WO2014190919A1 - 一种自移动装置及其控制方法 - Google Patents

一种自移动装置及其控制方法 Download PDF

Info

Publication number
WO2014190919A1
WO2014190919A1 PCT/CN2014/078784 CN2014078784W WO2014190919A1 WO 2014190919 A1 WO2014190919 A1 WO 2014190919A1 CN 2014078784 W CN2014078784 W CN 2014078784W WO 2014190919 A1 WO2014190919 A1 WO 2014190919A1
Authority
WO
WIPO (PCT)
Prior art keywords
downward
control module
looking
sensors
suspended
Prior art date
Application number
PCT/CN2014/078784
Other languages
English (en)
French (fr)
Inventor
汤进举
Original Assignee
科沃斯机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科沃斯机器人有限公司 filed Critical 科沃斯机器人有限公司
Priority to JP2016515639A priority Critical patent/JP6815197B2/ja
Priority to EP14804380.5A priority patent/EP3007023B1/en
Publication of WO2014190919A1 publication Critical patent/WO2014190919A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/24Floor-sweeping machines, motor-driven
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • the present invention relates to a self-moving device, and more particularly to a structure and control method for preventing fall from a mobile device. Background technique
  • the current vacuum cleaner is equipped with a detector at the front, and when an abnormal situation is detected, the vacuum cleaner is retracted or turned left and right to prevent falling.
  • the machine may be knocked over, or the user may lift the machine directly for checking the machine or other purposes. If the machine performs the backward or left and right steering commands, it will continue to operate, which is not only a waste of energy. Moreover, the rotation of the roller brush may cause the dust to spill again, causing secondary pollution.
  • a robot equipped with a down view sensor is disclosed in U.S. Patent No. 7,155,308.
  • the robot When the down view sensor does not detect a signal, the robot performs a steering action to avoid the risk of damage (such as from a stair). However, the robot may still be in a suspended state after turning left or right. At this time, there is no time to turn back and turn, causing a fall, or a wheel hanging in the depression to idle.
  • the robot runs abnormally and the robot is picked up for inspection or repair, the robot cannot recognize it and still performs the steering action, resulting in waste of energy or secondary pollution.
  • the conventional intelligent vacuum cleaner usually sets a travel switch at the floating drive wheel.
  • the drive wheel is pressed by the gravity of the body, and the travel switch does not sense the dangling signal.
  • the travel switch generates an action and senses a dangling signal, and the control machine stops running and enters a standby state.
  • setting a floating drive wheel requires a large space, which requires the body to have a sufficient height.
  • smart vacuum cleaners are required to have a lower height, and floating cannot be installed on such vacuum cleaners.
  • Drive wheel and its travel switch is required to have a lower height, and floating cannot be installed on such vacuum cleaners.
  • the present invention provides a self-moving device capable of detecting a suspended condition in time, so that the self-moving The correct action of the moving device not only prevents the drop but also recognizes the dangling action, thereby reducing energy loss and avoiding possible pollution.
  • a self-mobile device comprising:
  • the number of the down view sensors is two or more, and the two or more down view sensors are installed at the bottom of the body;
  • control module is installed in the body, and is connected to the down view sensor, and the control module controls the body action according to the number of dangling signals sent by the down view sensor.
  • two or more lower-view sensors are installed at the bottom of the body, which can conveniently detect the suspended state, and send the dangling signals of different positions to the control module, and the control module judges the position state of the body according to different numbers of dangling signals, thereby Make the body make the correct action, avoid walking to the suspended position to cause the drop, and avoid the waste and possible pollution caused by the idle time.
  • the invention has simple structure, no manual intervention, convenient and reliable, and has very good market prospect.
  • the two or more lower view sensors are located at an outer edge of the bottom of the body. Mounting the lower-view sensor on the outer edge of the bottom of the body can detect the dangling signal earlier, and the body has more room for manoeuvre to avoid falling due to over-speeding.
  • the two or more lower view sensors comprise a down view sensor located at an outer edge of the bottom of the body and a down view sensor located inside the drive wheel of the bottom of the body.
  • the installation of the down-view sensor inside the drive wheel can further confirm that the body has been knocked over or lifted from the ground or the drive wheel is suspended at the edge to stop in this state in time to avoid energy waste and possible contamination.
  • an alarm module is further included, and the alarm module is communicatively connected to the control module.
  • the alarm is made by the alarm module to alert the operator, so that the present invention can be maintained in time to prevent further accidents.
  • a self-mobile device control method includes the following steps:
  • Step (1) Two or more down-view sensors located at the bottom of the body collect a dangling signal
  • Step (2) the down view sensor sends the collected dangling signal to the control module;
  • Step (3) The control module controls the body according to the number of dangling signals sent by the down view sensor - when only one of the down view sensors transmits a dangling signal, the control module controls the The body steering; when there are more than two of the lower-view sensors transmitting a dangling signal, the control module controls the body to enter an interrupted working state.
  • two or more lower-view sensors are installed at the bottom of the body, which can conveniently detect the suspended state, and send the suspended signals of different positions to the control module, and the control module determines the position of the body according to different numbers of suspended signals, thereby
  • the body makes the correct action, avoids dropping to another dangling position, and avoids waste and possible pollution caused by idling.
  • the invention has simple structure, no manual intervention, convenient and reliable, and has very good market prospect.
  • Step (1) Two or more down-view sensors located at the bottom of the body collect a dangling signal
  • Step (2) The down view sensor sends the collected dangling signal to the control module
  • Step (3) The control module controls the body according to the number of dangling signals sent by the down view sensor as follows:
  • the control module controls the body steering when only one of the down view sensors transmits a dangling signal; when there are more than two of the down view sensors transmitting a dangling signal, the control module controls the body to be After the time ⁇ is turned first, after the arrival time T, if there are still more than two of the lower-view sensors transmitting a dangling signal, the body is controlled to enter an interrupted working state, if only one of the lower-view sensors transmits a dangling signal. Then controlling the body to continue to turn, if the down view sensor does not send a dangling signal, the normal operation of the body is controlled, where T>0.
  • two or more lower-view sensors are installed at the bottom of the body, which can conveniently detect the suspended state, and send the suspended signals of different positions to the control module, and the control module determines the position state of the body according to different numbers of suspended signals, and
  • the position of the body is further confirmed by the delay, so that the body can make a correct action, avoiding walking or turning to another dangling position to cause a fall, and avoiding dangling Time and space turn into waste and possible pollution.
  • the invention has simple structure, no manual intervention, convenient and reliable, and has very good market prospect.
  • the ⁇ is 300 ⁇ 800 ⁇ seconds.
  • the buffering time should not be too long or too short, in case the above-mentioned effects of the present invention cannot be achieved, or energy is wasted and the meaning of buffering is lost.
  • Step (1) two or more lower-view sensors located at the bottom of the body collect a dangling signal, wherein the two
  • the above lower view sensor includes a down view sensor located at an outer edge of the bottom of the body and a down view sensor located inside the drive wheel of the bottom of the body;
  • Step (2) the down view sensor sends the collected dangling signal to the control module
  • Step (3) The control module controls the body according to the number of dangling signals sent by the down view sensor as follows:
  • the control module controls the body steering; when more than two of the down view sensors send a dangling signal, if the down view sensor located inside the driving wheel is sent to be suspended a signal, the control module controls the body to enter an interrupted working state; otherwise, the control module controls the body to turn.
  • two or more lower-view sensors are installed at the bottom of the body, which can conveniently detect the dangling signal, and send the dangling signals of different positions to the control module, and the control module judges the position of the body according to different numbers of dangling signals, and when When two or more lower-view sensors send a dangling signal, further, the mark state information of the down-view sensor signal further confirms the position state of the body, thereby causing the body to perform correct action, avoiding continuing to walk or going to another A suspended position causes a drop, and it also avoids waste and possible pollution when it is suspended.
  • the invention has simple structure, no manual intervention, convenient and reliable, and has very good market prospect.
  • control module is further connected to an alarm module, and the control module controls the main body to enter an interrupted working state while performing an alarm.
  • the alarm is issued by the alarm module to alert the operator, so that the present invention can be maintained in a timely manner to prevent further accidents.
  • FIG. 1 is a schematic structural view of a first embodiment of a self-moving device of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of the self-moving device of the present invention. detailed description
  • the invention discloses a self-moving device and a control method thereof, and the self-moving device can be a smart vacuum cleaner, a smart sweeping machine or other small device capable of self-moving, by detecting a dangling signal from the mobile device, and performing a signal. Identifying, thereby controlling the self-moving device to perform corresponding actions, thereby achieving the purpose of preventing falling, saving energy, preventing pollution, and being fully automated in the process, without any manual intervention, and having a simple structure, which does not improve the self-moving device Production and use costs, so it has excellent market value.
  • the self-moving device of the present invention includes a body 1, a down view sensor 2, a control module (not shown), and an alarm module (not shown).
  • the body 1 is a main body portion of the self-moving device for performing various actions, and the driving wheels 11, 12 are mounted on the lower portion thereof to facilitate self-propelled.
  • the number of down view sensors 2 is three (but not limited to three, which may be two or four or more), and the three down view sensors 2 are located at the outer edge of the bottom of the body 1. One of them is located at the front of the body 1, and the other two are located at both sides of the body 1.
  • the three lower-view sensors 2 are infrared sensors (not limited to infrared sensors, ultrasonic sensors, antenna sensors, etc.), and include an infrared emitter and an infrared receiver. When the receiver receives the infrared signal reflected from the ground, it judges In the normal state; when the receiver does not receive the reflected signal, it is judged to be in a floating state.
  • the control module is installed in the main body 1 and connected to the lower view sensor 2.
  • the control module controls the action of the main body 1 according to the number of dangling signals sent from the lower view sensor 2.
  • an alarm module is further included (the alarm module may not be set as needed), and the alarm module is communicatively connected with the control module, and is driven by the control module, and may be a speaker or an alarm light, thereby honking or flashing light.
  • the method sends an alarm signal to the operator to alert the operator.
  • the control method of the self-mobile device of this embodiment has two modes, one of which:
  • the self-mobile device control method includes the following steps:
  • Step (1) Three lower-view sensors 2 located at the bottom of the body 1 collect a dangling signal
  • Step (2) The down view sensor 2 sends the collected dangling signal to the control module;
  • Step (3) The control module controls the body 1 according to the number of dangling signals sent by the lower view sensor 2 as follows:
  • the control module controls the body 1 to turn; when more than two down view sensors 2 send a dangling signal, the control module controls the body 1 to enter an interrupted working state.
  • the main body 1 may be in a state of being knocked over or artificially raised. In this case, the interrupted working state should be promptly entered to avoid wasting energy and causing possible pollution.
  • the control method of the self-moving device comprises the following steps - step (1) three lower-view sensors 2 located at the bottom of the body 1 collect a dangling signal;
  • Step (2) The down view sensor 2 sends the collected dangling signal to the control module;
  • Step (3) The control module performs the following control on the body 1 according to the number of suspended signals sent by the lower view sensor 2; System:
  • the control module controls the body 1 to turn; when more than two down view sensors 2 send a dangling signal, the control module controls the body 1 to first turn in time T, upon arrival After time T, if there are still more than two lower-view sensors 2 transmitting a dangling signal, the control body 1 enters an interrupted working state, and if only one of the lower-view sensors 2 transmits a dangling signal, the control body 1 continues to turn, if there is no down-view The sensor 2 sends a dangling signal to control the normal operation of the body 1, where T>0.
  • a delay is set to further detect the state of the body 1 to make a more correct judgment, so as to avoid delaying the normal intelligent self-moving operation.
  • the control module receives more than two dangling signals, if the body 1 is just at an edge or corner, it will immediately turn. After the delay, the device will not sense the dangling signal or only sense. To a dangling signal; if the body 1 is knocked over or lifted artificially or the wheel has been hung on the edge, the control module will still receive more than two dangling signals after the delay.
  • the delay time ⁇ is 300 to 800 milliseconds, and the optimum is 500 milliseconds.
  • the self-moving device of the present invention also includes a body 1, a down view sensor 2, a control module (not shown), and an alarm module (not shown).
  • the main body 1, the control module, and the alarm module are not substantially different from the first embodiment, and are not described herein again.
  • the number of the down view sensors 2 is five (but not limited to five, which may be any two or more), and the five down view sensors are respectively located at the outer edge of the bottom of the body 1 and the bottom drive wheel of the body 1.
  • three lower-view sensors 2 are located on the outer edge of the bottom of the body 1, one of the lower-view sensors 2 is located at the front of the body 1, and the other two lower-view sensors 2 are located on both sides of the body 1.
  • the other two lower-view sensors 2 are located inside the driving wheels 11, 12 of the bottom of the body 1, and the two driving wheels 11, 12 correspond to the two lower-view sensors 2.
  • the signal sent by the down view sensor at different positions received by the control module may be correspondingly provided with position coded information for the control module to identify, thereby determining what the sender of the signal is located in the body 1. position.
  • different types of down-view sensors may be used depending on the position of the lower-view sensor 2, for example, the lower-view sensor 2 disposed at the outer edge of the bottom of the local 1 uses an infrared sensor, and the lower view of the inner side of the drive wheels 11, 12
  • the sensor 2 uses an ultrasonic sensor or the like. Regardless of the same type or different types of down-view sensors, the control module can effectively identify them.
  • the dangling signal data received by the control module itself contains a tag, which may be position coded information or sub-view sensor 2 type information.
  • the control method of the self-mobile device of this embodiment includes the following steps: Step (1) Five lower-view sensors 2 located at the bottom of the body 1 collect a dangling signal, wherein three lower-view sensors 2 are located at the outer edge of the bottom of the body 1, and the other two are located inside the driving wheels 11, 12 of the bottom of the body 1; Step (2) five down view sensors 2 send the collected dangling signals to the control module;
  • Step (3) The control module controls the body 1 according to the number of dangling signals sent by the lower view sensor 2 as follows:
  • the control module controls the body 1 to turn; when more than two down view sensors 2 send a dangling signal, if the down view sensor 2 located inside the drive wheels 11, 12 is included Sending a dangling signal, the control module controls the body 1 to enter an interrupted working state; otherwise, the control module controls the body 1 to turn.
  • the control module After the control module receives the dangling signal sent by the lower view sensor 2 located at the outer edge of the bottom of the body 1 and the down view sensor 2 located inside the drive wheel, it is first identified according to the position information in the signal.
  • the lower view sensor 2 is located outside the bottom of the body 1.
  • the edge is located on the inside of the drive wheels 11, 12, and then judges and issues an instruction.
  • the control module determines that the body 1 is in a floating state (possibly the body 1 is knocked over or An artificially lifted device body 1 or a wheel is suspended at an edge, and an interrupted state command is issued.
  • two down view sensors 2 are disposed inside the driving wheels 11, 12, which can determine very accurately whether the self-moving device is in a state of being turned over and lifted, thereby making a correct judgment in time to avoid waste. Energy and potential pollution.

Abstract

一种自移动装置,包括本体(1)、下视传感器(2)和控制模块,所述下视传感器(2)数量为两个以上,所述两个以上的下视传感器(2)均安装在所述本体(1)的底部;所述控制模块安装在所述本体(1)内,与所述下视传感器(2)连接,所述控制模块根据所述下视传感器(2)发送来的悬空信号数量控制所述本体(1)动作。该自移动装置使本体(1)做出正确的动作,避免转到另一悬空位置造成跌落,也避免悬空时空转造成浪费和可能的污染。

Description

一种自移动装置及其控制方法 技术领域
本发明涉及自移动装置, 尤其与自移动装置中防跌落的结构及控制方法有关。 背景技术
目前, 随着智能吸尘器和智能扫地机等自移动装置类智能家用电器的普及, 越来 越多的家庭用智能家电来减轻工作压力, 提高生活品质。
在智能吸尘器等工作过程中, 很可能遇到台阶, 如果不能及时停止会导致机器坠 下, 造成机器损坏, 带来经济损失。 因此需要设置防跌落的装置, 目前的吸尘器在前 部安装探测器, 在探测到异常情况时, 吸尘器进行后退或左右转向, 防止跌落。 但是, 智能吸尘器等工作过程中还有可能机器被撞翻, 或者用户由于检査机器或其它目的将 机器直接提起, 此时如果机器执行后退或左右转向指令, 则会继续运转, 这不仅浪费 能源而且滚刷的旋转可能使灰尘再次洒落, 造成二次污染。
如美国专利 US7155308中揭露一种设有下视传感器的机器人, 当下视传感器探测 不到信号时, 机器人执行转向动作, 从而规避跌落 (如从楼梯) 损坏的风险。 但该机 器人有时左转或右转后仍可能面临悬空状态, 此时则来不及后退转向, 导致跌落, 或 一只轮子悬挂在凹陷处空转。 另外, 当该机器人运行异常, 人为将该机器人拿起进行 査看或维修时, 机器人无法识别, 仍会执行转向动作, 从而造成能源浪费或二次污染 等。
为解决上述问题, 传统的智能吸尘器通常在浮动驱动轮处设置行程开关, 正常工 作时依靠机体的重力将驱动轮压下, 行程开关未感应悬空信号, 当机器被提起时, 驱 动轮自动下坠, 行程开关发生动作并感应悬空信号,控制机器停止运转进入待机状态。 然而设置浮动驱动轮需要较大的空间, 这就需要机体具有足够的高度。 但是, 现在的 智能吸尘器为了适应更广泛的清洁工作区域, 尤其是对于一些底部空间较小的床或柜 子等家具底部的清洁, 需要智能吸尘器具有较低的高度, 在该种吸尘器上无法安装浮 动驱动轮及其行程开关。 发明内容
针对上述问题, 本发明提供一种自移动装置, 能够及时探测悬空状况, 使得自移 动装置进行正确的动作, 不但可防止跌落而且还能够识别悬空动作, 从而减少能源损 失, 避免造成可能的污染。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种自移动装置, 包括:
本体;
下视传感器, 所述下视传感器数量为两个以上, 所述两个以上的下视传感器均安 装在所述本体的底部;
控制模块, 所述控制模块安装在所述本体内, 与所述下视传感器连接, 所述控制 模块根据所述下视传感器发送来的悬空信号数量控制所述本体动作。
在本发明中, 两个以上下视传感器安装在本体底部, 可方便进行探测悬空状态, 将不同位置的悬空信号发送到控制模块, 控制模块根据不同数量的悬空信号判断本体 所处位置状态, 从而使本体做出正确的动作, 避免继续行走至悬空位置造成跌落, 也 避免悬空时空转造成浪费和可能的污染。 本发明结构简单、 无须人工介入、方便可靠, 具有非常良好的市场前景。
优选的, 所述两个以上的下视传感器均位于所述本体底部的外缘。 将下视传感器 安装在本体底部的外缘, 能较早地检测到悬空信号, 本体有更多回旋余地, 避免因速 度过快来不及转向而导致跌落。
优选的, 所述下视传感器共有三个, 其中一个位于所述本体的前部, 另外两个位 于所述本体的两侧。 从前、 左、 右三个方向探测, 不会出现盲点, 也不会因避开一个 悬空位置而误入另一悬空位置, 导致跌落损坏。
优选的, 所述两个以上的下视传感器包含位于本体底部外缘的下视传感器以及位 于所述本体底部驱动轮的内侧的下视传感器。 在驱动轮内侧安装下视传感器, 可进一 步确认本体撞翻或被人从地面提起或驱动轮悬挂在边缘处的状态, 以便及时在该状态 下停转, 避免造成能源浪费和可能产生的污染。
优选的, 还包括报警模块, 所述报警模块与所述控制模块通讯连接。 通过报警模 块进行报警, 以提起操作人员注意, 从而能够及时地对本发明进行维护, 防止出现更 大意外。
本发明还通过如下技术方案来解决上述技术问题:
一种自移动装置的控制方法, 包括以下步骤:
步骤 (1 ) 位于本体底部的两个以上的下视传感器采集悬空信号;
步骤 (2) 所述下视传感器将采集的悬空信号发送到控制模块; 步骤(3 )所述控制模块根据所述下视传感器发送来的悬空信号数量对所述本体进 行如下控制- 当仅有一个所述下视传感器发送来悬空信号时,所述控制模块控制所述本体转向; 当有两个以上所述下视传感器发送来悬空信号时, 所述控制模块控制所述本体进 入中断工作状态。
在本发明中, 两个以上下视传感器安装在本体底部, 可方便进行探测悬空状态, 将不同位置的悬空信号发送到控制模块, 控制模块根据不同数量的悬空信号判断本体 所处位置, 从而使本体做出正确的动作, 避免转到另一悬空位置造成跌落, 也避免悬 空时空转造成浪费和可能的污染。 本发明结构简单、 无须人工介入、 方便可靠, 具有 非常良好的市场前景。
本发明的控制方法另一实施方式, 包括以下步骤:
步骤 (1 ) 位于本体底部的两个以上的下视传感器采集悬空信号;
步骤 (2) 所述下视传感器将采集的悬空信号发送到控制模块;
步骤(3 )所述控制模块根据所述下视传感器发送来的悬空信号数量对所述本体进 行如下控制:
当仅有一个所述下视传感器发送来悬空信号时,所述控制模块控制所述本体转向; 当有两个以上所述下视传感器发送来悬空信号时, 所述控制模块控制所述本体在 时间 τ内先转向, 在到达时间 T后, 如果仍有两个以上所述下视传感器发送来悬空信 号则控制所述本体进入中断工作状态, 如果仅有一个所述下视传感器发送来悬空信号 则控制所述本体继续转向, 如果没有所述下视传感器发送来悬空信号则控制所述本体 正常作业, 其中 T>0。
在本发明中, 两个以上下视传感器安装在本体底部, 可方便进行探测悬空状态, 将不同位置的悬空信号发送到控制模块, 控制模块根据不同数量的悬空信号判断本体 所处位置状态, 且当两个以上下视传感器发送来悬空信号时, 通过延时进一步确认本 体所处的位置状态, 从而使本体做出正确的动作, 避免继续行走或转到另一悬空位置 造成跌落, 也避免悬空时空转造成浪费和可能的污染。 本发明结构简单、 无须人工介 入、 方便可靠, 具有非常良好的市场前景。
优选的, 所述 Τ为 300~800亳秒。 缓冲时间不宜过长或过短, 以防无法实现本发 明的上述作用, 或造成能源浪费, 失去缓冲的意义。
本发明的控制方法另一实施方式, 包括以下步骤:
步骤(1 )位于本体底部的两个以上的下视传感器采集悬空信号, 其中, 所述两个 以上的下视传感器包含位于本体底部外缘的下视传感器以及位于所述本体底部驱动轮 的内侧的下视传感器;
步骤 (2 ) 所述下视传感器将采集的悬空信号发送到控制模块;
步骤(3 )所述控制模块根据所述下视传感器发送来的悬空信号数量对所述本体进 行如下控制:
当仅有一个下视传感器发送来悬空信号时, 所述控制模块控制本体转向; 当有两个以上所述下视传感器发送来悬空信号时, 若包含位于驱动轮内侧的下视 传感器发送来悬空信号, 所述控制模块控制所述本体进入中断工作状态; 否则, 所述 控制模块控制所述本体转向。
在本发明中, 两个以上下视传感器安装在本体底部, 可方便进行探测悬空信号, 将不同位置的悬空信号发送到控制模块, 控制模块根据不同数量的悬空信号判断本体 所处位置, 且当两个以上下视传感器发送来悬空信号时, 进一步的, 通过该下视传感 器信号的标记信息, 进一步确认本体所处的位置状态, 从而使本体做出正确的动作, 避免继续行走或转到另一悬空位置造成跌落, 也避免悬空时空转造成浪费和可能的污 染。 本发明结构简单、 无须人工介入、 方便可靠, 具有非常良好的市场前景。
优选的, 所述控制模块还连接一报警模块, 所述控制模块控制所述本体进入中断 工作状态同时进行报警。 通过报警模块进行报警, 以提起操作人员注意, 从而能够及 时地对本发明进行维护, 防止出现更大意外。 附图说明
图 1为本发明的自移动装置的第一实施例的结构示意图;
图 2为本发明的自移动装置的第二实施例的结构示意图。 具体实施方式
本发明公开了一种自移动装置及其控制方法, 该自移动装置可以是智能吸尘器、 智能扫地机也可以是其他可自行移动的小型装置, 通过对自移动装置进行探测悬空信 号, 并进行信号识别, 从而控制该自移动装置进行相应的动作, 从而达到防跌落、 节 能、 防止污染的目的, 并在该过程中全部自动化, 无须人工的任何介入, 且结构简单, 不会提高自移动装置的制作和使用成本, 因此具有极好的市场价值。
下面结合附图及两个实施例对本发明的自移动装置及其控制方法进行展开说明。 第一实施例:
在该实施例中, 本发明的自移动装置包括本体 1、 下视传感器 2、 控制模块(图中 未示出)和报警模块(图中未示出)。 该本体 1为自移动装置的主体部分, 用于实施各 种动作, 其下部安装有驱动轮 11、 12, 以方便自行走。
下视传感器 2数量为三个 (但不限于三个, 可以是两个, 也可以是四个或更多), 该三个下视传感器 2均位于本体 1底部的外缘。 其中一个位于本体 1的前部, 另外两 个位于本体 1的两侧。
该三个下视传感器 2为红外传感器(不限于红外传感器, 也可以是超声波传感器、 触角传感器等),包含红外发射器和红外接收器, 当接收器接收到地面反射回来的红外 信号时, 判断处于正常状态; 当接收器接收不到反射信号时, 判断处于悬空状态。
控制模块安装在本体 1内, 与下视传感器 2连接, 控制模块根据下视传感器 2发 送来的悬空信号数量控制本体 1动作。
本实施例中还包括报警模块(也可根据需要不设置该报警模块), 报警模块与控制 模块通讯连接, 由控制模块驱动, 可以是喇叭, 也可以是报警灯, 从而通过鸣笛或光 闪烁等方式向操作者发出报警信号, 提醒操作者注意。
本实施例的自移动装置的控制方法有两种模式, 其一:
自移动装置的控制方法, 包括以下步骤:
步骤 (1 ) 位于本体 1底部的三个下视传感器 2采集悬空信号;
步骤 (2) 下视传感器 2将采集的悬空信号发送到控制模块;
步骤(3 )控制模块根据下视传感器 2发送来的悬空信号数量对本体 1进行如下控 制:
当仅有一个下视传感器 2发送来悬空信号时, 控制模块控制本体 1转向; 当有两个以上下视传感器 2发送来悬空信号时, 控制模块控制本体 1进入中断工 作状态。
两个以上下视传感器 2发送来悬空信号, 则本体 1有可能是处于撞翻或被人为提 起的状态, 此时应及时进入中断工作状态, 以避免浪费能源及产生可能的污染。
其二:
自移动装置的控制方法, 包括以下步骤- 步骤 (1 ) 位于本体 1底部的三个下视传感器 2采集悬空信号;
步骤 (2) 下视传感器 2将采集的悬空信号发送到控制模块;
步骤(3 )控制模块根据下视传感器 2发送来的悬空信号数量对本体 1进行如下控 制:
当仅有一个下视传感器 2发送来悬空信号时, 控制模块控制本体 1转向; 当有两个以上下视传感器 2发送来悬空信号时, 控制模块控制本体 1在时间 T内 先转向, 在到达时间 T后, 如果仍有两个以上下视传感器 2发送来悬空信号则控制本 体 1进入中断工作状态, 如果仅有一个下视传感器 2发送来悬空信号则控制本体 1继 续转向, 如果没有下视传感器 2发送来悬空信号则控制本体 1正常作业, 其中 T> 0。
在该控制方法中, 设置了延时, 以方便进一步探测本体 1所处状态, 从而做出更 加正确的判断, 以免耽误正常的智能自移动作业。 实际上, 当控制模块接收到两个以 上的悬空信号时, 若本体 1恰处于某边缘或边角, 此时立刻转向, 延时 Τ后, 装置就 不会感测到悬空信号或仅感测到一个悬空信号; 若本体 1被撞翻或人为提起或轮子己 悬挂在边缘, 则延时 Τ后, 控制模块仍会接收到两个以上的悬空信号。在本实施例中, 该延时时间 Τ为 300~800毫秒, 最佳为 500毫秒。 第二实施例:
在该实施例中, 本发明的自移动装置也包括本体 1、 下视传感器 2、 控制模块(图 中未示出) 和报警模块 (图中未示出)。 其中, 本体 1、 控制模块和报警模块与第一实 施例中并无实质不同, 在此不再赘述。
本实施例中, 下视传感器 2数量为五个 (但不限于五个, 可以是任意两个以上的 数量), 该五个下视传感器分别位于本体 1底部的外缘和本体 1底部驱动轮 11、 12的 内侧。 在本实施例中, 三个下视传感器 2位于本体 1底部的外缘, 其中一个下视传感 器 2位于本体 1的前部, 另外两个下视传感器 2位于本体 1的两侧。 另外两个下视传 感器 2位于本体 1底部驱动轮 11、 12的内侧, 两个驱动轮 11、 12对应两个下视传感 器 2。
由于下视传感器 2所处位置不同, 控制模块接收到的不同位置的下视传感器发出 的信号可相应带有位置编码信息, 以便控制模块进行识别, 从而确定信号的发送者位 于本体 1的何种位置。 当然, 也可以根据下视传感器 2位置不同, 分别采用不同类型 的下视传感器, 如设置在本地 1底部的外缘的下视传感器 2采用红外传感器, 而位于 驱动轮 11、 12内侧的下视传感器 2采用超声波传感器等。不论采用相同类型或不同类 型的下视传感器, 只要控制模块能对其有效识别即可。 较好的方案是控制模块接收到 的悬空信号数据本身含有标记,该标记可以是位置编码信息或下视传感器 2种类信息。 本实施例的自移动装置的控制方法包括如下步骤: 步骤(1 )位于本体 1底部的五个的下视传感器 2采集悬空信号, 其中, 三个下视 传感器 2位于本体 1底部外缘, 另外两个位于本体 1底部驱动轮 11、 12的内侧; 步骤 (2) 五个下视传感器 2将采集的悬空信号发送到控制模块;
步骤(3 )控制模块根据下视传感器 2发送来的悬空信号数量对本体 1进行如下控 制:
当仅有一个下视传感器 2发送来悬空信号时, 控制模块控制本体 1转向; 当有两个以上下视传感器 2发送来悬空信号时, 若包含位于驱动轮 11、 12内侧的 下视传感器 2发送来悬空信号, 控制模块控制本体 1进入中断工作状态; 否则, 控制 模块控制本体 1转向。
在控制模块接收位于本体 1底部外缘的下视传感器 2与位于驱动轮内侧的下视传 感器 2发送的悬空信号后, 需首先根据信号中的位置信息进行识别下视传感器 2位于 本体 1底部外缘或位于驱动轮 11、 12的内侧, 然后再做出判断和发出指令。 具体的, 当两个以上的下视传感器 2中至少包含一个位于驱动轮 11、 12内侧的下视传感器 2发 送悬空信号时, 控制模块判定本体 1己处于悬空状态 (可能本体 1被撞翻或人为提起 装置本体 1或轮子悬挂在某边缘处), 发出中断工作状态指令。
本实施例中, 在驱动轮 11、 12内侧设置了两个下视传感器 2, 可以非常准确地确 定自移动装置是否处于被翻转和被提起的状态, 从而及时做出正确的判断, 以避免浪 费能源及产生可能的污染。

Claims

权利要求书
1、 一种自移动装置, 其特征在于, 包括- 本体 (1 );
下视传感器(2), 所述下视传感器(2)数量为两个以上, 所述两个以上的下视传 感器 (2) 均安装在所述本体 (1 ) 的底部;
控制模块, 所述控制模块安装在所述本体(1 ) 内, 与所述下视传感器 (2)连接, 所述控制模块根据所述下视传感器 (2) 发送来的悬空信号数量控制所述本体 (1 ) 动 作。
2、如权利要求 1所述的自移动装置,其特征在于,所述两个以上的下视传感器(2) 均位于所述本体 (1 ) 底部的外缘。
3、 如权利要求 2所述的自移动装置, 其特征在于, 所述下视传感器 (2) 共有三 个, 其中一个位于所述本体 (1 ) 的前部, 另外两个位于所述本体 (1 ) 的两侧。
4、如权利要求 1所述的自移动装置,其特征在于,所述两个以上的下视传感器(2) 包含位于本体 (1 )底部外缘的下视传感器(2) 以及位于所述本体 (1 )底部驱动轮的 内侧的下视传感器 (2)。
5、 如权利要求 1所述的自移动装置, 其特征在于, 还包括报警模块, 所述报警模 块与所述控制模块通讯连接。
6、 一种自移动装置的控制方法, 其特征在于, 包括以下步骤- 步骤 (1 ) 位于本体 (1 ) 底部的两个以上的下视传感器 (2) 采集悬空信号; 步骤 (2) 所述下视传感器 (2) 将采集的悬空信号发送到控制模块;
步骤 (3 ) 所述控制模块根据所述下视传感器 (2) 发送来的悬空信号数量对所述 本体 (1 ) 进行如下控制:
当仅有一个所述下视传感器发送来悬空信号时, 所述控制模块控制所述本体 (1 ) 转向;
当有两个以上所述下视传感器发送来悬空信号时,所述控制模块控制所述本体( 1 ) 进入中断工作状态。
7、 一种自移动装置的控制方法, 其特征在于, 包括以下步骤- 步骤 (1 ) 位于本体 (1 ) 底部的两个以上的下视传感器 (2) 采集悬空信号; 步骤 (2) 所述下视传感器 (2) 将采集的悬空信号发送到控制模块;
步骤 (3 ) 所述控制模块根据所述下视传感器 (2) 发送来的悬空信号数量对所述 本体 (1 ) 进行如下控制:
当仅有一个所述下视传感器发送来悬空信号时, 所述控制模块控制所述本体 (1 ) 转向;
当有两个以上所述下视传感器发送来悬空信号时,所述控制模块控制所述本体( 1 ) 在时间 T内先转向, 在到达时间 T后, 如果仍有两个以上所述下视传感器发送来悬空 信号则控制所述本体(1 )进入中断工作状态, 如果仅有一个所述下视传感器发送来悬 空信号则控制所述本体(1 )继续转向, 如果没有所述下视传感器发送来悬空信号则控 制所述本体 (1 ) 正常作业, 其中 τ〉ο。
8、 如权利要求 7所述的自移动装置的控制方法, 其特征在于, 所述 Τ为 300~800 毫秒。
9、 一种自移动装置的控制方法, 其特征在于, 包括以下步骤- 步骤(1 )位于本体(1 )底部的两个以上的下视传感器(2)采集悬空信号, 其中, 所述两个以上的下视传感器 (2)包含位于本体 (1 )底部外缘的下视传感器(2) 以及 位于所述本体 (1 ) 底部驱动轮 (11、 12) 的内侧的下视传感器 (2);
步骤 (2) 所述下视传感器 (2) 将采集的悬空信号发送到控制模块;
步骤 (3 ) 所述控制模块根据所述下视传感器 (2) 发送来的悬空信号数量对所述 本体 (1 ) 进行如下控制:
当仅有一个下视传感器发送来悬空信号时, 所述控制模块控制本体 (1 ) 转向; 当有两个以上所述下视传感器发送来悬空信号时, 若包含位于驱动轮 (11、 12) 内侧的下视传感器发送来悬空信号, 所述控制模块控制所述本体(1 )进入中断工作状 态; 否则, 所述控制模块控制所述本体 (1 ) 转向。
10、 如权利要求 6-9任一所述的自移动装置的控制方法, 其特征在于, 所述控制模块 还连接一报警模块, 所述控制模块控制所述本体 (1 ) 进入中断工作状态同时进行报警。
PCT/CN2014/078784 2013-05-31 2014-05-29 一种自移动装置及其控制方法 WO2014190919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016515639A JP6815197B2 (ja) 2013-05-31 2014-05-29 自走式装置およびその制御方法
EP14804380.5A EP3007023B1 (en) 2013-05-31 2014-05-29 Self-moving device and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310213355.4A CN104216404B (zh) 2013-05-31 2013-05-31 一种自移动装置及其控制方法
CN201310213355.4 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014190919A1 true WO2014190919A1 (zh) 2014-12-04

Family

ID=51988013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078784 WO2014190919A1 (zh) 2013-05-31 2014-05-29 一种自移动装置及其控制方法

Country Status (4)

Country Link
EP (1) EP3007023B1 (zh)
JP (1) JP6815197B2 (zh)
CN (1) CN104216404B (zh)
WO (1) WO2014190919A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511364A (ja) * 2015-04-17 2018-04-26 アクチエボラゲット エレクトロルックス ロボット掃除機およびロボット掃除機を制御する方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3055765C (en) 2017-03-10 2022-10-04 Sharkninja Operating Llc Agitator with debrider and hair removal
CN108720729A (zh) * 2017-04-14 2018-11-02 科沃斯机器人股份有限公司 清洁机器人
US10905298B2 (en) 2017-05-03 2021-02-02 Shenzhen Silver Star Intelligent Technology Co., Ltd. Cleaning equipment
CN208002738U (zh) * 2017-05-03 2018-10-26 深圳市银星智能科技股份有限公司 清洁设备
US11202542B2 (en) 2017-05-25 2021-12-21 Sharkninja Operating Llc Robotic cleaner with dual cleaning rollers
CN108089580B (zh) * 2017-12-14 2021-05-18 北京奇虎科技有限公司 智能扫地装置沿边工作的方法及装置
CN110215153B (zh) * 2018-03-02 2024-03-26 科沃斯机器人股份有限公司 清洁机器人及其运行控制方法
US11525921B2 (en) 2018-04-03 2022-12-13 Sharkninja Operating Llc Time of flight sensor arrangement for robot navigation and methods of localization using same
CN108724143A (zh) * 2018-05-31 2018-11-02 深圳市银星智能科技股份有限公司 移动机器人及其控制方法
EP3829824A4 (en) 2018-08-01 2022-06-15 SharkNinja Operating LLC ROBOTIC VACUUM CLEANER
CN110051290A (zh) * 2019-04-04 2019-07-26 尚科宁家(中国)科技有限公司 一种控制扫地机器人的方法
CN111436864B (zh) * 2020-03-20 2023-12-29 美智纵横科技有限责任公司 控制方法、装置以及存储介质
CN113243830A (zh) * 2021-05-17 2021-08-13 威海锴滢智能科技有限公司 一种基于坠物提醒的清扫机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155308B2 (en) 2000-01-24 2006-12-26 Irobot Corporation Robot obstacle detection system
US20120011669A1 (en) * 2007-05-09 2012-01-19 Irobot Corporation Compact autonomous coverage robot
CN102488481A (zh) * 2011-11-25 2012-06-13 马英南 一种智能扫地机器人的设计方法
CN103092206A (zh) * 2013-02-27 2013-05-08 慈溪思达电子科技有限公司 管道机器人的遍历路径规划方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180010A (ja) * 1988-01-08 1989-07-18 Sanyo Electric Co Ltd 移動車
JP3893657B2 (ja) * 1997-01-31 2007-03-14 マツダ株式会社 無人搬送車の誘導装置
US6956348B2 (en) * 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
JP2001125642A (ja) * 2000-09-08 2001-05-11 Bandai Co Ltd 移動装置
EP2330473B2 (en) * 2001-06-12 2019-06-19 iRobot Corporation Mobile robot
KR20030046325A (ko) * 2001-12-05 2003-06-12 아메니티-테크노스 가부시키가이샤 자주식청소장치 및 자주식청소방법
JP4838978B2 (ja) * 2002-12-16 2011-12-14 アイロボット コーポレイション 自律的床清掃ロボット
KR100595571B1 (ko) * 2004-09-13 2006-07-03 엘지전자 주식회사 로봇 청소기
EP2251757B1 (en) * 2005-12-02 2011-11-23 iRobot Corporation Coverage robot mobility
JP2007156884A (ja) * 2005-12-06 2007-06-21 Sharp Corp 自走式掃除機システム
CN101108480A (zh) * 2006-07-18 2008-01-23 深圳职业技术学院 机器人及其行走控制方法
CN200972604Y (zh) * 2006-11-14 2007-11-07 喻礼琼 一种用于移动平台的台阶检测装置
US8961695B2 (en) * 2008-04-24 2015-02-24 Irobot Corporation Mobile robot for cleaning
CN102023638B (zh) * 2010-12-20 2012-11-14 西南交通大学 一种摊铺机行走控制装置及控制方法
CN102591338B (zh) * 2011-01-05 2014-07-30 泰怡凯电器(苏州)有限公司 擦玻璃机器人的控制系统及其控制方法
CN202477560U (zh) * 2012-03-02 2012-10-10 成浩 具有攀爬功能的移动式清洁机器人

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7155308B2 (en) 2000-01-24 2006-12-26 Irobot Corporation Robot obstacle detection system
US20120011669A1 (en) * 2007-05-09 2012-01-19 Irobot Corporation Compact autonomous coverage robot
CN102488481A (zh) * 2011-11-25 2012-06-13 马英南 一种智能扫地机器人的设计方法
CN103092206A (zh) * 2013-02-27 2013-05-08 慈溪思达电子科技有限公司 管道机器人的遍历路径规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007023A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018511364A (ja) * 2015-04-17 2018-04-26 アクチエボラゲット エレクトロルックス ロボット掃除機およびロボット掃除機を制御する方法

Also Published As

Publication number Publication date
EP3007023A4 (en) 2017-04-19
EP3007023B1 (en) 2018-11-28
JP6815197B2 (ja) 2021-01-20
CN104216404A (zh) 2014-12-17
CN104216404B (zh) 2017-02-15
EP3007023A8 (en) 2016-12-21
EP3007023A1 (en) 2016-04-13
JP2016520389A (ja) 2016-07-14

Similar Documents

Publication Publication Date Title
WO2014190919A1 (zh) 一种自移动装置及其控制方法
CN111345741B (zh) 一种清洁机器人、清洁方法
CN104765363B (zh) 智能扫地机器人及其控制方法
CN106618386B (zh) 一种清洁机器人
KR100595571B1 (ko) 로봇 청소기
JP4522426B2 (ja) ロボット掃除機システム
TWI580387B (zh) 機器人
CN107024928B (zh) 一种智能扫地机器人及智能扫地机器人控制方法
KR20060118901A (ko) 자율 주행 로봇의 위치인식 시스템
CN107615203A (zh) 自走式电子设备及所述自走式电子设备的行走方法
WO2014175706A1 (ko) 로봇 청소기 및 그 제어방법
TW202038842A (zh) 待吸物收集站、由待吸物收集站與抽吸式清潔設備組成之系統以及相應方法
CN204698449U (zh) 一种自移动装置
CN212489787U (zh) 一种拖地机器人
CN102591338A (zh) 擦玻璃机器人的控制系统及其控制方法
CN104188600A (zh) 一种应用于自动地面清洁机装置的碰撞检测的方法及装置
KR20200008401A (ko) 청소 시스템
CN109984664A (zh) 多介质智能清洁机器人及其控制方法
CN203259877U (zh) 一种婴儿车智能控制系统
CN112056982A (zh) 一种小型家用擦窗装置及其控制方法
CN108319270B (zh) 一种基于历史数据分析的自动吸尘机器人最优路径规划方法
CN113086892B (zh) 一种无线遥控叉车系统
CN112641369A (zh) 一种家用玻璃清洁机器人控制系统
CN212009387U (zh) 带自动功能的遥控马路清扫机
CN211066421U (zh) 具有环境感知的移动机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016515639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014804380

Country of ref document: EP