WO2014192885A1 - 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ - Google Patents

分解性材料から形成されるマンドレルを備える坑井掘削用プラグ Download PDF

Info

Publication number
WO2014192885A1
WO2014192885A1 PCT/JP2014/064315 JP2014064315W WO2014192885A1 WO 2014192885 A1 WO2014192885 A1 WO 2014192885A1 JP 2014064315 W JP2014064315 W JP 2014064315W WO 2014192885 A1 WO2014192885 A1 WO 2014192885A1
Authority
WO
WIPO (PCT)
Prior art keywords
plug
mandrel
well
degradable material
well excavation
Prior art date
Application number
PCT/JP2014/064315
Other languages
English (en)
French (fr)
Inventor
大倉正之
▲高▼橋健夫
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to MX2015015673A priority Critical patent/MX2015015673A/es
Priority to CA2912833A priority patent/CA2912833C/en
Priority to CN201480025331.9A priority patent/CN105189918B/zh
Priority to US14/892,045 priority patent/US9714551B2/en
Priority to EP14803796.3A priority patent/EP3006665B1/en
Publication of WO2014192885A1 publication Critical patent/WO2014192885A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/129Packers; Plugs with mechanical slips for hooking into the casing
    • E21B33/1291Packers; Plugs with mechanical slips for hooking into the casing anchor set by wedge or cam in combination with frictional effect, using so-called drag-blocks

Definitions

  • the present invention relates to a well drilling plug and a well drilling method used in well drilling performed to produce hydrocarbon resources such as oil or natural gas.
  • Hydrocarbon resources such as oil or natural gas have been mined and produced through wells (oil wells or gas wells, sometimes called “wells”) that have porous and permeable underground layers. With the increase in energy consumption, the wells have been deepened, and there are records of excavation exceeding 9000m in the world, and there are also deep wells exceeding 6000m in Japan.
  • the acid treatment and the crushing method are known as a stimulation method (Patent Document 1).
  • Acid treatment increases the permeability of the production layer by injecting a mixture of strong acids such as hydrochloric acid and hydrogen fluoride into the production layer and dissolving the rock reaction components (carbonates, clay minerals, silicates, etc.)
  • strong acids such as hydrochloric acid and hydrogen fluoride
  • rock reaction components carbonates, clay minerals, silicates, etc.
  • various problems associated with the use of strong acids have been pointed out, and an increase in cost has been pointed out including various countermeasures.
  • fracturing method also referred to as “fracturing method” or “hydraulic fracturing method”
  • the hydraulic fracturing method is a method in which a production layer is cracked by a fluid pressure such as water pressure (hereinafter sometimes simply referred to as “water pressure”).
  • a fluid pressure such as water pressure (hereinafter sometimes simply referred to as “water pressure”).
  • water pressure a fluid pressure
  • a vertical hole is excavated, followed by a vertical hole.
  • these well holes which means holes to form wells, sometimes referred to as “down holes”.
  • Fracturing fluid is fed into the tank at a high pressure, and cracks (fractures) are generated by water pressure in deep underground production layers (layers that produce hydrocarbon resources such as oil or natural gas), and hydrocarbon resources are collected through the fractures.
  • It is a production layer stimulation method for.
  • the hydraulic fracturing method has attracted attention for its effectiveness in the development of unconventional resources such as so-called shale oil (oil aged in shale) and shale gas.
  • Cracks (fractures) formed by fluid pressure such as water pressure are immediately closed by formation pressure when water pressure disappears.
  • the propellant is contained in the fracturing fluid (that is, the well treatment fluid used for fracturing), and the proppant is fed into the well hole and the proppant is introduced into the crack (fracture).
  • the proppant to be contained in the fracturing fluid an inorganic or organic material is used.
  • Silica, alumina and other inorganic particles are used, and sand particles such as 20/40 mesh sand are widely used.
  • the well treatment fluid such as fracturing fluid
  • various types of water base, oil base and emulsion are used.
  • the well treatment fluid is required to have a function capable of transporting proppant to a place where fractures are generated in the well hole. Therefore, the well treatment fluid usually has a predetermined viscosity and good dispersibility of proppant. Ease of processing and low environmental impact are required.
  • the fracturing fluid may contain a channelant for the purpose of forming a channel through which shale oil, shale gas, etc. can pass between the proppants. Therefore, in addition to proppant, various additives such as a channelant, a gelling agent, a scale inhibitor, an acid for dissolving rocks, and a friction reducing agent are used in the well treatment fluid.
  • fracturing fluid to create cracks (fractures) due to water pressure in deep underground production layers (layers that produce hydrocarbon resources such as oil or natural gas such as shale gas)
  • the predetermined section is partially blocked while sequentially closing from the tip of the well hole, and the blockage is blocked.
  • Fracturing fluid is fed into the compartment at high pressure to cause cracks in the production layer.
  • fracturing is performed by closing the next predetermined section (usually, a section before the preceding section, that is, a section on the ground side). Thereafter, this process is repeated until the necessary sealing and fracturing are completed.
  • the production layer may be stimulated again by fracturing the desired section of the well hole that has already been formed. In that case as well, operations for blocking and fracturing the well hole may be repeated. Further, in order to finish the well, the well hole may be closed to shut off the fluid from the lower part, and after the upper part is finished, the closing may be released.
  • Patent Document 2 and Patent Document 3 disclose plugs that can close or fix a well hole ( (Sometimes referred to as “flac plug”, “bridge plug” or “packer”).
  • Patent Document 2 discloses a downhole plug for well excavation (hereinafter, simply referred to as “plug”), specifically, a mandrel (main body) having a hollow portion in the axial direction, On the outer peripheral surface orthogonal to the axial direction of the mandrel, along the axial direction, a ring or an annular member (annular member), a first conical member (slip) and a slip, elastomer or rubber are formed.
  • a plug comprising a malleable element, a second conical member and slip, and an anti-rotation mechanism.
  • the blocking of the well hole by the downhole plug for well drilling is as follows.
  • the mandrel has a hollow portion in the axial direction, and a well or the like can be sealed by setting a ball or the like on the hollow portion.
  • metal materials aluminum, steel, stainless steel, etc.
  • fibers, wood, composite materials, plastics and the like are widely exemplified, and preferably a composite material containing a reinforcing material such as carbon fiber, in particular, It is described that it is a polymer composite material such as an epoxy resin or a phenol resin, and that the mandrel is formed of aluminum or a composite material.
  • a material that decomposes by temperature, pressure, pH (acid, base) or the like can be used for the ball or the like in addition to the materials described above.
  • Oil such as shale oil or natural gas such as shale gas (hereinafter collectively referred to as “oil and natural gas” or These may need to be removed when production such as “oil and / or natural gas” is initiated.
  • Plugs are usually not designed to be recovered after removal from clogging, so they can be removed by crushing, drilling or other methods of breaking or breaking into pieces, but crushing, drilling, etc. Needed a lot of money and time. There are also specially designed plugs that can be recovered after use (retrievable plug), but since the plugs are deep underground, recovering all of them requires a lot of money and time. Was.
  • Patent Document 3 discloses a disposable downhole tool (meaning a downhole plug or the like) or a member thereof containing a biodegradable material that decomposes when exposed to an environment in a wellbore.
  • Degradable polymers such as aliphatic polyesters such as polylactic acid have been disclosed as biodegradable materials.
  • a cylindrical body part having a flow hole in the axial direction (tubular body) and a peripheral surface orthogonal to the axial direction of the cylindrical body part are provided along the axial direction.
  • a combination of a packer element assembly consisting of an upper sealing element, a central sealing element and a lower sealing element, and a slip and a mechanical slip body is described.
  • Patent Literature 3 does not disclose whether the material containing the biodegradable material is used for the downhole tool or its member.
  • Well drilling plugs can reliably close and fracture well holes and reduce well drilling costs and shorten processes by facilitating removal and securing of flow paths. There was a need for a well drilling plug.
  • the subject of the present invention is that the drilling conditions such as the deepening are becoming more severe, so that the well can be reliably closed and fractured, and the removal and flow path can be removed. It is an object of the present invention to provide a well drilling plug that can reduce the cost of well drilling and shorten the process by facilitating securing. Furthermore, the subject of this invention is providing the well drilling method which uses this plug for well drilling.
  • the present inventors have placed a ring and an annular rubber member capable of expanding the diameter on the outer peripheral surface of the mandrel, and have made the materials unique.
  • the present invention has been completed.
  • a mandrel formed from a degradable material (B) a pair of rings formed on a peripheral surface perpendicular to the axial direction of the mandrel, at least one of which is made of a degradable material, and (c) on the peripheral surface orthogonal to the axial direction of the mandrel,
  • a well drilling plug is provided that includes at least one expandable annular rubber member positioned between a pair of rings.
  • the mandrel has a thickness reduction of less than 5 mm after being immersed in water at a temperature of 66 ° C. for less than 5 mm, and has a thickness reduction of not less than 10 mm after being immersed in water at a temperature of 149 ° C. for 24 hours.
  • the plug for well drilling according to any one of the above.
  • the well excavation plug according to any one of (1) to (6), wherein the mandrel has a hollow portion along the axial direction.
  • the well drilling plug according to (7), wherein the ratio of the outer diameter of the hollow portion to the diameter of the mandrel is 0.7 or less.
  • the diameter-expandable annular rubber member has a mandrel axial length of 10 to 70% of the length of the mandrel, and the well drilling according to any one of (1) to (16) above Plug.
  • (31) (a 1 ) formed from a degradable material having a tensile strength of 50 MPa or more at a temperature of 60 ° C., and reduced in thickness after being immersed in water at a temperature of 66 ° C. for 1 hour.
  • a well drilling plug includes at least one expandable annular rubber member positioned between a pair of rings.
  • the following plugs for well excavation (32) to (36) are provided.
  • (32) The well excavation plug according to (31), wherein an annular rubber member capable of expanding the diameter is formed of a degradable material.
  • (33) The plug for well excavation according to (31) or (32), wherein the degradable material contains a reinforcing material.
  • (34) The well drilling plug according to any one of (31) to (33), wherein the degradable material is aliphatic polyester.
  • a mandrel formed from a degradable material having a tensile strength at a temperature of 60 ° C. of 50 MPa or more, (B) a pair of rings formed on a peripheral surface perpendicular to the axial direction of the mandrel, at least one of which is made of a degradable material, and (c) on the peripheral surface orthogonal to the axial direction of the mandrel,
  • a well drilling plug comprising at least one expandable annular rubber member positioned between a pair of rings,
  • the degradable material is provided with a plug for well excavation characterized in that a reduction rate of a mass after immersion for 72 hours in water at a temperature of 150 ° C. with respect to the mass before immersion is 5 to 100%.
  • the following plugs for well excavation (38) to (42) are provided.
  • (38) The well excavation plug according to (37), wherein an annular rubber member capable of expanding the diameter is formed of a degradable material.
  • (39) The well excavation plug according to (37) or (38), wherein the degradable material contains a reinforcing material.
  • (40) The well drilling plug according to any one of (37) to (39), wherein the degradable material is aliphatic polyester.
  • a mandrel formed from a degradable material having a shear stress of 30 MPa or more at a temperature of 66 ° C.
  • B a pair of rings formed on a peripheral surface perpendicular to the axial direction of the mandrel, at least one of which is made of a degradable material, and (c) on the peripheral surface orthogonal to the axial direction of the mandrel,
  • a well drilling plug comprising at least one expandable annular rubber member positioned between a pair of rings,
  • the degradable material is provided with a plug for well excavation characterized in that a reduction rate of a mass after immersion for 72 hours in water at a temperature of 150 ° C. with respect to the mass before immersion is 5 to 100%.
  • the following plugs for well excavation (44) to (48) are provided.
  • (44) The well excavation plug according to (43), wherein an annular rubber member capable of expanding the diameter is formed of a degradable material.
  • (45) The plug for well excavation according to (43) or (44), wherein the degradable material contains a reinforcing material.
  • (46) The well drilling plug according to any one of (43) to (45), wherein the degradable material is aliphatic polyester.
  • a well drilling method is provided in which part or all of a well drilling plug is disassembled.
  • a mandrel formed from a degradable material
  • B a pair of rings formed on a peripheral surface perpendicular to the axial direction of the mandrel, at least one of which is made of a degradable material, and (c) on the peripheral surface orthogonal to the axial direction of the mandrel
  • the well drilling plug is characterized by having at least one ring-shaped rubber member that can be expanded at a position between a pair of rings. Under severe conditions, the borehole can be reliably closed and fractured, and removal and securing of the flow path can be facilitated to reduce the cost of well drilling and the process. The effect that shortening is possible is produced.
  • the well drilling plug is used, and after performing well hole sealing treatment, part or all of the well drilling plug is disassembled.
  • the well drilling method can reliably close and fracture the well hole, reduce the cost of well drilling and shorten the process by making it easy to remove and secure the flow path. There is an effect that a well excavation method capable of performing the above is provided.
  • the present invention comprises (a) a mandrel formed from a degradable material, (B) a pair of rings formed on a peripheral surface perpendicular to the axial direction of the mandrel, at least one of which is made of a degradable material, and (c) on the peripheral surface orthogonal to the axial direction of the mandrel,
  • the present invention relates to a well drilling plug comprising at least one expandable annular rubber member placed at a position between a pair of rings.
  • the plug for well excavation of the present invention comprises: (a) a mandrel 1 formed of a degradable material (hereinafter, also referred to as “(a) mandrel” or simply “mandrel”), and (b) at least one of them.
  • the plug for well excavation of the present invention includes a mandrel, the mandrel is formed from a decomposable material, and at least one of the mandrel is formed from a decomposable material on the outer peripheral surface perpendicular to the axial direction of the mandrel.
  • the mandrel in the mandrel 1 formed from the decomposable material provided in the plug for well excavation of the present invention is usually called a “core metal” and has a substantially circular cross section. This is a member that is sufficiently long with respect to the diameter and basically guarantees the strength of the plug for well excavation of the present invention.
  • the mandrel 1 provided in the plug for well drilling of the present invention has a cross-sectional diameter appropriately selected according to the size of the well bore (by slightly smaller than the borehole inner diameter, On the other hand, as will be described later, there is a difference in diameter that allows the borehole to be closed by expanding the diameter of the annular rubber member that can be expanded, and the length is the diameter of the cross section. In contrast, for example, it is about 5 to 20 times, but is not limited to this. Usually, the diameter of the cross section of the mandrel 1 is in the range of about 5 to 30 cm.
  • the mandrel 1 provided in the plug for well excavation of the present invention may be solid. However, from the viewpoint of securing the flow path at the initial stage of fracturing, reducing the weight of the mandrel, controlling the decomposition speed of the mandrel, etc. However, it is preferable that the hollow mandrel has a hollow portion at least partially along the axial direction (that is, the hollow portion may penetrate the mandrel along the axial direction or penetrate the mandrel along the axial direction). You don't have to.) Moreover, when pushing and transporting into the plug well for well excavation using a fluid, it is necessary for the mandrel 1 to have a hollow portion along the axial direction.
  • the cross-sectional shape of the mandrel 1 defines the diameter (outer diameter) of the mandrel 1 and the outer diameter of the hollow portion (corresponding to the inner diameter of the mandrel 1). It is an annular shape formed by two concentric circles.
  • the ratio of the diameters of the two concentric circles that is, the ratio of the outer diameter of the hollow portion to the diameter of the mandrel 1 is preferably 0.7 or less. Since the ratio is opposite to the ratio of the thickness of the hollow mandrel to the diameter of the mandrel 1, determining the upper limit of the ratio determines the preferable lower limit of the thickness of the hollow mandrel.
  • the ratio of the outer diameter of the hollow portion to the diameter of the mandrel 1 is more preferably 0.6 or less, and even more preferably 0.5 or less.
  • the diameter of the mandrel 1 and / or the outer diameter of the hollow portion may be uniform along the axial direction of the mandrel 1 or may vary along the axial direction. That is, by changing the outer diameter of the mandrel 1 along the axial direction, the outer surface of the mandrel 1 may have a convex portion, a stepped portion, a concave portion (groove portion), or the like. Moreover, it is good also as what has a convex part, a step part, a recessed part (groove part), etc. in the internal peripheral surface of the mandrel 1 by changing the outer diameter of a hollow part along an axial direction.
  • the convex part, step part, and concave part (groove part) on the outer peripheral surface and / or inner peripheral surface of the mandrel serve as a part for attaching or fixing another member to the outer peripheral surface and / or inner peripheral surface of the mandrel 1.
  • it can be used as a fixing portion for fixing an annular rubber member capable of expanding the diameter, and when the mandrel 1 has a hollow portion, the flow of the fluid is controlled. It is possible to provide a bearing surface for holding a ball used for the purpose.
  • the mandrel 1 provided in the plug for well excavation of the present invention is formed from a degradable material.
  • the degradable material is, for example, biodegradable that is degraded by microorganisms in the soil in which the fracturing fluid is used, or by a solvent, particularly water, in the fracturing fluid, and optionally by acid or alkali.
  • a degradable material that can be chemically decomposed by some other method may be used.
  • it is a hydrolyzable material that decomposes with water at a predetermined temperature or higher.
  • a material that is physically decomposed such as broken or collapsed by applying a large mechanical force such as a metal material such as aluminum, which has been widely used as a mandrel provided in a well drilling plug, has been disclosed in the present invention.
  • a metal material such as aluminum
  • the strength of the original resin is reduced due to a decrease in the degree of polymerization and the like, resulting in brittleness.
  • the material that loses the weight corresponds to the degradable material.
  • Mass reduction rate at 150 ° C. for 72 hours As a degradable material forming the mandrel 1 provided in the plug for well drilling of the present invention, a reduction rate of mass after immersion in water at a temperature of 150 ° C. for 72 hours (hereinafter referred to as “150 ° C. 72 5% to 100%), the temperature in the downhole (according to diversification of depth, etc. is about 60 ° C. to 200 ° C.
  • the degradable material forming the mandrel 1 decomposes or disintegrates, and more preferably disappears (in the present invention, “ Therefore, there is no need to spend much money and time for recovery of the mandrel 1 and the plug for well drilling or physical destruction. It can contribute to or shortening the process. For example, if the mass reduction rate at 150 ° C. for 72 hours is 100%, it means that after the mandrel 1 is immersed in water at a temperature of 150 ° C. for 72 hours, it means that the mass becomes 0 and disappears completely.
  • the mandrel 1 provided in the plug for well excavation of the present invention has a mass reduction rate of 5 to 100% at 150 ° C. for 72 hours, for example, a temperature of 177 ° C. (350 ° F.), 163 ° C. (325 ° F.). 149 ° C. (300 ° F.), 121 ° C. (250 ° F.), 93 ° C. (200 ° F.), 80 ° C. or 66 ° C., and 25-40 ° C. It has the property of maintaining strength and then decomposing. Therefore, an optimum material can be selected from the degradable materials forming the mandrel 1 having a mass reduction rate of 5 to 100% at 150 ° C. for 72 hours according to the downhole environment and process.
  • the degradable material forming the mandrel 1 provided in the plug for well drilling of the present invention has a value of the initial mass (referred to as “mass measured before being immersed in water at a temperature of 150 ° C.”).
  • the mass reduction rate at 150 ° C. for 72 hours is preferably 10 to 100%, more preferably 20 to 100%. More preferably, it is 50 to 100%, particularly preferably 80 to 100%.
  • the degradable material forming the mandrel 1 of the present invention has a mass reduction rate of 100% at 150 ° C. for 72 hours, if necessary, and is immersed in water at various temperatures such as 93 ° C. or 66 ° C. for 72 hours. It is also possible to design and prepare such that the rate of decrease of the mass of the product relative to the initial mass is, for example, 20% or less, 10% or less, and even less than 5%.
  • the measuring method of the mass reduction rate at 150 ° C. for 72 hours of the degradable material forming the mandrel 1 is as follows. That is, a sample cut into a thickness, length, and width of 20 mm each directly from the mandrel 1 or from a preformed product for forming the mandrel 1 is put in 400 mL of water (deionized water, etc.) at a temperature of 150 ° C. Comparing the mass of the sample measured after immersion and taking out after 72 hours with the mass of the sample measured before immersion in water at a temperature of 150 ° C. (“original mass”), The reduction rate (unit:%) is calculated.
  • the mandrel 1 formed from a degradable material in the plug for well excavation of the present invention has a thickness reduction of less than 5 mm after being immersed in water at a temperature of 66 ° C. for 1 hour and is immersed in water at a temperature of 149 ° C. for 24 hours. It is preferable that the thickness reduction after immersion is 10 mm or more. That is, the mandrel 1 has a thickness reduction of less than 5 mm, more preferably less than 4 mm, and even more preferably less than 3 mm after being immersed in water at a temperature of 66 ° C. for 1 hour.
  • the decomposable material forming the mandrel 1 has a low probability of being decomposed (may be collapsed or reduced in strength as described above), the shape and size of the mandrel 1 are maintained almost completely. Further, the engagement with a pair of rings and other members attached to the outer peripheral surface orthogonal to the axial direction of the mandrel 1 is reliably maintained. Therefore, well treatment such as fracturing that receives a large pressure in the axial direction of the mandrel 1 by the fluid can be reliably performed according to a desired time schedule of, for example, several hours to several days.
  • the well treatment such as fracturing is completed.
  • the mandrel 1 is brought into contact with a fluid having a temperature of 149 ° C.
  • the degradable material forming the mandrel 1 is decomposed in a short time, for example, several hours to several days to several weeks (described above). Thus, it may be collapsed or the strength may be reduced.), And the decomposition of the well drilling plug can be promoted.
  • the decomposable resin means a resin that can be chemically decomposed by the biodegradability, hydrolyzability, and other methods described above.
  • the degradable resin include aliphatic polyesters such as polylactic acid, polyglycolic acid, poly- ⁇ -caprolactone, and polyvinyl alcohol (such as partially saponified polyvinyl alcohol having a saponification degree of about 80 to 95 mol%). Is more preferably an aliphatic polyester. That is, the degradable material is preferably an aliphatic polyester.
  • Decomposable resins can be used alone or in combination of two or more by blending or the like.
  • the aliphatic polyester includes, for example, homopolymerization or copolymerization of oxycarboxylic acid and / or lactone, esterification reaction of aliphatic dicarboxylic acid and aliphatic diol, aliphatic dicarboxylic acid, aliphatic diol, oxycarboxylic acid and An aliphatic polyester obtained by copolymerization with lactone and / or one that dissolves rapidly in water at a temperature of about 20 to 100 ° C. is preferable.
  • oxycarboxylic acid examples include glycolic acid, lactic acid, malic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid, hydroxyoctanoic acid, and other aliphatic hydroxycarboxylic acids having 2 to 8 carbon atoms. Is mentioned.
  • lactones having 3 to 10 carbon atoms such as propiolactone, butyrolactone, valerolactone, and ⁇ -caprolactone.
  • aliphatic dicarboxylic acid examples include aliphatic saturated dicarboxylic acids having 2 to 8 carbon atoms such as oxalic acid, malonic acid, succinic acid, glutaric acid and adipic acid, and aliphatic acids having 4 to 8 carbon atoms such as maleic acid and fumaric acid. And unsaturated dicarboxylic acid.
  • Examples of the aliphatic diol include alkylene glycols having 2 to 6 carbon atoms such as ethylene glycol, propylene glycol, butanediol, and hexanediol, and polyalkylene glycols having 2 to 4 carbon atoms such as polyethylene glycol, polypropylene glycol, and polybutylene glycol. Can be mentioned.
  • polyesters can be used alone or in combination of two or more. Moreover, as long as the property as a degradable resin is not lost, it can also be used combining the component which forms polyesters which are aromatic, such as terephthalic acid.
  • Particularly preferred aliphatic polyesters are hydroxycarboxylic acid-based aliphatic polyesters such as polylactic acid (hereinafter sometimes referred to as “PLA”) and polyglycolic acid (hereinafter sometimes referred to as “PGA”); Lactone aliphatic polyesters such as ⁇ -caprolactone (hereinafter sometimes referred to as “PCL”); Diol / dicarboxylic acid aliphatic polyesters such as polyethylene succinate and polybutylene succinate; Copolymers thereof, for example, Glycolic acid / lactic acid copolymer (hereinafter sometimes referred to as “PGLA”); and a mixture thereof.
  • the aliphatic polyester which combines and uses aromatic components such as a polyethylene adipate / terephthalate, can also be mentioned.
  • the aliphatic polyester is most preferably at least one selected from the group consisting of PGA, PLA and PGLA, and more preferably PGA.
  • the glycolic acid repeating unit is 50% by mass or more, preferably 75% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more. It includes 95% by mass or more, most preferably 99% by mass or more, and particularly preferably 99.5% by mass or more of a copolymer.
  • a repeating unit of L-lactic acid or D-lactic acid is 50% by mass or more, preferably 75% by mass or more, more preferably 85% by mass.
  • the copolymer which has 90 mass% or more more preferably is included.
  • the ratio (mass ratio) of glycolic acid repeating units to lactic acid repeating units is 99: 1 to 1:99, preferably 90:10 to 10:90, more preferably 80:20 to 20:80. Copolymers can be used.
  • melt viscosity As an aliphatic polyester, preferably PGA, PLA or PGLA, the melt viscosity measured at a temperature of 240 ° C. and a shear rate of 122 sec ⁇ 1 is usually 50 to 5000 Pa ⁇ s, preferably 150 to 3000 Pa ⁇ s, more preferably 300 to 1500 Pa. -What is s can be used. If the melt viscosity is too small, the strength required for the mandrel provided in the well drilling plug may be insufficient. If the melt viscosity is too large, for example, a high melting temperature is required to produce a mandrel, and the aliphatic polyester may be thermally deteriorated or the decomposability may be insufficient.
  • the melt viscosity is about 5 g of a PGA sample at a predetermined temperature using a capillograph (“Capillograph 1-C” manufactured by Toyo Seiki Seisakusho Co., Ltd.) equipped with a capillary (diameter 1 mm ⁇ ⁇ length 10 mm). After holding for a minute, the measurement is performed under the condition of a shear rate of 122 sec ⁇ 1 .
  • PGA which is a particularly preferred aliphatic polyester, has a weight average molecular weight of 180,000 to 300,000, a temperature of 270 ° C., a shear rate, for example, from the viewpoint of moldability such that cracking is less likely to occur during molding by solidification extrusion molding.
  • PGA having a melt viscosity of 700 to 2000 Pa ⁇ s measured at 122 sec ⁇ 1 is more preferable.
  • PGA having a weight average molecular weight of 190,000 to 240000, a temperature of 270 ° C., and a melt viscosity measured at a shear rate of 122 sec ⁇ 1 is 800 to 1200 Pa ⁇ s. The melt viscosity is measured according to the method described above.
  • the weight average molecular weight is obtained by dissolving 10 mg of PGA sample in hexafluoroisopropanol (HFIP) in which sodium trifluoroacetate is dissolved at a concentration of 5 mM to 10 mL, and then filtering with a membrane filter. 10 ⁇ l of the sample solution was measured by gel permeation chromatography (GPC) under the following conditions.
  • HFIP hexafluoroisopropanol
  • a degradable material preferably a degradable resin, more preferably an aliphatic polyester, and even more preferably PGA, is a resin material (degradable material is degradable), as long as it does not impair the object of the present invention.
  • a resin other additives such as other resins
  • a stabilizer e.g., a stabilizer
  • a decomposition accelerator or a decomposition inhibitor e.g., a stabilizer, e.g., a stabilizer, a decomposition accelerator or a decomposition inhibitor, and a reinforcing material may be contained or blended.
  • the degradable material preferably contains a reinforcing material. In this case, the degradable material can be referred to as a composite material.
  • the degradable material is a degradable resin, it is a so-called reinforced resin.
  • the mandrel formed from the reinforced resin is preferably formed from an aliphatic polyester containing a reinforcing material.
  • the reinforcing material it is possible to use a material that has been conventionally used as a reinforcing material such as a resin material for the purpose of improving mechanical strength and heat resistance, such as a fibrous reinforcing material or a granular or powdered reinforcing material. Can be used.
  • the reinforcing material can be contained in an amount of usually 150 parts by mass or less, preferably 10 to 100 parts by mass with respect to 100 parts by mass of a degradable material such as a degradable resin.
  • fibrous reinforcing materials include glass fibers, carbon fibers, asbestos fibers, silica fibers, alumina fibers, zirconia fibers, boron nitride fibers, silicon nitride fibers, boron fibers, potassium titanate fibers, and the like; stainless steel, aluminum Metal fiber materials such as titanium, steel and brass; high melting point organic fiber materials such as aramid fiber, kenaf fiber, polyamide, fluororesin, polyester resin and acrylic resin; and the like.
  • fibrous reinforcing material short fibers having a length of 10 mm or less, more preferably 1 to 6 mm, and further preferably 1.5 to 4 mm are preferable, inorganic fibrous materials are preferably used, and glass fibers are particularly preferable. preferable.
  • Granular or powdery reinforcing materials include mica, silica, talc, alumina, kaolin, calcium sulfate, calcium carbonate, titanium oxide, ferrite, clay, glass powder, zinc oxide, nickel carbonate, iron oxide, quartz powder, magnesium carbonate, Barium sulfate or the like can be used.
  • the reinforcing materials can be used alone or in combination of two or more.
  • the reinforcing material may be treated with a sizing agent or a surface treatment agent as necessary.
  • the mandrel 1 provided in the plug for well excavation of the present invention is formed from a degradable material having a tensile strength at a temperature of 60 ° C. (hereinafter sometimes referred to as “60 ° C. tensile strength”) of 50 MPa or more.
  • 60 ° C. tensile strength a tensile strength at a temperature of 60 ° C.
  • a mandrel formed from a degradable material having a 60 ° C. tensile strength of 50 MPa or more is a preferred embodiment
  • (a 1 ) is formed from a degradable material having a 60 ° C. tensile strength of 50 MPa or more.
  • a mandrel whose thickness reduction after immersion in water at 66 ° C.
  • the plug for well excavation of the present invention is such that the mandrel 1 is made of a decomposable material having a 60 ° C tensile strength of 50 MPa or more, for example, in an environment of a temperature of about 60 ° C, which is common in a shale gas layer, Can have sufficient strength to withstand the tensile stress applied to the mandrel 1 in a high temperature environment exceeding 100 ° C., such as in a deep underground having a depth of 3000 m or more underground.
  • the tensile strength of the degradable material forming the mandrel 1 is measured in accordance with JIS K7113. In order to set the test temperature to 60 ° C., the test piece is placed in an oven and measured. (Unit: MPa).
  • the 60 ° C. tensile strength of the degradable material forming the mandrel 1 is preferably 75 MPa or more, more preferably 100 MPa or more.
  • the type and characteristics of the degradable material such as degradable resin (melt viscosity, molecular weight, etc.), addition of reinforcing materials, etc. It can be based on a method of adjusting the type, characteristics, amount, etc. of the agent.
  • the upper limit of the 60 ° C. tensile strength is not particularly limited, but is usually 1000 MPa, and in many cases 750 MPa.
  • the mandrel 1 of the plug for well excavation of this invention is formed from the decomposable material whose shear stress in the temperature of 66 degreeC is 30 Mpa or more. Therefore, (a 3 ) a mandrel formed from a degradable material having a shear stress of 30 MPa or more at a temperature of 66 ° C. is a preferred embodiment.
  • an engagement portion for example, a screw of a mandrel
  • a jig for pulling and / or compressing the mandrel 1 Engaging part with a pair of rings or other members attached to the outer peripheral surface perpendicular to the axial direction of the mandrel 1 when receiving a large pressure in the axial direction of the mandrel by a fracturing fluid or the like It is possible to ensure that the engagement is maintained.
  • the load resistance of the engaging portion depends on the magnitude of the shear stress of a material having a small shear stress in the temperature environment in which the engaging portion exists and the area of the engaging portion among the materials constituting the engaging portion.
  • the shear stress at a temperature of 66 ° C. of the degradable material has no particular upper limit, but is usually 600 MPa or less, and in many cases 450 MPa or less.
  • the mandrel 1 of the plug for well excavation of the present invention preferably has a tensile load resistance at a temperature of 66 ° C. of 5 kN or more. Therefore, a degradable material is selected so that the tensile load resistance at a temperature of 66 ° C. is 5 kN or more. And are preferably designed.
  • the mandrel 1 is usually compared with the mandrel 1.
  • the mandrel 1 Since a load is applied so as to push a member attached on the outer peripheral surface orthogonal to the axial direction of the ring 2 ′ side shown in FIGS. 1A to 2B, the mandrel 1 is about 20 to 1000 kN, in many cases about A high tensile load of 25 to 800 kN is applied. Further, both ends of the mandrel 1 may be provided with a threaded portion, an enlarged diameter portion or the like so that a jig for pulling and / or compressing the mandrel 1 may be engaged. Depending on the design of the design, stress concentration of 2 to 5 times may occur in the expanded diameter portion (engagement portion with the jig).
  • the mandrel 1 it is necessary to select a material having a strength that can withstand such a high load (degradable material) and to reduce the stress concentration in the design. Further, when receiving a large pressure in the axial direction of the mandrel due to a fracturing fluid or the like, a high load is also applied to the engaging portion of a pair of rings and other members attached to the outer peripheral surface orthogonal to the axial direction of the mandrel 1 Therefore, similar material selection and design are required.
  • the tensile load resistance of the mandrel 1 at a temperature of 66 ° C. is not particularly limited, but is usually 1500 kN or less, and in many cases 1200 kN or less, from the viewpoint of selecting a material having decomposability.
  • the mandrel 1 can have a convex portion, a stepped portion, a concave portion (groove portion) or the like on the outer peripheral surface, and another member can be attached or fixed to the outer peripheral surface of the mandrel 1.
  • it can be used as a part for fixing, and in particular, it can be a fixing part for fixing the annular rubber member 3 capable of expanding the diameter.
  • the well excavation plug of the present invention is (c) placed on the outer peripheral surface perpendicular to the axial direction of the mandrel 1 and between the pair of rings 2 and 2 '.
  • at least one annular rubber member 3 capable of expanding the diameter is provided.
  • the diameter-expandable annular rubber member 3 is expanded in the direction perpendicular to the axial direction as it is compressed and contracted in the axial direction of the mandrel 1.
  • the annular rubber member 3 is expanded in diameter so that the outer portion in the direction orthogonal to the axial direction contacts the inner wall H of the well hole and the inner portion in the direction orthogonal to the axial direction is the outer periphery of the mandrel 1.
  • the diameter-expandable annular rubber member 3 in (c) remains in a compressed state, that is, It is necessary to hold by some means in a state compressed in the axial direction of the mandrel 1 and expanded in a direction perpendicular to the axial direction of the mandrel 1.
  • the mandrel 1 can have a convex part, a step part, a concave part (groove part), etc. on the outer peripheral surface
  • the mandrel 1 provided in the plug for well excavation of the present invention can be expanded in diameter on the outer peripheral surface.
  • the fixing portion may be the convex portion, step portion, or concave portion (groove portion) described above, or fix the threaded portion or other annular rubber member 3 whose diameter can be expanded on the outer peripheral surface of the mandrel 1 in a compressed state. Means that can be used can be employed. From the viewpoints of ease of processing and molding, strength, and the like, the fixing portion is more preferably at least one selected from the group consisting of a groove, a stepped portion, and a thread.
  • the portions where the thickness, outer diameter, inner diameter, etc. of the mandrel change such as convex portions, step portions, concave portions (groove portions), and further thread portions on the outer peripheral surface and / or inner peripheral surface of the mandrel 1 (hereinafter referred to as “processed portion”) Is a location where stress is concentrated when the well drilling plug of the present invention is disposed in the well bore, or when the well bore is closed or fractured.
  • the radius of curvature of the processed portion is small, the stress concentration increases, so that the outer surface of the mandrel 1 is processed in order to provide sufficient strength (particularly tensile strength) for the well drilling plug, particularly the mandrel 1.
  • the radius of curvature of the portion is preferably 0.5 mm or more, and more preferably 1.0 mm or more.
  • the mandrel 1 formed of the degradable material provided in the plug for well excavation of the present invention may have a part of the outer peripheral surface protected by metal as desired. That is, because the outer peripheral surface of the mandrel 1 has a portion protected by metal, the decomposability and strength can be adjusted for a desired portion of the mandrel 1 formed from the degradable material, Moreover, since the joint strength with the other member attached or fixed to the mandrel 1 can be raised, it is preferable.
  • the metal used for protecting the outer peripheral surface is a material used for forming the mandrel 1 provided in the plug for well excavation, a metal used for reinforcement thereof, or the like, and is not particularly limited. Specific examples include aluminum, iron, and nickel.
  • Ring The plug for well excavation of the present invention comprises (b) a pair of rings 2 and 2 ′ formed on a peripheral surface perpendicular to the axial direction of the mandrel, at least one of which is made of a degradable material.
  • the pair of rings 2 and 2 ′ is an annular rubber member 3 that can be expanded on an outer peripheral surface orthogonal to the axial direction of the mandrel 1, and a combination of a slip 4 and a wedge 5 that are placed as desired. (A combination of slips 4, 4 'and wedges 5, 5' in FIGS. 1A and 1B) is provided for applying an axial force of the mandrel 1.
  • the pair of rings 2, 2 ′ of (b) can be slid along the axial direction of the mandrel 1 on the outer peripheral surface of the mandrel 1, and the mutual distance can be changed.
  • / or an expandable annular rubber member 3 and / or an axial end of the combination of slips 4, 4 'and wedges 5, 5' placed as desired, directly or indirectly By being in contact with each other, an axial force of the mandrel 1 can be applied thereto.
  • each of the pair of rings 2 and 2 ′ are not particularly limited as long as the above-described functions can be achieved, but the ring-shaped rubber member 3 capable of expanding the diameter and / or as desired. From the standpoint that the axial force of the mandrel 1 can be effectively applied to the combination of the slips 4, 4 ′ and the wedges 5, 5 ′, the end surface of the ring that abuts against these is planar. It is preferable to do.
  • Each ring of the pair of rings 2 and 2 ′ is preferably an annular ring that completely surrounds the outer peripheral surface of the mandrel 1, but may have a cut or a deformed portion in the circumferential direction.
  • a ring may be formed if desired.
  • Each ring of the pair of rings 2, 2 ′ can be a wide ring (the axial length of the mandrel 1 is large) by placing a plurality of rings adjacent to each other in the axial direction.
  • the axial force of the mandrel 1 is effectively applied to the annular rubber member 3 capable of expanding the diameter and / or the combination of the slips 4, 4 ′ and the wedges 5, 5 ′ that are optionally placed. It may be said that it is a ring which forms a pair of rings 2 and 2 'of (b) in the plug for well excavation of this invention including the member which contributes to.
  • the pair of rings 2 and 2 ′ may have the same or similar shape or structure, or may have different shapes or structures.
  • each ring of the pair of rings 2 and 2 ′ may have a different length and outer diameter in the axial direction of the mandrel 1.
  • one ring of the pair of rings 2 and 2 ′ can be configured to be unable to slide with respect to the mandrel 1 as desired.
  • the other ring of the pair of rings 2, 2 ′ slides on the outer peripheral surface of the mandrel 1, and an annular rubber member 3 capable of expanding the diameter and / or slips 4, 4 placed as desired. It abuts on the end portion along the axial direction of the combination of 'and wedges 5 and 5'.
  • the configuration in which one ring of the pair of rings 2 and 2 ′ cannot slide with respect to the mandrel 1 as desired is not particularly limited.
  • the structure can be used (in this case, the state of sliding with respect to the mandrel 1 and the state of being unable to slide can be switched).
  • the well drilling plug in which the mandrel 1 and one of the pair of rings 2 and 2 'are integrally formed is formed by a well drilling plug formed by integral molding or by machining. A well drilling plug is provided.
  • the plug for well excavation of the present invention may be provided with a plurality of pairs of the pair of rings 2 and 2 'of (b).
  • a plurality of ring rubber members 3 capable of expanding diameter and / or combinations of slips 4, 4 ′ and wedges 5, 5 ′ placed as desired are separately or in combination. It can also be placed between the pair of rings.
  • the degradable material forming at least one of the pair of rings 2 and 2 ′ is preferably a degradable resin, more preferably an aliphatic polyester, and still more preferably polyglycolic acid.
  • the degradable material may contain a reinforcing material, and may be formed from an aliphatic polyester containing a reinforcing material.
  • the shear stress at a temperature of 66 ° C. is 30 MPa or more. It is preferably formed from a degradable material, more preferably 45 MPa or more, and further preferably from a decomposable material having a pressure of 60 MPa or more.
  • both rings of the pair of rings 2 and 2 ′ are formed of a decomposable material
  • the resin type and composition of the decomposable material may be the same or different.
  • one of the pair of rings 2 and 2 ' is formed of a degradable material
  • a metal such as aluminum or iron or a composite material such as reinforced resin is used as a material for forming the other ring. be able to.
  • An annular rubber member capable of expanding diameter The plug for well excavation of the present invention is (c) placed on the outer peripheral surface perpendicular to the axial direction of the mandrel 1 and between the pair of rings 2 and 2 '. It is characterized by comprising at least one annular rubber member 3 capable of expanding the diameter.
  • the annular rubber member 3 capable of expanding the diameter is transmitted directly or indirectly to the pair of rings 2, 2 ′ to transmit the axial force of the mandrel 1 on the outer peripheral surface of the mandrel 1, and as a result. As the mandrel 1 is compressed in the axial direction and reduced in diameter, the diameter increases in a direction perpendicular to the axial direction.
  • the annular rubber member 3 is expanded in diameter so that the outer portion in the direction orthogonal to the axial direction contacts the inner wall H of the well hole and the inner portion in the direction orthogonal to the axial direction is the outer periphery of the mandrel 1. By contacting the surface, the space between the plug and the well hole is closed (seal).
  • the ring-shaped rubber member 3 capable of expanding the diameter can be maintained in contact with the inner wall H of the wellbore and the outer peripheral surface of the mandrel 1 while the fracturing is performed. It has a function of maintaining the seal.
  • the diameter-expandable annular rubber member 3 is not limited in its material, shape and structure as long as it has the above-described function.
  • the annular rubber member 3 having a reverse U-shaped cross section in the circumferential direction orthogonal to the axial direction of the mandrel 1 is used, the U-shaped tip portion is compressed in the axial direction of the mandrel 1.
  • the diameter can be increased toward the apex of the inverted U shape.
  • the ring-shaped rubber member 3 capable of expanding the diameter contacts the inner wall H of the wellbore and the outer peripheral surface of the mandrel 1 when the diameter is expanded, and closes (seals) the space between the plug and the wellbore. Since there is a gap between the plug and the well hole when the diameter is not expanded, the annular rubber member 3 capable of expanding the diameter has a length in the axial direction of the mandrel 1 that is the length of the mandrel 1. On the other hand, it is preferably 10 to 70%, and more preferably 15 to 65%.
  • the well drilling plug of the present invention has a sufficient sealing function and, after sealing, the well hole and the plug. It can serve as a fixing aid.
  • the well excavation plug of the present invention can be provided with a plurality of annular rubber members 3 that can be expanded in diameter, thereby closing (sealing) the space between the plug and the well hole at a plurality of positions.
  • the function of assisting in fixing the well hole and the plug can be more reliably performed.
  • the plug for well excavation of the present invention includes a plurality of annular rubber members 3 that can be expanded, the axial length of the mandrel 1 of the annular rubber member 3 that can be expanded as described above, It means the sum of the lengths in the axial direction of the mandrel 1 of a plurality of annular rubber members 3 capable of expanding the diameter.
  • the plurality of annular rubber members 3 that can be expanded may have the same material, shape, or structure. They may be different. Further, a plurality of ring-shaped rubber members 3 capable of expanding the diameter may be disposed adjacent to or spaced apart from each other at a position between the pair of rings 2 and 2 ′. It is good also as what was put in the position between each pair of a pair of rings 2 and 2 '.
  • the annular rubber member 3 capable of expanding the diameter may be a rubber member having a structure formed of a plurality of rubber members such as laminated rubber.
  • the inner wall H of the well hole You may provide one or more groove
  • the ring-shaped rubber member 3 capable of expanding the diameter is required not to lose the sealing function even in contact with a further high pressure or fracturing fluid due to fracturing in a high temperature and high pressure environment in a deep underground. . Therefore, a rubber material excellent in heat resistance, oil resistance and water resistance is preferable.
  • nitrile rubber, hydrogenated nitrile rubber, acrylic rubber and the like can be used.
  • the diameter-expandable annular rubber member 3 of (c) may be formed from a degradable material.
  • the rubber that is a degradable material is a material that is conventionally known as a degradable rubber that can be biodegradable, hydrolyzable, or chemically decomposable by some other method. Can be used. Examples thereof include aliphatic polyester rubber, polyurethane rubber, natural rubber, polyisoprene and the like.
  • the plug for well excavation according to the present invention is further placed on the outer peripheral surface perpendicular to the axial direction of the mandrel 1 in (a) and at a position between the pair of rings 2 and 2 ', as desired.
  • the combination of at least one slip 4 and wedge 5 may be provided.
  • the combination of the slip 4 and the wedge 5 is known per se for a plug for well excavation as means for fixing the plug and the well hole. That is, a slip 4 formed of a metal, an inorganic substance or the like is slidably placed on the upper surface of a slope of a wedge 5 formed of a composite material, and the shaft of the mandrel 1 is placed on the wedge 5 by the method described above.
  • the slip 4 moves outward perpendicular to the axial direction of the mandrel, abuts against the inner wall H of the well hole, and fixes the plug and the inner wall H of the well hole.
  • one or more grooves and protrusions are formed in the contact portion with the inner wall H of the well hole in order to further secure the blockage (seal) of the space between the plug and the well hole.
  • a rough surface (notched) or the like may be provided.
  • the slip 4 may be divided into a predetermined number in the circumferential direction orthogonal to the axial direction of the mandrel 1 in advance, or may be divided into a predetermined number in advance as shown in FIGS. 1A and 1B.
  • the slip 4 is split along the cut line and its extension line, and then the divided pieces are moved outwardly perpendicular to the axial direction of the mandrel 1.
  • the combination of slip 4 and wedge 5 is placed between a pair of rings 2, 2 ′ so that an axial force of mandrel 1 can be applied. It can be placed adjacent to the annular rubber member 3 capable of expanding the diameter.
  • the well excavation plug of the present invention can include a plurality of combinations of slips 4 and wedges 5, and in that case, an annular rubber member 3 capable of expanding the diameter. May be placed adjacent to each other, or may be placed in other arrangements.
  • the well drilling plug of the present invention includes a plurality of annular rubber members 3 that can be expanded, the arrangement of the combinations of slips 4, 4 'and wedges 5, 5' is appropriately selected as desired. can do.
  • the well drilling plug of the present invention comprises a combination of slips 4, 4 'and wedges 5, 5'
  • slips 4, 4 'or wedges 5, 5' are formed from a degradable material.
  • One or both of the slips 4, 4 'or the wedges 5, 5' may be a composite material (reinforced resin) containing a reinforcing material.
  • a metal or inorganic member may be incorporated into the degradable material.
  • the degradable material or the reinforcing material the materials described above can be used.
  • one or both of the slips 4, 4 ′ or the wedges 5, 5 ′ may be formed from a degradable material, and are formed from a material containing at least one of a metal and an inorganic material, as in the past. It may be a thing. Further, one or both of the slips 4, 4 ′ or the wedges 5, 5 ′ incorporate a decomposable material incorporating a metal or inorganic member, that is, contain the degradable material and at least one of a metal or an inorganic material. (A composite material of a degradable material and a metal or an inorganic material) may be used.
  • slip 4, 4 ′ collar or wedge 5, 5 ′ which is a composite material of a degradable material and a metal or an inorganic material
  • a predetermined shape is formed on a base material made of a degradable material such as PGA.
  • a metal (metal piece, etc.) or inorganic material that matches the shape of the dent, and fix them with an adhesive, or keep the metal piece, inorganic material and base material fixed.
  • slips 4 and 4 ′ or wedges 5 and 5 ′ formed by winding and fixing fibers or the like.
  • the combination of the slips 4 and 4 ′ and the wedges 5 and 5 ′ is such that during operation, the base material of the slips 4 and 4 ′ rides on the upper portions of the wedges 5 and 5 ′, so that metal pieces and inorganic substances are removed from the well. By contacting the inner wall H of the hole, it has a function of fixing the well excavation plug in the well.
  • the plug for well excavation according to the present invention includes a mandrel 1, a pair of rings 2, 2 ′, an annular rubber member 3 capable of expanding diameter, and a combination of slips 4, 4 ′ and wedges 5, 5 ′.
  • the well excavation plug of the present invention may not include the slip 4 and the wedge 5 on the outer peripheral surface of the mandrel 1. That is, as the conventional slip 4 and the wedge 5, a metal or a composite material is often used from the viewpoint of strength or the like, but the well drilling plug of the present invention is formed from a degradable material (a).
  • the structure of the plug for well excavation can be simplified, and the overall decomposability of the plug for well excavation can be further enhanced.
  • the plug for well drilling includes (a) a mandrel 1 formed from a degradable material, and (b) an outer periphery at least one formed from a degradable material and orthogonal to the axial direction of the mandrel 1.
  • a pair of rings 2, 2 ′ placed on the surface, and (c) placed on the outer peripheral surface perpendicular to the axial direction of the mandrel 1, at a position between the pair of rings 2, 2 ′.
  • a well excavation plug comprising at least one annular rubber member 3 capable of expanding the diameter.
  • the well drilling plug of the present invention can include a member that may be included in a normal well drilling plug, such as the combination of the slip 4 and the wedge 5 described above.
  • the mandrel 1 of (a) when the mandrel 1 of (a) has a hollow portion along the axial direction, the mandrel 1 is formed from a material (metal, resin, etc., which is placed in the hollow portion and controls the flow of fluid, and is formed from a degradable material. May be provided).
  • a member for connecting or releasing the well excavation plug and / or its member to or from each other member for example, a rotation stop member can be provided.
  • the plug for well excavation of the present invention may be formed entirely of a degradable material.
  • the plug for well excavation of the present invention transmits the axial force of the mandrel 1 to the ring-shaped rubber member 3 capable of expanding the diameter by applying the axial force of the mandrel 1 to the pair of rings 2, 2 ′.
  • the diameter-expandable annular rubber member 3 is compressed in the axial direction of the mandrel 1, the diameter of the annular rubber member 3 expands in the direction perpendicular to the axial direction, and comes into contact with the inner wall H of the well hole.
  • the space between the borehole and the wellbore can be closed (sealed) (wellhole closure).
  • fracturing can be performed in a state where the space between the plug and the well hole is closed (sealed).
  • the annular rubber member 3 capable of expanding the diameter is left in the wellbore with the diameter expanded, and the slips 4, 4 ′ and the wedges 5, 5 ′ provided as desired are provided.
  • the well drilling plug can be fixed at a predetermined position of the well hole.
  • a fluid is injected from the ground (cooldown injection), by controlling the temperature around the well excavation plug to be lowered, a treatment method that maintains the sealing performance (strength, etc.) for a desired time can be adopted.
  • the well drilling plug according to the present invention is usually used after completion of fracturing of predetermined sections, when drilling of the well is completed and the well is completed, and production of oil, natural gas, etc. is started. And at least one pair of rings 2 and 2 'of (a) and (b), if desired, by chemical degradation by biodegradation, hydrolysis or some other method.
  • the annular rubber member 3 capable of expanding the diameter can be easily disassembled and removed.
  • the well drilling plug of the present invention conventionally, after completion of the well, a large number of well drilling plugs left in the well are removed, recovered, crushed, drilled or other methods, Many expenses and time required for destruction or fragmentation are not required, so that the cost of well drilling can be reduced and the process can be shortened. It is preferable that the well drilling plug member remaining after the completion of the well treatment has completely disappeared before the start of production, but even if it has not completely disappeared, the strength decreases.
  • the collapsed plug member for well drilling can be easily recovered by flowback etc., and clogging the downhole and fractures Since they are not generated, there is no obstacle to production of oil, natural gas, and the like.
  • the member for the well excavation plug is decomposed and the strength is lowered in a shorter time.
  • the water content in the formation may be low. In this case, the water-based fluid used during fracturing remains in the well without being recovered after fracturing. The disassembly of the plug can be promoted.
  • the plug for well excavation of the present invention comprises (a) a mandrel, (b) a pair of rings, and (c) an expandable ring-shaped rubber member.
  • the manufacturing method is not limited as long as the featured well drilling plug can be manufactured.
  • each member provided in the plug for well excavation is molded by injection molding, extrusion molding (including solid extrusion molding), centrifugal molding, compression molding, or other known molding methods, and each member obtained is After machining such as cutting or drilling as necessary, a well drilling plug can be obtained by a combination of methods known per se.
  • the well drilling plug of the present invention is a well drilling plug in which a mandrel and one ring of a pair of rings are integrally formed, injection molding and extrusion molding (solidified extrusion molding are included). ), It is preferable to integrally form the mandrel and one ring of a pair of rings by integral molding by a molding method such as centrifugal molding or by machining such as cutting.
  • Well Drilling Method According to the well drilling method for disassembling a part or the whole of the well drilling plug, after performing the sealing process of the well hole, using the well drilling plug of the present invention, When fracturing of a given section is complete, or when excavation of the well is completed and the well is completed and production of oil, natural gas, etc. begins, biodegradation, hydrolysis, or some other method
  • biodegradation, hydrolysis, or some other method By the chemical decomposition by the above, at least the mandrel and the pair of rings, and if necessary, the annular rubber member capable of further expanding the diameter can be easily decomposed and removed.
  • the present invention comprises (a) a mandrel formed from a degradable material, (B) a pair of rings formed on a peripheral surface perpendicular to the axial direction of the mandrel, at least one of which is made of a degradable material, and (c) on the peripheral surface orthogonal to the axial direction of the mandrel,
  • the well drilling plug is characterized by having at least one ring-shaped rubber member that can be expanded at a position between a pair of rings. Under severe conditions, the borehole can be reliably closed and fractured, and removal and securing of the flow path can be facilitated to reduce the cost of well drilling and the process. Since it can be shortened, the industrial applicability is high.
  • the well drilling plug is used, and after performing well hole sealing treatment, part or all of the well drilling plug is disassembled.
  • the well drilling method can reliably close and fracture the well hole, reduce the cost of well drilling and shorten the process by making it easy to remove and secure the flow path. Therefore, industrial applicability is high.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

 (a)分解性材料から形成されるマンドレル、(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び(c)前記1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材を備える坑井掘削用プラグ、好ましくは分解性材料は、150℃の水に72時間浸漬後の質量減少率5~100%である前記プラグ;並びに、前記の坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、坑井掘削用プラグの一部または全部が分解されることを特徴とする坑井掘削方法。

Description

分解性材料から形成されるマンドレルを備える坑井掘削用プラグ
 本発明は、石油または天然ガス等の炭化水素資源を産出するために行う坑井掘削において使用する坑井掘削用プラグ、及び坑井掘削方法に関する。
 石油または天然ガス等の炭化水素資源は、多孔質で浸透性の地下層を有する井戸(油井またはガス井。総称して「坑井」ということがある。)を通じて採掘され生産されてきた。エネルギー消費の増大に伴い、坑井の高深度化が進み、世界では深度9000mを超える掘削の記録もあり、日本においても6000mを超える高深度坑井がある。採掘が続けられる坑井において、時間経過とともに浸透性が低下してきた地下層や、さらには元々浸透性が十分ではない地下層から、継続して炭化水素資源を効率よく採掘するために、生産層を刺激(stimulate)することが行われ、刺激方法としては、酸処理や破砕方法が知られている(特許文献1)。酸処理は、塩酸やフッ化水素等の強酸の混合物を生産層に注入し、岩盤の反応成分(炭酸塩、粘土鉱物、ケイ酸塩等)を溶解させることによって、生産層の浸透性を増加させる方法であるが、強酸の使用に伴う諸問題が指摘され、また種々の対策を含めてコストの増大が指摘されている。そこで、流体圧を利用して生産層に亀裂(フラクチャ、fracture)を形成させる方法(「フラクチャリング法」または「水圧破砕法」ともいう。)が注目されている。
 水圧破砕法は、水圧等の流体圧(以下、単に「水圧」ということがある。)により生産層に亀裂を発生させる方法であり、一般に、垂直な孔を掘削し、続けて、垂直な孔を曲げて、地下数千mの地層内に水平な孔を掘削した後、それらの坑井孔(坑井を形成するために設ける孔を意味し、「ダウンホール」ということもある。)内にフラクチャリング流体を高圧で送り込み、高深度地下の生産層(石油または天然ガス等の炭化水素資源を産出する層)に水圧によって亀裂(フラクチャ)を生じさせ、該フラクチャを通して炭化水素資源を採取するための生産層の刺激方法である。水圧破砕法は、いわゆるシェールオイル(頁岩中で熟成した油)、シェールガス等の非在来型資源の開発においても、有効性が注目されている。
 水圧等の流体圧によって形成された亀裂(フラクチャ)は、水圧がなくなれば直ちに地層圧により閉塞されてしまう。亀裂(フラクチャ)の閉塞を防ぐために、フラクチャリング流体(すなわち、フラクチャリングに使用する坑井処理流体)にプロパント(proppant)を含有させて、坑井孔内に送り込み、亀裂(フラクチャ)にプロパントを配置することが行われている。フラクチャリング流体に含有させるプロパントとしては、無機または有機材料が使用されるが、できるだけ長期間、高温高圧の高深度地下の環境内で、フラクチャの閉塞を防ぐことが可能であることから、従来、シリカ、アルミナその他の無機物粒子が使用され、砂粒、例えば20/40メッシュの砂などが汎用されている。
 フラクチャリング流体等の坑井処理流体としては、水ベース、油ベース、エマルジョンの各種のタイプが用いられる。坑井処理流体には、プロパントを、坑井孔内のフラクチャを生じさせる場所まで運搬し得る機能が求められるので、通常は所定の粘度を有し、プロパントの分散性が良好であるとともに、後処理の容易性、環境負荷の小ささなどが求められる。また、フラクチャリング流体には、プロパントの間に、シェールオイル、シェールガス等が通過できる流路を形成することを目的として、チャネラント(channelant)を含有させることもある。したがって、坑井処理流体には、プロパントのほかに、チャネラント、ゲル化剤、スケール防止剤、岩石等を溶解するための酸、摩擦低減剤など、種々の添加剤が使用される。
 フラクチャリング流体を使用して、高深度地下の生産層(シェールオイル等の石油またはシェールガス等の天然ガスなどの炭化水素資源を産出する層)に水圧によって亀裂(フラクチャ)を生じさせるためには、通常、以下の方法が採用されている。すなわち、地下数千mの地層内に掘削した坑井孔(ダウンホール)に対して、坑井孔の先端部から順次、目止めをしながら、所定区画を部分的に閉塞し、その閉塞した区画内にフラクチャリング流体を高圧で送入して、生産層に亀裂を生じさせるフラクチャリングを行う。次いで、次の所定区画(通常は、先行する区画より手前、すなわち地上側の区画)を閉塞してフラクチャリングを行う。以下、この工程を必要な目止めとフラクチャリングが完了するまで繰り返し実施する。
 新たな坑井の掘削だけでなく、既に形成された坑井孔の所望の区画について、再度フラクチャリングによる生産層の刺激を行うこともある。その際も同様に、坑井孔の閉塞及びフラクチャリングなどを行う操作を繰り返すことがある。また、坑井の仕上げを行うために、坑井孔を閉塞して下部からの流体を遮断し、その上部の仕上げを行った後、閉塞の解除を行うこともある。
 坑井孔の閉塞及びフラクチャリングなどを行う方法としては、種々の方法が知られており、例えば、特許文献2及び特許文献3には、坑井孔の閉塞や固定を行うことができるプラグ(「フラックプラグ」、「ブリッジプラグ」または「パッカー」等と称することもある。)が開示されている。
 特許文献2には、坑井掘削用のダウンホールプラグ(以下、単に「プラグ」ということがある。)が開示されており、具体的には、軸方向に中空部を有するマンドレル(本体)、マンドレルの軸方向と直交する外周面上に、軸方向に沿って、リングまたは環状部材(annular member)、第1の円錐状部材(conical member)及びスリップ(slip)、エラストマーまたはゴム等から形成される可鍛性要素(malleable element)、第2の円錐状部材及びスリップ、並びに、回り止め機構(anti-rotation feature)を備えるプラグが開示されている。この坑井掘削用のダウンホールプラグによる坑井孔の封鎖は、以下のとおりである。すなわち、マンドレルをその軸方向に移動することにより、リングまたは環状部材と回り止め機構との間隙が縮小することに伴い、スリップが円錐状部材の傾斜面に当接し、円錐状部材に沿って進むことで、外方に放射状に拡大して坑井孔の内壁に当接して坑井孔に固定されること、及び、可鍛性要素が拡径変形して坑井孔の内壁に当接して坑井孔を封鎖することによる。マンドレルには、軸方向の中空部が存在し、これにボール等をセットすることにより、坑井孔を封鎖することができる。プラグを形成する材料として、金属材料(アルミニウム、スチール、ステンレス鋼等)、繊維、木、複合材及びプラスチックなどが広く例示され、好ましくは、炭素繊維等の強化材を含有する複合材、特に、エポキシ樹脂やフェノール樹脂等の重合体複合材であること、マンドレルがアルミニウムまたは複合材料で形成されることが記載されている。一方、ボール等は、先に説明した材料のほかに、温度、圧力、pH(酸、塩基)等により分解する材料を使用できることが記載されている。
 坑井掘削用のダウンホールプラグは、坑井が完成するまで順次坑井内に配置されるが、シェールオイル等の石油またはシェールガス等の天然ガス(以下、総称して「石油や天然ガス」または「石油及び/または天然ガス」ということがある。)などの生産が開始される段階では、これらを除去する必要がある。プラグは、通常、使用後に閉塞を解除して回収できるように設計されていないため、破砕、穿孔その他の方法で、破壊されたり、小片化されたりすることによって除去されるが、破砕や穿孔等には多くの経費と時間を費やす必要があった。また、使用後に回収できるように特殊に設計されたプラグ(retrievable plug)もあるが、プラグは高深度地下に置かれたものであるため、そのすべてを回収するには多くの経費と時間を要していた。
 特許文献3には、坑井内の環境に曝されるときに分解する生分解性材料を含有する使い捨て型のダウンホールツール(ダウンホールプラグ等を意味する。)またはその部材が開示されており、生分解性材料として、ポリ乳酸等の脂肪族ポリエステルなど分解性重合体が開示されている。さらに、特許文献3には、軸方向に流通孔(flow bore)を有する円筒状本体部品(tubular body element)と、該円筒状本体部品の軸方向と直交する外周面上に、軸方向に沿って、上部シーリング要素、中心シーリング要素及び下部シーリング要素から成るパッカー要素集合体(packer element assembly)と、スリップ及び機械的スリップ本体(mechanical slip body)との組み合わせが記載されている。また、円筒状本体部品の流通孔には、ボールをセットすることにより、流体の一方向のみの流れを許容するようにすることが開示されている。しかしながら、特許文献3には、ダウンホールツールまたはその部材のいずれについて、生分解性材料を含有する材料を使用するのかについての開示はみられない。
 エネルギー資源の確保及び環境保護等の要求の高まりのもと、特に、非在来型資源の採掘が広がる中で、高深度化など採掘条件がますます過酷なものとなっていることから、坑井掘削用プラグとしては、確実に坑井孔の閉塞及びフラクチャリングを行うことができ、かつ、その除去や流路の確保を容易にすることにより坑井掘削の経費軽減や工程短縮ができる坑井掘削用プラグが求められていた。
特表2003-533619号公報(国際公開第01/088333号対応) 米国特許出願公開第2011/0277989号明細書 米国特許出願公開第2005/0205266号明細書
 本発明の課題は、高深度化など採掘条件がますます過酷なものとなっているもとで、確実に坑井孔の閉塞及びフラクチャリングを行うことができ、かつ、その除去や流路の確保を容易にすることにより坑井掘削の経費軽減や工程短縮ができる坑井掘削用プラグを提供することにある。さらに、本発明の課題は、該坑井掘削用プラグを使用する坑井掘削方法を提供することにある。
 本発明者らは、前記課題を解決するために鋭意研究した結果、マンドレルの外周面にリング及び拡径可能な環状のゴム部材等を置くとともに、それらの材料を特有のものとすることにより課題を解決することができることを見いだし、本発明を完成した。
 すなわち、本発明の第1の側面によれば、(1)(a)分解性材料から形成されるマンドレル、
(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
を備えることを特徴とする坑井掘削用プラグが提供される。
 また、本発明の第1の側面による発明の具体的な態様として、以下(2)~(30)の坑井掘削用プラグが提供される。
(2)マンドレルは、温度60℃における引張強度が50MPa以上である分解性材料から形成される前記(1)の坑井掘削用プラグ。
(3)マンドレルは、温度66℃におけるせん断応力が30MPa以上である分解性材料から形成される前記(1)または(2)の坑井掘削用プラグ。
(4)マンドレルは、温度66℃における引張耐荷重が5kN以上である前記(1)~(3)のいずれかの坑井掘削用プラグ。
(5)マンドレルが、強化材を含有する脂肪族ポリエステルから形成される前記(1)~(4)のいずれかの坑井掘削用プラグ。
(6)マンドレルは、温度66℃の水に1時間浸漬後の厚み減少が5mm未満であって、温度149℃の水に24時間浸漬後の厚み減少が10mm以上である前記(1)~(5)のいずれかの坑井掘削用プラグ。
(7)マンドレルが、軸方向に沿う中空部を有する前記(1)~(6)のいずれかの坑井掘削用プラグ。
(8)マンドレルは、マンドレルの直径に対する中空部の外径の比率が0.7以下である前記(7)の坑井掘削用プラグ。
(9)マンドレルは、外周面に拡径可能な環状のゴム部材を圧縮状態のまま固定する固定部を有する前記(1)~(8)のいずれかの坑井掘削用プラグ。
(10)固定部が、溝、段部及びねじ山からなる群より選ばれる少なくとも1つである前記(9)の坑井掘削用プラグ。
(11)マンドレルの外周面の加工部分の曲率半径が0.5mm以上である前記(1)~(10)のいずれかの坑井掘削用プラグ。
(12)マンドレルの外周面が、金属で保護されている箇所を有する前記(1)~(11)のいずれかの坑井掘削用プラグ。
(13)マンドレルと、1対のリングの一方のリングとが一体に形成されている前記(1)~(12)のいずれかの坑井掘削用プラグ。
(14)一体成形により形成される前記(13)の坑井掘削用プラグ。
(15)機械加工により形成される前記(13)の坑井掘削用プラグ。
(16)1対のリングは、温度66℃におけるせん断応力が30MPa以上である分解性材料から形成される前記(1)~(15)のいずれかの坑井掘削用プラグ。
(17)拡径可能な環状のゴム部材は、マンドレルの軸方向の長さが、マンドレルの長さに対して10~70%である前記(1)~(16)のいずれかの坑井掘削用プラグ。
(18)拡径可能な環状のゴム部材を複数備える前記(1)~(17)のいずれかの坑井掘削用プラグ。
(19)拡径可能な環状のゴム部材が分解性材料から形成される前記(1)~(18)のいずれかの坑井掘削用プラグ。
(20)マンドレルの外周面上に、スリップ(slip)及びウエッジ(wedge)を備えない前記(1)~(19)のいずれかの坑井掘削用プラグ。
(21)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つのスリップ(slip)とウエッジ(wedge)との組み合わせを備える前記(1)~(19)のいずれかの坑井掘削用プラグ。
(22)スリップまたはウエッジの一方または両方が、分解性材料から形成されたものである前記(21)の坑井掘削用プラグ。
(23)スリップまたはウエッジの一方または両方が、金属または無機物の少なくとも一方を含有する材料から形成されたものである前記(21)または(22)の坑井掘削用プラグ。
(24)スリップまたはウエッジの一方または両方が、分解性材料と、金属または無機物の少なくとも一方を含有する材料とから形成されたものである前記(21)~(23)のいずれかの坑井掘削用プラグ。
(25)スリップとウエッジとの組み合わせを複数備える前記(21)~(24)のいずれかの坑井掘削用プラグ。
(26)分解性材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%である前記(1)~(25)のいずれかの坑井掘削用プラグ。
(27)分解性材料が、強化材を含有する前記(1)~(26)のいずれかの坑井掘削用プラグ。
(28)分解性材料が、脂肪族ポリエステルである前記(1)~(27)のいずれかの坑井掘削用プラグ。
(29)脂肪族ポリエステルが、ポリグリコール酸である前記(28)の坑井掘削用プラグ。
(30)ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである前記(29)の坑井掘削用プラグ。
 また、本発明の他の側面によれば、(31)(a)温度60℃における引張強度が50MPa以上である分解性材料から形成され、温度66℃の水に1時間浸漬後の厚み減少が5mm未満であって、温度149℃の水に24時間浸漬後の厚み減少が10mm以上であるマンドレル、
(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
を備えることを特徴とする坑井掘削用プラグが提供される。
 本発明の他の側面による具体的な態様として、以下(32)~(36)の坑井掘削用プラグが提供される。
(32)拡径可能な環状のゴム部材が分解性材料から形成される前記(31)の坑井掘削用プラグ。
(33)分解性材料が、強化材を含有する前記(31)または(32)の坑井掘削用プラグ。
(34)分解性材料が、脂肪族ポリエステルである前記(31)~(33)のいずれかの坑井掘削用プラグ。
(35)脂肪族ポリエステルが、ポリグリコール酸である前記(34)の坑井掘削用プラグ。
(36)ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである前記(35)の坑井掘削用プラグ。
 本発明の更に他の側面によれば、(37)(a)温度60℃における引張強度が50MPa以上である分解性材料から形成されるマンドレル、
(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
を備える坑井掘削用プラグであって、
分解性材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%であることを特徴とする坑井掘削用プラグが提供される。
 本発明の更に他の側面による具体的な態様として、以下(38)~(42)の坑井掘削用プラグが提供される。
(38)拡径可能な環状のゴム部材が分解性材料から形成される前記(37)の坑井掘削用プラグ。
(39)分解性材料が、強化材を含有する前記(37)または(38)の坑井掘削用プラグ。
(40)分解性材料が、脂肪族ポリエステルである前記(37)~(39)のいずれかの坑井掘削用プラグ。
(41)脂肪族ポリエステルが、ポリグリコール酸である前記(40)の坑井掘削用プラグ。
(42)ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである前記(41)の坑井掘削用プラグ。
 本発明の更にまた他の側面によれば、(43)(a)温度66℃におけるせん断応力が30MPa以上である分解性材料から形成されるマンドレル、
(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
を備える坑井掘削用プラグであって、
分解性材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%であることを特徴とする坑井掘削用プラグが提供される。
 本発明の更にまた他の側面による具体的な態様として、以下(44)~(48)の坑井掘削用プラグが提供される。
(44)拡径可能な環状のゴム部材が分解性材料から形成される前記(43)の坑井掘削用プラグ。
(45)分解性材料が、強化材を含有する前記(43)または(44)の坑井掘削用プラグ。
(46)分解性材料が、脂肪族ポリエステルである前記(43)~(45)のいずれかの坑井掘削用プラグ。
(47)脂肪族ポリエステルが、ポリグリコール酸である前記(46)の坑井掘削用プラグ。
(48)ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである前記(47)の坑井掘削用プラグ。
 さらに、本発明のもう一つの側面によれば、(49)前記(1)~(48)のいずれかの坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、坑井掘削用プラグの一部または全部が分解されることを特徴とする坑井掘削方法が提供される。
 本発明によれば、(a)分解性材料から形成されるマンドレル、
(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
を備えることを特徴とする坑井掘削用プラグであることによって、高深度化など採掘条件がますます過酷なものとなっているもとで、確実に坑井孔の閉塞及びフラクチャリングを行うことができ、かつ、その除去や流路の確保を容易にすることにより坑井掘削の経費軽減や工程短縮ができるという効果が奏される。
 また、本発明によれば、前記の坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、坑井掘削用プラグの一部または全部が分解されることを特徴とする坑井掘削方法であることにより、確実に坑井孔の閉塞及びフラクチャリングを行うことができ、かつ、その除去や流路の確保を容易にすることにより坑井掘削の経費軽減や工程短縮ができる坑井掘削方法が提供されるという効果が奏される。
本発明の坑井掘削用プラグの一具体例を示す概略図である。 図1Aの坑井掘削用プラグの拡径可能な環状のゴム部材が拡径した状態を示す概略図である。 本発明の坑井掘削用プラグの他の具体例を示す概略図である。 図2Aの坑井掘削用プラグの拡径可能な環状のゴム部材が拡径した状態を示す概略図である。
 本発明は、(a)分解性材料から形成されるマンドレル、
(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
を備えることを特徴とする坑井掘削用プラグに関する。以下、図を参照しながら説明する。
I.坑井掘削用プラグ
1.マンドレル
 本発明の坑井掘削用プラグは、(a)分解性材料から形成されるマンドレル1(以下、「(a)のマンドレル」または単に「マンドレル」ということがある。)、(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング2、2’ (以下、「(b)の1対のリング」または単に「1対のリング」ということがある。)、及び(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材3(以下、「(c)の拡径可能な環状のゴム部材」または単に「拡径可能な環状のゴム部材」ということがあり、更に「環状のゴム部材」ということがある。)を備えることを特徴とする。すなわち、本発明の坑井掘削用プラグは、マンドレルを備えるとともに、該マンドレルが分解性材料から形成されること、該マンドレルの軸方向と直交する外周面上に、少なくとも一方が分解性材料から形成される1対のリング及び少なくとも1つの拡径可能な環状のゴム部材を備え、更に所望により、スリップ4、4’及びウエッジ5、5’を備える。
 本発明の坑井掘削用プラグが備える(a)分解性材料から形成されるマンドレル1におけるマンドレルとは、通常「芯金」と称されるものであって、断面が略円形状で、断面の直径に対して長さが十分大きく、本発明の坑井掘削用プラグの強度を基本的に担保する部材である。本発明の坑井掘削用プラグに備えられるマンドレル1は、断面の直径が、坑井孔の大きさに応じて適宜選択され(坑井孔の内径より僅かに小さいことにより、坑井孔内を移動可能であり、一方、後述するように拡径可能な環状ゴム部材の拡径等により坑井孔の閉塞が可能となる程度の径の差を有する。)、その長さは、断面の直径に対して、例えば5~20倍程度であるが、これに限定されるものではない。通常、マンドレル1の断面の直径は、5~30cm程度の範囲である。
〔中空部〕
 本発明の坑井掘削用プラグに備えられるマンドレル1は、中実のものでもよいが、フラクチャリング初期の流路確保、マンドレルの重量の軽減、マンドレルの分解速度のコントロールなどの観点から、マンドレル1が、軸方向に沿う中空部を少なくとも一部に有する中空マンドレルであることが好ましい(すなわち、中空部は、マンドレルを軸方向に沿って貫通してもよいし、マンドレルを軸方向に沿って貫通しないものでもよい。)。また、流体を用いて坑井掘削用プラグ坑井内に押し込み移送する場合には、マンドレル1が、軸方向に沿う中空部を有する必要がある。マンドレル1が軸方向に沿う中空部を有するものである場合、マンドレル1の断面形状は、マンドレル1の直径(外径)及び中空部の外径(マンドレル1の内径に相当する。)を画成する2つの同心円で形成される円環状である。2つの同心円の径の比率、すなわち、マンドレル1の直径に対する中空部の外径の比率が0.7以下であることが好ましい。この比率の大小は、マンドレル1の直径に対する中空マンドレルの肉厚の比率の大小と相反する関係にあるので、その比率の上限値を定めることは、中空マンドレルの肉厚の好ましい下限値を定めることに相当するということができる。中空マンドレルの肉厚が薄すぎると、坑井掘削用プラグを坑井孔内に配置したり、坑井孔の閉塞やフラクチャリングを行うときに、中空マンドレルの強度(特に引張強度)が不足して、極端な場合には坑井掘削用プラグが損傷することがある。したがって、マンドレル1の直径に対する中空部の外径の比率は、より好ましくは0.6以下、更に好ましくは0.5以下である。
 マンドレル1の直径及び/または中空部の外径は、マンドレル1の軸方向に沿って均一でもよいが、軸方向に沿って変化するものでもよい。すなわち、マンドレル1の外径が軸方向に沿って変化することによって、マンドレル1の外周面に凸部、段部や凹部(溝部)などを有するものとしてもよい。また、中空部の外径が軸方向に沿って変化することによって、マンドレル1の内周面に凸部、段部や凹部(溝部)などを有するものとしてもよい。マンドレルの外周面及び/または内周面に有する凸部、段部や凹部(溝部)は、マンドレル1の外周面及び/または内周面に、別部材を取り付けたり固定したりするための部位として利用することができ、特に、後述するように、拡径可能な環状のゴム部材を固定するための固定部とすることができ、また、マンドレル1が中空部を有する場合、流体の流れを制御するために使用するボールを保持する座面とすることができる。
〔分解性材料〕
 本発明の坑井掘削用プラグに備えられるマンドレル1は、分解性材料から形成されるものである。分解性材料とは、例えば、フラクチャリング流体が使用される土壌中の微生物によって分解される生分解性、または、フラクチャリング流体中の溶媒、特に、水によって、更に所望により酸またはアルカリによって分解する加水分解性を有する分解性材料などがあるが、更に他の何らかの方法によって化学的に分解することができる分解性材料であってもよい。好ましくは、所定温度以上の水によって分解する加水分解性材料である。なお、従来坑井掘削用プラグに備えられるマンドレルとして汎用されているアルミニウム等の金属材料のように、大きな機械的な力を加えることによって、破壊、崩壊等物理的に分解する材料は、本発明の坑井掘削用プラグに備えられるマンドレル1を形成する分解性材料には該当しない。ただし、後述する分解性樹脂にみられるように、重合度の低下等により本来の樹脂が有した強度が低下して脆くなった結果、極めて小さい機械的力を加えることによって簡単に崩壊し、形状を失うような材料は、前記の分解性材料に該当する。
〔150℃72時間質量減少率〕
 本発明の坑井掘削用プラグに備えられるマンドレル1を形成する分解性材料としては、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率(以下、「150℃72時間質量減少率」ということがある。)が5~100%であることにより、ダウンホール内(深度の多様化等に付随し60℃程度~200℃程度の温度であり、近年は更に25~40℃程度の低温のダウンホール環境もある。)において、数時間~数週間以内で、マンドレル1を形成する分解性材料が分解または崩壊、更に望ましくは消失(本発明においては、総称して「分解」ということがある。)するため、マンドレル1や坑井掘削用プラグの回収や物理的な破壊などに多くの経費と時間を費やす必要がないので、炭化水素資源の回収のための経費軽減や工程短縮に寄与することができる。例えば、150℃72時間質量減少率が100%であれば、マンドレル1を温度150℃の水に72時間浸漬後には、質量が0となり、完全に消失していることを意味するので、望ましい。本発明の坑井掘削用プラグに備えられるマンドレル1は、150℃72時間質量減少率が5~100%であることによって、例えば、温度177℃(350°F)、163℃(325°F)、149℃(300°F)、121℃(250°F)、93℃(200°F)、80℃または66℃、更には25~40℃などの種々のダウンホールの温度環境において、一定時間強度を維持し、その後分解する特性を有するものである。したがって、ダウンホールの環境や工程に応じて、150℃72時間質量減少率が5~100%であるマンドレル1を形成する分解性材料から最適のものを選択することができる。
 本発明の坑井掘削用プラグに備えられるマンドレル1を形成する分解性材料は、当初の質量(「温度150℃の水に浸漬する前に測定した質量」をいう。)の値の大きさにもよるが、分解性(または崩壊性)がより優れる(所望の短時間で分解する。)観点から、150℃72時間質量減少率が、好ましくは10~100%、より好ましくは20~100%、更に好ましくは50~100%、特に好ましくは80~100%である。本発明のマンドレル1を形成する分解性材料は、必要に応じて、150℃72時間質量減少率が100%であって、温度93℃または66℃などの種々の温度の水に72時間浸漬後の質量の当初の質量に対する減少率が、例えば20%以下、10%以下、更には5%未満であるように設計・調製することもできる。
 マンドレル1を形成する分解性材料の150℃72時間質量減少率の測定方法は以下のとおりである。すなわち、マンドレル1から直接、または、マンドレル1を形成するための予備成形品等から、厚み、長さ及び幅各20mmに切り出した試料を、温度150℃の水(脱イオン水等)400mL中に浸漬し、72時間経過後に取り出した後に測定した試料の質量と、予め温度150℃の水に浸漬する前に測定した試料の質量(「当初の質量」)とを比較して、当初の質量に対する減少率(単位:%)を算出する。
〔水に浸漬後の厚み減少〕
 また、本発明の坑井掘削用プラグにおいて分解性材料から形成されるマンドレル1は、温度66℃の水に1時間浸漬後の厚み減少が5mm未満であって、温度149℃の水に24時間浸漬後の厚み減少が10mm以上であることが好ましい。すなわち、マンドレル1は、温度66℃の水に1時間浸漬後の厚み減少が5mm未満、より好ましくは4mm未満、更に好ましくは3mm未満であることにより、温度66℃程度のダウンホール環境下においては、マンドレル1を形成する分解性材料が分解(先に説明したように、崩壊や強度の低下であってもよい。)する蓋然性が小さいので、マンドレル1の形状及び大きさがほぼ完全に維持され、また、マンドレル1の軸方向と直交する外周面に取り付けられる1対のリングその他の部材との係合が確実に維持される。したがって、流体によりマンドレル1の軸方向に向かう大きな圧力を受けるフラクチャリング等の坑井処理を、例えば数時間~数日間という所望の時間スケジュールに従って、確実に実施することができる。同時に、マンドレル1が、温度149℃の水に24時間浸漬後の厚み減少が10mm以上、より好ましくは12mm以上、更に好ましくは15mm以上であることにより、フラクチャリング等の坑井処理が終了した後には、例えば温度149℃のような流体にマンドレル1を接触するようにすれば、短時間、例えば数時間~数日間~数週間で、マンドレル1を形成する分解性材料が分解(先に説明したように、崩壊や強度の低下であってもよい。)して、坑井掘削用プラグの分解を促進することができる。
〔分解性樹脂〕
 本発明の坑井掘削用プラグに備えられるマンドレル1を形成する分解性材料としては、高深度地下の高温高圧の環境において所期の強度を有すると同時に、分解性に優れることが求められ、分解性樹脂が好ましい。分解性樹脂とは、先に説明した生分解性、加水分解性、更にその他の方法によって化学的に分解することができる樹脂を意味する。分解性樹脂としては、例えば、ポリ乳酸、ポリグリコール酸、ポリ-ε-カプロラクトン等の脂肪族ポリエステルやポリビニルアルコール(ケン化度80~95モル%程度の部分ケン化ポリビニルアルコールなど)などが挙げられるが、より好ましくは脂肪族ポリエステルである。すなわち、分解性材料は、脂肪族ポリエステルであることが好ましい。分解性樹脂は、単独でまたは2種以上をブレンド等により組み合わせて使用することもできる。
〔脂肪族ポリエステル〕
 脂肪族ポリエステルは、例えば、オキシカルボン酸及び/またはラクトンの単独重合または共重合、脂肪族ジカルボン酸と脂肪族ジオールとのエステル化反応、脂肪族ジカルボン酸と、脂肪族ジオールと、オキシカルボン酸及び/またはラクトンとの共重合により得られる脂肪族ポリエステルであり、温度20~100℃程度の水に速やかに溶解するものが好ましい。
 オキシカルボン酸としては、グリコール酸、乳酸、リンゴ酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸、ヒドロキシオクタン酸等の炭素数2~8の脂肪族ヒドロキシカルボン酸などが挙げられる。
 ラクトンとしては、プロピオラクトン、ブチロラクトン、バレロラクトン、ε-カプロラクトン等の炭素数3~10のラクトンなどが挙げられる。
 脂肪族ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸等の炭素数2~8の脂肪族飽和ジカルボン酸、マレイン酸、フマル酸等の炭素数4~8の脂肪族不飽和ジカルボン酸などが挙げられる。
 脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール等の炭素数2~6のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等の炭素数2~4のポリアルキレングリコールなどが挙げられる。
 これらのポリエステルを形成する成分は、それぞれ単独でまたは2種以上組み合わせて使用することもできる。また、分解性樹脂としての性質を失わない限り、テレフタル酸等の芳香族であるポリエステルを形成する成分を組み合わせて使用することもできる。
 特に好ましい脂肪族ポリエステルとしては、ポリ乳酸(以下、「PLA」ということがある。)やポリグリコール酸(以下、「PGA」ということがある。)等のヒドロキシカルボン酸系脂肪族ポリエステル;ポリ-ε-カプロラクトン(以下、「PCL」ということがある。)等のラクトン系脂肪族ポリエステル;ポリエチレンサクシネートやポリブチレンサクシネート等のジオール・ジカルボン酸系脂肪族ポリエステル;これらの共重合体、例えば、グリコール酸・乳酸共重合体(以下、「PGLA」ということがある。);並びに、これらの混合物;などが挙げられる。また、ポリエチレンアジペート/テレフタレート等の芳香族成分を組み合わせて使用する脂肪族ポリエステルを挙げることもできる。
 坑井掘削用プラグに備えられるマンドレルに求められる強度や分解性の観点から、脂肪族ポリエステルが、PGA、PLA及びPGLAからなる群より選ばれる少なくとも1種であることが最も好ましく、PGAが更に好ましい。なお、PGAとしては、グリコール酸の単独重合体のほかに、グリコール酸繰り返し単位を50質量%以上、好ましくは75質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは95質量%以上、最も好ましくは99質量%以上であり、とりわけ好ましくは99.5質量%以上有する共重合体を包含する。また、PLAとしては、L-乳酸またはD-乳酸の単独重合体のほかに、L-乳酸またはD-乳酸の繰り返し単位を50質量%以上、好ましくは75質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上有する共重合体を包含する。PGLAとしては、グリコール酸繰り返し単位と乳酸繰り返し単位の比率(質量比)が、99:1~1:99、好ましくは90:10~10:90、より好ましくは80:20~20:80である共重合体を使用することができる。
(溶融粘度)
 脂肪族ポリエステル、好ましくはPGA、PLAまたはPGLAとしては、温度240℃、せん断速度122sec-1において測定した溶融粘度が通常50~5000Pa・s、好ましくは150~3000Pa・s、より好ましくは300~1500Pa・sであるものを使用することができる。溶融粘度が小さすぎると、坑井掘削用プラグに備えられるマンドレルに求められる強度が不足する場合がある。溶融粘度が大きすぎると、例えば、マンドレルを製造するために高い溶融温度が必要となり、脂肪族ポリエステルが熱劣化するおそれがあったり、分解性が不十分となったりすることがある。前記の溶融粘度は、キャピラリー(直径1mmφ×長さ10mm)を装着したキャピログラフ(株式会社東洋精機製作所製の「キャピログラフ1-C」)を使用して、PGAの試料約20gを所定温度にて5分間保持した後、せん断速度122sec-1の条件で測定を行うものである。
 特に好ましい脂肪族ポリエステルであるPGAとしては、例えば固化押出成形により成形を行う際に割れが生じにくいなどの成形性等の観点から、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sであるPGAがより好適である。中でも好ましいPGAは、重量平均分子量が190000~240000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が800~1200Pa・sであるPGAである。溶融粘度は、先に説明した方法に準じて測定するものである。前記の重量平均分子量は、10mgのPGAの試料を、トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたヘキサフルオロイソプロパノール(HFIP)に、溶解させて10mLとした後、メンブレンフィルタ―で濾過して得た試料溶液の10μlを使用して、下記条件でゲルパーミエーションクロマトグラフィー(GPC)により測定するものである。
<GPC測定条件>
装置:株式会社島津製作所製のShimazu LC-9A
カラム:昭和電工株式会社製のHFIP-806M 2本(直列接続)+プレカラム:HFIP-LG 1本
カラム温度:40℃
溶離液:トリフルオロ酢酸ナトリウムを5mMの濃度で溶解させたHFIP溶液
流速:1mL/分
検出器:示差屈折率計
分子量校正:分子量の異なる標準分子量のポリメタクリル酸メチル5種(POLYMER LABORATORIES Ltd.製)を用いて作成した分子量の検量線データを使用。
〔他の配合成分〕
 分解性材料、好ましくは分解性樹脂、より好ましくは脂肪族ポリエステル、更に好ましくはPGAには、本発明の目的を阻害しない範囲で、更に他の配合成分として、樹脂材料(分解性材料が分解性樹脂である場合は、他の樹脂)や、安定剤、分解促進剤または分解抑制剤、強化材等の各種添加剤を含有させ、または配合してもよい。分解性材料が、強化材を含有することが好ましく、この場合、分解性材料は、複合材ということができる。分解性材料が、分解性樹脂である場合は、いわゆる強化樹脂である。強化樹脂から形成されるマンドレルは、好ましくは、強化材を含有する脂肪族ポリエステルから形成されるものである。
〔強化材〕
 強化材としては、従来、機械的強度や耐熱性の向上を目的として樹脂材料等の強化材として使用されている材料を使用することができ、繊維状強化材や、粒状または粉末状強化材を使用することができる。強化材は、分解性樹脂等の分解性材料100質量部に対して、通常150質量部以下、好ましくは10~100質量部の範囲で含有させることができる。
 繊維状強化材としては、ガラス繊維、炭素繊維、アスベスト繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリ繊維等の無機繊維状物;ステンレス、アルミニウム、チタン、鋼、真鍮等の金属繊維状物;アラミド繊維、ケナフ繊維、ポリアミド、フッ素樹脂、ポリエステル樹脂、アクリル樹脂等の高融点有機質繊維状物質;などが挙げられる。繊維状強化材としては、長さが10mm以下、より好ましくは1~6mm、更に好ましくは1.5~4mmである短繊維が好ましく、また、無機繊維状物が好ましく使用され、ガラス繊維が特に好ましい。
 粒状または粉末状強化材としては、マイカ、シリカ、タルク、アルミナ、カオリン、硫酸カルシウム、炭酸カルシウム、酸化チタン、フェライト、クレー、ガラス粉、酸化亜鉛、炭酸ニッケル、酸化鉄、石英粉末、炭酸マグネシウム、硫酸バリウム等を用いることができる。強化材は、それぞれ単独で、または2種以上を組み合わせて使用することができる。強化材は、必要に応じて、集束剤または表面処理剤により処理されていてもよい。
〔60℃引張強度〕
 本発明の坑井掘削用プラグに備えられるマンドレル1は、温度60℃における引張強度(以下、「60℃引張強度」ということがある。)が50MPa以上である分解性材料から形成されるものであることが好ましい。したがって、(a)60℃引張強度が50MPa以上である分解性材料から形成されるマンドレルは好ましい態様であり、また、(a)60℃引張強度が50MPa以上である分解性材料から形成され、温度66℃の水に1時間浸漬後の厚み減少が5mm未満であって、温度149℃の水に24時間浸漬後の厚み減少が10mm以上であるマンドレルも好ましい態様である。本発明の坑井掘削用プラグは、マンドレル1が60℃引張強度が50MPa以上である分解性材料からなることにより、例えば、シェールガス層において一般的である温度60℃程度の環境下や、更には、地下3000mを超える高深度の地中など、温度100℃を超えるような高温度環境下において、マンドレル1にかかる引張応力に耐えられる十分な強度を有することができる。マンドレル1を形成する分解性材料の60℃引張強度は、JIS K7113に準拠して測定するものであり、試験温度を60℃とするために、試験片をオーブン内に静置して測定を行う(単位:MPa)。マンドレル1を形成する分解性材料の60℃引張強度は、好ましくは75MPa以上、より好ましくは100MPa以上である。マンドレル1を形成する分解性材料を60℃引張強度が50MPa以上であるものとするためには、分解性材料、例えば分解性樹脂の種類や特性(溶融粘度や分子量等)、強化材等の添加剤の種類や特性、添加量などを調整したりする方法によることができる。60℃引張強度の上限は、特に制限されないが、通常1000MPaであり、多くの場合750MPaである。
〔温度66℃におけるせん断応力〕
 また、本発明の坑井掘削用プラグのマンドレル1は、温度66℃におけるせん断応力が30MPa以上である分解性材料から形成されるものであることが好ましい。したがって、(a)温度66℃におけるせん断応力が30MPa以上である分解性材料から形成されるマンドレルは好ましい態様である。すなわち、マンドレル1が、温度66℃におけるせん断応力が30MPa以上の分解性材料から形成されることによって、マンドレル1の引張及び/または圧縮を行うための治具との係合部(例えばマンドレルのねじ部や拡径部)や、フラクチャリング流体等によりマンドレルの軸方向に向かう大きな圧力を受けるときのマンドレル1の軸方向と直交する外周面に取り付けられる1対のリングその他の部材との係合部の係合が確実に維持されるようにすることができる。係合部の耐荷重は、該係合部を構成する材料のうち、該係合部が存在する温度環境におけるせん断応力が小さい材料のせん断応力の大きさと、係合部の面積に依存するが、マンドレル1を、温度66℃におけるせん断応力が30MPa以上である分解性材料から形成することにより、温度66℃における係合部の耐荷重を十分大きなものとすることができる。その結果、流体によりマンドレル1の軸方向に向かう大きな圧力を受けるフラクチャリング等の坑井処理を、例えば数時間~数日間という所望の時間スケジュールに従って、確実に実施することができる。マンドレル1を形成する分解性材料の温度66℃におけるせん断応力は、好ましくは45MPa以上、より好ましくは60MPa以上である。分解性材料の温度66℃におけるせん断応力は、特に上限値がないが、通常600MPa以下、多くの場合450MPa以下である。
〔温度66℃における引張耐荷重〕
 本発明の坑井掘削用プラグのマンドレル1は、温度66℃における引張耐荷重が5kN以上であることが好ましく、したがって、温度66℃における引張耐荷重が5kN以上となるように分解性材料が選択され、デザインされたものであることが好ましい。本発明の坑井掘削用プラグを稼働させる、すなわち、拡径可能な環状のゴム部材、更に好ましくはスリップを拡径させて機能を発現させるためには、通常、マンドレル1に対して、マンドレル1の軸方向と直交する外周面上に取り付けられる部材を、図1A~図2Bに示すリング2’側に押し込むように荷重を作用させるので、マンドレル1には約20~1000kN、多くの場合、約25~800kNの高い引張荷重がかかる。また、マンドレル1の両端部にはマンドレル1の引張及び/または圧縮を行うための治具を係合することができるようにねじ部や拡径部等を備えることがあるが、それらねじ部や拡径部等(治具との係合部)には、デザインの設計に応じて2~5倍の応力集中が起こる場合もある。そこで、マンドレル1としては、こうした高荷重に耐えられる強度を有する材料(分解性材料である。)を選択し、かつ、デザインについても応力集中が小さくなるようにする必要がある。また、フラクチャリング流体等によりマンドレルの軸方向に向かう大きな圧力を受けるときには、マンドレル1の軸方向と直交する外周面に取り付けられる1対のリングその他の部材との係合部にも高荷重がかかるので、同様の材料選択とデザインが必要である。マンドレル1の温度66℃における引張耐荷重は、高荷重に十分耐える観点から、より好ましくは15kN以上、更に好ましくは30kN以上、特に好ましくは40kN以上である。マンドレル1の温度66℃における引張耐荷重は、上限値が特にないが、分解性を有する材料の選択の観点から、通常1500kN以下、多くの場合1200kN以下である。
〔固定部〕
 先に説明したように、マンドレル1は、外周面に、凸部、段部や凹部(溝部)などを有するものとすることができ、マンドレル1の外周面に、別部材を取り付けたり固定したりするための部位として利用することができ、特に、拡径可能な環状のゴム部材3を固定するための固定部とすることができる。
 後に詳述するように、本発明の坑井掘削用プラグは、(c)マンドレル1の軸方向と直交する外周面上であって、1対のリング2、2’の間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材3を備える。拡径可能な環状のゴム部材3は、マンドレル1の軸方向に圧縮されて縮径することに伴い、軸方向と直交する方向に拡径する。該環状のゴム部材3は、拡径して、軸方向と直交する方向の外方部が坑井孔の内壁Hと当接するとともに、軸方向と直交する方向の内方部がマンドレル1の外周面に当接することにより、プラグと坑井孔との間の空間を閉塞(シール)する。次いで、フラクチャリングが遂行されている間、プラグと坑井孔とのシールが維持されることが必要なので、(c)の拡径可能な環状のゴム部材3を、圧縮状態のまま、すなわち、マンドレル1の軸方向に圧縮された状態で、かつ、マンドレル1の軸方向と直交する方向に拡径した状態で、何らかの手段により保持することが必要である。
 マンドレル1は、外周面に、凸部、段部や凹部(溝部)などを有するものとすることができるので、本発明の坑井掘削用プラグに備えられるマンドレル1は、外周面に拡径可能な環状のゴム部材3を圧縮状態のまま固定する固定部を有するものであることが好ましい。この固定部は、先に説明した凸部、段部や凹部(溝部)でもよいし、ねじ部その他の、マンドレル1の外周面に拡径可能な環状のゴム部材3を圧縮状態のまま固定することができる手段を採用することができる。加工や成形の容易さや強度などの観点から、固定部は、溝、段部及びねじ山からなる群より選ばれる少なくとも1つであることがより好ましい。
〔加工部分〕
 マンドレル1の外周面及び/または内周面に有する凸部、段部や凹部(溝部)、更にはねじ部など、マンドレルの厚み、外径及び内径等が変化する部分(以下、「加工部分」ということがある。)は、本発明の坑井掘削用プラグを坑井孔内に配置したり、坑井孔の閉塞やフラクチャリングを行ったりするときに、応力集中する箇所である。一般に、加工部分の曲率半径が小さいと、応力集中が大きくなるので、坑井掘削用プラグ、特にマンドレル1の強度(特に引張強度)を十分なものとするために、マンドレル1の外周面の加工部分の曲率半径が0.5mm以上であることが好ましく、1.0mm以上であることがより好ましい。
〔金属保護〕
 本発明の坑井掘削用プラグが備える分解性材料から形成されるマンドレル1は、所望により、外周面の一部を金属で保護されているものとしてもよい。すなわち、マンドレル1の外周面が、金属で保護されている箇所を有するものであることにより、分解性材料から形成されるマンドレル1の所望の箇所について、分解性や強度を調整することができ、また、マンドレル1に取り付けたり固定したりしている別部材との結合強度を高めることができるので好ましい。外周面を保護するために使用される金属は、坑井掘削用プラグが備えるマンドレル1を形成するために使用される材料やその補強等のために使用されている金属などであり、特に制限されないが、具体的には、アルミニウム、鉄、ニッケルなどが挙げられる。
2.リング
 本発明の坑井掘削用プラグは、(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング2、2’を備えることを特徴に有する。1対のリング2、2’は、マンドレル1の軸方向と直交する外周面上に置かれた、拡径可能な環状のゴム部材3、及び、所望により置かれるスリップ4とウエッジ5との組み合わせ(図1A及び図1Bにおいては、スリップ4、4’とウエッジ5、5’との組み合わせ)に対して、マンドレル1の軸方向の力を加えるために備えられるものである。すなわち、(b)の1対のリング2、2’は、マンドレル1の外周面上においてマンドレル1の軸方向に沿って摺動が可能で、相互の間隔を変更することができるように構成されており、かつ、拡径可能な環状のゴム部材3、及び/または、所望により置かれるスリップ4、4’とウエッジ5、5’との組み合わせの軸方向に沿う端部に、直接または間接的に当接することにより、これらにマンドレル1の軸方向の力を加えることができるように構成されている。
 1対のリング2、2’の各々のリングの形状や大きさは、上記した機能を果たすことができる限り、特に制限されないが、拡径可能な環状のゴム部材3、及び/または、所望により置かれるスリップ4、4’とウエッジ5、5’との組み合わせに対して、マンドレル1の軸方向の力を有効に加えることができる観点から、リングのこれらに当接する側の端面を平面状とすることが好ましい。1対のリング2、2’の各々のリングは、マンドレル1の外周面を完全に取り囲む円環状のものが好ましいが、周方向に切れ目や変形箇所を有するものでもよい。また、円環を周方向に分離した形状のものとして、所望により円環を形成するようにしたものでもよい。1対のリング2、2’の各々のリングは、複数のリングを軸方向に隣接して置くことにより、幅広の(マンドレル1の軸方向の長さが大きい。)リングとすることもできる。さらに、拡径可能な環状のゴム部材3、及び/または、所望により置かれるスリップ4、4’とウエッジ5、5’との組み合わせに対して、マンドレル1の軸方向の力を有効に加えるのに寄与する部材を含めて、本発明の坑井掘削用プラグにおける(b)の1対のリング2、2’を形成するリングであるといってもよい。
 1対のリング2、2’は、同じまたは類似の形状や構造を有するものでもよいし、形状や構造が異なるものでもよい。例えば、1対のリング2、2’の各々のリングは、マンドレル1の軸方向の長さや外径が異なるものでもよい。また例えば、1対のリング2、2’の一方のリングを、所望によりマンドレル1に対して摺動することができない状態に構成することができる。この場合、1対のリング2、2’の他方のリングがマンドレル1の外周面上を摺動して、拡径可能な環状のゴム部材3、及び/または、所望により置かれるスリップ4、4’とウエッジ5、5’との組み合わせの軸方向に沿う端部に当接する。1対のリング2、2’の一方のリングを、所望によりマンドレル1に対して摺動することができない状態にする構成は、特に制限されないが、例えば、マンドレル1と、1対のリング2、2’の一方のリングとが一体に形成されているものとしたり(この場合は、当該リングは、マンドレル1に対して常時摺動することができない。)、ドッグクラッチ等のクラッチ構造やはめ合い構造を利用するものとしたり(この場合は、マンドレル1に対して摺動する状態と摺動することができない状態とを切り替えることができる。)することができる。マンドレル1と、1対のリング2、2’の一方のリングとが一体に形成されている坑井掘削用プラグとしては、一体成形により形成される坑井掘削用プラグ、または、機械加工により形成される坑井掘削用プラグが提供される。
 さらにまた、本発明の坑井掘削用プラグは、(b)の1対のリング2、2’を複数対備えるものでもよい。この場合、拡径可能な環状のゴム部材3、及び/または、所望により置かれるスリップ4、4’とウエッジ5、5’との組み合わせの、それぞれの1つ以上を別々にまたは組み合わせて、複数対のリングの間の位置に置かれるようにすることもできる。
〔分解性材料〕
 (b)の1対のリング2、2’は、少なくとも一方のリングが分解性材料から形成されるものであり、両方のリングが分解性材料から形成されるものであることが好ましい。1対のリング2、2’の少なくとも一方のリングを形成する分解性材料としては、先に(a)のマンドレル1について説明したのと同様の分解性材料を使用することができる。したがって、1対のリング2、2’の少なくとも一方を形成する分解性材料は、好ましくは分解性樹脂であり、より好ましくは脂肪族ポリエステル、更に好ましくはポリグリコール酸である。また、分解性材料は、強化材を含有するものであってもよく、特に、強化材を含有する脂肪族ポリエステルから形成されるものとすることもでき、温度66℃におけるせん断応力が30MPa以上である分解性材料から形成されることが好ましく、45MPa以上、更には60MPa以上である分解性材料から形成されることがより好ましい。
 (b)の1対のリング2、2’の両方のリングが分解性材料から形成されるものである場合、分解性材料の樹脂の種類や組成は、同一でもよいし、異なるものでもよい。1対のリング2、2’が、一方が分解性材料から形成されるものである場合、他方のリングを形成する材料としては、アルミニウム、鉄等の金属や強化樹脂等の複合材を使用することができる。
3.拡径可能な環状のゴム部材
 本発明の坑井掘削用プラグは、(c)マンドレル1の軸方向と直交する外周面上であって、1対のリング2、2’の間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材3を備えることを特徴に有する。拡径可能な環状のゴム部材3は、1対のリング2、2’に直接または間接的に当接することにより、マンドレル1の外周面上においてマンドレル1の軸方向の力を伝達され、その結果、マンドレル1の軸方向に圧縮されて縮径することに伴い、軸方向と直交する方向に拡径する。該環状のゴム部材3は、拡径して、軸方向と直交する方向の外方部が坑井孔の内壁Hと当接するとともに、軸方向と直交する方向の内方部がマンドレル1の外周面に当接することにより、プラグと坑井孔との間の空間を閉塞(シール)するものである。拡径可能な環状のゴム部材3は、次いでフラクチャリングが遂行されている間、坑井孔の内壁H及びマンドレル1の外周面と当接状態を維持することができ、プラグと坑井孔とのシールを維持する機能を有するものである。
 (c)の拡径可能な環状のゴム部材3は、上記した機能を有するものである限り、その材料、形状及び構造に制限はない。例えば、マンドレル1の軸方向に直交する周方向の断面が逆U字形の形状を有する環状のゴム部材3とすることにより、U字の先端部分がマンドレル1の軸方向に圧縮されるのに伴って逆U字形の頂点部に向かうように拡径することができる。
 拡径可能な環状のゴム部材3は、拡径したときに坑井孔の内壁H及びマンドレル1の外周面に当接してプラグと坑井孔との間の空間を閉塞(シール)するとともに、拡径しないときにはプラグと坑井孔との間に空隙が存在するものであることから、拡径可能な環状のゴム部材3は、マンドレル1の軸方向の長さが、マンドレル1の長さに対して、好ましくは10~70%、より好ましくは15~65%であり、これにより、本発明の坑井掘削用プラグは、十分なシール機能とを有するとともに、シール後には坑井孔とプラグとの固定補助の機能を果たすことができる。
 本発明の坑井掘削用プラグは、拡径可能な環状のゴム部材3を複数備えることができ、これによりプラグと坑井孔との間の空間を複数の位置で閉塞(シール)することができ、また、坑井孔とプラグとの固定補助の機能をより確実に果たすことができる。なお、本発明の坑井掘削用プラグが、拡径可能な環状のゴム部材3を複数備える場合、先に説明した拡径可能な環状のゴム部材3のマンドレル1の軸方向の長さとは、複数の拡径可能な環状のゴム部材3のマンドレル1の軸方向の長さの合計を意味する。本発明の坑井掘削用プラグは、拡径可能な環状のゴム部材3を複数備える場合、複数の拡径可能な環状のゴム部材3は、同一の材料、形状または構造を有するものでもよいし、それらが異なるものでもよい。また、複数の拡径可能な環状のゴム部材3を、前記した1対のリング2、2’の間の位置に、隣接してまたは離隔して置かれたものとしてもよいし、複数の1対のリング2、2’の各々の対の間の位置に置かれたものとしてもよい。
 拡径可能な環状のゴム部材3は、例えば、積層ゴムなど複数のゴム部材から形成される構造のゴム部材であってもよい。また、拡径したときにプラグと坑井孔との間の空間の閉塞(シール)や坑井孔とプラグとの固定補助を一層確実なものとするために、坑井孔の内壁Hとの当接部に、1以上の溝、凸部、粗面(ギザギザ)などを設けてもよい。
 拡径可能な環状のゴム部材3は、高深度地下の高温高圧の環境下において、フラクチャリングに伴う一層の高圧やフラクチャリング流体との接触によっても、シール機能の喪失が生じないことが求められる。そのために耐熱、耐油及び耐水性に優れたゴム材料が好ましく、例えば、ニトリルゴム、水素化ニトリルゴム、アクリルゴム等を使用することができる。
〔分解性材料〕
 さらに、(c)の拡径可能な環状のゴム部材3が分解性材料から形成されるものとすることもできる。分解性材料であるゴムとしては、先に説明したように、生分解性、加水分解性または更に他の何らかの方法によって化学的に分解することができる分解性のゴムとして、従来知られている材料を使用することができる。例えば、脂肪族ポリエステル系ゴム、ポリウレタンゴム、天然ゴム、ポリイソプレン等が挙げられる。
4.スリップ及びウエッジ
 本発明の坑井掘削用プラグは、更に所望により、(a)のマンドレル1の軸方向と直交する外周面上であって、1対のリング2、2’の間の位置に置かれた、少なくとも1つのスリップ4(slip)とウエッジ(wedge)5との組み合わせを備えるものとすることができる。スリップ4とウエッジ5との組み合わせは、プラグと坑井孔との固定を行う手段として、坑井掘削用プラグにおいてそれ自体周知のものである。すなわち、金属、無機物等により形成されるスリップ4が複合材等により形成されるウエッジ5の斜面の上面に摺動可能に接触して置かれ、ウエッジ5に、既に説明した方法によりマンドレル1の軸方向の力が加えられることにより、スリップ4がマンドレルの軸方向と直交する外方に移動し、坑井孔の内壁Hに当接して、プラグと坑井孔の内壁Hとの固定を行う。スリップ4には、プラグと坑井孔との間の空間の閉塞(シール)を一層確実なものとするために、坑井孔の内壁Hとの当接部に、1以上の溝、凸部、粗面(ギザギザ)などを設けてもよい。また、スリップ4は、予めマンドレル1の軸方向に直交する円周方向において所定の数に分割されているものでもよいし、図1A及び図1Bに示すように、予め所定の数に分割されてはおらず、軸方向に沿う一端部から他端部に向かい途中で終了する切れ目を有するものでもよい(この場合は、ウエッジ5にマンドレル1の軸方向の力が加えられて、ウエッジ5がスリップ4の下面に進入することにより、スリップ4が、前記の切れ目及びその延長線に沿って割られて分割し、次いで各分割片がマンドレル1の軸方向と直交する外方に移動する。)。
 本発明の坑井掘削用プラグにおいて、スリップ4とウエッジ5との組み合わせは、マンドレル1の軸方向の力を加えることができるように、1対のリング2、2’の間の位置に置かれるものであり、拡径可能な環状のゴム部材3と隣接して置かれるものとすることができる。本発明の坑井掘削用プラグは、図1A及び図1Bに示すように、スリップ4とウエッジ5との組み合わせを複数備えるものとすることができ、その場合、拡径可能な環状のゴム部材3を挟むように隣接して置かれてもよいし、その他の配置で置かれてもよい。本発明の坑井掘削用プラグが、拡径可能な環状のゴム部材3を複数備えるものである場合は、スリップ4、4’とウエッジ5、5’との組み合わせの配置は、所望により適宜選択することができる。
〔分解性材料〕
 本発明の坑井掘削用プラグがスリップ4、4’とウエッジ5、5’との組み合わせを備える場合、スリップ4、4’またはウエッジ5、5’の一方または両方を、分解性材料から形成されるものとしてもよく、また、スリップ4、4’またはウエッジ5、5’の一方または両方を、強化材を含有する複合材(強化樹脂)としてもよい。さらに、分解性材料に対して金属や無機物の部材を組み込んだものでもよい。分解性材料または強化材としては、既に説明した材料を使用することができる。
 したがって、スリップ4、4’またはウエッジ5、5’の一方または両方は、分解性材料から形成されたものでもよいし、従来と同様に、金属または無機物の少なくとも一方を含有する材料から形成されたものでもよい。さらに、スリップ4、4’またはウエッジ5、5’ の一方または両方は、分解性材料に対して金属や無機物の部材を組み込んだもの、すなわち、分解性材料と、金属または無機物の少なくとも一方を含有する材料とから形成されたもの(分解性材料と金属または無機物の複合材)でもよい。
 分解性材料と金属または無機物の複合材であるスリップ4、4’ またはウエッジ5、5’の具体例としては、PGAを始めとする分解性樹脂等の分解性材料からなる母材に、所定形状の窪みを設け、窪みの形状に合致する形状の金属(金属片等)または無機物をはめ込んで、これらを接着剤で固定したり、金属片や無機物と母材が固定状態を維持できるように針金、繊維等を巻きつけて固定したりしてなるスリップ4、4’ またはウエッジ5、5’が挙げられる。このスリップ4、4’とウエッジ5、5’との組み合わせは、作動時において、スリップ4、4’の母材が、ウェッジ5、5’の上部に乗り上げることにより、金属片や無機物が坑井孔の内壁Hに接することで、坑井内に坑井掘削用プラグを固定する機能を有するものである。
〔スリップ及びウエッジを備えない坑井掘削用プラグ〕
 以上のとおり、本発明の坑井掘削用プラグは、マンドレル1、1対のリング2、2’、拡径可能な環状のゴム部材3並びにスリップ4、4’とウエッジ5、5’との組み合わせが、分解性材料から形成されるものとすることができる。一方、本発明の坑井掘削用プラグは、図2A及び図2Bに示すように、マンドレル1の外周面上に、スリップ4及びウエッジ5を備えないものとすることができる。すなわち、従来スリップ4及びウエッジ5としては、強度等の観点から金属や複合材が使用されることが多かったが、本発明の坑井掘削用プラグは、分解性材料から形成される(a)のマンドレル1及び(b)の1対のリング2、2’、並びに、(c)の拡径可能な環状のゴム部材3を備えることにより、坑井掘削用プラグに所望される強度(引張強度等)及びプラグと坑井孔との閉塞性能を有し、かつ分解性に優れる坑井掘削用プラグを提供することができるので、分解性がない金属や複合材が汎用されるスリップ4及びウエッジ5を備えないものとすることにより、坑井掘削用プラグの構造を簡素なものとするとともに、坑井掘削用プラグの全体としての分解性を一層高いものとすることができる。
5.坑井掘削用プラグ
 本発明の坑井掘削用プラグは、(a)分解性材料から形成されるマンドレル1、(b)少なくとも一方が分解性材料から形成され、マンドレル1の軸方向と直交する外周面上に置かれた1対のリング2、2’、及び(c)マンドレル1の軸方向と直交する外周面上であって、1対のリング2、2’の間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材3を備えることを特徴とする坑井掘削用プラグである。本発明の坑井掘削用プラグは、既に説明したスリップ4とウエッジ5との組み合わせその他の、通常坑井掘削用プラグに備えられることがある部材を備えることができる。例えば、(a)のマンドレル1が、軸方向に沿う中空部を有する場合、中空部に置かれ、流体の流れを制御するボール(金属、樹脂等の材料から形成され、分解性材料から形成されてもよい。)を備えることができる。また、坑井掘削用プラグ及び/またはその部材を、それぞれまたは他の部材に結合したり開放したりするための部材、例えば、回転止め部材などを備えることができる。本発明の坑井掘削用プラグは、そのすべてを分解性材料から形成されるものとすることもできる。
〔坑井孔の閉塞〕
 本発明の坑井掘削用プラグは、1対のリング2、2’にマンドレル1の軸方向の力を加えることにより、拡径可能な環状のゴム部材3にマンドレル1の軸方向の力を伝達し、その結果、拡径可能な環状のゴム部材3がマンドレル1の軸方向に圧縮されることに伴い軸方向と直交する方向に拡径して、坑井孔の内壁Hと当接し、プラグと坑井孔との間の空間を閉塞(シール)することができる(坑井孔の閉塞)。次いで、プラグと坑井孔との間の空間を閉塞(シール)した状態で、フラクチャリングを行うことができる。フラクチャリングが終了した後は、拡径可能な環状のゴム部材3は、拡径した状態のまま坑井孔内に残置され、所望により備えられるスリップ4、4’とウエッジ5、5’との組み合わせと共同することにより、坑井掘削用プラグを坑井孔の所定位置に固定することができる。なお、坑井掘削用プラグの部材が短時間で分解してしまうような高温環境にあるダウンホール内において、上記した閉塞(シール)等を行う場合には、地上から流体を注入して(cooldown injection)、坑井掘削用プラグの周辺温度を低下させた状態にコントロールすることによって、所望の時間、シール性能(強度等)を維持するような処理方法を採用することができる。
〔坑井掘削用プラグの分解〕
 本発明の坑井掘削用プラグは、所定の諸区画のフラクチャリングが終了した後、通常は、坑井の掘削が終了して坑井が完成し、石油や天然ガス等の生産を開始するときに、生分解、加水分解または更に他の何らかの方法による化学的な分解により、少なくとも(a)のマンドレル1及び(b)の1対のリング2、2’を、所望によっては更に(c)の拡径可能な環状のゴム部材3を、容易に分解して除去することができる。したがって、本発明の坑井掘削用プラグによれば、従来、坑井完成後に、坑井内に残置されていた多数の坑井掘削用プラグを除去、回収したり、破砕、穿孔その他の方法によって、破壊したり、小片化したりするために要していた多くの経費と時間が不要となるので、坑井掘削の経費軽減や工程短縮ができる。なお、坑井処理が終了した後に残存する坑井掘削用プラグの部材は、生産を開始するまでに完全に消失していることが好ましいが、完全に消失していないとしても、強度が低下してダウンホール中の水流等の刺激により崩壊するような状態となれば、崩壊した坑井掘削用プラグの部材は、フローバックなどにより容易に回収することができ、ダウンホールやフラクチャに目詰まりを生じさせることがないので、石油や天然ガス等の生産障害となることがない。また通常、ダウンホールの温度が高い方が、短時間で坑井掘削用プラグの部材の分解や強度低下が進行する。なお、坑井によっては地層中の含水量が低いことがあり、その場合にはフラクチャリング時に使用した水ベースの流体を、フラクチャリング後に回収することなく坑井中に残留させることで、坑井掘削用プラグの分解を促進させることができる。
II.坑井掘削用プラグの製造方法
 本発明の坑井掘削用プラグは、(a)のマンドレル、(b)の1対のリング、及び(c)の拡径可能な環状のゴム部材を備えることを特徴とする坑井掘削用プラグを製造することができる限り、その製造方法は限定されない。例えば、射出成形、押出成形(固化押出成形を含む。)、遠心成形、圧縮成形その他の公知の成形方法により、坑井掘削用プラグに備えられる各部材を成形し、得られた各部材を、必要に応じて切削加工や穿孔等の機械加工した後に、それ自体公知の方法によって組み合わせて、坑井掘削用プラグを得ることができる。
 本発明の坑井掘削用プラグが、マンドレルと、1対のリングの一方のリングとが一体に形成されている坑井掘削用プラグである場合、射出成形、押出成形(固化押出成形を含む。)、遠心成形等の成形方法による一体成形により、または、切削加工等の機械加工により、マンドレルと、1対のリングの一方のリングとを一体に形成することが好ましい。
III.坑井掘削方法
 本発明の坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、坑井掘削用プラグの一部または全部を分解する坑井掘削方法によれば、所定の諸区画のフラクチャリングが終了し、または、坑井の掘削が終了して坑井が完成し、石油や天然ガス等の生産を開始するときには、生分解、加水分解または更に他の何らかの方法による化学的な分解により、少なくともマンドレル及び1対のリングを、所望によっては更に拡径可能な環状のゴム部材を、容易に分解して除去することができる。この結果、本発明の坑井掘削方法によれば、従来、坑井完成後に、坑井内に残置されていた多数の坑井掘削用プラグを除去、回収したり、破砕、穿孔その他の方法によって、破壊したり、小片化したりするために要していた多くの経費と時間が不要となるので、坑井掘削の経費軽減や工程短縮ができる。
 本発明は、(a)分解性材料から形成されるマンドレル、
(b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
(c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
を備えることを特徴とする坑井掘削用プラグであることによって、高深度化など採掘条件がますます過酷なものとなっているもとで、確実に坑井孔の閉塞及びフラクチャリングを行うことができ、かつ、その除去や流路の確保を容易にすることにより坑井掘削の経費軽減や工程短縮ができるので、産業上の利用可能性が高い。
 また、本発明によれば、前記の坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、坑井掘削用プラグの一部または全部が分解されることを特徴とする坑井掘削方法であることにより、確実に坑井孔の閉塞及びフラクチャリングを行うことができ、かつ、その除去や流路の確保を容易にすることにより坑井掘削の経費軽減や工程短縮ができる坑井掘削方法が提供されるので、産業上の利用可能性が高い。
1   : マンドレル
2、2’: リング
3   : 拡径可能な環状のゴム部材
4、4’: スリップ
5、5’: ウエッジ
H   : 坑井孔の内壁

Claims (49)

  1.  (a)分解性材料から形成されるマンドレル、
    (b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
    (c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
    を備えることを特徴とする坑井掘削用プラグ。
  2.  マンドレルは、温度60℃における引張強度が50MPa以上である分解性材料から形成される請求項1記載の坑井掘削用プラグ。
  3.  マンドレルは、温度66℃におけるせん断応力が30MPa以上である分解性材料から形成される請求項1または2記載の坑井掘削用プラグ。
  4.  マンドレルは、温度66℃における引張耐荷重が5kN以上である請求項1乃至3のいずれか1項に記載の坑井掘削用プラグ。
  5.  マンドレルが、強化材を含有する脂肪族ポリエステルから形成される請求項1乃至4のいずれか1項に記載の坑井掘削用プラグ。
  6.  マンドレルは、温度66℃の水に1時間浸漬後の厚み減少が5mm未満であって、温度149℃の水に24時間浸漬後の厚み減少が10mm以上である請求項1乃至5のいずれか1項に記載の坑井掘削用プラグ。
  7.  マンドレルが、軸方向に沿う中空部を有する請求項1乃至6のいずれか1項に記載の坑井掘削用プラグ。
  8.  マンドレルは、マンドレルの直径に対する中空部の外径の比率が0.7以下である請求項7記載の坑井掘削用プラグ。
  9.  マンドレルは、外周面に拡径可能な環状のゴム部材を圧縮状態のまま固定する固定部を有する請求項1乃至8のいずれか1項に記載の坑井掘削用プラグ。
  10.  固定部が、溝、段部及びねじ山からなる群より選ばれる少なくとも1つである請求項9記載の坑井掘削用プラグ。
  11.  マンドレルの外周面の加工部分の曲率半径が0.5mm以上である請求項1乃至10のいずれか1項に記載の坑井掘削用プラグ。
  12.  マンドレルの外周面が、金属で保護されている箇所を有する請求項1乃至11のいずれか1項に記載の坑井掘削用プラグ。
  13.  マンドレルと、1対のリングの一方のリングとが一体に形成されている請求項1乃至12のいずれか1項に記載の坑井掘削用プラグ。
  14.  一体成形により形成される請求項13記載の坑井掘削用プラグ。
  15.  機械加工により形成される請求項13記載の坑井掘削用プラグ。
  16.  1対のリングは、温度66℃におけるせん断応力が30MPa以上である分解性材料から形成される請求項1乃至15のいずれか1項に記載の坑井掘削用プラグ。
  17.  拡径可能な環状のゴム部材は、マンドレルの軸方向の長さが、マンドレルの長さに対して10~70%である請求項1乃至16のいずれか1項に記載の坑井掘削用プラグ。
  18.  拡径可能な環状のゴム部材を複数備える請求項1乃至17のいずれか1項に記載の坑井掘削用プラグ。
  19.  拡径可能な環状のゴム部材が分解性材料から形成される請求項1乃至18のいずれか1項に記載の坑井掘削用プラグ。
  20.  マンドレルの外周面上に、スリップ(slip)及びウエッジ(wedge)を備えない請求項1乃至19のいずれか1項に記載の坑井掘削用プラグ。
  21.  マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つのスリップ(slip)とウエッジ(wedge)との組み合わせを備える請求項1乃至19のいずれか1項に記載の坑井掘削用プラグ。
  22.  スリップまたはウエッジの一方または両方が、分解性材料から形成されたものである請求項21記載の坑井掘削用プラグ。
  23.  スリップまたはウエッジの一方または両方が、金属または無機物の少なくとも一方を含有する材料から形成されたものである請求項21または22記載の坑井掘削用プラグ。
  24.  スリップまたはウエッジの一方または両方が、分解性材料と、金属または無機物の少なくとも一方を含有する材料とから形成されたものである請求項21乃至23のいずれか1項に記載の坑井掘削用プラグ。
  25.  スリップとウエッジとの組み合わせを複数備える請求項21乃至24のいずれか1項に記載の坑井掘削用プラグ。
  26.  分解性材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%である請求項1乃至25のいずれか1項に記載の坑井掘削用プラグ。
  27.  分解性材料が、強化材を含有する請求項1乃至26のいずれか1項に記載の坑井掘削用プラグ。
  28.  分解性材料が、脂肪族ポリエステルである請求項1乃至27のいずれか1項に記載の坑井掘削用プラグ。
  29.  脂肪族ポリエステルが、ポリグリコール酸である請求項28記載の坑井掘削用プラグ。
  30. ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである請求項29記載の坑井掘削用プラグ。
  31.  (a)温度60℃における引張強度が50MPa以上である分解性材料から形成され、温度66℃の水に1時間浸漬後の厚み減少が5mm未満であって、温度149℃の水に24時間浸漬後の厚み減少が10mm以上であるマンドレル、
    (b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
    (c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
    を備えることを特徴とする坑井掘削用プラグ。
  32.  拡径可能な環状のゴム部材が分解性材料から形成される請求項31記載の坑井掘削用プラグ。
  33.  分解性材料が、強化材を含有する請求項31または32記載の坑井掘削用プラグ。
  34.  分解性材料が、脂肪族ポリエステルである請求項31乃至33のいずれか1項に記載の坑井掘削用プラグ。
  35.  脂肪族ポリエステルが、ポリグリコール酸である請求項34記載の坑井掘削用プラグ。
  36. ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである請求項35記載の坑井掘削用プラグ。
  37.  (a)温度60℃における引張強度が50MPa以上である分解性材料から形成されるマンドレル、
    (b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
    (c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
    を備える坑井掘削用プラグであって、
    分解性材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%であることを特徴とする坑井掘削用プラグ。
  38.  拡径可能な環状のゴム部材が分解性材料から形成される請求項37記載の坑井掘削用プラグ。
  39.  分解性材料が、強化材を含有する請求項37または38記載の坑井掘削用プラグ。
  40.  分解性材料が、脂肪族ポリエステルである請求項37乃至39のいずれか1項に記載の坑井掘削用プラグ。
  41.  脂肪族ポリエステルが、ポリグリコール酸である請求項40記載の坑井掘削用プラグ。
  42.  ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである請求項41記載の坑井掘削用プラグ。
  43.  (a)温度66℃におけるせん断応力が30MPa以上である分解性材料から形成されるマンドレル、
    (b)少なくとも一方が分解性材料から形成され、マンドレルの軸方向と直交する外周面上に置かれた1対のリング、及び
    (c)マンドレルの軸方向と直交する外周面上であって、1対のリングの間の位置に置かれた、少なくとも1つの拡径可能な環状のゴム部材
    を備える坑井掘削用プラグであって、
    分解性材料は、温度150℃の水に72時間浸漬後の質量の、浸漬前の質量に対する減少率が5~100%であることを特徴とする坑井掘削用プラグ。
  44.  拡径可能な環状のゴム部材が分解性材料から形成される請求項43記載の坑井掘削用プラグ。
  45.  分解性材料が、強化材を含有する請求項43または44記載の坑井掘削用プラグ。
  46.  分解性材料が、脂肪族ポリエステルである請求項43乃至45のいずれか1項に記載の坑井掘削用プラグ。
  47.  脂肪族ポリエステルが、ポリグリコール酸である請求項46記載の坑井掘削用プラグ。
  48.  ポリグリコール酸が、重量平均分子量が180000~300000、かつ、温度270℃、せん断速度122sec-1で測定した溶融粘度が700~2000Pa・sである請求項47記載の坑井掘削用プラグ。
  49.  請求項1乃至48のいずれか1項に記載の坑井掘削用プラグを使用して、坑井孔の目止め処理を行った後に、坑井掘削用プラグの一部または全部が分解されることを特徴とする坑井掘削方法。
PCT/JP2014/064315 2013-05-31 2014-05-29 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ WO2014192885A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2015015673A MX2015015673A (es) 2013-05-31 2014-05-29 Tapon para perforacion de pozos provistos de un mandril formado a partir de material degradable.
CA2912833A CA2912833C (en) 2013-05-31 2014-05-29 A plug for well drilling process provided with mandrel formed from degradable material
CN201480025331.9A CN105189918B (zh) 2013-05-31 2014-05-29 具备由降解性材料形成的心轴的钻井用堵塞器
US14/892,045 US9714551B2 (en) 2013-05-31 2014-05-29 Plug for well drilling process provided with mandrel formed from degradable material
EP14803796.3A EP3006665B1 (en) 2013-05-31 2014-05-29 Boring plug provided with mandrel formed from degradable material

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-115541 2013-05-31
JP2013115541 2013-05-31
JP2013-220222 2013-10-23
JP2013220222 2013-10-23
JP2014-109013 2014-05-27
JP2014109013A JP6327946B2 (ja) 2013-05-31 2014-05-27 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ

Publications (1)

Publication Number Publication Date
WO2014192885A1 true WO2014192885A1 (ja) 2014-12-04

Family

ID=51988908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064315 WO2014192885A1 (ja) 2013-05-31 2014-05-29 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ

Country Status (7)

Country Link
US (1) US9714551B2 (ja)
EP (1) EP3006665B1 (ja)
JP (1) JP6327946B2 (ja)
CN (1) CN105189918B (ja)
CA (1) CA2912833C (ja)
MX (1) MX2015015673A (ja)
WO (1) WO2014192885A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098803A1 (ja) * 2013-12-26 2015-07-02 株式会社クレハ 固化押出成形用分解性樹脂組成物、成形品、二次成形品、ダウンホールツール又は部材、及び炭化水素資源の回収方法
USRE46028E1 (en) 2003-05-15 2016-06-14 Kureha Corporation Method and apparatus for delayed flow or pressure change in wells
WO2016204814A1 (en) * 2015-06-15 2016-12-22 Halliburton Energy Services, Inc. Downhole tools comprising aqueous-degradable sealing elements of thermoplastic rubber
US9708878B2 (en) 2003-05-15 2017-07-18 Kureha Corporation Applications of degradable polymer for delayed mechanical changes in wells
US9790763B2 (en) 2014-07-07 2017-10-17 Halliburton Energy Services, Inc. Downhole tools comprising cast degradable sealing elements

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570694B2 (en) 2011-08-22 2020-02-25 The Wellboss Company, Llc Downhole tool and method of use
US10316617B2 (en) 2011-08-22 2019-06-11 Downhole Technology, Llc Downhole tool and system, and method of use
US10246967B2 (en) 2011-08-22 2019-04-02 Downhole Technology, Llc Downhole system for use in a wellbore and method for the same
CA2947059C (en) 2011-08-22 2018-08-21 Downhole Technology, Llc Downhole tool for use in a wellbore
US10036221B2 (en) 2011-08-22 2018-07-31 Downhole Technology, Llc Downhole tool and method of use
US9777551B2 (en) 2011-08-22 2017-10-03 Downhole Technology, Llc Downhole system for isolating sections of a wellbore
GB201511218D0 (en) * 2015-06-25 2015-08-12 Goe Ip As Reservoir treatments
CN105298429B (zh) * 2015-11-18 2018-09-04 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种下钻堵塞器
AU2017293401A1 (en) 2016-07-05 2018-03-08 The Wellboss Company, Llc Composition of matter and use thereof
US10544645B2 (en) * 2016-09-29 2020-01-28 Cnpc Usa Corporation Dissolvable composite slips and methods of manufacturing same
CN106481303B (zh) * 2016-11-07 2019-06-04 西南石油大学 一种压裂用可控制溶解封堵球
MX2018006794A (es) 2016-11-17 2018-11-09 Downhole Tech Llc Herramienta de fondo de pozo y procedimiento de uso.
US20180171743A1 (en) * 2016-12-19 2018-06-21 Schlumberger Technology Corporation Cathodically-protected plug assembly
JP2019178569A (ja) * 2018-03-30 2019-10-17 株式会社クレハ 保護部材を備えるダウンホールプラグ
US11162322B2 (en) 2018-04-05 2021-11-02 Halliburton Energy Services, Inc. Wellbore isolation device
US11078739B2 (en) 2018-04-12 2021-08-03 The Wellboss Company, Llc Downhole tool with bottom composite slip
CA3081968C (en) 2018-04-23 2022-07-19 The Wellboss Company, Llc Downhole tool with tethered ball
CA3104539A1 (en) 2018-09-12 2020-03-19 The Wellboss Company, Llc Setting tool assembly
US11713645B2 (en) 2019-10-16 2023-08-01 The Wellboss Company, Llc Downhole setting system for use in a wellbore
CA3154248A1 (en) 2019-10-16 2021-04-22 Gabriel Slup Downhole tool and method of use
WO2021159550A1 (zh) * 2020-02-14 2021-08-19 成都英诺思科技有限公司 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法
CN115058235B (zh) * 2022-06-17 2023-09-29 东方宝麟科技发展(北京)有限公司 一种油气田用可降解绳结暂堵纤维材料及其制备方法
WO2024019036A1 (ja) * 2022-07-21 2024-01-25 興国インテック株式会社 分解性ゴム組成物、ゴム部材、封止部材、及び分解性ゴム組成物の製造方法
WO2024019035A1 (ja) * 2022-07-21 2024-01-25 興国インテック株式会社 分解性ゴム組成物、ゴム部材、封止部材、及び分解性ゴム組成物の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179792A (ja) * 1990-11-13 1992-06-26 Takenaka Komuten Co Ltd ボーリング孔のスライム除去及び孔壁の洗浄装置
WO2001088333A1 (en) 2000-05-15 2001-11-22 Imperial Chemical Industries Plc Method of oil/gas well stimulation
US20050205266A1 (en) 2004-03-18 2005-09-22 Todd Bradley I Biodegradable downhole tools
US20110277989A1 (en) 2009-04-21 2011-11-17 Frazier W Lynn Configurable bridge plugs and methods for using same
JP2011256221A (ja) * 2010-06-04 2011-12-22 Kureha Corp ポリグリコール酸樹脂の処理方法
US20120031626A1 (en) * 2007-02-22 2012-02-09 Halliburton Energy Services, Inc. Consumable Downhole Tools

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2261507Y (zh) * 1996-02-28 1997-09-03 邬彦辉 可回收桥塞
JP4179792B2 (ja) * 2002-04-19 2008-11-12 大阪瓦斯株式会社 温水循環式のタオル加温装置
US20080102119A1 (en) 2006-11-01 2008-05-01 Medtronic, Inc. Osmotic pump apparatus and associated methods
US7665537B2 (en) * 2004-03-12 2010-02-23 Schlumbeger Technology Corporation System and method to seal using a swellable material
US7380600B2 (en) 2004-09-01 2008-06-03 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US7775278B2 (en) 2004-09-01 2010-08-17 Schlumberger Technology Corporation Degradable material assisted diversion or isolation
US20110067889A1 (en) 2006-02-09 2011-03-24 Schlumberger Technology Corporation Expandable and degradable downhole hydraulic regulating assembly
CN101153102B (zh) 2006-09-30 2011-07-20 易会安 吸水膨胀组合物、吸水膨胀材料和吸水膨胀封隔器
US8119574B2 (en) * 2007-07-25 2012-02-21 Schlumberger Technology Corporation High solids content slurries and methods
CA2868977C (en) * 2012-04-27 2016-10-11 Kureha Corporation Polyglycolic acid resin short fibers and well treatment fluid
CN106761546B (zh) * 2012-06-07 2020-05-08 株式会社吴羽 烃资源回收钻井工具和烃资源回收方法
CA2897290C (en) * 2013-01-11 2017-06-13 Kureha Corporation Poly-l-lactic acid solid-state extrusion molded article, method for producing the same, and use applications of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04179792A (ja) * 1990-11-13 1992-06-26 Takenaka Komuten Co Ltd ボーリング孔のスライム除去及び孔壁の洗浄装置
WO2001088333A1 (en) 2000-05-15 2001-11-22 Imperial Chemical Industries Plc Method of oil/gas well stimulation
JP2003533619A (ja) 2000-05-15 2003-11-11 インペリアル・ケミカル・インダストリーズ・ピーエルシー 石油/ガス井刺激方法
US20050205266A1 (en) 2004-03-18 2005-09-22 Todd Bradley I Biodegradable downhole tools
US20120031626A1 (en) * 2007-02-22 2012-02-09 Halliburton Energy Services, Inc. Consumable Downhole Tools
US20110277989A1 (en) 2009-04-21 2011-11-17 Frazier W Lynn Configurable bridge plugs and methods for using same
JP2011256221A (ja) * 2010-06-04 2011-12-22 Kureha Corp ポリグリコール酸樹脂の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006665A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46028E1 (en) 2003-05-15 2016-06-14 Kureha Corporation Method and apparatus for delayed flow or pressure change in wells
US9708878B2 (en) 2003-05-15 2017-07-18 Kureha Corporation Applications of degradable polymer for delayed mechanical changes in wells
US10280703B2 (en) 2003-05-15 2019-05-07 Kureha Corporation Applications of degradable polymer for delayed mechanical changes in wells
WO2015098803A1 (ja) * 2013-12-26 2015-07-02 株式会社クレハ 固化押出成形用分解性樹脂組成物、成形品、二次成形品、ダウンホールツール又は部材、及び炭化水素資源の回収方法
US9790763B2 (en) 2014-07-07 2017-10-17 Halliburton Energy Services, Inc. Downhole tools comprising cast degradable sealing elements
AU2015398727B2 (en) * 2014-07-07 2018-05-17 Halliburton Energy Services, Inc. Downhole tools comprising aqueous-degradable sealing elements of thermoplastic rubber
US10240427B2 (en) 2014-07-07 2019-03-26 Halliburton Energy Services, Inc. Downhole tools comprising aqueous-degradable sealing elements
US10260309B2 (en) 2014-07-07 2019-04-16 Halliburton Energy Services, Inc. Downhole tools comprising aqueous-degradable sealing elements of thermoplastic rubber
US10370930B2 (en) 2014-07-07 2019-08-06 Halliburton Energy Services, Inc. Downhole tools comprising aqueous-degradable elastomer sealing elements with carbodiimide
WO2016204814A1 (en) * 2015-06-15 2016-12-22 Halliburton Energy Services, Inc. Downhole tools comprising aqueous-degradable sealing elements of thermoplastic rubber
GB2545362B (en) * 2015-06-15 2021-08-11 Halliburton Energy Services Inc Downhole tools comprising aqueous-degradable sealing elements of thermoplastic rubber

Also Published As

Publication number Publication date
CN105189918B (zh) 2018-10-09
EP3006665A4 (en) 2017-01-25
MX2015015673A (es) 2016-03-04
CA2912833C (en) 2018-01-02
CA2912833A1 (en) 2014-12-04
US9714551B2 (en) 2017-07-25
JP6327946B2 (ja) 2018-05-23
US20160108695A1 (en) 2016-04-21
JP2015108279A (ja) 2015-06-11
CN105189918A (zh) 2015-12-23
EP3006665B1 (en) 2019-08-21
EP3006665A1 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6327946B2 (ja) 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ
JP6359355B2 (ja) 分解性を有するゴム材料から形成される拡径可能な環状のゴム部材を備える坑井掘削用プラグ
JP6282201B2 (ja) リング状のラチェット機構を備える坑井掘削用プラグ
JP6359888B2 (ja) ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法
US10414851B2 (en) Rubber member for downhole tools, downhole tool, and method for recovering hydrocarbon resource
JP5955469B2 (ja) 坑井掘削用プラグ
WO2015133544A1 (ja) 崩壊性のダウンホールツール用シール部材、ダウンホールツール、及び坑井掘削方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025331.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/015673

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2912833

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14892045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014803796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE