WO2014192894A1 - 生体における酸化還元反応を検出する方法 - Google Patents

生体における酸化還元反応を検出する方法 Download PDF

Info

Publication number
WO2014192894A1
WO2014192894A1 PCT/JP2014/064341 JP2014064341W WO2014192894A1 WO 2014192894 A1 WO2014192894 A1 WO 2014192894A1 JP 2014064341 W JP2014064341 W JP 2014064341W WO 2014192894 A1 WO2014192894 A1 WO 2014192894A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
molecule
remi
vitamin
radical
Prior art date
Application number
PCT/JP2014/064341
Other languages
English (en)
French (fr)
Inventor
英雄 内海
文紀 兵藤
慎治 伊藤
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2015519947A priority Critical patent/JPWO2014192894A1/ja
Priority to US14/894,454 priority patent/US20160216351A1/en
Publication of WO2014192894A1 publication Critical patent/WO2014192894A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/485NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy based on chemical shift information [CSI] or spectroscopic imaging, e.g. to acquire the spatial distributions of metabolites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5605Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by transferring coherence or polarization from a spin species to another, e.g. creating magnetization transfer contrast [MTC], polarization transfer using nuclear Overhauser enhancement [NOE]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/465NMR spectroscopy applied to biological material, e.g. in vitro testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Definitions

  • the present invention relates to a method for detecting a redox reaction in a living body, and more particularly to a method for detecting a redox reaction of a molecule that performs a radical reaction in a lipid environment.
  • diagnostic imaging is used to diagnose or treat various diseases.
  • This image diagnosis identifies a lesion site such as cancer or cerebral infarction, and images morphological changes due to the disease, reads the characteristics of the image, and is useful for the diagnosis and treatment of the disease.
  • many diseases are accompanied by changes in body functions due to chronic inflammation at the cellular level, rather than morphological changes as symptoms.
  • endogenous molecules that form radical intermediates such as ubiquinone and vitamin K play an important role in the maintenance of homeostasis (homeostasis) in the living body. There are many changes.
  • ubiquinone is one of the electron carriers present in the inner mitochondrial membrane of all cells and the prokaryotic cell membrane, and is deeply involved in the maintenance of mitochondrial function. For this reason, ubiquinone is expected to improve intracellular mitochondrial function, antioxidant effect, and anti-aldosterone effect, and is also used as a cardiac function assistant.
  • Ubiquinone is a molecule involved in the transfer of electrons called the Q cycle in the mitochondrial respiratory chain I-III, mediates the electrons of the respiratory chain complexes I and II in the electron transport system, and generates semiquinone free radicals in the metabolic process . Such free radicals are involved in biological redox reactions.
  • the biological redox reaction is a concept that expresses the overall physiological function expression through oxidation-reduction reaction and the accompanying active species production, and the metabolism and reaction between the produced active species and biomolecules. ⁇ It has been suggested to be closely involved in biological redox diseases such as diabetes.
  • a method for detecting and analyzing in vivo redox reactions a method is known in which a synthetic nitroxyl radical compound is administered into the body as a probe (contrast agent) and detected and analyzed using the redox reaction of the compound as an index. It has been. However, since this method only detects radical disappearance of the nitroxyl radical, it merely detects and analyzes the in vivo redox reaction using the reaction of the synthetic nitroxyl radical compound as an index. Therefore, the redox reaction of endogenous molecules was not directly detected and analyzed. In addition, it has been difficult to obtain sufficient image intensity of this nitroxyl radical in an organic solvent by an image resonance method such as OMRI.
  • Patent Document 1 proposes a water-soluble environment.
  • efficient visualization was not possible in a fat-soluble environment.
  • Non-invasive monitoring of redox status in mice with dextran sodium sulphate-induced colitis Yaskawa K, Miyakawa R, Yao T, Tsuneoshi M, Utsumi H. Free Radic Res. 2009 May; 43 (5): 505-13.
  • In vivo detection of free radicals induced by diethyl nitrosamine in rat liver tissue Yamada K, Yamamiya I, Utsumi H. Free Radic Biol Med. 2006 Jun 1:40 (11): 2040-6.
  • Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke Yamato M, Egashira T, Utsumi H. Free Radic Biol Med. 2003 Dec 15; 35 (12): 1619-31.
  • the present invention has been made in view of such a situation.
  • the oxidation-reduction reaction of molecules at fat-soluble sites is performed. It is an object to provide a method for detecting and visualizing.
  • the present inventors have obtained the knowledge that by using a fat-soluble molecule, an image intensity sufficient for detection by a magnetic resonance apparatus can be obtained even in an organic solvent, and the radical can be used as a contrast agent. Got sex.
  • the present inventors have used a magnetic resonance method (including Overhauser MRI and electron spin resonance method) to thereby oxidize and reduce molecules in a lipid environment. It has been found that the reaction can be detected and visualized.
  • a magnetic resonance method including Overhauser MRI and electron spin resonance method
  • a method for detecting an oxidation-reduction reaction of a molecule that undergoes a radical reaction in a lipid environment wherein a magnetic resonance method is applied to a living body or sample to be measured.
  • a magnetic resonance method is applied to a living body or sample to be measured.
  • a molecule that undergoes a radical reaction in a lipid environment can be used as a contrast agent to visualize a biological function. It can contribute to the development of diagnostics and preventive drugs.
  • the step of obtaining the proton image is to obtain two or more proton images over time. It is preferable to have a step of comparing temporal changes in the image intensity of the living body or sample in the proton image.
  • the magnetic resonance method is an overhauser MRI
  • the step of obtaining the proton image includes molecular electrons that perform a radical reaction in the lipid environment. A proton image in which spin is excited is obtained.
  • this method further includes a step of obtaining a proton image in which the electron spin of the molecule that performs the radical reaction in the lipid environment is not excited, and the electron spin of the molecule that performs the radical reaction in the lipid environment.
  • the proton image is compared with the proton image in which the electron spin of the molecule that performs radical reaction in the lipid environment is not excited, and the difference or ratio of the image intensity of the living body or the sample in the two images is calculated. It is preferable that it has a process.
  • the molecule that performs a radical reaction in the lipid environment is a molecule having a quinone skeleton.
  • the molecule having the quinone skeleton is ubiquinone (CoQ 10 ), riboflavin, vitamin K 1 , vitamin K 2 , vitamin K 3 , 1,4-benzoquinone (p-quinone), 2,6-dichloro-p- It is preferably selected from the group consisting of quinone, 1,4-naphthoquinone, and seratrodast.
  • the step of obtaining the proton image comprises obtaining a proton image of a molecule that undergoes a radical reaction in two or more lipid environments. It is.
  • the method as described above may further include a step of obtaining a proton image of a molecule that performs a radical reaction in an aqueous environment.
  • the living body or the sample is pre-administered with a redox substance.
  • the living body or the sample is pre-administered with a molecule that performs a radical reaction in the lipid environment.
  • the redox material is preferably selected from the group consisting of NaOH, NADH, KO 2 , and combinations thereof.
  • the molecule that undergoes a radical reaction in the lipid environment is ethanol, methanol, DMSO, acetone, hexane, chloroform, an alkaline solution, and these. It is dissolved in a solvent selected from the group consisting of combinations.
  • FIG. 1 is a photograph and graph showing visualization of a redox reaction by ReMI in an embodiment of the present invention.
  • FIG. 2 is a photograph and a graph showing visualization of a redox reaction by ReMI in an embodiment of the present invention.
  • FIG. 3 is a photograph and a graph showing visualization of a redox reaction in mitochondria by ReMI in one embodiment of the present invention.
  • FIG. 4 is a photograph and graph showing visualization of a redox reaction in a mouse by ReMI in one embodiment of the present invention.
  • FIG. 5 a is a photograph showing visualization of vitamin K 1 radicals by ReMI in one embodiment of the present invention.
  • FIG. 5b is a graph showing an X-band ESR spectrum of vitamin K 1 radical and an image intensity in one embodiment of the present invention.
  • FIG. 6a is a photograph showing the visualization of vitamin K 2 radicals by ReMI in an embodiment of the present invention.
  • FIG. 6 b is a graph showing an X-band ESR spectrum of vitamin K 2 radical and an image intensity in one embodiment of the present invention.
  • FIG. 7a is a photograph showing visualization of vitamin K 3 radicals by ReMI in one embodiment of the present invention.
  • FIG. 7 b is a graph showing an X-band ESR spectrum of vitamin K 3 radical and an image intensity in one embodiment of the present invention.
  • FIG. 8 a is a photograph showing visualization of vitamin K 3 radicals by ReMI in one embodiment of the present invention.
  • Figure 8b is a graph showing the image intensity of the vitamin K 3 radical in an embodiment of the present invention.
  • Figure 9a is a photograph showing a vitamin K 2 and vitamin K 3 Visualization of radicals by ReMI in an embodiment of the present invention.
  • Figure 9b is a graph showing the image intensity of the vitamin K 2 and vitamin K 3 radical in an embodiment of the present invention.
  • FIG. 10a is a photograph showing visualization of riboflavin (vitamin B 2 ) radicals by ReMI in one embodiment of the present invention.
  • FIG. 10 b is a graph showing an X-band ESR spectrum of riboflavin (vitamin B 2 ) radical and an image intensity in one embodiment of the present invention.
  • FIG. 11 is a photograph showing visualization of the EGCG radical by ReMI in one embodiment of the present invention.
  • FIG. 12 is a photograph showing visualization of dopamine radicals by ReMI in an embodiment of the present invention.
  • FIG. 13 is a photograph showing visualization of chlorogenic acid radicals by ReMI in one embodiment of the present invention.
  • FIG. 14 is a photograph showing visualization of caffeic acid radicals by ReMI in one embodiment of the present invention.
  • FIG. 15 is a photograph showing visualization of rosmarinic acid radicals by ReMI in one embodiment of the present invention.
  • FIG. 16 is a photograph showing visualization of rutin radicals by ReMI in one embodiment of the present invention.
  • FIG. 17 is a photograph showing visualization of seratrodast radicals by ReMI in one embodiment of the present invention.
  • FIG. 18 is a photograph showing visualization of a Trolox radical by ReMI in an embodiment of the present invention.
  • FIG. 19a is a photograph showing TEMPOL visualization by ReMI in one embodiment of the present invention.
  • FIG. 19b is a graph showing TEMPOL image intensity in one embodiment of the present invention.
  • FIG. 20a is a photograph showing TEMPOL visualization by ReMI in an embodiment of the present invention.
  • FIG. 20b is a graph showing the TEMPOL image intensity in one embodiment of the present invention.
  • FIG. 21a is a photograph showing visualization of MC-PROXYL by ReMI in one embodiment of the present invention.
  • FIG. 21 b is a graph showing the image intensity of MC-PROXYL in one embodiment of the present invention.
  • FIG. 22a is a photograph showing visualization of MC-PROXYL by ReMI in one embodiment of the present invention.
  • FIG. 22b is a graph showing the image intensity of MC-PROXYL in one embodiment of the present invention.
  • the method according to the present invention detects a redox reaction accompanying a radical reaction performed in a lipid environment.
  • the “lipid environment” is an environment other than an aqueous environment, mainly composed of an organic solvent, and includes a membrane lipid bilayer and lipoprotein.
  • radio reaction refers to delivery of electrons in a specific atom or molecule having unpaired electrons. Radicals have unpaired electrons and are paramagnetic and are involved in biological redox reactions.
  • This biological redox reaction is a concept that represents the overall expression of physiological functions through oxidation-reduction reactions and the accompanying active species production, and the metabolism and reactions between the produced active species and biomolecules. It has been suggested to be closely involved in biological redox diseases such as cancer and diabetes. Therefore, visualization of biological redox status may provide a new methodology for minimally invasive disease mechanism analysis or development of new therapeutic agents.
  • a molecule that undergoes a radical reaction in a lipid environment is a molecule (substance) that forms a radical intermediate in a lipid environment, and includes molecules and synthetic compounds that exist in a living body. In the case of molecules existing in the living body, these molecules play an important role for maintaining homeostasis (homeostasis) in the lipid environment in the living body. “Molecules that undergo a radical reaction in a lipid environment” are not limited to these.
  • CoQ 10 riboflavin (vitamin B 2 ), vitamin K 1 (phylloquinone, 2-methyl-3-phytyl- 1,4-naphthoquinone), vitamin K 2 (menaquinone-4, menaquinone-7), vitamin K 3 (menadione, 2-methyl-1,4-naphthoquinone), 1,4-benzoquinone (p-quinone), 2, 6-dichloro-p-quinone, and 1,4-naphthoquinone, vitamin E (tocopherol ( ⁇ , ⁇ , ⁇ , ⁇ ) and tocotrienol ( ⁇ , ⁇ , ⁇ , ⁇ )), Trolox, epigallocatechin gallate ( Epigallocin gallate (EGCG), dopamine, chlorogenic acid, caffeic acid, rosmarinic acid, rutin, and Or the like can be mentioned seratrodast.
  • vitamin B 2 vitamin K 1 (phylloquinone, 2-methyl-3-phytyl
  • Ubiquinone (CoQ 10 ), riboflavin, vitamin K 1 , vitamin K 2 , vitamin K 3 , 1,4-benzoquinone (p-quinone), 2,6-dichloro-p-quinone, 1,4-naphthoquinone, and seratrodast It is a molecule having a quinone skeleton.
  • vitamin K 1 (phylloquinone) forms a radical intermediate according to the following scheme.
  • molecules that undergo radical reaction in a lipid environment include molecules that form a radical intermediate in a lipid environment in a living body such as a specific cell.
  • the magnetic resonance method used in the present invention is a general magnetic resonance method, and when an electromagnetic wave or an oscillating magnetic field is applied to an object to be measured from outside, a kind of resonance is caused at a specific frequency, and the electromagnetic wave is strongly absorbed.
  • Magnetic resonance is a method for measuring the state of electrons and nuclei inside a substance from the frequency at which resonance absorption occurs and the waveform of absorption.
  • Specific examples of such a magnetic resonance method include a magnetic resonance imaging (MRI) method, an overhauser MRI (OMRI) method, a nuclear magnetic resonance (NMR) method, and an electron spin resonance (EPR) method.
  • the measurement conditions of the various magnetic resonance methods can be appropriately selected within the range of conditions generally used for each measurement method.
  • the term “ReMI (Redox Molecular Imaging)” may be used, which is synonymous with OMRI.
  • an apparatus for imaging by such a magnetic resonance method for example, an apparatus disclosed in International Publication No. WO 2010/110384, that is, “a magnetic field generation for generating a magnetic field for exciting magnetic resonance of a measurement object” And a moving means for moving the measuring object in the magnetic field of the magnetic field generating means by moving the measuring object or the magnetic field generating means, and a magnetic field generating means for the measuring object without stopping during movement by the moving means
  • a measurement image signal in the measurement object is obtained by applying a gradient magnetic field to one or both of the moving direction y with respect to the moving direction y and the direction x orthogonal to the moving direction y, and either or both of phase encoding and frequency encoding.
  • Measuring means for obtaining, and correcting means for obtaining a corrected image signal obtained by correcting the influence of movement in the y direction on the measured image signal may be used.
  • EPR irradiation when the method according to the present invention is performed using ReMI or OMRI, it is possible to acquire images by turning on / off electron spin irradiation (EPR irradiation, ESR irradiation), respectively.
  • EPR irradiation is performed on the target “molecule that undergoes a radical reaction in a lipid environment”, and electron spin excitation is performed.
  • the energy of the electron spin is transferred to the nuclear spin, and the proton image intensity is increased.
  • a proton image with an increased image intensity can be acquired by setting the frequency to the peak top frequency of a spectrum of a specific radical, performing electron spin, and acquiring an MRI image.
  • EPR Electro Paramagnetic Resonance
  • ESR Electro Spin Resonance
  • the target “molecule that undergoes a radical reaction in a lipid environment” has not undergone a redox reaction, so the radical has not disappeared, so the image intensity is low.
  • the image is made strong.
  • the image intensity also decreases. Therefore, it is possible to detect the presence or absence of an oxidation-reduction reaction in a living body by observing a change in image intensity over time focusing on a specific “molecule that undergoes a radical reaction in a lipid environment”.
  • the redox reaction can be detected using an electron spin excitation on image, but the redox reaction can be detected using two images of electron spin excitation on / off. Can also be detected.
  • the image intensity of the EPR irradiation off image can be subtracted from the image intensity of the EPR irradiation on image (subtraction).
  • a redox reaction can be detected using the image intensity obtained as a result.
  • the image intensity of the EPR irradiation on image can be divided by the image intensity of the EPR irradiation off image (division).
  • the redox reaction may be detected using the image intensity thus obtained.
  • the image intensity can be obtained from information on the relaxation time of water (longitudinal relaxation, lateral relaxation).
  • MRI radicals possessed by molecules used as a contrast agent interact with water to shorten the relaxation time (longitudinal relaxation time: T1 relaxation). Therefore, when an image is acquired by the MRI T1-weighted imaging method, the image intensity is increased by the amount of radicals in the contrast agent. Therefore, when the radical disappears with the redox reaction, the image intensity decreases.
  • the detection of the oxidation-reduction reaction may be expressed using the rate of increase in image intensity due to radicals.
  • the “redox substance” is a substance that functions as an electron donor or an electron acceptor and performs a redox reaction with a molecule that performs a radical reaction in the lipid environment. But it is not limited to, for example NaOH, NADH, etc. KO 2 and the like.
  • the molecule that undergoes a radical reaction in the lipid environment may be dissolved in an organic solvent or an organic solvent.
  • organic solvents or organic solvents include, but are not limited to, ethanol, methanol, DMSO, acetone, hexane, chloroform, alkaline solutions, and combinations thereof.
  • the proton image of a molecule that undergoes a radical reaction in a lipid environment may simultaneously obtain proton images of molecules that undergo a radical reaction in a plurality of types of lipid environments.
  • proton images of a plurality of types of molecules can be obtained simultaneously.
  • a redox reaction of a molecule that performs a radical reaction in an aqueous environment it is also possible to simultaneously detect a redox reaction of a molecule that performs a radical reaction in an aqueous environment together with a redox reaction of a molecule that performs a radical reaction in a lipid environment.
  • the aqueous environment include water and a solvent such as PBS, and molecules that form radical bodies are dissolved in such a solvent.
  • PBS a solvent
  • the redox reaction of a molecule that undergoes a radical reaction in an aqueous environment it is possible to detect the movement of electrons between molecules that undergo radical reactions.
  • EPR spectra of each free radical and their EPR parameters were obtained at room temperature with an X-band EPR spectrometer (JEOL Ltd.) under the following conditions. Microwave frequency, 9.4 GHz; microwave power, 1 mW; modulation width, 0.06 mT; sweep time, 1 minute; sweep width ( ⁇ 5 mT); time constant, 0.03 s Calibration of EPR parameters was performed using an Mn 2+ internal standard. The apparent concentration of each free radical intermediate in the ReMI experiment was evaluated by extrapolating a time-dependent curve in the region of the EPR spectrum over time based on the CmP peak region and Mn 2+ internal standard.
  • the ReMI experiment was conducted using the DNP-MRI system manufactured at Kyushu University.
  • the DNP-MRI system was configured using an external magnet of the EPR device (JES-ES20, JEOL Ltd.) and two axial field gradient coils for CW-EPR imaging.
  • the resonator consists of a surface coil for ESR irradiation, an NMR cross coil in the saddle, and a solenoid for transmission and reception.
  • the ESR irradiation coil is placed between two NMR coils.
  • EPR irradiation and the external magnetic field B 0 for MRI were fixed in 20 mT, EPR irradiation and MRI of high frequency were respectively 527.5MHz and 793KHz.
  • a surface coil (20 mm diameter) was used for ESR irradiation, and the NMR coil assembly consisted of an NMR transmission saddle coil (90 mm id, 175 mm length) and a solenoid receiver coil (40 mm id) with a bandwidth of 1 kHz. , 60 mm length).
  • the maximum transmission power was 100W.
  • the image field (32 ⁇ 32 mm) used a 64 ⁇ 64 matrix.
  • the phantom consists of four tubes containing CoQ 10 H, FMNH, 14 N and 15 N labeled CmP. CoQ 10 H and FMNH were prepared as described above. ReMI experiments were performed using the ReMI system described above for EPR irradiation at specific frequencies between 500-580 MHz.
  • mice Female C57BL6 mice (5 weeks) were purchased from Japan SLC (Hamamatsu, Japan) and allowed to acclimate for 1 week prior to the experiment. The mice were 6 to 8 weeks at the time of experiment, were weighed 20 to 30 g, adjusted to temperature and humidity, and housed with 5 animals in each cage in a room adjusted to a rhythm with a 24-hour period. Feed and water were provided ad libitum. All procedures and animal breeding were approved by the Animal Experimentation Ethics Committee, Kyushu University, and were performed according to Kyushu University guidelines for animal experiments.
  • mice were anesthetized with 2% isoflurane for FADH experiments or urethane (2 g / kg) for CoQ 0 H experiments and fixed with skin adhesive tape with the stomach down. During the experiment, the body temperature was maintained at 37 ⁇ 1 ° C. with warm air in order to maintain the body temperature of the mice. Thereafter, the mouse was placed in the resonator, and ReMI measurement was started. ReMI images of the lower abdominal region were measured by rectal administration of 8 mM CoQ 0 alkaline solution (800 ⁇ L) or intramuscular administration of FAD / NADH solution.
  • ReMI images were obtained using a Philips prototype system is DNP-MRI system, and CoQ 0 for experiments made by Kyushu fabricated in the experiment using FADH.
  • the ReMI experiment was performed with the parameters described above.
  • Radical metabolism images (redox maps) were obtained by calculating the change in ReMI intensity at each pixel between the first four ReMI images (from the semi-log plot of each pixel on the image over time).
  • Image analysis ReMI data was analyzed using Image J software (http://rsb.info.nih.gov/ij/).
  • EPR irradiation in the ReMI experiment is performed with a continuous wave of 10 W at 527.5 MHz (indicated by the vertical line in FIG. 1 a), which is the central peak of the synthetic CmP.
  • all endogenous free radical intermediates and synthetic CmP showed different image intensities (FIG. 1b left).
  • ReMI images of each free radical intermediate are derived from solvent protons (water protons for FMNH, FADH, and CmP, and hydrocarbon protons for CoQ 10 H, vitamin E, and vitamin K 1 radicals).
  • the EPR spectrum of the free radical intermediate of the endogenous compound is relatively more complex than that of CmP and has a wider line width (FIG. 1), but could be imaged by ReMI.
  • the image intensity of the phantom with and without DNP is shown in FIG. 1c, and their enhancement factors (ratio of intensity with and without EPR irradiation) are shown in FIG. 1d.
  • FIG. 3a shows that the image intensity of ReMI increases depending on the radical concentration. ReMI images were obtained over time after the start of the reaction between mitochondria and FADH or CoQ 0 H. When FAD radicals were added, there was no reaction with mitochondria (FIGS. 3b and 3c), whereas when CoQ 0 H was used, the image intensity decreased depending on the mitochondrial concentration (FIGS. 3d and 3e). ).
  • FIG. 4a is an image taken every 2 minutes after intramuscular administration of FADH to both legs. The image intensity from these two locations was stable during the test period (14 minutes).
  • FIG. 4b is an anatomical image of the FADH intensity and the redox rate of this intensity expressed as a redox map. The ReMI scan shows that FADH metabolism proceeds slowly in muscle.
  • FIG. 4d A similar experiment with ReMI was performed by introducing CoQ 0 H into the rectum (FIG. 4d). Similar to the reaction with mitochondria in the phantom experiment, the intensity of CoQ 0 H showed a decrease over time (FIGS. 3d and 3e). An anatomical and metabolic ReMI image of CoQ 0 H in the intestine is shown in FIG. 4d. This was consistent with the phantom experiment.
  • FADH and CoQ 0 H present clear ReMI images (FIGS. 4a and 4d), and from the fusion images of MRI and ReMI, FADH and CoQ 0 H are site-specifically distributed in the leg and intestine, respectively. (FIGS. 4b and 4e).
  • the pharmacokinetic properties of FADH and CoQ 0 H were obtained from the rate of decrease, and the pharmacokinetic properties of both were different.
  • the pharmacokinetic map of CoQ 0 H was strongly dependent on the site within the tissue, whereas the pharmacokinetic map of FADH was constant (FIGS. 4c and 4f). Free radical intermediates may lose their paramagnetism by electron transfer and / or redox reactions, redistribution and excretion in mitochondria, some of which induce rapid decay of CoQ 0 H in the mouse intestine there's a possibility that. As shown in FIG.
  • FIG. 5a is an image acquired 28 minutes after adding the NaOH solution.
  • Vitamin K 1 radicals can be observed well when NaOH is added as a redox substance. Vitamin K 1 radicals could be observed better than the nitroxyl radical carbamoyl-proxyl.
  • vitamin K 2 powder was dissolved in DMSO, which is an organic solvent, and an NaOH solution was added as a redox material.
  • DMSO which is an organic solvent
  • NaOH solution was added as a redox material. The composition is as follows. Note that the final concentration of vitamin K 2 and NaOH is 4.76 mm.
  • FIG. 6a is an image acquired 25 minutes after adding the NaOH solution.
  • vitamin K 2 radicals can be observed well when NaOH is added as a redox substance. Vitamin K 2 radicals could be observed better than carbamoyl-proxyl, which is a nitroxyl radical.
  • FIG. 7a is an image acquired 45 minutes after adding the NaOH solution.
  • Vitamin K 3 radicals can be observed well when NaOH is added as a redox substance. Vitamin K 3 radicals were observed better than carbamoyl-proxyl, which is a nitroxyl radical.
  • FIG. 8a The left of the photograph is an image with ESR irradiation on (523 MHz), the center of the photograph is ESR irradiation on (527 MHz), and the right of the photograph is an image with ESR irradiation off.
  • the present embodiment was dissolved vitamin K 3 in DMSO as an organic solvent, and the NaOH solution was added as a redox substance.
  • the composition is as follows. Note that the final concentration of vitamin K 3 and NaOH is 46.8 mm.
  • FIG. 8a is an image acquired 3 days after adding the NaOH solution.
  • FIG. 8B is a graph showing the image intensity in this embodiment.
  • FIG. 9a The photo on the left is an image of ESR irradiation on, and the photo on the right is an image of ESR irradiation off.
  • vitamin K 2 or vitamin K 3 powder was added to a NaOH alcohol solution dissolved in ethanol or methanol as an organic solvent. The final concentration of vitamin K 2 and vitamin K 3 was prepared and the reaction mixture so that 100 mM.
  • FIG. 9a is an image acquired 3 hours after adding the NaOH alcohol solution.
  • FIG. 9B is a graph showing the image intensity in this embodiment. The left of each column is ESR irradiation off, and the right is ESR irradiation on.
  • riboflavin (vitamin B 2 ) radical by ReMI.
  • FIG. 10a The photo on the left is an image of ESR irradiation on, and the photo on the right is an image of ESR irradiation off.
  • riboflavin powder was dissolved in DMSO, which is an organic solvent, and an NADH aqueous solution was added as a redox substance.
  • FIG. 10a is an image acquired 3 hours after adding the NaOH solution.
  • riboflavin (vitamin B 2 ) radicals can be satisfactorily observed when NADH is added as a redox substance in an organic solvent in a lipid environment.
  • FIG. 10b below is a graph showing the X-band ESR spectrum and the image intensity in this example.
  • the left of each column is ESR irradiation off, and the right is ESR irradiation on.
  • This example shows that epigallocatechin gallate radicals can be observed well when NaOH is added as a redox substance in an organic solvent in a lipid environment.
  • the epigallocatechin gallate radical was observed better than the nitroxyl radical carbamoyl-proxyl.
  • dopamine radicals can be observed well when KO 2 is added as a redox substance.
  • the dopamine radical was observed better than the nitroxyl radical carbamoyl-proxyl.
  • chlorogenic acid radicals can be observed well when NaOH is added as a redox substance.
  • the chlorogenic acid radical was observed better than the carbamoyl-proxyl nitroxyl radical.
  • caffeic acid radicals can be observed well when NaOH is added as a redox substance in an organic solvent in a lipid environment.
  • the caffeic acid radical was observed better than the nitroxyl radical carbamoyl-proxyl.
  • rosmarinic acid was dissolved in DMSO, which is an organic solvent, and an NaOH solution was added as a redox material.
  • DMSO an organic solvent
  • NaOH solution was added as a redox material.
  • the composition is as follows. 25 mM rosmarinic acid (in DMSO) 277.5 ⁇ L 1M NaOH (in water) 22.5 ⁇ L 300 ⁇ L
  • This example shows that rosmarinic acid radicals can be observed well when NaOH is added as a redox substance in an organic solvent in a lipid environment.
  • the rosmarinic acid radical was observed better than the carbamoyl-proxyl nitroxyl radical.
  • Trolox radicals can be satisfactorily observed when KO 2 is added as a redox substance.
  • Trolox radicals could be observed better than Oxo63.
  • ReMI image when TEMPOL was dissolved in an organic solvent The inventors subsequently dissolved TEMPOL, which is a nitroxyl radical, in an organic solvent as a comparative example, and performed ReMI imaging. The result is shown in FIG. 19a.
  • the photo on the left is an image of ESR irradiation off, and the photo on the right is an image of ESR irradiation on.
  • various concentrations of TEMPOL are dissolved in various organic solvents (ethanol, methanol, chloroform, acetone, xylene) and water as a control.
  • FIG. 19B is a graph showing the image intensity in this embodiment. The left of each column is ESR irradiation off, and the right is ESR irradiation on.
  • TEMPOL was similarly dissolved in various organic solvents using DMSO as an organic solvent, and ReMI imaging was performed.
  • the result is shown in FIG. 20a.
  • the photo on the left is an image of ESR irradiation on, and the photo on the right is an image of ESR irradiation off.
  • FIG. 20b is a graph showing the image intensity in this embodiment.
  • the left graph shows ESR irradiation off, and the right graph shows ESR irradiation on.
  • ReMI image when MC-PROXYL was dissolved in an organic solvent As a comparative example, the inventors subsequently dissolved MC-PROXYL, which is a nitroxyl radical, in an organic solvent, and performed ReMI imaging. The result is shown in FIG. 21a. The photo on the left is an image of ESR irradiation off, and the photo on the right is an image of ESR irradiation on.
  • MC-PROXYL having various concentrations are dissolved in various organic solvents (ethanol, methanol, chloroform, acetone, xylene, hexane) and water as a control.
  • FIG. 21 b shows a graph of the image intensity in this example.
  • the left of each column is ESR irradiation off, and the right is ESR irradiation on.
  • FIG. 22a The photo on the left is an image of ESR irradiation on, and the photo on the right is an image of ESR irradiation off.
  • FIG. 22b is a graph of the image intensity in this example. The left of each column is ESR irradiation off, and the right is ESR irradiation on.
  • the present invention can be variously modified, and is not limited to the above-described embodiment, and can be variously modified without changing the gist of the invention.

Abstract

【課題】 脂溶性部位における分子の酸化還元反応を検出し、且つ視覚化する方法を提供すること。 【解決手段】 脂質環境下でラジカル反応を行う分子の酸化還元反応を検出する方法であって、測定対象となる生体またはサンプルに磁気共鳴法を適用して、前記脂質環境下でラジカル反応を行う分子のプロトン画像を得る工程と、前記プロトン画像における前記生体またはサンプルの画像強度を測定する工程とを有する方法。

Description

生体における酸化還元反応を検出する方法
 本発明は、生体における酸化還元反応を検出する方法に関し、より詳細には、脂質環境下でラジカル反応を行う分子の酸化還元反応を検出する方法に関する。
 現在、種々の疾患を診断し、または治療するために画像診断が用いられている。この画像診断は癌や脳梗塞などの病変部位を特定するものであり、疾患による形態的な変化を画像化し、その画像の特徴を読み取り、疾患の診断や治療に役立てている。一方、多くの疾患ではその症状として形態的な変化が伴うよりも前に、細胞レベルで慢性炎症による体内機能の変化を伴う。特にユビキノンやビタミンKなどのラジカル中間体を形成する生体内因性分子は生体内で恒常性の維持(ホメオスタシス)のため重要な役割を担っている分子であるため、疾患においてもその動態や挙動に変化が多く見られる。
 例えば、ユビキノンはすべての細胞が持つミトコンドリアの内膜や原核生物の細胞膜に存在する電子伝達体の1つであり、ミトコンドリア機能の保持に深く関与する。このため、ユビキノンは細胞内のミトコンドリア機能の改善、抗酸化効果、抗アルドステロン効果が期待され心機能補助役等としても用いられている。ユビキノンはミトコンドリア呼吸鎖I~IIIにおいてQサイクルと呼ばれる電子の授受に関わる分子であり、電子伝達系において呼吸鎖複合体IとIIの電子を仲介し、その代謝過程でセミキノンフリーラジカルを生成する。このようなフリーラジカルは生体レドックス反応に関係する。生体レドックス反応とは、酸化還元反応を介した生理機能発現及びそれに伴う活性種産生、産生された活性種と生体分子との代謝・反応の全体を表す概念であり、多くの生理現象やがん・糖尿病をはじめとする生体レドックス疾患に密接に関与することが示唆されている。
 従って、ユビキノン等の生体内因性分子の酸化還元反応の挙動や状態を直接視覚化する方法があれば、様々な疾病において、生体内因性分子の情報から病気のメカニズム解明や診断・治療が可能となると考えられる。
 ところで、このような生体内の画像化をおこなう方法としては、従来、X線CTやCT、磁気共鳴(MRI)等があり、空間情報の画像化を行う形態画像化が主として行われてきた。また近年では形態画像化に加え、PET等による生体内の機能・現象を可視化する機能画像化が行われるようになってきている。
 例えば、摘出臓器から調製した溶液中に生成するフリーラジカルを電子スピン共鳴法等で計測し、そのスペクトル波形・強度変化から機能解析をした例がある。この方法は、試験管レベルでの解析はできるものの、疾病に生体内物質がいつ、どこで、どのように関与するかを知ることはできなかった。
 また、生体内の酸化還元反応を検出・解析する方法としては、合成ニトロキシルラジカル化合物をプローブ(造影剤)として体内に投与し、当該化合物の酸化還元反応を指標に検出・解析する方法が知られている。しかし、この方法ではニトロキシルラジカルのラジカル消失を検出しているのみであるため、生体内の酸化還元反応を合成ニトロキシルラジカル化合物の反応を指標に検出・解析しているに過ぎない。そのため、生体内因性分子の酸化還元反応を直接的に検出・解析しているわけではなかった。また、このニトロキシルラジカルは有機溶媒中ではOMRIなどの画像共鳴法で十分な画像強度を得るのが困難であった。
 また本発明者らは水溶性環境下においては生体内因性分子を画像共鳴法で視覚化することに成功している(特許文献1)。しかし、脂溶性環境下においては効率的な視覚化ができなかった。
国際公開第2011/052760号
Non-invasive monitoring of redox status in mice with dextran sodiumsulphate-induced colitis. Yasukawa K, Miyakawa R, Yao T, Tsuneyoshi M, Utsumi H. Free Radic Res. 2009 May;43(5):505-13. In vivo detection of free radicals induced by diethylnitrosamine in rat liver tissue. Yamada K, Yamamiya I, Utsumi H. Free Radic Biol Med. 2006 Jun 1;40(11):2040-6. Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Yamato M, Egashira T, Utsumi H. Free Radic Biol Med. 2003 Dec 15;35(12):1619-31.
 本発明は、このような状況を鑑みてなされたものであり、種々の疾病の初期症状を早期に発見し、その予防・治療を可能とするために、脂溶性部位における分子の酸化還元反応を検出し、且つ視覚化する方法を提供することを目的とする。 
 本発明者らは脂溶性分子を用いることにより、有機溶媒中であっても磁気共鳴装置による検出に十分な画像強度を得ることができるという知見を得、そのラジカル体を造影剤として使用できる可能性を得た。
 そして、本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、磁気共鳴法(オーバーハウザーMRIおよび電子スピン共鳴法を含む)を用いることにより、脂質環境下の分子の酸化還元反応を検出し、且つ視覚化することができることを見出した。
 具体的には、本発明の第一の主要な観点によれば、脂質環境下でラジカル反応を行う分子の酸化還元反応を検出する方法であって、測定対象となる生体またはサンプルに磁気共鳴法を適用して、前記脂質環境下でラジカル反応を行う分子のプロトン画像を得る工程と、
前記プロトン画像における前記生体またはサンプルの画像強度を測定する工程とを有する方法が提供される。
 このような構成によれば、脂質環境下でラジカル反応を行う分子の酸化還元反応を検出するできるため、生きたままの動物の脂質部位での生体機能を可視化することが可能となる。
 また本発明によれば、脂質環境下でラジカル反応を行う分子を造影剤として利用し、生体機能を可視化することができるため、疾患による形態的変化の前段階の視覚化が可能とり、超早期診断や予防薬の開発に寄与することができる。
 また、本発明の一実施形態によれば、上記のような方法において、前記プロトン画像を得る工程は、2若しくはそれ以上のプロトン画像を経時的に得るものであり、この方法は、さらに、前記プロトン画像における前記生体またはサンプルの画像強度の経時的変化を比較する工程を有するものであることが好ましい。
 また、本発明の一実施形態によれば、上記のような方法において、前記磁気共鳴法はオーバーハウザーMRIであり、前記プロトン画像を得る工程は、前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されたプロトン画像を得るものである。
 この場合、この方法は、さらに、前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されていないプロトン画像を得る工程と、前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されたプロトン画像と、前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されていないプロトン画像とを比較し、当該2枚の画像における前記生体またはサンプルの画像強度の差分または割合を算出する工程とを有するものであることが好ましい。
 また、本発明の他の一実施形態によれば、上記のような方法において、前記脂質環境下でラジカル反応を行う分子はキノン骨格を有する分子である。
 この場合、前記キノン骨格を有する分子は、ユビキノン(CoQ10)、リボフラビン、ビタミンK、ビタミンK、ビタミンK、1,4-ベンゾキノン(p-キノン)、2,6-ジクロロ-p-キノン、1,4-ナフトキノン、及びセラトロダストから成る群から選択されるものであることが好ましい。
 さらに、本発明の他の一実施形態によれば、上記のような方法において、前記プロトン画像を得る工程は、2若しくはそれ以上の前記脂質環境下でラジカル反応を行う分子のプロトン画像を得るものである。
 また、本発明の別の一実施形態によれば、上記のような方法は、さらに、水性環境下でラジカル反応を行う分子のプロトン画像を得る工程を有することもできる。
 さらに、本発明の他の一実施形態によれば、上記のような方法において、前記生体またはサンプルは酸化還元物質が予め投与されているものである。
 この場合、前記生体またはサンプルは前記脂質環境下でラジカル反応を行う分子が予め投与されているものであることが好ましい。
 また、本発明の一実施形態において、前記酸化還元物質はNaOH、NADH、KO、及びこれらの組み合わせから成る群から選択されるものであることが好ましい。
 また、本発明の他の一実施形態によれば、上記のような方法において、前記脂質環境下でラジカル反応を行う分子はエタノール、メタノール、DMSO、アセトン、ヘキサン、クロロホルム、アルカリ溶液、及びこれらの組み合わせから成る群から選択される溶媒に溶解しているものである。
 なお、上記した以外の本発明の特徴及び顕著な作用・効果は、次の発明の実施形態の項及び図面を参照することで、当業者にとって明確となる。
図1は、本発明の一実施形態におけるReMIによる酸化還元反応の可視化を示す写真およびグラフである。 図2は、本発明の一実施形態におけるReMIによる酸化還元反応の可視化を示す写真およびグラフである。 図3は、本発明の一実施形態におけるReMIによるミトコンドリアでの酸化還元反応の可視化を示す写真およびグラフである。 図4は、本発明の一実施形態におけるReMIによるマウスでの酸化還元反応の可視化を示す写真およびグラフである。 図5aは、本発明の一実施形態におけるReMIによるビタミンKラジカルの可視化を示す写真である。 図5bは、本発明の一実施形態におけるビタミンKラジカルのXバンドESRスペクトルを示すグラフおよび画像強度を示すグラフである。 図6aは、本発明の一実施形態におけるReMIによるビタミンKラジカルの可視化を示す写真である。 図6bは、本発明の一実施形態におけるビタミンKラジカルのXバンドESRスペクトルを示すグラフおよび画像強度を示すグラフである。 図7aは、本発明の一実施形態におけるReMIによるビタミンKラジカルの可視化を示す写真である。 図7bは、本発明の一実施形態におけるビタミンKラジカルのXバンドESRスペクトルを示すグラフおよび画像強度を示すグラフである。 図8aは、本発明の一実施形態におけるReMIによるビタミンKラジカルの可視化を示す写真である。 図8bは、本発明の一実施形態におけるビタミンKラジカルの画像強度を示すグラフである。 図9aは、本発明の一実施形態におけるReMIによるビタミンKおよびビタミンKラジカルの可視化を示す写真である。 図9bは、本発明の一実施形態におけるビタミンKおよびビタミンKラジカルの画像強度を示すグラフである。 図10aは、本発明の一実施形態におけるReMIによるリボフラビン(ビタミンB)ラジカルの可視化を示す写真である。 図10bは、本発明の一実施形態におけるリボフラビン(ビタミンB)ラジカルのXバンドESRスペクトルを示すグラフおよび画像強度を示すグラフである。 図11は、本発明の一実施形態におけるReMIによるEGCGラジカルの可視化を示す写真である。 図12は、本発明の一実施形態におけるReMIによるドーパミンラジカルの可視化を示す写真である。 図13は、本発明の一実施形態におけるReMIによるクロロゲン酸ラジカルの可視化を示す写真である。 図14は、本発明の一実施形態におけるReMIによるカフェイン酸ラジカルの可視化を示す写真である。 図15は、本発明の一実施形態におけるReMIによるロスマリン酸ラジカルの可視化を示す写真である。 図16は、本発明の一実施形態におけるReMIによるルチンラジカルの可視化を示す写真である。 図17は、本発明の一実施形態におけるReMIによるセラトロダストラジカルの可視化を示す写真である。 図18は、本発明の一実施形態におけるReMIによるトロロックスラジカルの可視化を示す写真である。 図19aは、本発明の一実施形態におけるReMIによるTEMPOLの可視化を示す写真である。 図19bは、本発明の一実施形態におけるTEMPOLの画像強度を示すグラフである。 図20aは、本発明の一実施形態におけるReMIによるTEMPOLの可視化を示す写真である。 図20bは、本発明の一実施形態におけるTEMPOLの画像強度を示すグラフである。 図21aは、本発明の一実施形態におけるReMIによるMC-PROXYLの可視化を示す写真である。 図21bは、本発明の一実施形態におけるMC-PROXYLの画像強度を示すグラフである。 図22aは、本発明の一実施形態におけるReMIによるMC-PROXYLの可視化を示す写真である。 図22bは、本発明の一実施形態におけるMC-PROXYLの画像強度を示すグラフである。
 以下に、本願発明に係る一実施形態および実施例を、図面を参照して説明する。 
 本願発明に係る一実施形態において、本願発明に係る方法は脂質環境下で行われるラジカル反応に伴う酸化還元反応を検出するものである。ここで、「脂質環境」とは水性環境以外の環境であり、有機溶媒を主体とし、膜脂質二重層やリポタンパク質を含む。
 また、本願明細書において、「ラジカル反応」とは不対電子をもつ特定の原子や分子における電子の受け渡しを指す。ラジカルは不対電子を有し常磁性であり、生体レドックス反応に関係する。この生体レドックス反応とは、酸化還元反応を介した生理機能発現及びそれに伴う活性種産生、産生された活性種と生体分子との代謝・反応の全体を表す概念であり、多くの生理現象やがん・糖尿病をはじめとする生体レドックス疾患に密接に関与することが示唆されている。したがって、生体レドックス状態の可視化は低侵襲的な疾患機序解析あるいは新規治療薬の開発に新しい方法論を提供しうる。
 本願明細書において「脂質環境下でラジカル反応を行う分子」とは、脂質環境下でラジカル中間体を形成する分子(物質)であり、生体内に存在する分子および合成化合物を含む。生体内に存在する分子の場合、これらの分子は生体内の脂質環境下で恒常性の維持(ホメオスタシス)のため重要な役割を担う。「脂質環境下でラジカル反応を行う分子」としては、これらに限定されるものではないが、例えば、CoQ10、リボフラビン(ビタミンB)、ビタミンK(フィロキノン、2-メチル-3-フィチル-1,4-ナフトキノン)、ビタミンK(メナキノン-4、メナキノン-7)、ビタミンK(メナジオン、2-メチル-1,4-ナフトキノン)、1,4-ベンゾキノン(p-キノン)、2,6-ジクロロ-p-キノン、及び1,4-ナフトキノン、ビタミンE(トコフェロール(α、β、γ、σ)およびトコトリエノール(α、β、γ、σ))、トロロックス、没食子酸エピガロカテキン(Epigallocatechin gallate:EGCG)、ドーパミン、クロロゲン酸、カフェイン酸、ロスマリン酸、ルチン、及びセラトロダストなどを挙げることができる。ユビキノン(CoQ10)、リボフラビン、ビタミンK、ビタミンK、ビタミンK、1,4-ベンゾキノン(p-キノン)、2,6-ジクロロ-p-キノン、1,4-ナフトキノン、及びセラトロダストはキノン骨格を有する分子である。
 例えば、ビタミンK(フィロキノン)は以下のスキームでラジカル中間体を形成する。
Figure JPOXMLDOC01-appb-C000001
 このように、本願発明における「脂質環境下でラジカル反応を行う分子」には、特定の細胞内などの生体内の脂質環境下でラジカル中間体を形成する分子が含まれる。
 本発明において用いる磁気共鳴法は一般的な磁気共鳴法であり、測定対象物に外部から電磁波又は振動磁場を加えると、特定の周波数に対して一種の共鳴を起こして電磁波が強く吸収される現象(磁気共鳴)を利用して、共鳴吸収の起こる周波数や吸収の波形から物質内部の電子や原子核の状態を測定する方法である。このような磁気共鳴法の具体例としては、磁気共鳴映像(MRI)法、オーバーハウザーMRI(OMRI)法、核磁気共鳴(NMR)法、電子スピン共鳴(EPR)法、等を挙げることができる。前記各種磁気共鳴法の測定条件は、それぞれの測定法に一般的に用いられる条件の範囲で適宜選択することができる。なお、本願明細書においては「ReMI(Redox Molecular Imaging)」という文言を使用する場合があるが、これはOMRIと同義である。
 係る磁気共鳴法による画像化のための装置としては、例えば国際公開公報WO 2010/110384号に開示されている装置、すなわち、「計測対象物の磁気共鳴を励起させるための磁場を発生させる磁場発生手段と、計測対象物または磁場発生手段を移動させることにより計測対象物を磁場発生手段の磁場中を移動させる移動手段と、移動手段による移動中に停止することなく、計測対象物の磁場発生手段に対する移動方向yおよびこの移動方向yに対して直交する方向xのいずれか一方または両方に傾斜磁場を掛けて位相エンコードおよび周波数エンコードのいずれか一方または両方により、計測対象物中の計測画像信号を得る計測手段と、計測画像信号に対し、y方向の移動の影響を補正した補正画像信号を得る補正手段と、を有する装置」を用いることができる。
 例えば、ReMIまたはOMRIを用いて本願発明に係る方法を実施する場合、電子スピン照射(EPR照射、ESR照射)のオン/オフでそれぞれ画像を取得することが可能である。具体的には、目的の「脂質環境下でラジカル反応を行う分子」に対してEPR照射を行い、電子スピン励起を行う。これにより、電子スピンのエネルギーが核スピンに移行し、プロトンの画像強度が上昇する。例えば特定のラジカル体のスペクトルのピークトップの周波数にセットし、電子スピンを行い、MRIの画像を取得することにより、画像強度が上昇したプロトン画像を取得できる。また、電子スピン励起がない場合は、通常のMRIで取得するプロトン画像となる。なお、本明細書において、「EPR(Electron Paramagnetic Resonance)」と「ESR(Electron Spin Resonance)」は同義であり、いずれも電子スピン共鳴を指す。
 本願発明の一実施形態において、このようにして取得した画像では、目的の「脂質環境下でラジカル反応を行う分子」が酸化還元反応を経ていない場合、ラジカルが消失していないため、画像強度が強いまま画像化される。また酸化還元反応に伴いラジカルが消失すると画像強度も減少する。したがって、特定の「脂質環境下でラジカル反応を行う分子」に着目して経時的な画像強度の変化を観察することにより生体内での酸化還元反応の有無を検出することが可能となる。
 また本願発明の一実施形態において、電子スピン励起のオンの画像を用いて酸化還元反応を検出することが可能であるが、電子スピン励起のオン/オフの2枚の画像を用いて酸化還元反応を検出することも可能である。例えば、EPR照射オン画像の画像強度からEPR照射オフ画像の画像強度を引くことができる(引き算)。この結果得た画像強度を用いて酸化還元反応を検出することができる。またはEPR照射オン画像の画像強度をEPR照射オフ画像の画像強度で割ることも可能である(割り算)。このようにして得た画像強度を用いて酸化還元反応を検出してもよい。このように画像強度を引き算または割り算することにより、EPR照射オン画像だけでは画像強度が小さい場合など、比較が困難な場合でも差分を強調することが可能となる。
 また、MRIを用いて本願発明に係る方法を実施する場合、水の緩和時間(縦緩和、横緩和)の情報から画像強度を得ることができる。MRIでは造影剤として用いる分子が有するラジカルが水と交互作用し、緩和時間(縦緩和時間:T1緩和)を短縮させる。従って、MRIのT1強調画像法で画像を取得する場合、造影剤が有するラジカルの分だけ画像強度が上昇することとなる。従って、酸化還元反応に伴いラジカルが消失すると、画像強度が減少する。MRIを用いて本願発明に係る方法を実施する場合、酸化還元反応の検出をラジカルによる画像強度の上昇の割合を用いて表してもよい。
 本願明細書において「酸化還元物質」とは、電子供与体または電子受容体として機能し、前記脂質環境下でラジカル反応を行う分子と酸化還元反応を行うものである。これらに限られるものではないが、例えばNaOH、NADH、KOなどが挙げられる。
 また本願発明の一実施形態において、前記脂質環境下でラジカル反応を行う分子は有機溶媒または有機溶剤に溶解していても良い。有機溶媒または有機溶剤としては、これらに限られるものではないが、エタノール、メタノール、DMSO、アセトン、ヘキサン、クロロホルム、アルカリ溶液、及びこれらの組み合わせを挙げることができる。
 また本願発明の一実施形態において、脂質環境下でラジカル反応を行う分子のプロトン画像は、複数種の脂質環境下でラジカル反応を行う分子のプロトン画像を同時に得るものであってもよい。EPR照射の周波数を複数種のフリーラジカル中間体が共通して有する帯域に調節することで複数種の分子のプロトン画像を同時に得ることができる。もちろん、同一検体上で複数の周波数のEPR照射と画像取得を連続して行うことでも、複数種の分子のプロトン画像を同時に得ることができる。さらに、本願発明では、脂質環境下でラジカル反応を行う分子の酸化還元反応とともに水性環境下でラジカル反応を行う分子の酸化還元反応を同時に検出することも可能である。この場合、水性環境としては水やPBSなどの溶媒が挙げられ、ラジカル体を形成する分子がこのような溶媒に溶解している。また、脂質環境下でラジカル反応を行う分子の酸化還元反応と水性環境下でラジカル反応を行う分子の酸化還元反応とを同時に検出する場合、脂質環境下でラジカル反応を行う分子と水性環境下でラジカル反応を行う分子との間における電子の移動を検出することが可能である。
 以下に、実施例を用いて、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実験手法および材料)
 フリーラジカル中間体、ファントム、およびEPR測定
 水溶性中間体FMNHおよびFADHは、それぞれ水に溶解し、FMN(10mM)およびFAD(18mM)を同一量のNADHと混合することで調製した。脂溶性中間体CoQ10H、およびビタミンEおよびKラジカルは、それぞれ、CoQ10(10mM)/アセトン/NaOH、ビタミンE(1.5M)/ヘキサン/KO、およびビタミンK(83mM)/クロロホルム/エタノール/KOから作成した。それぞれのフリーラジカルのEPRスペクトルおよびそれらのEPRパラメータは、XバンドEPR分光計(JEOL Ltd.)によって室温にて以下の条件で得た。 
 マイクロ波周波数、9.4GHz;マイクロ波電力、1mW;変調幅、0.06mT;掃引時間、1分;掃引幅(±5mT);時定数、0.03s
 EPRパラメータの校正は、Mn2+の内部標準を使用して行った。ReMI実験において各フリーラジカル中間体の見かけの濃度は、CmPピーク域およびMn2+の内部標準に基づいて経時的なEPRスペクトルの領域の時間に依存する曲線を外挿することによって評価した。
 ReMI計器
 ReMI実験は九州大学で製作したDNP-MRIシステムを使用して行った。DNP-MRIシステムは、EPR装置の(JES-ES20、JEOL Ltd.)の外部磁石およびCW-EPRイメージングのための2つの軸フィールド傾斜磁場コイルを使用して構成した。共鳴器は、ESR照射のための表面コイル、およびサドル内のNMR交差コイル、および伝送および受信のためのソレノイドからなる。ESR照射コイルは、2つのNMRコイルの間に配置される。EPR照射およびMRIのための外部磁場Bは20mTで固定し、EPR照射およびMRIの高周波は、それぞれ527.5MHzおよび793kHzであった。表面コイル(直径20mm)をESR照射のために使用し、NMRコイルアセンブリは、NMR伝送サドルコイル(90mm i.d.、175mm 長さ)および1kHzの帯域幅を有するソレノイド受信コイル(40mm i.d.、60mm 長さ)からなる。最大伝送電力は100Wであった。ReMI実験は、スピンエコー法を使用して行った。ReMI実験の条件は、12WのEPR照射パワー、90度フィリップ角、TEPR×繰り返し時間(T)×エコー時間(T)=500×1000×40ms、平均数=1、スライス厚 30mm、64位相変調ステップである。画像視野(32×32mm)は、64×64マトリックスを用いた。
 ReMIを用いたフリーラジカル中間体のスペクトロスコピックイメージング
 ファントムは、CoQ10H、FMNH、14Nおよび15N標識CmPを含む4つのチューブからなる。CoQ10HおよびFMNHは上述したように調製した。ReMI実験は、500~580MHzの間の特定の周波数においてEPR照射を上述したReMIシステムを使用して行った。
 ミトコンドリアの存在下での代謝イメージング
ラットから採取したミトコンドリアを充填したファントムチューブにFADHまたはCoQHを添加して実験に用いた。そのうちの1つのサンプルを熱で不活性化した。ReMI実験は、上述したように572.5MHzのEPR照射下で、ReMIシステムを使用い、ミトコンドリアとの反応開始後、画像を2分ごとに計測した。ReMI実験のための測定条件は、12WのEPR照射、90度フィリップ角、TEPR×繰り返し時間(T)×エコー時間(T)=500×1000×40ms、平均数=1、スライス厚 30mm、64位相エンコード、スキャンタイム=70秒である。FADHおよびCoQHの代謝速度(減少率)は、ミトコンドリアとの反応後、最初の4つの画像強度の変化から算出した。
マウスにおける代謝イメージング
 雌のC57BL6マウス(5週目)を日本SLC社(浜松、日本)から購入し、実験前に1週間馴化させた。マウスは実験時に6~8週目であり、体重は20~30g、温度と湿度を調整し、24時間周期のリズムに調整した室内に、各ケージに5匹で飼育した。餌および水は自由に与えた。全ての手順および動物飼育は、動物実験倫理委員会、九州大学によって承認を得たものであり、九州大学の動物実験のためのガイドラインに従って実行した。
 マウスは、FADH実験では2%イソフルレン、またはCoQH実験ではウレタン(2g/kg)で麻酔し、胃を下にして皮膚粘着テープによって固定した。実験の間、マウスの体温を維持するため、温風で体温を37±1°Cに保った。その後、マウスを共鳴器内に設置し、ReMI測定を開始した。下部腹部領域のReMI画像は、8mMのCoQアルカリ性溶液(800μL)を直腸投与またはFAD/NADH溶液を筋肉内投与して計測を開始した。
 ReMI画像はFADHを用いた実験では製作した九州大学で製作したDNP-MRIシステム、およびCoQ用の実験ではフィリップス・プロトタイプ・システムを使用して得た。ReMI実験は上述したパラメータで行った。ラジカル代謝画像(レドックス・マップ)は最初の4つのReMI画像間の各ピクセルにおけるReMI強度の変化を(経時的画像上の各ピクセルの半対数プロット線から)算出することによって得た。
 画像分析
 ReMIデータは、Image Jソフトウェア(http://rsb.info.nih.gov/ij/)を使用して解析した。
 (実験結果)
 以下に、図面を用いて実験結果について説明する。
1.内因性分子のReMIによる同時可視化
 FMNH、FADH、CoQ10H、ビタミンE、ビタミンK由来のフリーラジカル、および合成CmPラジカルを含む7本のファントムを設計した。FMNH、FADH、およびCmPは水溶性溶媒に溶解し、CoQ10H、ビタミンE、およびビタミンKラジカルは脂溶性溶媒で溶解した。各々のEPRスペクトルを図1aに示した。各フリーラジカル種の濃度(図1aの各スペクトルの右側に示す)は、X-band ESRにより決定した(27~550nM)。通常のMRI画像は画像強度が低かった(図1b右)。ReMI実験におけるEPR照射は527.5MHz(図1aの垂直線で示す)で10Wの連続波によって行い、これは合成CmPの中心ピークである。ReMI画像において、すべての内因性フリーラジカル中間体、および合成CmPは、異なる画像強度を示した(図1b左)。各フリーラジカル中間体のReMI画像は、溶媒プロトンに由来する(FMNH、FADH、およびCmPでは水プロトン、CoQ10H、ビタミンE、およびビタミンKラジカルでは炭化水素プロトン)。内因性化合物のフリーラジカル中間体のEPRスペクトルはCmPのものよりも比較的複雑であり、且つ線幅も広いが(図1)ReMIにより画像化することが可能であった。DNPあり、なしのファントムの画像強度を図1cに示し、それらの増強係数(EPR照射あり/なしでの強度の比率)を図1dに示した。
2.シングルReMI実験でのフリーラジカル中間体の分光2Dイメージング
 本発明者らは、ReMIが、MRIまたは磁気共鳴分光イメージング(MRSI)における化学シフトと同様に、複数種のイメージングを実行することができることを報告した。図1の画像は全てのラジカル種が単一の周波数を照射することによって得ているが、本発明者らは、CoQ10H、FMNH、および合成14Nまたは15N標識CmPを有するファントムを使用して与えられた視野でいくつかのフリーラジカル種をそれぞれ区別するためのReMIの能力をテストした(図2a)。図2bでは、これらの種の個々のEPR吸収スペクトルを、スペクトル範囲(500~580MHz)に沿って重ね合わせた。画像データは上述の方法論に記載したパルスシーケンスを使用して得た(図2c)。EPR照射の周波数を変えることにより、フリーラジカル中間体FMNH、CoQ10Hおよび14N-CmPの異なる画像を、ReMI実験によって視覚化することができる。CoQ10Hおよび14N-CmPは527.5MHzで鮮明な画像が得られ、531MHzでは不鮮明な画像が得られた。一方、FMNHのシグナルは527.5~537.5MHzで明白だった。本発明者らの以前の観察と同じく、15Nおよび14N標識ラジカルは、それぞれ555および570MHzでのEPR照射を用いて個々に視覚化することができる。それぞれのEPR照射周波数での常磁性中間体の各々の強度を図2dに示した。この結果は、各フリーラジカル種が、溶媒条件またはEPRスペクトル複雑度とは独立して、得られる画像データから個々に認識されることを示している。これらのデータは、フリーラジカル中間体の個々のスペクトルの演繹的知識とともに、目的の種を選択的に画像化し、目的としない種の重複を回避するために適切な照射周波数を選択できることを示す。これは、コリン、乳酸塩、およびクエン酸塩のような代謝産物からの弱いシグナルを回収するため、水プロトンシグナルを抑制するために特別なパルスシーケンスを利用する必要があるH MRSIに対して有意な優位性となる。
 フリーラジカルを撮像するためのReMIの能力をさらにテストするため、図2eに示したファントムを使用し、ReMI画像は、527.5~537.5MHz間で1MHzごとにEPRを連続して照射することで得た(図2f~h)。この周波数範囲で得られた各画像は、各ラジカルのEPR吸収の減少に伴い、強度が明らかに減少した。この結果は、ReMIが、EPR照射周波数を掃引することで、個々のフリーラジカル中間体を同時に特徴づけることができることを証明するものである。
3.ミトコンドリアを用いた代謝イメージング
 リアルタイムの酸化還元反応をモニターするためフリーラジカル中間体FADHおよびCoQHとミトコンドリアとの反応を検討した。このファントムは2つのカラムに配置された6つのチューブからなり、FADHまたはCoQHと反応させた種々の濃度のミトコンドリア分画からなる。図3aにはラジカル濃度に依存してReMIの画像強度が増強することを示している。ReMI画像は、ミトコンドリアとFADHまたはCoQHとの反応開始後に経時的に得た。FADラジカルを添加した場合にはミトコンドリアとの反応を示さないのに対し(図3bおよび3c)、CoQHを用いた場合にはミトコンドリア濃度に依存して画像強度が減少した(図3dおよび3e)。不活性ミトコンドリア分画を用いた場合にはコントロールと同様に画像強度の減少はみられなかった。(中央列、右のカラム)。本願明細書において「レドックス・マップ」と称する強度減少の速度は、FADHでは変化を示さなかったが、CoQHを用いる場合にはミトコンドリア濃度依存的に亢進した(図3cおよび3e)。このように、ReMIによる代謝率の画像はFADHおよびCoQHで全く異なり、ミトコンドリアにおけるCoQHからCoQへの転換をReMIマップによって視覚化することができる(図3dおよび3e)。
4.経時的ReMIを用いたマウスにおける代謝イメージング
 FADHおよびCoQHをマウスに投与し、その後2分毎にReMI撮像を行った。図4aは、両脚にFADHの筋肉内投与をした後、2分毎に撮影した画像である。この2つの箇所からの画像強度は、試験期間(14分)の間安定していた。図4bは、FADH強度と、レドックス・マップとして表される、この強度の酸化還元率についての解剖学的画像である。筋肉内においてFADHの代謝がゆっくり進むことがReMIスキャンによりわかる。
 ReMIによる同様の実験を、CoQHを直腸内に導入することにより行った(図4d)。ファントム実験におけるミトコンドリアとの反応と同様に、CoQHの強度は経時的に減少を示した(図3dおよび3e)。腸管におけるCoQHの解剖学的および代謝ReMI画像を図4dに示す。これはファントム実験と一致した。FADHおよびCoQHは鮮明なReMI画像を提示し(図4aおよび4d)、MRIとReMIの融合画像から、FADHおよびCoQHがそれぞれ脚および腸において、部位特異的に分布しているということがわかる(図4bおよび4e)。
 FADHおよびCoQHの薬物動態的特性は、その減少率から得られ、両者の薬物動態的特性は異なった。CoQHの薬物動態的マップは組織内の部位に強く依存し、一方、FADHの薬物動態的マップは一定であった(図4cおよび4f)。フリーラジカル中間体は、ミトコンドリアにおける電子移動および/または酸化還元反応、再分布および排出によって、それらの常磁性を失うことがあり、そのいくつかはマウスの腸においてCoQHの急速な減衰を誘発する可能性がある。図4gに示したように、ReMI画像強度変化の経時プロットは、生体内で目的領域全体(ROI)、盲腸上部(ROI-1)、盲腸下部(ROI-2)、および結腸(ROI-3)で異なり、一方、CoQH溶液自体は安定であった(図3e)。
5.ReMIによるビタミンKの可視化
 本発明者らは続いてReMIを用いてビタミンKを可視化した。その結果を図5aに示す。写真左がESR照射オン、写真右がESR照射オフの画像である。本実施例ではビタミンKを有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。なお、ビタミンKとNaOHの最終濃度は4.76mMである。 
  5mM ビタミンK(in DMSO) 500μL
100mM NaOH(in water)   25μL
                      525μL
 混合後、すぐに500μLをダーラム管に密封し、共振器にセットし、ReMI撮像を行った。図5aはNaOH溶液を加えてから28分後に取得した画像である。
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとビタミンKラジカルを良好に観察することができることがわかる。またビタミンKラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
 また、本実施例におけるXバンドESRスペクトル、およびESR照射強度を変更した場合の画像強度を図5bに示した。
6.ReMIによるビタミンKの可視化
 本発明者らは続いてReMIを用いてビタミンKを可視化した。その結果を図6aに示す。写真左がESR照射オン、写真右がESR照射オフの画像である。本実施例ではビタミンK粉末を有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。なお、ビタミンKとNaOHの最終濃度は4.76mMである。 
  5mM ビタミンK(in DMSO) 500μL
100mM NaOH(in water)   25μL
                      525μL
 混合後、すぐに500μLをダーラム管に密封し、共振器にセットし、ReMI撮像を行った。図6aはNaOH溶液を加えてから25分後に取得した画像である。
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとビタミンKラジカルを良好に観察することができることがわかる。またビタミンKラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
 また、本実施例におけるXバンドESRスペクトル、およびESR照射強度を変更した場合の画像強度を図6bに示した。
7.ReMIによるビタミンKの可視化
 本発明者らは続いてReMIを用いてビタミンKを可視化した。その結果を図7aに示す。写真左がESR照射オン、写真右がESR照射オフの画像である。本実施例ではビタミンKを有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。なお、ビタミンKとNaOHの最終濃度は4.76mMである。 
  5mM ビタミンK(in DMSO) 500μL
100mM NaOH(in water)   25μL
                      525μL
 混合後、すぐに500μLをダーラム管に密封し、共振器にセットし、ReMI撮像を行った。図7aはNaOH溶液を加えてから45分後に取得した画像である。
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとビタミンKラジカルを良好に観察することができることがわかる。またビタミンKラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
 また、本実施例におけるXバンドESRスペクトル、およびESR照射強度を変更した場合の画像強度を図7bに示した。
8.ReMIによるビタミンKの可視化
 さらに本発明者らはESR照射の周波数を変更してReMIを用いてビタミンKを可視化した。その結果を図8aに示す。写真左がESR照射オン(523MHz)、写真中央がESR照射オン(527MHz)、写真右がESR照射オフの画像である。本実施例ではビタミンKを有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。なお、ビタミンKとNaOHの最終濃度は46.8mMである。 
 50mM ビタミンK(in DMSO) 504μL
720mM NaOH(in water)   35μL
                      539μL
 混合後、すぐに500μLをダーラム管に密封し、共振器にセットし、ReMI撮像を行った。図8aはNaOH溶液を加えてから3日後に取得した画像である。
 本実施例により、ESR照射の周波数を調整することにより目的のフリーラジカル中間体を選択的に画像化することができることがわかる。また、本実施例における画像強度をグラフ化したものが図8bである。
9.ReMIによるビタミンKおよびビタミンKの可視化
 本発明者らは続いてReMIを用いてビタミンKおよびビタミンKを同時に可視化した。その結果を図9aに示す。写真左がESR照射オン、写真右がESR照射オフの画像である。本実施例ではビタミンKまたはビタミンKの粉末を、有機溶媒であるエタノールまたはメタノールに溶解したNaOHアルコール溶液に加えた。ビタミンKとビタミンKの最終濃度は100mMとなるように反応液を調製した。
 混合後、すぐに300μLをダーラム管に密封し、共振器にセットし、ReMI撮像を行った。図9aはNaOHアルコール溶液を加えてから3時間後に取得した画像である。
 本実施例により、ReMIにより脂質環境下で複数のフリーラジカル中間体を良好に観察することができることがわかる。本実施例における画像強度をグラフ化したものが図9bである。各カラムの左がESR照射オフ、右がESR照射オンである。
10.ReMIによるリボフラビン(ビタミンB)ラジカルの可視化
 本発明者らは続いてReMIを用いてリボフラビン(ビタミンB)ラジカルを可視化した。その結果を図10aに示す。写真左がESR照射オン、写真右がESR照射オフの画像である。本実施例ではリボフラビン粉末を有機溶媒であるDMSOに溶解し、酸化還元物質としてNADH水溶液を加えた。
 混合後、すぐに300μLをダーラム管に密封し、共振器にセットし、ReMI撮像を行った。図10aはNaOH溶液を加えてから3時間後に取得した画像である。
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNADHを加えるとリボフラビン(ビタミンB)ラジカルを良好に観察することができることがわかる。
 また、本実施例におけるXバンドESRスペクトル、および画像強度をグラフ化したものが以下の図10bである。画像強度のグラフにおいて、各カラムの左がESR照射オフ、右がESR照射オンである。
11.ReMIによる没食子酸エピガロカテキン(Epigallocatechin gallate:EGCG)の可視化
 本発明者らは続いてReMIを用いて没食子酸エピガロカテキンを可視化した。その結果を図11に示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例では没食子酸エピガロカテキンを有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。 
 25mM EGCG(in DMSO)   270μL
  1M  NaOH(in water)   30μL
                      300μL
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えると没食子酸エピガロカテキンラジカルを良好に観察することができることがわかる。また没食子酸エピガロカテキンラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
12.ReMIによるドーパミンの可視化
 本発明者らは続いてReMIを用いてドーパミンを可視化した。その結果を図12に示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例ではドーパミンを有機溶媒であるエタノールに溶解し、酸化還元物質としてKO溶液を加えた。
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてKOを加えるとドーパミンラジカルを良好に観察することができることがわかる。またドーパミンラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
13.ReMIによるクロロゲン酸の可視化
 本発明者らは続いてReMIを用いてクロロゲン酸を可視化した。その結果を図13に示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例ではクロロゲン酸を有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。 
 25mM クロロゲン酸(in DMSO) 285μL
  1M  NaOH(in water)   15μL
                      300μL
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとクロロゲン酸ラジカルを良好に観察することができることがわかる。またクロロゲン酸ラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
14.ReMIによるカフェイン酸の可視化
 本発明者らは続いてReMIを用いてカフェイン酸を可視化した。その結果を図14に示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例ではカフェイン酸を有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。 
 25mM カフェイン酸(in DMSO) 285μL
  1M  NaOH(in water)   15μL
                      300μL
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとカフェイン酸ラジカルを良好に観察することができることがわかる。またカフェイン酸ラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
15.ReMIによるロスマリン酸の可視化
 本発明者らは続いてReMIを用いてロスマリン酸を可視化した。その結果を図15に示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例ではロスマリン酸を有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。 
 25mM ロスマリン酸(in DMSO) 277.5μL
  1M  NaOH(in water)   22.5μL
                      300μL
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとロスマリン酸ラジカルを良好に観察することができることがわかる。またロスマリン酸ラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
16.ReMIによるルチンの可視化
 本発明者らは続いてReMIを用いてルチンを可視化した。その結果を図16に示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例ではルチンを有機溶媒であるDMSOに溶解し、酸化還元物質としてNaOH溶液を加えた。組成は以下の通りである。 
 25mM ルチン(in DMSO)   285μL
  1M  NaOH(in water)  15μL
                     300μL
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとルチンラジカルを良好に観察することができることがわかる。またルチンラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。
17.ReMIによるセラトロダストの可視化
 本発明者らは続いてReMIを用いてセラトロダストを可視化した。その結果を図17に示す。本実施例ではセラトロダストを有機溶媒であるアセトンに溶解し、酸化還元物質としてNaOH溶液を加えた。
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてNaOHを加えるとセラトロダストラジカルを良好に観察することができることがわかる。またセラトロダストラジカルはニトロキシルラジカルであるカルバモイル-プロキシルよりも良好に観察することができた。さらに、酸化還元物質としてNaOHを加えない場合はセラトロダストラジカルの観察が良好ではないことがわかる。
18.ReMIによるトロロックスの可視化
 本発明者らは続いてReMIを用いてトロロックスを可視化した。その結果を図18に示す。本実施例ではトロロックスを有機溶媒である18-crown-6/エタノールに溶解し、酸化還元物質としてKOを加えた。
 本実施例により、脂質環境下である有機溶媒中では、酸化還元物質としてKOを加えるとトロロックスラジカルを良好に観察することができることがわかる。またトロロックスラジカルはOxo63よりも良好に観察することができた。
19.TEMPOLを有機溶剤に溶解させた場合のReMI画像
 本発明者らは続いて比較例としてニトロキシルラジカルであるTEMPOLを有機溶剤に溶解させ、ReMI撮像を行った。その結果を図19aに示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例では種々の濃度のTEMPOLを種々の有機溶剤(エタノール、メタノール、クロロホルム、アセトン、キシレン)及びコントロールとしての水に溶解している。
 本実施例により、いずれの有機溶剤においても水に溶解させたときに比べてTEMPOLの画像強度が極端に減少していることがわかる。本実施例における画像強度をグラフ化したものが図19bである。各カラムの左がESR照射オフ、右がESR照射オンである。
 続いて有機溶剤としてDMSOを用いて、同じくTEMPOLを各種有機溶剤に溶解させ、ReMI撮像を行った。その結果を図20aに示す。写真左がESR照射オン、写真右がESR照射オフの画像である。
 本実施例により、TEMPOLをDMSOに溶解させたときも、水に溶解させたときに比べてTEMPOLの画像強度が約1/3に減少していることがわかる。本実施例における画像強度をグラフ化したものが図20bである。左グラフがESR照射オフ、右グラフがESR照射オンである。
18.MC-PROXYLを有機溶剤に溶解させた場合のReMI画像
 本発明者らは続いて比較例としてニトロキシルラジカルであるMC-PROXYLを有機溶剤に溶解させ、ReMI撮像を行った。その結果を図21aに示す。写真左がESR照射オフ、写真右がESR照射オンの画像である。本実施例では種々の濃度のMC-PROXYLを種々の有機溶剤(エタノール、メタノール、クロロホルム、アセトン、キシレン、ヘキサン)及びコントロールとしての水に溶解している。
 本実施例により、いずれの有機溶剤においても水に溶解させたときに比べてMC-PROXYLの画像強度が極端に減少していることがわかる。本実施例における画像強度をグラフ化したものが図21bである。各カラムの左がESR照射オフ、右がESR照射オンである。
 続いて有機溶剤としてDMSOを用いて、同じくMC-PROXYLを各種有機溶剤に溶解させ、ReMI撮像を行った。その結果を図22aに示す。写真左がESR照射オン、写真右がESR照射オフの画像である。
 本実施例により、MC-PROXYLをDMSOに溶解させたときも、水に溶解させたときに比べてMC-PROXYLの画像強度が極端に減少していることがわかる。本実施例における画像強度をグラフ化したものが図22bである。各カラムの左がESR照射オフ、右がESR照射オンである。
 その他、本発明は、さまざまに変形可能であることは言うまでもなく、上述した一実施形態に限定されず、発明の要旨を変更しない範囲で種々変形可能である。

Claims (12)

  1.  脂質環境下でラジカル反応を行う分子の酸化還元反応を検出する方法であって、
     測定対象となる生体またはサンプルに磁気共鳴法を適用して、前記脂質環境下でラジカル反応を行う分子のプロトン画像を得る工程と、
     前記プロトン画像における前記生体またはサンプルの画像強度を測定する工程と
     を有する方法。
  2.  請求項1記載の方法において、前記プロトン画像を得る工程は、2若しくはそれ以上のプロトン画像を経時的に得るものであり、
     この方法は、さらに、前記プロトン画像における前記生体またはサンプルの画像強度の経時的変化を比較する工程を有するものである、方法。
  3.  請求項1記載の方法において、前記磁気共鳴法はオーバーハウザーMRIであり、前記プロトン画像を得る工程は、前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されたプロトン画像を得るものである、方法。
  4.  請求項3記載の方法であって、さらに、
     前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されていないプロトン画像を得る工程と、
     前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されたプロトン画像と、前記脂質環境下でラジカル反応を行う分子の電子スピンが励起されていないプロトン画像とを比較し、当該2枚の画像における前記生体またはサンプルの画像強度の差分または割合を算出する工程と
     を有する、方法。
  5.  請求項1記載の方法において、前記脂質環境下でラジカル反応を行う分子はキノン骨格を有する分子である、方法。
  6.  請求項5記載の方法において、前記キノン骨格を有する分子は、ユビキノン(CoQ10)、リボフラビン、ビタミンK、ビタミンK、ビタミンK、1,4-ベンゾキノン(p-キノン)、2,6-ジクロロ-p-キノン、1,4-ナフトキノン、及びセラトロダストから成る群から選択されるものである、方法。
  7.  請求項1記載の方法において、前記プロトン画像を得る工程は、2若しくはそれ以上の前記脂質環境下でラジカル反応を行う分子のプロトン画像を得るものである、方法。
  8.  請求項1記載の方法であって、さらに、水性環境下でラジカル反応を行う分子のプロトン画像を得る工程を有する、方法。
  9.  請求項1記載の方法において、前記生体またはサンプルは酸化還元物質が予め投与されているものである、方法。
  10.  請求項9記載の方法において、前記生体またはサンプルは前記脂質環境下でラジカル反応を行う分子が予め投与されているものである、方法。
  11.  請求項9記載の方法において、前記酸化還元物質はNaOH、NADH、KO、及びこれらの組み合わせから成る群から選択されるものである、方法。
  12.  請求項1記載の方法において、前記脂質環境下でラジカル反応を行う分子はエタノール、メタノール、DMSO、アセトン、ヘキサン、クロロホルム、アルカリ溶液、及びこれらの組み合わせから成る群から選択される溶媒に溶解しているものである、方法。
PCT/JP2014/064341 2013-05-29 2014-05-29 生体における酸化還元反応を検出する方法 WO2014192894A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015519947A JPWO2014192894A1 (ja) 2013-05-29 2014-05-29 生体における酸化還元反応を検出する方法
US14/894,454 US20160216351A1 (en) 2013-05-29 2014-05-29 Method for detecting oxidation/reduction reaction in vivo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361828442P 2013-05-29 2013-05-29
US61/828,442 2013-05-29

Publications (1)

Publication Number Publication Date
WO2014192894A1 true WO2014192894A1 (ja) 2014-12-04

Family

ID=51988917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064341 WO2014192894A1 (ja) 2013-05-29 2014-05-29 生体における酸化還元反応を検出する方法

Country Status (3)

Country Link
US (1) US20160216351A1 (ja)
JP (1) JPWO2014192894A1 (ja)
WO (1) WO2014192894A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015443A (ja) * 2015-06-29 2017-01-19 国立研究開発法人理化学研究所 可溶性ペンタセンを用いた動的核偏極による核スピン高偏極化方法
CN107389722A (zh) * 2017-07-31 2017-11-24 江南大学 Esr表征反复冻融过程中牛肉脂肪品质变化的方法
WO2017217340A1 (ja) * 2016-06-13 2017-12-21 国立大学法人九州大学 フリーラジカル消費速度情報の取得方法およびnashの判定方法
CN108535306A (zh) * 2018-03-05 2018-09-14 大连工业大学 一种检测海藻多酚对饼干脂质氧化抑制效果的方法
WO2021107112A1 (ja) * 2019-11-29 2021-06-03 株式会社ReMI 電子スピン情報に着目した画像化及び分析方法並びにプログラム及びシステム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505510A (ja) * 1995-06-06 1999-05-21 ニコムド イメージング エイ/エス イメージ増強剤としてのヘテロ環状メチルフリーラジカル
WO2011052760A1 (ja) * 2009-10-29 2011-05-05 国立大学法人九州大学 生体内因性分子の検出方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9518442D0 (en) * 1995-09-08 1995-11-08 Nycomed Imaging As Method
GB9307027D0 (en) * 1993-04-02 1993-05-26 Nycomed Innovation Ab Free radicals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505510A (ja) * 1995-06-06 1999-05-21 ニコムド イメージング エイ/エス イメージ増強剤としてのヘテロ環状メチルフリーラジカル
WO2011052760A1 (ja) * 2009-10-29 2011-05-05 国立大学法人九州大学 生体内因性分子の検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015443A (ja) * 2015-06-29 2017-01-19 国立研究開発法人理化学研究所 可溶性ペンタセンを用いた動的核偏極による核スピン高偏極化方法
WO2017217340A1 (ja) * 2016-06-13 2017-12-21 国立大学法人九州大学 フリーラジカル消費速度情報の取得方法およびnashの判定方法
JPWO2017217340A1 (ja) * 2016-06-13 2019-04-11 国立大学法人九州大学 フリーラジカル消費速度情報の取得方法およびnashの判定方法
CN107389722A (zh) * 2017-07-31 2017-11-24 江南大学 Esr表征反复冻融过程中牛肉脂肪品质变化的方法
CN108535306A (zh) * 2018-03-05 2018-09-14 大连工业大学 一种检测海藻多酚对饼干脂质氧化抑制效果的方法
WO2021107112A1 (ja) * 2019-11-29 2021-06-03 株式会社ReMI 電子スピン情報に着目した画像化及び分析方法並びにプログラム及びシステム
JPWO2021107112A1 (ja) * 2019-11-29 2021-06-03
JP7051043B2 (ja) 2019-11-29 2022-04-11 株式会社ReMI 電子スピン情報に着目した画像化及び分析方法並びにプログラム及びシステム
JP7051043B6 (ja) 2019-11-29 2023-12-20 株式会社ReMI 電子スピン情報に着目した画像化及び分析方法並びにプログラム及びシステム

Also Published As

Publication number Publication date
JPWO2014192894A1 (ja) 2017-02-23
US20160216351A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2014192894A1 (ja) 生体における酸化還元反応を検出する方法
RU2391047C2 (ru) Способ визуализации сердца с использованием гиперполяризованного 13c-пирувата
Mardini et al. Magnetic resonance quantification of water and metabolites in the brain of cirrhotics following induced hyperammonaemia
Hu et al. Rapid sequential injections of hyperpolarized [1-13C] pyruvate in vivo using a sub-kelvin, multi-sample DNP polarizer
Hyodo et al. Monitoring redox-sensitive paramagnetic contrast agent by EPRI, OMRI and MRI
He et al. In vivo imaging of free radicals: applications from mouse to man
Pumphrey et al. Advanced cardiac chemical exchange saturation transfer (cardioCEST) MRI for in vivo cell tracking and metabolic imaging
Emoto et al. Novel ascorbic acid-resistive nitroxide in a lipid emulsion: an efficient brain imaging contrast agent for MRI of small rodents
Ye et al. Hepatic lipid composition differs between ob/ob and ob/+ control mice as determined by using in vivo localized proton magnetic resonance spectroscopy
JP5150822B2 (ja) 生体内因性分子の検出方法
Flori et al. DNP methods for cardiac metabolic imaging with hyperpolarized [1-13 C] pyruvate large dose injection in pigs
US8664279B2 (en) Compositions and methods for metabolic imaging
Evbuomwan et al. CEST and PARACEST agents for molecular imaging
KR101666239B1 (ko) 염증 또는 감염의 검출을 위한 과분극화 13c 피루베이트를 포함하는 자기 공명 영상화 매질의 용도
US10995054B2 (en) Hyperpolarized [3-13C]acetoacetate and methods of using the same
Lee et al. Changes to gamma-aminobutyric acid levels during short-term epileptiform activity in a kainic acid-induced rat model of status epilepticus: A chemical exchange saturation transfer imaging study
Iravani et al. Electron paramagnetic resonance (EPR) spectroscopy: Food, biomedical and pharmaceutical analysis
Uchida et al. In vivo visualization of redox status by high-resolution whole body magnetic resonance imaging using nitroxide radicals
Liu et al. Study of kinetics of 19 F-MRI using a fluorinated imaging agent (19 FIT) on a 3T clinical MRI system
Zhao et al. Detection of gadolinium deposition in cortical bone with ultrashort echo time T 1 mapping: an ex vivo study in a rabbit model
Takeshita et al. Application of a compact magnetic resonance imaging system with 1.5 T permanent magnets to visualize release from and the disintegration of capsule formulations in vitro and in vivo
JP7357210B2 (ja) Dnp-mriシステム、装置および制御方法、ならびにdnp-mriシステムを用いた情報導出方法および診断方法
Ueno et al. Effects of X-ray irradiation on the redox status of mouse colorectal tissues
Lerche et al. Method of Cardiac Imaging
RU2017140456A (ru) Препарат для магнитно-резонансной диагностики онкологических заболеваний, содержащий дейтерированную 3-о-метилглюкозу, и способ диагностики с использованием этого препарата

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804951

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015519947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14894454

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14804951

Country of ref document: EP

Kind code of ref document: A1