WO2014192163A1 - シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法 - Google Patents

シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法 Download PDF

Info

Publication number
WO2014192163A1
WO2014192163A1 PCT/JP2013/065294 JP2013065294W WO2014192163A1 WO 2014192163 A1 WO2014192163 A1 WO 2014192163A1 JP 2013065294 W JP2013065294 W JP 2013065294W WO 2014192163 A1 WO2014192163 A1 WO 2014192163A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica glass
glass crucible
single crystal
layer
silica powder
Prior art date
Application number
PCT/JP2013/065294
Other languages
English (en)
French (fr)
Inventor
須藤俊明
北原賢
相場秋廣
奥州谷和司
吉田文枝
旭岡真喜子
北原江梨子
佐藤忠広
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to PCT/JP2013/065294 priority Critical patent/WO2014192163A1/ja
Priority to US14/894,328 priority patent/US9758901B2/en
Priority to CN201380077075.3A priority patent/CN105264124B/zh
Priority to JP2015519596A priority patent/JP6025278B2/ja
Priority to KR1020157037102A priority patent/KR101790716B1/ko
Priority to EP13886011.9A priority patent/EP3006606B1/en
Publication of WO2014192163A1 publication Critical patent/WO2014192163A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a silica glass crucible used for pulling a silicon single crystal as a semiconductor material.
  • a silicon single crystal as a semiconductor material is obtained by heating polysilicon to a temperature of about 1450 to 1600 ° C. using a carbon heater outside in a silica glass crucible, and recently using the Czochralski method (CZ method) by reducing the pressure. Manufactured by pulling up. The price of flash memory and DRAM has been rapidly reduced, and the diameter of silicon single crystals has been shifted from the current mainstream of 300 mm ⁇ to the large size of 400 to 450 mm ⁇ for the purpose of responding to the demand. Accordingly, the diameter of the silica glass crucible is also shifted from about 600 mm to a large diameter of 700 mm or more in order to enable the production of a silicon single crystal having a large diameter.
  • the distance from the heater disposed outside the silica glass crucible to the center of the silicon single crystal increases.
  • the distance from the heater disposed outside the silica glass crucible to the center of the silicon single crystal increases.
  • the distance from the heater to the center of the single crystal is 50 mm or more.
  • the amount of silicon melt at about 1420 ° C. increases as the diameter of the silica glass crucible increases.
  • a crucible having a diameter of about 1000 mm is a silica glass container having a weight of about 120 kg, and the mass of the silicon melt contained therein is 900 kg or more.
  • 900 kg or more of silicon melt at about 1420 ° C. is stored in the crucible.
  • Increasing the distance from the heater to the center of the silicon single crystal and increasing the amount of polysilicon melted to a carbon heater temperature of about 1450-1600 ° C increases the temperature of the silica glass crucible and increases the pulling time. I'm imitating. For example, the softening point of silica glass is about 1200 to 1300 ° C., whereas the pulling temperature of silicon single crystal is about 1420 ° C., and the single crystal pulling is performed at a very high temperature exceeding the softening point of silica glass. Is doing.
  • the silica glass crucible is held by a carbon susceptor. If there is no carbon susceptor, the silica glass crucible will buckle under its own weight, or it will be deformed to cause inward collapse.
  • the lifting time may be more than 2 weeks.
  • problems such as deformation of the silica glass crucible occur.
  • the silica glass crucible is discarded after one CZ single crystal pulling is completed.
  • Patent Document 1 discloses a high-strength quartz glass crucible in which a crystallized glass layer is formed on the inner surface and the outer surface of a crucible to enhance the high heat resistance of the crucible, and deformation does not occur when pulling a silicon single crystal for a long time. Yes.
  • Patent Document 2 discloses a silica glass crucible that contains Al as a crystallization accelerator so that the concentration decreases from the outer surface to the inner surface of the crucible, and prevents deformation of the crucible at high temperatures while preventing Al contamination of the single crystal. Is disclosed.
  • the present invention has been made in view of such circumstances, and provides a silica glass crucible in which buckling and inward deformation are suppressed even when used under a high temperature condition for a long time, and a method for producing the same. For the purpose.
  • the inventors of the present invention have a transparent layer on the inside and a bubble layer on the outside, and the transparent layer is changed from compressive stress to tensile stress from the inside. It has been found that by changing the stress that remains gently on the outside, deformation is suppressed even when a silica glass crucible is used under high temperature conditions for a long time. That is, the present invention includes a substantially cylindrical straight body portion that is open at the top and extends in the vertical direction, a curved bottom portion, and a corner portion that connects the straight body portion and the bottom portion and has a larger curvature than the bottom portion.
  • a silica glass crucible comprising a transparent layer on the inside and a bubble layer on the outside, a compressive stress layer in which compressive stress remains on the inner surface side of the transparent layer, and the compressive stress layer,
  • a silica glass crucible for pulling a silicon single crystal which is provided with a tensile stress layer in which a tensile stress remains adjacent to each other at a moderate stress change rate.
  • the present inventors do not crystallize the silica glass in the process of pulling the silica glass crucible into the CZ single crystal, but change the structure of the synthetic silica powder as a raw material when producing the silica glass crucible to A tempered silica glass crucible that avoids the problems 2 and 2 was studied. As a result, it is clear that compressive stress and tensile stress remain in the transparent layer of the silica glass crucible manufactured using the synthetic silica powder with specified Si—O—Si bond (siloxane bond) and average particle size. It became.
  • silica glass crucible When a silica glass crucible is produced by depositing and melting such synthetic silica powder on a rotatable carbon mold (rotary molding method), since the silica powder is melted uniformly, even a large crucible is a transparent layer. The stress distribution becomes uniform, and the strength unevenness does not occur. Therefore, unlike the silica glass crucible described in Patent Document 1, the silica glass crucible according to the present invention is uniformly strengthened. Furthermore, since the silica glass crucible according to the present invention does not use the crystallization accelerator as described in Patent Document 2, contamination of the silicon single crystal by the accelerator can be prevented.
  • the present invention provides a process for supplying natural silica powder to a rotating mold for producing a silica glass crucible and forming a layer of the natural silica powder on the inner surface of the rotating mold for producing a silica glass crucible, which is obtained by the Raman measurement method described below.
  • a silica glass crucible for pulling up a silicon single crystal comprising a step of depositing a synthetic silica powder satisfying the formula (1) inside a layer of the natural silica powder, and a step of arc discharge to the natural silica powder and the synthetic silica powder. It is a manufacturing method.
  • intensity ratio R (I 1 + I 2 ) / I 0
  • I 1 the peak intensity of a Raman shift 492cm -1 peak intensities of the bands of the peak intensity
  • I 2 Raman shift 606 cm -1 band
  • I 0 Raman shift 800 cm -1 band
  • the method for producing a silica glass crucible according to the present invention does not require the strengthening treatment after crucible production as in the above-mentioned Patent Document 1, so that the production time and cost can be reduced. Further, as in Patent Document 2, a silica glass crucible that is durable under a high temperature condition for a long time can be produced without using a crystallization accelerator. Thus, by making it within the range of the above-mentioned strength ratio of the synthetic silica powder before melting, it is possible to produce a silica glass crucible in which the compressive stress and tensile stress are adjacent to each other at a moderate stress change rate in the transparent layer. No reports until.
  • FIG. 2 is a cross-sectional view of a silica glass crucible and a schematic diagram depicting a strain observation method. It is the electron micrograph of the external appearance and cross section of the synthetic silica powder which concerns on the manufacture example 1 which carried out the plasma processing. It is an electron micrograph of the appearance and section of synthetic silica powder concerning comparative manufacture example 1 which is not plasma-treated. It is a Raman spectrum of the synthetic silica powder concerning the manufacture example 1 which carried out plasma processing, and the synthetic silica powder concerning the comparative manufacture example 1 which has not been plasma-treated.
  • a silica glass crucible according to the present invention includes a substantially cylindrical straight body portion that is open at the top and extends in the vertical direction, a curved bottom portion, and a corner portion that connects the straight body portion and the bottom portion and has a larger curvature than the bottom portion.
  • the silica glass crucible includes a transparent layer on the inner surface side, a compressive stress layer in which compressive stress remains on the inner surface side of the transparent layer, and a moderate stress change rate with the compressive stress layer. It is a silica glass crucible provided with the tensile stress layer in which the tensile stress remains adjacent to the opposite side.
  • Silica powder used for the production of silica glass crucible includes crystalline natural silica powder and amorphous synthetic silica powder produced by chemical synthesis.
  • the natural silica powder is a silica powder produced by pulverizing a natural mineral mainly composed of ⁇ -quartz.
  • Synthetic silica powder is produced by chemical synthesis techniques such as vapor phase oxidation of silicon tetrachloride (SiCl 4 ) (dry synthesis method) and hydrolysis of silicon alkoxide (Si (OR 4 )) (sol-gel method). be able to.
  • Silica glass crucible is made from synthetic silica powder by supplying natural silica powder to a mold for silica glass crucible, supplying synthetic silica powder onto natural silica powder, and melting silica powder by Joule heat of arc discharge.
  • a silica glass crucible comprising an inner surface layer (synthetic layer) to be vitrified and an outer surface layer (natural layer) to be vitrified from natural silica powder is produced.
  • the silica powder layer is strongly depressurized to remove bubbles to form a transparent silica glass layer (hereinafter referred to as “transparent layer”).
  • transparent layer hereinafter referred to as “transparent layer”.
  • a remaining bubble-containing silica glass layer hereinafter referred to as “bubble layer”.
  • the inner surface layer and the transparent layer formed from the synthetic silica powder do not necessarily coincide with each other.
  • the outer surface layer and bubble layer formed from natural silica powder do not necessarily coincide.
  • the transparent layer is a layer formed inside the silica glass crucible and substantially does not contain bubbles. “Substantially free of bubbles” means that the bubble content and bubble diameter are such that the single crystallization rate does not decrease due to bubbles.
  • the compressive stress layer is a layer in which compressive stress remains on the inner surface side of the transparent layer.
  • the tensile stress layer is a layer adjacent to the compressive stress layer and in which tensile stress remains.
  • the tensile stress layer is preferably present only in the transparent layer, and the proportion thereof is preferably 90% or more, more preferably 95% or more, and further preferably 100%, and may not be present in the bubble layer. preferable.
  • Such a ratio can be calculated, for example, by observing a change in stress from the inner surface of the silica glass crucible in the thickness direction.
  • the rate of stress change is preferably 0.17 MPa / mm or more and 1.5 MPa / mm or less, for example, 0.17, 0.2, 0.3, 0.5, 0.00. It is 7, 0.9, 1.1, 1.3, or 1.5 MPa / mm, and may be within the range of any two numerical values exemplified here.
  • the rate of stress change is less than 0.17 MPa / mm, the tensile stress may reach the bubble layer. For this reason, in a bubble layer, it becomes easy to produce a fine crack between a bubble, and when the fine crack spreads, it will become a big crack.
  • the large-diameter silica glass crucible has a higher degree of deformation risk due to the large degree of deformation of the crucible with respect to external stress and thermal stress applied to the crucible than the small-diameter silica glass crucible.
  • the large-diameter silica glass crucible in which the change from compressive stress to tensile stress is gentle can reduce the risk of breakage.
  • the silica glass in which stress remains inside exhibits anisotropy at the location where the stress remains and inward tilt occurs.
  • the anisotropy of silica glass is observed by slicing a crucible in the vertical direction, placing a sliced crucible piece between two polarizing plates combined in a crossed Nicol state, and allowing white light to pass through. be able to.
  • the sliced crucible piece is about 2 mm thick by polishing.
  • the crucible piece does not give an optical path difference to the white polarized light, so that the white polarized light that has passed through the crucible piece cannot pass through the orthogonal polarizing plate (analyzer).
  • the crucible piece When the crucible piece is distorted, the crucible piece gives an optical path difference with respect to the white polarized light. Therefore, the polarization plane of the white polarized light rotates and a component that can pass through the orthogonal polarizing plate (analyzer) is observed. .
  • white polarized light is passed through a crucible piece having strain, an optical path difference corresponding to the strain is generated for each wavelength, and thus the amount of light passing through the polarizing plate is different for each wavelength. As a result, the color of the crucible piece observed through the polarizing plate (analyzer) is observed. It is also possible to evaluate the distortion of the crucible piece from this color.
  • the distortion of the crucible piece can be evaluated by using an interference color diagram or a polarization color diagram representing the relationship between chromaticity and birefringence, and the stress can be obtained from the strain. Further, when the sensitive color method is used, it is possible to determine whether the compressive stress or the tensile stress is based on the color, so that the interface between the residual compressive stress and the residual tensile stress can be observed.
  • the strain stress can be measured by installing a quarter wave plate between the sample crucible piece and the detector (senalmon method).
  • the specific measurement method is as follows. First, an analyzer is installed so as to be in a crossed Nicols state with respect to a polarizing plate (polarizer) installed in front of the light source. At this time, the rotation angle ⁇ of the analyzer is set to 0 degree (degree). Next, the sample is observed from the analyzer side, and the sample is rotated with respect to the analyzer so that the sample portion where the stress measurement is desired is brightest. Further, the analyzer is rotated in the horizontal direction so that the sample portion where stress measurement is desired is darkest. The stress can be obtained by substituting the rotation angle ⁇ from the brightest state to the darkest state into the following formula (2).
  • F Stress (MPa) ⁇ : wavelength of light source (nm)
  • C Photoelastic constant (nm / cm) / MPa
  • L Optical path length (cm)
  • the photoelastic constant C of silica glass is 3.5 ⁇ 0.2 (nm / cm) / Mpa.
  • ⁇ of the light source a wavelength suitable for the quarter wave plate to be used is selected. You may select the suitable quarter wavelength plate with respect to the wavelength of the light source to be used.
  • the optical path length L is the thickness of the sample in the optical axis direction.
  • the stress change from compressive stress to tensile stress can be obtained by plotting the stress F at an arbitrary distance in the thickness direction from the inner surface of the crucible. Whether the change from compressive stress to tensile stress on the inner surface side is abrupt or gentle depends on the interface (that is, stress) in the distance-stress graph (X axis: distance from the inner surface, Y axis: stress). This can be determined by obtaining the absolute value of the slope of the tangent to the coordinate (which is 0 MPa) (referred to as the rate of change in stress). For example, when the absolute value of the slope is 0.17 MPa / mm or more and 1.5 MPa / mm or less, it can be determined that the stress change is moderate.
  • the silica glass crucible may fall inward or buckle during the pulling of the silicon single crystal, thereby reducing the yield of the silicon single crystal. In some cases, the pulling of the silicon single crystal is stopped. It is necessary to let In the silica glass crucible according to the present invention, the compressive stress remains on the inner surface side of the transparent layer, thereby strengthening the inner surface of the silica glass crucible and changing the tensile stress toward the outside at a gradual stress change rate. To leave a tensile stress in the transparent layer. If a tensile stress remains in the bubble layer, fine cracks are likely to be generated between the bubbles, and if the fine cracks are spread, they become large cracks that need to be avoided. Therefore, it is preferable to leave a tensile stress in the transparent layer.
  • the bubble layer is a layer formed outside the transparent layer.
  • the bubble layer has a bubble content of 0.2% to 1% and an average bubble diameter of 20 ⁇ m to 200 ⁇ m.
  • the silica glass crucible according to the present invention preferably has a maximum bubble content of 0.10 vol% or less. Furthermore, the silica glass crucible according to the present invention preferably has an average cell diameter of 50 ⁇ m or less. If even a small amount of bubbles are present in the vicinity of the inner surface of the silica glass crucible, bubble expansion occurs in the transparent layer when the silicon single crystal is pulled up. The generated bubbles enter the silicon melt together with the dissolution of the inner surface side of the transparent layer, and the bubbles are taken into the silicon single crystal to be pulled up. The taken-in bubbles cause dislocation (crystal defects) due to crystal transition and lower the single crystallization rate.
  • the maximum bubble content of the silica glass crucible is larger than 0.10 vol%, the single crystallization rate is significantly reduced. Further, if the average bubble diameter of the silica glass crucible is more than 50 ⁇ m, the expansion of the bubbles causes deformation of the silica glass crucible.
  • Bubbles existing in the vicinity of the inner surface of the silica glass crucible can be detected using, for example, optical detection means.
  • the optical detection means includes a light receiving device that receives transmitted light or reflected light of light irradiated on the silica glass crucible.
  • the light emitting means for irradiating light may be built-in or may use an external light emitting means.
  • the optical detection means one that can be rotated along the inner surface of the silica glass crucible is used. Examples of the irradiation light include visible light, ultraviolet light, infrared light, and laser light, and any light can be applied as long as it can be reflected to detect bubbles.
  • the light receiving device is selected according to the type of irradiation light. For example, a digital camera including an optical lens and an image sensor can be used. In order to detect bubbles existing at a certain depth from the surface, the focal point of the objective lens may be scanned in the depth direction from the surface.
  • the measurement result by the optical detection means is taken into the image processing apparatus, and the bubble content P (%) is calculated.
  • the bubble content can be determined by the volume of bubbles in the unit volume of the crucible, and the bubble content at the highest value among the measured points can be set as the maximum bubble content.
  • the maximum bubble content from the inner surface of the crucible toward the outer surface up to a thickness of 0.3 mm is preferably 0.05 vol% or less.
  • bubbles having a bubble diameter of 10 ⁇ m or more are measured.
  • the single crystallization rate is remarkably reduced.
  • the maximum bubble diameter is larger than 100 ⁇ m, since the reduction of the single crystallization rate is remarkable, it is preferably 100 ⁇ m or less.
  • the average bubble diameter can be obtained as an average value of the diameters of the spherical bubbles in the measurement range.
  • the diameter can be determined by software by acquiring an image of the glass sample.
  • the arithmetic average roughness (Ra) of the inner surface of the silica glass crucible is preferably 0.02 ⁇ m or less. When it is larger than 0.02 ⁇ m, the probability that heterogeneous nucleation occurs is increased, and the single crystallization rate is remarkably lowered.
  • Ra is extracted from the roughness curve by the reference length in the direction of the average line
  • the X-axis is taken in the direction of the average line of the extracted portion
  • the Y-axis is taken in the direction of the vertical magnification
  • the roughness curve is taken from the center line.
  • the integrated value is expressed in micrometers.
  • Natural silica powder is supplied to a rotating mold for producing a silica glass crucible, and a layer of natural silica powder is formed on the inner surface of the rotating mold for producing a silica glass crucible.
  • Natural silica powder can be produced by pulverizing a natural mineral mainly composed of ⁇ -quartz.
  • the measurement conditions of the Raman method can be, for example, a wavelength of 532 nm, an exposure time: 20 seconds, and an integration count of 1: Raman spectrum of the resulting synthetic silica powder from such conditions, Raman shift 492cm -1 characteristic peaks in band and 606 cm -1 band and 800 cm -1 bands were observed, each band, planar four-membered ring (D1 ), The scattering peak of the planar three-membered ring (D2), and the scattering peak due to the fundamental vibration between silicon and oxygen.
  • the peak intensity at each scattering peak is the area at each peak.
  • the peak area can be calculated by integrating the time change of the peak electrical signal with the line connecting the rising and falling points of the peak as the base.
  • a half width method, a triangle approximation method, and a peak clipping method can be taken as examples.
  • Strength ratio R is 0.80 or more and 1.0 or less.
  • the intensity ratio R is, for example, 0.80, 0.85, 0.90, 0.95, and 1.00, and may be within the range of any two numerical values exemplified here.
  • the synthetic silica powder lacks a planar three-membered ring and a planar four-membered ring, which are structures involved in the dense state, and a high dense state is not maintained in the synthetic silica powder.
  • Such synthetic silica powder has little change in the glass structure at the time of melting, the glass structure after melting is likely to be uniform, and the stress change between the compressive stress and the tensile stress in the transparent layer is likely to be abrupt.
  • a silica glass crucible manufactured using a synthetic silica powder having a strength ratio R of 0.80 or more and 1.0 or less can leave a compressive stress and a tensile stress in the transparent layer at a moderate rate of change in stress.
  • produce a crack, an inward fall, and a buckling can be manufactured also under high temperature conditions for a long time.
  • the synthetic silica powder preferably has a circularity of 0.73 to 1.0.
  • the synthetic silica powder in which the particles are spheroidized has a small gap between the particles, so that the gap is easily closed during melting, and the residual gas component in the silica glass crucible can be prevented.
  • the degree of circularity is less than 0.73, the gap between the particles is large, so that the gap is not blocked during melting, gas components remain in the silica glass crucible, and the bubble content may increase.
  • the synthetic silica powders used it is not necessary for all the synthetic silica powders used to have a circularity of 0.73 or more and 1.0 or less, and the ratio of such silica particles is preferably 90% or more, more preferably 95% or more, and still more preferably 99%. % Or more.
  • the synthetic silica powder preferably has an average particle size of 80 ⁇ m or more and 160 ⁇ m or less.
  • the average particle diameter is, for example, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, or 160 ⁇ m, and may be within the range of any two numerical values exemplified here.
  • the average particle size is 160 ⁇ m or less, the size of the voids between the particles is small, so that the bubble size in the silica glass crucible formed due to the entrainment of the atmospheric gas can be reduced. As a result, bubbles can be contracted and extinguished during arc melting.
  • the average particle size exceeds 160 ⁇ m, the size of the voids between the particles is large, so that the bubble size in the silica glass crucible formed due to the entrainment of the atmospheric gas is large, and the bubbles shrink during arc melting. Progress, but may not lead to the disappearance of bubbles.
  • the average particle size is less than 80 ⁇ m, melting is rapidly caused by arc melting, so that degassing due to vacuuming becomes insufficient and bubbles remain.
  • Average particle size means a particle size (D50) at an integrated value of 50% in the obtained particle size distribution, and in the present specification means a volume average particle size.
  • the particle size distribution can be measured by a laser diffraction / scattering measurement method using laser light as a light source.
  • Particle size is defined in the column of JIS Z 8901 “Test powder and test particles”.
  • the synthetic silica powder preferably has a tap bulk density of 1.35 g / cm 3 ⁇ m or more and 1.44 g / cm 3 or less.
  • the tap bulk density is, for example, 1.35, 1.38, 1.39, 1.40, 1.41, 1.42, 1.43, or 1.44 g / cm 3. It may be within the range of two numerical values. If the tap bulk density is less than 1.35 g / cm 3 , the bubble content may increase. This is presumably because gas is included during melting because the interval between the particles is large. When the tap bulk density is more than 1.44 g / cm 3 , degassing due to evacuation is insufficient, and bubbles tend to remain.
  • the tap bulk density can be obtained from the density when the sample is dispersed and placed in the container, and then the container is impacted by the tap and the volume of the sample is not changed.
  • a measurement container containing a sample is installed in a tap device with an auxiliary cylinder attached, and the tap is performed 600 times. After grinding the sample, the mass is measured. The sample is replenished, and the measurement container with the auxiliary cylinder attached is placed in the tap device, and the tap is performed 100 times. After grinding the sample, the mass is measured, and the operation is repeated until the mass difference from the previous mass is within 0.3%. The mass of the sample is divided by the volume of the measurement container to obtain the tap bulk density. The measurement is performed three times, and an average value can be adopted.
  • the synthetic silica powder preferably has a specific surface area of 0.026 m 2 / g or more and 0.045 m 2 / g or less.
  • the specific surface area is, for example, 0.026, 0.028, 0.030, 0.032, 0.034, 0.036, 0.038, 0.040, or 0.045 m 2 / g, where It may be within the range of any two given numerical values.
  • the specific surface area exceeds 0.045 m 2 / g, the gas present on the surface of the scratches and cracks is taken in at the time of melting and remains as bubbles, thereby increasing the bubble content.
  • the specific surface area is less than 0.026 m 2 / g, the gas present at the center of the silica particles can be prevented from escaping from the surface during arc melting. For this reason, it is preferable that the surface has a dent to some extent because the bubble content can be lowered.
  • the specific surface area can be determined by a nitrogen adsorption method.
  • nitrogen adsorption method (1) nitrogen gas is adsorbed on the synthetic silica powder while gradually increasing the pressure from a high vacuum.
  • An adsorption isotherm is created by plotting relative pressure on the X-axis and nitrogen adsorption on the Y-axis.
  • This is a method for obtaining the specific surface area by applying such adsorption isotherm data to various adsorption isotherms. Examples of the adsorption isotherm include a Henry adsorption isotherm, a Langmuir adsorption isotherm, and a BET adsorption isotherm.
  • the specific surface area of the synthetic silica powder used is 0.026 m 2 / g or more and 0.045 m 2 / g or less, and the ratio of such silica particles is preferably 90% or more, more preferably 95. % Or more, more preferably 99% or more.
  • the synthetic silica powder used in the present invention can be produced, for example, by treating a synthetic silica powder raw material at a cooling rate of 10 5 K / min or more after plasma treatment.
  • Synthetic silica powder raw materials are produced by chemical synthesis methods such as gas phase oxidation of silicon tetrachloride (SiCl 4 ) (dry synthesis method) and hydrolysis of silicon alkoxide (Si (OR 4 )) (sol-gel method). can do.
  • the plasma treatment can be performed using, for example, a plasma reactor (for example, a high-frequency induction thermal plasma generator), and the plasma treatment using such a plasma reactor can easily perform rapid heating and rapid cooling.
  • the plasma treatment is preferably a thermal plasma treatment in which a heating-cooling process can be continuously performed.
  • the plasma reactor is composed of a plasma torch for generating plasma and a cooling device provided immediately thereafter.
  • the plasma torch includes a raw material supply pipe and a gas supply pipe, and a high frequency induction coil on the outer periphery thereof.
  • the frequency applied to the high frequency induction coil is, for example, 1 to 15 MHz, specifically 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 15 MHz. It may be within the range of any two numerical values.
  • the output is, for example, 90 to 150 kW, specifically 90, 100, 110, 120, 130, 140, or 150 kW, and may be within the range of any two numerical values exemplified here.
  • the gas to be supplied for example, argon or oxygen can be selected.
  • the gas may be, for example, a mixed gas of oxygen and argon.
  • the oxygen partial pressure is, for example, 10 to 30%, specifically, 10, 15, 20, 25, or 30%. Yes, it may be within the range of any two numerical values exemplified here.
  • the gas supply amount is, for example, 30 to 150 L / min, specifically, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 L / min.
  • Plasma is generated in the plasma torch by energizing the high frequency induction coil while supplying gas.
  • a synthetic silica powder raw material is supplied into a plasma torch in which plasma is generated.
  • the feed rate of the raw material is, for example, 20 to 50 kg / hr, specifically, 20, 23, 25, 28, 30, 35, 40, 45, or 50 kg / hr. It may be within a range of two numerical values.
  • the synthetic silica powder having a desired strength ratio R can be produced by rapidly cooling the synthetic silica powder with a cooling device.
  • the cooling rate is preferably 10 5 K / min or more, more preferably 10 6 K / min or more.
  • the cooling method is not particularly limited, but is preferably cooling by air cooling, more preferably cooling by water cooling.
  • the synthetic silica powder in which the thermal history is reflected can be obtained stably.
  • the raw material supply rate and output can be increased, and the plasma-treated synthetic silica powder can be produced in a short time.
  • Arc discharge is performed on the laminated natural silica powder and the synthetic silica powder obtained as described above.
  • a known method can be adopted for the arc discharge.
  • glass melting by arc discharge of a rotary mold method can be employed.
  • ⁇ Cooling gas can be introduced into the mold from the tube for vacuuming the mold.
  • the outer surface side of the silica glass crucible can be efficiently cooled, the compressive stress can remain on the bubble layer side, and the tensile stress can be prevented from remaining on the bubble layer side.
  • the cooling gas can be introduced using a compressor such as a blower with a cleaning function.
  • the discharge gas amount of the compressor can be 10 to 50 m 3 / min, specifically, 10, 20, 30, 40, or 50 m 3 / min. , It may be within the range of any two numerical values shown here.
  • the amount of discharge gas can be changed according to the size of the silica glass crucible to be produced. When the discharge gas amount is less than 10 m 3 / min, tensile stress remains in the bubble layer due to insufficient cooling. When the discharge gas amount exceeds 50 m 3 / min, the tensile pressure is shifted so as to remain on the inner surface side due to excessive cooling.
  • transduces is not specifically limited, For example, helium, argon, nitrogen, or air can be selected.
  • the temperature of the cooling gas is not particularly limited, but room temperature can be selected.
  • the mold may be provided with an exhaust pipe to discharge the cooling gas in the mold out of the mold.
  • the silica glass crucible for pulling a silicon single crystal according to the present invention can be used, for example, as follows. Polycrystalline silicon (polysilicon) is put into a silica glass crucible and heated by a heater to melt the polycrystalline silicon. A silicon single crystal is manufactured by pulling up while rotating the seed crystal in a state where the end of the silicon seed crystal is immersed in a silicon melt.
  • the shape of the silicon single crystal is a cylindrical silicon seed crystal from the top, a conical silicon single crystal below (top portion), a cylindrical silicon single crystal having the same diameter as the bottom of the upper cone (straight barrel portion), It is a conical silicon single crystal (tail part) whose apex is downward.
  • the silica glass crucible for pulling a silicon single crystal according to the present invention has a maximum bubble content, an average open cell number density, an average brown ring number density, and an average brown ring diameter of the transparent layer of the silica glass crucible after pulling the silicon single crystal. It can be remarkably lowered and the single crystallization rate can be improved.
  • the single crystallization rate is defined as the weight ratio of the single crystal to the silicon raw material. However, not all the silicon melt in the crucible is used, and only the straight body portion excluding the top portion and the tail portion of the silicon single crystal ingot is subject to calculation of the single crystallization rate. Therefore, even if a sufficient silicon single crystal is pulled, the single crystallization rate is 100% or less, 80% or more is preferable, and 90% or more is more preferable.
  • the maximum bubble content of the silica glass crucible after pulling up the silicon single crystal is preferably 0.1 Vol% or less. Under these conditions, mixing of bubbles into the silicon single crystal can be reduced, and a good single crystallization rate can be realized.
  • the maximum bubble content can be determined in the same manner as the maximum bubble content before use of the silica glass crucible.
  • the average open cell number density of the silica glass crucible after pulling the silicon single crystal is preferably 7 (number / cm 2 ) or less. Under these conditions, mixing of bubbles into the silicon single crystal can be reduced, and a good single crystallization rate can be realized.
  • An open bubble is a recess derived from bubbles that appears on the inner surface of the silica glass crucible due to melting of the inner surface of the silica glass crucible when the silicon single crystal is pulled up.
  • the open cell number density can be calculated by counting the number of open cells per unit area formed on the inner surface of the silica glass crucible after pulling up the silicon single crystal by microscopic observation.
  • the average open cell number density can be calculated from the average open cell number density of the straight body part, bottom part and corner part of the silica glass crucible.
  • the average brown ring number density of the silica glass crucible after pulling the silicon single crystal is preferably 7 (number / cm 2 ) or less.
  • the brown ring is brown cristobalite generated on the inner surface of a silica glass crucible when it is in contact with a high-temperature silicon melt for a long time.
  • cristobalite grows on the inner surface of the silica glass crucible or in a direction perpendicular to the inner surface to form ring-shaped spots.
  • the formed brown ring is easy to peel off. When the peeled brown ring falls and mixes in the silicon melt, it is carried to the silicon single crystal.
  • the pulled silicon ingot is polycrystallized and the single crystallization rate is lowered.
  • the average brown ring number density of the silica glass crucible is low, the ratio of brown rings falling into and mixing in the silicon melt is reduced, and the decrease in single crystallization rate can be suppressed, and a good single crystallization rate can be achieved. realizable.
  • the brown ring number density can be calculated by counting the number of brown rings per unit area formed on the inner surface of the silica glass crucible after pulling up the silicon single crystal by microscopic observation.
  • the average brown ring number density can be calculated from the average value of the brown ring number density of the straight body part, bottom part and corner part of the silica glass crucible.
  • the average brown ring diameter of the silica glass crucible after pulling the silicon single crystal is preferably 4 mm or less. Under this condition, the growth of the brown ring is suppressed, the rate at which the brown ring falls and mixes into the silicon melt is reduced, and the decrease in the single crystallization rate can be suppressed, and a good single crystallization rate is achieved. realizable.
  • the brown ring diameter is the diameter of the brown ring formed on the inner surface of the silica glass crucible after the silicon single crystal is pulled.
  • the average brown ring diameter can be calculated from an average value obtained by measuring the diameters of 100 brown rings from the straight body part, bottom part, and corner part from the straight body part to the bottom part of the silica glass crucible.
  • the synthetic silica powder plasma-treated using a plasma reactor equipped with a water-cooled cooling device was rapidly cooled at a cooling rate of 10 6 K / min or more.
  • the synthetic silica powder was recovered, and the synthetic silica powder was washed by ultrasonic cleaning using ultrapure water. The washing was performed until there were no fine particles adhering to the synthetic silica powder.
  • the synthetic silica powder after washing was classified to obtain a synthetic silica powder according to Production Example 1.
  • the strength ratio R, average particle diameter, specific surface area, tap bulk density and circularity of the synthetic silica powder were measured as follows, and the results are shown in Table 1.
  • Intensity ratio R A distributed micro Raman apparatus was used. The measurement conditions were laser wavelength: 532 nm (5 mw), exposure time: 20 seconds, and integration count: once. And the peak intensity I 1 of Raman shift 492cm -1 band, Raman shift 606 cm -1 peak intensity of band I 2, by integrating the time variation of Raman shift 800 cm -1 band peak of the electric signal and the peak intensity I 0 of The intensity ratio R was calculated from the formula (I 1 + I 2 ) / I 0 .
  • the Raman spectra of Production Example 1 and Comparative Production Example 1 are shown in FIG.
  • Average particle size The particle size distribution was determined by a laser diffraction / scattering measurement method using laser light as a light source, and the particle size (D50) at an integrated value of 50% in the obtained particle size distribution was defined as the average particle size.
  • Tap bulk density The measurement container containing the sample (silica powder) was placed on the tap device with the auxiliary cylinder attached, and tapping was performed 600 times. After the sample was ground, the mass was measured. The sample was replenished again, the measurement container with the auxiliary cylinder attached was placed in the tap device, and the tap was performed 100 times. After the sample was ground, the mass was measured, and the operation was repeated until the mass difference from the previous mass was within 0.3%. The mass of the sample was divided by the volume of the measurement container to obtain the tap bulk density. The measurement was performed 3 times, and the average value was defined as the tap bulk density.
  • FIG. 2 is an electron micrograph of the appearance and cross section of the synthetic silica powder according to Production Example 1.
  • Production Examples 2 to 6 Synthetic silica powders according to Production Examples 2 to 6 were obtained in the same manner as in Production Example 1 except that classified synthetic silica powder classified after Production Example 1 was used. Similar to Production Example 1, the strength ratio R, average particle diameter, specific surface area, tap bulk density and circularity of the synthetic silica powder were measured, and the results are shown in Table 1.
  • Comparative Production Examples 1 to 3 Comparative production examples 1 to 3 were carried out in the same manner as in production example 1 except that the thermal plasma treatment was not performed and classified synthetic silica powder different from production example 1 was used in the synthetic silica powder classified after washing. Such synthetic silica powder was obtained. Similar to Production Example 1, the strength ratio R, average particle diameter, specific surface area, tap bulk density and circularity of the synthetic silica powder were measured, and the results are shown in Table 1.
  • FIG. 3 is an electron micrograph of the appearance and cross section of the synthetic silica powder according to Comparative Production Example 1.
  • Average bubble diameter It calculated
  • Maximum bubble content It calculated
  • the bubble content at the highest value among the measured points was taken as the maximum bubble content.
  • Stress change rate The residual stress in the silica glass crucible was measured by the Senarmon method. The measurement was performed at intervals of 0.5 to 1.0 mm in the thickness direction from the inner surface, and a stress-distance graph was created. From the stress-distance graph, the slope of the tangential line (stress change rate) with respect to the position where the stress becomes 0 MPa (that is, the interface) was obtained. For the silica glass crucibles according to Example 1 and Comparative Example 1, a stress-distance graph is shown in FIG.
  • Comparative Example 13 A silica glass crucible according to Comparative Example 13 was obtained in the same manner as in Example 1 except that the amount of gas discharged by the blower with the cleaning function was changed to 5 m 3 / min. The stress change rate was measured in the same manner as in Example 1, and the results are shown in Table 3.
  • Comparative Example 14 A silica glass crucible according to Comparative Example 14 was obtained in the same manner as in Example 2 except that the amount of gas discharged by the blower with the cleaning function was changed to 5 m 3 / min. The stress change rate was measured in the same manner as in Example 1, and the results are shown in Table 3.
  • Comparative Example 15 A silica glass crucible according to Comparative Example 15 was obtained in the same manner as in Example 3 except that the amount of gas discharged by the blower with the cleaning function was changed to 5 m 3 / min. The stress change rate was measured in the same manner as in Example 1, and the results are shown in Table 3.
  • Comparative Example 16 A silica glass crucible according to Comparative Example 16 was obtained in the same manner as in Example 4 except that the amount of gas discharged by the blower with the cleaning function was changed to 5 m 3 / min. The stress change rate was measured in the same manner as in Example 1, and the results are shown in Table 3.
  • Comparative Example 17 A silica glass crucible according to Comparative Example 17 was obtained in the same manner as in Example 5 except that the amount of gas discharged by the blower with the cleaning function was changed to 5 m 3 / min. The rate of change in stress was obtained in the same manner as in Example 1. The results are shown in Table 3.
  • Comparative Example 18 A silica glass crucible according to Comparative Example 18 was obtained in the same manner as in Example 6 except that the amount of gas discharged by the blower with the cleaning function was changed to 5 m 3 / min. The stress change rate was measured in the same manner as in Example 1, and the results are shown in Table 3.
  • FIG. 5 is a graph plotting the X-axis as each part of the silica glass crucible and the Y-axis as the bubble content (Vol%).
  • the silica glass crucible according to Comparative Example 1 the bubble content increases from the corner portion to the wall portion, whereas the silica glass crucible according to Example 1 shows a bubble content rate of 0.01 Vol% or less only in the wall portion. It was. Therefore, it turns out that the silica glass crucible which concerns on Example 1 is a glass crucible which does not contain a bubble substantially.
  • FIG. 8 is a polarization photograph of a cross-sectional sample in the silica glass crucible according to Comparative Example 1.
  • a clear interface was observed between the compressive stress and the tensile stress.
  • FIG. 9 is a polarized photograph of a cross-sectional sample in the silica glass crucible according to Example 1.
  • silica glass crucible according to Example 1 there was no clear interface between the compressive stress and the tensile stress. That is, the compressive stress and the tensile stress changed gently.
  • FIG. 6 shows a laser confocal microscope photograph of the inner surface of the silica glass crucible according to Example 1
  • FIG. 7 shows a laser confocal microscope photograph of the inner surface of the silica glass crucible according to Comparative Example 1.
  • Maximum bubble content It calculated
  • the bubble content at the highest value among the measured points was taken as the maximum bubble content.
  • Average open cell number density The open cell number density was calculated by counting the number of open cells per unit area formed on the inner surface of the silica glass crucible after pulling up the silicon single crystal by microscopic observation.
  • Average brown ring number density Calculation was performed by counting the number of brown rings per unit area formed on the inner surface of the silica glass crucible after the silicon single crystal was pulled.
  • Average brown ring diameter 100 diameters of brown rings were measured from the straight body part, bottom part, and corner part from the straight body part to the bottom part of the silica glass crucible, and calculated from the average value.
  • Single crystallization rate It calculated
  • the silica glass crucibles according to Examples 1 to 6 having an intensity ratio R of 0.8 ⁇ R ⁇ 1.0 were used, the single crystallization rate was good.
  • the average particle size is 87 to 160 ⁇ m
  • the specific surface area is 0.026 to 0.045 (m 2 / g)
  • the tap bulk density is 1.35 to 1.44 (g / cm 3 )
  • the circularity is 0.73.
  • the silica glass crucibles according to Examples 1 to 3 produced using the synthetic silica powders of Production Examples 1 to 3 having a value of ⁇ 0.91 had a single crystallization rate exceeding 90%.
  • the silica glass crucibles according to Examples 1 to 6 after pulling the silicon single crystal were compared with the silica glass crucibles according to Comparative Examples 1 to 12, with an average open cell number density, an average brown ring number density, and an average brown ring.
  • the crucibles according to Examples 1 to 3 having a small diameter have an average open cell number density of 4.0 to 4.5 (number / cm 2 ) and an average brown ring number density of 2.6 to 3.1 (number). / Cm 2 ), and the average brown ring diameter was 2.3 to 2.5 (mm), which was extremely low.
  • the silica glass crucibles according to Examples 1 to 6 have low generation of bubbles and brown rings during pulling of the silicon single crystal, and have a good single crystallization rate.
  • Examples 1 to 3 have a single crystallization rate. Was significantly better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 長時間の高温条件下で使用しても、変形が抑制されるシリカガラスルツボとその製造方法を提供することを目的とする。上端が開口し鉛直方向に延びる略円筒形の直胴部、湾曲した底部、及び前記直胴部と前記底部とを連結し且つ前記底部よりも曲率が大きいコーナー部を備えるシリカガラスルツボであって、前記シリカガラスルツボは、内側に透明層、及びその外側に気泡層を備え、前記透明層の内表面側に圧縮応力が残留する圧縮応力層と、前記圧縮応力層と緩やかな応力変化率で隣接している、引張応力が残留する引張応力層とを備えるシリカガラスルツボである。

Description

シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法
 本発明は、半導体材料となるシリコン単結晶の引き上げに用いるシリカガラスルツボに関する。
 半導体材料となるシリコン単結晶は、シリカガラスルツボ内にてポリシリコンを外側のカーボンヒーターを用いて温度約1450~1600℃まで加熱して、最近では減圧化でチョクラルスキー法(CZ法)により引き上げることで製造される。フラッシュメモリやDRAMの低価格化が急速に進み、その要求に答える目的でシリコン単結晶の直径は、現在主流の300mmΦから、大型サイズである400~450mmΦにシフトしている。それに伴って、直径の大きなシリコン単結晶の製造を可能とするために、シリカガラスルツボの口径も約600mmから700mm以上の大口径サイズにシフトしている。シリカガラスルツボの口径が大きくなるにつれて、シリカガラスルツボの外側に配置されるヒーターからシリコン単結晶の中心までの距離が遠くなる。例えば、口径が約600mmから700mmにシフトすると、ヒーターから単結晶の中心までは、50mm以上遠くなる。加えて、約1420℃のシリコン融液の量もシリカガラスルツボの口径が大きくなるにつれて増加する。例えば、直径約1000mmのルツボは、重量が約120kgというシリカガラス製の容器であり、そこに収容されるシリコン融液の質量は900kg以上である。つまり、シリコン単結晶の引き上げ時には、約1420℃のシリコン融液が900kg以上もルツボに収容されることになる。
 ヒーターからシリコン単結晶の中心までの距離の増加と、カーボンヒーター温度約1450~1600℃まで熔融させるポリシリコンの量の増加は、シリカガラスルツボにかかる温度の高温化と引き上げ時間の長時間化をまねいている。例えば、シリカガラスの軟化点は、1200~1300℃程度であるのに対し、シリコン単結晶の引き上げ温度は、約1420℃であり、シリカガラスの軟化点を超える非常に高い温度で単結晶引き上げを行なっている。シリカガラスルツボは、カーボンサセプターによって保持されている。カーボンサセプターがなければ、自重でシリカガラスルツボが座屈を起こしたり、内倒れを起こすような変形を起こす。また、引き上げ時間は、2週間以上にもなることがある。このような長時間の高温の環境下では、シリカガラスルツボが変形するなどの問題が生じる。通常、シリカガラスルツボは1回のCZ単結晶引上げ終了後、廃棄される。
 特許文献1には、ルツボの内面及び外面に結晶化ガラス層を形成させて、ルツボの高熱耐性を強化し、長時間のシリコン単結晶引き上げにおける変形が生じない高強度石英ガラスルツボが開示されている。
 特許文献2には、ルツボの外面から内面にかけて濃度が減少するように、結晶化促進剤としてのAlを含有させ、単結晶のAl汚染を防ぎつつ高熱時におけるルツボの変形を抑制する石英ガラスルツボが開示されている。
特開平10-203893 特開2000-247778
 しかしながら、特許文献1の方法では、CZ単結晶引上げ中に結晶化ガラス層を均一に形成するのが困難であるため、結晶化ガラス層の結晶化度及び厚さが不均一となり、強度ムラがルツボに発生することがある。この結果として、シリコン単結晶の引き上げ中にルツボの形状が座屈を起こしたり、内倒れを起こしたりする。特に、大型のシリカガラスルツボでは、結晶化ガラス層の形成に時間がかかり、均一な層形成が困難である。また、結晶化ガラス層の形成は、ルツボ製造後に行なうため製造時間とコストが増加する問題がある。
 特許文献2のルツボでは、ルツボ外表面側の耐久性が向上するだけで、ルツボ内表面側の耐久性は向上しておらず、長時間のシリコン単結晶引き上げにおいて、ルツボ内表面側に座屈や内倒れが生じることがある。また、ルツボ内表面側のAlは、低濃度であるが、シリコン単結晶への汚染を実質的に防ぐことは難しい。
 従って、先行技術にかかる強化シリカガラスルツボでは、シリコン単結晶の引き上げ中のシリカガラスルツボの座屈や内倒れを抑制し、シリコン単結晶の歩留まりの低下を防ぐことは難しくなっている。従来は、内表面の残留圧縮応力又は引張応力の界面が明確であり、CZ単結晶引上げ中に内部残留応力の構造再配列を考慮していない。
 本発明は、このような事情に鑑みてなされたものであり、長時間の高温条件下で使用しても、座屈や内倒れの変形が抑制されるシリカガラスルツボとその製造方法を提供することを目的とする。
 以上の目的を達成するために、本発明者らは、鋭意研究を重ねた結果、内側に透明層、及びその外側に気泡層を備え、前記透明層を、圧縮応力から引張応力へ、内側から外側に緩やかに残留する応力変化させることによって、長時間の高温条件下でシリカガラスルツボを使用しても、変形が抑制されることを見出した。すなわち、本発明は、上端が開口し鉛直方向に延びる略円筒形の直胴部、湾曲した底部、及び前記直胴部と前記底部とを連結し且つ前記底部よりも曲率が大きいコーナー部を備えるシリカガラスルツボであって、前記シリカガラスルツボは、内側に透明層、及びその外側に気泡層を備え、前記透明層の内表面側に圧縮応力が残留する圧縮応力層と、前記圧縮応力層と緩やかな応力変化率で隣接している、引張応力が残留する引張応力層とを備えるシリコン単結晶引き上げ用シリカガラスルツボである。
 本発明者らは、シリカガラスルツボをCZ単結晶引上げ過程でシリカガラスを結晶化させるのではなく、シリカガラスルツボを製造する際の原料の合成シリカ粉の構造を変化させて、上記特許文献1及び2などの問題点を回避する強化シリカガラスルツボの研究を行った。その結果、特にSi-O-Si結合(シロキサン結合)と平均粒径を特定した合成シリカ粉を使用して製造したシリカガラスルツボの透明層には、圧縮応力と引張応力が残留することが明らかとなった。更に、合成シリカ粉におけるラマンシフトで観察される特定の範囲内にある場合は、圧縮応力と引張応力が緩やかな応力変化率で隣接していることが明らかとなった。また更に、圧縮と引張の応力を透明層に備えるシリカガラスルツボは、シリコン単結晶の引き上げ中に座屈や内倒れが見られないという効果を示すことが明らかになった。透明層に圧縮応力と引張応力が緩やかに傾斜を持って残留するシリカガラスルツボはこれまでに報告がなく、またその効果についてもこれまで報告や示唆がない。
 かかる合成シリカ粉を回転可能なカーボンモールドに堆積させて熔融することによりシリカガラスルツボを製造する(回転モールド法)と、シリカ粉が均一に熔融されるため、大型のルツボであっても透明層の応力分布が均一となり、強度ムラが生じない。従って、本発明に係るシリカガラスルツボは、上記特許文献1に記載されているシリカガラスルツボとは異なり、均一に強化される。更に、本発明に係るシリカガラスルツボは、上記特許文献2のような結晶化促進剤を使用しないため、促進剤によるシリコン単結晶の汚染を防ぐことができる。
 また、本発明は、シリカガラスルツボ製造用回転モールドに天然シリカ粉を供給し、前記シリカガラスルツボ製造用回転モールドの内面に前記天然シリカ粉の層を形成する工程、ラマン測定法で求められる下記式(1)を満たす合成シリカ粉を前記天然シリカ粉の層の内側に堆積する工程、及び前記天然シリカ粉および前記合成シリカ粉にアーク放電する工程を備える前記シリコン単結晶引き上げ用シリカガラスルツボの製造方法である。
0.8≦R≦1.0 ・・・(1)
式(1)中、強度比R=(I+I)/I
=ラマンシフト492cm-1バンドのピーク強度
=ラマンシフト606cm-1バンドのピーク強度
=ラマンシフト800cm-1バンドのピーク強度
 本発明に係るシリカガラスルツボの製造方法によれは、上記特許文献1のような、ルツボ製造後の強化処理を必要としないため、製造時間とコストを抑えることができる。更には上記特許文献2のように、結晶化促進剤を使用せずに長時間の高温条件に耐久性のあるシリカガラスルツボを製造することができる。このように、熔融前の合成シリカ粉の上記強度比の範囲内にすることで、透明層において圧縮応力と引張応力が緩やかな応力変化率で隣接しているシリカガラスルツボが製造できることは、これまで報告がない。
 以上のように、本発明によれば、長時間の高温条件下で使用しても、座屈や内倒れ変形が抑制されるシリカガラスルツボとその製造方法を提供することができる。
シリカガラスルツボの断面図と、歪観察の方法を描いた概略図である。 プラズマ処理した製造例1に係る合成シリカ粉の外観及び断面の電子顕微鏡写真である。 プラズマ処理をしていない比較製造例1に係る合成シリカ粉の外観及び断面の電子顕微鏡写真である。 プラズマ処理した製造例1に係る合成シリカ粉及びプラズマ処理していない比較製造例1に係る合成シリカ粉のラマンスペクトルである。 プラズマ処理した合成シリカ粉を用いた実施例1に係るシリカガラスルツボと、プラズマ処理していない合成シリカ粉を用いた比較例1に係るシリカガラスルツボの各パーツにおける気泡含有率をプロットしたグラフである。 プラズマ処理した合成シリカ粉を用いた実施例1に係るシリカガラスルツボの内表面のレーザー共焦点顕微鏡写真である。 プラズマ処理をしていない合成シリカ粉を用いた比較例1に係るシリカガラスルツボの内表面のレーザー共焦点顕微鏡写真である。 プラズマ処理をしていない合成シリカ粉を用いた比較例1に係るシリカガラスルツボを垂直方向にスライスしたスライス片の偏光写真である。 プラズマ処理した合成シリカ粉を用いた実施例1に係るシリカガラスルツボを垂直方向にスライスしたスライス片の偏光写真である。 シリカガラスルツボの内表面から外表面方向にかけての残留応力の分布を表したグラフである。
<シリカガラスルツボ>
 本発明に係るシリカガラスルツボは、上端が開口し鉛直方向に延びる略円筒形の直胴部、湾曲した底部、及び直胴部と底部とを連結し且つ底部よりも曲率が大きいコーナー部を備える。シリカガラスルツボは、内表面側に透明層を備え、前記透明層の内表面側に圧縮応力が残留する圧縮応力層と、前記圧縮応力層と緩やかな応力変化率で、前記内表面側とは反対側に隣接している、引張応力が残留する引張応力層とを備えるシリカガラスルツボである。以下、各構成要素について詳細に説明する。
 シリカガラスルツボの製造に使用されるシリカ粉には、結晶質である天然シリカ粉や化学合成によって製造される非晶質である合成シリカ粉がある。天然シリカ粉は、α-石英を主成分とする天然鉱物を粉砕して粉状にすることによって製造されるシリカ粉である。合成シリカ粉は、四塩化珪素(SiCl)の気相酸化(乾燥合成法)や、シリコンアルコキシド(Si(OR))の加水分解(ゾル・ゲル法)などの化学合成による手法によって製造することができる。
 シリカガラスルツボは、シリカガラスルツボ用モールドに、天然シリカ粉を供給し、更に合成シリカ粉を天然シリカ粉上に供給し、アーク放電のジュール熱によりシリカ粉を熔融することで、合成シリカ粉からガラス化される内面層(合成層)と天然シリカ粉からガラス化される外面層(天然層)からなるシリカガラスルツボが製造される。アーク熔融工程の初期にはシリカ粉層を強く減圧することによって気泡を除去して透明シリカガラス層(以下、「透明層」と称する。)を形成し、その後、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(以下、「気泡層」と称する。)が形成される。ここで、合成シリカ粉から形成される内面層と透明層は、必ずしも一致するものではない。また、天然シリカ粉から形成される外面層と気泡層は、必ずしも一致するものではない。
 本発明において、透明層は、シリカガラスルツボの内側に形成されている層であり、実質的に気泡を含まない。「実質的に気泡を含まない」とは、気泡が原因で単結晶化率が低下しない程度の気泡含有率及び気泡径であることを意味する。
 本発明において、圧縮応力層とは、透明層の内表面側に圧縮応力が残留する層である。
 本発明において、引張応力層とは、圧縮応力層に隣接し、引張応力が残留する層である。引張応力層は、例えば、透明層のみに存在するのが好ましく、存在する割合は、好ましくは90%以上、より好ましくは95%以上、更に好ましくは100%であり、気泡層に存在しないことが好ましい。かかる割合は、例えば、シリカガラスルツボの内表面から肉厚方向への応力変化を観察して算出することができる。
 透明層は、圧縮から引張に残留する応力が、圧縮応力から引張応力へ緩やかに値が傾斜している。応力変化する割合(応力変化率)としては、好ましくは、0.17MPa/mm以上1.5MPa/mm以下であり、例えば、0.17、0.2、0.3、0.5、0.7、0.9、1.1、1.3、又は1.5MPa/mmであり、ここで例示した何れか2つの数値の範囲内であってもよい。応力変化率が0.17MPa/mm未満の場合は、引張応力が気泡層まで到達してしまうことがある。このため、気泡層において、気泡と気泡との間に微細なひび割れが生じやすくなり、その微細なひび割れが広がると大きな亀裂になる。応力変化率が1.5MPa/mmを超える場合は、圧縮応力から引張応力への変化率が急であり、残留する圧縮応力と引張応力との間に明確な界面が観察されることがある。従って、界面に応力が集中してシリカガラスルツボのリムが欠けたり、内倒れたりする。圧縮応力から引張応力へと緩やかに応力変化すると、残留する圧縮応力と引張応力との間に明確な界面が存在しないため、シリカガラスルツボに加わる応力が全体に分散され、シリカガラスルツボの欠損を防ぐことができる。特に、大口径シリカガラスルツボは、小口径シリカガラスルツボと比較して、ルツボに加わる外部応力と熱応力に対するルツボの変形度が大きく破損リスクが高い。このため、圧縮応力から引張応力への変化が緩やかな大口径シリカガラスルツボは、破損リスクを低減させることができる。
 内部に応力が残留しているシリカガラスは、応力が残留して内倒れが生じている箇所に異方性を示す。シリカガラスの異方性は、図1に示す通り、垂直方向にルツボをスライスし、直交ニコル状態に組み合せた二枚の偏光板の間にスライスしたルツボ片を設置し、白色光を通すことで観察することができる。この時、スライスしたルツボ片は、研磨により約2mm厚とする。ルツボ片に歪が存在しない場合は、ルツボ片はその白色偏光に対して光路差を与えないため、ルツボ片を通過した白色偏光は、直交する偏光板(検光子)を通過することができない。ルツボ片に歪が存在する場合、ルツボ片は、その白色偏光に対して光路差を与えるため、白色偏光の偏光面が回転し、直交した偏光板(検光子)を通過できる成分が観察される。歪を持つルツボ片に白色偏光を通すと、歪に応じた光路差が波長ごとに生じるため、偏光板を通過する光量は波長ごとに異なる。この結果、偏光板(検光子)を通して観察されるルツボ片は、色彩が観察される。この色彩からルツボ片の歪を評価することも可能である。例えば、色度と複屈折との関係を表す干渉色図、又は偏光色図を用いることでルツボ片の歪を評価することができ、歪みから応力を求めることができる。また、鋭敏色法を用いると、色によって圧縮応力か引張応力かを判定することができるため、残留圧縮応力と残留引張応力との界面を観察することができる。
 また、サンプルであるルツボ片と検出子との間に1/4波長板を設置することで、歪の応力を測定することもできる(セナルモン法)。具体的な測定方法は次の通りである。まず、光源の手前に設置した偏光板(偏光子)に対して直交ニコル状態になるように検光子を設置する。この時の検光子の回転角度θを0度(degree)とする。次に、検光子側からサンプルを観察して、応力測定したいサンプル部分が最も明るくなるように、検光子に対してサンプルを回転させる。さらに、応力測定したいサンプル部分が最も暗くなるように、検光子を水平方向に回転させる。最も明るい状態から最も暗い状態への回転角度θを以下の式(2)に代入することで、応力を求めることができる。
Figure JPOXMLDOC01-appb-M000001
F:応力(MPa)
λ:光源の波長(nm)
C:光弾性定数(nm/cm)/MPa
L:光路長(cm)
シリカガラスの光弾性定数Cは、3.5±0.2(nm/cm)/Mpaである。光源の波長λは、使用する1/4波長板に適する波長を選択する。使用する光源の波長に対して、適する1/4波長板を選択してもよい。光路長Lは、サンプルにおける、光軸方向の厚さである。
 圧縮応力から引張応力への応力変化は、ルツボの内表面から肉厚方向の任意の距離における応力Fをプロットして求めることができる。また、内表面側の圧縮応力から引張応力への変化が急であるか緩やかであるかは、距離-応力グラフ(X軸:内表面からの距離、Y軸:応力)における界面(即ち、応力が0MPaとなる座標)に対する接線の傾きの絶対値(応力変化率とする)を求めることで判定することができる。例えば、傾きの絶対値が、0.17MPa/mm以上1.5MPa/mm以下であるときを、応力変化が緩やかであると判定することができる。
 従来のシリカガラスルツボでは、シリコン単結晶の引き上げ中にシリカガラスルツボが内倒れたり、座屈したりしてシリコン単結晶の歩留まりを低下させることがあり、場合によっては、シリコン単結晶の引き上げを中止させる必要がある。本発明に係るシリカガラスルツボにおいては、透明層の内表面側に圧縮応力を残留させることで、シリカガラスルツボの内表面を強化すると共に、緩やかな応力変化率で外側に向って引張応力に変化させ、透明層に引張応力を残留させる。気泡層に引張応力が残留していると、気泡と気泡との間に微細なひび割れが生じやすくなり、その微細なひび割れが広がると大きな亀裂になるため回避する必要がある。したがって、透明層に引張応力を残留させるのが好ましい。
 本発明において、気泡層は、透明層の外側に形成されている層である。気泡層は、例えば、内部に含まれる気泡含有率が0.2%以上1%以下、かつ気泡の平均直径が20μm以上200μm以下である。
 本発明に係るシリカガラスルツボは、最大気泡含有率が0.10vol%以下であることが好ましい。更に、本発明に係るシリカガラスルツボは、平均気泡径が50μm以下であることが好ましい。シリカガラスルツボの内表面近傍に僅かでも気泡が存在すると、シリコン単結晶の引き上げの際に、透明層に気泡膨張が生じる。生じた気泡は、透明層の内面側の溶解と共にシリコン融液中に侵入し、引き上げられるシリコン単結晶中に気泡が取り込まれる。取り込まれた気泡が結晶転移による有転位化(結晶欠陥)の原因となり、単結晶化率を低下させる。よって、シリカガラスルツボの最大気泡含有率が0.10vol%より大きい場合は、単結晶化率の低下が著しくなる。また、シリカガラスルツボの平均気泡径が50μm超であると、気泡の膨張によりシリカガラスルツボの変形の原因となる。
 シリカガラスルツボの内表面近傍に存在する気泡は、例えば、光学的検出手段を用いて検出することができる。光学的検出手段は、シリカガラスルツボに照射した光の透過光または反射光を受ける受光装置を備える。照射光の発光手段は内蔵されたものでもよく、また外部の発光手段を利用するものでもよい。また、光学的検出手段は、シリカガラスルツボの内表面に沿って回動操作できるものが用いられる。照射光としては、例えば、可視光、紫外線、赤外線、及びレーザー光が挙げられ、反射して気泡を検出できるものであれば何れも適用できる。受光装置は照射光の種類に応じて選択されるが、例えば光学レンズ及び撮像素子を含むデジタルカメラを用いることができる。表面から一定深さに存在する気泡を検出するには、対物レンズの焦点を表面から深さ方向に走査すればよい。
 上記光学検出手段による測定結果は画像処理装置に取り込まれ、気泡含有率P(%)が算出される。光学カメラを用いてルツボ内表面の画像を撮像し、ルツボ内表面を一定体積ごとに区分して基準体積W1とし、この基準体積W1に対する気泡の占有体積W2を求め、P(%)=(W2/W1)×100により算出される。気泡含有率は、ルツボの単位体積に占める気泡の体積で求めることができ、測定した点のうち最も値が高い点の気泡含有率を最大気泡含有率とすることができる。ルツボ内表面から外表面方向への厚み0.3mmまでの最大気泡含有率は、0.05vol%以下であることが好ましい。
 この時、気泡径が10μm以上の気泡を測定する。0.05vol%より大きい場合は、単結晶化率の低下が著しくなる。また、最大気泡径が100μmより大きい場合は、単結晶化率の低下が顕著であることから、100μm以下であることが好ましい。
 平均気泡径は、測定範囲の中で球状の気泡の直径の平均値として求めることができる。直径は、ガラスサンプルの画像を取得し、ソフトウェアによって求めることができる。
 また、シリコン単結晶引き上げ時にシリカガラスルツボの内表面に凹凸部が存在すると、不均一核生成が生じやすいとされている。溶損により核から成長してできた異物が剥がれて、シリコン溶液中に浮遊することで、それが引上げ中のシリコン単結晶の成長界面に付着すると、多結晶化又は有転位化等の品質欠陥を引き起こす。シリカガラスルツボの内表面の算術平均粗さ(Ra)は、0.02μm以下であることが好ましい。0.02μmより大きい場合は、不均一核生成が生じる確率が高くなり、単結晶化率の低下が著しくなる。Raは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線の方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線を中心線に対して積分した値をマイクロメートルで表したものである。
<シリカガラスルツボの製造方法>
 次に、本発明に係るシリコン単結晶引き上げ用シリカガラスルツボの製造方法について説明する。
 まず、シリカガラスルツボ製造用回転モールドに天然シリカ粉を供給し、シリカガラスルツボ製造用回転モールドの内面に天然シリカ粉の層を形成する。天然シリカ粉は、α-石英を主成分とする天然鉱物を粉砕して粉状にすることによって製造することができる。
 次に、ラマン測定法で求められる下記式(1)を満たす合成シリカ粉を天然シリカ粉の層の内側に堆積する。
0.8≦R≦1.0 ・・・(1)
式(1)中、強度比R=(I+I)/I
=ラマンシフト492cm-1バンドのピーク強度
=ラマンシフト606cm-1バンドのピーク強度
=ラマンシフト800cm-1バンドのピーク強度
 ラマン法の測定条件は、例えば、波長532nm、露光時間:20秒、積算回数:1回とすることができる。かかる条件から得られた合成シリカ粉のラマンスペクトルは、ラマンシフト492cm-1バンドと606cm-1バンドと800cm-1バンドに特徴的なピークが観察され、それぞれのバンドは、平面四員環(D1)の散乱ピーク、平面三員環(D2)の散乱ピーク及びケイ素と酸素との間の基本振動による散乱ピークに対応する。各散乱ピークにおけるピーク強度は、各ピークにおける面積としている。ピーク面積は、ピークの立上り点と立下り点とを結ぶ線を底辺としてピークの電気信号の時間変化を積分することで算出することができる。また別の方法としては、半値幅法、三角形近似法、ピーク切抜き法を一例とすることができる。
 強度比Rは、0.80以上1.0以下である。強度比Rは、例えば、0.80、0.85、0.90、0.95、1.00であり、ここで例示した何れか2つの数値の範囲内であってもよい。強度比Rが0.80より小さい場合、合成シリカ粉は、緻密状態に関与する構造である平面三員環及び平面四員環が不足し、高い緻密状態が合成シリカ粉に維持されていない。このような合成シリカ粉は、溶融時にガラス構造の変化が少なく、熔融後のガラス構造が均一になりやすく、透明層における圧縮応力と引張応力との応力変化が急になりやすい。一方、強度比Rが1.0より大きい場合は、平面三員環及び平面四員環の数の増加に起因するより高い緻密状態が合成シリカ粉に維持されるため、アーク溶融時のガラス構造の変化に時間がかかり、透明層における圧縮応力と引張応力との応力変化が急になりやすい。
 強度比Rが0.80以上1.0以下である合成シリカ粉を用いて製造されたシリカガラスルツボは、透明層に圧縮応力と引張応力とを緩やかな応力変化率で残留させることができる。これにより、長時間の高温条件下においても、クラック、内倒れ、及び座屈が発生しないシリカガラスルツボを製造することができる。
 合成シリカ粉は、円形度が0.73以上1.0以下であることが好ましい。粒子が球形化された合成シリカ粉は、粒子と粒子の隙間が小さいため、この隙間が熔融時に塞がり易くシリカガラスルツボにおけるガス成分の残留を防ぐことができる。円形度が0.73未満の場合、粒子と粒子の間の隙間が大きいため、熔融時にこの隙間が塞がらずシリカガラスルツボにガス成分が残留し、気泡含有率が上昇することがある。
 円形度は、例えば、次のようにして求めることができる。まず、合成シリカ粉末を液体に分散させて、この液体を平面伸長流動セルへ流す。平面伸長流動セル内に移動する粉末粒子200個を、対物レンズに画像として記録し、この記録画像から円形度を下記式(3)により算出する。測定は2回行い、その平均値を粉末の円形度とすることができる。なお、粒子が真円の時、円形度は1となる。
円形度=4πS/L ・・・(3)
S:撮影した記録画像の粒子投影図における面積
L:粒子投影図の周囲長
 用いられる合成シリカ粉の全てが円形度0.73以上1.0以下である必要はなく、このようなシリカ粒子の割合は、好ましくは90%以上、より好ましくは95%以上、更に好ましくは99%以上である。
 合成シリカ粉は、平均粒径が80μm以上160μm以下であることが好ましい。平均粒径は、例えば、80、85、90、95、100、110、120、130、140、150、又は160μmであり、ここで例示した何れか2つの数値の範囲内であってもよい。平均粒径が160μm以下の場合は、粒子間の空隙のサイズが小さいことから、雰囲気ガスの巻き込みを起因として形成されるシリカガラスルツボ中の気泡サイズを小さくすることができる。この結果、アーク熔融中に気泡を収縮させ、消滅させることができる。しかし、平均粒径が160μm超の場合は、粒子間の空隙のサイズが大きいことから、雰囲気ガスの巻き込みを起因として形成されるシリカガラスルツボ中の気泡サイズが大きく、アーク熔融中に気泡の収縮は進むが、気泡消滅までには至らないことがある。平均粒径が80μm未満の場合は、アーク熔融により急速に熔融してしまうため、真空引きによる脱ガスが不充分になり気泡が残留してしまう。
 「平均粒径」とは、得られた粒度分布における積算値50%での粒径(D50)を意味し、本願明細書においては体積平均粒径を意味する。粒度分布の測定は、レーザー光を光源としたレーザー回折・散乱式測定法を用いことができる。「粒度」とは、JIS Z 8901「試験用粉体及び試験用粒子」の欄に定義がされている。
 合成シリカ粉は、タップ嵩密度が1.35g/cmμm以上1.44g/cm以下であることが好ましい。タップ嵩密度は、例えば、1.35、1.38、1.39、1.40、1.41、1.42、1.43、又は1.44g/cmであり、ここで例示した何れか2つの数値の範囲内であってもよい。タップ嵩密度が1.35g/cm未満であると、気泡含有率が上昇することがある。これは、粒子間の間隔が大きいため熔融時にガスを内包しているためと考えられる。タップ嵩密度が1.44g/cm超であると、真空引きによる脱ガスが不充分になり気泡が残留しやすくなる。
 タップ嵩密度は、試料を分散させて容器に入れた後、タップによって容器に衝撃を加え、試料の体積変化がなくなった時の密度により求めることができる。例えば、試料の入った測定容器を補助円筒を付けたままタップ装置に設置して、タップを600回実施する。試料のすり切りを行った後、質量を測定する。再度試料を補充し、補助円筒を付けたままの測定容器をタップ装置に設置し、タップを100回実施する。試料のすり切りを行った後、質量を測定し、先の質量との質量差が0.3%以内になるまで操作を繰り返す。試料の質量を測定容器の容積で除してタップ嵩密度とする。測定は3回おこない、平均値を採用することができる。
 合成シリカ粉は、比表面積が0.026m/g以上0.045m/g以下であることが好ましい。比表面積は、例えば、0.026、0.028、0.030、0.032、0.034、0.036、0.038、0.040、又は0.045m/gであり、ここで例示した何れか2つの数値の範囲内であってもよい。比表面積が0.045m/g超の場合は、傷やクラック表面上に存在するガスが熔融時に取り込まれ気泡として残存し、気泡含有率を上昇させてしまう。一方、比表面積が0.026m/g未満の場合は、シリカ粒子の中心部に存在するガスが、アーク熔融時に表面から抜け出るのを妨げることができる。このことから、ある程度表面に窪みがあるほうが気泡含有率を下げることができ好ましい。
 比表面積は、窒素吸着法により求めることができる。窒素吸着法は、(1)高真空下から少しずつ圧力を上げながら合成シリカ粉に窒素ガスを吸着させる。(2)X軸に相対圧力を、Y軸に窒素吸着量をプロットすることで吸着等温線を作成する。(3)かかる吸着等温線のデータを各種吸着等温式に適用することで、比表面積を求める方法である。吸着等温式としては、例えば、Henry吸着等温式、Langmuir吸着等温式、及びBET吸着等温式を挙げることができる。
 用いられる合成シリカ粉の全ての比表面積が0.026m/g以上0.045m/g以下である必要はなく、このようなシリカ粒子の割合は、好ましくは90%以上、より好ましくは95%以上、更に好ましくは99%以上である。
 本発明に用いられる上記合成シリカ粉は、例えば、合成シリカ粉原料をプラズマ処理後に、10K/min以上の冷却速度で処理することにより製造することができる。合成シリカ粉原料は、四塩化珪素(SiCl)の気相酸化(乾燥合成法)や、シリコンアルコキシド(Si(OR))の加水分解(ゾル・ゲル法)などの化学合成による手法によって製造することができる。
 プラズマ処理は、例えば、プラズマ反応器(例えば、高周波誘導熱プラズマ発生装置)を用いて行うことができ、このようなプラズマ反応器によるプラズマ処理は、急加熱-急冷却処理を容易に行える。プラズマ処理は、加熱-冷却工程を連続して行える熱プラズマ処理が好ましい。プラズマ反応器は、プラズマを発生させるプラズマトーチとその直後に備わる冷却装置から構成される。プラズマトーチは、原料供給管とガス供給管を備え、その外周には高周波誘導コイルを備える。高周波誘導コイルに印加する周波数は、例えば、1~15MHzであり、具体的には、1、2、3、4、5、6、7、8、9、10又は15MHzであり、ここで例示した何れか2つの数値の範囲内であってもよい。出力は、例えば、90~150kWであり、具体的には、90、100、110、120、130、140又は150kWであり、ここで例示した何れか2つの数値の範囲内であってもよい。供給されるガスは、例えば、アルゴン、又は酸素を選択することができる。ガスは、例えば、酸素とアルゴンの混合ガスであってもよく、この場合の酸素分圧は、例えば、10~30%であり、具体的には、10、15、20、25又は30%であり、ここで例示した何れか2つの数値の範囲内であってもよい。ガス供給量は、例えば、30~150L/minであり、具体的には、30、40、50、60、70、80、90、100、110、120、130、140又は150L/minであり、ここで例示した何れか2つの数値の範囲内であってもよい。ガスを供給しながら高周波誘導コイルを通電することによりプラズマトーチ内にプラズマが発生する。プラズマが発生したプラズマトーチ内に合成シリカ粉原料を供給する。原料の供給速度は、例えば、20~50kg/hrであり、具体的には、20、23、25、28、30、35、40、45又は50kg/hrであり、ここで例示した何れか2つの数値の範囲内であってもよい。
 プラズマトーチを通過直後に冷却装置により合成シリカ粉を急冷することにより、所望の強度比Rを有する合成シリカ粉を製造することができる。冷却速度は、好ましくは、10K/min以上、より好ましくは10K/min以上である。冷却方法は、特に限定されないが、好ましくは空冷による冷却であり、より好ましくは水冷による冷却である。特に、熱プラズマ処理の場合は、プラズマトーチ出口に水冷冷却装置を備えることで、効率よく冷却することができる。これにより、熱履歴が反映された合成シリカ粉を安定して得られる。更には、原料の供給速度と出力を上げることができ、プラズマ処理された合成シリカ粉を短時間に製造することができる。シリカガラスにおける歪みの程度は、仮想温度に依存して変化することが知られている。従って、高温状態のシリカガラスを急激に冷却することで、高温時の構造分布を固定できるため、シリカガラスにおける歪みの程度を制御することができる。
 積層された天然シリカ粉および上述のようにして得られた合成シリカ粉にアーク放電する。アーク放電は、公知の方法が採用できる。例えば、回転モールド法のアーク放電によるガラス溶融を採用できる。
 アーク放電後、モールドの内部に冷却ガスを導入する工程を更に備えることが好ましい。
 冷却ガスは、モールドの真空引き用のチューブからモールドの内部へ導入することができる。これによって、シリカガラスルツボの外表面側を効率良く冷却することができ、圧縮応力を気泡層側にも残留させ、引張応力を気泡層側に残留させることを防ぐことができる。
 冷却ガスは、清浄化機能付き送風機等の圧縮機を用いて導入することができる。圧縮機の吐出ガス量は、例えば、32インチシリカガラスルツボの場合は、10~50m/minとすることができ、具体的には、10、20、30、40又は50m/minであり、ここで示したいずれか2つの数値の範囲内になるようにしてもよい。吐出ガス量は、製造するシリカガラスルツボのサイズに応じて変更することができる。吐出ガス量が10m/min未満の場合は、冷却不足により引張応力が気泡層に残留してしまう。吐出ガス量が50m/min超の場合は、過剰冷却により引張圧力が内表面側に残留するようにシフトする。これによって、内表面側の圧縮応力から引張応力の変化が急になり圧縮応力と引張応力との間に明確な界面が生じるようになる。導入する冷却ガスは、特に限定されないが、例えば、ヘリウム、アルゴン、窒素、又は空気を選択することができる。冷却ガスの温度は、特に限定されないが、室温を選択することができる。モールドには、排気管を備えてモールド内の冷却ガスをモールド外へ排出してもよい。
<使用例>
 本発明に係るシリコン単結晶引き上げ用シリカガラスルツボは、例えば、次のように用いることができる。シリカガラスルツボに多結晶シリコン(ポリシリコン)を投入し、ヒーターにより加熱して多結晶シリコンを熔融させる。シリコン単結晶は、シリコン種結晶の端部をシリコン融液に中に浸けた状態で種結晶を回転させながら引き上げることで製造される。シリコン単結晶の形状は、上側から円柱状のシリコン種結晶、その下に円錐状のシリコン単結晶(トップ部)、上部円錐底面と同じ径を持つ円柱状のシリコン単結晶(直胴部)、頂点が下向きである円錐状のシリコン単結晶(テール部)である。
 本発明に係るシリコン単結晶引き上げ用シリカガラスルツボは、シリコン単結晶引き上げ後のシリカガラスルツボの透明層の最大気泡含有率、平均開気泡数密度、平均ブラウンリング数密度、及び平均ブラウンリング径を著しく低下させることができ、単結晶化率を向上させることができる。単結晶化率は、シリコン原料に対する単結晶の重量比として定義される。ただし、ルツボ内の全てのシリコン融液が使用されるわけではなく、またシリコン単結晶インゴットのトップ部とテール部を除いた直胴部のみが単結晶化率の計算の対象となる。従って、十分なシリコン単結晶が引き上げられたとしても単結晶化率は100%以下であり、80%以上であれば良好であり、90%以上であればより良好である。
 シリコン単結晶引き上げ後のシリカガラスルツボの最大気泡含有率は、0.1Vol%以下であることが好ましい。この条件下では、シリコン単結晶への気泡の混入を低減でき良好な単結晶化率を実現できる。最大気泡含有率は、シリカガラスルツボの使用前の最大気泡含有率と同様にして求めることができる。
 本実施形態において、シリコン単結晶引き上げ後のシリカガラスルツボの平均開気泡数密度は、7(個数/cm)以下であることが好ましい。この条件下では、シリコン単結晶への気泡の混入を低減でき良好な単結晶化率を実現できる。開気泡とは、シリコン単結晶引き上げ時のシリカガラスルツボ内表面の溶損によりシリカガラスルツボ内表面に現れる、気泡を由来とする凹部である。シリコン単結晶引き上げをおこなった後のシリカガラスルツボ内表面に形成されている単位面積当たりの開気泡の個数を顕微鏡観察により計数することで開気泡数密度を算出することができる。また、平均開気泡数密度は、シリカガラスルツボの直胴部、底部及びコーナー部の開気泡数密度の平均値から算出することができる。
 シリコン単結晶引き上げ後のシリカガラスルツボの平均ブラウンリング数密度は、好ましくは、7(個数/cm)以下であることが好ましい。ここで、ブラウンリングとは、シリカガラスルツボが長時間高温のシリコン融液に接触していると、その内表面に生じる褐色のクリストバライトである。単結晶引き上げが進行するにつれて、クリストバライトはシリカガラスルツボの内表面上又は内表面に対して垂直方向に成長し、リング状の斑点を形成する。形成したブラウンリングは、剥離しやすい。剥離したブラウンリングがシリコン融液中に落下・混入した場合、シリコン単結晶に運ばれる。この結果、引き上げられるシリコンインゴットが多結晶化し、単結晶化率を低下させる。シリカガラスルツボの平均ブラウンリング数密度が少ないと、シリコン融液中にブラウンリングが落下・混入する割合が低下し、単結晶化率の低下を抑制することができ、良好な単結晶化率を実現できる。ブラウンリング数密度は、シリコン単結晶引き上げをおこなった後のシリカガラスルツボ内表面に形成されている単位面積当たりのブラウンリングの個数を顕微鏡観察により計数することで算出できる。また、平均ブラウンリング数密度は、シリカガラスルツボの直胴部、底部及びコーナー部のブラウンリング数密度の平均値から算出することができる。
 シリコン単結晶引き上げ後のシリカガラスルツボの平均ブラウンリング径は、4mm以下であることが好ましい。この条件下では、ブラウンリングの成長が抑制され、シリコン融液中にブラウンリングが落下・混入する割合が低下し、単結晶化率の低下を抑制することができ、良好な単結晶化率を実現できる。ブラウンリング径は、シリコン単結晶引き上げ後のシリカガラスルツボ内表面に形成されているブラウンリングの直径である。平均ブラウンリング径は、シリカガラスルツボの直胴部、底部及び直胴部から底部に至るコーナー部からそれぞれから100個ずつブラウンリングの直径を測定し、その平均値から算出することができる。
 CZ単結晶引上げの昇温過程においてガラス軟化点を越え、ガラス転移点域を越えると、内部残留圧縮応力と内部残留引張り応力が、解消される。その際に起きるSi-O-Si結合の構造再配列が急激に起きないようにすることで、従来の座屈や内倒れが発生しない。Si-O-Si結合の構造再配列が透明層の内部で急激に起きないようにするためには、内部残留圧縮応力と内部残留引張り応力が緩やかに変化しているシリカガラスルツボをCZ単結晶引上げに使用する。通常、ガラスは、残留圧縮応力の存在している層の外側は残留引っ張り応力がある。これは、アーク法で石英ルツボを製造する際に、透明層内部より、内表面側のほうが、早く冷えるためである。残留応力が緩やかに変化するシリカガラスルツボ製造するためには、上記“シリカガラスルツボの製造方法”の欄で説明したような方法を用いればよい。
〔合成シリカ粉の製造〕
(製造例1)
 アルコキシシランの加水分解により得られた合成シリカ粉低真空条件下にて焼成し、焼成された合成シリカ粉原料を得た。得られた合成シリカ粉原料を冷却装置付き高周波誘導熱プラズマ発生装置に投入した。プラズマ発生装置の条件は、以下の通り行った;周波数:7~10MHz、出力:100~110kW、ガス:アルゴン-酸素混合ガス(酸素分圧20%)、ガス供給量:90~110L/min、原料供給速度:25~35kg/hr。プラズマ処理した後、水冷冷却装置付きのプラズマ反応器を用いてプラズマ処理された合成シリカ粉を10K/min以上の冷却速度で急冷させた。熱プラズマ処理後、合成シリカ粉を回収し、超純水を用いた超音波洗浄により合成シリカ粉を洗浄した。洗浄は、合成シリカ粉に付着する微粒子がなくなるまで行った。洗浄後の合成シリカ粉を分級して、製造例1に係る合成シリカ粉を得た。合成シリカ粉の強度比R、平均粒径、比表面積、タップ嵩密度及び円形度を以下のように測定し、結果を表1に示す。
強度比R:
 分散型顕微ラマン装置を使用した。測定条件は、レーザー波長:532nm(5mw)、露光時間:20秒、積算回数:1回とした。ラマンシフト492cm-1バンドのピーク強度Iと、ラマンシフト606cm-1バンドのピーク強度Iと、ラマンシフト800cm-1バンドのピーク強度Iをピークの電気信号の時間変化を積分することで算出し、式(I+I)/Iから強度比Rを求めた。製造例1および比較製造例1のラマンスペクトルを図4に示す。
平均粒径:
 粒度分布をレーザー光を光源としたレーザー回折・散乱式測定法で求め、得られた粒度分布における積算値50%での粒径(D50)を平均粒径とした。
比表面積:
 BETの吸着等温式を用いたガス吸着法で求めた。
タップ嵩密度:
 試料(シリカ粉)の入った測定容器を補助円筒を付けたままタップ装置に設置して、タップを600回実施した。試料のすり切りを行った後、質量を測定した。再度試料を補充し、補助円筒を付けたままの測定容器をタップ装置に設置し、タップを100回実施した。試料のすり切りを行った後、質量を測定し、先の質量との質量差が0.3%以内になるまで操作を繰り返した。試料の質量を測定容器の容積で除してタップ嵩密度とした。測定は3回行い、平均値をタップ嵩密度とした。
円形度:
 得られた合成シリカ粉末を液体に分散させて、この液体を平面伸長流動セルへ流した。平面伸長流動セル内に移動する粉末粒子200個を、対物レンズに画像として記録し、この記録画像から円形度を下記式(3)により算出した。測定は2回行い、その平均値を粉末の円形度とした。なお、粒子が真円の時、円形度は1となる。
 
円形度=4πS/L ・・・(3)
S:撮影した記録画像の粒子投影図における面積
L:粒子投影図の周囲長
 図2は、製造例1に係る合成シリカ粉の外観と断面の電子顕微鏡写真である。
(製造例2~6)
 洗浄後に分級された合成シリカ粉において、製造例1と異なる分級合成シリカ粉を用いた以外は製造例1と同様にして、製造例2~6に係る合成シリカ粉を得た。製造例1と同様に、合成シリカ粉の強度比R、平均粒径、比表面積、タップ嵩密度及び円形度を測定し、結果を表1に示す。
(比較製造例1~3)
 熱プラズマ処理を行わなかったこと、および洗浄後に分級された合成シリカ粉において、製造例1と異なる分級合成シリカ粉を用いた以外は、製造例1と同様にして、比較製造例1~3に係る合成シリカ粉を得た。製造例1と同様に、合成シリカ粉の強度比R、平均粒径、比表面積、タップ嵩密度及び円形度を測定し、結果を表1に示す。
 図3は比較製造例1に係る合成シリカ粉の外観と断面の電子顕微鏡写真である。
(比較製造例4~12)
 冷却装置付き高周波誘導熱プラズマ発生装置の代わりに冷却装置を除いた高周波誘導熱プラズマ発生装置により熱プラズマ処理を行ったこと、および洗浄後に分級された合成シリカ粉において、製造例1と異なる分級合成シリカ粉を用いた以外は、製造例1と同様にして、比較製造例4~12に係る合成シリカ粉を得た。製造例1と同様に、合成シリカ粉の強度比R、平均粒径、比表面積、タップ嵩密度及び円形度を測定し、結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
〔シリカガラスルツボの製造〕
(実施例1~6,比較例1~12)
 合成シリカ粉として、製造例1~6および比較製造例1~12を用い、回転モールド法に基づいて、それぞれ実施例1~6および比較例1~12に係るシリカガラスルツボを製造した。モールド口径は、32インチ(81.3cm)、モールド内表面に堆積したシリカ粉層の平均厚さは25mmとし、3相交流電流3本電極によりアーク放電を行った。アーク熔融工程の通電時間は90分、出力2500kVA、通電開始から10分間はシリカ粉層の真空引きを行った。アーク熔融後、清浄化機能付き送風機を用いて、20~30m/minの吐出ガス量で空気をモールド内部へ送った。得られた実施例1~6および比較例1~12に係るシリカルツボについて、平均気泡径、最大気泡含有率、および表面粗さ(Ra)を以下のように測定し、結果を表2に示す。
平均気泡径:
 測定範囲の中で球状の気泡の直径の平均値として求めた。直径は、ガラスサンプルの画像を取得し、ソフトウェアによって求めた。
最大気泡含有率:
 ルツボの単位体積に占める気泡の体積で求めた。測定した点のうち最も値が高い点の気泡含有率を最大気泡含有率とした。
表面粗さ(Ra):
 シリカガラスルツボの内表面を切り出してレーザー共焦点顕微鏡を用いて内表面の粗さを非接触で測定し、座標点を求め、内表面の高低差をソフトウェアを用いて表面粗さを求めた。図6は、実施例1に係るシリカガラスルツボの表面写真であり、図7は比較例1に係るシリカガラスルツボの表面写真である。
Figure JPOXMLDOC01-appb-T000003
 実施例1~3および比較例1~3,13~18については、応力変化率を以下のように測定し、結果を表3に示す。
応力変化率:
 シリカガラスルツボにおける残留応力をセナルモン法により測定した。測定は、内表面から肉厚方向に0.5~1.0mm間隔で測定し、応力-距離グラフを作成した。応力-距離グラフから、応力が0MPaとなる位置(即ち界面)に対する接線の傾き(応力変化率)を求めた。実施例1および比較例1に係るシリカガラスルツボについては、応力-距離グラフを図10に示す。
(比較例13)
 清浄化機能付き送風機による吐出ガス量を5m/minに変化させた以外は実施例1と同様にして比較例13に係るシリカガラスルツボを得た。実施例1と同様に応力変化率を測定し、結果を表3に示す。
(比較例14)
 清浄化機能付き送風機による吐出ガス量を5m/minに変化させた以外は実施例2と同様にして比較例14に係るシリカガラスルツボを得た。実施例1と同様に応力変化率を測定し、結果を表3に示す。
(比較例15)
 清浄化機能付き送風機による吐出ガス量を5m/minに変化させた以外は実施例3と同様にして比較例15に係るシリカガラスルツボを得た。実施例1と同様に応力変化率を測定し、結果を表3に示す。
(比較例16)
 清浄化機能付き送風機による吐出ガス量を5m/minに変化させた以外は実施例4と同様にして比較例16に係るシリカガラスルツボを得た。実施例1と同様に応力変化率を測定し、結果を表3に示す。
(比較例17)
 (清浄化機能付き送風機による吐出ガス量を5m/minに変化させた以外は実施例5と同様にして比較例17に係るシリカガラスルツボを得た。実施例1と同様に応力変化率を測定し、結果を表3に示す。
(比較例18)
 清浄化機能付き送風機による吐出ガス量を5m/minに変化させた以外は実施例6と同様にして比較例18に係るシリカガラスルツボを得た。実施例1と同様に応力変化率を測定し、結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
(参考例1:気泡含有率)
 実施例1及び比較例1に係るシリカガラスルツボの透明層において、ルツボの底部からコーナー部を通って直胴部(壁部)までの気泡含有率を測定した。図5は、X軸をシリカガラスルツボの各パーツとし、Y軸を気泡含有率(Vol%)としてプロットしたグラフである。比較例1に係るシリカガラスルツボは、コーナー部から壁部にかけて気泡含有率が上昇するのに対し、実施例1に係るシリカガラスルツボは壁部のみに0.01Vol%以下の気泡含有率を示した。従って、実施例1に係るシリカガラスルツボは、実質的に気泡を含まないガラスルツボであることが分かる。
(参考例2:歪観察)
 実施例1と比較例1に係るシリカガラスルツボの中心軸とその底部の交点から内表面に沿ってリム方向600mmの位置において、シリカガラスルツボを垂直方向に切断し、スライス片を約2mm厚になるまで研磨した。研磨した断面サンプル(スライス片)を用いて、鋭敏色により圧縮応力か引張応力かを調べた。その結果、いずれのサンプルも内表面側は、圧縮応力が残留しており、圧縮応力に隣接するように引張応力が残留していた(図示せず)。
 図8は、比較例1に係るシリカガラスルツボにおける断面サンプルの偏光写真である。比較例1に係るシリカガラスルツボは、圧縮応力と引張応力との間に明確な界面が観察された。圧縮応力層1、2の程度が違う界面があり、圧縮応力層が2層存在する。
 図9は、実施例1に係るシリカガラスルツボにおける断面サンプルの偏光写真である。実施例1に係るシリカガラスルツボは、圧縮応力と引張応力との間に明確な界面が存在していなかった。即ち、圧縮応力と引張応力が緩やかに変化していた。
(参考例3:シリカガラスルツボの内表面)
 実施例1に係るシリカガラスルツボの内表面のレーザー共焦点顕微鏡写真を図6に、比較例1に係るシリカガラスルツボの内表面のレーザー共焦点顕微鏡写真を図7に示す。
(参考例4:シリコン単結晶の引き上げ)
 実施例1~6および比較例1~12に係るシリカガラスルツボを用いて、シリコン単結晶の引き上げを行い、最大気泡含有率(Vol%)、平均開気泡数密度(個数/cm)、平均ブラウンリング数密度(個数/cm)、平均ブラウンリング径(mm)、および単結晶化率(%)の評価を以下のように行った。これらの結果を表4に記載する。
最大気泡含有率:
 ルツボの単位体積に占める気泡の体積で求めた。測定した点のうち最も値が高い点の気泡含有率を最大気泡含有率とした。
平均開気泡数密度:
 シリコン単結晶引き上げをおこなった後のシリカガラスルツボ内表面に形成されている単位面積当たりの開気泡の個数を顕微鏡観察により計数することで開気泡数密度を算出した。
平均ブラウンリング数密度:
 シリコン単結晶引き上げをおこなった後のシリカガラスルツボ内表面に形成されている単位面積当たりのブラウンリングの個数を顕微鏡観察により計数することで算出した。
平均ブラウンリング径:
 シリカガラスルツボの直胴部、底部及び直胴部から底部に至るコーナー部からそれぞれから100個ずつブラウンリングの直径を測定し、その平均値から算出した。
単結晶化率:
 シリコン原料に対する単結晶の重量比として求めた。
Figure JPOXMLDOC01-appb-T000005
 表1と表4から、強度比Rが0.8≦R≦1.0の実施例1~6に係るシリカガラスルツボを用いると、単結晶化率が良好であった。特に、平均粒径が87から160μm、比表面積が0.026~0.045(m/g)、タップ嵩密度が1.35~1.44(g/cm)、円形度0.73~0.91である製造例1~3の合成シリカ粉を用いて製造された実施例1~3に係るシリカガラスルツボは、単結晶化率が90%を超えていた。また、シリコン単結晶引き上げ後の実施例1~6に係るシリカガラスルツボは、比較例1~12に係るシリカガラスルツボと比較すると、平均開気泡数密度、平均ブラウンリング数密度、および平均ブラウンリング径が低く、特に実施例1~3に係るルツボは、平均開気泡数密度が4.0~4.5(個数/cm)、平均ブラウンリング数密度が2.6~3.1(個数/cm)、および平均ブラウンリング径が2.3~2.5(mm)であり、著しく低かった。従って、実施例1~6に係るシリカガラスルツボは、シリコン単結晶引き上げ中の気泡やブラウンリングの発生が低く、単結晶化率が良好であり、特に実施例1~3は、単結晶化率が顕著に良好であった。
(参考例5:シリコン単結晶の引き上げ)
 実施例1~3、比較例1~3、および比較例13~18に係るシリカガラスルツボを用いて、シリコン単結晶の引き上げを行い、引き上げ後のルツボを観察した。結果を表5に示す。実施例1~3に係るシリカガラスルツボは、内倒れや座屈等が見当たらず良好な形状を保っていた。比較例13~15については、ルツボ全体の形状に内倒れが生じたり座屈が生じたりした。また、比較例16~18については、リムにクラックや内倒れが生じていた。従って、圧縮応力から引張応力への応力の変化が急であったり、緩やかすぎたりする場合は、シリカガラスルツボにクラックや内倒れ及び座屈が生じることが分かる。
Figure JPOXMLDOC01-appb-T000006

Claims (6)

  1.  上端が開口し鉛直方向に延びる略円筒形の直胴部、湾曲した底部、及び前記直胴部と前記底部とを連結し且つ前記底部よりも曲率が大きいコーナー部を備えるシリカガラスルツボであって、
     前記シリカガラスルツボは、内側に透明層、及びその外側に気泡層を備え、
     前記透明層の内表面側に圧縮応力が残留する圧縮応力層と、
     前記圧縮応力層と緩やかな応力変化率で隣接している、引張応力が残留する引張応力層と、
    を備えることを特徴とするシリコン単結晶引き上げ用シリカガラスルツボ。
  2.  前記応力変化率が0.17MPa/mm以上、1.5MPa/mm以下である請求項1記載のシリコン単結晶引き上げ用シリカガラスルツボ。
  3.  シリカガラスルツボ製造用回転モールドに天然シリカ粉を供給し、前記シリカガラスルツボ製造用回転モールドの内面に前記天然シリカ粉の層を形成する工程、
     ラマン測定法で求められる下記式(1)を満たす合成シリカ粉を前記天然シリカ粉の層の内側に堆積する工程、及び
     前記天然シリカ粉および前記合成シリカ粉にアーク放電する工程を備えることを特徴とする請求項1記載のシリコン単結晶引き上げ用シリカガラスルツボの製造方法。
    0.8≦R≦1.0 ・・・(1)
    式(1)中、強度比R=(I+I)/I
    =ラマンシフト492cm-1バンドのピーク強度
    =ラマンシフト606cm-1バンドのピーク強度
    =ラマンシフト800cm-1バンドのピーク強度
  4.  前記アーク放電後、前記モールドの内部に冷却ガスを導入する工程を更に備える請求項3記載のシリコン単結晶引き上げ用シリカガラスルツボの製造方法。
  5.  前記合成シリカ粉の円形度が0.73以上1.0以下である請求項3または4記載のシリコン単結晶引き上げ用シリカガラスルツボの製造方法。
  6.  前記合成シリカ粉は、平均粒径が80μm以上、160μm以下、タップ嵩密度が1.35g/cm以上、1.44g/cm以下、及び比表面積が0.026m/g以上、0.045m/g以下である請求項3ないし5いずれか記載のシリコン単結晶引き上げ用シリカガラスルツボの製造方法。
PCT/JP2013/065294 2013-05-31 2013-05-31 シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法 WO2014192163A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2013/065294 WO2014192163A1 (ja) 2013-05-31 2013-05-31 シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法
US14/894,328 US9758901B2 (en) 2013-05-31 2013-05-31 Vitreous silica crucible for pulling of silicon single crystal and method for manufacturing the same
CN201380077075.3A CN105264124B (zh) 2013-05-31 2013-05-31 单晶硅提拉用氧化硅玻璃坩埚及其制造方法
JP2015519596A JP6025278B2 (ja) 2013-05-31 2013-05-31 シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法
KR1020157037102A KR101790716B1 (ko) 2013-05-31 2013-05-31 단결정 인상용 실리카 유리 도가니 및 그 제조 방법
EP13886011.9A EP3006606B1 (en) 2013-05-31 2013-05-31 Silica glass crucible for use in pulling up of silicon single crystal, and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/065294 WO2014192163A1 (ja) 2013-05-31 2013-05-31 シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2014192163A1 true WO2014192163A1 (ja) 2014-12-04

Family

ID=51988230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065294 WO2014192163A1 (ja) 2013-05-31 2013-05-31 シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法

Country Status (6)

Country Link
US (1) US9758901B2 (ja)
EP (1) EP3006606B1 (ja)
JP (1) JP6025278B2 (ja)
KR (1) KR101790716B1 (ja)
CN (1) CN105264124B (ja)
WO (1) WO2014192163A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030774A (ja) * 2016-07-29 2018-03-01 友達晶材股▲ふん▼有限公司AUO Crystal Corporation シリコンインゴット作製用の容器およびその製造方法、ならびに結晶シリコンインゴットを製造するための方法
JP2019172515A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 合成シリカガラス粉
WO2024062783A1 (ja) * 2022-09-20 2024-03-28 株式会社Sumco 石英ガラスルツボ及びその製造方法及び石英ガラスルツボ用石英粉

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936677B (zh) * 2018-02-23 2022-07-15 胜高股份有限公司 石英玻璃坩埚
JP2019151494A (ja) * 2018-02-28 2019-09-12 株式会社Sumco シリカガラスルツボ
CN108579834A (zh) * 2018-03-29 2018-09-28 连云港格航工业设计有限公司 一种大小可调节的石英坩埚

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203893A (ja) 1997-01-20 1998-08-04 Mitsubishi Materials Shilicon Corp 高強度石英ガラスルツボ及びその製造方法
JP2000247778A (ja) 1999-02-25 2000-09-12 Toshiba Ceramics Co Ltd 石英ガラスルツボおよびその製造方法ならびにこれを用いたシリコン単結晶の引上げ方法
WO2011013695A1 (ja) * 2009-07-31 2011-02-03 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用シリカガラスルツボ
JP2012116702A (ja) * 2010-11-30 2012-06-21 Japan Siper Quarts Corp シリカガラスルツボ
JP2013095652A (ja) * 2011-11-04 2013-05-20 Covalent Materials Corp シリカ焼結体ルツボ
JP2013112597A (ja) * 2011-11-30 2013-06-10 Japan Siper Quarts Corp シリカガラスルツボ及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054434B2 (ja) * 1998-03-31 2008-02-27 コバレントマテリアル株式会社 シリコン単結晶引上げ用石英ガラスルツボおよびその製造方法
DE102010008162B4 (de) 2010-02-16 2017-03-16 Heraeus Quarzglas Gmbh & Co. Kg Verfahren für die Herstellung von Quarzglas für einen Quarzglastiegel
JP5618409B2 (ja) * 2010-12-01 2014-11-05 株式会社Sumco シリカガラスルツボ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203893A (ja) 1997-01-20 1998-08-04 Mitsubishi Materials Shilicon Corp 高強度石英ガラスルツボ及びその製造方法
JP2000247778A (ja) 1999-02-25 2000-09-12 Toshiba Ceramics Co Ltd 石英ガラスルツボおよびその製造方法ならびにこれを用いたシリコン単結晶の引上げ方法
WO2011013695A1 (ja) * 2009-07-31 2011-02-03 ジャパンスーパークォーツ株式会社 シリコン単結晶引き上げ用シリカガラスルツボ
JP2012116702A (ja) * 2010-11-30 2012-06-21 Japan Siper Quarts Corp シリカガラスルツボ
JP2013095652A (ja) * 2011-11-04 2013-05-20 Covalent Materials Corp シリカ焼結体ルツボ
JP2013112597A (ja) * 2011-11-30 2013-06-10 Japan Siper Quarts Corp シリカガラスルツボ及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030774A (ja) * 2016-07-29 2018-03-01 友達晶材股▲ふん▼有限公司AUO Crystal Corporation シリコンインゴット作製用の容器およびその製造方法、ならびに結晶シリコンインゴットを製造するための方法
US10450669B2 (en) 2016-07-29 2019-10-22 Auo Crystal Corporation Container for silicon ingot fabrication and manufacturing method thereof, and method for manufacturing crystalline silicon ingot
JP2019172515A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 合成シリカガラス粉
WO2024062783A1 (ja) * 2022-09-20 2024-03-28 株式会社Sumco 石英ガラスルツボ及びその製造方法及び石英ガラスルツボ用石英粉

Also Published As

Publication number Publication date
JPWO2014192163A1 (ja) 2017-02-23
EP3006606B1 (en) 2020-01-15
JP6025278B2 (ja) 2016-11-16
US20160108550A1 (en) 2016-04-21
CN105264124A (zh) 2016-01-20
KR20160015318A (ko) 2016-02-12
EP3006606A4 (en) 2017-03-01
CN105264124B (zh) 2018-02-23
US9758901B2 (en) 2017-09-12
EP3006606A1 (en) 2016-04-13
KR101790716B1 (ko) 2017-10-26

Similar Documents

Publication Publication Date Title
JP6025278B2 (ja) シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法
JP6072405B2 (ja) シリカガラスルツボ及びその製造方法
JP6770721B2 (ja) シリカガラスルツボ、シリカガラスルツボの製造方法およびシリコン単結晶の引き上げ装置
WO2011030657A1 (ja) シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法
JP6204560B2 (ja) シリコン単結晶の製造方法
EP3018236B1 (en) Silica glass crucible
KR101395787B1 (ko) 실리카 유리 도가니의 제조 방법
CN111936677B (zh) 石英玻璃坩埚
TWI417259B (zh) 氧化矽玻璃坩堝的製造方法
JP6301441B2 (ja) シリコン単結晶引き上げ用のシリカガラスルツボの製造方法およびシリコン単結晶の製造方法
JP5749147B2 (ja) シリカガラスルツボの製造方法
JP7279722B2 (ja) 石英ガラスルツボ及びこれを用いたシリコン単結晶の製造方法
EP3018468B1 (en) Method for evaluating suitability of silica powder for manufacturing of silica-glass crucible for pulling silicon single crystal
JP2013139355A (ja) シリコン融液への酸素供給を制御するシリカガラスルツボ
JP2017193484A (ja) シリコン単結晶引上げ用シリカガラスルツボの製造に好適なシリカ粉の評価方法
JP2017194471A (ja) シリコン単結晶引上げ用シリカガラスルツボの製造に好適なシリカ粉の評価方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077075.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519596

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14894328

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013886011

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157037102

Country of ref document: KR

Kind code of ref document: A