WO2014192206A1 - 半導体発光素子 - Google Patents
半導体発光素子 Download PDFInfo
- Publication number
- WO2014192206A1 WO2014192206A1 PCT/JP2014/001572 JP2014001572W WO2014192206A1 WO 2014192206 A1 WO2014192206 A1 WO 2014192206A1 JP 2014001572 W JP2014001572 W JP 2014001572W WO 2014192206 A1 WO2014192206 A1 WO 2014192206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- gan
- inaln
- composition
- band
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 51
- 238000005381 potential energy Methods 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 150000004767 nitrides Chemical class 0.000 claims abstract description 6
- 230000004888 barrier function Effects 0.000 claims description 31
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 255
- 230000005428 wave function Effects 0.000 description 26
- 238000010586 diagram Methods 0.000 description 25
- 238000009826 distribution Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 15
- 230000010287 polarization Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 12
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 238000005253 cladding Methods 0.000 description 9
- 239000010931 gold Substances 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 229910002704 AlGaN Inorganic materials 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000005036 potential barrier Methods 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3211—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
- H01S5/3216—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities quantum well or superlattice cladding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3403—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
- H01S5/3404—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation influencing the polarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3407—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers characterised by special barrier layers
Definitions
- the present disclosure belongs to a semiconductor technology that realizes a high-intensity GaN-based light-emitting device by improving the efficiency of light emission from an InGaN quantum well light-emitting layer on a polar surface.
- Patent Document 1 an attempt is made to improve the light emission efficiency by modulating the In composition of the InGaN layer in the well layer to bring the peak of the electron distribution closer to the center of the well layer.
- Al x Ga 1-x N (0 ⁇ x ⁇ 1) is AlGaN
- Al y In 1-y N (0 ⁇ y ⁇ 1) is AlInN
- z ⁇ 1) is described as InGaN
- In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) is described as InAlGaN.
- the present disclosure forms an InAlN layer having a high In composition in contact with the group III polarity side of the InGaN layer.
- the semiconductor light emitting device of the present disclosure includes an In x Ga 1-x N (0 ⁇ x ⁇ 1) layer formed on a polar surface of a nitride semiconductor composed of a wurtzite structure crystal, an In x An In y Al 1-y N (0 ⁇ y ⁇ 1) layer formed in contact with the Group III polar surface of the Ga 1-x N layer.
- the potential energy Ev (In x Ga 1-x N) at the valence band edge of the In x Ga 1-x N layer and In The potential energy Ev (In y Al 1-y N) at the valence band edge of the y Al 1-y N layer satisfies the following relational expression.
- the band offset of the InAlN / InGaN interface on the conduction band side at the above interface is growing.
- the offset on the valence band side is a positive energy that the InAlN side has a lower energy side than the InGaN side, that is, the offset is negative and is located on the InGaN / GaN interface side opposite to the InAlN / InGaN interface.
- the hole distribution changes so that the existence probability on the InAlN / InGaN interface side increases.
- the insertion of InAlN increases the overlap of electron and hole wave functions, and increases the integral value of the existence probability of electrons and holes. can do.
- Sectional drawing of the semiconductor light-emitting device concerning Embodiment 1 of this indication Top view of the semiconductor light emitting device Sectional drawing which shows the active layer 4 which concerns on a comparative example
- the figure which shows the band structure figure of the active layer 4 which concerns on a comparative example The figure which shows the band structure figure of the active layer 4 which concerns on a comparative example
- Sectional drawing which shows the active layer 4 which concerns on Embodiment 1 of this indication Diagram showing In composition dependence of valence band and conduction band structure of InAlN layer Diagram showing the polarization electric field generated at the InAlN / GaN interface in the InAlN layer sandwiched between GaN
- the figure which shows the band structure of the active layer 4 of this indication The figure which shows the band structure of the active layer 4 of this indication
- a semiconductor light emitting device 100 according to the present disclosure has an active layer 4 provided on a polar surface of a semiconductor substrate 1 that is a nitride semiconductor made of a wurtzite structure crystal.
- the active layer 4 includes a group III polar surface of an In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 and an In x Ga 1-x N layer (0 ⁇ x ⁇ 1) 42. And an In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 formed in contact therewith.
- the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is formed in contact with the group III polar surface of the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42.
- the band offset at the interface between the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 on the conduction band side at the interface increases. .
- the offset on the valence band side is such that the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 side has a lower energy side than the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 side, That is, the offset becomes negative.
- the electron distribution is localized on the interface side between the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42.
- the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 By providing the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43, the overlap of the wave function of electrons and holes is increased, and the integral value of the existence probability of electrons and holes can be increased. .
- FIG. 1 is a cross-sectional view of a semiconductor light emitting device 100 according to the present disclosure.
- FIG. 2 is a view of the semiconductor light emitting device 100 according to the present disclosure as viewed from above.
- FIG. 1 is a cross-sectional view taken along line 1-1 of FIG.
- a semiconductor light emitting device 100 is made of, for example, n-Al 0.075 Ga 0.925 N in order on a semiconductor substrate 1 which is an n-type hexagonal GaN substrate which is, for example, a (0001) plane (ie, c plane).
- An n-type cladding layer 2 for example, an n-type light guide layer 3 made of n-GaN, an active layer 4 whose detailed layer structure will be described later, for example, a p-type light guide layer 5 made of p-GaN, for example, p-Al 0.20.
- the optical waveguide of the semiconductor light emitting device 100 is insulated on both sides from an insulating film 9 made of, for example, SiO 2 , and the uppermost surface of the optical waveguide is a p-electrode 10 made of, for example, palladium (Pd) / platinum (Pt), eg, titanium (Ti ) / Platinum (Pt) / gold (Au) wiring electrode 11, for example, Ti / Au pad electrode 12 is formed in a predetermined pattern.
- a p-electrode 10 made of, for example, palladium (Pd) / platinum (Pt), eg, titanium (Ti ) / Platinum (Pt) / gold (Au) wiring electrode 11, for example, Ti / Au pad electrode 12 is formed in a predetermined pattern.
- a rear coat film 14 made of a dielectric multilayer film combining SiO 2 and Al 2 O 3 for reflecting the light in the optical waveguide 20, and the light
- a front coat film 13 made of a dielectric multilayer film combining AlN and Al 2 O 3 is formed.
- An n electrode 15 made of, for example, Ni / Au is formed on the opposite surface of the semiconductor substrate 1.
- the main surface of the semiconductor substrate 1 is a Ga surface. Therefore, the upper surfaces of the n-type cladding layer 2, the n-type light guide layer 3, the active layer 4, the p-type light guide layer 5, the electron barrier layer 6, the p-type cladding layer 7, and the p-type contact layer 8 (that is, from the semiconductor substrate 1).
- the remote surface is a group III polar surface
- the lower surface is a group V polar surface.
- the active layer 4 used in the prior art will be described with reference to FIGS. 3, 4A, and 4B.
- the technique related to the active layer 4 used in this conventional technique is referred to as a comparative example.
- FIG. 3 is a cross-sectional view showing an active layer 4 according to a comparative example.
- the active layer 4 has a configuration in which an In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 is sandwiched between barrier layers 41.
- the barrier layer 41 is a barrier layer 41 made of GaN with a thickness of 10 nm
- the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 is In 0.25 Ga 0.75 with a thickness of 3 nm. It is formed by an N well layer.
- the upward direction in FIG. 3 is the ⁇ 0001> direction of the wurtzite crystal.
- FIG. 4A shows the band structure of the active layer 4 in the comparative example, that is, the result of calculating the energy of the valence band (solid line) and the conduction band (dashed line), and FIG. 4B shows the hole (solid line) and the electron (dotted line).
- the result of calculating the wave function (existence probability) of the ground level of is shown.
- the calculation was performed by solving the Schrödinger equation and Poisson equation in a self-consistent manner using the hole and electron distribution as parameters in consideration of the band gap energy of InGaN and GaN actually measured by the inventors. In the calculation, the spontaneous polarization of each material and the piezo polarization caused by lattice distortion caused by laminating the InGaN layer on the GaN layer were considered.
- the valence band and conduction band energies depend on the horizontal axis, that is, the location. You can see that it is changing. This is the bending of the energy band of the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 due to the polarization electric field described above.
- FIG. 4B when the electron wave function 44 and the hole wave function 45 are viewed, the electron is an In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 and a barrier layer made of GaN provided thereon.
- FIG. 5 is a cross-sectional view illustrating the active layer 4 according to the first embodiment of the present disclosure.
- an In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is formed above the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42, and a barrier layer made of GaN is formed thereon. 41 is formed.
- the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is formed of an In 0.35 Al 0.65 N layer having a thickness of 1 nm.
- FIG. 6 shows the In composition dependence of the band structure of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43.
- FIG. 6 also shows the valence band and conduction band energies of In 0.25 Ga 0.75 N as In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 that emits GaN and green light. It is written in.
- the band gap of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 sequentially changes from 6.2 eV for AlN to 0.7 eV for InN depending on the In composition.
- This distortion of In y Al 1-y N ( 0 ⁇ y ⁇ 1) layer 43 for the barrier layer 41 made of GaN is, In y Al 1-y N ( 0 ⁇ y ⁇ 1) layer 43 is ⁇ 0001> This is because a tensile strain that is stretched in the direction changes to a compressive strain that is compressed. Since spontaneous polarization always generates a positive charge, the sum of both polarization charges becomes 0 when the In composition is about 0.4.
- the band structure of the GaN / InAlN / GaN structure is obtained with an In composition of 0.3 and 0.
- FIG. 8 shows the case of .5 as an example.
- the In composition is 0.3, the conduction band energy is higher than that of GaN as the barrier layer 41, and electron confinement cannot be obtained. Therefore, the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is a light emitting layer. Not suitable for.
- the In composition of 0.5 When the In composition of 0.5, the energy of the conduction band confining some electrons from becoming smaller than the GaN is achieved, Moreover, the band gap becomes about 2.3eV, which corresponds to a green-emitting, In y Compared to the case where green light is emitted using In 0.25 Ga 0.75 N, which is the Al 1-y N (0 ⁇ y ⁇ 1) layer 43, the barrier layer 41 made of GaN is formed on the conduction band side. Since the energy gap is small and there is no advantage of using In 0.5 Al 0.5 N as the light emitting layer, the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 has been used as a well layer so far. It has been thought that there is no.
- FIG. 9A and 9B show the band structure of the active layer 4 according to Embodiment 1 of the present disclosure.
- FIG. 9A shows the band structure of the active layer 4 in Embodiment 1 of the present disclosure, that is, the results of calculating the energy of the valence band (solid line) and the conduction band (dashed line), and
- FIG. 9B shows Embodiment 1 of the present disclosure.
- the offset on the valence band side is larger on the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 side than on the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 side.
- the low energy side that is, the offset is negative.
- the hole distribution localized on the side of the interface between the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 and the barrier layer 41 made of GaN on the side opposite to the interface with In y Al The existence probability on the interface side between the 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 changes so as to increase.
- One electron distribution is localized on the interface side between the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42.
- InAlN By inserting InAlN, the overlap between the electron wave function 44 and the hole wave function 45 is increased, and the overlap integral value can be increased to 0.62.
- the light emission efficiency can be improved, and a semiconductor light emitting element with high luminance and high efficiency can be realized.
- a p-type layer is formed from the n-type cladding layer 2 using, for example, a metalorganic vapor deposition (MOCVD) method.
- MOCVD metalorganic vapor deposition
- the mold contact layer 8 is continuously formed.
- an n-type cladding layer 2 made of n-Al 0.075 Ga 0.925 N is formed to a thickness of 1000 nm.
- a gas material for film formation for example, trimethylgallium (TMG) or trimethylaluminum (TMA) may be used as a group III material, silane may be used as an n-type impurity, and ammonia may be used as a group V material.
- TMG trimethylgallium
- TMA trimethylaluminum
- silane may be used as an n-type impurity
- ammonia may be used as a group V material.
- the Si concentration of the n-AlGaN layer is preferably about 1 ⁇ 10 18 cm ⁇ 3 .
- n-GaN (Si concentration: 5 ⁇ 10 17 cm ⁇ 3 ) constituting the n-type light guide layer 3 is grown to 100 nm. Further, a barrier layer 41 made of GaN constituting the active layer 4 and an In 0.25 Ga 0.75 N quantum well layer as an In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42, In y Al 1 A triple quantum well active layer consisting of three periods with an In 0.35 Al 0.65 N layer as a ⁇ y N (0 ⁇ y ⁇ 1) layer 43 is grown.
- the thickness of the barrier layer 41 made of GaN is, for example, 10 nm
- the thickness of the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 is 2 nm
- the film thickness of the layer 43 may be 1 nm.
- As an In raw material for the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 and the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 trimethylindium (TMIn) may be used.
- TMIn trimethylindium
- the p-GaN layer is preferably made of, for example, cyclopentadienyl magnesium (Cp 2 Mg) so that the Mg concentration becomes 5 ⁇ 10 19 cm ⁇ 3 .
- 10 nm of p-Al 0.20 GaN (Mg concentration is 5 ⁇ 10 19 cm ⁇ 3 ) constituting the electron barrier layer 6 is laminated.
- cm ⁇ 3 ) layers are laminated in 150 cycles, for a total of 450 nm.
- 10 nm of p-GaN (Mg concentration is 3 ⁇ 10 20 cm ⁇ 3 ) constituting the p-type contact layer 8 is laminated.
- a crystal beam growth method for forming the semiconductor stacked structure as described above includes a molecular beam growth (MBE) method or a chemical beam growth (CBE) method. Etc. may be used.
- the grown wafer is processed into a ridge stripe laser.
- a SiO 2 insulating film (not shown) made of SiO 2 having a thickness of 0.3 ⁇ m is formed on the p-type contact layer 8 by, for example, thermal CVD. Further, other regions are etched by photolithography and etching using hydrofluoric acid, leaving the SiO 2 insulating film in a stripe shape having a width of 8 ⁇ m. At this time, considering that the end face of the laser is formed using the natural cleavage plane (m-plane) of the hexagonal nitride semiconductor, the stripe direction is parallel to the m-axis direction of hexagonal GaN.
- m-plane natural cleavage plane
- the upper part of the laminated structure is etched to a depth of 0.35 ⁇ m using an SiO 2 insulating film by an inductively coupled plasma (ICP) etching method, so that the upper part of the p-type contact layer 8 and the p-type cladding layer 7 Thus, a ridge stripe part constituting the optical waveguide 20 is formed.
- the second mask film is removed using hydrofluoric acid, and again from the SiO 2 film having a thickness of 200 nm over the entire surface including the ridge stripe portion on the exposed p-type cladding layer 7 by thermal CVD. An insulating film 9 is formed again.
- a resist pattern (not shown) having an opening having a width of 7.5 ⁇ m along the ridge stripe portion is formed on the upper surface of the ridge stripe portion (optical waveguide 20) in the insulating film 9 by lithography.
- RIE reactive ion etching
- CHF 3 trifluoromethane
- palladium (Pd) having a thickness of 40 nm and a thickness of 35 nm are formed on at least the p-type contact layer 8 exposed from the upper surface of the ridge stripe portion by, for example, an electron beam (EB) deposition method.
- EB electron beam
- a metal laminated film constituting the p-electrode 10 made of platinum (Pt) is formed.
- the lift-off method for removing the resist pattern is used to remove the metal laminated film in the region other than the upper portion of the ridge stripe, thereby forming the p-electrode 10.
- the planar dimension in the direction parallel to the ridge stripe portion is 750 ⁇ m, for example, so as to cover the p-electrode 10 on the upper portion of the ridge stripe portion on the insulating film 9 by the lithography method and the lift-off method.
- the wiring electrode 11 made of, for example, Ti, Pt, Au, or the like having a plane dimension of 150 ⁇ m in a direction perpendicular to the ridge stripe portion is selectively formed.
- the wiring electrode 11 is formed of a metal laminated film of titanium (Ti) having a thickness of 50 nm, platinum (Pt) having a thickness of 200 nm, and gold (Au) having a thickness of 100 nm.
- Ti titanium
- Pt platinum
- Au gold
- the plurality of laser devices are formed in a matrix on the main surface of the wafer. Therefore, when the wiring electrode 11 is cut when the substrate in the wafer state is divided into individual laser chips, the p-electrode 10 in close contact with the wiring electrode 11 may be peeled off from the p-type contact layer 8. Therefore, as shown on the right side of FIG. 1, it is desirable that the wiring electrodes 11 are not connected by chips adjacent to each other.
- an Au layer having a thickness of, for example, 10 ⁇ m is formed on the wiring electrode 11 by electrolytic plating, and the pad electrode 12 is formed.
- the laser chip can be mounted by wire bonding, and the heat generated in the active layer 4 can be effectively dissipated, so that the reliability of the semiconductor light emitting device 100 can be improved.
- the back surface of the semiconductor light emitting device 100 in the wafer state formed up to the pad electrode 12 is polished with a diamond slurry, and the semiconductor substrate 1 is thinned until the thickness becomes about 100 ⁇ m. Thereafter, for example, by EB vapor deposition, on the back surface of the semiconductor substrate 1 (the surface opposite to the surface on which the optical waveguide 20 is formed), for example, 5 nm thick Ti, 10 nm thick platinum, and 1000 nm thick Au
- the n electrode 15 is formed by forming a metal laminated film made of
- the semiconductor light emitting device 100 in the wafer state is cleaved (primary cleaved) along the m-plane so that the length in the m-axis direction is, for example, 1000 ⁇ m.
- a front coat film 13 is formed on the cleavage surface from which the laser light is emitted, and a rear coat film 14 is formed on the opposite cleavage surface.
- a material of the front coat film 13 for example, a dielectric film such as a SiO 2 single layer film is used.
- the highly efficient semiconductor light emitting device 100 is configured by setting the reflectance on the front side (light emitting side) of the semiconductor light emitting device 100 to 15%, for example, and 90% on the rear side (side opposite to the light emitting side), for example. can do.
- the semiconductor light emitting device 100 that has been primarily cleaved is cleaved along the a plane (secondary cleaving) between the optical waveguides 20 that have a length in the a-axis direction of, for example, 200 ⁇ m pitch.
- a laser chip is completed.
- the configuration of the active layer 4 is different.
- a method of creating other parts excluding the configuration of the active layer 4 is omitted.
- FIG. 10 shows a structure diagram of the active layer in this embodiment
- FIGS. 11A and 11B show band structure diagrams in this embodiment.
- 11A and 11B show an In x Ga 1-x N (0 ⁇ x ⁇ 1) layer at the interface between the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 and the barrier layer 41 made of GaN.
- the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is shown.
- 2 shows a band structure of a quantum well composed of InAlN (1 nm) and In 0.25 Ga 0.75 N (2 nm), calculated with various changes. InAlN (1 nm) and In 0.25 Ga 0.75 N (2 nm) are sandwiched between barrier layers 41 made of GaN.
- FIG. 12A is a diagram showing a band structure of a quantum well having an In composition of InAlN of 0.30.
- FIG. 12B is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.31.
- FIG. 12C is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.32.
- FIG. 12D is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.33.
- FIG. 12E is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.34.
- FIG. 12F is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.35.
- FIG. 12G is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.36.
- FIG. 12H is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.37.
- FIG. 12I is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.38.
- FIG. 12J is a diagram showing a band structure of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.39.
- FIG. 13A is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.30.
- FIG. 13B is a diagram showing an electron / hole wave function of a quantum well having an In composition of 0.31 in an In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43.
- FIG. 13C is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.32.
- FIG. 13A is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.30.
- FIG. 13B is a diagram
- FIG. 13D is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.33.
- FIG. 13E is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.34.
- FIG. 13F is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.35.
- FIG. 13G is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.36.
- FIG. 13H is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.37.
- FIG. 13I is a diagram showing an electron / hole wave function of a quantum well in which the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.38.
- FIG. 13J is a diagram showing an electron / hole wave function of a quantum well whose In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.39.
- FIG. 14 shows the result of calculating the overlap integral value of the electron and hole wave functions in the respective band structures shown in FIGS. 12A to 12J and FIGS. 13A to 13J.
- the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is 0.35 to 0.38, the overlap integral value is remarkably increased.
- the cause will be described with reference to FIGS. 12A to 12J and FIGS. 13A to 13J. 12A to 12J and 13A to 13J, the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is changed to 30 to 39%.
- the valence band at the interface between the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 is observed. And the amount of band discontinuity between the two materials is very small, about 10 meV.
- the wave function of the electrons indicated by the dotted line is in the vicinity of the interface between the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42.
- the wave function of holes is localized at the interface between the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42 and the barrier layer 41 made of GaN. small.
- the In composition of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 increases, the potential energy of the valence band of InAlN moves to the high energy side, and the band offset increases.
- the hole distribution moves to the interface side between the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42.
- the electron distribution is localized at the interface between the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 and the In x Ga 1-x N (0 ⁇ x ⁇ 1) layer 42.
- the degree of spatial overlap between the wave function of holes and holes increases, and the overlap integral value increases.
- the hole distribution changes depending on the point at which the valence band potential energy becomes maximum, that is, the energy of Ev (InAlN / InGaN) and Ev (InGaN / GaN) shown in FIG. 10, and In x Ga 1-x N (0 ⁇ x ⁇ 1)
- Ev InAlN / InGaN
- Ev InGaN / GaN
- In x Ga 1-x N (0 ⁇ x ⁇ 1 ⁇ 1
- the difference between the layer 42 becomes small across the triangular potential barrier formed at the interface between the layer 42 and the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43, that is, when ⁇ Evs is small
- the distribution is bimodal. Since the electron distribution has a peak in the vicinity of the triangular potential barrier, the overlap integral value becomes large at this time, and the injected electron / hole pairs can be efficiently recombined to increase the efficiency of the light emitting element. According to the inventor's study, in FIG. 14, when the
- FIG. 15 and 16 show band structure diagrams and electron and hole distributions when the In composition of the InAlN layer is 37.5%.
- FIG. 15 shows the band structure of the active layer 4 in Embodiment 2 of the present disclosure, that is, the results of calculating the energy of the valence band (solid line) and the conduction band (broken line), and
- FIG. 16 shows Embodiment 2 of the present disclosure. The result of calculating the wave function (existence probability) of the ground level of holes (solid line) and electrons (dotted line) in FIG.
- the valence band energy of the In y Al 1-y N (0 ⁇ y ⁇ 1) layer 43 is a constant value independent of the position. This corresponds to the case in FIG. 7 where the sum of the spontaneous polarization contained in InAlN and the piezoelectric polarization caused by strain becomes 0, and the hole distribution becomes nearly symmetrical with a triangular potential interposed therebetween, and is symmetrical Since the spatial overlap with the electron distribution having a close unimodal shape is increased, the transition probability is increased and the light emission efficiency can be improved.
- the substrate In the first and second embodiments, an example in which the (0001) plane of GaN is used as the substrate has been described. However, an off-substrate that is off by about 10 ° from the (0001) plane may be used. Further, another surface having the polarity of GaN, for example, the A surface or the R surface may be used as the substrate. Further, when the GaN, AlN, or AlGaN is grown as a template on a sapphire substrate, SiC substrate, Si substrate, or the like, and the substrate template layer has polarity, the technology of the present disclosure is used. As a result, the luminous efficiency can be increased.
- the composition of the InGaN layer and the AlInN layer is not limited to the above values.
- GaN can be used instead of InGaN.
- the semiconductor light emitting device can be used for a laser display, a liquid crystal backlight, a laser knife for surgery, a welding application, and the like, and is useful for a semiconductor light emitting device using a GaN-based compound semiconductor.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
本開示の半導体発光素子は、ウルツ鉱構造結晶からなる窒化物半導体の有極性面上に形成されたInxGa1-xN(0≦x≦1)層と、InxGa1-xN層のIII族極性面に接して形成されたInyAl1-yN(0<y<1)層とを有し、InxGa1-xN層とInyAl1-yN層との界面において、InxGa1-xN層の価電子帯端のポテンシャルエネルギーの絶対値がInyAl1-yN層の価電子帯端のポテンシャルエネルギーの絶対値よりも小さい。
Description
本開示は、有極性面上InGaN量子井戸発光層からの発光を高効率化することにより、高輝度GaN系発光素子を実現する半導体技術に属する。
特許文献1では、InGaN層のIn組成を井戸層内で変調することによって電子分布のピークを井戸層中央に近づけることを通じて発光効率を向上させることを試みている。
しかしながら、特許文献1に記載された技術では、In組成変調によって、正孔分布はむしろ井戸層中央から遠ざかる方向へと移動し、電子と正孔の存在確率の積分値を十分に大きくすることが困難であるという課題があった。
なお、以下において、適宜AlxGa1-xN(0<x<1)をAlGaN、AlyIn1-yN(0<y<1)をAlInN、InzGa1-zN(0<z<1)をInGaNと、InxAlyGa1-x-yN(0<x<1、0<y<1、0<x+y<1)をInAlGaNと記載する。
上記課題を解決するために、本開示は、InGaN層のIII族極性側に高In組成を有するInAlN層を接して形成する。
具体的には、本開示の半導体発光素子は、ウルツ鉱構造結晶からなる窒化物半導体の有極性面上に形成されたInxGa1-xN(0≦x≦1)層と、InxGa1-xN層のIII族極性面に接して形成されたInyAl1-yN(0<y<1)層とを有する。InxGa1-xN層とInyAl1-yN層との界面において、InxGa1-xN層の価電子帯端のポテンシャルエネルギーEv(InxGa1-xN)とInyAl1-yN層の価電子帯端のポテンシャルエネルギーEv(InyAl1-yN)とが、以下の関係式を満たす。
この構成により、InyAl1-yN層がInxGa1-xN層のIII族極性面に接して形成されているので、上記界面における伝導帯側のInAlN/InGaN界面のバンドオフセットは大きくなる。また、価電子帯側のオフセットは、InAlN側がInGaN側よりも低エネルギー側、すなわち、オフセットが負になり、InAlN/InGaN界面とは反対側のInGaN/GaN界面の側に局在していた正孔分布が、InAlN/InGaN界面側での存在確率が大きくなるように変化する。また、電子分布はInAlN/InGaN界面側に局在しているから、InAlNを挿入することによって、電子と正孔の波動関数の重なりが大きくなり、電子と正孔の存在確率の積分値を大きくすることができる。
本開示によれば、量子井戸発光層における電子と正孔の重なりを増加させることにより、発光効率を増大させることを通じて、高輝度、高効率な半導体発光素子を実現することができる。
以下、具体的に本開示の好ましい形態について説明する。
(実施形態1)
以下、本開示にかかる半導体発光素子100について説明する。図1に示すごとく、本開示に係る半導体発光素子100は、ウルツ鉱構造結晶からなる窒化物半導体である半導体基板1の有極性面上に設けられた活性層4を有している。活性層4は、図5に示すごとく、InxGa1-xN(0≦x≦1)層42と、InxGa1-xN層(0≦x≦1)42のIII族極性面に接して形成されたInyAl1-yN(0<y<1)層43とを有する。InxGa1-xN(0≦x≦1)層42とInyAl1-yN(0<y<1)層43との界面において、InxGa1-xN(0≦x≦1)層42の価電子帯端のポテンシャルエネルギーEv(InxGa1-xN)とInyAl1-yN(0<y<1)層43の価電子帯端のポテンシャルエネルギーEv(InyAl1-yN)とが、以下の関係式を満たす。
以下、本開示にかかる半導体発光素子100について説明する。図1に示すごとく、本開示に係る半導体発光素子100は、ウルツ鉱構造結晶からなる窒化物半導体である半導体基板1の有極性面上に設けられた活性層4を有している。活性層4は、図5に示すごとく、InxGa1-xN(0≦x≦1)層42と、InxGa1-xN層(0≦x≦1)42のIII族極性面に接して形成されたInyAl1-yN(0<y<1)層43とを有する。InxGa1-xN(0≦x≦1)層42とInyAl1-yN(0<y<1)層43との界面において、InxGa1-xN(0≦x≦1)層42の価電子帯端のポテンシャルエネルギーEv(InxGa1-xN)とInyAl1-yN(0<y<1)層43の価電子帯端のポテンシャルエネルギーEv(InyAl1-yN)とが、以下の関係式を満たす。
この構成により、InyAl1-yN(0<y<1)層43がInxGa1-xN(0≦x≦1)層42のIII族極性面に接して形成されているので、上記界面における伝導帯側のInyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面のバンドオフセットは大きくなる。また、価電子帯側のオフセットは、InyAl1-yN(0<y<1)層43側がInxGa1-xN(0≦x≦1)層42側よりも低エネルギー側、すなわち、オフセットが負になる。そのため、InyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面とは反対側のInxGa1-xN(0≦x≦1)層42とGaNからなるバリア層41との界面の側に局在していた正孔分布が、InyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面側での存在確率が大きくなるように変化する。また、電子分布はInyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面側に局在しているから、InyAl1-yN(0<y<1)層43を設けることによって、電子と正孔の波動関数の重なりが大きくなり、電子と正孔の存在確率の積分値を大きくすることができる。
以下、任意の構成を含めたより具体的な構成について説明する。
本実施形態においては、半導体発光素子100の実施例として、ウルツ鉱III族窒化物系半導体を用いる緑色(波長520nm)半導体レーザを用いて説明する。以下、図を参照しながら説明する。
図1は、本開示にかかる半導体発光素子100の断面図である。図2は、本開示にかかる半導体発光素子100を上面方向から見た図である。図1は、光導波路20を含んで、図2の1-1線における断面図である。
まず、半導体発光素子100の簡単な構成について説明する。
図1において半導体発光素子100は、例えば(0001)面(すなわちc面)であるn型六方晶GaN基板である半導体基板1上に順に、例えばn-Al0.075Ga0.925Nよりなるn型クラッド層2、例えばn-GaNであるn型光ガイド層3、詳細な層構造を後述する活性層4、例えばp-GaNであるp型光ガイド層5、例えばp-Al0.20Ga0.80Nである電子障壁層6、例えば、p-Al0.15Ga0.85N/GaN超格子であるp型クラッド層7、例えばp-GaNであるp型コンタクト層8が積層される。半導体発光素子100の光導波路は、例えばSiO2である絶縁膜9より両側を絶縁され、光導波路の最上面は、例えばパラジウム(Pd)/白金(Pt)であるp電極10、例えばチタン(Ti)/白金(Pt)/金(Au)である配線電極11、例えばTi/Auであるパッド電極12が所定のパターンにより形成される。半導体発光素子100の光導波路20の前後は、光導波路20内の光を反射するための、例えばSiO2とAl2O3を組み合わせた誘電体多層膜で構成されたリアコート膜14と、光を放射するための、例えばAlNとAl2O3を組み合わせた誘電体多層膜で構成されたフロントコート膜13が形成される。半導体基板1の反対側の面は例えばNi/Auであるn電極15が形成される。
なお、半導体基板1の主面はGa面である。そのため、n型クラッド層2、n型光ガイド層3、活性層4、p型光ガイド層5、電子障壁層6、p型クラッド層7、p型コンタクト層8の上面(すなわち半導体基板1より離れた側の面)はIII族極性面となり、下面(半導体基板1に近い側の面)はV族極性面となる。
次に、本開示の要部である活性層4の詳細な構造について説明する。
まず、本開示との対比のために、従来技術で用いられている活性層4について、図3および図4A、図4Bを参照しながら説明する。以下、この従来技術で用いられている活性層4に係る技術については、比較例と称する。
図3は、比較例に係る活性層4を示す断面図である。図3において、活性層4は、バリア層41にInxGa1-xN(0≦x≦1)層42が挟持された構成をしている。本実施の形態において、バリア層41は膜厚10nmのGaNからなるバリア層41、InxGa1-xN(0≦x≦1)層42は膜厚3nmのIn0.25Ga0.75N井戸層により形成されている。なお、図3中上向きがウルツ鉱結晶の<0001>方向である。
比較例のバンド構造について、図4A、図4Bを用いて説明する。図4Aに比較例における活性層4のバンド構造、すなわち価電子帯(実線)と伝導帯(破線)のエネルギーを計算した結果を、また、図4Bに、正孔(実線)と電子(点線)の基底準位の波動関数(存在確率)を計算した結果を示す。計算は、発明者らが実測したInGaNおよびGaNのバンドギャップエネルギーを考慮したうえで、シュレディンガー方程式とポアソン方程式を、正孔および電子分布をパラメータとして自己無撞着に解くことで行った。計算にあたっては、各材料の自発分極およびInGaN層をGaN層に積層することによる格子歪みに起因するピエゾ分極を考慮した。
さて、図4A、図4Bを見ると、図4A中のInxGa1-xN(0≦x≦1)層42において、価電子帯および伝導帯エネルギーが、横軸、すなわち場所に応じて変化していることがわかる。これが、先述した、分極電界によるInxGa1-xN(0≦x≦1)層42のエネルギーバンドの曲がりである。図4Bにおいて、電子の波動関数44および正孔の波動関数45を見ると、電子はInxGa1-xN(0≦x≦1)層42とその上側に設けられたGaNからなるバリア層41の界面側に、また正孔はInxGa1-xN(0≦x≦1)層42とその下側に設けられたGaNからなるバリア層41の界面側に空間的に局在していることがわかる。活性層4の発光効率は、電子と正孔の波動関数の空間的な重なりが大きいとき、電子正孔対の再結合が活発となるために高くなることから、空間的に、上下のバリア層41との界面に別れて局在していることが効率の点から問題である。なお、このときの電子と正孔の重なり度合いを示す波動関数の重なり積分値<φe|φh>の値は0.52である。
つぎに、本開示の実施形態1における活性層4について、図5~図7を参照しながら説明する。
図5は、本開示の実施形態1に係る活性層4を示す断面図である。図5では、InxGa1-xN(0≦x≦1)層42の上側に、InyAl1-yN(0<y<1)層43が形成され、そのうえにGaNからなるバリア層41が形成されているという特徴がある。本実施の形態においては、InyAl1-yN(0<y<1)層43は膜厚1nmのIn0.35Al0.65N層により形成されている。
ここで、新たに形成したInyAl1-yN(0<y<1)層43の特徴について詳しく説明する。図6に、InyAl1-yN(0<y<1)層43のバンド構造の、In組成依存性を示す。なお、図6には、GaNおよび緑色発光するInxGa1-xN(0≦x≦1)層42としてのIn0.25Ga0.75Nの価電子帯および伝導帯のエネルギーについても書き入れてある。InyAl1-yN(0<y<1)層43のバンドギャップは、In組成に応じてAlNの6.2eVからInNの0.7eVまで順次変化していく。つぎに、図7に、GaN/InAlN/GaN構造をウルツ鉱(0001)面上に形成したときに、InyAl1-yN(0<y<1)層43とGaNからなるバリア層41の界面に生じる分極電荷の計算結果を示す。図7において点線が自発分極電荷、破線はピエゾ分極電荷の成分を、また、実線は両分極電荷の和(全分極電荷)を示す。なお、図7において例えばE+14というのは10の14乗すなわち1014を表す。結晶の歪みによって生じるピエゾ分極電荷は、In組成約18%を境に正から負へと入れ替わっている。これは、GaNからなるバリア層41に対するInyAl1-yN(0<y<1)層43の歪みが、InyAl1-yN(0<y<1)層43が<0001>方向に伸張される引張り歪みから、圧縮される圧縮歪みへと変化するためである。自発分極は常に正電荷を生じるために、両分極電荷の和は、In組成が約0.4のときに0となる。
次に、InyAl1-yN(0<y<1)層43のバンド構造および分極電荷を考慮して計算した、GaN/InAlN/GaN構造のバンド構造を、In組成0.3および0.5の場合を例に、図8に示す。In組成0.3のとき、伝導帯のエネルギーはバリア層41であるGaNよりも高く、電子閉じ込めが得られないため、InyAl1-yN(0<y<1)層43は発光層には適さない。In組成を0.5とすると、伝導帯のエネルギーはGaNよりも小さくなることからある程度の電子閉じ込めが実現され、また、そのバンドギャップは緑色発光に相当する約2.3eVとなるが、InyAl1-yN(0<y<1)層43であるIn0.25Ga0.75Nを利用して緑色発光させる場合に比べて、伝導帯側にGaNからなるバリア層41と形成するエネルギーギャップが小さく、In0.5Al0.5Nを発光層に利用する利点がないために、これまでInyAl1-yN(0<y<1)層43を井戸層とする利点はないと考えられてきた。
しかしながら、発明者は、InyAl1-yN(0<y<1)層43を好適な条件において組み合わせることで、InGaN井戸、GaNからなるバリア構造における、電子と正孔が空間的に分離して存在するために、発光効率が低下するという課題を解決可能であるということを見出した。図9A、図9Bに、本開示の実施形態1における活性層4のバンド構造を示す。図9Aに本開示の実施形態1における活性層4のバンド構造、すなわち価電子帯(実線)と伝導帯(破線)のエネルギーを計算した結果を、また、図9Bに、本開示の実施形態1における正孔(実線)と電子(点線)の基底準位の波動関数(存在確率)を計算した結果を示す。活性層4においては、InyAl1-yN(0<y<1)層43としてのIn0.35Al0.65N層をInxGa1-xN(0≦x≦1)層42のIII族極性面に接して形成している。このことによって、上記界面における伝導帯側のInyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面のバンドオフセットは大きくなり、また、価電子帯側のオフセットは、InyAl1-yN(0<y<1)層43側がInxGa1-xN(0≦x≦1)層42側よりも低エネルギー側、すなわち、オフセットが負になっている。このような分布とすることで、図9Bに計算したように、InyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面とは反対側のInxGa1-xN(0≦x≦1)層42とGaNからなるバリア層41との界面の側に局在していた正孔分布が、InyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面側での存在確率が大きくなるように変化する。一方の電子分布はInyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面側に局在しているから、InAlNを挿入することによって、電子の波動関数44と正孔の波動関数45との重なりが大きくなり、重なり積分値を0.62にまで増大することができる。
このため、従来の半導体発光素子と比べ、発光効率を向上させることができ、高輝度、高効率な半導体発光素子を実現することができる。
続いて、半導体発光素子100の詳細な構成について製造方法と合わせて説明する。
まず、主面が(0001)面であるn型六方晶GaNよりなる半導体基板1上に、例えば有機金属気層成長法(Metalorganic Chemical Vapor Deposition;MOCVD法)を用いてn型クラッド層2からp型コンタクト層8までを連続的に成膜する。まずn-Al0.075Ga0.925Nよりなるn型クラッド層2を1000nm成膜する。ここで、成膜のためのガス原料としては、たとえばIII族原料にトリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、n型不純物にシラン、V族原料にアンモニアなどを用いればよい。n-AlGaN層のSi濃度は1×1018cm-3程度にすると良い。
次に、n型光ガイド層3を構成するn-GaN(Si濃度が5×1017cm-3)を100nm成長する。さらに、活性層4を構成するGaNからなるバリア層41とInxGa1-xN(0≦x≦1)層42としてのIn0.25Ga0.75N量子井戸層、InyAl1-yN(0<y<1)層43としてのIn0.35Al0.65N層との3周期からなる3重量子井戸活性層を成長する。このとき、GaNからなるバリア層41の膜厚はたとえば10nm、InxGa1-xN(0≦x≦1)層42の膜厚は2nm、InyAl1-yN(0<y<1)層43の膜厚は1nmとすればよい。InxGa1-xN(0≦x≦1)層42およびInyAl1-yN(0<y<1)層43のIn原料としては、トリメチルインジウム(TMIn)を用いればよい。次に、p型光ガイド層5を構成するp-GaNを100nm積層する。p-GaN層は、たとえばシクロペンタジエニルマグネシウム(Cp2Mg)用いてMg濃度が5×1019cm-3となるようにすると良い。さらに、電子障壁層6を構成するp-Al0.20GaN(Mg濃度が5×1019cm-3)を10nm積層する。次に、p型クラッド層7を構成する膜厚がそれぞれ1.5nmのp-Al0.15GaN(Mg濃度が5×1019cm-3)とp-GaN(Mg濃度が5×1019cm-3)層を150周期、計450nm積層する。最後に、p型コンタクト層8を構成するp-GaN(Mg濃度が3×1020cm-3)を10nm積層する。
なお、上記のような半導体積層構造体を形成する際の結晶成長法には、MOCVD法の他に、分子ビーム成長(Molecular Beam Epitaxy:MBE)法又は化学ビーム成長(Chemical Beam Epitaxy:CBE)法等を用いてもよい。
次に、成長したウェハをリッジストライプ型レーザに加工する。
まず、例えば熱CVD法により、p型コンタクト層8の上に、膜厚が0.3μmのSiO2からなるSiO2絶縁膜(図示なし)を成膜する。さらに、フォトリソグラフィ法及びフッ化水素酸を用いるエッチング法により、SiO2絶縁膜を幅8μmのストライプ状に残して他の領域をエッチングする。このとき、六方晶窒化物半導体の自然劈開面(m面)を利用してレーザの端面を形成することを考慮して、ストライプの向きは六方晶GaNのm軸方向に平行とする。
次に、誘導結合プラズマ(ICP)エッチング法により、SiO2絶縁膜を用いて積層構造体の上部を0.35μmの深さにエッチングして、p型コンタクト層8及びp型クラッド層7の上部から、光導波路20を構成するリッジストライプ部を形成する。その後、フッ化水素酸を用いて第2のマスク膜を除去し、再度、熱CVD法により、露出したp型クラッド層7上にリッジストライプ部を含む全面にわたって、膜厚が200nmのSiO2からなる絶縁膜9を再度形成する。
次に、リソグラフィ法により、絶縁膜9におけるリッジストライプ部(光導波路20)の上面に、該リッジストライプ部に沿って幅が7.5μmの開口部を有するレジストパターン(図示せず)を形成する。続いて、例えば三フッ化メタン(CHF3)ガスを用いた反応性イオンエッチング(Reactive Ion Etching:RIE)により、レジストパターンをマスクとしてSiO2絶縁膜をエッチングすることにより、リッジストライプ部の上面からp型コンタクト層を露出する。
次に、例えば電子ビーム(Electron Beam:EB)蒸着法により、少なくともリッジストライプ部の上面から露出したp型コンタクト層8の上に、例えば厚さが40nmのパラジウム(Pd)と厚さが35nmの白金(Pt)とからなるp電極10を構成する金属積層膜を形成する。その後、レジストパターンを除去するリフトオフ法により、リッジストライプ上部以外の領域の金属積層膜を除去して、p電極10を形成する。
次に、図1に示すように、リソグラフィ法及びリフトオフ法により、絶縁膜9の上にリッジストライプ部の上部のp電極10を覆うように、例えばリッジストライプ部に平行な方向の平面寸法が750μmで、且つリッジストライプ部に垂直な方向の平面寸法が150μmの例えばTi、Pt、Au等からなる配線電極11を選択的に形成する。本実施形態においては、配線電極11は、厚さが50nmのチタン(Ti)、厚さが200nmの白金(Pt)、及び厚さが100nmの金(Au)の金属積層膜により形成する。なお、一般に、複数のレーザ装置はウェハの主面上に行列状に形成される。従って、ウェハ状態にある基板から個々のレーザチップに分割する際に、配線電極11を切断すると、配線電極11に密着したp電極10がp型コンタクト層8から剥がれるおそれがある。そこで、図1右側に示すように、配線電極11は互いに隣接するチップ同士でつながっていないことが望ましい。続いて、電解めっき法により、配線電極11の上部に、例えば厚み10μmのAu層を形成し、パッド電極12を形成する。このようにすると、ワイヤボンディングによるレーザチップの実装が可能となると共に、活性層4における発熱を効果的に放熱させることができるため、半導体発光素子100の信頼性を向上することができる。
次に、パッド電極12まで形成されたウェハ状態の半導体発光素子100の裏面を、ダイヤモンドスラリにより研磨して、半導体基板1の厚さが100μm程度になるまで薄膜化する。その後、例えばEB蒸着法により、半導体基板1の裏面(光導波路20が形成された面と反対の面)に、例えば厚さが5nmのTi、厚さが10nmの白金及び厚さが1000nmのAuからなる金属積層膜を形成することでn電極15を形成する。
次に、ウェハ状態の半導体発光素子100を、m軸方向の長さが例えば1000μmとなるようにm面に沿って劈開(1次劈開)する。続いて、たとえば電子サイクロトロン共鳴(ECR)スパッタ法を用いて、レーザ光が出射する劈開面に対してフロントコート膜13を、反対の劈開面に対してリアコート膜14を形成する。ここでフロントコート膜13の材料としては、たとえばSiO2単層膜などの誘電体膜を用いる。また、リアコート膜14の材料としては、例えばZrO2膜とSiO2膜とからなる積層膜などの誘電体膜を用いる。なお、半導体発光素子100のフロント側(光出射側)の反射率を例えば15%、リア側(光出射側と反対側)を例えば90%とすることで、高効率な半導体発光素子100を構成することができる。
続いて、1次劈開された半導体発光素子100を、例えばa軸方向の長さが200μmピッチで形成されている光導波路20の間を、a面に沿って劈開(2次劈開)することでレーザチップが完成される。
(実施形態2)
つぎに、本開示の実施形態2にかかる半導体発光素子について、緑色発光する半導体レーザ装置を例に説明する。
つぎに、本開示の実施形態2にかかる半導体発光素子について、緑色発光する半導体レーザ装置を例に説明する。
本実施形態を実施形態1と比較すると、活性層4の構成が異なる。活性層4の構成を除いた他の部分の作成方法は割愛する。
図10に本実施形態における活性層の構造図を、図11A、図11Bに、本実施形態におけるバンド構造図を示す。図11A、図11Bには、InxGa1-xN(0≦x≦1)層42とGaNからなるバリア層41の界面における、InxGa1-xN(0≦x≦1)層42側の価電子帯のポテンシャルエネルギーEv(InxGa1-xN)と、InyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42の界面における、InyAl1-yN(0<y<1)層43側の価電子帯のポテンシャルエネルギーEv(InyAl1-yN)、および、その両者の差ΔEvsを記入した。本実施形態と、実施形態1との差異は、本実施形態では、ΔEvs≦70meVという関係が満たされている点にある。発明者は、ΔEvs≦70meVという関係を満たしているときに、図9A、図9Bに示すInGaN/InAlN活性層構造の発光効率が飛躍的に増加することを見出した。以下に、その原理について説明する。
図12A、図12B、図12C、図12D、図12E、図12F、図12G、図12H、図12I、図12Jに、InyAl1-yN(0<y<1)層43のIn組成を様々に変えて計算した、InAlN(1nm)とIn0.25Ga0.75N(2nm)とからなる量子井戸のバンド構造を示す。InAlN(1nm)とIn0.25Ga0.75N(2nm)とは、GaNからなるバリア層41で挟持されている。
図13A、図13B、図13C、図13D、図13E、図13F、図13G、図13H、図13I、図13Jに、InyAl1-yN(0<y<1)層43のIn組成を様々に変えて計算した、InAlN(1nm)とIn0.25Ga0.75N(2nm)とからなる量子井戸の電子/正孔の波動関数を示す。InAlN(1nm)とIn0.25Ga0.75N(2nm)はGaNからなるバリア層41で挟持されている。図12Aは、InAlNのIn組成が0.30の量子井戸のバンド構造を示す図である。図12Bは、InyAl1-yN(0<y<1)層43のIn組成が0.31の量子井戸のバンド構造を示す図である。図12Cは、InyAl1-yN(0<y<1)層43のIn組成が0.32の量子井戸のバンド構造を示す図である。図12Dは、InyAl1-yN(0<y<1)層43のIn組成が0.33の量子井戸のバンド構造を示す図である。図12Eは、InyAl1-yN(0<y<1)層43のIn組成が0.34の量子井戸のバンド構造を示す図である。図12Fは、InyAl1-yN(0<y<1)層43のIn組成が0.35の量子井戸のバンド構造を示す図である。図12Gは、InyAl1-yN(0<y<1)層43のIn組成が0.36の量子井戸のバンド構造を示す図である。図12Hは、InyAl1-yN(0<y<1)層43のIn組成が0.37の量子井戸のバンド構造を示す図である。図12Iは、InyAl1-yN(0<y<1)層43のIn組成が0.38の量子井戸のバンド構造を示す図である。図12Jは、InyAl1-yN(0<y<1)層43のIn組成が0.39の量子井戸のバンド構造を示す図である。図13Aは、InyAl1-yN(0<y<1)層43のIn組成が0.30の量子井戸の電子/正孔の波動関数を示す図である。図13Bは、InyAl1-yN(0<y<1)層43のIn組成が0.31の量子井戸の電子/正孔の波動関数を示す図である。図13Cは、InyAl1-yN(0<y<1)層43のIn組成が0.32の量子井戸の電子/正孔の波動関数を示す図である。図13Dは、InyAl1-yN(0<y<1)層43のIn組成が0.33の量子井戸の電子/正孔の波動関数を示す図である。図13Eは、InyAl1-yN(0<y<1)層43のIn組成が0.34の量子井戸の電子/正孔の波動関数を示す図である。図13Fは、InyAl1-yN(0<y<1)層43のIn組成が0.35の量子井戸の電子/正孔の波動関数を示す図である。図13Gは、InyAl1-yN(0<y<1)層43のIn組成が0.36の量子井戸の電子/正孔の波動関数を示す図である。図13Hは、InyAl1-yN(0<y<1)層43のIn組成が0.37の量子井戸の電子/正孔の波動関数を示す図である。図13Iは、InyAl1-yN(0<y<1)層43のIn組成が0.38の量子井戸の電子/正孔の波動関数を示す図である。図13Jは、InyAl1-yN(0<y<1)層43のIn組成が0.39の量子井戸の電子/正孔の波動関数を示す図である。
また、図14には、図12A~図12J、及び図13A~図13Jに示した各バンド構造における、電子と正孔の波動関数の重なり積分値を計算した結果を示す。図14を見ると、InyAl1-yN(0<y<1)層43のIn組成が0.35~0.38のとき、重なり積分値が顕著に増加していることが分かる。つぎに、図12A~図12J、及び図13A~図13Jを用いてその原因を説明する。図12A~図12J、及び図13A~図13Jでは、InyAl1-yN(0<y<1)層43のIn組成を30~39%に変化させている。In組成が30%のとき、InyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面の価電子帯を見ると、二つの材料の間のバンド不連続量は10meV程度と非常に小さくなっている。このとき、点線で示した電子の波動関数はInyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面近傍に局在する一方、正孔の波動関数はInxGa1-xN(0≦x≦1)層42とGaNからなるバリア層41との界面に局在するために、両者の重なり積分値は小さい。ここで、InyAl1-yN(0<y<1)層43のIn組成が大きくなってくると、InAlNの価電子帯のポテンシャルエネルギーが高エネルギー側へと移動し、バンドオフセットが増加することにより、正孔分布がInyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面側へと移動していく。一方、電子分布はInyAl1-yN(0<y<1)層43とInxGa1-xN(0≦x≦1)層42との界面に局在しているため、電子と正孔の波動関数の空間的な重なり度合いが大きくなり、重なり積分値が増加していく。正孔分布は価電子帯ポテンシャルエネルギーが最大となる点、すなわち図10で示すEv(InAlN/InGaN)およびEv(InGaN/GaN)のエネルギーにより変化し、InxGa1-xN(0≦x≦1)層42がInyAl1-yN(0<y<1)層43との界面に作る三角状のポテンシャル障壁を挟んで両者の差が小さくなるとき、すなわちΔEvsが小さいとき正孔分布が双峰性の形状となる。電子分布は三角状のポテンシャル障壁近傍にピークを持つため、このとき重なり積分値が大きな値となり、注入した電子/正孔対が効率よく再結合して発光素子の効率を高めることができる。発明者の検討によれば、図14において、In組成0.35~0.38のとき特に重なり積分値が大きくなるのがΔEvs≦70meVのときである。
最後に、重なり積分値最大となる場合について考える。図15、図16に、InAlN層のIn組成を37.5%としたときのバンド構造図と電子および正孔分布を示す。図15に本開示の実施形態2における活性層4のバンド構造、すなわち価電子帯(実線)と伝導帯(破線)のエネルギーを計算した結果を、また、図16に、本開示の実施形態2における正孔(実線)と電子(点線)の基底準位の波動関数(存在確率)を計算した結果を示す。
図15、16では、InyAl1-yN(0<y<1)層43の価電子帯エネルギーが位置に依存せず一定値となっている。これは、図7において、InAlNが内包する自発分極と、歪みに起因するピエゾ分極の和が0になる場合に相当し、正孔分布が三角状ポテンシャルを挟んで対称に近くなり、左右対称に近い単峰性形状を有する電子分布との空間的重なりが大きくなることから遷移確率が増大して発光効率が向上させることができる。
なお、上記第1および第2の実施形態において、基板としてGaNの(0001)面を用いる例について記載したが、(0001)面から~10°程度オフしたオフ基板を用いても良い。また、GaNの極性を有するほかの面、たとえばA面やR面を基板として用いても良い。さらに、サファイア基板やSiC基板、Si基板などの上にGaNやAlN、AlGaNをテンプレートとして成長し、そのうえに成長する場合も、下地テンプレート層が極性を有していれば、本開示の技術を利用することによって発光効率を増加させることができる。
また、上記第1および第2の実施形態についてInGaN層およびAlInN層の組成は上記値に限られない。なお、量子井戸発光層については、InGaNの代わりにGaNを用いることも可能である。
本開示に係る半導体発光素子は、レーザディスプレイ又は液晶バックライト、さらには手術用のレーザメスや溶接用途等に用いることができ、GaN系化合物半導体を用いた半導体発光素子等に有用である。
1 半導体基板
2 n型クラッド層
3 n型光ガイド層
4 活性層
5 p型光ガイド層
6 電子障壁層
7 p型クラッド層
8 p型コンタクト層
9 絶縁膜
10 p電極
11 配線電極
12 パッド電極
13 フロントコート膜
14 リアコート膜
15 n電極
41 バリア層
42 InxGa1-xN(0≦x≦1)層
43 InyAl1-yN(0<y<1)層
100 半導体発光素子
2 n型クラッド層
3 n型光ガイド層
4 活性層
5 p型光ガイド層
6 電子障壁層
7 p型クラッド層
8 p型コンタクト層
9 絶縁膜
10 p電極
11 配線電極
12 パッド電極
13 フロントコート膜
14 リアコート膜
15 n電極
41 バリア層
42 InxGa1-xN(0≦x≦1)層
43 InyAl1-yN(0<y<1)層
100 半導体発光素子
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015519616A JP6371980B2 (ja) | 2013-05-29 | 2014-03-19 | 半導体発光素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-112598 | 2013-05-29 | ||
JP2013112598 | 2013-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014192206A1 true WO2014192206A1 (ja) | 2014-12-04 |
Family
ID=51988261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/001572 WO2014192206A1 (ja) | 2013-05-29 | 2014-03-19 | 半導体発光素子 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6371980B2 (ja) |
WO (1) | WO2014192206A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018158934A1 (ja) * | 2017-03-03 | 2018-09-07 | 三菱電機株式会社 | 半導体レーザ及びその製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0389576A (ja) * | 1989-08-31 | 1991-04-15 | Nec Corp | 量子井戸レーザ |
JPH08116128A (ja) * | 1994-10-17 | 1996-05-07 | Fujitsu Ltd | 半導体量子井戸光素子 |
JP2000004068A (ja) * | 1998-04-13 | 2000-01-07 | Ricoh Co Ltd | 半導体発光素子 |
JP2001237456A (ja) * | 2000-02-21 | 2001-08-31 | Nichia Chem Ind Ltd | 発光素子 |
JP2003234545A (ja) * | 2002-02-07 | 2003-08-22 | Sanyo Electric Co Ltd | 半導体発光素子 |
US20100327783A1 (en) * | 2006-12-24 | 2010-12-30 | Lehigh University | Staggered composition quantum well method and device |
US20110204328A1 (en) * | 2009-12-15 | 2011-08-25 | Lehigh University | Nitride based devices including a symmetrical quantum well active layer having a central low bandgap delta-layer |
-
2014
- 2014-03-19 JP JP2015519616A patent/JP6371980B2/ja active Active
- 2014-03-19 WO PCT/JP2014/001572 patent/WO2014192206A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0389576A (ja) * | 1989-08-31 | 1991-04-15 | Nec Corp | 量子井戸レーザ |
JPH08116128A (ja) * | 1994-10-17 | 1996-05-07 | Fujitsu Ltd | 半導体量子井戸光素子 |
JP2000004068A (ja) * | 1998-04-13 | 2000-01-07 | Ricoh Co Ltd | 半導体発光素子 |
JP2001237456A (ja) * | 2000-02-21 | 2001-08-31 | Nichia Chem Ind Ltd | 発光素子 |
JP2003234545A (ja) * | 2002-02-07 | 2003-08-22 | Sanyo Electric Co Ltd | 半導体発光素子 |
US20100327783A1 (en) * | 2006-12-24 | 2010-12-30 | Lehigh University | Staggered composition quantum well method and device |
US20110204328A1 (en) * | 2009-12-15 | 2011-08-25 | Lehigh University | Nitride based devices including a symmetrical quantum well active layer having a central low bandgap delta-layer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018158934A1 (ja) * | 2017-03-03 | 2018-09-07 | 三菱電機株式会社 | 半導体レーザ及びその製造方法 |
JPWO2018158934A1 (ja) * | 2017-03-03 | 2019-03-07 | 三菱電機株式会社 | 半導体レーザ及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014192206A1 (ja) | 2017-02-23 |
JP6371980B2 (ja) | 2018-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7872269B2 (en) | Gallium nitride semiconductor light emitting element | |
JP4572270B2 (ja) | 窒化物半導体素子およびその製造方法 | |
JP5627871B2 (ja) | 半導体素子およびその製造方法 | |
JP6152848B2 (ja) | 半導体発光素子 | |
US8942269B2 (en) | Nitride semiconductor light-emitting device | |
US20120085986A1 (en) | Gallium nitride-based compound semiconductor light-emitting diode | |
TW200834996A (en) | Non-polar and semi-polar light emitting devices | |
JP2008277539A (ja) | 窒化物半導体発光素子 | |
KR20120092326A (ko) | 광 결정 구조를 갖는 비극성 발광 다이오드 및 그것을 제조하는 방법 | |
JP2006128661A (ja) | 窒化物系半導体レーザ | |
US9935428B2 (en) | Semiconductor light-emitting element and method for manufacturing the same | |
JP2011077326A (ja) | 半導体レーザ集積素子及びその作製方法 | |
WO2017017928A1 (ja) | 窒化物半導体レーザ素子 | |
KR101368687B1 (ko) | 초격자 구조를 이용한 질화물계 반도체 발광 소자의 제조 방법 | |
JP2011091251A (ja) | 窒化物半導体発光素子 | |
JP4493041B2 (ja) | 窒化物半導体発光素子 | |
JP4802314B2 (ja) | 窒化物半導体発光素子とその製造方法 | |
JP2011119374A (ja) | 窒化物半導体素子及びその製造方法、並びに、半導体装置 | |
JP6371980B2 (ja) | 半導体発光素子 | |
JP3711020B2 (ja) | 発光素子 | |
JPWO2004086580A1 (ja) | 半導体レーザおよびその製造方法 | |
JP2003051611A (ja) | 半導体素子の製造方法及び半導体素子 | |
JP5261313B2 (ja) | 窒化物半導体ウェハ、窒化物半導体素子および窒化物半導体素子の製造方法 | |
WO2020105362A1 (ja) | 窒化物半導体レーザ素子および窒化物半導体レーザ素子の製造方法 | |
WO2015001692A1 (ja) | 半導体発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14804428 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015519616 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14804428 Country of ref document: EP Kind code of ref document: A1 |