が挙げられる。
 循環器系薬物としては、例えば、モルシドミン、ビンポセチン、プロプラノロール、メチルドパ、ジピリダモール、フロセミド、トリアムテレン、ニフェジビン、アテノロール、スピロノラクトン、メトプロロール、ビンドロール、カプトプリル、硝酸イゾソルビト、塩酸デラプリル、塩酸メクロフェノキサート、塩酸ジルチアゼム、塩酸エチレフリン、ジギトキシン、塩酸プロプラノロール及び塩酸アルプレノロール等が挙げられる。
 呼吸器系薬物としては、例えば、アムレキサノクス、デキストロメトルファン、テオフィリン、プソイドエフェドリン、サルブタモール及びグアイフェネシン等が挙げられる。
 消化器系薬物としては、例えば、2-[〔3-メチル-4-(2,2,2-トリフルオロエトキシ)-2-ピリジル〕メチルスルフィニル]ベンゾイミダゾール及び5-メトキシ-2-〔(4-メトキシ-3,5-ジメチル-2-ピリジル)メチルスルフィニル〕ベンゾイミダゾール等の抗潰瘍作用を有するベンゾイミダゾール系薬物、シメチジン、ラニチジン、塩酸ピレンゼピン、パンクレアチン、ビサコジル並びに5-アミノサリチル酸等が挙げられる。
 抗生物質としては、例えば、塩酸タランピシリン、塩酸バカンピシリン、セファクロル及びエリスロマイシン等が挙げられる。
 鎮咳・去たん剤としては、例えば、塩酸ノスカピン、クエン酸カルベタペンタン、臭化水素酸デキストロメトルファン、クエン酸イソアミニル及びリン酸ジメモルファン等が挙げられる。
 抗ヒスタミン剤としては、例えば、マレイン酸クロルフェニラミン、塩酸ジフェンヒドラミン及び塩酸プロメタジン等が挙げられる。
 解熱鎮痛消炎剤としては、例えば、イブプロフェン、ジクロフェナクナトリウム、フルフェナム酸、スルピリン、アスピリン及びケトプロフェン等が挙げられる。
 利尿剤としては、例えば、カフェイン等が挙げられる。
 自律神経作用薬としては、例えば、リン酸ジヒドロコデイン、dl-塩酸メチルエフェドリン、塩酸プロプラノロール、硫酸アトロピン、塩化アセチルコリン、ネオスチグミン等が挙げられる。
 抗マラリア剤としては、例えば、塩酸キニーネ等が挙げられる。
 止潟剤としては、例えば、塩酸ロペラミド等が挙げられる。
 向精神剤としては、例えば、クロルプロマジン等が挙げられる。
 ビタミン類及びその誘導体としては、例えば、ビタミンA、ビタミンB1、フルスルチアミン、ビタミンB2、ビタミンB6、ビタミンB12、ビタミンC、ビタミンD、ビタミンE、ビタミンK、パントテン酸カルシウム及びトラネキサム酸等が挙げられる。
 特に、本発明のHPMCASを水難溶性の薬物の固体分散体の担体として用いることにより、水難溶性薬物の溶解性を改善することができる。ここで、水難溶性薬物とは、第16改正日本薬局方に記載された水に「溶けにくい」、「極めて溶けにくい」、「ほとんど溶けない」とされる薬物をいう。「溶けにくい」とは、固形の医薬品1g又は1mLをビーカーにとり、水を投入し20±5℃で5分ごとに強く30秒間振り混ぜるとき、100mL以上1000mL未満で30分以内に溶ける度合いをいう。「極めて溶けにくい」とは、同様に1000mL以上10000mL未満で30分以内に溶ける度合いをいう。「ほとんど溶けない」とは、同様に30分以内に溶けるために10000mL以上要するものをいう。
 また、上記の医薬品試験において、水難溶性薬物が解けるということは、薬物が溶媒に溶ける又は混和することを示し、繊維等を認めないか又は認めても極めてわずかであることをいう。
 水難溶性薬物の具体例としては、例えば、イトラコナゾール、ケトコナゾール、フルコナゾール、ミトコナゾール等のアゾール系化合物、ニフェジピン、ニトレンジピン、アムロジピン、ニカルジピン、ニルバジピン、フェロジピン、エフォニジピン等のジヒドロピリジン系化合物、イブプロフェン、ケトプロフェン、ナプロキセン等のプロピオン酸系化合物、インドメタシン、アセメタシン等のインドール酢酸系化合物のほかに、グリセオフルビン、フェニトイン、カルバマゼピン、ジピリダモール等が挙げられる。
 HPMCASと薬物の質量比率は特に限定されないが、非晶化状態の保存安定性の観点から、好ましくは1:0.01から1:100、より好ましくは1:0.1から1:10、更に好ましくは1:0.2から1:5である。
 更に、本発明の組成物は、加熱溶融押出の際の成形性の改善等のために、可塑剤、界面活性剤等の添加剤を添加してもよい。
 可塑剤としては、例えば、アセトン、メタノール、エタノール、イソプロパノール、セチルアルコール、ステアリルアルコール等の高級アルコール、マンニトール、ソルビトール、グリセリン等の多価アルコール、ビーズワックス、クエン酸トリエチル、ポリエチレングリコール又はプロピレングリコール等のアルキレングリコール、トリアセチン、ジブチルセバセート、グリセリンモノステアレート、モノグリセリンアセテート等の可塑剤が挙げられる。
 界面活性剤としては、例えば、ラウリル硫酸ナトリウム等の陰イオン性界面活性剤、ジグリセリド、ポロクサマー、ポリオキシエチレンソルビタン脂肪酸エステル(ツイン20、60、80)、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル等の非イオン性界面活性剤、レシチン、タウロコール酸ナトリウム等の天然界面活性剤、等が挙げられる。配合量は、保存安定性の観点から、可塑剤はHPMCASに対して30質量%以下、界面活性剤は10質量%以下が好ましい。
 加熱溶融押出成型物は、必要に応じて賦形剤、結合剤、崩壊剤、滑択剤、凝集防止剤等、通常この分野で常用され得る種々の添加剤を配合して、錠剤、顆粒剤、細粒剤、カプセル剤等の経口固形製剤や経口フィルム剤として用いることができる。
 賦形剤としては、例えば、白糖、乳糖、マンニトール、グルコース等の糖類、でんぷん、結晶セルロース等が挙げられ。
 結合剤としては、例えば、ポリビニルアルコール、ポリアクリル酸、ポリビニルピロリドン、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルセルロース、マクロゴール類、アラビアゴム、ゼラチン、でんぷん等が挙げられる。
 崩壊剤としては、例えば、低置換度ヒドロキシプロピルセルロース、カルメロース又はその塩、クロスカルメロースナトリウム、カルボキシメチルスターチナトリウム、クロスポビドン、結晶セルロース及び結晶セルロース・カルメロースナトリウム等が挙げられる。
 滑択剤、凝集防止剤としては、例えば、タルク、ステアリン酸マグネシウム、ステアリン酸カルシウム、コロイダルシリカ、ステアリン酸、ワックス類、硬化油、ポリエチレングリコール類、安息香酸ナトリウム等が挙げられる。
 得られた経口固形製剤は、メチルセルロース、ヒプロメロース等の水溶性コーティング剤によりフィルムコーティングや、ヒプロメロース酢酸エステルコハク酸エステルやヒプロメロースフタル酸エステル、メタクリル酸アクリル酸エステルコポリマー等の腸溶性コーティング剤によりコーティングされてもよい。
 次に、加熱溶融押出成型物の製造方法について説明する。
 まず、ヒドロキシプロポキシ基のモル置換度が0.40以上のHPMCASと薬物に、必要に応じてその他の成分を加えて混合して、加熱溶融押出用組成物を調製する。調製された加熱溶融押出用組成物を加熱溶融押出機により、円形や四角形等の形状の他、柱状やフィルム状の形状等、所望の形状に押出して、成型体を得ることができる。
 加熱溶融押出機は、HPMCASと薬物等系内で加熱をしながら、ピストン又はスクリューで剪断力を加えて溶融して練合後、ダイから押し出す構造の押出機であれば特に制限はないが、より均一な押出成型物を得るためには、二軸型の押出機の方が好ましい。具体的には、東洋精機社製のキャピログラフ(一軸ピストン型押出装置)やライストリッツ(Leistritz)社製のNano-16(二軸スクリュー型押出装置)、サーモフィッシャーサイエンティフィック(ThermofisherScientific)社製のMiniLab(二軸スクリュー型押出装置)及びPharmaLab(二軸スクリュー型押出装置)が挙げられる。
 加熱溶融温度は特に限定されないが、好ましくは加熱溶融押出用組成物が溶融して押出が無理なくでき、熱により薬物や高分子の分解をできるだけ避けることができる温度範囲で行うのが好ましい。即ち、固体分散体を製造しない場合にはHPMCASの溶融温度以上の温度が、固体分散体を製造する場合にはHPMCAS及び薬物の両者が溶融することになる温度以上の温度が好ましい。なお、薬物の添加によりHPMCASの融点が低下する場合にも、同様に共に溶融することになる温度以上の温度が好ましい。具体的な加熱溶融温度は、好ましくは50~250℃、より好ましくは60~200℃、更に好ましくは90~190℃である。50℃よりも低いと溶融が不完全となり押出が困難となる場合があり、250℃を超えるとHPMCASや薬物の分解により分子量の低下及び置換基の加水分解による失活の可能性がある。
 加熱溶融押出条件は、加熱溶融押出時における粘度が好ましくは1~100000Pa・sである加熱溶融押出用組成物を押し出すことができれば特に制限されないが、一軸ピストン型押出装置の場合は、押出速度が好ましくは1~1000mm/分、より好ましくは10~500mm/分であり、二軸スクリュー型押出装置の場合は、スクリュー回転数が好ましくは1~1000rpm、より好ましくは、1~500rpmである。押出速度が1mm/分未満又はクリュー回転数が1rpm未満の場合、系内での滞留時間が長くなり、熱分解する場合がある一方、押出速度が10000mm/分を超える場合又はクリュー回転数が1000rpmを超える場合、混練り部分での加熱溶融過程が不十分となり、加熱溶融押出成型物中の薬物とポリマーの溶融状態が不均一となる場合がある。
 押出後の加熱溶融押出成型物は、ダイ吐出口以降から室温(1~30℃)による自然冷却又は冷送風により冷却されるが、薬物の熱分解を最少にするため及び非晶化薬物の場合は再結晶化を抑制するために、好ましくは50℃以下、より好ましくは室温以下(30℃以下)に急速に冷却することが望ましい。
 冷却後の加熱溶融押出成型物は、必要に応じて切断機によって0.1~5mm以下のペレット化するか、更に粉砕して粒状及び粉状になるまで粒度調整を行ってもよい。粉砕には機器の構造上、品温が高くなりにくいジェットミル、ナイフミル、ピンミル等の衝撃粉砕機が好ましい。なお、切断機及び粉砕機内が高温化してしまう場合は、HPMCASが熱により軟化し粒同士が固着してしまうため、冷送風下で粉砕することが好ましい。
 以下に、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<HPMCAS-1の合成>
 50Lニーダーに氷酢酸12kg秤込み、ヒドロキシプロポキシ基のモル置換度0.97、メトキシ基のモル置換度1.67のヒプロメロース(HPMC)6kgを加えて溶解した。更に、無水酢酸3.7kg及び無水コハク酸2.0kg、酢酸ナトリウム4.8kgを加えて、85℃で5時間反応を行った。これに精製水6.7kgを加えて撹拌した後、この溶液に精製水を添加してHPMCASを粒状に沈殿させ、濾過により粗HPMCASを採取した。この粗HPMCASを精製水にて洗浄し、乾燥後、10メッシュ(目開き:1700μm)の篩にて篩過し、最終水分1.2質量%のHPMCAS-1を得た。
 得られたHPMCAS-1の各置換基含有量を第16改正日本薬局方第一追補記載の方法により測定したところ、ヒドロキシプロポキシ基24.1質量%(モル置換度:1.00)、メトキシ基16.7質量%(モル置換度:1.67)、アセチル基5.6質量%(モル置換度:0.40)、スクシニル基16.4質量%(モル置換度:0.50)であった。
 また、スクシニル基に対するアセチル基の比率(モル比)は、薬物の過飽和状態をより長く維持する観点から、好ましくは1.6~4.0、より好ましくは1.8~3.8である。
<HPMCAS-2~7の合成>
 同様な方法で置換基の含有量が異なる原料HPMCを用いて、無水酢酸と無水コハク酸の添加量を適宜変更して、表2に示す各種HPMCAS-2~7を得た。
Figure JPOXMLDOC01-appb-T000002
<HPMCASのガラス転移温度の測定>
 HPMCAS-1~7のガラス転移温度(Tg)を示差走査熱量分析装置(Bruker社製DSC3200SA)で測定した。即ち、各HPMCAS10mgを窒素雰囲気下、室温から10℃/分の昇温度速度で150℃まで上げ、更に10℃/分の降温速度で25℃まで一旦冷却し、再度10℃/分の速度で230℃まで昇温したときに見られる吸・発熱曲線における変曲点の温度、即ち2度目の昇温時に測定される変曲点の温度をガラス転移温度とした。
<実施例1~5及び比較例1~2>
 予め測定試料中の水分を1質量%未満になるように、乾燥したHPMCAS-1~7をダイの直径1mm、高さ10mm、押出速度50mm/分の条件で、真空押出機(一軸ピストン型溶融押出装置:東洋精機社製キャピログラフ)より吐出口のダイから押し出した時のHPMCAS-1~7の最低押出温度を測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ヒドロキシプロポキシ基のモル置換度が0.40以上のHPMCASを用いた実施例1~5及び比較例1は、0.4未満の比較例2に比べてガラス転移温度が低く、最低押出温度も低かった。
以上の結果から、加熱溶融押出用組成物をより低い温度で押し出すことができるため、薬物が熱分解によって失活せずに押出成型体を得ることができる。
<実施例6~10及び比較例3~4>
 水溶性薬物のアスコルビン酸を用い、加熱溶融押出用組成物を調製した。アスコルビン酸の熱分解温度は176℃であり、加熱溶融押出中の熱分解による失活が懸念されるモデル薬物である。
 各HPMCASとアスコルビン酸粉末を乳鉢により混合(HPMCAS:アスコルビン酸=1:0.5質量比)して、加熱溶融押出用組成物を調製した。
 次に、上記の混合末を用いて、同方向二軸型スクリュー(直径:5/14mm、長さ:109.5mm、スクリュー回転数100rpm、滞留時間5分間)の加熱溶融押出機(サーモフィッシャー社製HAAKE MiniLab)により、130℃以上での加熱溶融押出しを行い、得られた加熱溶融押出成型物の最低押出温度を実施例1と同様にして測定した。また、得られた加熱溶融押出成型物を粉砕機(大阪ケミカル社製ワンダーブレンダーWB-1型)を用いて20000rpmで粉砕し、30メッシュ(目開き500μm)の篩で篩過して得られた粉末及び成型前の加熱溶融押出組成物について黄色度指数(YI)をSMカラーコンピューター (スカ試験機社製 SM-T)にて測定した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 ヒドロキシプロポキシ基のモル置換度が0.40以上であるHPMCASを用いた実施例6~10及び比較例3の最低押出温度は、アスコルビン酸の熱分解温度(176℃)よりも26℃以上低くすることができ、得られた加熱溶融押出成型物の外観は白色のまま変化せず、黄色度指数(YI)も20以下であり、成型前の混合末(YI=16.8)とほとんど変わらず、加熱溶融押出によりアスコルビン酸が熱分解せず失活しなかった。一方、比較例4のHPMCASは、最低押出温度が160℃で実施例6~10及び比較例3よりも高く、得られた加熱溶融押出成型物の外観は原末の白色紛体から褐色に変化しており、黄色度指数(YI)も20を大きく上回っており、加熱溶融押出によりアスコルビン酸が熱分解し失活していることが確認された。
<実施例11~15及び比較例5~6>
 HPMCAS1~7を用いて、フィルム試験片を作成し、リン酸緩衝液への溶解時間を測定した。HPMCAS16gを塩化メチレン/エタノール溶液(塩化メチレン:エタノール=1:1質量比)64gに溶解した溶液をガラス板にキャストし、室温にて乾燥した。得られたフィルムは80℃にて2時間乾燥した後、厚さ100μmの部分を縦1cm、横1cmに切り出し試験片を作成した。
 試験片は第16改正日本薬局方に記載の崩壊試験法(補助筒)に準じて、試験片の溶解時間を測定した。すなわち、日本薬局方崩壊試験機(富山産業社製NT-400型)を用いて、試験片の1つを小腸上部から中部の消化液のpHに相当する米国薬局方(U.S. Pharmacopeia36)に記載のリン酸緩衝液(pH6.0)1Lに入れて、試験片が溶解して未溶解物が観察されなくなるまでの時間を測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 より薬物を効率的に吸収させるためには、小腸上部での薬物の速やかな溶出が好ましく、特に120分未満で溶解することが好ましい。スクシニル基に対するアセチル基の比率(モル比)が1.77で、かつヒドロキシプロポキシ基のモル置換度が0.84の比較例5は、溶解に長い時間が必要であり、120分後も未溶解の試験片が存在していた。これは、スクシニル基に対するアセチル基の比率(モル比)が高い上に、更にヒドロキシプロポキシ基のモル置換度の増大により、HPMCASの溶解pHが上がったことから、比較的低いpHである小腸上部から中部の消化液に相当するpH6.0のリン酸緩衝液への溶解性が低下したためと考えられる。また、スクシニル基に対するアセチル基の比率(モル比)が3.5を超える比較例6では、親水性のスクシニル基のモル置換度が少なく、疎水性のアセチル基のモル置換度が多いため、リン酸緩衝液への溶解性が低下し、120分後も未溶解の試験片が存在した。
 一方、スクシニル基に対するアセチル基の比率(モル比)が1.6未満である実施例11~15はヒドロキシプロポキシ基が0.4以上であるにも関わらず、比較例に比べてpH6.0のリン酸緩衝液に速やかに溶解し、試験片の溶解までにかかる時間は53分未満であった。
 以上の結果から、スクシニル基に対するアセチル基の比率(モル比)を特定の範囲にすることにより、小腸上部での速やかな溶出が可能となる。しかも、ヒドロキシプロポキシ基のモル置換度が0.4以上のHPMASの場合には、HPMASの溶解pHが上がるにも拘わらず、小腸上部での速やかな溶出が可能となる。
<実施例16~20及び比較例7~8>
 各HPMCASと、水難溶性薬物であるケトコナゾール(融点148℃)を乳鉢により混合(HPMCAS:ケトコナゾール=1:1質量比)して、加熱溶融押出用組成物を調製した。
 次に、上記の混合末を用いて同方向型二軸スクリュー(直径:5/14mm、長さ:109.5mm、スクリュー回転数100rpm、滞留時間5分間)の加熱溶融押出機(サーモフィッシャー社製HAAKE MiniLab)により、150℃での加熱溶融押出しを行い、得られた加熱溶融押出成型物を粉砕機(大阪ケミカル社製ワンダーブレンダーWB-1型)を用いて20000rpmで粉砕し、30メッシュ(目開き500μm)の篩で篩過して得られた粉末について第16改正日本薬局方に記載の溶出試験を行った。
 本粉末180mg(ケトコナゾール90mg相当量)から溶出されるケトコナゾールの溶出率(質量%)を、米国薬局方(U.S. Pharmacopeia36)に記載のリン酸緩衝液(pH6.0)900mL及び日本薬局方溶出試験機(富山産業社製NTR-6100A型)を用いてパドル回転数100rpmにて測定した。ケトコナゾールの定量は、UV(波長225nm、光路長10mm)の吸光度を求め、予め既知の濃度で作成した吸光度換算直線から求めた。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 スクシニル基に対するアセチル基の比率(モル比)が1.6未満のHPMASを用いた実施例16~20は、90分後においても50質量%以上の高い溶出率が得られた。
 一方、ヒドロキシプロポキシ基のモル置換度が0.4以上かつスクシニル基に対するアセチル基の比率(モル比)が1.6以上である比較例7及びスクシニル基に対するアセチル基の比率(モル比)が3.5を超える比較例8は、試験開始後90分後においても27質量%以下の低い溶出率に留まった。
 以上の結果から、スクシニル基に対するアセチル基の比率(モル比)を1.6未満にすることで、小腸上部のような比較的低pHの水溶液中でのHPMCASの溶解性を改善し、溶出が増大したと考えられる。
 また、得られた加熱溶融押出成型物を卓上小型粉砕機(大阪化学社製ワンダーブレンダーWB-1型)を用いて20000rpmで粉砕し、30メッシュ(目開き500μm)の篩で篩過して得られた粉末のX線回折像を測定したところ、X線回折像でケトコナゾールの結晶ピークが認められず、ケトコナゾール溶出率が著しく高かった。このことから、加熱溶融押出による組成物はケトコナゾールが非晶質状態でHPMCAS中に分散している固体分散体を形成していることがわかる。
 

Claims (5)

  1.  ヒドロキシプロポキシ基のモル置換度が0.40以上かつスクシニル基に対するアセチル基の比率(モル比)が1.6未満であるヒプロメロース酢酸エステルコハク酸エステルと薬物を少なくとも含む加熱溶融押出用組成物。
  2.  前記ヒプロメロース酢酸エステルコハク酸エステルのガラス転移温度(Tg)が、115℃以下である請求項1に記載の加熱溶融押出用組成物。
  3.  前記薬物が、水難溶性薬物である請求項1又は請求項2に記載の加熱溶融押出用組成物。
  4.  ヒドロキシプロポキシ基のモル置換度が0.40以上かつスクシニル基に対するアセチル基の比率(モル比)が1.6未満であるヒプロメロース酢酸エステルコハク酸エステルと薬物を少なくとも含む加熱溶融押出用組成物を、前記ヒプロメロース酢酸エステルコハク酸エステルの溶融温度以上、又は前記ヒプロメロース酢酸エステルコハク酸エステル及び前記薬物の共に溶融することになる温度以上の加熱溶融温度で加熱溶融し、押出する工程を少なくとも含む加熱溶融押出成型物の製造方法。
  5.  前記加熱溶融温度が、50~250℃である請求項4に記載の加熱溶融押出成型物の製造方法。
     
PCT/JP2014/064711 2013-06-03 2014-06-03 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法 WO2014196519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015521450A JP6007322B2 (ja) 2013-06-03 2014-06-03 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法
KR1020157034116A KR102228157B1 (ko) 2013-06-03 2014-06-03 가열 용융 압출용 조성물 및 이것을 사용한 가열 용융 압출 성형물의 제조 방법
CN201480030211.8A CN105283203B (zh) 2013-06-03 2014-06-03 用于热熔挤出的组合物以及通过使用该组合物制备热熔挤出物的方法
EP14806945.3A EP3006049B1 (en) 2013-06-03 2014-06-03 Composition for hot melt extrusion and method for producing a hot melt extruded product
US14/892,421 US10646573B2 (en) 2013-06-03 2014-06-03 Composition for hot melt extrusion and method for producing hot melt extrudate by using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-116836 2013-06-03
JP2013116836 2013-06-03
JP2013246178 2013-11-28
JP2013-246178 2013-11-28

Publications (1)

Publication Number Publication Date
WO2014196519A1 true WO2014196519A1 (ja) 2014-12-11

Family

ID=50842156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064711 WO2014196519A1 (ja) 2013-06-03 2014-06-03 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法

Country Status (8)

Country Link
US (2) US10016508B2 (ja)
EP (2) EP3006049B1 (ja)
JP (2) JP6007322B2 (ja)
KR (2) KR101918327B1 (ja)
CN (2) CN105283203B (ja)
IN (1) IN2014DE01467A (ja)
PT (2) PT3006049T (ja)
WO (1) WO2014196519A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098179A (ja) * 2014-11-18 2016-05-30 信越化学工業株式会社 ヒプロメロース酢酸エステルコハク酸エステルを用いたスプレードライ用溶液及び固体分散体の製造方法
JP2017538720A (ja) * 2014-12-18 2017-12-28 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 医薬調製物用の(s)−n−(3−(6−イソプロポキシピリジン−3−イル)−1h−インダゾール−5−イル)−1−(2−(4−(4−(1−メチル−1h−1,2,4−トリアゾール−3−イル)フェニル)−3,6−ジヒドロピリジン−1(2h)−イル)−2−オキソエチル)−3−(メチルチオ)ピロリジン−3−カルボキサミド組成物
JP2018172371A (ja) * 2017-03-30 2018-11-08 信越化学工業株式会社 ヒプロメロース酢酸エステルコハク酸エステルを含む射出成型用組成物及びその製造方法
JP2022059199A (ja) * 2020-10-01 2022-04-13 信越化学工業株式会社 ヒドロキシプロピルメチルセルロースアセテートサクシネート及びその製造方法並びに加熱溶融押出用組成物

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10016508B2 (en) * 2013-06-03 2018-07-10 Shin-Etsu Chemical Co., Ltd. Composition for hot-melt extrusion and method for producing hot-melt extrusion product using same
EP3294777B1 (en) * 2015-05-15 2019-06-26 Dow Global Technologies LLC Process for producing esterified cellulose ethers of very high molecular weight and low viscosity
EP3294776B1 (en) * 2015-05-15 2020-08-05 Dow Global Technologies LLC Process of preparing a high molecular weight esterified cellulose ether
JP6426877B2 (ja) * 2015-07-28 2018-11-21 ダウ グローバル テクノロジーズ エルエルシー エステル化セルロースエーテルの分散体を生成するためのプロセス
EP3596132B1 (en) 2017-03-17 2021-05-05 Nutrition & Biosciences USA 1, LLC Process for recovering an esterified cellulose ether from a reaction product mixture
WO2018170083A1 (en) 2017-03-17 2018-09-20 Dow Global Technologies Llc Process for recovering an esterified cellulose ether from a reaction product mixture
JP2020511572A (ja) 2017-03-17 2020-04-16 ダウ グローバル テクノロジーズ エルエルシー 反応生成物混合物からのエステル化セルロースエーテルの回収方法
CN109078186B (zh) * 2017-06-14 2021-09-03 江苏恒瑞医药股份有限公司 一种胃漂浮组合物及其制备方法
TR201722852A2 (tr) * 2017-12-29 2019-07-22 Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi Mesalazi̇ni̇n oral farmasöti̇k kompozi̇syonlari
WO2020131801A1 (en) 2018-12-18 2020-06-25 DDP Specialty Electronic Materials US, Inc. A sustained release composition comprising a hydroxypropyl methylcellulose acetate succinate
JP7050714B2 (ja) * 2019-04-04 2022-04-08 信越化学工業株式会社 腸溶性コーティング用組成物及び固形製剤の製造方法
JP7252882B2 (ja) * 2019-11-01 2023-04-05 信越化学工業株式会社 ヒドロキシプロピルメチルセルロースアセテートサクシネートの製造方法
JP7273691B2 (ja) 2019-11-01 2023-05-15 信越化学工業株式会社 ヒドロキシプロピルメチルセルロースフタレートの製造方法
WO2021118915A1 (en) 2019-12-09 2021-06-17 Nutrition & Biosciences Usa 1, Llc Hydroxypropyl alkyl cellulose acetate succinate heteropolymers
WO2022034232A1 (en) 2020-08-13 2022-02-17 Alfred E. Tiefenbacher (Gmbh & Co. Kg) Gastro-resistant high-strength formulation containing posaconazole
EP4091604B1 (en) 2021-11-25 2024-04-03 Alfred E. Tiefenbacher (GmbH & Co. KG) Granules containing posaconazole
CN115581678B (zh) * 2022-11-04 2023-09-12 北京鑫开元医药科技有限公司 一种瑞派替尼片组合物及其制备方法
CN115651085B (zh) * 2022-11-14 2023-11-17 乳源东阳光药业有限公司 一种醋酸羟丙甲纤维素琥珀酸酯的纯化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461282A (en) 1977-10-25 1979-05-17 Shin Etsu Chem Co Ltd Mixed esters of acidic succinate and aliphatic monoacylat of cellulose ether
WO2003063832A1 (en) 2002-02-01 2003-08-07 Pfizer Products Inc. Pharmaceutical compositions comprising a solid amorphous dispersion of cholesteryl ester transfer protein inhibitors
WO2003077827A1 (fr) 2002-03-19 2003-09-25 Nippon Shinyaku Co., Ltd. Procede de production de medicament solide en dispersion
WO2005115330A2 (en) 2004-05-28 2005-12-08 Pfizer Products Inc. Pharmaceutical compositions with enhanced performance
WO2009129300A2 (en) 2008-04-15 2009-10-22 Schering Corporation High density compositions containing posaconazole and formulations comprising the same
WO2011159626A1 (en) 2010-06-14 2011-12-22 Bend Research, Inc. Hydroxypropyl methyl cellulose acetate succinate with enhanced acetate and succinate substitution

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852421A (en) * 1970-03-23 1974-12-03 Shinetsu Chemical Co Excipient and shaped medicaments prepared therewith
US4226981A (en) 1977-09-28 1980-10-07 Shin-Etsu Chemical Co., Ltd. Ether-ester derivatives of cellulose and their applications
US4266981A (en) 1978-03-08 1981-05-12 Purdue Research Corporation Process for recovering and utilizing cellulose using sulfuric acid
DE19504832A1 (de) * 1995-02-14 1996-08-22 Basf Ag Feste Wirkstoff-Zubereitungen
KR100454394B1 (ko) 2002-03-27 2004-10-26 이원희 맥파검출장치
JP4344914B2 (ja) 2003-02-28 2009-10-14 信越化学工業株式会社 アルカリ溶解性カルボン酸エステル系セルロース誘導体及び該誘導体からなるフィルム
JPWO2007029660A1 (ja) * 2005-09-06 2009-03-19 アステラス製薬株式会社 腸溶性基剤が表面に吸着した難溶性薬物の微小粒子
JP5576922B2 (ja) * 2006-04-20 2014-08-20 信越化学工業株式会社 腸溶性固体分散体を含んでなる固形製剤
JP5052051B2 (ja) * 2006-06-16 2012-10-17 トーアエイヨー株式会社 腸溶性顆粒剤及びその製造方法
JP5070618B2 (ja) * 2006-06-16 2012-11-14 トーアエイヨー株式会社 腸溶性顆粒剤及びその製造方法
EP2079476B1 (en) 2006-10-20 2014-05-21 Dow Global Technologies LLC Uses of hydroxypropyl methylcellulose for preventing or treating metabolic syndrome
WO2009129301A2 (en) 2008-04-15 2009-10-22 Schering Corporation Oral pharmaceutical compositions in a molecular solid dispersion
EP2927720B1 (en) 2010-02-03 2018-10-17 Tyco Electronics Nederland B.V. Enclosure assembly for a connector, strain relief element, and method
EP2654726A4 (en) 2011-03-08 2013-10-30 Zalicus Pharmaceuticals Ltd SOLID DISPERSION FORMULATIONS AND METHODS OF USE
US8409560B2 (en) 2011-03-08 2013-04-02 Zalicus Pharmaceuticals Ltd. Solid dispersion formulations and methods of use thereof
US20120251588A1 (en) * 2011-03-30 2012-10-04 Miyuki Fukasawa Coating Composition, Solid Preparation Coated Therewith, and Method for Preparing Solid Preparation
JP2013116836A (ja) 2011-12-02 2013-06-13 Sharp Corp シリコン端材の再利用方法並びに原料シリコン、多結晶シリコン材料及び多結晶シリコン太陽電池の製造方法
DE102012010430A1 (de) 2012-05-29 2013-12-05 Krohne Ag Durchflussmessgerät
EP2888293B1 (en) 2012-08-24 2019-05-08 Dow Global Technologies LLC Novel hydroxyalkyl methyl cellulose acetate succinates
US10016508B2 (en) * 2013-06-03 2018-07-10 Shin-Etsu Chemical Co., Ltd. Composition for hot-melt extrusion and method for producing hot-melt extrusion product using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461282A (en) 1977-10-25 1979-05-17 Shin Etsu Chem Co Ltd Mixed esters of acidic succinate and aliphatic monoacylat of cellulose ether
WO2003063832A1 (en) 2002-02-01 2003-08-07 Pfizer Products Inc. Pharmaceutical compositions comprising a solid amorphous dispersion of cholesteryl ester transfer protein inhibitors
JP2005523895A (ja) 2002-02-01 2005-08-11 ファイザー・プロダクツ・インク コレステリルエステル輸送タンパク質阻害剤の固体非晶質分散物を含む医薬組成物
WO2003077827A1 (fr) 2002-03-19 2003-09-25 Nippon Shinyaku Co., Ltd. Procede de production de medicament solide en dispersion
WO2005115330A2 (en) 2004-05-28 2005-12-08 Pfizer Products Inc. Pharmaceutical compositions with enhanced performance
JP2008501009A (ja) 2004-05-28 2008-01-17 ファイザー・プロダクツ・インク 性能を高めた医薬組成物
WO2009129300A2 (en) 2008-04-15 2009-10-22 Schering Corporation High density compositions containing posaconazole and formulations comprising the same
JP2011516612A (ja) 2008-04-15 2011-05-26 シェーリング コーポレイション 好ましくはポサコナゾールおよびhpmcasを含む固体分散物中の経口用薬学的組成物
WO2011159626A1 (en) 2010-06-14 2011-12-22 Bend Research, Inc. Hydroxypropyl methyl cellulose acetate succinate with enhanced acetate and succinate substitution

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"General Tests in the Japanese Pharmacopoeia", article "Viscosity Determination"
"Japanese Pharmacopoeia"
"Japanese Pharmacopoeia", article "HPMCAS"
"Japanese Pharmacopoeia", vol. I
"Official Monographs in Supplement I to the Japanese Pharmacopoeia", article "hypromellose acetate succinate"
"Official Monographs in Supplement I to the Japanese Pharmacopoeia", vol. I, article "hypromellose acetate succinate"
FUMIE TANNO ET AL.: "COMPOSITION FOR HEAT MELT EXTRUSION AND METHOD FOR PRODUCING HEAT MELT EXTRUDED PRODUCT USING SAME", THE 29TH SYMPOSIUM ON PARTICULATE PREPARATIONS AND DESIGNS AND DESIGN KOEN YOSHISHU, 2012, pages 46 - 47, XP008178586 *
FUMIE TANNO: "KANETSU YOYU OSHIDASHIHO NI YORU HPMCAS KOTAI BUNSANTAI NO KENTO", SEIZAI KIKAI GIJUTSU KENKYU KAISHI, vol. 19, no. 3, 2010, pages 41 - 46, XP008178585 *
See also references of EP3006049A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016098179A (ja) * 2014-11-18 2016-05-30 信越化学工業株式会社 ヒプロメロース酢酸エステルコハク酸エステルを用いたスプレードライ用溶液及び固体分散体の製造方法
JP2017538720A (ja) * 2014-12-18 2017-12-28 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. 医薬調製物用の(s)−n−(3−(6−イソプロポキシピリジン−3−イル)−1h−インダゾール−5−イル)−1−(2−(4−(4−(1−メチル−1h−1,2,4−トリアゾール−3−イル)フェニル)−3,6−ジヒドロピリジン−1(2h)−イル)−2−オキソエチル)−3−(メチルチオ)ピロリジン−3−カルボキサミド組成物
US10577348B2 (en) 2014-12-18 2020-03-03 Merck Sharp & Dohme Corp. (S)-N-(3-(6-isopropoxypyridin-3-yl)-1H-indazol-5-yl)-1-(2-(4-(4-(1-methyl-1H-1,2,4-triazol-3-yl)phenyl)-3,6-dihydropyridin-1(2H)-yl)-2-oxoethyl)-3-(methylthio)pyrrolidine-3-carboxamide compositions for pharmaceutical preparations
US10710982B2 (en) 2014-12-18 2020-07-14 Merck Sharp & Dohme Corp. (S)-N-(3-6-isopropoxypyridin-3-3YL)-1H-indazol-5-yl)-1-(2-(4-4(1-methyl-1H-1,2,4-triazol-3-yl)phenyl)-3,6-dihydropyridin-1(2H-yl)-2-oxoethyl)-3(methylthio)pyrrolidine-3-carboxamide compositions for pharmaceutical preparations
US11034673B2 (en) 2014-12-18 2021-06-15 Merck Sharp & Dohme Corp. (S)-N-(3-(6-isopropoxypyridin-3-yl)-1H-indazol-5-yl)-1-(2-(4-(4-(1-methyl-1H-1,2,4-triazol-3-yl)phenyl)-3,6-dihydropyridin-1(2H)-yl)-2-oxoethyl)-3-(methylthio)pyrrolidine-3-carboxamide compositions for pharmaceutical preparations
JP2018172371A (ja) * 2017-03-30 2018-11-08 信越化学工業株式会社 ヒプロメロース酢酸エステルコハク酸エステルを含む射出成型用組成物及びその製造方法
JP2022059199A (ja) * 2020-10-01 2022-04-13 信越化学工業株式会社 ヒドロキシプロピルメチルセルロースアセテートサクシネート及びその製造方法並びに加熱溶融押出用組成物
JP7399060B2 (ja) 2020-10-01 2023-12-15 信越化学工業株式会社 ヒドロキシプロピルメチルセルロースアセテートサクシネートの製造方法

Also Published As

Publication number Publication date
EP3006049B1 (en) 2018-02-28
PT3006049T (pt) 2018-03-20
JP6007322B2 (ja) 2016-10-12
KR20160015234A (ko) 2016-02-12
PT2810660T (pt) 2017-08-16
CN105283203A (zh) 2016-01-27
EP2810660A1 (en) 2014-12-10
JP6126555B2 (ja) 2017-05-10
EP3006049A4 (en) 2017-02-22
KR20140142173A (ko) 2014-12-11
CN104208713B (zh) 2018-04-27
KR101918327B1 (ko) 2018-11-13
EP3006049A1 (en) 2016-04-13
US10646573B2 (en) 2020-05-12
US20140357681A1 (en) 2014-12-04
JPWO2014196519A1 (ja) 2017-02-23
EP2810660B1 (en) 2017-07-26
CN105283203B (zh) 2018-12-28
IN2014DE01467A (ja) 2015-07-24
US10016508B2 (en) 2018-07-10
US20160095928A1 (en) 2016-04-07
JP2015127316A (ja) 2015-07-09
CN104208713A (zh) 2014-12-17
KR102228157B1 (ko) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6007322B2 (ja) 加熱溶融押出用組成物及びこれを用いた加熱溶融押出成型物の製造方法
KR102089112B1 (ko) 가열 용융 압출 담체용 히프로멜로오스 아세트산 에스테르 숙신산 에스테르, 가열 용융 압출용 조성물 및 가열 용융 압출 성형물의 제조 방법
KR102315569B1 (ko) 히프로멜로오스 아세트산에스테르 숙신산에스테르를 사용한 스프레이 드라이용 용액 및 고체 분산체의 제조 방법
JP6522853B2 (ja) Somcl−9112固体分散体、その製造方法およびそれを含むsomcl−9112固体製剤
JP2017186331A (ja) 溶状に優れたヒプロメロース酢酸エステルコハク酸エステル粉末及びその製造方法、並びに固体分散体用組成物、コーティング用組成物、薬物含有粒子及び固形製剤の各製造方法
JP6823002B2 (ja) ヒプロメロース酢酸エステルコハク酸エステルを含む射出成型用組成物及びその製造方法
JP2024091760A (ja) 非晶質固体分散体を含む複合物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030211.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521450

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14892421

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014806945

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157034116

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE