WO2014196454A1 - ターボ冷凍機 - Google Patents

ターボ冷凍機 Download PDF

Info

Publication number
WO2014196454A1
WO2014196454A1 PCT/JP2014/064305 JP2014064305W WO2014196454A1 WO 2014196454 A1 WO2014196454 A1 WO 2014196454A1 JP 2014064305 W JP2014064305 W JP 2014064305W WO 2014196454 A1 WO2014196454 A1 WO 2014196454A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
motor
housing space
oil
turbo
Prior art date
Application number
PCT/JP2014/064305
Other languages
English (en)
French (fr)
Inventor
兼太郎 小田
誠一郎 吉永
信義 佐久間
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to CN201480030570.3A priority Critical patent/CN105339743B/zh
Priority to US14/895,805 priority patent/US10234175B2/en
Priority to EP14807016.2A priority patent/EP3006861A4/en
Priority to JP2014550567A priority patent/JP6004004B2/ja
Publication of WO2014196454A1 publication Critical patent/WO2014196454A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • F25B31/008Cooling of compressor or motor by injecting a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0016Ejectors for creating an oil recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator

Definitions

  • the present invention relates to a turbo refrigerator.
  • This application claims priority based on Japanese Patent Application No. 2013-117636 for which it applied to Japan on June 4, 2013, and uses the content here.
  • a centrifugal chiller including a turbo compressor driven by a motor
  • the motor is cooled by supplying a part of refrigerant circulating through an evaporator and a condenser to the motor (for example, see Patent Document 1).
  • lubricating oil is always supplied to a gear or the like that connects the rotating shaft of the motor and the impeller, and this lubricating oil is supplied by a heat exchanger with the refrigerant. After being cooled, it is supplied to gears and the like to cool the gears and the like.
  • Patent Document 2 a technique for integrating an intermediate cooler, which is provided between a condenser and an evaporator, and supplies a part of the refrigerant liquefied in the condenser to the turbo compressor, with the motor for driving the turbo compressor.
  • an oil tank that stores lubricating oil
  • a suction capacity control unit inlet guide vane
  • a pressure equalizing pipe that connects between a compression mechanism that is an installed space is disclosed.
  • Japanese Unexamined Patent Publication No. 2007-212112 Japanese Unexamined Patent Publication No. 2001-349628 Japanese Unexamined Patent Publication No. 2009-186029
  • a turbo chiller is a kind of heat pump, but recently, in order to obtain hot hot water, it has been proposed to use such a turbo chiller in a higher temperature range than before.
  • the temperature of the refrigerant in the evaporator where the temperature is lowest is about several degrees Celsius, but in the centrifugal chiller used in the high temperature range as described above, the temperature of the refrigerant in the evaporator Becomes about several tens of degrees Celsius, and the condenser becomes even hotter. For this reason, there is a possibility that the motor and the lubricating oil cannot be sufficiently cooled.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to sufficiently cool a motor and lubricating oil in a turbo refrigerator.
  • a first aspect of the present invention is a turbo refrigerator including a turbo compressor having a motor and an oil cooling unit that cools at least lubricating oil supplied to a part of the turbo compressor, the evaporator
  • a refrigerant introduction part for introducing a part of the refrigerant circulating through the condenser into the housing space of the motor and the oil cooling part, and a refrigerant introduced into the housing space of the motor and the oil cooling part are cooled.
  • a cooling section that cools the refrigerant introduced into the motor housing space and the oil cooling section by depressurizing the interior of the motor housing space and the oil cooling section.
  • the compressor collects the refrigerant from the housing space of the motor and the inside of the oil cooling unit and returns the refrigerant to the evaporator.
  • an oil return portion is provided for returning the lubricating oil accumulated in the motor accommodating space to an oil tank in which the lubricating oil is stored.
  • a third aspect of the present invention is the ejector according to the second aspect, wherein the oil return section moves the lubricating oil using the compressed refrigerant gas generated by the turbo compressor.
  • a bearing that pivotally supports the rotating shaft of the motor, and the rotating shaft that is disposed closer to the rotor side of the motor than the bearing. Compression generated by the turbo compressor between the first non-contact seal mechanism and the second non-contact seal mechanism arranged in the axial direction of the first non-contact seal mechanism and the first non-contact seal mechanism and the second non-contact seal mechanism A compressed gas supply unit that supplies a part of the refrigerant gas is provided.
  • the cooling unit includes a sub-refrigerator for cooling the refrigerant introduced into the motor and the oil cooling unit.
  • the refrigerant introduced into the motor housing space and the oil cooling section is cooled by the cooling section. Therefore, according to the present invention, even when the temperature of the refrigerant in the condenser is not sufficiently low, the temperature of the refrigerant is lowered by the cooling unit, and the motor and the lubricating oil can be sufficiently cooled.
  • FIG. 1 is a system diagram of a turbo chiller 1 according to a first embodiment of the present invention.
  • the turbo refrigerator 1 includes a condenser 2, an economizer 3, an evaporator 4, a turbo compressor 5, an expansion valve 6, an oil cooler 7 (oil cooling unit), and a small compression unit.
  • the machine 8 (cooling part) and the ejector 9 (oil return part) are provided.
  • the condenser 2 is connected to the gas discharge pipe 5a of the turbo compressor 5 through the flow path R1.
  • the refrigerant (compressed refrigerant gas X1) compressed by the turbo compressor 5 is supplied to the condenser 2 through the flow path R1.
  • the condenser 2 liquefies this compressed refrigerant gas X1.
  • the condenser 2 includes a heat transfer tube 2a through which cooling water flows, and cools and liquefies the compressed refrigerant gas X1 by heat exchange between the compressed refrigerant gas X1 and the cooling water.
  • a refrigerant chlorofluorocarbon or the like can be used.
  • Compressed refrigerant gas X1 is cooled by heat exchange with cooling water, liquefied, becomes refrigerant liquid X2, and accumulates at the bottom of condenser 2.
  • the bottom of the condenser 2 is connected to the economizer 3 via the flow path R2.
  • the flow path R2 is provided with an expansion valve 6 (first expansion valve 61) for decompressing the refrigerant liquid X2.
  • the economizer 3 is supplied with the refrigerant liquid X2 decompressed by the first expansion valve 61 through the flow path R2.
  • the economizer 3 temporarily stores the decompressed refrigerant liquid X2, and separates the refrigerant into a liquid phase and a gas phase.
  • the top of the economizer 3 is connected to the economizer connecting pipe 5b of the turbo compressor 5 through the flow path R3.
  • the refrigerant gas phase component X3 separated by the economizer 3 is supplied to the second compression stage 12 (described later) through the flow path R3 without passing through the evaporator 4 and the first compression stage 11 (described later). Increase efficiency.
  • the bottom of the economizer 3 is connected to the evaporator 4 via a flow path R4.
  • the flow path R4 is provided with an expansion valve 6 (second expansion valve 62) for further reducing the pressure of the refrigerant liquid X2.
  • the evaporator 4 is supplied with the refrigerant liquid X2 further reduced in pressure by the second expansion valve 62 through the flow path R4.
  • the evaporator 4 evaporates the refrigerant liquid X2 and cools the cold water with the heat of vaporization.
  • the evaporator 4 includes a heat transfer tube 4a through which cold water flows, and cools the cold water and evaporates the refrigerant liquid X2 by heat exchange between the refrigerant liquid X2 and the cold water.
  • Refrigerant liquid X2 takes heat by heat exchange with cold water and evaporates to become refrigerant gas X4.
  • the top of the evaporator 4 is connected to a gas suction pipe 5c of the turbo compressor 5 via a flow path R5.
  • the refrigerant gas X4 evaporated in the evaporator 4 is supplied to the turbo compressor 5 through the flow path R5.
  • the turbo compressor 5 compresses the evaporated refrigerant gas X4 and supplies it to the condenser 2 as the compressed refrigerant gas X1.
  • the turbo compressor 5 is a two-stage compressor that includes a first compression stage 11 that compresses the refrigerant gas X4 and a second compression stage 12 that further compresses the refrigerant compressed in one stage.
  • the first compression stage 11 is provided with an impeller 13, and the second compression stage 12 is provided with an impeller 14, which are connected by a rotating shaft 15.
  • the turbo compressor 5 has a motor 10, and the impeller 13 and the impeller 14 are rotated by the motor 10 to compress the refrigerant.
  • the impeller 13 and the impeller 14 are radial impellers, and lead out the refrigerant sucked in the axial direction in the radial direction.
  • the gas intake pipe 5c is provided with an inlet guide vane 16 for adjusting the intake amount of the first compression stage 11.
  • the inlet guide vane 16 is rotatable so that the apparent area from the flow direction of the refrigerant gas X4 can be changed.
  • a diffuser flow path is provided around each of the impeller 13 and the impeller 14, and the refrigerant led out in the radial direction is compressed and boosted in the diffuser flow path. Further, the refrigerant can be supplied to the next compression stage through a scroll passage provided around the diffuser passage.
  • An outlet throttle valve 17 is provided around the impeller 14, and the discharge amount from the gas discharge pipe 5a can be controlled.
  • the turbo compressor 5 includes a sealed casing 20.
  • the interior of the housing 20 includes a compression flow path space S1, a first bearing housing space S2, a motor housing space S3, a gear unit housing space S4, a second bearing housing space S5, and a first compressed gas supply space S6. And a second compressed gas supply space S7.
  • the impeller 13 and the impeller 14 are provided in the compression flow path space S1.
  • the rotating shaft 15 that connects the impeller 13 and the impeller 14 is provided so as to be inserted into the compression flow path space S1, the first bearing housing space S2, and the gear unit housing space S4.
  • a bearing 21 that supports the rotary shaft 15 is provided in the first bearing housing space S2.
  • a stator 22, a rotor 23, and a rotating shaft 24 connected to the rotor 23 are provided in the motor housing space S3, a stator 22, a rotor 23, and a rotating shaft 24 connected to the rotor 23 are provided.
  • the rotating shaft 24 is provided so as to be inserted into the motor housing space S3, the gear unit housing space S4, the second bearing housing space S5, the first compressed gas supply space S6, and the second compressed gas supply space S7.
  • a bearing 31 that supports the non-load side of the rotary shaft 24 is provided in the second bearing housing space S5.
  • a gear unit 25, a bearing 26 and a bearing 27, and an oil tank 28 are provided in the gear unit housing space S4.
  • the gear unit 25 has a large-diameter gear 29 fixed to the rotary shaft 24 and a small-diameter gear 30 fixed to the rotary shaft 15 and meshed with the large-diameter gear 29.
  • the gear unit 25 transmits the rotational force so that the rotation speed of the rotation shaft 15 increases (acceleration) with respect to the rotation speed of the rotation shaft 24.
  • the bearing 26 supports the rotating shaft 24.
  • the bearing 27 supports the rotating shaft 15.
  • the oil tank 28 stores lubricating oil supplied to each sliding portion such as the bearing 21, the bearing 26, the bearing 27, and the bearing 31.
  • the first compressed gas supply space S6 is provided between the motor housing space S3 and the gear unit housing space S4.
  • the second compressed gas supply space S7 is provided between the motor housing space S3 and the second bearing housing space S5.
  • a flow path R13 described later is connected to the first compressed gas supply space S6 and the second compressed gas supply space S7, and the compressed refrigerant gas X1 is supplied through the flow path R13.
  • Such a casing 20 is provided with a seal mechanism 32 and a seal mechanism 33 for sealing the periphery of the rotary shaft 15 between the compression flow path space S1 and the first bearing housing space S2.
  • the casing 20 is provided with a seal mechanism 34 that seals the periphery of the rotary shaft 15 between the compression flow path space S1 and the gear unit accommodation space S4.
  • the casing 20 is provided with a seal mechanism 35 that seals the periphery of the rotary shaft 24 between the gear unit accommodation space S4 and the first compressed gas supply space S6.
  • the casing 20 is provided with a seal mechanism 36 that seals the periphery of the rotary shaft 24 between the second bearing housing space S5 and the second compressed gas supply space S7.
  • the casing 20 is provided with a seal mechanism 38 that seals the periphery of the rotary shaft 24 between the motor housing space S3 and the first compressed gas supply space S6.
  • the casing 20 is provided with a seal mechanism 39 that seals the periphery of the rotary shaft 24 between the motor housing space S3 and the second compressed gas supply space S7.
  • the seal mechanism 32, the seal mechanism 33, the seal mechanism 34, the seal mechanism 35, the seal mechanism 36, the seal mechanism 38, and the seal mechanism 39 are non-contact seal mechanisms that perform non-contact sealing, and have, for example, a labyrinth structure. It consists of a sealing mechanism. Among these, a seal mechanism 35 disposed between the gear unit housing space S4 and the first compressed gas supply space S6, and a seal mechanism disposed between the motor housing space S3 and the first compressed gas supply space S6. 38 corresponds to the first non-contact sealing mechanism and the second non-contact sealing mechanism of the present invention.
  • the seal mechanism 35 and the seal mechanism 38 are arranged on the rotor 23 side of the motor 10 with respect to the bearing 26 and are arranged in the axial direction of the rotary shaft 24 and the second non-contact seal mechanism. Function as. Further, a seal mechanism 36 disposed between the second bearing housing space S5 and the second compressed gas supply space S7, and a seal mechanism 39 disposed between the motor housing space S3 and the second compressed gas supply space S7. Similarly, it corresponds to the first non-contact sealing mechanism and the second non-contact sealing mechanism of the present invention.
  • the motor housing space S3 is connected to the condenser 2 via a flow path R6.
  • An expansion valve 6 (third expansion valve 63) is installed immediately before the motor housing space S3 of the flow path R6.
  • Refrigerant gas X5 generated by reducing the pressure of the refrigerant liquid X2 taken out from the condenser 2 by the third expansion valve 63 is supplied to the motor housing space S3.
  • the refrigerant gas X5 supplied to the motor housing space S3 cools the motor 10 housed in the motor housing space S3.
  • the flow path R ⁇ b> 6 is branched and connected to the oil cooler 7.
  • An expansion valve 6 (fourth expansion valve 64) is installed immediately before the oil cooler 7 in the flow path R6.
  • the above-described flow path R6 functions as the refrigerant introduction portion T of the present invention that introduces a part of the refrigerant circulating through the evaporator 4 and the condenser 2 into the motor housing space S3 and the oil cooler 7.
  • the third expansion valve 63 and the fourth expansion valve 64 adjust the pressure of the motor housing space S3 and the saturation pressure inside the oil cooler 7, thereby adjusting the temperature of the motor housing space S3 and the temperature inside the oil cooler 7. To do.
  • An oil supply pump 37 is disposed in the oil tank 28.
  • the oil supply pump 37 is connected to the second bearing housing space S5 through, for example, a flow path R8.
  • Lubricating oil is supplied from the oil tank 28 to the second bearing housing space S5 through the flow path R8.
  • Lubricating oil supplied to the second bearing housing space S5 is supplied to the bearing 31 to ensure lubricity of the sliding portion of the rotating shaft 24 and to suppress (cool) heat generation of the sliding portion.
  • the second bearing housing space S5 is connected to the oil tank 28 via the flow path R9. The lubricating oil supplied to the second bearing housing space S5 returns to the oil tank 28 through the flow path R9.
  • the flow path R8 is also connected to the first bearing housing space S2 and the gear unit housing space S4, and lubricating oil is also supplied to the bearing 21, the gear unit 25, the bearing 26, and the bearing 27.
  • the lubricating oil supplied to the first bearing housing space S2 and the gear unit housing space S4 returns to the oil tank 28 through a flow path inside the housing 20.
  • the oil cooler 7 is installed in the middle of the flow path R8.
  • the oil cooler 7 is supplied with a refrigerant gas X6 generated by reducing the pressure of the refrigerant liquid X2 extracted from the condenser 2 by the fourth expansion valve 64.
  • Such an oil cooler 7 cools the lubricating oil supplied to the turbo compressor 5 by exchanging heat between the lubricating oil flowing through the flow path R8 and the refrigerant gas X6 supplied via the flow path R6.
  • the small compressor 8 is a smaller compressor than the turbo compressor 5, and is connected to the motor housing space S3 via the flow path R10.
  • the small compressor 8 depressurizes the motor housing space S3 so that the temperature of the refrigerant gas X5 introduced into the motor housing space S3 becomes a temperature suitable for cooling the motor 10. That is, in this embodiment, the small compressor 8 cools the refrigerant gas X5 supplied to the motor housing space S3.
  • the small compressor 8 collects the refrigerant gas X5 from the motor housing space S3 via the flow path R10 and returns it to the evaporator 4 via the flow path R11.
  • the small compressor 8 is connected to the oil cooler 7 via the flow path R12.
  • the inside of the oil cooler 7 to which the refrigerant gas X6 of the oil cooler 7 is supplied is decompressed so that the temperature of the refrigerant gas X6 introduced into the oil cooler 7 becomes a temperature suitable for cooling the lubricating oil. That is, in the present embodiment, the small compressor 8 cools the refrigerant gas X6 supplied to the inside of the oil cooler 7.
  • the small compressor 8 collects the refrigerant gas X6 from the inside of the oil cooler 7 through the flow path R12 and returns it to the evaporator 4 through the flow path R11.
  • the first compressed gas supply space S6 and the second compressed gas supply space S7 are connected to the compressed flow path space S1 through the flow path R13 (compressed gas supply unit). ing.
  • the flow path R13 supplies a part of the compressed refrigerant gas X1 generated by the turbo compressor 5 to the first compressed gas supply space S6 and the second compressed gas supply space S7.
  • compressed refrigerant gas X1 is supplied.
  • the flow path R13 is provided between the first non-contact seal mechanism (the seal mechanism 35 and the seal mechanism 36) and the second non-contact seal mechanism (the seal mechanism 38 and the seal mechanism 39). It functions as a compressed gas supply unit that supplies a part of the compressed refrigerant gas generated by the above.
  • a flow rate adjusting valve 40 is provided in the middle of the flow path R13 so that the flow rate of the compressed refrigerant gas supplied to the first compressed gas supply space S6 and the second compressed gas supply space S7 can be adjusted. ing.
  • the ejector 9 (oil return portion) is provided in the middle of the flow path R14 that connects the compression flow path space S1 and the oil tank 28, and is connected to the bottom of the motor housing space S3 via the flow path R15. .
  • the ejector 9 uses the static pressure of the compressed refrigerant gas X1 flowing through the flow path R14 to move the lubricating oil accumulated at the bottom of the motor housing space S3 to the oil tank 28 via the flow path R15.
  • Such an ejector 9 functions as an oil return portion of the present invention that returns the lubricating oil accumulated in the motor housing space S3 to the oil tank in which the lubricating oil is stored.
  • the compressed refrigerant gas X1 is cooled and condensed by the cooling water in the condenser 2 and is exhausted by heating the cooling water.
  • the refrigerant liquid X2 generated by the condensation in the condenser 2 is decompressed by the first expansion valve 61 and supplied to the economizer 3, and after the vapor phase component X3 is separated, the refrigerant liquid X2 is further decompressed by the second expansion valve 62 and evaporated. Supplied to the vessel 4.
  • the gas phase component X3 is supplied to the turbo compressor 5 via the flow path R3.
  • the refrigerant liquid X ⁇ b> 2 supplied to the evaporator 4 evaporates in the evaporator 4, thereby removing the heat of the cold water and cooling the cold water. Thereby, the heat of the cold water before cooling is substantially transported to the cooling water supplied to the condenser 2.
  • the refrigerant gas X4 generated by evaporating the refrigerant liquid X2 is supplied to the turbo compressor 5 and compressed, and then supplied to the condenser 2 again.
  • the refrigerant liquid X2 accumulated in the condenser 2 is supplied to the motor housing space S3 and the oil cooler 7 via the flow path R6.
  • the interior of the motor housing space S3 and the oil cooler 7 is decompressed by a small compressor 8.
  • the refrigerant liquid X ⁇ b> 2 introduced into the motor housing space S ⁇ b> 3 through the flow path R ⁇ b> 6 becomes the refrigerant gas X ⁇ b> 5 through the third expansion valve 63, and is cooled to a temperature suitable for cooling the motor 10.
  • the motor 10 is sufficiently cooled.
  • the refrigerant liquid X2 introduced into the oil cooler 7 by the flow path R6 becomes the refrigerant gas X6 through the fourth expansion valve 64, and is cooled to a temperature suitable for cooling the lubricating oil.
  • the lubricating oil flowing through the flow path R8 is sufficiently cooled inside the oil cooler 7.
  • the lubricating oil flowing through the flow path R8 is supplied to the first bearing housing space S2, the second bearing housing space S5, and the gear unit housing space S4 to reduce the sliding resistance of the bearing 21, the gear unit 25, and the like. Further, the bearing 21 and the gear unit 25 are cooled.
  • the compressed refrigerant gas X1 generated by the turbo compressor 5 is supplied to the first compressed gas supply space S6 and the second compressed gas supply space S7 through the flow path R13.
  • compressed refrigerant gas X1 is supplied.
  • the internal pressure of the first compressed gas supply space S6 and the second compressed gas supply space S7 becomes higher than the gear unit accommodation space S4 and the second bearing accommodation space S5.
  • the turbo refrigerator 1 of the present embodiment as described above, the refrigerant gas X5 introduced into the motor housing space S3 and the refrigerant gas X6 introduced into the oil cooler 7 are cooled by the small compressor 8. Therefore, according to the turbo refrigerator 1 of the present embodiment, even when the temperature of the refrigerant liquid X2 in the condenser 2 is not sufficiently low, the temperature of the refrigerant can be reduced by the small compressor 8, and the motor 10 and the lubricating oil can be sufficiently cooled.
  • the temperature of the refrigerant gas X6 is decreased using the small compressor 8. For this reason, the temperature of the refrigerant can be lowered with a simple configuration, and the motor 10 and the lubricating oil can be sufficiently cooled.
  • the ejector 9 that returns the lubricating oil accumulated in the motor housing space S3 to the oil tank 28 in which the lubricating oil is stored is provided.
  • the motor housing space S3 is depressurized by the small compressor 8, the lubricating oil easily flows from the gear unit housing space S4 and the second bearing housing space S5 into the motor housing space S3.
  • the ejector 9 the lubricating oil accumulated in the motor housing space S3 can be discharged and returned to the oil tank 28, and a decrease in the lubricating oil can be suppressed.
  • the compressed refrigerant gas X1 is supplied between the seal mechanism 35 and the seal mechanism 38 and between the seal mechanism 36 and the seal mechanism 39.
  • the lubricating oil supplied to the gear unit accommodation space S4 and the second bearing accommodation space S5 passes through the slight gap between the seal mechanism 35 and the seal mechanism 36 and the first compressed gas supply space S6 and the second compressed gas. It becomes difficult to enter the supply space S7. Therefore, according to the turbo refrigerator 1 of this embodiment, the reduction
  • FIG. 2 is a system diagram of a turbo refrigerator 1A according to the second embodiment of the present invention.
  • the turbo chiller 1A of the present embodiment includes a flow path R10, a flow path R11, a flow path R12, a flow path R13, and a flow path R14 provided in the turbo chiller 1A of the first embodiment.
  • Flow path R16, small compressor 8, ejector 9, seal mechanism 38, seal mechanism 39, third expansion valve 63, fourth expansion valve 64, flow rate adjustment valve 40, first compressed gas supply space S6, second compressed gas Supply space S7 is not installed.
  • a first orifice 65 is installed in place of the third expansion valve 63, and a second orifice 66 is installed in place of the fourth expansion valve 64.
  • the refrigerant liquid X2 flowing through the flow path R6 is decompressed by the first orifice 65 while being liquid, and is supplied to the motor housing space S3. Further, the refrigerant liquid X2 flowing through the flow path R6 is reduced in pressure by the second orifice 66 while being in a liquid state, and is supplied to the motor housing space S3 through the oil cooler 7.
  • the refrigerant liquid X2 passes through a flow path (not shown) formed around the motor 10, cools the motor 10, and is discharged from the motor housing space S3.
  • a flow path R16 connected to the evaporator 4 is connected to the motor housing space S3, and the refrigerant liquid X2 is returned to the evaporator 4 via the flow path R16.
  • the turbo refrigerator 1 of this embodiment includes a small refrigerator 51 (sub-refrigerator) installed in the middle of the flow path R6.
  • the small refrigerator 51 includes a small condenser 52, a small evaporator 53, and a small compressor 54.
  • the small refrigerator 51 includes an expansion valve (not shown) between the small condenser 52 and the small evaporator 53.
  • Such a small refrigerator 51 cools only the refrigerant liquid X2 flowing through the flow path R6. For this reason, the small condenser 52, the small evaporator 53, and the small compressor 54 are extremely small compared to the condenser 2, the evaporator 4, and the turbo compressor 5.
  • the flow path R6 serves as the refrigerant introduction portion T of the present invention that introduces a part of the refrigerant circulating through the evaporator 4 and the condenser 2 into the motor housing space S3 and the oil cooler 7. Function.
  • the turbo chiller 1A of the present embodiment having such a configuration, the refrigerant liquid X2 introduced into the motor housing space S3 and the oil cooler 7 is cooled by the small refrigerator 51. Therefore, according to the turbo refrigerator 1A of the present embodiment, the motor 10 and the lubricating oil can be sufficiently cooled even when the temperature of the refrigerant liquid X2 in the condenser 2 is not sufficiently low.
  • a motor and lubricating oil can be sufficiently cooled in a turbo refrigerator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

モータ(10)を有するターボ圧縮機(5)と、少なくともターボ圧縮機(5)の一部に供給される潤滑油を冷却する油冷却部(7)とを備えるターボ冷凍機(1)であって、蒸発器(4)と凝縮器(2)とを循環する冷媒の一部をモータの収容空間(S3)及び油冷却部(7)の内部に導入する冷媒導入部(T)と、モータの収容空間(S3)及び油冷却部(7)の内部に導入される冷媒を冷却する冷却部(8)とを備える。

Description

ターボ冷凍機
本発明は、ターボ冷凍機に関する。
本願は、2013年6月4日に日本国に出願された特願2013-117736号に基づき優先権を主張し、その内容をここに援用する。
 モータ駆動されるターボ圧縮機を備えるターボ冷凍機では、例えば、蒸発器と凝縮器とを循環する冷媒の一部をモータに供給することでモータの冷却を行っている(例えば、特許文献1参照)。また、特許文献1に開示されるようなターボ冷凍機では、通常、モータの回転軸とインペラを接続するギア等には常に潤滑油が供給され、この潤滑油は上記冷媒との熱交換器によって冷却されたうえでギア等に供給されてギア等を冷却している。
 特許文献2では、凝縮器と蒸発器の間に設けられ、凝縮器において液化された冷媒の一部をターボ圧縮機に供給する中間冷却器を上記ターボ圧縮機の駆動用モータと一体化する技術が開示されている。
特許文献3では、潤滑油を貯留する油タンクと、ターボ圧縮機を通る冷媒の容量を制御する吸入容量制御部(インレットガイドベーン)とターボ圧縮機の低段圧縮部と高段圧縮部とが設置されている空間である圧縮機構との間
を連結する均圧管が開示されている。
日本国特開2007-212112号公報 日本国特開2001-349628号公報 日本国特開2009-186029号公報
 周知のように、ターボ冷凍機はヒートポンプの一種であるが、近年、高温の熱水を得るために、このようなターボ冷凍機を従来よりも高い温度域において用いることが提案されている。例えば、従来のターボ冷凍機では、最も温度が低くなる蒸発器における冷媒の温度は数℃程度であったが、上述のような高い温度域で用いられるターボ冷凍機では、蒸発器における冷媒の温度が数十℃程度となり、凝縮器はさらに高温となる。このため、モータや潤滑油を十分に冷却することができなくなる可能性がある。
 本発明は、上述する事情に鑑みてなされたもので、ターボ冷凍機において、モータ及び潤滑油を十分に冷却することを目的とする。
 本発明の第1の態様は、モータを有するターボ圧縮機と、少なくとも上記ターボ圧縮機の一部に供給される潤滑油を冷却する油冷却部とを備えるターボ冷凍機であって、蒸発器と凝縮器とを循環する冷媒の一部を上記モータの収容空間及び上記油冷却部の内部に導入する冷媒導入部と、上記モータの収容空間及び上記油冷却部の内部に導入される冷媒を冷却する冷却部とを備え、上記冷却部が、上記モータの収容空間及び上記油冷却部の内部を減圧することにより上記モータの収容空間及び上記油冷却部の内部に導入される上記冷媒を冷却すると共に、上記モータの収容空間及び上記油冷却部の内部から上記冷媒を回収して上記蒸発器に戻す圧縮機である。
 本発明の第2の態様は、上記第1の態様において、上記モータの収容空間に溜った上記潤滑油を上記潤滑油が貯蔵される油タンクに戻す油返戻部を備える。
本発明の第3の態様は、上記第2の態様において、上記油返戻部が、上記ターボ圧縮機により生成された圧縮冷媒ガスを利用して上記潤滑油を移動させるエジェクタである。
 本発明の第4の態様は、上記第1~第3いずれかの態様において、上記モータの回転軸を軸支する軸受と、上記軸受よりも上記モータのロータ側に配置されると共に上記回転軸の軸方向に配列される第1非接触シール機構及び第2非接触シール機構と、上記第1非接触シール機構と上記第2非接触シール機構との間に上記ターボ圧縮機による生成された圧縮冷媒ガスの一部を供給する圧縮ガス供給部を備える。
本発明の第5の態様は、上記第1の態様において、上記冷却部が、上記モータ及び上記油冷却部に導入される冷媒を冷却する副冷凍機を備える。
 本発明によれば、モータの収容空間及び油冷却部に導入される冷媒が冷却部によって冷却される。したがって、本発明によれば、凝縮器における冷媒の温度が十分に低くない場合であっても、冷却部によって冷媒の温度が低下され、モータ及び潤滑油を十分に冷却することができる。
本発明の第1実施形態におけるターボ冷凍機の系統図である。 本発明の第2実施形態におけるターボ冷凍機の系統図である。
 以下、図面を参照して、本発明に係るターボ冷凍機の一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更する。
(第1実施形態)
 図1は、本発明の第1実施形態におけるターボ冷凍機1の系統図である。ターボ冷凍機1は、図1に示すように、凝縮器2と、エコノマイザ3と、蒸発器4と、ターボ圧縮機5と、膨張弁6と、油クーラ7(油冷却部)と、小型圧縮機8(冷却部)と、エジェクタ9(油返戻部)とを備えている。
 凝縮器2は、流路R1を介してターボ圧縮機5のガス吐出管5aと接続されている。凝縮器2には、ターボ圧縮機5によって圧縮された冷媒(圧縮冷媒ガスX1)が流路R1を通って供給される。凝縮器2は、この圧縮冷媒ガスX1を液化する。凝縮器2は、冷却水が流通する伝熱管2aを備え、圧縮冷媒ガスX1と冷却水との熱交換によって、圧縮冷媒ガスX1を冷却して液化する。なお、このような冷媒としては、フロン等を用いることができる。
 圧縮冷媒ガスX1は、冷却水との間の熱交換によって冷却され、液化し、冷媒液X2となって凝縮器2の底部に溜まる。凝縮器2の底部は、流路R2を介してエコノマイザ3と接続されている。また、流路R2には、冷媒液X2を減圧するための膨張弁6(第1膨張弁61)が設けられている。エコノマイザ3には、第1膨張弁61によって減圧された冷媒液X2が流路R2を通って供給される。
 エコノマイザ3は、減圧された冷媒液X2を一時的に貯留し、冷媒を液相と気相とに分離する。エコノマイザ3の頂部は、流路R3を介してターボ圧縮機5のエコノマイザ連結管5bと接続されている。エコノマイザ3によって分離した冷媒の気相成分X3が、蒸発器4及び後述の第1圧縮段11を経ることなく、流路R3を通って後述の第2圧縮段12に供給され、ターボ圧縮機5の効率を高める。一方、エコノマイザ3の底部は、流路R4を介して蒸発器4と接続されている。流路R4には、冷媒液X2をさらに減圧するための膨張弁6(第2膨張弁62)が設けられている。蒸発器4には、第2膨張弁62によってさらに減圧された冷媒液X2が流路R4を通って供給される。
 蒸発器4は、冷媒液X2を蒸発させてその気化熱によって冷水を冷却する。
蒸発器4は、冷水が流通する伝熱管4aを備え、冷媒液X2と冷水との熱交換によって、冷水を冷却すると共に冷媒液X2を蒸発させる。冷媒液X2は、冷水との間の熱交換によって熱を奪って蒸発し、冷媒ガスX4となる。蒸発器4の頂部は、流路R5を介してターボ圧縮機5のガス吸入管5cと接続されている。ターボ圧縮機5には、蒸発器4において蒸発した冷媒ガスX4が流路R5を通って供給される。
 ターボ圧縮機5は、蒸発した冷媒ガスX4を圧縮し、圧縮冷媒ガスX1として凝縮器2に供給する。ターボ圧縮機5は、冷媒ガスX4を圧縮する第1圧縮段11と、一段階圧縮された冷媒をさらに圧縮する第2圧縮段12と、を備える2段圧縮機である。
 第1圧縮段11にはインペラ13が設けられ、第2圧縮段12にはインペラ14が設けられており、それらが回転軸15で接続されている。ターボ圧縮機5は、モータ10を有しており、モータ10によってインペラ13及びインペラ14を回転させて冷媒を圧縮する。インペラ13及びインペラ14は、ラジアルインペラであり、軸方向で吸気した冷媒を半径方向に導出する。
 ガス吸入管5cには、第1圧縮段11の吸入量を調節するためのインレットガイドベーン16が設けられている。インレットガイドベーン16は、冷媒ガスX4の流れ方向からの見かけ上の面積が変更可能となるように回転可能とされている。インペラ13及びインペラ14の周りには、それぞれディフューザ流路が設けられており、半径方向に導出した冷媒を、このディフューザ流路において圧縮及び昇圧する。また、さらに、このディフューザ流路の周りに設けられたスクロール流路によって次の圧縮段に冷媒を供給することができる。インペラ14の周りには、出口絞り弁17が設けられており、ガス吐出管5aからの吐出量を制御できる。
 また、ターボ圧縮機5は、密閉型の筐体20を備える。筐体20の内部は、圧縮流路空間S1と、第1軸受収容空間S2と、モータ収容空間S3と、ギアユニット収容空間S4と、第2軸受収容空間S5と、第1圧縮ガス供給空間S6と、第2圧縮ガス供給空間S7とに区画されている。
 圧縮流路空間S1には、インペラ13及びインペラ14が設けられている。インペラ13及びインペラ14を接続する回転軸15は、圧縮流路空間S1、第1軸受収容空間S2、ギアユニット収容空間S4に挿通して設けられている。第1軸受収容空間S2には、回転軸15を支持する軸受21が設けられている。
 モータ収容空間S3には、ステータ22と、ロータ23と、ロータ23に接続された回転軸24とが設けられている。この回転軸24は、モータ収容空間S3、ギアユニット収容空間S4、第2軸受収容空間S5、第1圧縮ガス供給空間S6、第2圧縮ガス供給空間S7に挿通して設けられている。第2軸受収容空間S5には、回転軸24の反負荷側を支持する軸受31が設けられている。ギアユニット収容空間S4には、ギアユニット25と、軸受26及び軸受27と、油タンク28とが設けられている。
 ギアユニット25は、回転軸24に固定される大径歯車29と、回転軸15に固定されると共に大径歯車29と噛み合う小径歯車30とを有する。ギアユニット25は、回転軸24の回転数に対して回転軸15の回転数が増加(増速)するように、回転力を伝達する。軸受26は、回転軸24を支持する。軸受27は、回転軸15を支持する。油タンク28は、軸受21、軸受26、軸受27及び軸受31等の各摺動部位に供給される潤滑油を貯溜する。
 第1圧縮ガス供給空間S6は、モータ収容空間S3とギアユニット収容空間S4との間に設けられている。第2圧縮ガス供給空間S7は、モータ収容空間S3と第2軸受収容空間S5との間に設けられている。これらの第1圧縮ガス供給空間S6及び第2圧縮ガス供給空間S7には、後述する流路R13が接続されており、流路R13を介して圧縮冷媒ガスX1が供給される。
 このような筐体20には、圧縮流路空間S1と第1軸受収容空間S2との間において、回転軸15の周囲をシールするシール機構32及びシール機構33が設けられている。また、筐体20には、圧縮流路空間S1とギアユニット収容空間S4との間において、回転軸15の周囲をシールするシール機構34が設けられている。また、筐体20には、ギアユニット収容空間S4と第1圧縮ガス供給空間S6との間において、回転軸24の周囲をシールするシール機構35が設けられている。また、筐体20には、第2軸受収容空間S5と第2圧縮ガス供給空間S7との間において、回転軸24の周囲をシールするシール機構36が設けられている。また、筐体20には、モータ収容空間S3と第1圧縮ガス供給空間S6との間において、回転軸24の周囲をシールするシール機構38が設けられている。また、筐体20には、モータ収容空間S3と第2圧縮ガス供給空間S7との間において、回転軸24の周囲をシールするシール機構39が設けられている。
 これらのシール機構32、シール機構33、シール機構34、シール機構35、シール機構36、シール機構38及びシール機構39は、非接触にてシールを行う非接触シール機構であり、例えばラビリンス構造を有するシール機構からなる。これらのうち、ギアユニット収容空間S4と第1圧縮ガス供給空間S6との間に配置されるシール機構35と、モータ収容空間S3と第1圧縮ガス供給空間S6との間に配置されるシール機構38とは、本発明の第1非接触シール機構と第2非接触シール機構とに相当する。すなわち、シール機構35とシール機構38とは、軸受26よりもモータ10のロータ23側に配置されると共に回転軸24の軸方向に配列される第1非接触シール機構と第2非接触シール機構として機能する。また、第2軸受収容空間S5と第2圧縮ガス供給空間S7との間に配置されるシール機構36と、モータ収容空間S3と第2圧縮ガス供給空間S7との間に配置されるシール機構39も、同様に、本発明の第1非接触シール機構と第2非接触シール機構とに相当する。
 モータ収容空間S3は、流路R6を介して凝縮器2と接続されている。流路R6のモータ収容空間S3の直前には、膨張弁6(第3膨張弁63)が設置されている。モータ収容空間S3には、凝縮器2から取り出された冷媒液X2が第3膨張弁63によって減圧されることで発生する冷媒ガスX5が供給される。モータ収容空間S3に供給された冷媒ガスX5は、モータ収容空間S3に収容されたモータ10を冷却する。また、流路R6は、分岐されており、油クーラ7と接続されている。流路R6の油クーラ7の直前には、膨張弁6(第4膨張弁64)が設置されている。
 上述の流路R6は、蒸発器4と凝縮器2とを循環する冷媒の一部をモータ収容空間S3及び油クーラ7の内部に導入する本発明の冷媒導入部Tとして機能する。なお、第3膨張弁63及び第4膨張弁64は、モータ収容空間S3の圧力及び油クーラ7内部の飽和圧力を調整し、これによってモータ収容空間S3の温度及び油クーラ7内部の温度を調整する。
 油タンク28には、給油ポンプ37が配置されている。この給油ポンプ37は、例えば流路R8を介して第2軸受収容空間S5と接続されている。第2軸受収容空間S5には、油タンク28から潤滑油が流路R8を通って供給される。第2軸受収容空間S5に供給された潤滑油は、軸受31に供給され、回転軸24の摺動部位の潤滑性の確保と共に摺動部位の発熱を抑制(冷却)する。第2軸受収容空間S5は、流路R9を介して油タンク28と接続されている。油タンク28には、第2軸受収容空間S5に供給された潤滑油が流路R9を通って帰還する。また、流路R8は、第1軸受収容空間S2及びギアユニット収容空間S4にも接続されており、軸受21、ギアユニット25、軸受26、軸受27にも潤滑油が供給される。なお、第1軸受収容空間S2及びギアユニット収容空間S4に供給された潤滑油は、筐体20内部の流路を通じて油タンク28に帰還する。
 油クーラ7は、流路R8の途中部位に設置されている。この油クーラ7の内部には、凝縮器2から取り出された冷媒液X2が第4膨張弁64によって減圧されることで発生する冷媒ガスX6が供給される。このような油クーラ7は、流路R8を流れる潤滑油と流路R6を介して供給される冷媒ガスX6とを熱交換することによってターボ圧縮機5に供給される潤滑油を冷却する。
小型圧縮機8は、ターボ圧縮機5よりも小型の圧縮機であり、流路R10を介してモータ収容空間S3と接続されている。この小型圧縮機8は、モータ収容空間S3に導入される冷媒ガスX5の温度がモータ10の冷却に適した温度となるように、モータ収容空間S3を減圧する。つまり、本実施形態において小型圧縮機8は、モータ収容空間S3に供給される冷媒ガスX5の冷却を行っている。また、小型圧縮機8は、流路R10を介してモータ収容空間S3から冷媒ガスX5を回収して流路R11を介して蒸発器4に戻す。
また、小型圧縮機8は、流路R12を介して油クーラ7と接続されており。油クーラ7に導入される冷媒ガスX6の温度が潤滑油の冷却に適した温度となるように、油クーラ7の冷媒ガスX6が供給される油クーラ7の内部を減圧する。つまり、本実施形態において小型圧縮機8は、油クーラ7の内部に供給される冷媒ガスX6の冷却を行っている。また、小型圧縮機8は、流路R12を介して油クーラ7の内部から冷媒ガスX6を回収して流路R11を介して蒸発器4に戻す。
また、本実施形態のターボ冷凍機1では、第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7とが流路R13(圧縮ガス供給部)を介して、圧縮流路空間S1と接続されている。この流路R13は、第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7とにターボ圧縮機5で生成された圧縮冷媒ガスX1の一部を供給する。このように第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7とに圧縮冷媒ガスX1が供給されることにより、シール機構35とシール機構38との間、及び、シール機構36とシール機構39との間に圧縮冷媒ガスX1が供給される。すなわち、本実施形態において流路R13は、第1非接触シール機構(シール機構35及びシール機構36)と第2非接触シール機構(シール機構38及びシール機構39)との間にターボ圧縮機5により生成された圧縮冷媒ガスの一部を供給する圧縮ガス供給部として機能する。なお、流路R13の途中部位には、流量調整弁40が設けられており、第1圧縮ガス供給空間S6及び第2圧縮ガス供給空間S7に供給される圧縮冷媒ガスの流量が調整可能とされている。
エジェクタ9(油返戻部)は、圧縮流路空間S1と油タンク28とを繋ぐ流路R14の途中部位に設けられており、モータ収容空間S3の底部と流路R15を介して接続されている。このエジェクタ9は、流路R14を流れる圧縮冷媒ガスX1の静圧を利用してモータ収容空間S3の底部に溜った潤滑油を、流路R15を介して油タンク28に移動させる。このようなエジェクタ9は、モータ収容空間S3に溜った潤滑油を潤滑油が貯蔵される油タンクに戻す本発明の油返戻部として機能する。
このような構成を有する本実施形態のターボ冷凍機1では、凝縮器2において圧縮冷媒ガスX1が冷却水によって冷却されて凝縮し、冷却水が加熱されることで排熱される。凝縮器2で凝縮することによって生じた冷媒液X2は、第1膨張弁61によって減圧されてエコノマイザ3に供給され、気相成分X3が分離された後に第2膨張弁62でさらに減圧されて蒸発器4に供給される。なお、気相成分X3は、流路R3を介してターボ圧縮機5に供給される。
蒸発器4に供給された冷媒液X2は、蒸発器4において蒸発することにより冷水の熱を奪い、冷水を冷却する。これによって、実質的に冷却前の冷水の熱が凝縮器2に供給される冷却水に輸送される。冷媒液X2が蒸発することによって生じた冷媒ガスX4は、ターボ圧縮機5に供給されて圧縮された後、再び凝縮器2に供給される。
また、凝縮器2に溜った冷媒液X2の一部が流路R6を介してモータ収容空間S3及び油クーラ7に供給される。モータ収容空間S3及び油クーラ7の内部は、小型圧縮機8によって減圧されている。このため、流路R6によってモータ収容空間S3に導入される冷媒液X2は、第3膨張弁63を介することで冷媒ガスX5となり、モータ10を冷却するのに適した温度まで冷却される。この結果、モータ10が十分に冷却される。また、流路R6によって油クーラ7の内部に導入される冷媒液X2は、第4膨張弁64を介することで冷媒ガスX6となり、潤滑油を冷却するのに適した温度まで冷却される。この結果、流路R8を流れる潤滑油が油クーラ7の内部で十分に冷却される。このようにしてモータ10を冷却した冷媒ガスX5と潤滑油を冷却した冷媒ガスX6とは、小型圧縮機8に吸い込まれることによって回収され、流路R11を介して蒸発器4に戻される。
 また、流路R8を流れる潤滑油は、第1軸受収容空間S2、第2軸受収容空間S5、及びギアユニット収容空間S4に供給され、軸受21やギアユニット25等の摺動抵抗を減少させ、さらに軸受21やギアユニット25等を冷却する。
 また、流路R13によって、ターボ圧縮機5で生成された圧縮冷媒ガスX1が、第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7とに供給される。このように第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7とに圧縮冷媒ガスX1が供給されることにより、シール機構35とシール機構38との間、及び、シール機構36とシール機構39との間に圧縮冷媒ガスX1が供給される。圧縮冷媒ガスX1が供給されることによって、第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7の内圧がギアユニット収容空間S4や第2軸受収容空間S5よりも高くなる。この結果、ギアユニット収容空間S4や第2軸受収容空間S5に供給された潤滑油が、シール機構35及びシール機構36の僅かな隙間を介して、第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7とに入り込み難くなる。
 また、流路R14によって、圧縮流路空間S1を流れる圧縮冷媒ガスX1の一部が圧縮流路空間S1よりも内圧が低い油タンク28に供給される。この流路R14の途中部位に設けられたエジェクタ9によって、モータ収容空間S3に溜った潤滑油が吸引され、油タンク28に移動される。
 以上のような本実施形態のターボ冷凍機1によれば、モータ収容空間S3に導入される冷媒ガスX5及び油クーラ7の内部に導入される冷媒ガスX6が小型圧縮機8によって冷却される。したがって、本実施形態のターボ冷凍機1によれば、凝縮器2における冷媒液X2の温度が十分に低くない場合であっても、小型圧縮機8によって冷媒の温度を低下させることができ、モータ10及び潤滑油を十分に冷却することができる。
 また、本実施形態のターボ冷凍機1によれば、小型圧縮機8を用いて冷媒ガスX6の温度を低下させている。このため、簡易な構成で冷媒の温度を低下させることができ、モータ10及び潤滑油を十分に冷却することができる。
 また、本実施形態のターボ冷凍機1によれば、モータ収容空間S3に溜った潤滑油を潤滑油が貯蔵される油タンク28に戻すエジェクタ9を備える。本実施形態においては、モータ収容空間S3が小型圧縮機8によって減圧されるため、ギアユニット収容空間S4や第2軸受収容空間S5からモータ収容空間S3に潤滑油が流れ込みやすい。これに対して、上記エジェクタ9を設けることによって、モータ収容空間S3に溜った潤滑油を排出して油タンク28に戻すことができ、潤滑油の減少等を抑えることができる。
 また、ポンプによってモータ収容空間S3に溜った潤滑油を排出することも可能であるが、この場合にはモータ収容空間S3に潤滑油が溜っていないときにポンプが空回りする等の不都合がある。これに対して、エジェクタ9を用いてモータ収容空間S3から潤滑油を排出することによって、モータ収容空間S3に潤滑油が溜っていないときであっても不都合が生じることを避けることができる。
 また、本実施形態のターボ冷凍機1によれば、シール機構35とシール機構38との間、及び、シール機構36とシール機構39との間に圧縮冷媒ガスX1が供給される。この結果、ギアユニット収容空間S4や第2軸受収容空間S5に供給された潤滑油が、シール機構35及びシール機構36の僅かな隙間を介して、第1圧縮ガス供給空間S6と第2圧縮ガス供給空間S7とに入り込み難くなる。よって、本実施形態のターボ冷凍機1によれば、潤滑油の減少等を抑えることができる。
(第2実施形態)
 次に、本発明の第2実施形態について説明する。なお、本実施形態の説明において上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
 図2は、本発明の第2実施形態におけるターボ冷凍機1Aの系統図である。この図に示すように、本実施形態のターボ冷凍機1Aは、上記第1実施形態のターボ冷凍機1Aが備えていた流路R10、流路R11、流路R12、流路R13、流路R14、流路R16、小型圧縮機8、エジェクタ9、シール機構38、シール機構39、第3膨張弁63、第4膨張弁64、流量調整弁40、第1圧縮ガス供給空間S6、第2圧縮ガス供給空間S7が設置されていない。
 本実施形態では、第3膨張弁63に換えて第1オリフィス65、第4膨張弁64に換えて第2オリフィス66が設置されている。本実施形態においては、流路R6を流れる冷媒液X2が液体のまま第1オリフィス65で減圧されてモータ収容空間S3に供給される。
また、流路R6を流れる冷媒液X2が液体のまま第2オリフィス66で減圧されて油クーラ7を介した後、モータ収容空間S3に供給される。なお、冷媒液X2はモータ10の周囲に形成された不図示の流路を通り、モータ10を冷却した後、モータ収容空間S3から排出される。モータ収容空間S3には、蒸発器4と繋がる流路R16が接続されており、冷媒液X2は流路R16を介して蒸発器4に戻される。
 この本実施形態のターボ冷凍機1は、図2に示すように、流路R6の途中部位に設置される小型冷凍機51(副冷凍機)を備えている。この小型冷凍機51は、小型凝縮器52、小型蒸発器53及び小型圧縮機54を備えている。また、小型冷凍機51は、小型凝縮器52と小型蒸発器53との間に膨張弁(不図示)を備えている。このような小型冷凍機51は、流路R6を流れる冷媒液X2のみを冷却する。このため、小型凝縮器52、小型蒸発器53及び小型圧縮機54は、凝縮器2、蒸発器4及びターボ圧縮機5と比較すると極めて小型である。
なお、本実施形態においても、流路R6は、蒸発器4と凝縮器2とを循環する冷媒の一部をモータ収容空間S3及び油クーラ7の内部に導入する本発明の冷媒導入部Tとして機能する。
 このような構成の本実施形態のターボ冷凍機1Aでは、モータ収容空間S3と油クーラ7とに導入される冷媒液X2が小型冷凍機51によって冷却される。したがって、本実施形態のターボ冷凍機1Aによれば、凝縮器2における冷媒液X2の温度が十分に低くない場合であっても、モータ10及び潤滑油を十分に冷却することができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上記第2実施形態においては、第1オリフィス65及び第2オリフィス66を用いる構成について説明した。しかしながら、上記第1実施形態のように、膨張弁を用いても良い。
本発明によれば、ターボ冷凍機において、モータ及び潤滑油を十分に冷却することができる。
 1、1A ターボ冷凍機、2 凝縮器、2a 伝熱管、3 エコノマイザ、4 蒸発器、4a 伝熱管、5 ターボ圧縮機、5a ガス吐出管、5b エコノマイザ連結管、5c ガス吸入管、6 膨張弁、7 油クーラ(油冷却部)、8 小型圧縮機(冷却部)、9 エジェクタ、10 モータ、11 第1圧縮段、12 第2圧縮段、13、14 インペラ、15 回転軸、16 インレットガイドベーン、17 出口絞り弁、20 筐体、21 軸受、22 ステータ、23 ロータ、24 回転軸、25 ギアユニット、26、27 軸受、28 油タンク、29 大径歯車、30 小径歯車、31 軸受、32、33、34      シール機構、35、36 シール機構(第1非接触シール機構)、37 給油ポンプ、38、39 シール機構(第2非接触シール機構)、40 流量調整弁、51 小型冷凍機(冷却部、副冷凍機)、52 小型凝縮器、53 小型蒸発器、54 小型圧縮機、61 第1膨張弁、62 第2膨張弁、63 第3膨張弁、64 第4膨張弁、65 第1オリフィス、66 第2オリフィス、R1、R2、R3、R4、R5、R8,R9、R10、R11、R12、R13、R14、R15、R16 流路、R6 流路(冷媒導入部)、S1 圧縮流路空間、S2 第1軸受収容空間、S3 モータ収容空間、S4 ギアユニット収容空間、S5 第2軸受収容空間、S6 第1圧縮ガス供給空間、S7 第2圧縮ガス供給空間、X1 圧縮冷媒ガス、X2 冷媒液、X3 気相成分、X4、X5、X6 冷媒ガス、T 冷媒導入部
 
 

Claims (5)

  1. モータを有するターボ圧縮機と、少なくとも前記ターボ圧縮機の一部に供給される潤滑油を冷却する油冷却部とを備えるターボ冷凍機であって、
    蒸発器と凝縮器とを循環する冷媒の一部を前記モータの収容空間及び前記油冷却部の内部に導入する冷媒導入部と、
    前記モータの収容空間及び前記油冷却部の内部に導入される冷媒を冷却する冷却部と
    を備え、
    前記冷却部は、前記モータの収容空間及び前記油冷却部の内部を減圧することにより前記モータの収容空間及び前記油冷却部の内部に導入される前記冷媒を冷却すると共に、前記モータの収容空間及び前記油冷却部の内部から前記冷媒を回収して前記蒸発器に戻す圧縮機である、ターボ冷凍機。
  2. 前記モータの収容空間に溜った前記潤滑油を前記潤滑油が貯蔵される油タンクに戻す油返戻部を備える請求項1記載のターボ冷凍機。
  3. 前記油返戻部は、前記ターボ圧縮機により生成された圧縮冷媒ガスを利用して前記潤滑油を移動させるエジェクタである請求項2記載のターボ冷凍機。
  4. 前記モータの回転軸を軸支する軸受と、前記軸受よりも前記モータのロータ側に配置されると共に前記回転軸の軸方向に配列される第1非接触シール機構及び第2非接触シール機構と、前記第1非接触シール機構と前記第2非接触シール機構との間に前記ターボ圧縮機による生成された圧縮冷媒ガスの一部を供給する圧縮ガス供給部を備える請求項1~3いずれか一項に記載のターボ冷凍機。
  5. 前記冷却部は、前記モータの収容空間及び前記油冷却部の内部に導入される冷媒を冷却する副冷凍機を備える請求項1記載のターボ冷凍機。
PCT/JP2014/064305 2013-06-04 2014-05-29 ターボ冷凍機 WO2014196454A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480030570.3A CN105339743B (zh) 2013-06-04 2014-05-29 涡轮冷冻机
US14/895,805 US10234175B2 (en) 2013-06-04 2014-05-29 Turbo refrigerator
EP14807016.2A EP3006861A4 (en) 2013-06-04 2014-05-29 Turbo refrigerator
JP2014550567A JP6004004B2 (ja) 2013-06-04 2014-05-29 ターボ冷凍機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013117736 2013-06-04
JP2013-117736 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014196454A1 true WO2014196454A1 (ja) 2014-12-11

Family

ID=52008100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064305 WO2014196454A1 (ja) 2013-06-04 2014-05-29 ターボ冷凍機

Country Status (5)

Country Link
US (1) US10234175B2 (ja)
EP (1) EP3006861A4 (ja)
JP (1) JP6004004B2 (ja)
CN (1) CN105339743B (ja)
WO (1) WO2014196454A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023618A1 (en) 2017-07-28 2019-01-31 Carrier Corporation LUBRICATION SUPPLY SYSTEM
JP2019100695A (ja) * 2017-12-04 2019-06-24 パナソニックIpマネジメント株式会社 冷凍サイクル装置及び冷凍サイクル装置の駆動方法
US20240085075A1 (en) * 2022-09-09 2024-03-14 Emerson Climate Technology, Inc. Systems and methods for providing compressor cooling

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916039A (ja) * 1972-06-06 1974-02-13
JPS50158253U (ja) * 1974-06-17 1975-12-27
US4032312A (en) * 1976-04-16 1977-06-28 Carrier Corporation Centrifugal compressor
JPS5949850U (ja) * 1982-09-24 1984-04-02 富士電機株式会社 過冷却器を備えた空冷冷凍装置
JPH09138009A (ja) * 1995-11-14 1997-05-27 Hitachi Ltd ヒートポンプシステムとその潤滑油の冷却方法
JP2001349628A (ja) 2000-06-02 2001-12-21 Mitsubishi Heavy Ind Ltd 冷凍機
JP2002322999A (ja) * 2001-04-25 2002-11-08 Mitsubishi Heavy Ind Ltd 遠心圧縮機および冷凍機
JP2007212112A (ja) 2006-02-13 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd 密閉型ターボ圧縮冷凍機
JP2008014577A (ja) * 2006-07-06 2008-01-24 Ebara Corp 圧縮式冷凍機の軸受潤滑装置
JP2009180491A (ja) * 2008-02-01 2009-08-13 Daikin Ind Ltd ターボ冷凍機
JP2009186029A (ja) 2008-02-01 2009-08-20 Daikin Ind Ltd ターボ冷凍機
JP2010249331A (ja) * 2009-04-10 2010-11-04 Miura Co Ltd 蒸気エンジンを用いた冷凍機
JP2011143490A (ja) * 2010-01-13 2011-07-28 Makino Milling Mach Co Ltd 液温制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3407623A (en) * 1967-03-21 1968-10-29 Westinghouse Electric Corp Oil and motor cooling in a refrigeration system
US4465427A (en) * 1980-10-08 1984-08-14 Avco Corporation Air and oil cooled bearing package
US5182919A (en) 1990-01-18 1993-02-02 Ebara Corporation Oil recovery system for closed type centrifugal refrigerating machine
JP3467833B2 (ja) * 1994-05-25 2003-11-17 ダイキン工業株式会社 冷凍装置
JPH09236338A (ja) * 1996-02-29 1997-09-09 Kobe Steel Ltd ヒートポンプ
JP3716061B2 (ja) * 1996-10-25 2005-11-16 三菱重工業株式会社 ターボ冷凍機
JPH10220885A (ja) * 1997-01-31 1998-08-21 Mitsubishi Heavy Ind Ltd 冷凍機
US6065297A (en) * 1998-10-09 2000-05-23 American Standard Inc. Liquid chiller with enhanced motor cooling and lubrication
US6182467B1 (en) * 1999-09-27 2001-02-06 Carrier Corporation Lubrication system for screw compressors using an oil still
US6293555B1 (en) * 2000-02-01 2001-09-25 Josef Sedy Secondary seal for non-contacting face seals
US20070271938A1 (en) * 2006-05-26 2007-11-29 Johnson Controls Technology Company Automated inlet steam supply valve controls for a steam turbine powered chiller unit
CN201014825Y (zh) * 2007-03-30 2008-01-30 珠海格力电器股份有限公司 一种离心式制冷机组冷却系统
JP5244470B2 (ja) * 2008-06-13 2013-07-24 三菱重工業株式会社 冷凍機
JP5373335B2 (ja) * 2008-08-08 2013-12-18 株式会社神戸製鋼所 冷凍装置
JP5272941B2 (ja) * 2009-07-21 2013-08-28 株式会社Ihi ターボ圧縮機及び冷凍機
JP2011137402A (ja) 2009-12-28 2011-07-14 Toshiba Carrier Corp 密閉型圧縮機及び冷凍サイクル装置
JP5434746B2 (ja) * 2010-03-31 2014-03-05 株式会社Ihi ターボ圧縮機及びターボ冷凍機
JP2011220640A (ja) * 2010-04-13 2011-11-04 Ihi Corp ターボ冷凍機
JP5660836B2 (ja) * 2010-10-04 2015-01-28 三菱重工業株式会社 蒸気圧縮式ヒートポンプ
CN103562561A (zh) * 2011-06-01 2014-02-05 开利公司 经济化离心压缩机
US9541310B2 (en) * 2012-04-19 2017-01-10 Mitsubishi Electric Corporation Sealed compressor and vapor compression refrigeration cycle apparatus including the sealed compressor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916039A (ja) * 1972-06-06 1974-02-13
JPS50158253U (ja) * 1974-06-17 1975-12-27
US4032312A (en) * 1976-04-16 1977-06-28 Carrier Corporation Centrifugal compressor
JPS5949850U (ja) * 1982-09-24 1984-04-02 富士電機株式会社 過冷却器を備えた空冷冷凍装置
JPH09138009A (ja) * 1995-11-14 1997-05-27 Hitachi Ltd ヒートポンプシステムとその潤滑油の冷却方法
JP2001349628A (ja) 2000-06-02 2001-12-21 Mitsubishi Heavy Ind Ltd 冷凍機
JP2002322999A (ja) * 2001-04-25 2002-11-08 Mitsubishi Heavy Ind Ltd 遠心圧縮機および冷凍機
JP2007212112A (ja) 2006-02-13 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd 密閉型ターボ圧縮冷凍機
JP2008014577A (ja) * 2006-07-06 2008-01-24 Ebara Corp 圧縮式冷凍機の軸受潤滑装置
JP2009180491A (ja) * 2008-02-01 2009-08-13 Daikin Ind Ltd ターボ冷凍機
JP2009186029A (ja) 2008-02-01 2009-08-20 Daikin Ind Ltd ターボ冷凍機
JP2010249331A (ja) * 2009-04-10 2010-11-04 Miura Co Ltd 蒸気エンジンを用いた冷凍機
JP2011143490A (ja) * 2010-01-13 2011-07-28 Makino Milling Mach Co Ltd 液温制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006861A4 *

Also Published As

Publication number Publication date
EP3006861A1 (en) 2016-04-13
JP6004004B2 (ja) 2016-10-05
US10234175B2 (en) 2019-03-19
CN105339743B (zh) 2017-05-03
EP3006861A4 (en) 2017-03-29
CN105339743A (zh) 2016-02-17
JPWO2014196454A1 (ja) 2017-02-23
US20160116190A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6487163B2 (ja) ターボ冷凍機
US5884498A (en) Turborefrigerator
JP6056270B2 (ja) ターボ圧縮機及びターボ冷凍機
JP5346343B2 (ja) 二段圧縮ヒートポンプサイクル装置
JP2007212112A (ja) 密閉型ターボ圧縮冷凍機
JP4981557B2 (ja) ターボ圧縮機およびターボ冷凍機
CN101963161B (zh) 涡轮压缩机及冷冻机
WO2014196465A1 (ja) シール機構及びターボ冷凍機
JP6004004B2 (ja) ターボ冷凍機
US20180252233A1 (en) Turbo compressor and turbo chilling apparatus equipped with the turbo compressor
CN108469128B (zh) 流体机械和制冷循环装置
JP2015190662A (ja) ターボ冷凍機
US8833102B2 (en) Turbo compressor and refrigerator
WO2015094465A1 (en) Method of improving compressor bearing reliability
JP2010060202A (ja) 冷凍機用電動機における冷却構造
JP2020159294A (ja) ターボ圧縮機及び冷凍サイクル装置
JP6370593B2 (ja) 油冷式多段スクリュ圧縮機及びその排油方法
JP6759388B2 (ja) ターボ冷凍機
US10288069B2 (en) Refrigerant compressor lubricant viscosity enhancement
JP6123889B2 (ja) ターボ冷凍機
JP2015152260A (ja) 気液分離器およびそれを含む冷凍サイクル装置
JP2007205651A (ja) 冷凍システム及び車両用空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030570.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014550567

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14895805

Country of ref document: US

Ref document number: 2014807016

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE