WO2014189178A1 - 선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지 - Google Patents

선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지 Download PDF

Info

Publication number
WO2014189178A1
WO2014189178A1 PCT/KR2013/008544 KR2013008544W WO2014189178A1 WO 2014189178 A1 WO2014189178 A1 WO 2014189178A1 KR 2013008544 W KR2013008544 W KR 2013008544W WO 2014189178 A1 WO2014189178 A1 WO 2014189178A1
Authority
WO
WIPO (PCT)
Prior art keywords
doping
emitter
electrode pattern
alignment mark
substrate
Prior art date
Application number
PCT/KR2013/008544
Other languages
English (en)
French (fr)
Inventor
김용현
이지연
이정철
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to CN201380076690.2A priority Critical patent/CN105264302B/zh
Priority to US14/892,943 priority patent/US10522698B2/en
Publication of WO2014189178A1 publication Critical patent/WO2014189178A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar cell and a solar cell manufactured therefrom, and more particularly, to a method for manufacturing a solar cell having a selective emitter and a solar cell manufactured therefrom.
  • the solar cell has a substrate and an emitter layer each made of a semiconductor of a different conductive type, such as p-type and n-type.
  • the emitter is positioned on the light incident surface side of the substrate, and a p-n junction is formed at the interface between the substrate and the emitter.
  • a front electrode that is electrically connected to the emitter is formed on the emitter, and a rear electrode that is electrically connected to the substrate is formed on the other surface of the substrate facing the light incident surface.
  • electrons inside the semiconductor become free electrons (hereinafter referred to as 'electrons') by a photoelectric effect, and electrons and holes are based on the principle of pn junction. This moves toward the n-type semiconductor and the p-type semiconductor, for example toward the emitter and the substrate. The moved electrons and holes move to respective electrodes electrically connected to the substrate and the emitter.
  • the efficiency of the solar cell is affected by the concentration of dopants doped in the emitter.
  • concentration of impurities doped in the emitter when the concentration of impurities doped in the emitter is low, that is, when the emitter is formed of a low concentration doping portion, recombination of electrons and holes is reduced, so that the short-circuit current density Jsc and the open voltage Voc are decreased.
  • the contact resistance may increase and the fill factor may decrease.
  • the concentration of the doped impurities is high, that is, when the emitter is formed of a high concentration doping portion, the contact resistance decreases to increase the fill factor, whereas the short circuit current density Jsc and the open voltage Voc may decrease.
  • a solar cell having a selective emitter has an entire area of the emitter since the emitter is composed of a first emitter portion (low concentration doping portion) and a second emitter portion (high concentration doping portion), and a front electrode is formed on the second emitter portion. It is possible to improve the conversion efficiency compared to the conventional solar cells doped with a uniform concentration of the impurities.
  • the parallel resistance may increase and the fill factor may be lowered, thereby increasing the efficiency of the solar cell. There is a problem that can not be effectively improved.
  • An object of the present invention is to form an alignment mark by doping in the manufacture of selective emitters and to align the electrode patterns formed on the selective emitters with the electrode lines formed on the selective emitters by alignment printing the composition for forming a solar cell electrode using the same It is an object of the present invention to provide a method for manufacturing a solar cell which can improve the degree.
  • Another object of the present invention is to provide a solar cell excellent in conversion efficiency and the Fill Factor value produced by the manufacturing method.
  • One aspect of the present invention includes the steps of locally doping an impurity on one surface of a substrate to form an electrode pattern portion and an alignment mark; And a second doping of impurities on the entire surface of the first doped substrate, wherein the alignment mark is formed as a first emitter portion or a second emitter portion by the first doping and the second doping.
  • the electrode pattern portion relates to a method of manufacturing a solar cell including a selective emitter, characterized in that formed as a second emitter portion.
  • the first doping may be to inject impurities by printing the doping paste on the substrate.
  • After the first doping may further comprise a heat treatment for about 1 minute to about 10 minutes at about 250 °C to about 350 °C.
  • the second doping may be to inject impurities into the gas doping in the furnace of about 800 °C to about 850 °C.
  • the first emitter portion may have a lower impurity concentration than the second emitter portion.
  • the doping thickness of the second emitter portion formed on the substrate may be greater than the doping thickness of the first emitter portion.
  • the first doping may be formed so that the electrode pattern portion and the alignment mark are spaced apart from each other, and the electrode pattern portion and the alignment mark may be formed as a second emitter portion by the second doping.
  • the first doping excludes only an area in which the alignment mark is formed in the electrode pattern part, and the alignment mark is a first emitter part locally formed in the electrode pattern part by a second doping.
  • the pattern portion may be formed as a second emitter portion.
  • the electrode pattern part may include one or more electrode patterns.
  • the number of alignment marks may be one to six.
  • the number of the alignment marks is two, four or six, the aligned alignment marks may have a symmetrical structure.
  • the alignment mark may be shaped or amorphous and may have a diameter of about 0.2 mm to about 2 mm.
  • the electrode pattern part may include a bus bar pattern and a finger bar pattern.
  • the substrate may be a p-type or n-type semiconductor substrate.
  • the doped impurities When the substrate is a p-type semiconductor substrate, the doped impurities may be a Group 5 element, and when the substrate is an n-type semiconductor substrate, the doped impurities may be a Group 3 element.
  • the manufacturing method of the present invention comprises the steps of performing an alignment printing on the second emitter portion of the composition for forming a solar cell electrode using the alignment mark; And forming a front electrode after firing.
  • Solar cell which is another aspect of the present invention can be manufactured by the above manufacturing method.
  • an alignment mark is formed by doping at the time of manufacturing the selective emitter, and the degree of matching between the electrode pattern formed on the selective emitter and the manufactured electrode line is used using the same. Since it is possible to increase the solar cell manufactured therefrom has excellent conversion efficiency and fill factor values.
  • Figure 3 shows a cross-sectional view of the selective emitter of Figure 1 (b) prepared according to the first embodiment of the present invention based on the line M-M '.
  • Figure 4 shows a cross-sectional view of the selective emitter of Figure 2 (b) prepared according to the second embodiment of the present invention based on the N-N 'line.
  • FIG. 5A and 5B show alignment marks formed on a substrate according to the first embodiment
  • FIG. 5C shows alignment marks formed on the substrate according to the second embodiment.
  • Figure 6 shows a cross-sectional view of a solar cell comprising a selective emitter prepared according to one embodiment of the present invention.
  • the present invention includes the steps of locally doping an impurity on one surface of a substrate to form an electrode pattern portion and an alignment mark; And a second doping of an impurity on the entire surface of the first doped substrate, wherein the alignment mark is formed of a first emitter portion or a second emitter portion by the first doping and the second doping.
  • the electrode pattern portion relates to a method of manufacturing a solar cell including a selective emitter, characterized in that formed as a second emitter portion.
  • the alignment mark between the electrode pattern formed on the selective emitter and the manufactured electrode line may be increased using the alignment mark to improve the efficiency of the solar cell.
  • the process efficiency can be maximized.
  • Step (S1) is a step of forming an electrode pattern portion and an alignment mark by locally doping impurities on one surface of the substrate, wherein the substrate provided may be a p-type or n-type substrate, and the first Doping may inject impurities into the substrate by printing the doping paste onto the substrate.
  • the doping paste used in the first doping may include antimony (Sb), arsenic (As), phosphorus (P), and the like, which are group 5 elements when the substrate provided is a p-type substrate. It may be a paste containing boron (B), gallium (Ga), indium (In), or the like, which is a Group 3 element.
  • the second emitter part may be defined as a high concentration doping part formed locally on the first emitter part.
  • the alignment mark formed by the first doping in step S1 may be formed as a first emitter part or a second emitter part after the second doping in step S2 according to the formation method of the alignment mark, and the electrode pattern part After the second doping in the step S2, the second emitter part may be formed.
  • Step (S1) may further include a heat treatment for about 1 minute to about 10 minutes at about 250 °C to about 350 °C after the first doping, drying the doping paste printed by the heat treatment and at the same time the electrode pattern portion or Impurities that form the alignment mark are doped on the substrate.
  • an impurity is doped on the entire surface of the first doped substrate in operation S1.
  • the second doping is a step of doping impurities at a uniform concentration on the entire surface of the substrate for pn junction, and gas doping may be performed by injecting an impurity gas in a high temperature furnace.
  • the doping may be performed by injecting a liquid or gaseous gas in the furnace of about 800 °C to about 850 °C.
  • the dopant gas may include antimony (Sb), arsenic (As), phosphorus (P), etc., which are group 5 elements when the substrate provided is a p-type substrate, and in the case of an n-type substrate, It may include boron (B), gallium (Ga), indium (In), etc., which is a group element, but it is optional to use an element of the same group or the same element as the impurities contained in the doping paste used for the first doping. It is advantageous for the manufacture of the foundation. Injection of the impurity gas in the step (S2) may be made in a furnace of about 800 °C to about 850 °C.
  • the electrode pattern portion may be formed as the second emitter portion by the second doping, and the entire region of the substrate except the electrode pattern portion or the alignment mark may be formed as the first emitter portion.
  • the first doping may be performed by printing a doping paste in a pattern spaced apart from the electrode pattern portion and the alignment mark.
  • the electrode pattern portion and the alignment mark may be formed as the second emitter portion, respectively, during the second doping, whereby the alignment mark may be formed from the electrode pattern portion.
  • the alignment pattern formed by the second emitter part is spaced apart from the alignment mark, and the composition for forming a solar cell electrode is aligned on the electrode pattern part formed by the second emitter part, followed by a firing step, followed by a firing step.
  • An electrode may be formed on the top.
  • the first doping may be performed by printing a doping paste in a pattern excluding a region where the alignment mark is formed in the electrode pattern part.
  • the alignment mark may be a region formed locally in the electrode pattern portion, the alignment mark may be formed as a first emitter portion, and the electrode pattern portion may be formed as a second emitter portion after second doping.
  • the electrode is formed on the electrode pattern portion through a firing step. Can be.
  • the second doping thickness may be about 0.5 ⁇ m to about 2 ⁇ m, and the surface resistance of the second emitter part may be about 50 ⁇ s / ⁇ to about 80 ⁇ s / ⁇ .
  • the electrode pattern portion or the alignment mark formed as the second emitter portion may be identified from the low concentration doping portion, which is the first emitter portion, for alignment printing. Visibility can be secured as a cover.
  • the first emitter portion and the second emitter portion have a first doping and a second doping so as to have a difference in surface resistance from about 30 kPa / square to about 50 kPa / square.
  • the electrode pattern part may include one or more electrode patterns.
  • the electrode pattern part may include a bus bar pattern and a finger bar pattern.
  • the alignment mark may be amorphous or amorphous, and may have a diameter of about 0.1 mm to about 2 mm, but is not limited thereto.
  • the alignment mark may have a shape of a sphere, a rectangle, a cross, a negative shape, and the like.
  • the alignment marks may be formed of one to six.
  • the aligned alignment marks may have a symmetrical structure, and in the case of having the symmetrical structure, the degree of registration may be further increased.
  • the solar cell may be manufactured.
  • Aligned printing in the step S4 may be performed by using a Baccini printer, etc., which may optically distinguish the alignment marks and enable precise printing through the separated information.
  • FIG. 1 schematically illustrates a method of manufacturing a solar cell including a selective emitter according to a first embodiment of the present invention.
  • FIG. 1 (a) illustrates that the electrode pattern parts 10 and 20 and the alignment mark 30 are formed by first doping the surface of the substrate 100
  • FIG. 1 (b) illustrates the first doped substrate.
  • a selective emitter is shown in which an alignment mark is formed by uniformly doping impurities on the front surface of the substrate.
  • the alignment mark of the first embodiment is formed of the second emitter portion, which is a high concentration doping portion, similarly to the electrode pattern portion.
  • the electrode pattern part may include a bus bar pattern 10 and a finger bar pattern 20, and an align mark 30 may be formed to be spaced apart from the electrode pattern.
  • FIG. 1 (c) shows a finger bar 40 on the electrode pattern portion after alignment printing with the composition for forming a solar cell electrode using the alignment mark 30 formed according to the first embodiment.
  • An electrode line including a bus bar 50 is formed.
  • FIG. 3 is a cross-sectional view of the selective emitter of FIG. 1 (b) manufactured according to the first embodiment with reference to the MM ′ line.
  • the emitter layer 110 may include a first emitter part and a first emitter part.
  • 2 emitter portions, the busbar pattern 10 and the alignment mark 30 are formed of a second emitter portion doped at a high concentration, and the thickness H2 of the second emitter portion is the second undoped first portion. It can be seen that the doping thickness is formed thicker than the thickness H1 of the emitter portion.
  • FIG. 5 illustrates an alignment mark formed on a substrate according to the first embodiment.
  • FIG. 5A illustrates a cross align mark 200
  • FIG. 5B illustrates a spherical alignment mark 300. .
  • Figure 2 schematically shows a method of manufacturing a solar cell comprising a selective emitter according to a second embodiment of the present invention.
  • the alignment mark of the first embodiment is formed to be spaced apart from the electrode pattern portion, whereas the alignment mark of the second embodiment is doped except for a region in which the alignment mark is formed in the electrode pattern portion during the first doping.
  • the alignment mark remains as the first emitter portion, which is a lightly doped portion, while the surrounding area surrounding the alignment mark is formed of the second emitter portion as the electrode pattern portion, which is a high concentration doping portion, so that impurities between the alignment mark and the electrode pattern portion are formed.
  • the alignment mark can be identified or recognized according to the concentration difference. Therefore, the alignment mark of the second embodiment may be defined as a lightly doped portion formed locally in the electrode pattern portion.
  • FIG. 2A illustrates an electrode pattern portion including a bus bar pattern 10 and a finger bar pattern 20 formed by first doping a surface of the substrate 100, and an undoped region in the electrode pattern portion.
  • the alignment mark is formed as shown in FIG. 2, except that the alignment mark is formed as an undoped region by excluding the region where the alignment mark 30 is formed in the electrode pattern part during the first doping.
  • FIG. 2 (b) shows a selective emitter formed by uniformly doping impurities on the entire surface of the first doped substrate so that the alignment mark is the first emitter portion and the electrode pattern portion is the second emitter portion.
  • FIG. 2 (c) shows a finger bar 40 on the electrode pattern portion after alignment printing with the composition for forming a solar cell electrode using the alignment mark 30 formed according to the second embodiment.
  • An electrode line including a bus bar 50 is formed.
  • the emitter layer 110 includes a first emitter part and a second emitter part, and the busbar pattern 10 is formed of a second emitter part heavily doped by a second doping. Since the alignment mark 30 is an area excluded from the printing object during the first doping, the alignment mark 30 is formed as the first emitter part by the second doping, and the impurity concentration difference or the doping thickness between the busbar pattern and the alignment mark (H2-H1) By this, alignment marks formed in the electrode pattern portion can be identified.
  • FIG. 5C illustrates an alignment mark formed of a lightly doped portion in the electrode pattern portion by the second doping, and shows a spherical alignment mark 400 formed in the bus bar.
  • FIG. 6 illustrates a cross-sectional view of a solar cell manufactured according to an embodiment of the present invention, wherein the selective emitter layer 110 includes a first emitter portion and a second emitter portion by doping impurities on the substrate 100.
  • the composition for forming a solar cell electrode is precisely aligned on a second emitter part which is a high concentration doping part.
  • the front electrode 130 may be formed by baking after aligned printing.
  • the rear surface of the substrate 100 may include a rear electrode 150, and may further include a back surface field (BSF) layer 140.
  • BSF back surface field
  • a doping paste (Honeywell, Inc.) containing a Group 5 element P on one surface of the p-type semiconductor substrate is first doped to a thickness of 5 ⁇ m using a poly 380 mesh to be spaced apart from the electrode pattern portion and the electrode pattern portion.
  • Printed alignment marks The printed substrate was dried by heat treatment at 300 ° C. for 5 minutes.
  • the dried substrate was second doped onto the front surface of the first doped substrate by injecting POCl 3 gas in a 850 ° C. diffusion furnace.
  • the electrode pattern portion and the align mark are formed as the second emitter portion, and the substrate region except the electrode pattern portion and the align mark is formed as the first emitter portion, thereby producing a selective emitter.
  • the substrate was removed with PSG (phosphersilicate glass) on the surface of the substrate by HF, and then SiN-coated on the surface by PECVD to form an antireflection film. Dried at to form a back electrode.
  • PSG phosphersilicate glass
  • a solar cell including a selective emitter was manufactured in the same manner as in Example 1, except that the electrode was printed using the wafer edge without forming an alignment mark, and the physical properties thereof are shown in Table 1 below.
  • Example 1 which is aligned and printed using the alignment mark of the present invention, has a higher concentration doping portion on the emitter, which is more selective than that of Comparative Example 1, wherein the electrode is printed using the wafer edge without forming an alignment mark. It can be seen that the fill factor and the conversion efficiency are excellent due to the excellent matching of printed electrode lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 기판의 일면(一面)에 국부적으로 불순물을 제1 도핑하여 전극패턴부 및 얼라인 마크를 형성하는 단계; 상기 제1 도핑된 기판 전면(全面)에 불순물을 제2 도핑하는 단계;를 포함하고, 상기 제1 도핑과 제2 도핑에 의하여, 상기 얼라인 마크는 제1 에미터부 또는 제2 에미터부로 형성되며, 상기 전극패턴부는 제2 에미터부로 형성되는 것을 특징으로 하는 선택적 에미터를 포함하는 태양전지의 제조방법에 관한 것으로, 선택적 에미터 제조시 도핑에 의하여 얼라인 마크를 형성하고 이를 이용하여 선택적 에미터에 형성된 전극패턴과 제조된 전극 라인의 정합도(整合度)를 높일 수 있으며, 이로부터 제조된 태양전지는 변환효율 및 Fill Factor 값이 우수하다.

Description

선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지
본 발명은 태양전지의 제조방법 및 이로부터 제조된 태양전지에 관한 것으로, 보다 구체적으로 선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지에 관한 것이다.
태양 전지는 p형과 n형처럼 서로 다른 도전성 타입(conductive type)의 반도체로 각각 이루어지는 기판(substrate) 및 에미터 층(emitter layer)을 구비한다. 이때, 에미터는 기판의 광입사면 쪽에 위치하며, 기판과 에미터의 계면에는 p-n 접합이 형성된다.
에미터 상부에는 상기 에미터와 전기적으로 통전되는 전면 전극이 형성되고 상기 광입사면과 대향되는 기판의 타면에는 상기 기판과 전기적으로 통전되는 후면 전극이 형성된다.
상기 구조를 갖는 태양 전지에 빛이 입사되면 반도체 내부의 전자는 광전 효과(photoelectric effect)에 의해 자유전자(free electron)(이하, ‘전자’라 함)가 되고, 전자와 정공은 p-n 접합의 원리에 따라 n형 반도체와 p형 반도체 쪽으로, 예를 들어 에미터와 기판 쪽으로 각각 이동한다. 그리고 이동한 전자와 정공은 기판 및 에미터에 전기적으로 연결된 각각의 전극으로 이동한다.
상기 구조의 태양전지에 있어서 태양전지의 효율은 에미터에 도핑(doping)된 불순물(dopant)의 농도에 영향을 받는다. 일 예로서, 에미터에 도핑된 불순물의 농도가 낮은 경우, 즉 에미터가 저농도 도핑부로 형성된 경우에는 전자와 정공의 재결합(recombination)이 감소하여 단락 전류 밀도(Jsc) 및 개방전압(Voc)이 증가하는데 반하여, 접촉 저항이 증가하여 Fill Factor가 감소할 수 있다. 반대로, 도핑된 불순물의 농도가 높은 경우, 즉 에미터가 고농도 도핑부로 형성된 경우에는 접촉 저항이 감소하여 Fill Factor가 증가하는데 반하여, 단락 전류 밀도(Jsc) 및 개방전압(Voc)이 감소할 수 있다.
따라서 근래에는 저농도 도핑부와 고농도 도핑부의 장점을 모두 얻을 수 있는 구조의 태양전지, 예를 들면 선택적 에미터를 갖는 태양전지가 개발되고 있다.
선택적 에미터를 갖는 태양전지는 에미터가 제1 에미터부(저농도 도핑부)와 제2 에미터부(고농도 도핑부)로 구성되고, 제2 에미터부 위에 전면 전극이 형성되므로, 에미터의 전체 영역에 불순물의 농도가 균일하게 도핑된 통상의 태양전지에 비하여 변환효율을 향상시킬 수 있다.
그러나, 선택적 에미터를 갖는 태양전지에 있어서, 전면 전극이 선택적으로 고농도로 도핑된 제2 에미터부 위에 정확하게 형성되지 못하면, 병렬저항이 증가하여 Fill Factor가 저하될 수 있고, 이로 인해 태양 전지의 효율을 효과적으로 향상시킬 수 없는 문제점이 있다.
따라서, 선택적 에미터 상에 전극 형성용 조성물을 인쇄시 인쇄된 전극 패턴과 제2 에미터부가 보다 정교하게 접합되도록 정렬 인쇄(aligned printing)하는 방법이 요구되고 있다.
본 발명의 목적은 선택적 에미터 제조시 도핑에 의하여 얼라인 마크를 형성하고 이를 이용하여 태양전지 전극 형성용 조성물을 정렬 인쇄(aligned printing)하여 선택적 에미터에 형성된 전극패턴과 제조된 전극 라인의 정합도(整合度)를 향상시킬 수 있는 태양전지의 제조방법을 제공하기 위함이다.
본 발명의 다른 목적은 상기 제조방법으로 제조된 변환효율 및 Fill Factor 값이 우수한 태양전지를 제공하기 위함이다.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
본 발명의 하나의 관점은 기판의 일면(一面)에 국부적으로 불순물을 제1 도핑하여 전극패턴부 및 얼라인 마크를 형성하는 단계; 상기 제1 도핑된 기판 전면(全面)에 불순물을 제2 도핑하는 단계;를 포함하고, 상기 제1 도핑과 제2 도핑에 의하여, 상기 얼라인 마크는 제1 에미터부 또는 제2 에미터부로 형성되며, 상기 전극패턴부는 제2 에미터부로 형성되는 것을 특징으로 하는 선택적 에미터를 포함하는 태양전지의 제조방법에 관한 것이다.
상기 제1 도핑은 도핑 페이스트를 기판에 인쇄하여 불순물을 주입하는 것일 수 있다.
상기 제1 도핑 후 약 250℃ 내지 약 350℃에서 약 1 분 내지 약 10 분간 열처리하는 단계를 더 포함할 수 있다.
상기 제2 도핑은 약 800℃ 내지 약 850℃의 퍼니스에서 가스 도핑으로 불순물을 주입하는 것일 수 있다.
상기 제1 에미터부는 상기 제2 에미터부보다 불순물 농도가 낮을 수 있다.
상기 기판에 형성된 제2 에미터부의 도핑 두께는 상기 제1 에미터부의 도핑 두께보다 클 수 있다.
상기 제1 도핑은 상기 전극패턴부와 상기 얼라인 마크가 이격되도록 도핑하며, 상기 제2 도핑에 의하여 상기 전극패턴부 및 상기 얼라인 마크가 제2 에미터부로 형성될 수 있다.
상기 제1 도핑은 상기 전극패턴부에서 상기 얼라인 마크가 형성되는 영역만을 제외하고 도핑하며, 제2 도핑에 의하여 상기 얼라인 마크는 상기 전극패턴부에 국부적으로 형성된 제1 에미터부로, 상기 전극패턴부는 제2 에미터부로 형성될 수 있다.
상기 전극패턴부는 1종 이상의 전극패턴을 포함할 수 있다.
상기 얼라인 마크의 개수는 1개 내지 6개 일 수 있다.
상기 얼라인 마크의 개수가 2개, 4개 또는 6개이며, 배열된 얼라인 마크는 대칭구조를 가질 수 있다.
상기 얼라인 마크는 정형 또는 무정형이며, 직경이 약 0.2mm 내지 약 2mm 일 수 있다.
상기 전극패턴부는 버스바 패턴 및 핑거바 패턴을 포함할 수 있다.
상기 기판은 p형 또는 n형 반도체 기판일 수 있다.
상기 기판이 p형 반도체 기판인 경우, 도핑되는 불순물은 5족 원소이고, 상기 기판이 n형 반도체 기판인 경우, 도핑되는 불순물은 3족 원소일 수 있다.
본 발명의 제조방법은 상기 얼라인 마크를 이용하여 태양전지 전극 형성용 조성물을 제2 에미터부 위에 정렬 인쇄(aligned printing)하는 단계; 및 소성 후 전면 전극을 형성하는 단계;를 더 포함할 수 있다.
본 발명의 다른 관점인 태양전지는 상기 제조방법으로 제조될 수 있다.
본 발명의 선택적 에미터를 갖는 태양전지의 제조방법은 선택적 에미터 제조시 도핑에 의하여 얼라인 마크를 형성하고 이를 이용하여 선택적 에미터에 형성된 전극패턴과 제조된 전극 라인의 정합도(整合度)를 높일 수 있으므로, 이로부터 제조된 태양전지는 변환효율 및 Fill Factor 값이 우수하다.
도 1 (a) 내지 (c)는 본 발명의 제1 구체예에 따른 선택적 에미터를 포함하는 태양전지의 제조방법을 개략적으로 나타낸 것이다.
도 2 (a) 내지 (c)는 본 발명의 제2 구체예에 따른 선택적 에미터를 포함하는 태양전지의 제조방법을 개략적으로 나타낸 것이다.
도 3은 본 발명의 제1 구체예에 따라 제조된 도 1 (b)의 선택적 에미터를 M-M´선을 기준으로 나타낸 단면도를 나타낸 것이다.
도 4는 본 발명의 제2 구체예에 따라 제조된 도 2 (b)의 선택적 에미터를 N-N´선을 기준으로 나타낸 단면도를 나타낸 것이다.
도 5 (a) 및 (b)는 제1 구체예에 따라 기판 상에 형성된 얼라인 마크를 나타낸 것이고, 도 5 (c)는 제2 구체예에 따라 기판 상에 형성된 얼라인 마크를 나타낸 것이다.
도 6은 본 발명의 일 구체예에 따라 제조된 선택적 에미터를 포함하는 태양전지의 단면도를 나타낸 것이다.
이하, 본 발명을 구체적으로 설명하기로 한다.
선택적 에미터를 갖는 태양전지의 제조방법
본 발명은 기판의 일면(一面)에 국부적으로 불순물을 제1 도핑하여 전극패턴부 및 얼라인 마크를 형성하는 단계; 상기 제1 도핑된 기판 전면(全面)에 불순물을 제2 도핑하는 단계;를 포함하고, 상기 제1 도핑과 제2 도핑에 의하여, 상기 얼라인 마크는 제1 에미터부 또는 제2 에미터부로 형성되며, 상기 전극패턴부는 제2 에미터부로 형성되는 것을 특징으로 하는 선택적 에미터를 포함하는 태양전지의 제조방법에 관한 것이다.
상기와 같이, 도핑에 의하여 얼라인 마크를 형성하는 경우, 얼라인 마크를 이용하여 선택적 에미터에 형성된 전극패턴과 제조된 전극 라인의 정합도(整合度)를 높여 태양전지의 효율을 향상시킬 수 있으며, 공정 효율성을 극대화시킬 수 있다.
(S1)단계는 기판의 일면(一面)에 국부적으로 불순물을 제1 도핑하여 전극패턴부 및 얼라인 마크를 형성하는 단계로서, 제공되는 기판은 p형 또는 n형 기판일 수 있으며, 상기 제1 도핑은 도핑 페이스트를 기판에 인쇄하여 불순물을 기판 내로 주입할 수 있다. 제1 도핑에서 사용되는 도핑 페이스트는 제공되는 기판이 p형 기판인 경우에는 5족 원소인 안티몬(Sb), 비소(As), 인(P) 등을 포함할 수 있으며, n형 기판인 경우에는 3족 원소인 붕소(B), 갈륨(Ga), 인듐(In) 등을 포함하는 페이스트일 수 있다.
본 발명에서 제2 에미터부는 제1 에미터부 상에 국부적으로 형성된 고농도 도핑부로 정의할 수 있다. (S1)단계에서 제1 도핑에 의하여 형성된 얼라인 마크는 얼라인 마크의 형성방법에 따라 (S2)단계의 제2 도핑 후 제1 에미터부 또는 제2 에미터부로 형성될 수 있으며, 전극패턴부는 (S2)단계의 제2 도핑 후 제2 에미터부로 형성될 수 있다.
(S1)단계는 제1 도핑 후 약 250℃ 내지 약 350℃에서 약 1 분 내지 약 10 분간 열처리하는 단계가 더 포함될 수 있으며, 상기 열처리에 의하여 인쇄된 도핑 페이스트를 건조함과 동시에 전극패턴부 또는 얼라인 마크를 형성하는 불순물이 기판위에 도핑된다.
(S2)단계는 (S1)단계에서 제1 도핑된 기판 전면(全面)에 불순물을 제2 도핑하는 단계이다. 제2 도핑은 p-n 접합을 위하여 기판의 일면 전체에 균일한 농도로 불순물을 도핑하는 단계로서, 고온의 퍼니스(diffusion furnace)상에서 불순물 가스를 주입하여 가스 도핑(gas doping)이 이루어질 수 있으며, 바람직하게는 약 800℃ 내지 약 850℃의 퍼니스에서 액상 또는 기상 가스를 주입하여 도핑이 이루어 질 수 있다.
상기 불순물 가스(dopant gas)는 제공되는 기판이 p형 기판인 경우에는 5족 원소인 안티몬(Sb), 비소(As), 인(P) 등을 포함할 수 있으며, n형 기판인 경우에는 3족 원소인 붕소(B), 갈륨(Ga), 인듐(In) 등을 포함할 수 있으나, 제1 도핑에 사용되는 도핑 페이스트가 포함하는 불순물과 동일한 족의 원소 또는 동일한 원소를 사용하는 것이 선택적 에미터의 제조에 유리하다. (S2)단계에서 불순물 가스의 주입은 약 800℃ 내지 약 850℃의 퍼니스에서 이루어 질 수 있다. 상기 제2 도핑에 의하여 상기 전극패턴부는 제2 에미터부로 형성되며, 상기 전극패턴부 또는 얼라인 마크를 제외한 기판의 전 영역은 제1 에미터부로 형성될 수 있다.
제1 구체예로서, 제1 도핑은 상기 전극패턴부와 상기 얼라인 마크가 이격된 패턴으로 도핑 페이스트를 인쇄하여 이루어질 수 있다. 이와 같이, 전극패턴부와 얼라인 마크가 이격되어 형성되는 경우, 제2 도핑시 전극패턴부와 얼라인 마크가 각각 제2 에미터부로 형성될 수 있고, 이로서 상기 얼라인 마크는 전극패턴부로부터 구별되어 시인될 수 있다. 이후 제2 에미터부로 형성된 얼라인 마크를 이용하여 얼라인 마크와 이격되고 제2 에미터부로 형성된 전극패턴부 위에 태양전지 전극 형성용 조성물을 정렬 인쇄(aligned printing) 후 소성 단계를 거쳐 전극패턴부 상에 전극이 형성될 수 있다.
제2 구체예로서, 상기 제1 도핑은 상기 전극패턴부에서 상기 얼라인 마크가 형성되는 영역이 제외된 패턴으로 도핑 페이스트를 인쇄하여 이루어질 수 있다. 상기 얼라인 마크는 상기 전극패턴부에 국부적으로 형성된 영역으로, 제2 도핑 후 상기 얼라인 마크는 제1 에미터부로, 상기 전극패턴부는 제2 에미터부로 형성될 수 있다. 이후 제1 에미터부로 형성된 얼라인 마크를 이용하여 제2 에미터부로 형성된 전극패턴부 위에 태양전지 전극 형성용 조성물을 정렬 인쇄(aligned printing) 후 소성 단계를 거쳐 전극패턴부 상에 전극이 형성될 수 있다.
상기 제2 도핑 두께는 약 0.5㎛ 내지 약 2㎛ 일 수 있으며, 제2 에미터부의 표면저항은 약 50Ω/□ 내지 약 80Ω/□ 일 수 있다. 상기 제1 에미터부와 제2 에미터부에 도핑된 불순물의 농도 차이에 따라 제2 에미터부로 형성된 전극패턴부 또는 얼라인 마크는 제1 에미터부인 저농도 도핑부와 식별될 수 있고 정렬인쇄를 위한 표지로서 시인성을 확보할 수 있다. 따라서, 제1 에미터부와 제2 에미터부는 약 30Ω/□ 내지 약 50Ω/□ 표면 저항 차이를 갖도록 제1 도핑 및 제2 도핑하는 것이 시인성 확보 및 cell 효율적인 점에서 바람직하다.
상기 전극패턴부는 1종 이상의 전극 패턴을 포함할 수 있으며, 일 예로서, 버스바(bus bar) 패턴 및 핑거바(finger bar) 패턴을 포함할 수 있다.
상기 얼라인 마크는 정형 또는 무정형일 수 있고, 직경이 약 0.1mm 내지 약 2mm일 수 있으나, 반드시 이에 제한되는 것은 아니다. 일 예로서, 상기 얼라인 마크는 구형, 사각형, 십자형, 네가형 등의 형상일 수 있다.
상기 얼라인 마크는 1개 내지 6개로 형성될 수 있다. 얼라인 마크의 개수가 2개, 4개 또는 6개인 경우, 배열된 얼라인 마크는 대칭구조를 가질 수 있으며, 대칭구조를 갖는 경우 정합도를 보다 높일 수 있다.
상기 (S1) 및 (S2) 단계로 선택적 에미터를 제조한 후, 선택적 에미터 상에 형성된 얼라인 마크를 이용하여 태양전지 전극 형성용 조성물을 전극패턴부 위에 정렬 인쇄(aligned printing)하는 단계(S3); 및 소성 후 전면 전극을 형성하는 단계(S4);를 포함하여 태양전지를 제조할 수 있다.
(S4) 단계의 정렬 인쇄(aligned printing)는 광학적으로 얼라인 마크를 구분할 수 있고, 구분된 정보를 통해 정밀 인쇄가 가능한 바찌니 인쇄기(Baccini printer) 등을 사용하여 인쇄가 이루어질 수 있다.
도 1은 본 발명의 제1 구체예에 따른 선택적 에미터를 포함하는 태양전지의 제조방법을 개략적으로 나타낸 것이다.
도 1 (a)는 기판(100) 일면에 제1 도핑하여 전극패턴부(10, 20)와 얼라인 마크(30)가 형성된 것을 도시한 것이고, 도 1 (b)는 상기 제1 도핑된 기판의 전면에 불순물을 균일하게 제2 도핑하여 얼라인 마크가 형성된 선택적 에미터를 도시한 것이다. 제1 구체예의 얼라인 마크는 전극패턴부와 마찬가지로 고농도 도핑부인 제2 에미터부로 형성된다. 상기 전극패턴부는 버스바 패턴(10)과 핑거바 패턴(20)를 포함할 수 있고, 얼라인 마크(align mark)(30)는 전극 패턴과 이격되어 형성될 수 있다.
도 1 (c)는 제1 구체예에 따라 형성된 얼라인 마크(30)를 이용하여 태양전지 전극 형성용 조성물로 정렬 인쇄(aligned printing) 후 전극패턴부상에 핑거바(finger bar)(40) 및 버스바(bus bar)(50)를 포함하는 전극 라인이 형성된 것을 나타낸 것이다.
도 3은 제1 구체예에 따라 제조된 도 1 (b)의 선택적 에미터를 M-M′선을 기준으로 나타낸 단면도로서, 도 3을 참고하면, 에미터 층(110)은 제1 에미터부와 제2 에미터부로 구성되며, 버스바 패턴(10) 및 얼라인 마크(30)는 고농도로 도핑된 제2 에미터부로 형성되며, 제2 에미터부의 두께(H2)는 제2 도핑되지 않은 제1 에미터부의 두께(H1)보다 도핑 두께가 두껍게 형성된 것을 알 수 있다.
도 5는 제1 구체예에 따라 기판 상에 형성된 얼라인 마크를 나타낸 것으로, 도 5(a)는 십자형 얼라인마크(200), 도 5(b)는 구형 얼라인 마크(300)를 나타낸 것이다.
도 2는 본 발명의 제2 구체예에 따른 선택적 에미터를 포함하는 태양전지의 제조방법을 개략적으로 나타낸 것이다. 제1 구체예의 얼라인 마크는 전극패턴부와 이격되어 형성된 것인 반면, 제2 구체예의 얼라인 마크는 제1 도핑시 전극패턴부에서 얼라인 마크가 형성되는 영역만을 제외하고 도핑하여, 제2 도핑 후 얼라인 마크는 저농도 도핑부인 제1 에미터부로 남아 있는 반면, 상기 얼라인 마크를 둘러싼 주위 영역은 고농도 도핑부인 전극패턴부가 제2 에미터부로 형성되므로, 얼라인 마크와 전극패턴부 간의 불순물 농도 차이에 따라 얼라인 마크를 식별 또는 시인할 수 있다. 따라서, 제2 구체예의 얼라인 마크는 전극패턴부 내에 국부적으로 형성된 저농도 도핑부로 정의할 수 있다.
구체적으로, 도 2 (a)는 기판(100) 일면에 제1 도핑하여 버스바 패턴(10)과 핑거바 패턴(20)을 포함하는 전극패턴부가 형성되고, 상기 전극패턴부 내에 미도핑된 영역으로 얼라인 마크가 형성된 것을 나타낸 것으로, 제1 도핑시 전극패턴부에서 얼라인 마크(30)가 형성되는 영역을 제외하고 도핑함으로서 얼라인 마크가 미도핑된 영역으로 형성된 것이다.
도 2 (b)는 상기 제1 도핑된 기판의 전면에 불순물을 균일하게 제2 도핑하여 얼라인 마크는 제1 에미터부로 전극패턴부는 제2 에미터부로 형성된 선택적 에미터를 도시한 것이다.
도 2 (c)는 제2 구체예에 따라 형성된 얼라인 마크(30)를 이용하여 태양전지 전극 형성용 조성물로 정렬 인쇄(aligned printing) 후 전극패턴부상에 핑거바(finger bar)(40) 및 버스바(bus bar)(50)를 포함하는 전극 라인이 형성된 것을 나타낸 것이다.
도 4는 제2 구체예에 따라 제조된 도 2 (b)의 선택적 에미터를 N-N'선을 기준으로 나타낸 단면도이다. 도 4를 참고하면, 에미터 층(110)은 제1 에미터부와 제2 에미터부로 구성되며, 버스바 패턴(10)은 제2 도핑에 의하여 고농도로 도핑된 제2 에미터부로 형성되나, 얼라인 마크(30)는 제1 도핑시 인쇄 대상에서 제외된 영역이므로 제2 도핑에 의하여 제1 에미터부로 형성되며, 버스바 패턴과 얼라인 마크 간의 불순물 농도차 또는 도핑 두께(H2-H1)에 의하여 전극패턴부 내에 형성된 얼라인 마크의 식별이 가능하다.
도 5 (c)는 제2 구체예에 따라 제2 도핑에 의하여 전극패턴부 내에 저농도 도핑부로 형성된 얼라인 마크를 나타낸 것으로, 버스바 내에 형성된 구형 얼라인 마크(400)를 나타낸 것이다.
도 6은 본 발명의 일 구체예에 따라 제조한 태양전지의 단면도를 나타낸 것으로, 기판(100) 상부에 불순물 도핑에 의하여 제1 에미터부 및 제2 에미터부를 포함하는 선택적 에미터 층(110)을 형성하고, 상기 선택적 에미터 층 상부에 반사방지막(120)을 형성하며, 얼라인 마크(미도시)를 이용하여 태양전지 전극 형성용 조성물이 고농도 도핑부인 제2 에미터부 상에 정교하게 정렬 인쇄(aligned printing)한 후 소성하여 전면 전극(130)을 형성할 수 있다. 상기 기판(100)의 후면에는 후면 전극(150)을 구비할 수 있고, BSF(Back Surface Field)층(140)을 더 구비할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다.
실시예
실시예 1
p형 반도체 기판의 일면에 5족 원소인 P을 포함하는 도핑 페이스트(Honeywell社)로 폴리 380 메쉬(mesh)를 이용하여 두께 5㎛ 로 제1 도핑하여 전극패턴부 및 상기 상기 전극패턴부와 이격된 얼라인 마크를 인쇄하였다. 인쇄된 기판은 300℃에서 5분간 열처리하여 건조하였다. 건조된 기판을 850℃ 디퓨젼 퍼니스(diffusion furnace)에서 POCl3 가스를 주입하여 제1 도핑된 기판 전면에 제2 도핑하였다. 제2 도핑에 의하여 전극패턴부 및 얼라인 마크는 제2 에미터부로 형성되었으며, 상기 전극패턴부 및 얼라인 마크를 제외한 기판 영역은 제1 에미터부로 형성됨으로서 선택적 에미터가 제조되었다.
제2 도핑이 완료된 기판은 HF를 이용하여 기판 표면상 PSG(phosphersilicate glass)를 제거한 후, PECVD를 이용하여 표면에 SiN 코팅하여 반사방지막을 형성하였으며, 상기 기판 후면에 알루미늄 페이스트를 인쇄한 후 300℃에서 건조하여 후면 전극을 형성하였다.
기판에 형성된 얼라인 마크를 이용하여 태양전지 전극 형성용 조성물(제일모직 페이스트 SF8521)을 전극패턴부 위에 baccini printer로 정렬 인쇄(align printing)한 후 BTU 퍼니스(furnace)에서 980℃ 내지 960℃사이로 40초간 소성을 행하였으며, 이렇게 제조 완료된 Cell은 태양전지효율 측정장비 (Pasan社, CT-801)를 사용하여 단락전류 Isc(A), 개방전압 Voc(mV), 직렬저항 Rs(Ω), 면저항 Rsh(Ω), Fill Factor(%), 및 변환효율(%)을 측정한 후 하기 표 1에 나타내었다.
비교예 1
얼라인 마크를 형성하지 않고, 웨이퍼 엣지를 이용하여 전극을 인쇄한 것을 제외하고는 실시예 1과 동일한 방법으로 선택적 에미터를 포함하는 태양전지를 제조하였으며 물성을 측정하여 하기 표 1에 나타내었다.
표 1
Isc(A) Voc(mV) Rs(ohm) Rsh(ohm) FF(%) Eff(%)
실시예 1 5.83 627 0.0049 22.75 78.44 18.56
비교예 1 5.82 622 0.0078 20.02 77.11 18.07
상기 표 1에서 보듯이, 본 발명의 얼라인 마크를 이용하여 정렬 인쇄한 실시예 1은 얼라인 마크를 형성하지 않고 웨이퍼 엣지를 이용하여 전극을 인쇄한 비교예 1보다 선택적 에미터상의 고농도 도핑부와 인쇄된 전극 라인의 정합도가 우수하여 Fill Factor 및 변환효율이 우수한 것을 알 수 있다.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.

Claims (17)

  1. 기판의 일면(一面)에 국부적으로 불순물을 제1 도핑하여 전극패턴부 및 얼라인 마크를 형성하는 단계;
    상기 제1 도핑된 기판 전면(全面)에 불순물을 제2 도핑하는 단계;를 포함하고,
    상기 제1 도핑과 제2 도핑에 의하여, 상기 얼라인 마크는 제1 에미터부 또는 제2 에미터부로 형성되며, 상기 전극패턴부는 제2 에미터부로 형성되는 것을 특징으로 하는 선택적 에미터를 포함하는 태양전지의 제조방법.
  2. 제1항에 있어서, 상기 제1 도핑은 도핑 페이스트를 기판에 인쇄하여 불순물을 주입하는 것을 특징으로 하는 태양전지의 제조방법.
  3. 제2항에 있어서, 상기 제1 도핑 후 약 250℃ 내지 약 350℃에서 약 1분 내지 약 10분 간 열처리하는 단계를 더 포함하는 것을 특징으로 하는 태양전지의 제조방법.
  4. 제1항에 있어서, 상기 제2 도핑은 약 800℃ 내지 약 850℃의 퍼니스에서 가스 도핑으로 불순물을 주입하는 것을 특징으로 하는 태양전지의 제조방법.
  5. 제1항에 있어서, 상기 제1 에미터부는 상기 제2 에미터부보다 불순물 농도가 낮은 것을 특징으로 하는 태양전지의 제조방법.
  6. 제1항에 있어서, 상기 기판에 형성된 제2 에미터부의 도핑 두께는 상기 제1 에미터부의 도핑 두께보다 큰 것을 특징으로 하는 태양전지의 제조방법.
  7. 제1항에 있어서, 상기 제1 도핑은 상기 전극패턴부와 상기 얼라인 마크가 이격되도록 도핑하며, 상기 제2 도핑에 의하여 상기 전극패턴부 및 상기 얼라인 마크가 제2 에미터부로 형성되는 것을 특징으로 하는 태양전지의 제조방법.
  8. 제1항에 있어서, 상기 제1 도핑은 상기 전극패턴부에서 상기 얼라인 마크가 형성되는 영역만을 제외하고 도핑하며, 제2 도핑에 의하여 상기 얼라인 마크는 상기 전극패턴부에 국부적으로 형성된 제1 에미터부로, 상기 전극패턴부는 제2 에미터부로 형성되는 것을 특징으로 하는 태양전지의 제조방법.
  9. 제1항에 있어서, 상기 전극패턴부는 1종 이상의 전극패턴을 포함하는 것을 특징으로 하는 태양전지의 제조방법.
  10. 제1항에 있어서, 상기 얼라인 마크의 개수는 1개 내지 6개인 것을 특징으로 하는 태양전지의 제조방법.
  11. 제10항에 있어서, 상기 얼라인 마크의 개수가 2개, 4개 또는 6개이며, 배열된 얼라인 마크는 대칭구조를 가지는 것을 특징으로 하는 태양전지의 제조방법.
  12. 제1항에 있어서, 상기 얼라인 마크는 정형 또는 무정형이며, 직경이 약 0.2mm 내지 약 2mm인 것을 특징으로 하는 태양전지의 제조방법.
  13. 제9항에 있어서, 상기 전극패턴부는 버스바 패턴 및 핑거바 패턴을 포함하는 것을 특징으로 하는 태양전지의 제조방법.
  14. 제1항에 있어서, 상기 기판은 p형 또는 n형 반도체 기판인 것을 특징으로 하는 태양전지의 제조방법.
  15. 제14항에 있어서, 상기 기판이 p형 반도체 기판인 경우, 도핑되는 불순물은 5족 원소이고,
    상기 기판이 n형 반도체 기판인 경우, 도핑되는 불순물은 3족 원소인 것을 특징으로 하는 태양전지의 제조방법.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서, 상기 얼라인 마크를 이용하여 태양전지 전극 형성용 조성물을 상기 전극패턴부 위에 정렬 인쇄(aligned printing)하는 단계; 및 소성 후 전면 전극을 형성하는 단계;를 더 포함하는 태양전지의 제조방법.
  17. 제1항 내지 제16항 중 어느 한 항의 제조방법으로 제조된 태양전지.
PCT/KR2013/008544 2013-05-22 2013-09-24 선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지 WO2014189178A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380076690.2A CN105264302B (zh) 2013-05-22 2013-09-24 用于制造太阳能电池的方法及由此制造的太阳能电池
US14/892,943 US10522698B2 (en) 2013-05-22 2013-09-24 Method for manufacturing solar cell having selective emitter and solar cell manufactured thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0057999 2013-05-22
KR1020130057999A KR101542624B1 (ko) 2013-05-22 2013-05-22 선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지

Publications (1)

Publication Number Publication Date
WO2014189178A1 true WO2014189178A1 (ko) 2014-11-27

Family

ID=51933715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008544 WO2014189178A1 (ko) 2013-05-22 2013-09-24 선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지

Country Status (4)

Country Link
US (1) US10522698B2 (ko)
KR (1) KR101542624B1 (ko)
CN (1) CN105264302B (ko)
WO (1) WO2014189178A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053138B1 (ko) * 2013-09-27 2019-12-06 엘지전자 주식회사 태양 전지
FR3018391B1 (fr) * 2014-03-07 2016-04-01 Commissariat Energie Atomique Procede de realisation d’une cellule photovoltaique a dopage selectif
US10923606B2 (en) 2016-10-26 2021-02-16 Kaneka Corporation Photoelectric conversion element
JP6821473B2 (ja) * 2017-03-07 2021-01-27 株式会社アルバック バックコンタクト型結晶系太陽電池の製造方法およびマスク
CN110465755A (zh) * 2019-07-10 2019-11-19 阜宁苏民绿色能源科技有限公司 一种改善mark点隐裂的方法
CN111312862A (zh) * 2020-04-08 2020-06-19 江苏润阳悦达光伏科技有限公司 一种选择性发射极电池的对位标记方式
CN114497270B (zh) * 2020-11-11 2024-03-29 一道新能源科技股份有限公司 一种低表面浓度发射极的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203379A (ja) * 2000-01-19 2001-07-27 Mitsubishi Electric Corp 太陽電池およびその製造方法
KR20060066280A (ko) * 2004-12-13 2006-06-16 삼성에스디아이 주식회사 태양전지 및 그 제조방법
JP2011023690A (ja) * 2009-07-20 2011-02-03 E-Ton Solar Tech Co Ltd 選択エミッタ構造の電極パターンのアラインメント方法
KR20110027218A (ko) * 2009-09-10 2011-03-16 엘지전자 주식회사 이면 접합형 태양 전지 및 그 제조 방법
KR20130012494A (ko) * 2011-07-25 2013-02-04 한국에너지기술연구원 선택적 에미터층 제조방법, 이에 의하여 제조된 선택적 에미터층 및 이를 포함하는 실리콘 태양전지

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181970A (ja) * 2007-01-23 2008-08-07 Sharp Corp アライメントマーク形成方法、アライメント方法、半導体装置の製造方法および固体撮像装置の製造方法
CN102318078B (zh) * 2008-12-10 2013-10-30 应用材料公司 用于网版印刷图案对准的增强型检视系统
US20120100666A1 (en) * 2008-12-10 2012-04-26 Applied Materials Italia S.R.L. Photoluminescence image for alignment of selective-emitter diffusions
CN201414093Y (zh) 2009-03-26 2010-02-24 重庆大学 基于平板型热管冷却的太阳能光伏电-热转换装置
CN102034891A (zh) 2009-09-29 2011-04-27 益通光能科技股份有限公司 选择性射极结构的电极图形的对齐方法
CN101871439B (zh) 2010-03-25 2012-02-01 刘方亮 太阳能生物质能发电制冷供热装置
US8912082B2 (en) * 2010-03-25 2014-12-16 Varian Semiconductor Equipment Associates, Inc. Implant alignment through a mask
CN101907381A (zh) 2010-08-13 2010-12-08 北京林业大学 一种利用太阳能干燥木材的方法
ITUD20110162A1 (it) 2011-10-13 2013-04-14 Applied Materials Italia Srl Metodo ed apparato per la realizzazione di celle solari con emettitori selettivi
US9039942B2 (en) * 2011-12-21 2015-05-26 E I Du Pont De Nemours And Company Lead-free conductive paste composition and semiconductor devices made therewith
US20130199606A1 (en) * 2012-02-06 2013-08-08 Applied Materials, Inc. Methods of manufacturing back surface field and metallized contacts on a solar cell device
CN202442514U (zh) 2012-02-20 2012-09-19 南京南洲新能源研究发展有限公司 太阳能中空玻璃管热电一体化装置
CN102563904B (zh) 2012-02-20 2013-05-29 南京南洲新能源研究发展有限公司 太阳能中空玻璃管热电一体化装置
KR101871273B1 (ko) * 2012-05-11 2018-08-02 엘지전자 주식회사 태양 전지 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001203379A (ja) * 2000-01-19 2001-07-27 Mitsubishi Electric Corp 太陽電池およびその製造方法
KR20060066280A (ko) * 2004-12-13 2006-06-16 삼성에스디아이 주식회사 태양전지 및 그 제조방법
JP2011023690A (ja) * 2009-07-20 2011-02-03 E-Ton Solar Tech Co Ltd 選択エミッタ構造の電極パターンのアラインメント方法
KR20110027218A (ko) * 2009-09-10 2011-03-16 엘지전자 주식회사 이면 접합형 태양 전지 및 그 제조 방법
KR20130012494A (ko) * 2011-07-25 2013-02-04 한국에너지기술연구원 선택적 에미터층 제조방법, 이에 의하여 제조된 선택적 에미터층 및 이를 포함하는 실리콘 태양전지

Also Published As

Publication number Publication date
CN105264302A (zh) 2016-01-20
KR20140137517A (ko) 2014-12-03
KR101542624B1 (ko) 2015-08-06
US10522698B2 (en) 2019-12-31
CN105264302B (zh) 2018-11-06
US20160126374A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
WO2014189178A1 (ko) 선택적 에미터를 갖는 태양전지의 제조방법 및 이로부터 제조된 태양전지
WO2010101350A2 (en) Solar cell and method of manufacturing the same
WO2011037373A2 (en) Solar cell module and method of manufacturing the same
WO2009107955A2 (en) Solar cell and method for manufacturing the same
WO2010110510A1 (en) Solar cell and fabrication method thereof
WO2010013972A2 (en) Solar cell and method for manufacturing the same
WO2011071227A1 (en) Solar cell module
WO2010140740A1 (en) Solar cell and method of manufacturing the same
WO2016186317A1 (ko) 페로브스카이트 태양 전지 모듈
WO2015041470A1 (ko) 태양전지
WO2010093177A2 (en) Solar cell and method for manufacturing the same
EP2612369A1 (en) Solar cell and method for manufacturing the same
WO2010013956A2 (en) Solar cell, method of manufacturing the same, and solar cell module
WO2010126314A2 (ko) 탄소나노튜브층을 포함하는 실리콘 태양전지
US9997650B2 (en) Solar cell, manufacturing method thereof, and solar cell module
WO2012081813A1 (ko) 후면전극형 태양전지 및 그 제조방법
WO2011136447A1 (en) Solar cell and method for manufacturing the same
WO2015068247A1 (ja) 太陽電池およびその製造方法、太陽電池モジュール
WO2011129503A1 (en) Solar cell and method for manufacturing the same
WO2011002130A1 (en) Solar cell and method of manufacturing the same
WO2011049270A1 (ko) 이종 접합 태양전지 및 그 제조방법
WO2011071226A1 (en) Solar cell module
WO2011004937A1 (en) Solar cell and method of manufacturing the same
WO2013081329A1 (ko) 도트형 전극을 갖는 저가 양산의 고효율 태양전지 및 그 제조방법
WO2011028034A2 (en) Dopant diffusion solution, paste composition for electrode, and method of forming doping area

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076690.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892943

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884976

Country of ref document: EP

Kind code of ref document: A1