WO2014192881A1 - Sealing agent for liquid crystal display elements, vertically conducting material, liquid crystal display element and production method of sealing agent for liquid crystal display element - Google Patents
Sealing agent for liquid crystal display elements, vertically conducting material, liquid crystal display element and production method of sealing agent for liquid crystal display element Download PDFInfo
- Publication number
- WO2014192881A1 WO2014192881A1 PCT/JP2014/064297 JP2014064297W WO2014192881A1 WO 2014192881 A1 WO2014192881 A1 WO 2014192881A1 JP 2014064297 W JP2014064297 W JP 2014064297W WO 2014192881 A1 WO2014192881 A1 WO 2014192881A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- liquid crystal
- crystal display
- dispersed
- acrylate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
- C09D4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/28—Adhesive materials or arrangements
Definitions
- the (meth) acrylate polymer particles dispersed in the dispersion medium are preferably obtained by polymerizing a (meth) acrylate monomer in the dispersion medium.
- Examples of the method for polymerizing the (meth) acrylic acid ester monomer include suspension polymerization, emulsion polymerization, and dispersion polymerization. Among these, emulsion polymerization in the presence of a surfactant is preferable, and since it is not necessary to remove the surfactant after polymerization, the emulsion polymerization in the presence of a reactive surfactant is more preferable. preferable.
- copolymerizable monomers may be used as long as the object of the present invention is not impaired.
- the other copolymerizable monomers include styrene, vinyl toluene, acrylonitrile, methacrylonitrile, vinyl acetate, divinylbenzene, diallyl phthalate and the like.
- divinylbenzene and diallyl phthalate are preferable because an appropriate cross-linked structure can be introduced into the (meth) acrylic acid ester polymer particles.
- unsaturated carboxylic acid examples include unsaturated monocarboxylic acids such as (meth) acrylic acid and crotonic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid, and half-esterified products of these unsaturated dicarboxylic acids. Etc. These unsaturated carboxylic acids may be used alone or in combination of two or more.
- a preferable minimum is 0.5 weight part and a preferable upper limit is 10 weight part with respect to 100 weight part of said (meth) acrylic acid ester monomers. If the amount of the reactive surfactant used is less than 0.5 parts by weight, the emulsifying effect may not be sufficiently exhibited. When the usage-amount of the said reactive surfactant exceeds 10 weight part, it may become easy to produce a bubble.
- the primary particle diameter of the light-shielding agent is not particularly limited as long as it is not more than the distance between the substrates of the liquid crystal display element, but the preferred lower limit is 1 nm and the preferred upper limit is 5 ⁇ m.
- the primary particle diameter of the light-shielding agent is less than 1 nm, the viscosity and thixotropy of the obtained sealing agent for liquid crystal display elements is greatly increased, and workability may be deteriorated.
- the primary particle diameter of the light-shielding agent exceeds 5 ⁇ m, the applicability of the obtained sealing agent for liquid crystal display elements to the substrate may be deteriorated.
- the more preferable lower limit of the primary particle diameter of the light shielding agent is 5 nm, the more preferable upper limit is 200 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 100 nm.
- the sealing agent for liquid crystal display elements of the present invention preferably further contains flexible particles having a maximum particle size of 100% or more of the cell gap of the liquid crystal display element and 5 ⁇ m to 20 ⁇ m.
- Examples of the mixing method in Step 4 include, for example, a particle-dispersed epoxy resin prepared in advance in Steps 1 to 3, a (meth) acrylic resin, a radical polymerization initiator and / or a thermosetting agent, as necessary.
- Examples thereof include a method of mixing the silane coupling agent added in accordance with a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
- the liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
- the liquid crystal display element sealant of the present invention is applied to one of two substrates having an ITO thin film by screen printing, dispenser application, etc.
- the step of forming the seal pattern, the step of applying the liquid crystal microdrops on the entire surface of the frame of the seal pattern, and superposing the other substrate under vacuum, the liquid crystal display element sealant of the present invention is irradiated with light such as ultraviolet rays
- Examples of the method include a step of irradiating and temporarily curing the sealant, and a step of heating and temporarily curing the temporarily cured sealant.
- (Preparation of particle dispersion curable resin E) The content of the (meth) acrylate polymer particles is the same as “(Preparation of particle dispersion curable resin A)” except that the amount of the bisphenol A-type epoxy resin is changed to 46 parts by weight.
- a particle-dispersed curable resin E which is a 50% by weight particle-dispersed epoxy resin, was obtained.
- the (meth) acrylic acid ester polymer particles obtained in the particle-dispersed curable resin E had a glass transition temperature of ⁇ 8 ° C. and an average particle size of 0.2 ⁇ m.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Sealing Material Composition (AREA)
- Liquid Crystal (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Description
以下に本発明を詳述する。 The present invention includes a particle-dispersed curable resin in which (meth) acrylic acid ester polymer particles are dispersed in a curable resin, a radical polymerization initiator and / or a thermosetting agent, and the particle-dispersed curable resin. Is a sealing agent for a liquid crystal display device in which (meth) acrylic acid ester polymer particles dispersed in a dispersion medium are dispersed in a curable resin, and then the dispersion medium is removed.
The present invention is described in detail below.
そこで本発明者は鋭意検討した結果、分散媒に分散した状態の(メタ)アクリル酸エステル系重合体粒子を硬化性樹脂に分散させ、その後上記分散媒を除去することにより、(メタ)アクリル酸エステル系重合体粒子を硬化性樹脂中に分散させた粒子分散硬化性樹脂を調製し、該粒子分散硬化性樹脂を他のシール剤成分と混合することにより、シール剤中に(メタ)アクリル酸エステル系重合体粒子を充分に分散させることができ、その結果、接着性に優れ、かつ、硬化物の透湿性が低い液晶表示素子用シール剤を得ることができることを見出し、本発明を完成させるに至った。 The present inventor considered blending (meth) acrylic acid ester polymer particles in order to achieve both high adhesion of the sealing agent for liquid crystal display elements and low moisture permeability of the cured product. However, when the (meth) acrylic acid ester polymer particles are blended directly into the sealing agent for liquid crystal display elements, the (meth) acrylic acid ester polymer particles cannot be sufficiently dispersed in the sealing agent, With a sealant in which the dispersion of the (meth) acrylate polymer particles is insufficient, it is impossible to achieve both high adhesiveness and low moisture permeability of the cured product.
Therefore, as a result of intensive studies, the present inventors have dispersed (meth) acrylic acid ester polymer particles dispersed in a dispersion medium in a curable resin, and then removed the dispersion medium to obtain (meth) acrylic acid. By preparing a particle-dispersed curable resin in which ester polymer particles are dispersed in a curable resin, and mixing the particle-dispersed curable resin with other sealant components, (meth) acrylic acid is contained in the sealant. It has been found that ester polymer particles can be sufficiently dispersed, and as a result, it is possible to obtain a sealing agent for a liquid crystal display device having excellent adhesion and low moisture permeability of a cured product, thereby completing the present invention. It came to.
上記粒子分散硬化性樹脂は、分散媒に分散した状態の(メタ)アクリル酸エステル系重合体粒子を硬化性樹脂に分散させ、その後上記分散媒を除去したものである。
なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。 The sealing agent for liquid crystal display elements of the present invention contains a particle-dispersed curable resin in which (meth) acrylic ester polymer particles are dispersed in a curable resin.
The particle-dispersed curable resin is obtained by dispersing (meth) acrylic acid ester polymer particles dispersed in a dispersion medium in a curable resin and then removing the dispersion medium.
In the present specification, the “(meth) acryl” means acryl or methacryl.
これらの(メタ)アクリル酸エステル系単量体は単独で使用されてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the (meth) acrylic acid ester monomer used as the raw material for the (meth) acrylic acid ester polymer particles include linear or branched aliphatic alkyl alcohols having 1 to 18 carbon atoms or alicyclic rings. (Meth) acrylic acid esters which are ester compounds of the formula alkyl alcohol and (meth) acrylic acid, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid and polypropylene glycol or polyethylene Hydroxyl group-containing unsaturated monomers such as monoester with glycol, epoxy group-containing unsaturated monomers such as glycidyl (meth) acrylate, (meth) acryloylaziridine, (meth) acryloyloxyethylaziridine Aziridinyl group-containing unsaturated monomers such as 2-isopropenyl Oxazoline group-containing unsaturated monomers such as -2-oxazoline and 2-vinyl-2-oxazoline, (meth) acrylic acid and ethylene glycol, 1,3-butylene glycol, 1,6-hexane glycol, neopentyl Polyfunctional (meth) acrylic acid esters containing two or more polymerizable unsaturated groups in the molecule such as an ester with a polyhydric alcohol such as glycol, polyethylene glycol, polypropylene glycol and trimethylolpropane; Examples include allyl acrylate. Among them, the reactive surfactant and the (meth) acrylic acid ester polymer particles are firmly bonded, so that epoxy group-containing unsaturated monomers, aziridinyl group-containing unsaturated monomers, oxazoline groups Containing unsaturated monomers are preferred. Moreover, since a moderate crosslinked structure can be introduce | transduced into a (meth) acrylic acid ester type polymer particle, polyfunctional (meth) acrylic acid esters and (meth) acrylic acid allyl are also preferable.
These (meth) acrylic acid ester monomers may be used alone or in combination of two or more.
上記その他の共重合性単量体としては、例えば、スチレン、ビニルトルエン、アクロニトリル、メタクリロニトリル、酢酸ビニル、ジビニルベンゼン、ジアリルフタレート等が挙げられる。なかでも、(メタ)アクリル酸エステル系重合体粒子に適度の架橋構造を導入することができることから、ジビニルベンゼン、ジアリルフタレートが好ましい。 Further, in addition to the above (meth) acrylic acid ester monomer, other copolymerizable monomers may be used as long as the object of the present invention is not impaired.
Examples of the other copolymerizable monomers include styrene, vinyl toluene, acrylonitrile, methacrylonitrile, vinyl acetate, divinylbenzene, diallyl phthalate and the like. Among these, divinylbenzene and diallyl phthalate are preferable because an appropriate cross-linked structure can be introduced into the (meth) acrylic acid ester polymer particles.
上述したように、上記界面活性剤としては、重合後に除去する必要がないため、反応性界面活性剤が好適に用いられる。
上記反応性界面活性剤は、不飽和カルボン酸を含有する重合性単量体成分を、炭素数6~18のアルキルメルカプタンの存在下で重合して得られる、酸価が200以上の水溶性又は水分散性の末端アルキル基含有重合体及び/又はその塩であることが好ましい。 The surfactant has a role as an emulsifier in the emulsion polymerization.
As described above, a reactive surfactant is preferably used as the surfactant because it does not need to be removed after polymerization.
The reactive surfactant is a water-soluble or acid-soluble product obtained by polymerizing a polymerizable monomer component containing an unsaturated carboxylic acid in the presence of an alkyl mercaptan having 6 to 18 carbon atoms. A water-dispersible terminal alkyl group-containing polymer and / or a salt thereof is preferable.
上記その他の重合性単量体としては、上記不飽和カルボン酸との共重合性を有するものであれば特に限定されず、例えば、スチレン、ビニルトルエン、α-メチルスチレン、クロルメチルスチレン、スチレンスルホン酸及びその塩等のスチレン誘導体類や、(メタ)アクリルアミド、N-モノメチル(メタ)アクリルアミド、N-モノエチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体類や、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸と炭素数1~18のアルコ-ルとのエステル化反応により合成される(メタ)アクリル酸エステル類や、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸とポリプロピレングリコール又はポリエチレングリコールとのモノエステル等のヒドロキシル基含有(メタ)アクリル酸エステル類や、(メタ)アクリル酸2-スルホン酸エチル及びその塩、ビニルスルホン酸及びその塩、酢酸ビニル、(メタ)アクリロニトリル等が挙げられる。これらのその他の重合性単量体は、単独で使用されてもよいし、2種以上が組み合わせて用いられてもよい。
上記その他の重合性単量体の種類や量は、得られる末端アルキル基含有重合体の酸価等を考慮して適宜種類調整される。 The polymerizable monomer component may contain other polymerizable monomer in addition to the unsaturated carboxylic acid.
The other polymerizable monomer is not particularly limited as long as it has copolymerizability with the unsaturated carboxylic acid, and examples thereof include styrene, vinyl toluene, α-methyl styrene, chloromethyl styrene, styrene sulfone. Styrene derivatives such as acids and salts thereof, (meth) acrylamide derivatives such as (meth) acrylamide, N-monomethyl (meth) acrylamide, N-monoethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, , Synthesized by esterification reaction of (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate and the like with an alcohol having 1 to 18 carbon atoms. Acrylic esters, 2-hydroxyethyl (meth) acrylate, 2-hydro (meth) acrylate Hydroxy group-containing (meth) acrylic acid esters such as cypropyl, (meth) acrylic acid and polypropylene glycol or polyethylene glycol monoester, ethyl (meth) acrylate 2-ethyl sulfonate and salts thereof, vinyl sulfonic acid and its A salt, vinyl acetate, (meth) acrylonitrile, etc. are mentioned. These other polymerizable monomers may be used alone or in combination of two or more.
The type and amount of the other polymerizable monomer are appropriately adjusted in consideration of the acid value of the obtained terminal alkyl group-containing polymer.
上記アルキルメルカプタンとしては、具体的には例えば、n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、セチルメルカプタン、ステアリルメルカプタン等が挙げられる。これらのアルキルメルカプタンは、単独で使用されてもよいし、2種以上が組み合わせて用いられてもよい。 The lower limit of the carbon number of the terminal alkyl group-containing polymer is 6 and the upper limit is 18. When the number of carbon atoms of the alkyl mercaptan is less than 6, storage stability and stability during emulsion polymerization are deteriorated. When the number of carbon atoms of the alkyl mercaptan exceeds 18, adverse effects due to unreacted substances occur.
Specific examples of the alkyl mercaptan include n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, cetyl mercaptan, stearyl mercaptan and the like. These alkyl mercaptans may be used alone or in combination of two or more.
上記末端アルキル基含有重合体を製造する際には、上記アルキルメルカプタン1モルに対して、好ましくは1モル以下、より好ましくは0.1モル以下の重合開始剤を用いることが好ましい。
上記末端アルキル基含有重合体を製造する際の好ましい重合温度は通常50~150℃、好ましい重合時間は1~8時間である。 Examples of the method for producing the terminal alkyl group-containing polymer include bulk polymerization, solution polymerization, and suspension polymerization.
When the terminal alkyl group-containing polymer is produced, it is preferable to use a polymerization initiator of preferably 1 mol or less, more preferably 0.1 mol or less with respect to 1 mol of the alkyl mercaptan.
The preferred polymerization temperature for producing the terminal alkyl group-containing polymer is usually 50 to 150 ° C., and the preferred polymerization time is 1 to 8 hours.
上記末端アルキル基含有重合体の酸価の上限は特にないが、実質的な上限は500である。 The terminal alkyl group-containing polymer has an acid value of 200 or more. When the acid value of the terminal alkyl group-containing polymer is less than 200, the (meth) acrylic acid ester polymer particles may not be sufficiently imparted with reactivity with an epoxy resin.
Although there is no particular upper limit on the acid value of the terminal alkyl group-containing polymer, the substantial upper limit is 500.
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。 The minimum with a preferable number average molecular weight of the said terminal alkyl group containing polymer is 300, and a preferable upper limit is 7000. By using a terminal alkyl group-containing polymer having an acid value of 200 or more in which the number average molecular weight of the terminal alkyl group-containing polymer is in this range, the (meth) acrylic acid ester polymer particles are reacted with an epoxy resin. It is possible to sufficiently impart properties. The more preferable lower limit of the number average molecular weight of the terminal alkyl group-containing polymer is 1000, and the more preferable upper limit is 4000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記中和剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属化合物や、水酸化カルシウム、炭酸カルシウム等のアルカリ土類金属化合物や、アンモニアや、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルアミン、ジメチルプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン等の水溶性有機アミン類等が挙げられる。なかでも、アンモニアや、モノメチルアミン、ジメチルアミン、トリメチルアミン等の低沸点アミン類が好ましい。 A salt obtained by neutralizing a part or all of the carboxyl groups of the terminal alkyl group-containing polymer with a neutralizing agent has an excellent emulsifying effect when performing emulsion polymerization.
Examples of the neutralizing agent include alkali metal compounds such as sodium hydroxide and potassium hydroxide, alkaline earth metal compounds such as calcium hydroxide and calcium carbonate, ammonia, monomethylamine, dimethylamine, trimethylamine, and mono Examples include water-soluble organic amines such as ethylamine, diethylamine, triethylamine, monopropylamine, dimethylpropylamine, monoethanolamine, diethanolamine, triethanolamine, ethylenediamine, and diethylenetriamine. Of these, ammonia and low boiling point amines such as monomethylamine, dimethylamine, and trimethylamine are preferable.
上記乳化重合の好ましい重合温度は0~100℃、より好ましい重合温度は50~80℃である。また、上記乳化重合の好ましい重合時間は1~10時間である。 Examples of the emulsion polymerization method for obtaining the (meth) acrylic acid ester polymer particles include, for example, the terminal alkyl group-containing polymer and / or a salt thereof together with the polymerizable monomer component and the dispersion medium. Examples of the polymerization method include mixing, a monomer dropping method, a pre-emulsion method, a seed polymerization method, and a multistage polymerization method.
A preferable polymerization temperature for the above emulsion polymerization is 0 to 100 ° C., and a more preferable polymerization temperature is 50 to 80 ° C. The preferred polymerization time for the emulsion polymerization is 1 to 10 hours.
上記重合触媒としては、例えば、過酸化水素、過酢酸、ジ-t-ブチルパーオキサイド、4,4’-アゾビス(4-シアノペンタン酸)等が挙げられる。 A polymerization catalyst may be used when performing the emulsion polymerization.
Examples of the polymerization catalyst include hydrogen peroxide, peracetic acid, di-t-butyl peroxide, 4,4′-azobis (4-cyanopentanoic acid), and the like.
また、上記(メタ)アクリル酸エステル系重合体粒子のガラス転移温度の下限は特にないが、実質的な下限は-80℃である。 The upper limit with preferable glass transition temperature of the said (meth) acrylic-ester type polymer particle is 20 degreeC. When the glass transition temperature of the (meth) acrylic acid ester polymer particles exceeds 20 ° C., the obtained cured product of the sealing agent for liquid crystal display elements may be inferior in toughness. A more preferable upper limit of the glass transition temperature of the (meth) acrylic acid ester polymer particles is 0 ° C.
The lower limit of the glass transition temperature of the (meth) acrylic acid ester polymer particles is not particularly limited, but the substantial lower limit is −80 ° C.
なお、本明細書において、上記平均粒子径は、走査型電子顕微鏡を用いて、1万倍の倍率で観察した粒子10個の粒子径の平均値を意味する。上記走査型電子顕微鏡としては、S-4300(日立ハイテクノロジーズ社製)等を用いることができる。 The minimum with a preferable average particle diameter of the said (meth) acrylic-ester type polymer particle is 0.01 micrometer, and a preferable upper limit is 10 micrometers. When the average particle diameter of the (meth) acrylic acid ester polymer particles is less than 0.01 μm, the obtained cured product of the sealing agent for liquid crystal display elements may be inferior in adhesiveness. When the average particle diameter of the (meth) acrylic acid ester polymer particles exceeds 10 μm, the moisture permeability of the cured product of the obtained sealing agent for liquid crystal display elements becomes high, and display defects may occur in the liquid crystal display elements. . The minimum with a more preferable average particle diameter of the said (meth) acrylic-ester type polymer particle is 0.1 micrometer, and a more preferable upper limit is 8 micrometers.
In addition, in this specification, the said average particle diameter means the average value of the particle diameter of 10 particle | grains observed by the magnification of 10,000 times using the scanning electron microscope. As the scanning electron microscope, S-4300 (manufactured by Hitachi High-Technologies Corporation) or the like can be used.
なお、本明細書において上記「(メタ)アクリル樹脂」とは、(メタ)アクリロイル基を有する化合物を意味し、上記「(メタ)アクリロイル基」とは、アクリロイル基又はメタクリロイル基を意味する。 Examples of the curable resin in which the (meth) acrylic ester polymer particles are dispersed include an epoxy resin and a (meth) acrylic resin. Among these, an epoxy resin is preferably used. That is, the particle-dispersed curable resin is preferably a particle-dispersed epoxy resin in which (meth) acrylic ester polymer particles are dispersed in an epoxy resin.
In the present specification, the “(meth) acrylic resin” means a compound having a (meth) acryloyl group, and the “(meth) acryloyl group” means an acryloyl group or a methacryloyl group.
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、jER806、jER4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、jERYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、jER630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、jERYL-7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、jER1031、jER1032(いずれも三菱化学社製)、EXA-7120(DIC社製)等が挙げられる。 Examples of commercially available bisphenol A type epoxy resins include jER828, jER1004 (all manufactured by Mitsubishi Chemical Corporation), and Epicron 850-S (manufactured by DIC).
As what is marketed among the said bisphenol F-type epoxy resins, jER806, jER4004 (all are the Mitsubishi Chemical company make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
As what is marketed among the said hydrogenated bisphenol type | mold epoxy resins, Epicron EXA7015 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include jERYX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
Examples of commercially available glycidylamine type epoxy resins include jER630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Corporation), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available bisphenol A type episulfide resins include jERYL-7000 (manufactured by Mitsubishi Chemical Corporation).
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), jER1031, jER1032 (all Also, Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation) and the like.
なお、本明細書において上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味し、上記「エポキシ(メタ)アクリレート」は、エポキシ化合物の全てのエポキシ基が(メタ)アクリル酸と反応したものであってもよいし、エポキシ化合物の一部のエポキシ基が(メタ)アクリル酸と反応したものであってもよい。
上記(メタ)アクリル樹脂としては、得られるシール剤の硬化物の透湿度をより下げることができることから、メタクリル樹脂が好ましい。 Examples of the (meth) acrylic resin include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy (meta) obtained by reacting (meth) acrylic acid with an epoxy compound. ) Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with acrylate or isocyanate.
In the present specification, the term “(meth) acrylate” means acrylate or methacrylate, and the term “epoxy (meth) acrylate” means that all epoxy groups of an epoxy compound are reacted with (meth) acrylic acid. It may be that in which some epoxy groups of the epoxy compound are reacted with (meth) acrylic acid.
As the (meth) acrylic resin, a methacrylic resin is preferable because the moisture permeability of the cured product of the obtained sealing agent can be further lowered.
また、上記エポキシ(メタ)アクリレートのうち市販されているものとして、エポキシ化合物の一部のエポキシ基が(メタ)アクリル酸と反応したものとしては、例えば、UVACURE1561(ダイセル・オルネクス社製)が挙げられる。 As what is marketed among the said epoxy (meth) acrylate, as what all the epoxy groups of the epoxy compound reacted with (meth) acrylic acid, for example, Evecryl 860, Evecryl 3200, Evecril 3201, Evecryl 3412, Evecryl 3600, Evecril 3700, Evecril 3701, Evecril 3702, Evecril 3800, Evecril 3800, Evecril 6040, Evecryl RDX63182 (all manufactured by Daicel Ornex), EA-1010, EA-1020, EA-5323, EA-5520, EA- CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), Epoxy ester M-600A, Epoxy ester 40EM, Epoxy ester 70PA, Epoxy ester 200PA, Poxyester 80MFA, Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911 (all manufactured by Nagase ChemteX Corporation) and the like.
Moreover, as what is marketed among the said epoxy (meth) acrylate, as a thing with which some epoxy groups of the epoxy compound reacted with (meth) acrylic acid, UVACURE1561 (made by Daicel Ornex) is mentioned, for example. It is done.
また、上記(メタ)アクリル樹脂は、反応性の高さから分子中に(メタ)アクリロイル基を2~3個有するものが好ましい。 The (meth) acrylic resin preferably has a hydrogen-bonding unit such as —OH group, —NH— group, —NH 2 group and the like from the viewpoint of suppressing adverse effects on the liquid crystal. (Meth) acrylate is particularly preferred.
The (meth) acrylic resin preferably has 2 to 3 (meth) acryloyl groups in the molecule because of its high reactivity.
上記他の硬化性樹脂としては、上記(メタ)アクリル酸エステル系重合体粒子を分散させる硬化性樹脂として挙げたものを用いることができる。なかでも、上記(メタ)アクリル樹脂が好ましい。即ち、本発明の液晶表示素子用シール剤は、粒子分散硬化性樹脂と、(メタ)アクリル樹脂と、ラジカル重合開始剤及び/又は熱硬化剤とを含有することが好ましい。上記他の硬化性樹脂として用いる(メタ)アクリル樹脂としては、得られるシール剤の硬化物の透湿度をより下げることができることから、メタクリル樹脂が好ましい。また、上記他の硬化性樹脂として用いる(メタ)アクリル樹脂としては、エポキシ(メタ)アクリレートが好適に用いられる。 The sealant for a liquid crystal display element of the present invention is a blend of a curable resin in which particles are not dispersed (hereinafter also referred to as “other curable resin”) in addition to the above-mentioned particle dispersion curable resin. There may be.
As said other curable resin, what was mentioned as curable resin which disperse | distributes the said (meth) acrylic-ester type polymer particle can be used. Especially, the said (meth) acrylic resin is preferable. That is, it is preferable that the sealing compound for liquid crystal display elements of the present invention contains a particle dispersion curable resin, a (meth) acrylic resin, a radical polymerization initiator and / or a thermosetting agent. As the (meth) acrylic resin used as the other curable resin, a methacrylic resin is preferable because the moisture permeability of the cured product of the obtained sealant can be further reduced. Moreover, as a (meth) acrylic resin used as said other curable resin, an epoxy (meth) acrylate is used suitably.
上記ラジカル重合開始剤としては、光ラジカル重合開始剤、熱ラジカル重合開始剤等が挙げられ、本発明の液晶表示素子用シール剤は、上記ラジカル重合開始剤として熱ラジカル重合開始剤を含有することが好ましい。 The sealing agent for liquid crystal display elements of this invention contains a radical polymerization initiator and / or a thermosetting agent.
Examples of the radical polymerization initiator include photo radical polymerization initiators, thermal radical polymerization initiators, and the like, and the sealing agent for liquid crystal display elements of the present invention contains a thermal radical polymerization initiator as the radical polymerization initiator. Is preferred.
なお、本明細書において高分子アゾ開始剤とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。 Examples of the thermal radical polymerization initiator include azo compounds and peroxides. Among these, a polymer azo initiator composed of a polymer azo compound is preferable.
In the present specification, the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. .
なお、本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。 The preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo initiator is less than 1000, the polymer azo initiator may adversely affect the liquid crystal. When the number average molecular weight of the polymeric azo initiator exceeds 300,000, mixing with the curable resin may be difficult. The more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
In addition, in this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column for measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。 Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such a polymer azo initiator include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid) Examples include polycondensates of polydimethylsiloxane having a terminal amino group.
上記フィラーとしては、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト活性白土、窒化アルミニウム等の無機フィラーや、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機フィラーが挙げられる。 The sealing agent for liquid crystal display elements of the present invention may further contain a filler for the purpose of improving the adhesiveness by the stress dispersion effect, improving the linear expansion coefficient, and the like.
Examples of the filler include talc, asbestos, silica, diatomaceous earth, smectite, bentonite, calcium carbonate, magnesium carbonate, alumina, montmorillonite, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, and hydroxide. Examples include inorganic fillers such as aluminum, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, and aluminum nitride, and organic fillers such as polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, and acrylic polymer fine particles. It is done.
上記シランカップリング剤としては、例えば、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらは単独で用いられてもよいし、2種以上が併用されてもよい。 The sealing agent for liquid crystal display elements of the present invention may contain a silane coupling agent.
As the silane coupling agent, for example, γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane and the like are preferably used. These may be used independently and 2 or more types may be used together.
上記チタンブラックは、1μmあたりの光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほどよく、上記チタンブラックのOD値に好ましい上限は特にないが、通常は5以下となる。 Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby providing a light shielding property to the sealing agent for liquid crystal display elements of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. A shading agent. Therefore, by using the photo radical polymerization initiator or the photo cationic polymerization initiator that can start the reaction with light having a wavelength (370 to 450 nm) at which the transmittance of the titanium black is high, the liquid crystal of the present invention is used. The photocurability of the sealant for display elements can be further increased. On the other hand, the light shielding agent contained in the liquid crystal display element sealant of the present invention is preferably a highly insulating material, and titanium black is also preferred as the highly insulating light shielding agent.
The titanium black preferably has an optical density (OD value) per μm of 3 or more, more preferably 4 or more. The higher the light-shielding property of the titanium black, the better. The OD value of the titanium black is not particularly limited, but is usually 5 or less.
また、遮光剤として上記チタンブラックを含有する本発明の液晶表示素子用シール剤を用いて製造した液晶表示素子は、充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有する液晶表示素子を実現することができる。 The above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
In addition, the liquid crystal display element produced using the sealing agent for liquid crystal display elements of the present invention containing the above-described titanium black as a light-shielding agent has a sufficient light-shielding property, and thus has high contrast without light leakage. A liquid crystal display element having excellent image display quality can be realized.
また、上記チタンブラックの体積抵抗の好ましい下限は0.5Ω・cm、好ましい上限は3Ω・cmであり、より好ましい下限は1Ω・cm、より好ましい上限は2.5Ω・cmである。 The preferable lower limit of the specific surface area of the titanium black is 13 m 2 / g, the preferable upper limit is 30 m 2 / g, the more preferable lower limit is 15 m 2 / g, and the more preferable upper limit is 25 m 2 / g.
Further, the preferred lower limit of the volume resistance of the titanium black is 0.5 Ω · cm, the preferred upper limit is 3 Ω · cm, the more preferred lower limit is 1 Ω · cm, and the more preferred upper limit is 2.5 Ω · cm.
本発明の液晶表示素子用シール剤と、導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conducting material can be produced by blending conductive fine particles with the liquid crystal display element sealant of the present invention. If such a vertical conduction material is used, the electrodes can be reliably conductively connected.
The vertical conduction material containing the sealing agent for liquid crystal display elements of the present invention and conductive fine particles is also one aspect of the present invention.
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等を有する2枚の基板の一方に、本発明の液晶表示素子用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布し、長方形状のシールパターンを形成する工程、液晶の微小滴をシールパターンの枠内全面に滴下塗布し、真空下で他方の基板を重ね合わせる工程、本発明の液晶表示素子用シール剤に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。 The liquid crystal display element using the sealing agent for liquid crystal display elements of this invention or the vertical conduction material of this invention is also one of this invention.
As a method for producing the liquid crystal display element of the present invention, for example, the liquid crystal display element sealant of the present invention is applied to one of two substrates having an ITO thin film by screen printing, dispenser application, etc. The step of forming the seal pattern, the step of applying the liquid crystal microdrops on the entire surface of the frame of the seal pattern, and superposing the other substrate under vacuum, the liquid crystal display element sealant of the present invention is irradiated with light such as ultraviolet rays Examples of the method include a step of irradiating and temporarily curing the sealant, and a step of heating and temporarily curing the temporarily cured sealant.
撹拌機、還流冷却器、窒素導入管、温度計、及び、滴下ロートを備えたフラスコに、溶剤としてイソプロピルアルコール180重量部を仕込み、窒素を吹き込みながら81℃まで昇温して10分間還流させた後、不飽和カルボン酸としてアクリル酸53.6重量部、メタクリル酸ラウリル16.5重量部、ポリエチレングリコールモノメタクリル酸エステル91重量部、アルキルメルカプタンとしてn-ドデシルメルカプタン13.7重量部、及び、重合開始剤として2,2-アゾビスイソブチロニトリル(AIBN)0.4重量部を混合してなる重合性単量体混合物を、上記フラスコ中に2時間かけて滴下した。滴下終了後、1時間還流し、固形分49.1重量%の末端アルキル基含有重合体(反応性界面活性剤A)の溶液を得た。
得られた反応性界面活性剤Aの酸価は239、数平均分子量は2300であった。 (Production of reactive surfactant A)
A flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel was charged with 180 parts by weight of isopropyl alcohol as a solvent, heated to 81 ° C. while being blown with nitrogen, and refluxed for 10 minutes. Thereafter, 53.6 parts by weight of acrylic acid as unsaturated carboxylic acid, 16.5 parts by weight of lauryl methacrylate, 91 parts by weight of polyethylene glycol monomethacrylate, 13.7 parts by weight of n-dodecyl mercaptan as alkyl mercaptan, and polymerization A polymerizable monomer mixture obtained by mixing 0.4 parts by weight of 2,2-azobisisobutyronitrile (AIBN) as an initiator was dropped into the flask over 2 hours. After completion of the dropwise addition, the mixture was refluxed for 1 hour to obtain a solution of a terminal alkyl group-containing polymer (reactive surfactant A) having a solid content of 49.1% by weight.
The resulting reactive surfactant A had an acid value of 239 and a number average molecular weight of 2300.
不飽和カルボン酸として、アクリル酸を用いず、メタクリル酸の配合量を70重量部としたこと以外は「(反応性界面活性剤Aの製造)」と同様にして、固形分49.5重量%の末端アルキル基含有重合体(反応性界面活性剤B)の溶液を得た。
得られた反応性界面活性剤Bの酸価は256、数平均分子量は2100であった。 (Production of reactive surfactant B)
As the unsaturated carboxylic acid, the solid content was 49.5% by weight in the same manner as “(Production of Reactive Surfactant A)” except that acrylic acid was not used and the blending amount of methacrylic acid was 70 parts by weight. Solution of the terminal alkyl group-containing polymer (reactive surfactant B).
The resulting reactive surfactant B had an acid value of 256 and a number average molecular weight of 2,100.
アルキルメルカプタンとして、n-ドデシルメルカプタンに代えてステアリルメルカプタン18重量部を用いたこと以外は「(反応性界面活性剤Aの製造)」と同様にして、固形分49.6重量%の末端アルキル基含有重合体(反応性界面活性剤C)の溶液を得た。
得られた反応性界面活性剤Cの酸価は630、数平均分子量は2800であった。 (Production of reactive surfactant C)
The terminal alkyl group having a solid content of 49.6% by weight was the same as “(Production of reactive surfactant A)” except that 18 parts by weight of stearyl mercaptan was used in place of n-dodecyl mercaptan as the alkyl mercaptan. A solution of the containing polymer (reactive surfactant C) was obtained.
The resulting reactive surfactant C had an acid value of 630 and a number average molecular weight of 2800.
得られた反応性界面活性剤Aの溶液4.1重量部と、(メタ)アクリル酸エステル系単量体としてアクリル酸エチル85重量部、メタクリル酸エチル10重量部、及び、メタクリル酸グリシジル5重量部と、28%アンモニア水0.5重量部と、イオン交換水36重量部とを混合して撹拌し、プレエマルジョンを得た。
撹拌機、還流冷却器、窒素導入管、温度計、及び、滴下ロートを備えたフラスコに、水63重量部を仕込み、窒素ガスを吹き込みながら70℃まで昇温し、重合触媒として4,4’-アゾビス(4-シアノペンタン酸)のアンモニア中和5%水溶液8重量部を添加した後、得られたプレエマルジョンを滴下ロートから3.5時間かけて滴下した。プレエマルジョンの滴下中の温度は70~75℃に保持し、滴下終了後、同温度で2時間撹拌して重合を終了させ、不揮発分46重量%の(メタ)アクリル酸エステル系重合体エマルジョンを得た。滴下終了後、水で滴下ロートを洗浄し、その洗浄液をフラスコ内に添加した。得られた(メタ)アクリル酸エステル系重合体のガラス転移温度は-8℃、平均粒子径は0.2μmであった。
撹拌機、還流冷却器、窒素導入管、温度計、及び、滴下ロートを備えたフラスコに、得られた(メタ)アクリル酸エステル系重合体エマルジョンを仕込み、水を加えて不揮発分濃度を30重量%に調整した後、エポキシ樹脂としてビスフェノールA型エポキシ樹脂(三菱化学社製、「jER828」)を184重量部加えて撹拌した。次いで、70℃まで昇温し、徐々に50mmHgまで減圧して水を除去した。その後130℃で加熱して水を完全に除去すると共に、反応性界面活性剤A中のカルボキシル基とエポキシ樹脂を予備反応させ、(メタ)アクリル酸エステル系重合体粒子の含有量が20重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Aを得た。 (Preparation of particle dispersion curable resin A)
4.1 parts by weight of the resulting reactive surfactant A solution, 85 parts by weight of ethyl acrylate, 10 parts by weight of ethyl methacrylate, and 5 parts by weight of glycidyl methacrylate as a (meth) acrylate monomer Part, 0.5% by weight of 28% ammonia water, and 36 parts by weight of ion exchange water were mixed and stirred to obtain a pre-emulsion.
A flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel was charged with 63 parts by weight of water, heated to 70 ° C. while blowing nitrogen gas, and 4,4 ′ as a polymerization catalyst. -After adding 8 parts by weight of a 5% aqueous solution of ammonia-neutralized azobis (4-cyanopentanoic acid), the resulting pre-emulsion was dropped from the dropping funnel over 3.5 hours. The temperature during dropping of the pre-emulsion was maintained at 70 to 75 ° C. After the dropping was completed, the polymerization was terminated by stirring for 2 hours at the same temperature, and a (meth) acrylate polymer emulsion having a nonvolatile content of 46% by weight was obtained. Obtained. After completion of dropping, the dropping funnel was washed with water, and the washing liquid was added to the flask. The obtained (meth) acrylic acid ester polymer had a glass transition temperature of −8 ° C. and an average particle size of 0.2 μm.
A flask equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, and dropping funnel was charged with the obtained (meth) acrylic ester polymer emulsion, and water was added to give a nonvolatile content concentration of 30 wt. After adjusting to%, 184 parts by weight of bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “jER828”) was added as an epoxy resin and stirred. Next, the temperature was raised to 70 ° C., and the pressure was gradually reduced to 50 mmHg to remove water. Thereafter, the mixture is heated at 130 ° C. to completely remove water, and the carboxyl group in the reactive surfactant A and the epoxy resin are pre-reacted so that the content of (meth) acrylate polymer particles is 20% by weight. Particle dispersion curable resin A which is a particle dispersion epoxy resin was obtained.
反応性界面活性剤Aの溶液に代えて、反応性界面活性剤Bの溶液3重量部を用いたこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして、(メタ)アクリル酸エステル系重合体粒子の含有量が20重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Bを得た。
なお、粒子分散硬化性樹脂B中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-32℃、平均粒子径は0.2μmであった。 (Preparation of particle dispersion curable resin B)
(Meta) In the same manner as “(Preparation of particle-dispersed curable resin A)” except that 3 parts by weight of the reactive surfactant B solution was used instead of the reactive surfactant A solution. A particle-dispersed curable resin B which is a particle-dispersed epoxy resin having an acrylic ester polymer particle content of 20% by weight was obtained.
The (meth) acrylate polymer particles obtained in the particle-dispersed curable resin B had a glass transition temperature of −32 ° C. and an average particle size of 0.2 μm.
反応性界面活性剤Aの溶液に代えて、反応性界面活性剤Cの溶液3重量部を用いたこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして、(メタ)アクリル酸エステル系重合体粒子の含有量が20重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Cを得た。
なお、粒子分散硬化性樹脂C中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-20℃、平均粒子径は0.2μmであった。 (Preparation of particle dispersion curable resin C)
In the same manner as “(Preparation of particle-dispersed curable resin A)” except that 3 parts by weight of the solution of the reactive surfactant C was used instead of the solution of the reactive surfactant A, (Meta) A particle-dispersed curable resin C which is a particle-dispersed epoxy resin having an acrylic ester polymer particle content of 20% by weight was obtained.
The (meth) acrylate polymer particles obtained in the particle-dispersed curable resin C had a glass transition temperature of −20 ° C. and an average particle size of 0.2 μm.
ビスフェノールA型エポキシ樹脂の配合量を874重量部に変更したこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして、(メタ)アクリル酸エステル系重合体粒子の含有量が5重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Dを得た。
なお、粒子分散硬化性樹脂D中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-8℃、平均粒子径は0.2μmであった。 (Preparation of particle dispersion curable resin D)
The content of the (meth) acrylate polymer particles is the same as “(Preparation of particle dispersion curable resin A)” except that the amount of the bisphenol A-type epoxy resin is changed to 874 parts by weight. A particle-dispersed curable resin D, which is a 5% by weight particle-dispersed epoxy resin, was obtained.
The (meth) acrylate polymer particles obtained in the particle-dispersed curable resin D had a glass transition temperature of −8 ° C. and an average particle size of 0.2 μm.
ビスフェノールA型エポキシ樹脂の配合量を46重量部に変更したこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして、(メタ)アクリル酸エステル系重合体粒子の含有量が50重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Eを得た。
なお、粒子分散硬化性樹脂E中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-8℃、平均粒子径は0.2μmであった。 (Preparation of particle dispersion curable resin E)
The content of the (meth) acrylate polymer particles is the same as “(Preparation of particle dispersion curable resin A)” except that the amount of the bisphenol A-type epoxy resin is changed to 46 parts by weight. A particle-dispersed curable resin E, which is a 50% by weight particle-dispersed epoxy resin, was obtained.
The (meth) acrylic acid ester polymer particles obtained in the particle-dispersed curable resin E had a glass transition temperature of −8 ° C. and an average particle size of 0.2 μm.
ビスフェノールA型エポキシ樹脂(三菱化学社製、「jER828」)184重量部に代えて、メタクリル酸エチル(三菱レイヨン社製)184重量部を用いたこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして(メタ)アクリル酸エステル系重合体粒子の含有量が20重量%の粒子分散メタクリル樹脂である粒子分散硬化性樹脂Fを得た。
なお、粒子分散硬化性樹脂F中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-8℃、平均粒子径は0.2μmであった。 (Preparation of particle dispersion curable resin F)
Except for using 184 parts by weight of ethyl methacrylate (Mitsubishi Rayon Co., Ltd.) instead of 184 parts by weight of bisphenol A type epoxy resin (Mitsubishi Chemical Co., Ltd., “jER828”), “(Particle Dispersion Curable Resin A In the same manner as in “Preparation”, a particle-dispersed curable resin F, which is a particle-dispersed methacrylic resin having a content of (meth) acrylate polymer particles of 20% by weight, was obtained.
The (meth) acrylate polymer particles obtained in the particle-dispersed curable resin F had a glass transition temperature of −8 ° C. and an average particle size of 0.2 μm.
プレエマルジョン滴下終了後の撹拌時間を30分に変更したこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして(メタ)アクリル酸エステル系重合体粒子の含有量が20重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Gを得た。
なお、粒子分散硬化性樹脂G中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-8℃、平均粒子径は0.05μmであった。 (Preparation of particle dispersion curable resin G)
The content of the (meth) acrylic acid ester polymer particles is 20% in the same manner as “(Preparation of particle dispersion curable resin A)” except that the stirring time after completion of the pre-emulsion dropping is changed to 30 minutes. % Particle dispersion curable resin G which is a particle dispersion epoxy resin was obtained.
The (meth) acrylate polymer particles obtained in the particle-dispersed curable resin G had a glass transition temperature of −8 ° C. and an average particle size of 0.05 μm.
プレエマルジョン滴下終了後の撹拌時間を4時間に変更したこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして(メタ)アクリル酸エステル系重合体粒子の含有量が20重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Hを得た。
なお、粒子分散硬化性樹脂H中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-8℃、平均粒子径は0.5μmであった。 (Preparation of particle dispersion curable resin H)
The content of the (meth) acrylic acid ester polymer particles is 20% in the same manner as “(Preparation of particle dispersion curable resin A)” except that the stirring time after completion of the pre-emulsion dropping is changed to 4 hours. % Particle dispersion curable resin H which is a particle dispersion epoxy resin was obtained.
The glass transition temperature of the (meth) acrylic acid ester polymer particles obtained in the particle-dispersed curable resin H was −8 ° C., and the average particle size was 0.5 μm.
反応性界面活性剤Aの溶液に代えて、ドデシル硫酸ナトリウム1.5重量部を用いたこと以外は、「(粒子分散硬化性樹脂Aの調製)」と同様にして(メタ)アクリル酸エステル系重合体エマルジョンを得た。次いで、水でデカントすることにより(メタ)アクリル酸エステル系重合体エマルジョンからドデシル硫酸ナトリウムを除去し、該ドデシル硫酸ナトリウムを除去した(メタ)アクリル酸エステル系重合体エマルジョンを用い、「(粒子分散硬化性樹脂Aの調製)」と同様の操作を行って、(メタ)アクリル酸エステル系重合体粒子の含有量が20重量%の粒子分散エポキシ樹脂である粒子分散硬化性樹脂Iを得た。
なお、粒子分散硬化性樹脂I中に得られた(メタ)アクリル酸エステル系重合体粒子のガラス転移温度は-20℃、平均粒子径は0.2μmであった。 (Preparation of particle dispersion curable resin I)
(Meth) acrylic acid ester-based polymer as in “(Preparation of particle-dispersed curable resin A)”, except that 1.5 parts by weight of sodium dodecyl sulfate was used instead of the reactive surfactant A solution. A polymer emulsion was obtained. Next, by decanting with water, sodium dodecyl sulfate was removed from the (meth) acrylic acid ester polymer emulsion, and the (meth) acrylic acid ester polymer emulsion from which the sodium dodecyl sulfate was removed was used. Preparation of curable resin A) ”was carried out to obtain a particle-dispersed curable resin I which is a particle-dispersed epoxy resin having a content of (meth) acrylic ester polymer particles of 20% by weight.
The (meth) acrylate polymer particles obtained in the particle-dispersed curable resin I had a glass transition temperature of −20 ° C. and an average particle size of 0.2 μm.
粒子分散硬化性樹脂A15重量部、(メタ)アクリル樹脂としてビスフェノールA型エポキシメタクリレート45重量部、ラジカル重合開始剤としてIRGACURE651(BASF Japan社製)1.5重量部、熱硬化剤としてマロン酸ジヒドラジド5重量部、フィラーとしてシリカ32重量部、及び、シランカップリング剤としてγ-グリシドキシプロピルトリメトキシシラン1.5重量部を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合した後、更に3本ロールを用いて混合させることにより実施例1の液晶表示素子用シール剤を調製した。 (Example 1)
15 parts by weight of particle dispersion curable resin A, 45 parts by weight of bisphenol A type epoxy methacrylate as (meth) acrylic resin, 1.5 parts by weight of IRGACURE 651 (manufactured by BASF Japan) as a radical polymerization initiator, and malonic acid dihydrazide 5 as a thermosetting agent Part by weight, 32 parts by weight of silica as a filler, and 1.5 parts by weight of γ-glycidoxypropyltrimethoxysilane as a silane coupling agent, a planetary stirrer (Shinky Co., “Awatori Nertaro”) After using and mixing, the liquid crystal display element sealant of Example 1 was prepared by further mixing using three rolls.
表1、2に記載された配合比の各材料を用いたこと以外は実施例1と同様にして、実施例2~12、比較例1、2の液晶表示素子用シール剤を調製した。
なお、比較例2では、予め(メタ)アクリル酸エステル系重合体粒子とエポキシ樹脂とを直接混合した後、得られた混合物を他の成分と混合させた。 (Examples 2 to 12, Comparative Examples 1 and 2)
The sealants for liquid crystal display elements of Examples 2 to 12 and Comparative Examples 1 and 2 were prepared in the same manner as in Example 1 except that the materials having the blending ratios shown in Tables 1 and 2 were used.
In Comparative Example 2, (meth) acrylic acid ester polymer particles and an epoxy resin were directly mixed in advance, and then the resulting mixture was mixed with other components.
実施例及び比較例で得られた各液晶表示素子用シール剤について以下の評価を行った。結果を表1、2に示した。 <Evaluation>
The following evaluation was performed about each sealing compound for liquid crystal display elements obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
実施例及び比較例で得られた各液晶表示素子用シール剤に、シリカスペーサー(積水化学工業社製、「SI-H055」)を1重量%配合し、2枚のITO膜付きアルカリガラス試験片(30×40mm)のうち一方に微小滴下し、これにもう一方のガラス試験片を十字状に張り合わせたものに、メタルハライドランプにて3000mJ/cm2の紫外線を照射した後、120℃で60分加熱することによって接着試験片を得た。接着試験片の上下にチャックを配して引っ張り試験(5mm/sec)を行った。得られた測定値(kgf)をシール塗布断面積(cm2)で除した値が60kgf/cm2以上であった場合を「○」、30kgf/cm2以上60kgf/cm2未満であった場合を「△」、0kgf/cm2以上30kgf/cm2未満であった場合を「×」として接着性を評価した。 (1) Adhesiveness 1% by weight of a silica spacer (Sekisui Chemical Co., Ltd., “SI-H055”) was added to each liquid crystal display element sealant obtained in the Examples and Comparative Examples, and two ITO films After irradiating 3000 mJ / cm 2 of ultraviolet rays with a metal halide lamp, the glass test piece (30 × 40 mm) with a fine drop was applied to one of the attached glass test pieces and the other glass test piece was laminated in a cross shape. An adhesion test piece was obtained by heating at 120 ° C. for 60 minutes. A tensile test (5 mm / sec) was performed by placing chucks above and below the adhesion test piece. The case where the value obtained by dividing the obtained measured value (kgf) by the cross-sectional area (cm 2 ) of seal application is 60 kgf / cm 2 or more is “◯”, and is 30 kgf / cm 2 or more and less than 60 kgf / cm 2 Was evaluated as “Δ”, and “x” when 0 kgf / cm 2 or more and less than 30 kgf / cm 2 .
平滑な離型フィルム上に実施例及び比較例で得られた各液晶表示素子用シール剤をコーターで厚さ200~300μmに塗工した。次いで、メタルハライドランプにて3000mJ/cm2の紫外線を照射した後、120℃で60分加熱することによって透湿度測定用フィルムを得た。JIS Z 0208の防湿包装材料の透湿度試験方法(カップ法)に準じた方法で透湿度試験用カップを作製し、得られた透湿度測定用フィルムを取り付け、温度80℃湿度90%RHのオーブンに投入して透湿度を測定した。得られた透湿度の値が50g/m2・24hr未満であった場合を「○」、50g/m2・24hr以上70g/m2・24hr未満であった場合を「△」、70g/m2・24hr以上であった場合を「×」として硬化物の耐湿性を評価した。 (2) Moisture resistance of the cured product Each of the sealing agents for liquid crystal display elements obtained in Examples and Comparative Examples was coated on a smooth release film with a coater to a thickness of 200 to 300 μm. Subsequently, after irradiating 3000 mJ / cm < 2 > of ultraviolet-rays with a metal halide lamp, the film for moisture permeability measurement was obtained by heating at 120 degreeC for 60 minutes. A moisture permeation test cup is prepared by a method according to JIS Z 0208 for moisture proof packaging materials (cup method), and the obtained moisture permeation measuring film is attached to an oven at a temperature of 80 ° C. and a humidity of 90% RH. The moisture permeability was measured. The case where the obtained moisture permeability value is less than 50 g / m 2 · 24 hr is “◯”, and the case where it is 50 g / m 2 · 24 hr or more and less than 70 g / m 2 · 24 hr is “Δ”, 70 g / m The case where it was 2 · 24 hours or more was evaluated as “x”, and the moisture resistance of the cured product was evaluated.
実施例及び比較例で得られた各液晶表示素子用シール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いて、2枚のITO薄膜付きの透明電極基板のうちの一方に長方形の枠を描く様にシール剤を塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にて滴下塗布し、他方の透明基板を、真空張り合わせ装置にて5Paの減圧下にて貼り合わせた。貼り合わせた後のセルにメタルハライドランプにて3000mJ/cm2の紫外線を照射した後、120℃で60分加熱することによってシール剤を熱硬化させ、液晶表示素子を各シール剤につき5枚ずつ作製した。得られた液晶表示素子を温度80℃、湿度90%RHの環境下にて36時間保管した後、AC3.5Vの電圧駆動をさせ、中間調のシール剤周辺を目視で観察した。シール剤部周辺に色むらが全く見られなかった場合を「○」、少し薄い色むらが見えた場合を「△」、はっきりとした濃い色むらがあった場合を「×」として評価した。 (3) Display performance of liquid crystal display element (evaluation of color unevenness of liquid crystal display element driven after storage under high temperature and high humidity)
Each liquid crystal display element sealant obtained in Examples and Comparative Examples was filled in a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) and subjected to defoaming treatment. Next, using a dispenser (“SHOTMASTER 300” manufactured by Musashi Engineering Co., Ltd.), a sealing agent was applied so as to draw a rectangular frame on one of the two transparent electrode substrates with an ITO thin film. Subsequently, fine droplets of TN liquid crystal (manufactured by Chisso Corporation, “JC-5001LA”) were applied dropwise with a liquid crystal dropping device, and the other transparent substrate was bonded with a vacuum laminating device under a reduced pressure of 5 Pa. The cells after bonding are irradiated with 3000 mJ / cm 2 ultraviolet rays with a metal halide lamp and then heated at 120 ° C. for 60 minutes to thermally cure the sealing agent, thereby producing five liquid crystal display elements for each sealing agent. did. The obtained liquid crystal display element was stored for 36 hours in an environment of a temperature of 80 ° C. and a humidity of 90% RH, and then driven with a voltage of AC 3.5 V, and the periphery of the halftone sealant was visually observed. The case where no color unevenness was observed at all around the sealant part was evaluated as “◯”, the case where slightly light color unevenness was observed as “Δ”, and the case where clear dark color unevenness was observed as “X”.
ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いて、実施例及び比較例で得られた各液晶表示素子用シール剤を、TN用配向膜SE7492(日産化学社製)付きガラス基板に塗布した際の塗工性を評価した。ディスペンスノズルを400μm、ノズルギャップを30μm、塗出圧を300kPaに固定して塗布したとき、かすれなく塗布できた場合を「◎」、ほとんどかすれなく塗布できた場合を「○」、かすれがはっきりと生じた場合を「△」、全く塗布できなかった場合を「×」として塗工性を評価した。 (4) Using a coating dispenser (manufactured by Musashi Engineering Co., Ltd., “SHOTMASTER300”), each of the sealing agents for liquid crystal display elements obtained in Examples and Comparative Examples is used for TN alignment film SE7492 (manufactured by Nissan Chemical Co., Ltd.). The coating property when applied to a glass substrate with attached was evaluated. When dispensing with a dispensing nozzle of 400 μm, a nozzle gap of 30 μm, and a coating pressure of 300 kPa, “◎” indicates that the coating can be applied without fading, and “○” indicates that the coating can be applied with little fading. The coating property was evaluated as “Δ” when it occurred and “x” when it could not be applied at all.
Claims (12)
- (メタ)アクリル酸エステル系重合体粒子が硬化性樹脂中に分散した粒子分散硬化性樹脂と、ラジカル重合開始剤及び/又は熱硬化剤とを含有し、
前記粒子分散硬化性樹脂は、分散媒に分散した状態の(メタ)アクリル酸エステル系重合体粒子を硬化性樹脂に分散させ、その後前記分散媒を除去したものである
ことを特徴とする液晶表示素子用シール剤。 A particle-dispersed curable resin in which (meth) acrylic acid ester polymer particles are dispersed in a curable resin, a radical polymerization initiator and / or a thermosetting agent,
The particle dispersion curable resin is obtained by dispersing (meth) acrylic acid ester polymer particles dispersed in a dispersion medium in a curable resin and then removing the dispersion medium. Seal for element. - 粒子分散硬化性樹脂は、(メタ)アクリル酸エステル系重合体粒子がエポキシ樹脂中に分散した粒子分散エポキシ樹脂であることを特徴とする請求項1記載の液晶表示素子用シール剤。 2. The sealant for a liquid crystal display element according to claim 1, wherein the particle-dispersed curable resin is a particle-dispersed epoxy resin in which (meth) acrylic ester polymer particles are dispersed in an epoxy resin.
- 粒子分散硬化性樹脂と、(メタ)アクリル樹脂と、ラジカル重合開始剤及び/又は熱硬化剤とを含有することを特徴とする請求項1又は2記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1 or 2, comprising a particle-dispersed curable resin, a (meth) acrylic resin, a radical polymerization initiator and / or a thermosetting agent.
- (メタ)アクリル樹脂としてメタクリル樹脂を含有することを特徴とする請求項3記載の液晶表示素子用シール剤。 The methacrylic resin is contained as a (meth) acrylic resin, The sealing compound for liquid crystal display elements of Claim 3 characterized by the above-mentioned.
- 分散媒に分散した状態の(メタ)アクリル酸エステル系重合体粒子は、前記分散媒中で(メタ)アクリル酸エステル系単量体を重合して得られたものであることを特徴とする請求項1、2、3又は4記載の液晶表示素子用シール剤。 The (meth) acrylic acid ester polymer particles dispersed in a dispersion medium are obtained by polymerizing a (meth) acrylic acid ester monomer in the dispersion medium. Item 5. The sealing agent for liquid crystal display elements according to item 1, 2, 3 or 4.
- (メタ)アクリル酸エステル系単量体を重合する方法は、反応性界面活性剤の存在下での乳化重合であることを特徴とする請求項5記載の液晶表示素子用シール剤。 6. The sealing agent for a liquid crystal display element according to claim 5, wherein the method of polymerizing the (meth) acrylic acid ester monomer is emulsion polymerization in the presence of a reactive surfactant.
- 反応性界面活性剤は、不飽和カルボン酸を含有する重合性単量体成分を、炭素数6~18のアルキルメルカプタンの存在下で重合して得られる、酸価が200以上の水溶性又は水分散性の末端アルキル基含有重合体及び/又はその塩である
ことを特徴とする請求項6記載の液晶表示素子用シール剤。 The reactive surfactant is a water-soluble or water having an acid value of 200 or more obtained by polymerizing a polymerizable monomer component containing an unsaturated carboxylic acid in the presence of an alkyl mercaptan having 6 to 18 carbon atoms. 7. The sealing agent for liquid crystal display elements according to claim 6, which is a dispersible terminal alkyl group-containing polymer and / or a salt thereof. - ラジカル重合開始剤として熱ラジカル重合開始剤を含有することを特徴とする請求項1、2、3、4、5、6又は7記載の液晶表示素子用シール剤。 The sealing agent for liquid crystal display elements according to claim 1, 2, 3, 4, 5, 6 or 7, further comprising a thermal radical polymerization initiator as the radical polymerization initiator.
- 遮光剤を含有することを特徴とする請求項1、2、3、4、5、6、7又は8記載の液晶表示素子用シール剤。 9. The sealing agent for liquid crystal display elements according to claim 1, comprising a light-shielding agent.
- 請求項1、2、3、4、5、6、7、8又は9記載の液晶表示素子用シール剤と、導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conducting material comprising the sealing agent for a liquid crystal display element according to claim 1, 2, 3, 4, 6, 7, 8, or 9 and conductive fine particles.
- 請求項1、2、3、4、5、6、7、8若しくは9記載の液晶表示素子用シール剤又は請求項10記載の上下導通材料を用いて製造されることを特徴とする液晶表示素子。 A liquid crystal display element manufactured using the sealing agent for a liquid crystal display element according to claim 1, 2, 3, 4, 5, 6, 7, 8, or 9, or the vertical conduction material according to claim 10. .
- 不飽和カルボン酸を含有する重合性単量体成分を、炭素数6~18のアルキルメルカプタンの存在下で重合し、酸価が200以上の水溶性又は水分散性の末端アルキル基含有重合体及び/又はその塩である反応性界面活性剤を得る工程1、
前記反応性界面活性剤の存在下で(メタ)アクリル酸エステル系単量体を乳化重合し、(メタ)アクリル酸エステル系重合体粒子を得る工程2、
前記(メタ)アクリル酸エステル系重合体粒子をエポキシ樹脂中に分散させて粒子分散エポキシ樹脂を得る工程3、並びに、
少なくとも、前記粒子分散エポキシ樹脂と、(メタ)アクリル樹脂と、ラジカル重合開始剤及び/又は熱硬化剤とを混合する工程4とを有する
ことを特徴とする液晶表示素子用シール剤の製造方法。 A polymerizable monomer component containing an unsaturated carboxylic acid is polymerized in the presence of an alkyl mercaptan having 6 to 18 carbon atoms, and a water-soluble or water-dispersible terminal alkyl group-containing polymer having an acid value of 200 or more and Step 1 for obtaining a reactive surfactant which is / or a salt thereof,
Step 2 of emulsion-polymerizing a (meth) acrylate monomer in the presence of the reactive surfactant to obtain (meth) acrylate polymer particles,
Step 3 of dispersing the (meth) acrylic acid ester polymer particles in an epoxy resin to obtain a particle-dispersed epoxy resin, and
The manufacturing method of the sealing compound for liquid crystal display elements characterized by having the process 4 which mixes the said particle-dispersed epoxy resin, a (meth) acrylic resin, and a radical polymerization initiator and / or a thermosetting agent at least.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157015126A KR102164727B1 (en) | 2013-05-31 | 2014-05-29 | Sealing agent for liquid crystal display elements, vertically conducting material, liquid crystal display element and production method of sealing agent for liquid crystal display element |
CN201480003205.3A CN104813224B (en) | 2013-05-31 | 2014-05-29 | Sealing material for liquid crystal display device, upper and lower conductive material, the manufacturing method of liquid crystal display element and sealing material for liquid crystal display device |
JP2014528733A JP5852740B2 (en) | 2013-05-31 | 2014-05-29 | Sealant for liquid crystal display element, vertical conduction material, liquid crystal display element, and method for producing liquid crystal display element sealant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013115378 | 2013-05-31 | ||
JP2013-115378 | 2013-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192881A1 true WO2014192881A1 (en) | 2014-12-04 |
Family
ID=51988904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064297 WO2014192881A1 (en) | 2013-05-31 | 2014-05-29 | Sealing agent for liquid crystal display elements, vertically conducting material, liquid crystal display element and production method of sealing agent for liquid crystal display element |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5852740B2 (en) |
KR (1) | KR102164727B1 (en) |
CN (1) | CN104813224B (en) |
TW (1) | TWI613282B (en) |
WO (1) | WO2014192881A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018048231A (en) * | 2016-09-20 | 2018-03-29 | 積水化学工業株式会社 | Fiber-reinforced resin prepreg and method to reinforce or repair an object |
KR20180133551A (en) * | 2015-11-09 | 2018-12-14 | 세키스이가가쿠 고교가부시키가이샤 | Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017061303A1 (en) * | 2015-10-09 | 2017-04-13 | 積水化学工業株式会社 | Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element |
WO2018074507A1 (en) * | 2016-10-19 | 2018-04-26 | 積水化学工業株式会社 | Organic el display element sealing agent, and method for producing organic el display element sealing agent |
WO2018160256A1 (en) | 2017-03-03 | 2018-09-07 | Google Llc | Systems and methods for establishing a link between identifiers without disclosing specific identifying information |
CN110168441B (en) * | 2017-05-08 | 2022-07-29 | 积水化学工业株式会社 | Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element |
CN110187566A (en) * | 2019-05-10 | 2019-08-30 | 深圳市华星光电技术有限公司 | Frame glue and liquid crystal display panel |
CN112080245A (en) * | 2020-09-24 | 2020-12-15 | 苏州润邦半导体材料科技有限公司 | Photocurable adhesive composition, preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003073158A1 (en) * | 2002-02-04 | 2003-09-04 | Mitsui Chemicals, Inc. | Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell |
JP2013011879A (en) * | 2011-06-01 | 2013-01-17 | Sekisui Chem Co Ltd | Light-shielding sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06107910A (en) * | 1992-09-30 | 1994-04-19 | Nippon Zeon Co Ltd | Epoxy resin composition, its production and adhesive |
JP3583326B2 (en) | 1999-11-01 | 2004-11-04 | 協立化学産業株式会社 | Sealant for dripping method of LCD panel |
EP1405888A1 (en) | 2001-05-16 | 2004-04-07 | Sekisui Chemical Co., Ltd. | Curing resin composition and sealants and end-sealing materials for displays |
US6884833B2 (en) * | 2001-06-29 | 2005-04-26 | 3M Innovative Properties Company | Devices, compositions, and methods incorporating adhesives whose performance is enhanced by organophilic clay constituents |
CN1798786B (en) * | 2003-06-04 | 2013-05-15 | 积水化学工业株式会社 | Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device |
JP5918699B2 (en) * | 2010-12-20 | 2016-05-18 | 株式会社ダイセル | Curable epoxy resin composition and optical semiconductor device using the same |
JP5238909B2 (en) * | 2011-04-05 | 2013-07-17 | 積水化学工業株式会社 | Light-shielding sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element |
-
2014
- 2014-05-29 CN CN201480003205.3A patent/CN104813224B/en active Active
- 2014-05-29 KR KR1020157015126A patent/KR102164727B1/en active IP Right Grant
- 2014-05-29 WO PCT/JP2014/064297 patent/WO2014192881A1/en active Application Filing
- 2014-05-29 JP JP2014528733A patent/JP5852740B2/en active Active
- 2014-05-30 TW TW103118912A patent/TWI613282B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003073158A1 (en) * | 2002-02-04 | 2003-09-04 | Mitsui Chemicals, Inc. | Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell |
JP2013011879A (en) * | 2011-06-01 | 2013-01-17 | Sekisui Chem Co Ltd | Light-shielding sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180133551A (en) * | 2015-11-09 | 2018-12-14 | 세키스이가가쿠 고교가부시키가이샤 | Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element |
KR101939035B1 (en) * | 2015-11-09 | 2019-01-15 | 세키스이가가쿠 고교가부시키가이샤 | Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element |
KR102000901B1 (en) * | 2015-11-09 | 2019-07-16 | 세키스이가가쿠 고교가부시키가이샤 | Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element |
JP2018048231A (en) * | 2016-09-20 | 2018-03-29 | 積水化学工業株式会社 | Fiber-reinforced resin prepreg and method to reinforce or repair an object |
Also Published As
Publication number | Publication date |
---|---|
TWI613282B (en) | 2018-02-01 |
TW201502260A (en) | 2015-01-16 |
CN104813224A (en) | 2015-07-29 |
CN104813224B (en) | 2019-03-22 |
JPWO2014192881A1 (en) | 2017-02-23 |
KR20160014569A (en) | 2016-02-11 |
KR102164727B1 (en) | 2020-10-13 |
JP5852740B2 (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5852740B2 (en) | Sealant for liquid crystal display element, vertical conduction material, liquid crystal display element, and method for producing liquid crystal display element sealant | |
JP6730133B2 (en) | Liquid crystal display element sealant, vertical conduction material and liquid crystal display element | |
TWI707946B (en) | Sealant for liquid crystal display element, vertical conduction material and liquid crystal display element | |
JP5685346B1 (en) | Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element | |
WO2015072415A1 (en) | Liquid-crystal-display-element sealant, vertical conductive material, and liquid-crystal display element | |
TWI690560B (en) | Sealant for liquid crystal display element, upper and lower conduction materials and liquid crystal display element | |
JP2013134329A (en) | Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element | |
JP5784936B2 (en) | Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element | |
JP6163045B2 (en) | Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element | |
JP2016056361A (en) | Polymerizable compound, curable resin composition, sealing agent for liquid crystal display element, vertical conducting material, and liquid crystal display element | |
JP6523167B2 (en) | Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element | |
WO2017061303A1 (en) | Sealant for liquid crystal display elements, vertical conduction material, and liquid crystal display element | |
JP6386377B2 (en) | Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element | |
JP5249698B2 (en) | Sealant for liquid crystal display element and liquid crystal display element | |
JPWO2015152030A1 (en) | Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element | |
JP2014001340A (en) | Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element | |
JP2012173488A (en) | Sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display | |
KR102649401B1 (en) | Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element | |
TWI716440B (en) | Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element | |
JP7000164B2 (en) | Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element | |
JP7000159B2 (en) | Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element | |
KR102588718B1 (en) | Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element | |
JP2015001616A (en) | Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element | |
JP6122724B2 (en) | Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element | |
TWI717446B (en) | Sealant for liquid crystal display element, vertical conduction material and liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014528733 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14803603 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157015126 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14803603 Country of ref document: EP Kind code of ref document: A1 |