WO2021159550A1 - 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法 - Google Patents

可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法 Download PDF

Info

Publication number
WO2021159550A1
WO2021159550A1 PCT/CN2020/075838 CN2020075838W WO2021159550A1 WO 2021159550 A1 WO2021159550 A1 WO 2021159550A1 CN 2020075838 W CN2020075838 W CN 2020075838W WO 2021159550 A1 WO2021159550 A1 WO 2021159550A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge plug
soluble bridge
temperature
adapter body
recording device
Prior art date
Application number
PCT/CN2020/075838
Other languages
English (en)
French (fr)
Inventor
王锦路
曾琦军
Original Assignee
成都英诺思科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020169989.XU external-priority patent/CN211623403U/zh
Priority claimed from CN202010092875.4A external-priority patent/CN111155984A/zh
Application filed by 成都英诺思科技有限公司 filed Critical 成都英诺思科技有限公司
Priority to US17/790,157 priority Critical patent/US11608705B2/en
Publication of WO2021159550A1 publication Critical patent/WO2021159550A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/134Bridging plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1204Packers; Plugs permanent; drillable
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/08Down-hole devices using materials which decompose under well-bore conditions

Definitions

  • the invention relates to the technical field of oil and gas exploitation, in particular to a soluble bridge plug adapter, a method for measuring dynamic well temperature and a method for making a soluble bridge plug.
  • bridge plugs are often used to perform staged hydraulic fracturing of the formation.
  • Horizontal well staged fracturing technology has become an important means for reservoir reconstruction and effectively increasing single well production. It is an important tool for staged fracturing.
  • the soluble bridge plug is a new type of bridge plug that temporarily seals the wellbore. Its advantage is that it can dissolve by itself under well conditions, thereby reducing and eliminating drill plug operations after fracturing operations are completed, reducing overall costs and operational risks.
  • the soluble bridge plug When in use, the soluble bridge plug is connected to the tool string including the setting tool and the perforating gun string through the adapter, and the soluble bridge plug is connected to the setting tool through the adapter, and the soluble bridge is connected by pumping liquid through the wellhead.
  • the tool string of the plug is sent into the horizontal well. After the setting tool and the soluble bridge plug connected by the adapter reach the preset setting position, the setting tool is activated to seal the soluble bridge plug to achieve the function of sealing the wellbore.
  • the adapter is disconnected from the dissolvable bridge plug, and the tool string including the adapter, the setting tool and the perforating gun string is lifted up, and the perforating gun is stringed to the designed perforation position to perform perforation, and the perforation is completed
  • the tool string including the adapter, the setting tool and the perforating gun string is retracted to the ground through the wellbore by the cable connected at the back end of the tool string.
  • the ball is thrown into the wellbore through the wellhead to perform fracturing to complete a section of fracturing operation.
  • the solubility of the soluble bridge plug is an important indicator of its performance evaluation.
  • the ideal soluble bridge plug must ensure that it does not dissolve after the setting is completed and before the completion of the fracturing operation in this section, and to maintain the wellbore seal.
  • the well temperature must be quickly and fully dissolved after the well temperature rises to reduce the well-passing time and ensure Through well effect.
  • the dissolution rate of the soluble bridge plug is related to the ambient temperature in the well. The higher the ambient temperature in the well, the faster the soluble bridge plug will dissolve, and the lower it is, the slower it will be. Accurately grasp the dynamic environment of the soluble bridge plug under the fluid condition of the well seal Temperature is very important to the selection and design of soluble bridge plugs.
  • the soluble bridge plug is in a downhole fluid environment, and the liquid pumped into the wellbore during pumping and fracturing operations will affect the downhole ambient temperature.
  • the prior art mostly measures the downhole static ambient temperature under fluid-free conditions, but there is no fluid. There is a big difference between the downhole static ambient temperature under the conditions and the downhole dynamic environment temperature under the fluid condition. Using this data as a reference, the solubility of the soluble bridge plug designed through simulation is not good, and it cannot be guaranteed that the soluble bridge plug can be pumped and compressed. The plugging effect during the fracturing operation and the dissolution efficiency after the fracturing is completed.
  • the existing downhole real-time optical fiber detection technology is used to measure the downhole dynamic environmental temperature under fluid conditions, but this detection method is costly and complicated to operate. Because the horizontal wells in the same block have little difference in downhole environmental temperature at the same depth, the downhole environmental temperatures of horizontal wells in different blocks vary greatly. To ensure the use of soluble bridge plugs, the horizontal wells in each block need to be independent Design and select the ideal soluble bridge plug corresponding to this block. If real-time optical fiber inspection technology is used, one well must be selected for real-time optical fiber inspection for the horizontal wells in each block, which will greatly increase the cost and workload.
  • the present invention aims to provide a soluble bridge plug adapter, a dynamic well temperature measurement method and a soluble bridge plug manufacturing method, which can measure the downhole dynamic environmental temperature when the soluble bridge plug is pumped, and has convenient operation, low cost, and can be used for
  • the selection and design of ideal soluble bridge plugs for horizontal wells in this block provide a basis for designing ideal soluble bridge plugs for horizontal wells in this block.
  • the soluble bridge plug adapter disclosed in the present invention includes an adapter body and a temperature acquisition and recording device, the temperature acquisition and recording device is fixed on the adapter body, and the adapter body is used to connect a setting tool and the soluble bridge plug.
  • the temperature acquisition and recording device is used to detect and record the ambient temperature where the adapter body is located.
  • the beneficial effect of the present invention is that the adapter body is pumped downhole with the soluble bridge plug and is in the same downhole fluid environment as the soluble bridge plug.
  • the temperature acquisition and recording device on the adapter body can be used to pump the soluble bridge plug downhole
  • the dynamic environment temperature is measured and recorded. After the adapter body is recovered, the downhole dynamic environment temperature can be obtained.
  • the operation is convenient and the cost is low. It can provide the basis for the selection and design of the ideal soluble bridge plug for horizontal wells in this block. It is helpful to design an ideal soluble bridge plug for horizontal wells in this block.
  • the adapter body has a first mounting hole adapted to the mounting pin, the mounting pin is inserted into the first mounting hole and is detachably connected to the adapter body, so The end of the mounting pin is provided with a second mounting hole, the second mounting hole is a blind hole, and the opening of the second mounting hole has a plug adapted to the second mounting hole.
  • the hole can be detachably connected, and the temperature collecting and recording device is arranged in the second mounting hole.
  • the beneficial effect of adopting the above-mentioned further solution is that the temperature collection and recording device is installed in the installation pin, and the installation pin is installed on the adapter body, which can protect the temperature collection and recording device and avoid the temperature during the pumping and recycling process.
  • the collection and recording device causes damage and is easy to install and disassemble.
  • the outer wall of the mounting pin has an external thread
  • the inner wall of the first mounting hole has an internal thread adapted to the external thread
  • the mounting pin is threadedly connected with the adapter body in the first mounting hole .
  • the end of the installation pin has a joint for driving the rotation of the installation pin, and both ends of the installation pin and the joint are in the first installation hole.
  • the installation pin is integrated in the first installation hole, which avoids damage to the wellbore, the installation pin and the temperature collection and recording device inside due to protruding during the pumping and recovery process, and reliability high.
  • the mounting pin and the plug are made of thermally conductive materials.
  • the beneficial effect of adopting the above-mentioned further solution is that it is beneficial to install the temperature acquisition and recording device in the pin to measure the ambient temperature.
  • the adapter body is cylindrical.
  • the beneficial effect of adopting the above-mentioned further scheme is: it is convenient to move in the wellbore and reduces resistance.
  • the adapter body is hollow and penetrates back and forth, the front end of the adapter body is used to connect the soluble bridge plug, and the rear end of the adapter body is used to connect the setting tool.
  • the beneficial effect of adopting the above-mentioned further solution is that the weight of the adapter body is reduced, the fluid can flow through the inner cavity of the adapter, and the resistance is reduced.
  • the temperature acquisition and recording device is arranged in the inner cavity of the adapter body.
  • the beneficial effect of adopting the above-mentioned further solution is that it can prevent the temperature acquisition and recording device protruding from the body of the adapter from being easily damaged due to collision, and can fully contact the fluid environment, which is convenient for measuring the dynamic environment temperature.
  • the dynamic well temperature measurement method disclosed in the present invention includes the following steps:
  • Install the temperature acquisition and recording device install the temperature acquisition and recording device on the adapter body, and the setting tool and the soluble bridge plug are connected through the adapter body;
  • First pumping After the step of installing the temperature acquisition and recording device is completed, put the soluble bridge plug connected with the adapter body and the setting tool into the wellbore, and pass into the wellbore through the wellhead Pumping liquid, pumping the soluble bridge plug to the first seating position;
  • the first temperature collection and recording in the first pumping step and the first setting step, the temperature collection and recording device collects and records the dynamic ambient temperature;
  • the adapter body is disconnected from the soluble bridge plug, the adapter body and the setting tool are recovered to the ground through the wellbore, and pass through the The temperature acquisition and recording device on the adapter body acquires the dynamic ambient temperature collected and recorded in the first temperature acquisition and recording step on the ground;
  • the first fracturing after the first exiting step is completed, fracturing fluid is passed into the wellbore through the wellhead.
  • the beneficial effects of the present invention are that the temperature acquisition and recording device on the adapter body can measure the downhole dynamic environmental temperature when the soluble bridge plug is pumped during the staged fracturing process, without other redundant operations, convenient operation, and cost-effective Inexpensive, the temperature acquisition and recording device is in the same fluid environment as the soluble bridge plug, and the measurement data is accurate, which can provide a basis for the material selection and design of the ideal soluble bridge plug used in this block, and is beneficial to design for this block The ideal soluble bridge plug to use.
  • the flow rate of the fracturing fluid is greater than the flow rate of the pumping fluid in the first pumping step, and the fracturing fluid injected into the wellbore The total amount of is greater than the total amount of the pumping fluid injected into the wellbore in the first pumping step.
  • the beneficial effect of adopting the above further scheme is that the flow rate of the fracturing fluid is greater than the flow rate of the pumping fluid in the first pumping step, and the total amount of fracturing fluid injected into the wellbore is greater than that injected into the wellbore in the first pumping step.
  • the dynamic environment temperature in the wellbore during pumping is greater than or equal to the dynamic environment temperature in the wellbore during fracturing, and only the dynamic environment temperature during pumping needs to be obtained to dissolve the designed soluble bridge plug
  • the temperature is higher than the maximum value of the dynamic environment temperature during pumping, which can ensure that the soluble bridge plug does not dissolve before the fracturing is completed, and the wellbore is sealed at the first sealing position before the fracturing is completed.
  • the second pumping after the first fracturing step is completed, the adapter body is put into the wellbore, and the temperature acquisition and recording device is installed on the adapter body, and the temperature acquisition and recording device is installed in the wellbore through the wellhead. Pour in pumping fluid, and pump the adapter body downhole;
  • the second temperature collection and recording during the second pumping step, the temperature collection and recording device collects and records the dynamic ambient temperature;
  • Second time out of the well After the second temperature acquisition and recording step is completed, the adapter body is recovered to the ground through the wellbore, and the first temperature acquisition and recording device on the adapter body is used to acquire the second temperature on the ground.
  • the secondary temperature is collected and recorded in the step of collecting and recording the dynamic environment temperature.
  • the beneficial effect of adopting the above-mentioned further scheme is that through the second temperature acquisition and recording step, the dynamic ambient temperature in the horizontal well after the previous fracturing is completed can be obtained, which provides a basis for designing the dissolution temperature of the soluble bridge plug.
  • the adapter body is respectively connected with the setting tool and the soluble bridge plug, and the pumping fluid will be connected with the adapter body and the seat seal.
  • the soluble bridge plug of the tool is pumped to the second seating position;
  • Second setting After completing the second pumping step, the soluble bridge plug reaches the second setting position, and the soluble bridge plug is seated at the second setting position ;
  • the soluble bridge plug is disconnected from the adapter body, and the second exiting step is started.
  • the setting tool and The adaptor body is recovered to the ground through the wellbore;
  • the second fracturing after the completion of the second outgoing step, fracturing fluid is introduced into the wellbore through the wellhead.
  • the second temperature acquisition and recording step is in the next fracturing process after the staged fracturing process completes one fracturing, no other redundant operations are required, the cost is low, the operation is simple, and it will not be overwhelming. Increase the workload.
  • the manufacturing method of the soluble bridge plug disclosed in the present invention designs the soluble bridge plug according to the dynamic environment temperature measured by the above-mentioned dynamic well temperature measurement method.
  • the beneficial effect of the invention is that the designed soluble bridge plug has good dissolution performance in the corresponding downhole.
  • the temperature at which the dissolution of the soluble bridge plug is designed to be greater than the maximum value of the dynamic environment temperature collected and recorded in the first temperature collection and recording step.
  • the beneficial effect of adopting the above-mentioned further scheme is that it can ensure that the soluble bridge plug is not dissolved in advance before the fracturing is completed, and the fracturing effect is ensured.
  • Figure 1 is one of the schematic diagrams of the embodiment of the soluble bridge plug adapter
  • Figure 2 is a cross-sectional view of the A-A plane
  • Figure 3 is a second schematic diagram of an embodiment of the soluble bridge plug adapter
  • Figure 4 is a schematic diagram of an embodiment of the adapter body
  • Figure 5 is a schematic diagram of an embodiment of a horizontal well
  • the embodiment of the soluble bridge plug adapter disclosed in the present invention includes an adapter body 1 and a temperature acquisition and recording device 3.
  • the temperature acquisition and recording device 3 is fixed on the adapter body 1, and the adapter body 1 is used for Connecting the sealing tool and the soluble bridge plug, the temperature acquisition and recording device 3 is used to detect and record the ambient temperature where the adapter body 1 is located.
  • the temperature acquisition and recording device 3 can use the existing miniature temperature acquisition and recording device 3.
  • the adapter body 1 is cylindrical, preferably cylindrical, the adapter body 1 is thin in the front and thick in the rear, and the thick part and the thin part are connected by a circular table surface, and the adapter body 1 is hollow and front and rear.
  • the inner cavity of the adapter body 1 is coaxial with the cylindrical shape, the front end of the adapter body 1 is used to connect the soluble bridge plug, and the rear end of the adapter body 1 is used to connect the setting tool.
  • the adapter body 1 has a first mounting hole 7 that is adapted to the mounting pin 2, and the first mounting hole 7 is in the thick part of the adapter body 1.
  • the first mounting hole 7 penetrates the two opposite sides of the adapter body 1 along the radial direction of the adapter body 1, the mounting pin 2 is inserted into the first mounting hole 7 and detachably connected with the adapter body 1, and the end of the mounting pin 2 is opened with a first Two mounting holes 5, the second mounting hole 5 is a blind hole, the opening of the second mounting hole 5 has a plug 4 adapted to it, the plug 4 is detachably connected to the second mounting hole 5, and the temperature collection and recording device 3 is provided In the second mounting hole 5, the mounting pin 2 and the plug 4 are made of thermally conductive material.
  • the outer wall of the mounting pin 2 has an external thread
  • the inner wall of the first mounting hole 7 has an internal thread that matches the external thread
  • the mounting pin 2 is connected to the adapter in the first mounting hole 7
  • the body 1 is threaded.
  • the end of the mounting pin 2 has a joint 6 for driving the rotation of the mounting pin 2, and both ends of the mounting pin 2 and the joint 6 are in the first mounting hole 7.
  • the external thread and the joint 6 are respectively at the two ends of the mounting pin 2, and the internal thread is on one of the side walls of the adapter body 1.
  • the joint 6 can be an external hexagonal joint 6.
  • the mounting pin 2 can be rotated by a corresponding socket wrench or other tools.
  • the plug 4 is the NPT plug 4.
  • the mounting pin 2 penetrates the inner cavity of the adapter body 1, and the temperature collecting and recording device 3 is arranged in the inner cavity of the adapter body 1.
  • Install the temperature acquisition and recording device 3 Set the temperature acquisition and recording device 3 through computer software, set the time and frequency of acquisition and recording, install the temperature acquisition and recording device 3 on the adapter body 1, and the setting tool and the soluble bridge plug pass Adapter body 1 connection;
  • the first sealing the soluble bridge plug reaches the first sealing position 10 and the rear sealing;
  • the first temperature collection and recording in the first pumping step and the first setting step, the temperature collection and recording device 3 collects and records the dynamic ambient temperature;
  • the adapter body 1 is disconnected from the soluble bridge plug, the adapter body 1 and the setting tool are recovered to the ground through the wellbore 9, and the temperature acquisition and recording device 3 on the adapter body 1 Connected to a computer to obtain the dynamic ambient temperature collected and recorded in the first temperature collection and recording step on the ground.
  • the minimum temperature at which the soluble bridge plug is dissolved in this block is designed to be greater than that collected in the first temperature collection and recording step And record the maximum value of dynamic ambient temperature.
  • the temperature acquisition and recording device 3 can also acquire and record the dynamic environmental temperature.
  • fracturing fluid is introduced into the wellbore 9 through the wellhead 8.
  • the flow rate of the fracturing fluid is greater than the flow rate of the pumping fluid in the first pumping step, and the total amount of fracturing fluid injected into the wellbore 9 is greater than that in the first pumping step.
  • the total amount of pumped fluid in the horizontal well has the same depth, and the dynamic ambient temperature is related to the total amount and flow rate of the liquid in the wellbore 9, ensuring that the dynamic ambient temperature in the wellbore 9 is lower than or equal to the first fracturing step.
  • the dynamic ambient temperature during a pumping step the designed soluble bridge plug will not dissolve during pumping and fracturing.
  • Second pumping After the first fracturing step is completed, put the adaptor body 1 into the wellbore 9.
  • the temperature acquisition and recording device 3 is installed on the adaptor body 1, and the pumping fluid is passed into the wellbore 9 through the wellhead 8.
  • the second temperature collection and recording During the second pumping step, the temperature collection and recording device 3 collects and records the dynamic ambient temperature.
  • the dynamic ambient temperature acquired at this time is the dynamic ambient temperature in the horizontal well after the fracturing in the previous section is completed. ;
  • Second time out of the well After the second temperature acquisition and recording step is completed, the adapter body 1 is recovered to the surface through the wellbore 9, and the second temperature acquisition and recording step is performed on the ground through the temperature acquisition and recording device 3 on the adapter body 1 The dynamic ambient temperature collected and recorded.
  • the adapter body 1 is respectively connected with a setting tool and a soluble bridge plug, and the pumping fluid pumps the soluble bridge plug connected with the adapter body 1 and the setting tool to the second setting position 11 ;
  • Second setting After completing the second pumping step, the soluble bridge plug reaches the second setting position 11, the soluble bridge plug is seated at the second setting position 11, and the second setting position 11 is Behind the first block at position 10;
  • the soluble bridge plug is disconnected from the adaptor body 1, and the second exiting step begins.
  • both the setting tool and the adaptor body 1 are returned to the ground through the wellbore 9;
  • the temperature acquisition and recording device 3 can collect and record the dynamic environmental temperature in each step in the wellbore 9.
  • the dynamic ambient temperature during pumping is obtained through the pumping step of the previous stage of the horizontal well staged fracturing process, and the next stage of the horizontal well staged fracturing process
  • the pumping step obtains the dynamic ambient temperature after the fracturing in the previous process is completed, and the soluble bridge plug designed based on the above two dynamic ambient temperatures can ensure that it does not dissolve in advance before the fracturing is completed.
  • the depth of the horizontal well is the same everywhere, and the dynamic temperature is similar everywhere.
  • the composite data can be obtained through repeated measurements to design the soluble bridge plug of the horizontal well in this block.
  • the soluble bridge plug is designed according to the dynamic environment temperature measured by the above-mentioned dynamic well temperature measurement method.
  • the temperature at which the dissolution of the soluble bridge plug is designed to be greater than the maximum value of the dynamic environment temperature collected and recorded in the first temperature acquisition and recording step, and the second temperature is collected and recorded
  • the dynamic environment temperature collected and recorded in the step is used as the basis to design the temperature at which the soluble bridge plug is quickly and fully dissolved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种可溶桥塞适配器,包括适配器本体(1)和温度采集记录装置(3),温度采集记录装置(3)固定在适配器本体(1)上,适配器本体(1)用于连接座封工具和可溶桥塞,温度采集记录装置(3)用于检测并记录适配器本体(1)所处的环境温度。还包括采用上述可溶桥塞适配器的动态井温测量方法和可溶桥塞制作方法。该可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法,可对泵送可溶桥塞时井下动态环境温度进行测量,操作方便,成本低廉,为本区块内使用的理想的可溶桥塞的选材和设计提供依据,利于设计出针对本区块使用的理想的可溶桥塞。

Description

可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法 技术领域
本发明涉及油气开采技术领域,尤其涉及可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法。
背景技术
在油气开发领域,非常规完井工艺中,常使用桥塞对地层进行分段式水力压裂改造,水平井分段压裂技术成为储层改造、有效提高单井产量的重要手段,桥塞是分段压裂的重要工具。
可溶性桥塞是一种临时密封井筒的新型桥塞,其优势在于可在井内条件下自行溶解,从而降低、免除压裂作业完成后的钻塞作业,降低整体成本和作业风险。使用时,可溶桥塞通过适配器与包括座封工具和射孔枪串等工具的工具串连接,可溶桥塞通过适配器与座封工具连接,并通过井口泵送液体将连接有可溶桥塞的工具串送入水平井内,由适配器连接的座封工具和可溶桥塞到达预设的座封位置后,激发座封工具,将可溶桥塞座封,达到密封井筒的功能,可溶桥塞座封后,适配器与可溶桥塞解除连接,上提包括适配器、座封工具和射孔枪串的工具串,射孔枪串到设计射孔位置后进行射孔,射孔完成后,包括适配器、座封工具及射孔枪串的工具串由工具串后端连接的电缆经井筒收回地面,工具串出井后,通过井口向井筒内投球,进行压裂,完成一段压裂作业,本段压裂完成后,重复以上步骤,进行下一段压裂作业。在压裂作业完成后,随着井温回升,井筒内液体矿化度上升,使可溶桥塞溶解。
可溶桥塞的溶解性是其性能评价的重要指标。理想的可溶性桥塞须要保证在座封完成后到本段压裂作业完成前不发生溶解,保持井筒密封,而压裂作 业完成,井温回升后又要迅速、充分溶解,减少通井时间,保证通井效果。可溶桥塞的溶解速度与井内环境温度相关,井内环境温度越高,可溶桥塞溶解越快,越低则越慢,准确掌握可溶桥塞在井内座封处流体条件下的动态环境温度,对可溶桥塞的选材和设计均至关重要。
可溶桥塞处于井下流体环境中,泵送和压裂作业泵入井筒内的液体均会影响井下环境温度,现有技术多对无流体条件下的井下静态环境温度进行了测量,但无流体条件下的井下静态环境温度与有流体条件下的井下动态环境温度差异大,以此数据作为参考通过模拟设计出的可溶桥塞溶解性能不好,不能保证可溶桥塞在泵送和压裂作业时的封堵效果以及在压裂完成后的溶解效率。
现有使用井下实时光纤检测的技术对有流体条件下的井下动态环境温度进行测量的方法,但此种检测方法成本高,操作复杂。由于同一区块内的水平井在同一深度井下环境温度差异不大,不同区块的水平井井下环境温度千差万别,为保证可溶桥塞的使用效果,每一区块内的水平井均需要独立设计和选择与此区块相对应的理想的可溶桥塞,若使用实时光纤检测技术,对于每一区块的水平井均须选用一口井进行实时光纤检测,会大大增加成本和工作量。
发明内容
本发明旨在提供一种可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法,可对泵送可溶桥塞时井下动态环境温度进行测量,操作方便,成本低廉,可为本区块内水平井使用的理想的可溶桥塞的选材和设计提供依据,利于设计出针对本区块内水平井使用的理想的可溶桥塞。
为达到上述目的,本发明采用的技术方案如下:
本发明公开的可溶桥塞适配器,包括适配器本体和温度采集记录装置,所 述温度采集记录装置固定在所述适配器本体上,所述适配器本体用于连接座封工具和可溶桥塞,所述温度采集记录装置用于检测并记录所述适配器本体所处的环境温度。
本发明的有益效果是:适配器本体随可溶桥塞泵送到井下,同可溶桥塞处于同样的井下流体环境中,适配器本体上的温度采集记录装置可对泵送可溶桥塞时井下动态环境温度进行测量并记录,在回收适配器本体后,可获取井下动态环境温度,操作方便,成本低廉,可为本区块内水平井使用的理想的可溶桥塞的选材和设计提供依据,利于设计出针对本区块内水平井使用的理想的可溶桥塞。
进一步的,还包括安装销,所述适配器本体上具有与所述安装销适配的第一安装孔,所述安装销插入所述第一安装孔内并与所述适配器本体可拆卸连接,所述安装销的端部开有第二安装孔,所述第二安装孔为盲孔,所述第二安装孔的开口处具有与其适配的堵头,所述堵头与所述第二安装孔可拆卸连接,所述温度采集记录装置设置于所述第二安装孔内。
采用上述进一步方案的有益效果是:温度采集记录装置安装于安装销内,通过安装销安装于适配器本体上,可对温度采集记录装置起到保护作用,避免在泵送和回收的过程中对温度采集记录装置造成损坏,且安装和拆卸方便。
进一步的,所述安装销外壁具有外螺纹,所述第一安装孔内壁具有与所述外螺纹适配的内螺纹,所述安装销在所述第一安装孔内与所述适配器本体螺纹连接。
采用上述进一步方案的有益效果是:安装和拆卸方便。
进一步的,所述安装销的端部具有用于带动所述安装销旋转的接头,所述安装销的两端和所述接头均在所述第一安装孔内。
采用上述进一步方案的有益效果是:安装销整体在第一安装孔内,避免在泵送和回收的过程中因凸出而造成井筒、安装销及其内的温度采集记录装置的损坏,可靠性高。
进一步的,所述安装销和所述堵头均为导热材质。
采用上述进一步方案的有益效果是:利于安装销内的温度采集记录装置测量环境温度。
进一步的,所述适配器本体为柱状。
采用上述进一步方案的有益效果是:便于在井筒内移动,减少阻力。
进一步的,所述适配器本体中空且前后贯穿,所述适配器本体的前端用于连接所述可溶桥塞,所述适配器本体的后端用于连接所述座封工具。
采用上述进一步方案的有益效果是:减轻适配器本体的重量,流体可从适配器内腔流过,减小阻力。
进一步的,所述温度采集记录装置设置于所述适配器本体的内腔内。
采用上述进一步方案的有益效果是:既能避免温度采集记录装置凸出于适配器本体外易发生碰撞造成损坏,又能与流体环境充分接触,便于测量动态环境温度。
本发明公开的动态井温测量方法,包括如下步骤:
安装温度采集记录装置:将温度采集记录装置安装于适配器本体上,座封工具和可溶桥塞通过所述适配器本体连接;
第一次泵送:所述安装温度采集记录装置步骤完成后,将连接有所述适配器本体和所述座封工具的所述可溶桥塞放入井筒,通过井口向所述井筒内通入泵送液,将所述可溶桥塞泵送到第一座封位置;
第一次座封:所述可溶桥塞到达所述第一座封位置后座封;
第一次温度采集并记录:在所述第一次泵送步骤和所述第一次座封步骤中,所述温度采集记录装置采集并记录动态环境温度;
第一次出井:所述第一次座封步骤完成后,所述适配器本体与所述可溶桥塞解除连接,所述适配器本体和所述座封工具经所述井筒回收到地面,通过所述适配器本体上的所述温度采集记录装置在地面获取所述第一次温度采集并记录步骤中采集并记录的动态环境温度;
第一次压裂:在所述第一次出井步骤完成后,通过所述井口向所述井筒通入压裂液。
本发明的有益效果是:适配器本体上的温度采集记录装置在进行分段压裂的过程中,可对泵送可溶桥塞时井下动态环境温度进行测量,无其他多余操作,操作方便,成本低廉,温度采集记录装置与可溶桥塞处于同样的流体环境中,测量数据精准,可为本区块内使用的理想的可溶桥塞的选材和设计提供依据,利于设计出针对本区块使用的理想的可溶桥塞。
进一步的,在所述第一次压裂步骤中,所述压裂液的流量大于所述第一次泵送步骤中所述泵送液的流量,注入所述井筒内的所述压裂液的总量大于所述第一次泵送步骤中注入所述井筒中的所述泵送液的总量。
采用上述进一步方案的有益效果是:压裂液的流量大于第一次泵送步骤中泵送液的流量,注入井筒内的压裂液的总量大于第一次泵送步骤中注入井筒中的所述泵送液的总量,泵送时井筒内的动态环境温度大于或者等于压裂时井筒内的动态环境温度,只须获取泵送时的动态环境温度,设计的可溶桥塞的溶解温度大于泵送时的动态环境温度的最大值,即可保证可溶桥塞在压裂完成之前不溶解,保持压裂完成前,井筒在第一座封位置处密封。
进一步的,还包括以下步骤:
第二次泵送:在所述第一次压裂步骤完成后,将所述适配器本体放入井筒,所述适配器本体上安装有所述温度采集记录装置,通过所述井口向所述井筒内通入泵送液,将所述适配器本体泵送到井下;
第二次温度采集并记录:在第二次泵送步骤过程中,所述温度采集记录装置采集并记录动态环境温度;
第二次出井:所述第二次温度采集并记录步骤完成后,将所述适配器本体经所述井筒回收到地面,通过所述适配器本体上的所述温度采集记录装置在地面获取所述第二次温度采集并记录步骤中采集并记录的动态环境温度。
采用上述进一步方案的有益效果是:通过第二次温度采集并记录步骤,可获取上一段压裂完成后水平井内的动态环境温度,为设计可溶桥塞的溶解温度提供依据。
进一步的,所述第二次泵送步骤中,所述适配器本体分别连接有所述座封工具和所述可溶桥塞,所述泵送液将连接有所述适配器本体和所述座封工具的所述可溶桥塞泵送至第二座封位置;
还包括步骤:
第二次座封:在完成所述第二次泵送步骤后,所述可溶桥塞到达所述第二座封位置,所述可溶桥塞在所述第二座封位置处座封;
所述第二次座封步骤完成后,所述可溶桥塞与所述适配器本体解除连接,开始所述第二次出井步骤,在所述第二次出井步骤中,所述座封工具和所述适配器本体均经所述井筒回收到地面;
第二次压裂:所述第二次出井步骤完成后,通过所述井口向所述井筒通入压裂液。
采用上述进一步方案的有益效果是:第二次温度采集并记录步骤在分段 压裂工艺完成一段压裂后的下一段压裂工序中,无须其他多余操作,成本低廉,操作简单,不会过多增加工作量。
本发明公开的可溶桥塞制作方法,根据上述的动态井温测量方法测得的动态环境温度设计可溶桥塞。
本发明的有益效果是:设计的可溶桥塞在对应的井下溶解性能好。
进一步的,在设计可溶桥塞的过程中,设计的使所述可溶桥塞的溶解的温度大于所述第一次温度采集并记录步骤中采集并记录的动态环境温度的最大值。
采用上述进一步方案的有益效果是:可保证可溶桥塞在压裂完成之前,不提前溶解,保证压裂效果。
附图说明
图1为可溶桥塞适配器的实施例的示意图之一;
图2为A-A面剖视图;
图3为可溶桥塞适配器的实施例的示意图之二;
图4为适配器本体的实施例的示意图;
图5为水平井的实施例的示意图;
图中:1、适配器本体;2、安装销;3、温度采集记录装置;4、堵头;5、第二安装孔;6、接头;7、第一安装孔;8、井口;9、井筒;10、第一座封位置;11、第二座封位置;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
如图1-图5所示,本发明公开的可溶桥塞适配器的实施例,包括适配器 本体1和温度采集记录装置3,温度采集记录装置3固定在适配器本体1上,适配器本体1用于连接座封工具和可溶桥塞,温度采集记录装置3用于检测并记录适配器本体1所处的环境温度,温度采集记录装置3可采用现有的微型温度采集记录装置3。
作为上述可溶桥塞适配器的实施例的进一步方案,适配器本体1为柱状,优选为圆柱状,适配器本体1前细后粗,粗部和细部之间通过圆台面连接,适配器本体1中空且前后贯穿,适配器本体1的内腔为与其同轴的圆柱状,适配器本体1的前端用于连接可溶桥塞,适配器本体1的后端用于连接座封工具。
作为上述可溶桥塞适配器的实施例的进一步方案,还包括安装销2,适配器本体1上具有与安装销2适配的第一安装孔7,第一安装孔7在适配器本体1的粗部,第一安装孔7沿适配器本体1的径向贯穿适配器本体1相对的两侧,安装销2插入第一安装孔7内并与适配器本体1可拆卸连接,安装销2的端部开有第二安装孔5,第二安装孔5为盲孔,第二安装孔5的开口处具有与其适配的堵头4,堵头4与第二安装孔5可拆卸连接,温度采集记录装置3设置于第二安装孔5内,安装销2和堵头4均为导热材质。
作为上述可溶桥塞适配器的实施例的进一步方案,安装销2外壁具有外螺纹,第一安装孔7内壁具有与外螺纹适配的内螺纹,安装销2在第一安装孔7内与适配器本体1螺纹连接。
作为上述可溶桥塞适配器的实施例的进一步方案,安装销2的端部具有用于带动安装销2旋转的接头6,安装销2的两端和接头6均在第一安装孔7内,外螺纹和接头6分别在安装销2的两端,内螺纹在适配器本体1其中一侧侧壁上,接头6可为外六角接头6,可通过对应的套筒扳手等工具使安装销 2旋转,堵头4为NPT堵头4。
作为上述可溶桥塞适配器的实施例的进一步方案,安装销2贯穿适配器本体1的内腔,温度采集记录装置3设置于适配器本体1的内腔内。
本发明公开的动态井温测量方法的实施例,包括如下步骤:
安装温度采集记录装置3:将温度采集记录装置3通过电脑软件进行设定,设置采集记录的时间及频率,将温度采集记录装置3安装于适配器本体1上,座封工具和可溶桥塞通过适配器本体1连接;
第一次泵送:安装温度采集记录装置3步骤完成后,将连接有适配器本体1和座封工具的可溶桥塞放入井筒9,通过井口8向井筒9内通入泵送液,将可溶桥塞泵送到第一座封位置10;
第一次座封:可溶桥塞到达第一座封位置10后座封;
第一次温度采集并记录:在第一次泵送步骤和第一次座封步骤中,温度采集记录装置3采集并记录动态环境温度;
第一次出井:第一次座封步骤完成后,适配器本体1与可溶桥塞解除连接,适配器本体1和座封工具经井筒9回收到地面,通过适配器本体1上的温度采集记录装置3与电脑连接,在地面获取第一次温度采集并记录步骤中采集并记录的动态环境温度,本区块内设计的可溶桥塞溶解的最低温度大于在第一次温度采集并记录步骤中采集并记录的动态环境温度的最大值。
在第一次出井步骤中,温度采集记录装置3也可采集并记录动态环境温度。
第一次压裂:在第一次出井步骤完成后,通过井口8向井筒9通入压裂液。
在第一次压裂步骤中,压裂液的流量大于第一次泵送步骤中泵送液的流 量,注入井筒9内的压裂液的总量大于第一次泵送步骤中注入井筒9中的泵送液的总量,水平井中,深度相同,动态环境温度与井筒9中的液体总量和流量相关,确保第一次压裂步骤时井筒9中的动态环境温度低于或者等于第一次泵送步骤时的动态环境温度,设计的可溶桥塞在泵送和压裂均不会发生溶解。
还包括以下步骤:
第二次泵送:在第一次压裂步骤完成后,将适配器本体1放入井筒9,适配器本体1上安装有温度采集记录装置3,通过井口8向井筒9内通入泵送液,将适配器本体1泵送到井下;
第二次温度采集并记录:在第二次泵送步骤过程中,温度采集记录装置3采集并记录动态环境温度,此时获取的动态环境温度为上一段压裂完成后水平井内的动态环境温度;
第二次出井:第二次温度采集并记录步骤完成后,将适配器本体1经井筒9回收到地面,通过适配器本体1上的温度采集记录装置3在地面获取第二次温度采集并记录步骤中采集并记录的动态环境温度。
第二次泵送步骤中,适配器本体1分别连接有座封工具和可溶桥塞,泵送液将连接有适配器本体1和座封工具的可溶桥塞泵送至第二座封位置11;
还包括步骤:
第二次座封:在完成第二次泵送步骤后,可溶桥塞到达第二座封位置11,可溶桥塞在第二座封位置11处座封,第二座封位置11在第一座封位置10的后方;
第二次座封步骤完成后,可溶桥塞与适配器本体1解除连接,开始第二次出井步骤,在第二次出井步骤中,座封工具和适配器本体1均经井筒9回 收到地面;
第二次压裂:第二次出井步骤完成后,通过井口8向井筒9通入压裂液。
可使温度采集记录装置3在处于井筒9内的各个步骤中均进行动态环境温度的采集和记录。
上述动态井温测量方法的实施例,通过水平井分段压裂工艺中上一段工序的泵送步骤获取此段泵送时的动态环境温度,通过水平井分段压裂工艺中下一段工序的泵送步骤获取上一段工序中压裂完成后的动态环境温度,以上述两个动态环境温度为依据来设计的可溶桥塞,可保证在压裂完成前不提前溶解。水平井下各处深度相同,各处的动态温度相近,可通过多次重复测量得到复合数据,以此来设计本区块内水平井的可溶桥塞
本发明公开的可溶桥塞制作方法的实施例,根据上述的动态井温测量方法测得的动态环境温度设计可溶桥塞。
在设计可溶桥塞的过程中,设计的使可溶桥塞的溶解的温度大于第一次温度采集并记录步骤中采集并记录的动态环境温度的最大值,以第二次温度采集并记录步骤中采集并记录的动态环境温度作为依据,来设计的可溶桥塞快速、充分溶解的温度。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。

Claims (10)

  1. 一种可溶桥塞适配器,其特征在于:包括适配器本体(1)和温度采集记录装置(3),所述温度采集记录装置(3)固定在所述适配器本体(1)上,所述适配器本体(1)用于连接座封工具和可溶桥塞,所述温度采集记录装置(3)用于检测并记录所述适配器本体(1)所处的环境温度。
  2. 根据权利要求1所述的可溶桥塞适配器,其特征在于:还包括安装销(2),所述适配器本体(1)上具有与所述安装销(2)适配的第一安装孔(7),所述安装销(2)插入所述第一安装孔(7)内并与所述适配器本体(1)可拆卸连接,所述安装销(2)的端部开有第二安装孔(5),所述第二安装孔(5)为盲孔,所述第二安装孔(5)的开口处具有与其适配的堵头(4),所述堵头(4)与所述第二安装孔(5)可拆卸连接,所述温度采集记录装置(3)设置于所述第二安装孔(5)内。
  3. 根据权利要求2所述的可溶桥塞适配器,其特征在于:所述安装销(2)和所述堵头(4)均为导热材质。
  4. 根据权利要求1所述的可溶桥塞适配器,其特征在于:所述适配器本体(1)为柱状。
  5. 一种动态井温测量方法,其特征在于:包括如下步骤:
    安装温度采集记录装置(3):将温度采集记录装置(3)安装于适配器本体(1)上,座封工具和可溶桥塞通过所述适配器本体(1)连接;
    第一次泵送:所述安装温度采集记录装置(3)步骤完成后,将连接有所述适配器本体(1)和所述座封工具的所述可溶桥塞放入井筒(9),通过井口(8)向所述井筒(9)内通入泵送液,将所述可溶桥塞泵送到第一座封位置(10);
    第一次座封:所述可溶桥塞到达所述第一座封位置(10)后座封;
    第一次温度采集并记录:在所述第一次泵送步骤和所述第一次座封步骤 中,所述温度采集记录装置(3)采集并记录动态环境温度;
    第一次出井:所述第一次座封步骤完成后,所述适配器本体(1)与所述可溶桥塞解除连接,所述适配器本体(1)和所述座封工具经所述井筒(9)回收到地面,通过所述适配器本体(1)上的所述温度采集记录装置(3)在地面获取所述第一次温度采集并记录步骤中采集并记录的动态环境温度;
    第一次压裂:在所述第一次出井步骤完成后,通过所述井口(8)向所述井筒(9)通入压裂液。
  6. 根据权利要求5所述的动态井温测量方法,其特征在于:在所述第一次压裂步骤中,所述压裂液的流量大于所述第一次泵送步骤中所述泵送液的流量,注入所述井筒(9)内的所述压裂液的总量大于所述第一次泵送步骤中注入所述井筒(9)中的所述泵送液的总量。
  7. 根据权利要求5所述的动态井温测量方法,其特征在于:还包括以下步骤:
    第二次泵送:在所述第一次压裂步骤完成后,将所述适配器本体(1)放入井筒(9),所述适配器本体(1)上安装有所述温度采集记录装置(3),通过所述井口(8)向所述井筒(9)内通入泵送液,将所述适配器本体(1)泵送到井下;
    第二次温度采集并记录:在第二次泵送步骤过程中,所述温度采集记录装置(3)采集并记录动态环境温度;
    第二次出井:所述第二次温度采集并记录步骤完成后,将所述适配器本体(1)经所述井筒(9)回收到地面,通过所述适配器本体(1)上的所述温度采集记录装置(3)在地面获取所述第二次温度采集并记录步骤中采集并记录的动态环境温度。
  8. 根据权利要求7所述的动态井温测量方法,其特征在于:所述第二次 泵送步骤中,所述适配器本体(1)分别连接有所述座封工具和所述可溶桥塞,所述泵送液将连接有所述适配器本体(1)和所述座封工具的所述可溶桥塞泵送至第二座封位置(11);
    还包括步骤:
    第二次座封:在完成所述第二次泵送步骤后,所述可溶桥塞到达所述第二座封位置(11),所述可溶桥塞在所述第二座封位置(11)处座封;
    所述第二次座封步骤完成后,所述可溶桥塞与所述适配器本体(1)解除连接,开始所述第二次出井步骤,在所述第二次出井步骤中,所述座封工具和所述适配器本体(1)均经所述井筒(9)回收到地面;
    第二次压裂:所述第二次出井步骤完成后,通过所述井口(8)向所述井筒(9)通入压裂液。
  9. 一种可溶桥塞制作方法,其特征在于:根据如权利要求5-8任一项所述的动态井温测量方法测得的动态环境温度设计可溶桥塞。
  10. 根据权利要求9所述的可溶桥塞制作方法,其特征在于:在设计可溶桥塞的过程中,设计的使所述可溶桥塞的溶解的温度大于所述第一次温度采集并记录步骤中采集并记录的动态环境温度的最大值。
PCT/CN2020/075838 2020-02-14 2020-02-19 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法 WO2021159550A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,157 US11608705B2 (en) 2020-02-14 2020-02-19 Dissolvable frac plug adapter, method for measuring dynamic downhole temperature, and method for fabricating dissolvable frac plug

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020169989.XU CN211623403U (zh) 2020-02-14 2020-02-14 一种可溶桥塞适配器
CN202010092875.4 2020-02-14
CN202010092875.4A CN111155984A (zh) 2020-02-14 2020-02-14 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法
CN202020169989.X 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021159550A1 true WO2021159550A1 (zh) 2021-08-19

Family

ID=77292943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075838 WO2021159550A1 (zh) 2020-02-14 2020-02-19 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法

Country Status (2)

Country Link
US (1) US11608705B2 (zh)
WO (1) WO2021159550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230034797A1 (en) * 2020-02-14 2023-02-02 Chengdu Innox Technology Co., Ltd. Dissolvable frac plug adapter, method for measuring dynamic downhole temperature, and method for fabricating dissolvable frac plug

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2307972C (en) * 1999-05-13 2006-09-19 Halliburton Energy Services, Inc. Low pressure, high temperature composite bridge plug
WO2011097091A2 (en) * 2010-02-08 2011-08-11 Smith International, Inc. Drillable bridge plug for high pressure and high temperature environments
CN106089148A (zh) * 2011-08-22 2016-11-09 井下技术有限责任公司 井下工具
CN108716379A (zh) * 2018-07-25 2018-10-30 百勤能源科技(惠州)有限公司 一种大通径可溶桥塞
CN110374549A (zh) * 2019-07-31 2019-10-25 陕西海格瑞恩实业有限公司 一种全金属双卡瓦可溶大通径桥塞
CN210003249U (zh) * 2019-05-31 2020-01-31 天津新领地石油技术有限公司 一种新型适配器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168494B2 (en) * 2004-03-18 2007-01-30 Halliburton Energy Services, Inc. Dissolvable downhole tools
CA2688635C (en) * 2009-12-15 2016-09-06 Rawwater Engineering Company Limited Sealing method and apparatus
JP6327946B2 (ja) * 2013-05-31 2018-05-23 株式会社クレハ 分解性材料から形成されるマンドレルを備える坑井掘削用プラグ
US20170335678A1 (en) * 2016-05-23 2017-11-23 Gas Technology Institute Smart frac plug
CN110792408A (zh) * 2019-11-13 2020-02-14 百勤能源科技(惠州)有限公司 一种硬密封可溶桥塞
WO2021159550A1 (zh) * 2020-02-14 2021-08-19 成都英诺思科技有限公司 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法
CN111155984A (zh) * 2020-02-14 2020-05-15 成都英诺思科技有限公司 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法
CN215927324U (zh) * 2021-07-05 2022-03-01 北京奥依尔技术开发有限公司 水平井泵送可溶桥塞射孔联作施工过程检测装置及可溶桥塞
CN217462140U (zh) * 2022-06-14 2022-09-20 成都英诺思科技有限公司 一种采集井下压裂数据的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2307972C (en) * 1999-05-13 2006-09-19 Halliburton Energy Services, Inc. Low pressure, high temperature composite bridge plug
WO2011097091A2 (en) * 2010-02-08 2011-08-11 Smith International, Inc. Drillable bridge plug for high pressure and high temperature environments
CN106089148A (zh) * 2011-08-22 2016-11-09 井下技术有限责任公司 井下工具
CN108716379A (zh) * 2018-07-25 2018-10-30 百勤能源科技(惠州)有限公司 一种大通径可溶桥塞
CN210003249U (zh) * 2019-05-31 2020-01-31 天津新领地石油技术有限公司 一种新型适配器
CN110374549A (zh) * 2019-07-31 2019-10-25 陕西海格瑞恩实业有限公司 一种全金属双卡瓦可溶大通径桥塞

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230034797A1 (en) * 2020-02-14 2023-02-02 Chengdu Innox Technology Co., Ltd. Dissolvable frac plug adapter, method for measuring dynamic downhole temperature, and method for fabricating dissolvable frac plug
US11608705B2 (en) * 2020-02-14 2023-03-21 Chengdu Innox Technology Co., Ltd. Dissolvable frac plug adapter, method for measuring dynamic downhole temperature, and method for fabricating dissolvable frac plug

Also Published As

Publication number Publication date
US11608705B2 (en) 2023-03-21
US20230034797A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
CN105716747B (zh) 矿井下岩层地应力快速测量装备及方法
US8726743B2 (en) Shoulder yielding detection during tubular makeup
CN111155984A (zh) 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法
CN103061753A (zh) 一种随钻井下流量测量监测早期溢流的装置
CN104533394A (zh) 一种随钻地层压力测量装置
CN109577971B (zh) 地应力测试装置及测试方法
CN110748380B (zh) 盐穴储气库的建造方法
CN207393186U (zh) 一种安全钻井井下参数测量工具
WO2021159550A1 (zh) 可溶桥塞适配器及动态井温测量方法和可溶桥塞制作方法
CN205778830U (zh) 一种油套压对比同测防砂压力计工作筒
WO2012024492A2 (en) Methods for borehole measurements of fracturing pressures
CN102182452B (zh) 毛细管测压装置
CN113107422A (zh) 一种井下用可溶桥塞
CN112267876B (zh) 一种双封隔器结构的随钻地层压力测量工具及测试方法
CN205422679U (zh) 一种用于水平气井持水率剖面的测试工具
CN215927324U (zh) 水平井泵送可溶桥塞射孔联作施工过程检测装置及可溶桥塞
US20080230221A1 (en) Methods and systems for monitoring near-wellbore and far-field reservoir properties using formation-embedded pressure sensors
CN211623403U (zh) 一种可溶桥塞适配器
CN113464123B (zh) 一种高压出水水平井连续油管快速找水方法及管柱
CN116591627A (zh) 一种用于地应力测量的取芯钻具
CN104196525B (zh) 基于地层测试的泥饼厚度测量方法
CN106837309B (zh) 一种基于气体钻井立压变化反演井眼体积扩大系数的方法
CN201635718U (zh) 分层流压流量仪
CN114458284A (zh) 释放装置、筛管管柱及生产剖面测试方法
CN204691759U (zh) 一种用于水平气井产出剖面的测试工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918532

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20918532

Country of ref document: EP

Kind code of ref document: A1