WO2014194557A1 - 一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺 - Google Patents

一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺 Download PDF

Info

Publication number
WO2014194557A1
WO2014194557A1 PCT/CN2013/080451 CN2013080451W WO2014194557A1 WO 2014194557 A1 WO2014194557 A1 WO 2014194557A1 CN 2013080451 W CN2013080451 W CN 2013080451W WO 2014194557 A1 WO2014194557 A1 WO 2014194557A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
solar cell
manufacturing process
front electrode
covered
Prior art date
Application number
PCT/CN2013/080451
Other languages
English (en)
French (fr)
Inventor
李质磊
路忠林
盛雯婷
Original Assignee
南京日托光伏科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京日托光伏科技有限公司 filed Critical 南京日托光伏科技有限公司
Priority to US14/894,729 priority Critical patent/US20160093751A1/en
Publication of WO2014194557A1 publication Critical patent/WO2014194557A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the invention relates to a silicon solar cell with a film covering a front electrode and a manufacturing process thereof, and belongs to the field of solar cells.
  • the existing solar cell preparation technology adopts a process route of first coating and printing, and the process route has high technical requirements for the silver paste on the front surface of the silicon solar cell, and requires not only rapid penetration of the silicon nitride film but also It forms a good ohmic contact with the silicon substrate.
  • the penetrating power of silicon is strictly controlled to avoid the formation of leakage.
  • This requirement has led to the monolithic silver paste technology of silicon solar energy has been monopolized by foreign companies such as DuPont. How to break through the silicon solar front silver paste technology and become the main direction of the industry.
  • the invention patent has a unique path. By adjusting the process route, the technical threshold of the front side silver paste of the silicon solar cell is successfully reduced.
  • the following is a crystalline silicon conventional solar cell.
  • the invention is illustrated by way of example.
  • the main preparation steps of conventional solar cells are as follows:
  • Step 1 Forming: Corrosion and texturing of the silicon wafer.
  • Step 2 Diffusion: The silicon wafer after the texturing is diffused to prepare a PN junction.
  • Step 3 Etching: etch the periphery of the silicon wafer after diffusion to prevent leakage.
  • Step 4 go to PSG: Remove the PSG on the surface of the silicon wafer.
  • Step 5 plating an anti-reflection film.
  • Step 6 Prepare the back electrode and then dry.
  • Step 7. Prepare the back electric field and then dry.
  • Step 8 Prepare the front electrode and then dry.
  • Step eight sintering.
  • Step IX Test the sorting.
  • test After the test is sorted, it is packaged according to different gears and quality.
  • the front electrode silver paste should have good penetrability and can penetrate the silicon nitride film smoothly.
  • the electrode is bare on the surface of the film and is easily corroded and oxidized. Description of the specification
  • the present invention provides a silicon solar cell manufacturing process in which a thin film covers a front electrode, in which a front electrode silver paste has better penetration, a contact resistance with a silicon surface is smaller, and a battery conversion efficiency is improved. At the same time, the front electrode is not easily corroded and oxidized under the coverage of the anti-reflection film.
  • the technical solution adopted by the present invention is a film covering MWT solar cell manufacturing process, which includes the following steps:
  • step 6) The surface of the battery substrate formed in step 4) is coated with an anti-reflection film, the anti-reflection film completely covering the front electrode;
  • the anti-reflection film in the step 9) is a silicon nitride film.
  • the front electrode is prepared by the screen printing technique in the step 5).
  • the first conductivity type is a P type.
  • a film covering MWT structure SE solar cell manufacturing process including the following steps:
  • step 8) The upper surface of the battery substrate formed in step 7) is coated with an anti-reflection film, the anti-reflection film completely covering the front electrode;
  • the anti-reflection film is a silicon nitride film.
  • the first conductivity type is a P type.
  • the step 5) uses inkjet printing to fabricate the front electrode of the battery.
  • DESCRIPTION A film-covered MWT solar cell includes an anti-reflection film and a front electrode, and the anti-reflection film on the front side of the cell completely covers the front electrode.
  • the anti-reflection film is a silicon nitride film.
  • the anti-reflection film completely covers the front electrode, that is, the front electrode does not need to penetrate the anti-reflection film to directly contact the silicon wafer, thereby reducing the series resistance and improving the battery conversion efficiency. .
  • the penetration depth when printing the front electrode silver paste is also easier to control, which simplifies the process.
  • the front electrode is not in direct contact with the outside under the complete coverage of the anti-reflection film, which improves the corrosion resistance and oxidation resistance of the front electrode.
  • FIG. 1 is a schematic view showing the structure of a solar cell sheet produced by a film-covered MWT solar cell manufacturing process of the present invention.
  • Embodiment 1 This embodiment provides a film covering MWT solar cell manufacturing process, which is completed by the following process steps:
  • a laser is used to open a through hole of 200-300 ⁇ m in a predetermined position on the selected P-type silicon wafer.
  • the predetermined position is the position where the front electrode 3 of the solar cell is located, and the number of the through holes is also the same as the front electrode 3. The number is the same.
  • the through holes in the battery substrate are filled with the paste, and the back electrode 5 is printed, and then dried.
  • a silicon nitride film 2 is plated on the front surface of the battery substrate 1, and the silicon nitride film 2 completely covers the front surface of the battery substrate 1 and the front electrode 3.
  • a film-covered MWT solar cell comprising an anti-reflection film and a front electrode, the anti-reflection film on the front side of the cell completely covering the front electrode.
  • the anti-reflection film is a silicon nitride film.
  • Embodiment 2 This embodiment proposes a film covering MWT structure SE solar cell manufacturing process, which includes the following steps:
  • a laser is used to open a through hole of 200-300 ⁇ m in a predetermined position on the selected P-type silicon wafer.
  • the predetermined position is the position where the front electrode 3 of the solar cell is located, and the number of the through holes is also the same as the front electrode 3. The number is the same.
  • a paraffin mask is ink-jet printed on the upper surface of the battery substrate, and the paraffin mask has the same pattern as the front grid pattern.
  • etching, planing, de-paraffin masking and removing the phosphorous-silicate glass etching the surface layer of the doped layer other than the mask by etching liquid to form a shallow diffusion layer, and also surrounding the battery substrate Partially removed, paraffin was washed away, and the phosphosilicate glass on the surface of the substrate 1 was removed.
  • the through holes in the battery substrate are filled with the paste, and the back electrode 5 is printed, and then dried.
  • a silicon nitride film 2 is plated on the front surface of the battery substrate 1, and the silicon nitride film 2 completely covers the front surface of the battery substrate 1 and the front electrode 3.
  • Sintering An ohmic contact is formed between each electrode and the battery substrate 1, and then subjected to test sorting, binning according to different electrical properties, and packaged for sale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺,其中在制造MWT背接触太阳能电池时,将减反射膜(2)完全覆盖住正面电极(3),即正面电极不需要穿透减反射膜直接与硅片(1)接触,降低了串联电阻,提高了电池转换效率。同时印刷正面电极银浆时的穿透深度也更加容易控制,使得工艺简化。正面电极在减反射膜的完全覆盖下,不与外界直接接触,提高了该正面电极的抗腐蚀性和抗氧化能力。

Description

说 明 书 一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺 技术领域
本发明涉及一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺,属于太阳 能电池领域。
背景技术
现有的太阳能电池制备技术均是采用先镀膜后印刷的工艺路线,此工艺路线, 对硅太阳能电池正面银浆提出很高的技术要求,要求其不但能快速穿透氮化硅薄 膜, 而且能和硅衬底形成良好的欧姆接触; 同时对硅的穿透力要严格控制, 避免 形成漏电,这一要求,导致硅太阳能正面银浆技术一直被杜邦等国外公司所垄断。 如何突破硅太阳能正面银浆技术, 成为业内主攻的方向, 本发明专利另辟幽径, 通过调整工艺路线, 成功的降低了硅太阳能电池正面银浆的技术门槛, 以下以晶 体硅常规太阳能电池为例对本发明进行阐述。常规太阳能电池的主要制备工艺步 骤如下:
步骤一、 制绒: 对硅片进行腐蚀, 织构化。
步骤二、 扩散: 对制绒后的硅片进行扩散, 制备 PN结。
步骤三、 刻蚀: 刻蚀扩散后硅片的四周,防止漏电。
步骤四、 去 PSG: 去除硅片表面的 PSG。
步骤五、 镀减反射膜。
步骤六、 制备背面电极,然后烘干。
步骤七、 制备背面电场, 然后烘干。
步骤八、 制备正面电极, 然后烘干。
步骤八、 烧结。
步骤九、 测试分选。
测试分选后,按照不同档位及品质包装入库。
在现有的制备晶体硅太阳能电池时。 先对硅片镀减反射膜,然后再进行印刷 正面电极和烧结,这种工艺存在如下缺点:
1.正面电极银浆要有良好的穿透性, 可以顺利穿透氮化硅薄膜。
2.银浆和硅表面接触时,受到氮化硅薄膜阻挡,接触面积减少, 导致串联电阻 变大, 影响电池转换效率。
3.银浆和硅形成欧姆接触时,要具有较低的穿透力,否则会造成漏电,这和顺利 穿透氮化硅薄膜形成了矛盾.
4.电极裸漏在薄膜表面, 容易被腐蚀和氧化。 说 明 书 发明内容
发明目的: 本发明提出一种薄膜覆盖正面电极的硅太阳能电池制造工艺, 该 工艺中正面电极银浆具有更好的穿透性, 其与硅表面的接触电阻更小, 提高了电 池转换效率, 同时正面电极在减反射膜的覆盖下不易被腐蚀氧化。
技术方案:本发明采用的技术方案为一种薄膜覆盖 MWT太阳能电池制造工 艺, 包括以下步骤:
1 )选取具有第一导电类型的硅片,经过在硅片预定位置开设通孔、以及制绒、 扩散、 通孔背结保护和刻蚀工艺后形成具有通孔的电池衬底;
2) 去除所述电池衬底表面的 PSG;
3) 向该电池衬底上所述通孔内填充浆料, 并制备背面电极, 然后烘干;
4) 制备背面背场, 然后烘干;
5) 制备电池正面电极, 然后烘干;
6)在步骤 4)所形成的电池衬底上表面镀减反射膜, 该减反射膜完全覆盖正 面电极;
7) 经烧结后测试分选。
所述步骤 9)中所述减反射膜为氮化硅膜。所述步骤 5) 中利用丝网印刷技术 制备正面电极。 所述第一导电类型为 P型。
一种薄膜覆盖 MWT结构 SE太阳能电池制造工艺, 包括以下步骤:
1 )选取具有第一导电类型的硅片,经过在硅片预定位置开设通孔、以及制绒、 扩散、 通孔背结保护、 刻蚀工艺形成具有通孔的电池衬底;
2) 在所述电池衬底表面打印掩膜, 将电极下方需要重掺杂区域遮蔽起来;
3) 刻蚀所述带有掩膜的电池衬底, 去除硅片周围多余的 PN结;
4)去除所述电池衬底表面的 PSG,对未被石蜡掩膜遮蔽的区域进行刨结处理, 处理完毕后去除石蜡掩膜;
5) 向该电池衬底上所述通孔内填充浆料, 并制备背面电极, 然后烘干;
6) 制备背面背场, 然后烘干;
7) 制备电池的正面电极, 然后烘干;
8)在步骤 7)所形成的电池衬底上表面镀减反射膜, 该减反射膜完全覆盖正 面电极;
9) 经烧结后测试分选。
作为该薄膜覆盖 MWT结构 SE太阳能电池制造工艺的进一步改进, 所述减 反射膜为氮化硅膜。 所述第一导电类型为 P型。 所述步骤 5)采用喷墨打印制作 电池的正面电极。 说 明 书 一种薄膜覆盖 MWT太阳能电池, 包括减反射膜和正面电极, 该电池正面的 减反射膜完全覆盖正面电极。 所述减反射膜为氮化硅膜。
有益效果: 本发明在制造 MWT背接触太阳能电池时, 将减反射膜完全覆盖 住正面电极,即正面电极不需要穿透减反射膜直接与硅片接触,降低了串联电阻, 提高了电池转换效率。 同时印刷正面电极银浆时的穿透深度也更加容易控制, 使 得工艺简化。 正面电极在减反射膜的完全覆盖下, 不与外界直接接触, 提高了该 正面电极的抗腐蚀性和抗氧化能力。
附图说明
图 1为本发明一种薄膜覆盖 MWT太阳能电池制造工艺所制成的太阳能电池 片结构示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明, 应理解这些实施例仅用于 说明本发明而不用于限制本发明的范围,在阅读了本发明之后, 本领域技术人员 对本发明的各种等同形式的修改均落于本申请所附权利要求所限定的范围。
实施例 1 : 本实施例提供了一种薄膜覆盖 MWT太阳能电池制造工艺, 经过 以下工艺步骤完成:
1 ) 打孔:使用激光在选取的 P型硅片上的预定位置开设直径 200-300微米通 孔 1, 所谓预定位置就是太阳能电池正面电极 3所在的位置, 通孔的数量也与正 面电极 3的数量相同。
2)制绒:使用 HF和 HN03对硅片进行腐蚀,在硅片表面形成 1-3微米大小的虫 卵结构。
3)扩散:使用三氯氧磷和氧气在高温下对硅片进行磷扩散,扩散方阻 85欧姆, 形成 PN结。
4) 通孔背结保护:在太阳能电池通孔背部印刷石蜡掩膜,保护通孔及直径 3mm 内的 PN结,避免在刻蚀时遭到破坏.
5)刻蚀,去石蜡掩膜及去除磷硅玻璃:使用刻蚀工艺将电池衬底 1四周多余的 N 型层去除,并去除电池衬底 1表面的磷硅玻璃。
6) 利用丝网印刷工艺, 在电池衬底内的通孔填满浆料, 并印刷背面电极 5, 然后烘干。
7) 利用丝网印刷工艺,印刷背场 4,然后烘干.
8) 利用丝网印刷工艺制作正面电极 3, 然后烘干。
9)在电池衬底 1的正面镀上氮化硅膜 2, 该氮化硅薄膜 2将电池衬底 1正面 和正面电极 3完全覆盖住。 说 明 书
10) 烧结:在各个电极与电池衬底 1 之间形成欧姆接触, 然后进行测试分选, 按不同电性能进行分档, 并包装出售。
一种薄膜覆盖 MWT太阳能电池, 包括减反射膜和正面电极, 该电池正面的 减反射膜完全覆盖正面电极。 所述减反射膜为氮化硅膜。 实施例 2: 本实施例提出了一种薄膜覆盖 MWT结构 SE太阳能电池制造工 艺, 包括以下步骤:
1 )打孔:使用激光在选取的 P型硅片上的预定位置开设直径 200-300微米通 孔 1, 所谓预定位置就是太阳能电池正面电极 3所在的位置, 通孔的数量也与正 面电极 3的数量相同。
2)制绒:使用 HF和 HN03对硅片进行腐蚀,在硅片表面形成 1-3微米大小的 虫卵结构。
3)扩散:使用三氯氧磷和氧气在高温下对硅片进行磷扩散,扩散方阻 85欧姆, 形成 PN结。
4) 通孔背结保护:在太阳能电池通孔背部印刷石蜡掩膜,保护通孔及直径 3mm内的 PN结,避免在刻蚀时遭到破坏。
5)打印石蜡掩膜: 在电池衬底上表面喷墨打印石蜡掩膜, 该石蜡掩膜具有与 正面栅线图形相同的图案。
6)刻蚀,刨结,去石蜡掩膜及去除磷硅玻璃:利用腐蚀液将掩膜以外的掺杂层 表层刻蚀掉一个薄层形成浅扩散层, 同时也将电池衬底四周多余的部分去除, 再 洗掉石蜡,去除衬底 1表面的磷硅玻璃。
7)利用丝网印刷工艺, 在电池衬底内的通孔填满浆料, 并印刷背面电极 5, 然后烘干。
8) 利用丝网印刷工艺,印刷背场 4,然后烘干。
9) 利用喷墨打印工艺制作正面电极 3, 然后烘干。
10)在电池衬底 1的正面镀上氮化硅膜 2, 该氮化硅薄膜 2将电池衬底 1正 面和正面电极 3完全覆盖住。
11 ) 烧结:在各个电极与电池衬底 1之间形成欧姆接触, 然后进行测试分选, 按不同电性能进行分档, 并包装出售。

Claims

权 利 要 求 书
1、 一种薄膜覆盖 MWT太阳能电池制造工艺, 其特征在于, 包括以下步骤:
1 )选取具有第一导电类型的硅片,经过在硅片预定位置开设通孔、以及制绒、 扩散、 通孔背结保护和刻蚀工艺后形成具有通孔的电池衬底;
2) 去除所述电池衬底表面的 PSG;
3) 向该电池衬底上所述通孔内填充浆料, 并制备背面电极, 然后烘干;
4) 制备背面背场, 然后烘干;
5) 制备电池正面电极, 然后烘干;
6)在步骤 4)所形成的电池衬底上表面镀减反射膜, 该减反射膜完全覆盖正 面电极;
7) 经烧结后测试分选。
2、 根据权利要求 1所述的薄膜覆盖 MWT太阳能电池制造工艺, 其特征在于, 所述步骤 6) 中所述减反射膜为氮化硅膜。
3、 根据权利要求 1所述的薄膜覆盖 MWT太阳能电池制造工艺, 其特征在于, 所述步骤 5) 中利用丝网印刷技术制备正面电极。
4、 一种薄膜覆盖 MWT结构 SE太阳能电池制造工艺, 其特征在于, 包括以下 步骤:
1 )选取具有第一导电类型的硅片,经过在硅片预定位置开设通孔、以及制绒、 扩散、 通孔背结保护、 刻蚀工艺形成具有通孔的电池衬底;
2) 在所述电池衬底表面打印掩膜, 将电极下方需要重掺杂区域遮蔽起来;
3) 刻蚀所述带有掩膜的电池衬底, 去除硅片周围多余的 PN结;
4)去除所述电池衬底表面的 PSG,对未被石蜡掩膜遮蔽的区域进行刨结处理, 处理完毕后去除石蜡掩膜;
5) 向该电池衬底上所述通孔内填充浆料, 并制备背面电极, 然后烘干;
6) 制备背面背场, 然后烘干;
7) 制备电池的正面电极, 然后烘干;
8)在步骤 7)所形成的电池衬底上表面镀减反射膜, 该减反射膜完全覆盖正 面电极;
9) 经烧结后测试分选。
5、 根据权利要求 4所述的薄膜覆盖 MWT太阳能电池制造工艺, 其特征在于, 所述步骤 8) 中所述减反射膜为氮化硅膜。
6、 根据权利要求 1或 4所述的薄膜覆盖 MWT太阳能电池制造工艺, 其特征在 于, 所述第一导电类型为 P型。
7、 根据权利要求 4所述的薄膜覆盖 MWT太阳能电池制造工艺, 其特征在于, 权 利 要 求 书 所述步骤 7) 采用喷墨打印制作电池的正面电极。
8、 一种根据权利要求 1至 3中任意一项所述的薄膜覆盖 MWT太阳能电池制造 工艺生产的薄膜覆盖 MWT太阳能电池,包括减反射膜和正面电极,其特征在于, 该电池的减反射膜完全覆盖正面电极。
9、 根据权利要求 8所述的一种薄膜覆盖 MWT太阳能电池, 其特征在于, 所述 减反射膜为氮化硅膜。
PCT/CN2013/080451 2013-06-04 2013-07-30 一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺 WO2014194557A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/894,729 US20160093751A1 (en) 2013-06-04 2013-07-30 Silicon solar cell with front electrodes covered by thin film and process for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310218746.5A CN103337553B (zh) 2013-06-04 2013-06-04 一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺
CN201310218746.5 2013-06-04

Publications (1)

Publication Number Publication Date
WO2014194557A1 true WO2014194557A1 (zh) 2014-12-11

Family

ID=49245683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080451 WO2014194557A1 (zh) 2013-06-04 2013-07-30 一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺

Country Status (3)

Country Link
US (1) US20160093751A1 (zh)
CN (1) CN103337553B (zh)
WO (1) WO2014194557A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690299A (zh) * 2019-10-21 2020-01-14 华南理工大学 光伏太阳能电池电极栅线原位二次印刷装置及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560176A (zh) * 2013-11-13 2014-02-05 山东力诺太阳能电力股份有限公司 太阳电池后覆膜制备方法
CN103560175A (zh) * 2013-11-13 2014-02-05 山东力诺太阳能电力股份有限公司 一种太阳电池正面导体电极制备方法
CN104600134A (zh) * 2014-12-30 2015-05-06 南京日托光伏科技有限公司 一种太阳能电池及其制备方法
CN105118891A (zh) * 2015-08-18 2015-12-02 广东爱康太阳能科技有限公司 一种抗氧化正面电极太阳能电池及其制备方法
GB201517629D0 (en) * 2015-10-06 2015-11-18 Isis Innovation Device architecture
CN106486566A (zh) * 2016-10-27 2017-03-08 太极能源科技(昆山)有限公司 一种太阳能电池片的制作方法
EP3462016A1 (en) 2017-10-02 2019-04-03 Ventus Engineering GmbH Use of a new material in wind turbine parts and apparatus and methods hereof
CN108155250A (zh) * 2017-12-27 2018-06-12 南京日托光伏科技股份有限公司 一种低成本mwt硅太阳能电池及其制备方法
CN108198905A (zh) * 2017-12-28 2018-06-22 南京日托光伏科技股份有限公司 一种选择发射极的mwt太阳能电池的制备方法
CN110164985A (zh) * 2019-06-04 2019-08-23 苏州腾晖光伏技术有限公司 一种太阳能电池及其制备方法
CN113206164A (zh) * 2021-04-26 2021-08-03 宜兴市昱元能源装备技术开发有限公司 一种铸造纵列多结光伏电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866967A (zh) * 2010-04-30 2010-10-20 华中科技大学 太阳能电池
CN102361040A (zh) * 2011-11-08 2012-02-22 天威新能源控股有限公司 一种太阳能电池及其制备方法
CN102956746A (zh) * 2012-10-31 2013-03-06 常州天合光能有限公司 Mwt电池的制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881694A1 (en) * 1997-05-30 1998-12-02 Interuniversitair Micro-Elektronica Centrum Vzw Solar cell and process of manufacturing the same
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
CN101383386B (zh) * 2008-10-24 2010-12-01 中国科学院电工研究所 一种发射极环绕型太阳电池及其制备方法
KR101383395B1 (ko) * 2009-12-28 2014-04-09 현대중공업 주식회사 후면전극형 태양전지의 제조방법
US20110162701A1 (en) * 2010-01-03 2011-07-07 Claudio Truzzi Photovoltaic Cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866967A (zh) * 2010-04-30 2010-10-20 华中科技大学 太阳能电池
CN102361040A (zh) * 2011-11-08 2012-02-22 天威新能源控股有限公司 一种太阳能电池及其制备方法
CN102956746A (zh) * 2012-10-31 2013-03-06 常州天合光能有限公司 Mwt电池的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690299A (zh) * 2019-10-21 2020-01-14 华南理工大学 光伏太阳能电池电极栅线原位二次印刷装置及方法

Also Published As

Publication number Publication date
CN103337553B (zh) 2016-03-23
US20160093751A1 (en) 2016-03-31
CN103337553A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
WO2014194557A1 (zh) 一种薄膜覆盖正面电极的硅太阳能电池及其制造工艺
US8569100B2 (en) Solar cell and manufacturing method thereof
JP5172480B2 (ja) 光電変換装置およびその製造方法
CN106876491B (zh) 一种无正面栅线的p型晶体硅背接触电池结构及制作方法
US20100218826A1 (en) Method for producing a silicon solar cell with a back-etched emitter as well as a corresponding solar cell
CN102623517B (zh) 一种背接触型晶体硅太阳能电池及其制作方法
US8574951B1 (en) Process of manufacturing an interdigitated back-contact solar cell
CN102484148B (zh) 太阳能电池单元及其制造方法
KR20100136462A (ko) 단결정 n 실리콘 태양 전지를 제조하는 방법 및 상기 방법으로 제조된 태양 전지
WO2006117980A1 (ja) 太陽電池の製造方法及び太陽電池並びに半導体装置の製造方法
CN108666376B (zh) 一种p型背接触太阳电池及其制备方法
CN108666386B (zh) 一种p型背接触太阳电池及其制备方法
JP6410951B2 (ja) 太陽電池セルおよび太陽電池セルの製造方法
TWI538244B (zh) Method for manufacturing solar cells
US9123840B2 (en) Solar cell element manufacturing method, solar cell element, and solar cell module
US20150083183A1 (en) Solar cell, manufacturing method for solar cell, and solar cell module
CN105161569A (zh) Mwt太阳能电池及其制备方法
CN105304730A (zh) 一种具有背钝化膜的mwt电池及其制备方法
CN103314455A (zh) 太阳能电池单元及其制造方法、以及太阳能电池模块
CN103094414B (zh) 背钝化太阳能电池背电场的制备方法以及具有该背电场的背钝化太阳能电池
CN105304758B (zh) 一种降低背接触光伏电池贯孔电极处漏电的方法
JP2014146766A (ja) 太陽電池の製造方法及び太陽電池
CN206864480U (zh) 一种无正面栅线的p型晶体硅背接触电池结构
TW201431108A (zh) 指叉狀背部電極太陽能電池之製造方法及其元件
WO2017002265A1 (ja) 太陽電池セルおよび太陽電池セルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886509

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14894729

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13886509

Country of ref document: EP

Kind code of ref document: A1