WO2014189149A1 - 金属ナノワイヤの製造方法及び金属ナノワイヤ並びに銀ナノワイヤの製造方法及び銀ナノワイヤ - Google Patents

金属ナノワイヤの製造方法及び金属ナノワイヤ並びに銀ナノワイヤの製造方法及び銀ナノワイヤ Download PDF

Info

Publication number
WO2014189149A1
WO2014189149A1 PCT/JP2014/063851 JP2014063851W WO2014189149A1 WO 2014189149 A1 WO2014189149 A1 WO 2014189149A1 JP 2014063851 W JP2014063851 W JP 2014063851W WO 2014189149 A1 WO2014189149 A1 WO 2014189149A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
group
producing
silver
solution
Prior art date
Application number
PCT/JP2014/063851
Other languages
English (en)
French (fr)
Inventor
克昭 菅沼
金▲てい▼ 酒
雅也 能木
徹 菅原
徹平 荒木
内田 博
英樹 大籏
真尚 原
恵理 岡▲崎▼
Original Assignee
昭和電工株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 国立大学法人大阪大学 filed Critical 昭和電工株式会社
Priority to US14/893,329 priority Critical patent/US10099291B2/en
Priority to JP2015518308A priority patent/JP6416757B2/ja
Priority to CN201480029788.7A priority patent/CN105246621B/zh
Priority to KR1020157032184A priority patent/KR102053673B1/ko
Publication of WO2014189149A1 publication Critical patent/WO2014189149A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/062Fibrous particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a metal nanowire manufacturing method, a metal nanowire manufactured by the method, a silver nanowire manufacturing method, and a silver nanowire manufactured by the method.
  • the metal nanowire is a metal having a diameter of nanometer order size, and is a conductive material having a wire shape (linear shape). Since the conductive layer (thin film) formed of the metal nanowire has high conductivity and light transmittance, it is used, for example, as a transparent electrode material for a touch panel.
  • Patent Document 1 As a method for producing such metal nanowires, for example, in Patent Document 1 below, a metal salt, polyvinylpyrrolidone, chloride or nitrate, and one or more selected from the group consisting of ethylene glycol and propylene glycol are mixed. Techniques to do this are disclosed.
  • An object of the present invention is to provide a method for producing a metal nanowire capable of producing a thin and long metal nanowire, a metal nanowire produced thereby, a method for producing a silver nanowire, and a silver nanowire produced thereby.
  • one embodiment of the present invention is a method for producing metal nanowires, wherein at least one selected from metal salts, polymers, halides, sulfides, carbonates and sulfates. And a step of heating and reacting at a temperature of 100 to 250 ° C. for 10 minutes or more in a state where the simple shear stress acting on the solution is 10 mPa ⁇ m or less. Changes in the ultraviolet / visible absorption spectrum of the solution are measured during the reaction process, and the reaction time is controlled based on the ultraviolet / visible absorption spectrum information.
  • the metal for producing the metal nanowire is preferably one or more selected from the group consisting of gold, silver, copper, platinum, palladium, ruthenium, cobalt, nickel, molybdenum, indium, iridium and titanium, These metal salts are used. As the salt, nitrates, organic carboxylates, metal alkoxides, and metal phenoxides that are highly soluble in the aliphatic alcohol used are suitable.
  • the polymer is at least one selected from the group consisting of polyvinyl pyrrolidone, poly N-vinyl acetamide, poly N-vinyl formamide, polyvinyl caprolactam, and polyacrylamide, and polyvinyl pyrrolidone is particularly preferable.
  • the halides are NaCl, CoCl 2 , SnCl 4 , CuCl 2 , NiCl 2 , FeCl 3 , ZnCl 2 , NaBr, NaI, KBr, KI and R 4 NCl, R 4 NBr, R 4 NI
  • R is carbon
  • the sulfide is selected from the group consisting of Na 2 S and K 2 S
  • the carbonate is Na 2 CO is selected from 3 the group consisting of K 2 CO 3
  • the sulfate, Na 2 SO 4 and K 2 SO 4 may be selected from the group consisting of.
  • the quaternary ammonium salt is more preferably one in which R is a normal alkyl group from the viewpoint of availability.
  • the aliphatic alcohol preferably dissolves at least one selected from the metal salts, added halides, sulfides, carbonates and sulfates and has a boiling point of 100 ° C. or higher, and has a shear stress.
  • the viscosity is preferably low, and at least the viscosity of the aliphatic alcohol itself is preferably 10 Pa ⁇ s or less at 25 ° C.
  • the concentration of the halide, sulfide, carbonate and sulfate is 1 ⁇ 10. It is preferably ⁇ 8 to 1 ⁇ 10 ⁇ 2 M.
  • the ultraviolet / visible absorption spectrum of the solution was measured during the heating step, and the ratio of the absorption intensity (A420) at 420 nm to the absorption intensity (A350) at 350 nm (A420 nm / A350 nm) did not exceed 2.
  • the reaction is preferably stopped when the absorption intensity at 380 nm (A380) does not become less than half of the peak.
  • another embodiment of the present invention is a metal nanowire manufactured by the above-described method for manufacturing a metal nanowire.
  • the metal nanowire is preferably a silver nanowire.
  • a thin and long metal nanowire can be manufactured.
  • SEM scanning electron microscope
  • a method for producing a metal nanowire prepares a solution containing a metal salt, a polymer, at least one selected from halide, sulfide, carbonate and sulfate, and an aliphatic alcohol.
  • a metal salt a polymer
  • One feature is that it includes a step of heating and reacting at a temperature of 100 to 250 ° C. for 10 minutes or longer in a state where the simple shear stress acting on the solution is 10 mPa ⁇ m or less. The simple shear stress will be described later.
  • the solution preparation in the above step is performed by mixing a first solution containing a polymer and a metal salt with a second solution containing at least one selected from halides, sulfides, carbonates and sulfates. Can do.
  • an aliphatic alcohol is included as the solvent of the first solution and the solvent of the second solution.
  • a solution may be prepared by mixing a salt of the metal, a polymer, at least one selected from halides, sulfides, carbonates and sulfates, and an aliphatic alcohol. The order of mixing is not particularly limited as long as a uniform solution can be finally prepared.
  • the polymer must be dissolved in the aliphatic alcohol to be used, specifically, at least selected from the group consisting of polyvinyl pyrrolidone, poly N-vinyl acetamide, poly N-vinyl formamide, polyvinyl caprolactam, and polyacrylamide. It is a kind, and polyvinylpyrrolidone is particularly preferable. These polymers contribute to wire growth. If the polymer is not present, it can hardly grow into a wire shape, and most of the polymer is produced as an agglomerated powder having an amorphous shape.
  • the above aliphatic alcohol acts as a metal salt reducing agent.
  • the hydroxyl group of the aliphatic alcohol is used for the reduction of the metal salt.
  • the aliphatic alcohol must be capable of dissolving metal salts, halides, sulfides, carbonates and sulfates used as raw materials, and has a boiling point at 1 atm from the reaction (reduction) temperature described later.
  • the viscosity is preferably high (100 ° C. or higher), and in order to lower the shear stress, the viscosity is preferably low.
  • At least the viscosity of the aliphatic alcohol itself is preferably 10 Pa ⁇ s or less at 25 ° C., 1.5 Pa ⁇ S or less is more preferable, 200 mPa ⁇ s or less is more preferable, and 50 mPa ⁇ s or less is particularly preferable.
  • the simple shear stress acting on the solution (reaction solution) mixed with a group alcohol is 10 mPa ⁇ m or less, more preferably 5 mPa ⁇ m or less, and even more preferably 2 mPa ⁇ m or less, at a temperature of 100 to 250 ° C. Heat and react for more than a minute.
  • the reaction rate is low when an aliphatic alcohol is used as the reducing agent, and thus the productivity is low and is not preferable. Thereby, since the shear stress which acts on the metal nanowire to produce
  • the metal constituting the metal salt is selected from the group consisting of gold, silver, copper, platinum, palladium, ruthenium, cobalt, nickel, molybdenum, indium, iridium and titanium from the viewpoints of resistance and transparency.
  • gold, silver and copper are more preferable in consideration of the resistance value.
  • the halides, sulfides, carbonates and sulfates can be selected from metal halides, sulfides, carbonates and sulfates that have a higher ionization tendency than the metal to be produced.
  • Halides include NaCl, CoCl 2 , SnCl 4 , CuCl 2 , NiCl 2 , FeCl 3 , ZnCl 2 , NaBr, NaI, KBr, KI and R 4 NCl, R 4 NBr, R 4 NI (R is 1 carbon number) Quaternary ammonium salts represented by (12 to 12), Na 2 S, K 2 S as sulfides, Na 2 CO 3 , K 2 CO 3 as carbonates, Na 2 SO as sulfates 4 and K 2 SO 4 can be exemplified.
  • metal halides, sulfides, carbonates and sulfates which have a higher ionization tendency than the metal to be produced, contribute to metal wire precipitation and wire growth when the metal salts are reduced. . If they do not exist, they can hardly be grown in the form of wires, and most of them are produced as amorphous aggregated powder.
  • the concentration of the polymer is preferably 0.001 to 0.5M as the concentration after mixing the first solution and the second solution when one or more selected from the group of aliphatic alcohols is used as a solvent. 005 to 0.3M is more preferable, and 0.01 to 0.1M is more preferable. If the concentration is too low, nanowires will not be formed, and if it is too high, the polymer will remain excessively in the nanowires, which hinders the reduction in resistance.
  • the polymer concentration M (mol / L) means a value converted in terms of monomer units.
  • the concentration after mixing the first solution and the second solution is 0.0001 to 0.5 M (M Is preferably mol / L), more preferably 0.0005 to 0.1M, and still more preferably 0.001 to 0.05M. If the salt concentration is too high, the nanowire becomes thick, and if it is too low, the reaction rate is slow and the productivity is lowered.
  • the polymer for example, a commercially available product having a weight average molecular weight of 10,000 to 1,200,000 can be used. If the molecular weight is too low, the ability to generate nanowires tends to deteriorate. On the other hand, if the molecular weight is too high, the solution viscosity becomes high, which is not preferable.
  • the concentration selected from the halide, sulfide, carbonate, and sulfate is at least one selected from the group consisting of silver as the metal and ethylene glycol and propylene glycol as the aliphatic alcohol.
  • the final solution is preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 2 M (M means mol / L) in consideration of the ratio with the metal salt, and 2 ⁇ 10 ⁇ 8 to 5 more preferably from ⁇ 10 -3 M, and even more preferably 3 ⁇ 10 -8 ⁇ 3 ⁇ 10 -3 M. If the concentration is too low, there is no effect of reducing the wire diameter, and if it is too high, the ratio of reducing the metal used in combination is not negligible for the metal wire to be produced, which is not preferable.
  • the molar mixing ratio of the metal salt, polymer, (halide, sulfide, carbonate and sulfate) and aliphatic alcohol is, for example, 1: 0.05 to 15: 1 ⁇ 10 ⁇ 7 to 2 ⁇ 10 ⁇ 2 : 200 to 9000, preferably 1: 0.5 to 10: 1 ⁇ 10 ⁇ 4 to 2 ⁇ 10 ⁇ 2 : 300 to 8000, more preferably 1: 1 to 10: 2. ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 : 400 to 7000.
  • the solution containing a polymer and the solution containing a metal salt may be separately prepared, and the first solution may be prepared by mixing these solutions.
  • the solvent of the solution containing the polymer and the solvent of the solution containing the metal salt are at least one selected from the group consisting of the aliphatic alcohols.
  • the metal nanowire manufactured in the manufacturing method of the present embodiment has a diameter of 200 nm or less and a length in the range of 10 ⁇ m or more. However, if it is too thin, there is anxiety even at practical strength, so 1 nm or more is preferable, and 5 nm or more is more preferable.
  • the metal salt is preferably AgNO 3 from the viewpoint of solubility.
  • the metal salt is AgNO 3
  • the halide is NaCl, CoCl 2 , SnCl 4 , CuCl 2 , NiCl 2 , FeCl 3 , ZnCl 2 , and R 4 NCl (R is the number of carbon atoms)
  • a chloride such as a quaternary ammonium salt represented by:
  • the metal nanowire is manufactured under a low shear stress.
  • the shear stress is strong, the generated nanowire is easily broken, and amorphous Ag particles derived from the broken wire or by-produced are mixed. If used in this state, the transparent conductive film will have a high haze and low transparency, so it is necessary to separate the nanowires from the amorphous particles. It is necessary and purification is not easy.
  • the reaction solution used in this case needs to be almost a Newtonian fluid, and this can also be verified by confirming that the viscosity is not affected by the shear rate in advance.
  • the viscosity of the reaction solution is measured at, for example, 6 rpm and 60 rpm, and if the viscosity ratio is about 1, the reaction solution is almost Newton. Judged to be fluid.
  • liquid A is the first solution (metal salt, polymer, aliphatic alcohol)
  • liquid B is selected from the second solution (halide, sulfide, carbonate, and sulfate). At least one kind of aliphatic alcohol).
  • a metal salt and a halide, sulfide, carbonate and sulfate is not allowed to coexist. When both coexist, the reaction starts to proceed before reaching the target temperature during the temperature rise, and the shape of the nanowire may become uneven.
  • Liquid A and liquid B are separately prepared in advance, preheated to the reaction temperature with preheaters 10a and 10b, mixed in a microreactor or tubular reactor under a low shear stress, and placed in a reactor 12 heated to the reaction temperature. Aged.
  • reaction can be performed at a slow circulation rate using a loop reactor.
  • reaction Preparation of the solution) at a temperature at which the reaction does not proceed (for example, room temperature), and then the reaction solution is reacted under a condition that the simple shear stress is 10 mPa ⁇ m or less, more preferably 5 mPa ⁇ m or less, and even more preferably 2 mPa ⁇ m or less.
  • the reaction can be carried out for a predetermined time by heating to a temperature.
  • this embodiment is characterized by observing the ultraviolet / visible absorption spectrum of the reaction solution during the reaction.
  • the ultraviolet / visible absorption spectrum based on the nanowire is hardly observed, but in the case of Ag, the ultraviolet / visible absorption spectrum of the nanowire is observed at 350 to 370 nm as the reaction proceeds, and the spectrum of the nanoparticle is 420 nm. Observed nearby.
  • a broad peak having a peak around 380 to 389 nm also appears as a reaction mixture.
  • the absorption intensity ratio of 420 nm / 350 nm is calculated with the growth of the nanowire, and is at least 2 or less, usually 1.5 or less, and the peak intensity at 380 nm increases.
  • the absorption intensity at 380 nm is further reduced to less than half of the peak before the ratio of the peaks at 420 nm and 350 nm exceeds 2, more preferably before 1.5.
  • the peak intensity varies depending on the concentration of the metal salt, so it is preferable to observe continuously. However, if the concentration to be implemented in the manufacturing process is determined industrially, the peak intensity is reacted at a preset concentration. The change in the ultraviolet / visible absorption spectrum of the reaction solution over time can be tracked, and the maximum value of the absorption intensity obtained as a result can be used as an index.
  • the composition of the reaction solution such as the type and concentration of the metal salt used, is different from that of Ag, so the wavelength to be noted changes.
  • the reaction time can be controlled from the ultraviolet / visible absorption spectrum information of the liquid.
  • reaction solution A reaction solution for carrying out the reaction using the apparatus schematically shown in Fig. 1 was prepared as follows.
  • Preparation of solution A 1 g of polyvinylpyrrolidone (manufactured by Nippon Shokubai Co., Ltd., weight average molecular weight 1.1 million) and 1.25 g of silver nitrate (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 500 g of ethylene glycol.
  • Liquid A and liquid B prepared as described above were mixed with a magnetic stirrer in a beaker at room temperature, and the viscosities at 20 ° C., 40 ° C., and 60 ° C. were measured, and 1 / T (T is an absolute temperature) and The viscosity at high temperature was estimated by plotting the logarithm of viscosity. The measured values and estimated values of the viscosity are shown in Table 1 below.
  • An oil bath in which the liquid mixture of liquid A and liquid B is put into a separable cylindrical 1 liter flask with an inner diameter of 12 cm with a three-necked upper lid, and is set at a predetermined temperature while stirring with a three-one motor with a Dimroth cooler. And heated.
  • the simple shear stress [mPa ⁇ m] (peripheral linear velocity [m / s] ⁇ viscosity ⁇ [mPa ⁇ s]) was calculated from the inner diameter of 12 cm, the rotation speed of the three-one motor, and the above viscosity.
  • Table 2 shows the calculated simple shear stress at each rotation number at 150 ° C.
  • Fig. 2 shows the ultraviolet / visible absorption spectrum of each reaction solution reacted at 150 ° C for 1 hour while changing the simple shear stress.
  • Table 3 shows the absorption intensity ratios of 420 nm and 350 nm obtained from these ultraviolet / visible absorption spectra.
  • FIG. 3A shows a case where the simple shear stress is 0.17 mPa ⁇ m
  • FIG. 3B shows a case where the simple shear stress is 1.7 mPa ⁇ m
  • FIG. 3C shows a simple case. This is the case where the shear stress is 5.1 mPa ⁇ m
  • FIG. 3D shows the case where the simple shear stress is 10.2 mPa ⁇ m.
  • FIG. 4 shows the time-dependent change of the ultraviolet and visible absorption spectrum of the reaction solution when the simple shear stress is 150 ° C. and 1.7 mPa ⁇ m.
  • Table 4 shows the relationship between the absorption intensity at 380 nm and the absorption intensity ratio at 420 nm and 350 nm for each reaction time determined from these ultraviolet / visible absorption spectra.
  • FIG. 5A and 5B show scanning electron microscope (SEM) images of Ag nanowires generated at reaction times of 1.5 hours and 3 hours, respectively.
  • FIG. 5 (a) shows a reaction time of 1.5 hours
  • FIG. 5 (b) shows a reaction time of 3 hours. It can be seen that after 3 hours, particulate by-products are observed. This is considered to be because the reaction was continued until the absorption intensity at 380 nm obtained from the ultraviolet / visible absorption spectrum reached a peak value (absorption intensity when the reaction time was 1 hour) or less (0.42).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

【課題】細く長い金属ナノワイヤを製造することができる金属ナノワイヤ製造方法及びこれにより製造した金属ナノワイヤを提供する。 【解決手段】金属のナノワイヤを製造する方法であって、金属の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとを含む溶液を調製し、この溶液に作用する簡易剪断応力を10mPa・m以下の状態で100~250℃の温度で10分以上加熱・反応する工程とを含み、前記加熱・反応工程中に溶液の紫外・可視吸収スペクトル変化を測定し、その紫外・可視吸収スペクトル情報をもとに反応時間を制御する。

Description

金属ナノワイヤの製造方法及び金属ナノワイヤ並びに銀ナノワイヤの製造方法及び銀ナノワイヤ
 本発明は、金属ナノワイヤの製造方法及びその方法により製造した金属ナノワイヤ並びに銀ナノワイヤの製造方法及びその方法により製造した銀ナノワイヤに関する。
 金属ナノワイヤは、径の太さがナノメーターオーダーのサイズである金属であり、ワイヤ状(線状)の形状を有する導電性材料である。金属ナノワイヤにより形成した導電層(薄膜)は、導電性及び光透過性が高いので、例えばタッチパネルの透明電極材料等に使用されている。
 このような金属ナノワイヤの製造方法としては、例えば下記特許文献1に、金属の塩と、ポリビニルピロリドンと、塩化物または硝酸塩と、エチレングリコールおよびプロピレングリコールからなる群から選択される1以上とを混合する技術が開示されている。
特開2009-155674号公報
 しかし、上記従来の技術においては、金属ナノワイヤの製造時に反応液へ剪断応力が作用することにより金属ナノワイヤに折れ曲がりや切断が生じて、細く長い金属ナノワイヤの製造が困難になるという課題の示唆はない。また、剪断応力が低い条件で反応させたとしても反応時間が長くなると、粒子状の不純物が増えるという問題がある。
 金属ナノワイヤは、径が細いほど、形成した透明電極等の光透過性が高くなり、また、長さが長いほど少量で十分な導電性を確保でき、使用量が少なくなることによる透明電極等のコスト低減及び光透過性の向上を図ることができる。このため、細く長い金属ナノワイヤを製造することは重要な課題となっている。
 本発明の目的は、細く長い金属ナノワイヤを製造することができる金属ナノワイヤの製造方法及びこれにより製造した金属ナノワイヤ並びに銀ナノワイヤの製造方法及びこれにより製造した銀ナノワイヤを提供することにある。
 上記目的を達成するために、本発明の一実施形態は、金属ナノワイヤの製造方法であって、金属の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとを含む溶液を調製し、この溶液に作用する簡易剪断応力を10mPa・m以下の状態で100~250℃の温度で10分以上加熱・反応する工程を含み、前記加熱・反応工程中に溶液の紫外・可視吸収スペクトル変化を測定し、その紫外・可視吸収スペクトル情報をもとに反応時間を制御することを特徴とする。
 上記金属ナノワイヤを製造するための金属としては、金、銀、銅、白金、パラジウム、ルテニウム、コバルト、ニッケル、モリブデン、インジウム、イリジウムおよびチタンからなる群から選択される1以上であるのがよく、これらの金属の塩を使用する。塩としては使用する脂肪族アルコールに対して溶解性が高い硝酸塩、有機カルボン酸塩、金属アルコキシド、金属フェノキシドが好適である。
 上記ポリマーは、ポリビニルピロリドン、ポリN-ビニルアセトアミド、ポリN-ビニルホルムアミド、ポリビニルカプロラクタム、ポリアクリルアミドからなる群より選択される少なくとも一種であり、特にポリビニルピロリドンが好ましい。
 また、上記ハロゲン化物は、NaCl、CoCl、SnCl、CuCl、NiCl、FeCl、ZnCl、NaBr、NaI、KBr、KIおよびRNCl、RNBr、RNI(Rは炭素数が1~12のアルキル基)で示される4級アンモニウム塩からなる群から選択され、前記硫化物は、NaSおよびKSからなる群から選択され、前記炭酸塩は、NaCOおよびKCOからなる群から選択され、前記硫酸塩は、NaSOおよびKSO、からなる群から選択されるのがよい。なお、上記4級アンモニウム塩は、入手のしやすさからRがノルマルアルキル基のものがより好ましい。
 上記脂肪族アルコールは、上記金属塩、添加するハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種を溶解し、かつ沸点が100℃以上のものであることが好ましく、また剪断応力を低くするためには粘度が低いほうが好ましく、少なくとも脂肪族アルコール自体の粘度として、25℃で10Pa・s以下であることが好ましい。
 また、上記金属が銀であり、上記脂肪族アルコールがエチレングリコールおよびプロピレングリコールからなる群から選択される1以上である場合、上記ハロゲン化物、硫化物、炭酸塩および硫酸塩の濃度が1×10-8~1×10-2Mであることが好ましい。この条件の場合前記加熱工程中に溶液の紫外・可視吸収スペクトルを測定し、350nmでの吸収強度(A350)に対する420nmでの吸収強度(A420)の比率(A420nm/A350nm)が2を超えず、かつ、380nmでの吸収強度(A380)がピーク時の半分以下にならない時点で反応を停止することが好ましい。
 また、本発明の他の実施形態は、上記金属ナノワイヤの製造方法により製造した金属ナノワイヤであることを特徴とする。前記金属ナノワイヤは、銀ナノワイヤであるのが好ましい。
 本発明によれば、細く長い金属ナノワイヤを製造することができる。
本発明の金属ナノワイヤの製造に好適な装置の概略説明図である。 製造時の反応液にかかる剪断応力を変更して150℃で1時間反応させた反応液の紫外・可視吸収スペクトルである。 製造時の反応液にかかる剪断応力を変更して150℃で1時間加熱・反応させて得られた銀ナノワイヤの走査型電子顕微鏡(SEM)画像である。 製造時の反応液に1.7mPa・mの簡易剪断応力をかけて150℃に加熱・反応させた際の反応液の紫外・可視吸収スペクトルの経時変化を示す図である。 製造時の反応液に1.7mPa・mの簡易剪断応力をかけて150℃で1.5時間および3時間加熱・反応させて得られた銀ナノワイヤの走査型電子顕微鏡(SEM)画像である。
 以下、本発明を実施するための形態(以下、実施形態という)を説明する。
 本発明の実施形態にかかる金属ナノワイヤの製造方法は、金属の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとを含む溶液を調製し、この溶液に作用する簡易剪断応力が10mPa・m以下の状態で、100~250℃の温度で10分以上加熱・反応する工程を含むことを特徴の一つとしている。なお、簡易剪断応力については後述する。
 上記工程における溶液調製は、一例としてポリマーおよび金属の塩を含む第1溶液に、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種を含む第2溶液を混合することにより行うことができる。この場合、上記第1溶液の溶媒および第2溶液の溶媒として、脂肪族アルコールを含む。別の例として上記金属の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとを混合することにより溶液を調製してもよい。最終的に均一な溶液が調製できれば混合する順番に特に制限はない。
 上記ポリマーは、使用する脂肪族アルコールに溶解することが必要であり、具体的にはポリビニルピロリドン、ポリN-ビニルアセトアミド、ポリN-ビニルホルムアミド、ポリビニルカプロラクタム、ポリアクリルアミドからなる群より選択される少なくとも一種であり、特にポリビニルピロリドンが好ましい。これらのポリマーはワイヤの成長に寄与する。ポリマーが存在しないとほとんどワイヤ状に成長することが出来ず、大部分は無定形状の凝集粉として生成する。
 上記脂肪族アルコールは、金属塩の還元剤として作用する。脂肪族アルコールの水酸基が金属塩の還元に用いられる。また、脂肪族アルコールは、原料に用いる金属塩、ハロゲン化物、硫化物、炭酸塩および硫酸塩を溶解するものである必要があり、かつその1気圧での沸点が後述する反応(還元)温度より高い(100℃以上)ものであることが好ましく、さらに剪断応力を低くするためには粘度が低いほうが好ましく、少なくとも脂肪族アルコール自体の粘度として、25℃で10Pa・s以下が好ましく、1.5Pa・s以下がより好ましく、200mPa・s以下がさらに好ましく、50mPa・s以下が特に好ましい。
 脂肪族アルコールの具体例としては、n-オクタノール、2-エチルヘキシルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、グリセリンからなる群より選択される少なくとも一種であることが好ましく、特にエチレングリコール、プロピレングリコールが好ましい。
 上記工程においては、第1溶液に第2溶液を混合した溶液(反応液)、または金属の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとを混合した溶液(反応液)に作用する簡易剪断応力を10mPa・m以下、より好ましくは5mPa・m以下、さらに好ましくは2mPa・m以下の状態として、100~250℃の温度で10分以上加熱・反応する。100℃未満では、脂肪族アルコールを還元剤に用いた場合に反応速度が遅いため生産性が低く好ましくない。これにより、生成する金属ナノワイヤに作用する剪断応力を抑制することができるので、細く長い金属ナノワイヤを製造することができる。
 上記金属の塩を構成する金属としては、抵抗値と透明性の観点から金、銀、銅、白金、パラジウム、ルテニウム、コバルト、ニッケル、モリブデン、インジウム、イリジウムおよびチタンからなる群から選択される1以上であることが好ましく、特に抵抗値を考慮すると金、銀および銅がより好ましい。
 上記ハロゲン化物、硫化物、炭酸塩および硫酸塩は、製造しようとする金属よりもイオン化傾向の大きな金属のハロゲン化物、硫化物、炭酸塩および硫酸塩から選択することができる。ハロゲン化物は、NaCl、CoCl、SnCl、CuCl、NiCl、FeCl、ZnCl、NaBr、NaI、KBr、KIおよびRNCl、RNBr、RNI(Rは炭素数が1~12のアルキル基)に示される4級アンモニウム塩、硫化物としては、NaS、KS、炭酸塩としては、NaCO、KCO、硫酸塩としては、NaSO、KSOが例示できる。ここで、製造しようとする金属よりもイオン化傾向の大きな金属のハロゲン化物、硫化物、炭酸塩および硫酸塩は、上記金属の塩が還元される際の金属ワイヤ状の析出、ワイヤ成長に寄与する。これらが存在しないとほとんどワイヤ状に成長することが出来ず、大部分は無定形状の凝集粉として生成する。
 上記ポリマーの濃度は、脂肪族アルコールの群から選択される1以上を溶媒とする場合、第一溶液と第二溶液とを混合した後の濃度として0.001~0.5Mが好ましく、0.005~0.3Mがより好ましく、0.01~0.1Mがさらに好ましい。濃度が低すぎるとナノワイヤが生成しないし、高すぎる場合にはポリマーがナノワイヤ中に過剰に残存してしまい、低抵抗化の際の妨げになる。本明細書においてポリマーの濃度M(モル/L)はモノマー単位で換算した値を意味する。
 上記金属の塩の濃度は、脂肪族アルコールからなる群から選択される1以上を溶媒とする場合、第一溶液と第二溶液とを混合した後の濃度として0.0001~0.5M(Mはモル/Lを意味する)が好ましく、0.0005~0.1Mがより好ましく、0.001~0.05Mがさらに好ましい。塩の濃度があまりに高いと太いナノワイヤになってしまうし、あまりに低いと反応速度が遅く生産性が低下する。
 上記ポリマーは、例えば重量平均分子量で1万~120万の市販品を使用することが出来る。分子量が低過ぎるとナノワイヤの生成能力が悪くなる傾向がある。また、分子量が高すぎると溶液粘度が高くなり好ましくない。
 上記ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種の濃度は、上記金属が銀であり、脂肪族アルコールがエチレングリコールおよびプロピレングリコールからなる群から選択される1以上を溶媒とする場合、金属塩との比率を考慮して最終溶液として1×10-8~1×10-2M(Mはモル/Lを意味する)であるのが好ましく、2×10-8~5×10-3Mであるのがより好ましく、3×10-8~3×10-3Mであるのがさらに好ましい。濃度が低すぎる場合には、ワイヤ径を細く出来る効果がなく、高すぎる場合には、併用する金属が還元される割合が製造しようとする金属ワイヤに対して無視できない量になるので好ましくない。
 上記金属の塩と、ポリマーと、(ハロゲン化物、硫化物、炭酸塩および硫酸塩)と、脂肪族アルコールとのモル混合比は、例えば、1:0.05~15:1×10-7~2×10-2:200~9000であり、好ましくは1:0.5~10:1×10-4~2×10-2:300~8000であり、より好ましくは1:1~10:2×10-3~1×10-2:400~7000である。
 なお、本実施形態の製造方法において、ポリマーを含む溶液と、金属の塩を含む溶液とを別々に調製し、これらの溶液を混合することにより前記第1溶液を調製してもよい。この場合、ポリマーを含む溶液の溶媒および、金属の塩を含む溶液の溶媒は、上記脂肪族アルコールからなる群から選択される1以上である。
 本実施形態の製造方法において製造される金属ナノワイヤは、径が200nm以下であり、長さが10μm以上の範囲である。ただし、あまりに細すぎると実用強度でも不安が出てくるので、1nm以上が好ましく、5nm以上がより好ましい。
 本実施形態の製造方法は、上記金属の塩がAgNOであることが溶解性の観点から好ましい。この場合、金属の塩に対するハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種のモル比は、(金属の塩):(ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種)=1:1×10-4~2×10-2が好ましく、さらに1:2×10-3~1×10-2であることがより好ましい。このような濃度の場合、銀ナノワイヤを収率良く製造することが可能である。
 本実施形態の製造方法は、上記金属の塩がAgNOであり、ハロゲン化物としてNaCl、CoCl、SnCl、CuCl、NiCl、FeCl、ZnCl、およびRNCl(Rは炭素数が1~12のアルキル基)に示される4級アンモニウム塩等の塩化物を用いることがより好ましい。その他ハロゲン化物(臭化物、ヨウ化物)や硫化物、炭酸塩、硫酸塩を使用する場合、硝酸銀と塩交換して生成する銀塩(臭化銀、ヨウ化銀、硫化銀、炭酸銀、硫酸銀)の溶解度が低いことに伴い反応性が低下し、その結果収率も低下する傾向がある。
 本実施形態では、低剪断応力下で金属ナノワイヤの製造を実施することが好ましい。剪断応力が強くかかった場合には、生成したナノワイヤが折れやすいうえに、破断したワイヤ由来もしくは副生する無定形のAg粒子が混入する。この状態のまま使用したのでは、透明導電膜としてヘーズの高い透明性の低いものになってしまうので、ナノワイヤと無定形粒子との分離が必要であるが、多数回の遠心沈降分離等を繰り返す必要があり、精製が容易ではない。
 そのため作用する簡易剪断応力を10mPa・m以下、より好ましくは5mPa・m以下、さらに好ましくは2mPa・m以下の状態として、金属ナノワイヤの製造を行うことが好ましい。剪断応力については粘性率×ずり速度で測定できるが、簡易的な評価として製造温度での反応液(溶液)粘度(mPa・s)を測定し、反応液(溶液)粘度と、ずり速度(1/s)の代わりに最速の反応液(溶液)流動速度(m/s)との積を簡易剪断応力として求め、剪断応力の指標として用いた。無論、この際に用いる反応液はほぼニュートン流体である必要があり、これも事前に粘性率がずり速度により影響を受けないことを確認することにより、検証できる。粘性率がずり速度により影響を受けないことを確認するには、反応液の粘度を例えば、回転数6rpmと60rpmで測定し、それらの粘度比が約1であれば、その反応液はほぼニュートン流体であると判断する。
 この際に、特に溶媒である脂肪族アルコールの沸点以上で反応を行う場合には、加圧下に反応を行わないと沸騰状態になり、予期せぬ剪断応力がかかるので所望の細くて長いワイヤを得ることが出来ない。
 また、工業的に製造を行う場合には、低剪断応力下に所定の反応温度に早く到達させ、その後も低剪断応力状態を保つために、図1に示すような装置で反応させることが好ましい。
 図1において、例えばA液は前記第1の溶液(金属塩、ポリマー、脂肪族アルコール)であり、B液は前記第2の溶液(ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種、脂肪族アルコール)である。溶液の成分の組み合わせは他にも考えられるが、金属塩と、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種は共存させない方が好ましい。両者が共存すると、昇温中、目的温度に達する前に反応が進行し始め、ナノワイヤの形状が不揃いになる可能性がある。
 A液とB液を予め別途調製し、予熱器10a、10bにより反応温度まで予熱した後、低剪断応力下にマイクロリアクターや管状反応器で混合し、反応温度まで加熱した反応装置12に入れて熟成させる。
 また、ループリアクターを用いゆっくりした循環速度で反応を行うことも出来る。
 代わりに、第1溶液と第2溶液の混合、または、金属の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとの混合(反応液の調製)を反応が進行しない温度(例えば室温)で行い、その後反応液を簡易剪断応力が10mPa・m以下、より好ましくは5mPa・m以下、さらに好ましくは2mPa・m以下となる条件で反応温度まで加温し、所定時間反応を行うことも出来る。
 また、本実施形態では反応時の反応液の紫外・可視吸収スペクトルを観察することを特徴の一つとしている。反応開始時点は、ナノワイヤに基づく紫外・可視吸収スペクトルはほとんど観察されないが、Agの場合には反応の進行に伴いナノワイヤの紫外・可視吸収スペクトルは350~370nmに観察され、ナノ粒子のスペクトルは420nm付近に観察される。また、反応混合物として380~389nmあたりをピークとするブロードなピークも現れる。
 従って低剪断応力下で反応を行うと、ナノワイヤの成長とともに、420nm/350nmの吸収強度比率を計算すると少なくとも2以下、通常は1.5以下であり、380nmのピーク強度は高くなっていく。ただし、この状態で引き続き反応を継続すると、粒子状の不純物が増える。このような粒子状の不純物の増加を防ぐためには、420nmと350nmのピークの比率が2を超える前、より好ましくは1.5を超える前に、更に380nmの吸収強度がピーク時の半分以下にならない時点で反応を停止することにより、細く長い金属ナノワイヤを製造することが出来る。350nmの吸収がピーク状(極大値を有する)であり、ショルダー状(極大値を有さない)になる前に反応を停止させることがさらに好ましい。
 なお、380nmについては金属塩の濃度によりピーク強度が異なってくるので、連続的に観察することが好ましいが、工業的には製造で実施する濃度を決めれば、ピーク強度については予め設定濃度で反応時間に伴う反応液の紫外・可視吸収スペクトル変化を追跡し、その結果得られた吸収強度の最大値を指標とすることが出来る。
 上述の説明ではAgの場合を例示した。他の金属を使用する場合には、使用する金属の塩の種類、濃度等反応液の組成が上記Agの場合とは異なるので注目すべき波長は変化するが、同様に反応の進行に伴う反応液の紫外・可視吸収スペクトル情報から反応時間を制御することができる。
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。
反応液の調製
 図1に概略を示した装置を用いて反応を行うための反応液を以下の通り調製した。
A液の調製:エチレングリコール500gにポリビニルピロリドン((株)日本触媒製 重量平均分子量110万)1g、硝酸銀(和光純薬工業(株)製試薬)1.25gを溶解した。
B液の調製:塩化第二鉄(和光純薬工業(株)製試薬特級)9.16mgをエチレングリコール(和光純薬工業(株)製試薬特級)17gに溶解した。
 上記の通り調製したA液、B液を室温でビーカー中で磁気撹拌子を用いて混合し、20℃、40℃、60℃の粘度を各々測定し、1/T(Tは絶対温度)と粘度の対数をプロットすることにより、高温での粘度を推定した。粘度の実測値と推定値を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 A液とB液との混合液を、三口の上蓋がついた内径12cmのセパラブルの円筒型1リットルフラスコに入れ、ジムロート冷却器をつけスリーワンモーターで攪拌しながら、所定の温度に設定したオイルバスで加熱した。
 なお、内径12cmとスリーワンモーターの回転数、及び上記粘度から簡易剪断応力[mPa・m] (外周の線速度[m/s]×粘度η[mPa・s]) を算出した。算出した150℃での各回転数での簡易剪断応力を表2示す。
Figure JPOXMLDOC01-appb-T000002
 簡易剪断応力を変化させて150℃で1時間反応させた各反応液の紫外・可視吸収スペクトルを図2に示す。これらの紫外・可視吸収スペクトルから求められた420nmと350nmの吸収強度比率を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 また、各条件で生成したAgナノワイヤの走査型電子顕微鏡(SEM)画像を図3に示す。図3(a)が、簡易剪断応力が0.17mPa・mの場合であり、図3(b)が、簡易剪断応力が1.7mPa・mの場合であり、図3(c)が、簡易剪断応力が5.1mPa・mの場合であり、図3(d)が、簡易剪断応力が10.2mPa・mの場合である。
 図3(d)に示されるように、簡易剪断応力10.2mPa・mで合成したものに、粒子状の副生物が多く含まれていることがわかる。これは、簡易剪断応力が10mPa・mを超えたためと考えられる。また、粒子状の副生物が増加した結果、紫外・可視吸収スペクトルから求めた420nmと350nmの吸収強度比率が4.6と高くなっている。
 また、簡易剪断応力が150℃で1.7mPa・mでの反応液の紫外・可視吸収スペクトル経時変化を図4に示す。また、これらの紫外・可視吸収スペクトルから求められた各々の反応時間での380nmの吸収強度と、420nmと350nmの吸収強度比率との関係を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 反応時間1.5時間および3時間で生成したAgナノワイヤの走査型電子顕微鏡(SEM)画像を図5(a)、(b)に示す。図5(a)が反応時間1.5時間のものであり、図5(b)が反応時間3時間のものである。3時間後には粒子状の副生物が観察されるようになっていることがわかる。これは、紫外・可視吸収スペクトルから求めた380nmでの吸収強度がピーク時(反応時間が1時間のときの吸収強度)の半分以下(0.42)となるまで反応を継続したためと考えられる。
 10a、10b 予熱器、12 反応装置。
 

Claims (17)

  1.  金属の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとを含む溶液を調製する工程と、前記溶液に作用する簡易剪断応力を10mPa・m以下の状態で100~250℃の温度で10分以上加熱・反応する工程とを含み、前記加熱・反応工程中に溶液の紫外・可視吸収スペクトル変化を測定し、その紫外・可視吸収スペクトル情報をもとに反応時間を制御することを特徴とする金属ナノワイヤの製造方法。
  2.  前記金属が、金、銀、銅、白金、パラジウム、ルテニウム、コバルト、ニッケル、モリブデン、インジウム、イリジウムおよびチタンからなる群から選択される1以上である請求項1に記載の金属ナノワイヤの製造方法。
  3.  前記金属の塩が硝酸塩、有機カルボン酸塩、金属アルコキシド、金属フェノキシドからなる群から選択される1以上である請求項1または請求項2に記載の金属ナノワイヤの製造方法。
  4.  前記ポリマーがポリビニルピロリドン、ポリN-ビニルアセトアミド、ポリN-ビニルホルムアミド、ポリビニルカプロラクタム、ポリアクリルアミドからなる群より選択される少なくとも一種である請求項1から請求項3のいずれかに記載の金属ナノワイヤの製造方法。
  5.  前記脂肪族アルコールの1気圧での沸点が100℃以上、粘度が25℃で10Pa・s以下である請求項1から請求項4のいずれかに記載の金属ナノワイヤの製造方法。
  6.  前記ハロゲン化物は、NaCl、CoCl、SnCl、CuCl、NiCl、FeCl、ZnCl、NaBr、NaI、KBr、KIおよびRNCl、RNBr、RNI(Rは炭素数が1~12のアルキル基)に示される4級アンモニウム塩からなる群から選択され、前記硫化物が、NaSおよびKSからなる群から選択され、前記炭酸塩が、NaCOおよびKCOからなる群から選択され、前記硫酸塩が、NaSOおよびKSOからなる群から選択され、前記硝酸塩が、NaNO、NiNO、CoNOおよびFe(NOからなる群から選択される請求項1から請求項5のいずれかに記載の金属ナノワイヤの製造方法。
  7.  前記金属が銀であり、前記脂肪族アルコールがエチレングリコールおよびプロピレングリコールからなる群から選択される1以上であり、かつ前記ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種の濃度が1×10-8~1×10-2Mである請求項1から請求項6のいずれかに記載の金属ナノワイヤの製造方法。
  8.  前記加熱工程中に溶液の紫外・可視吸収スペクトルを測定し、350nmでの吸収強度(A350)に対する420nmでの吸収強度(A420)の比率(A420nm/A350nm)が2を超えず、かつ、380nmでの吸収強度(A380)がピーク時の半分以下にならない時点で反応を停止することを特徴とする請求項7に記載の金属ナノワイヤの製造方法。
  9.  請求項1から請求項8のいずれかに記載の金属ナノワイヤの製造方法により製造した金属ナノワイヤ。
  10.  銀の塩と、ポリマーと、ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種と、脂肪族アルコールとを含む溶液を調製する工程と、前記溶液に作用する簡易剪断応力を10mPa・m以下の状態で100~250℃の温度で10分以上加熱・反応する工程とを含み、前記加熱・反応工程中に溶液の紫外・可視吸収スペクトル変化を測定し、その紫外・可視吸収スペクトル情報をもとに反応時間を制御することを特徴とする銀ナノワイヤの製造方法。
  11.  前記銀の塩が硝酸塩、有機カルボン酸塩、銀アルコキシド、銀フェノキシドからなる群から選択される1以上である請求項10に記載の銀ナノワイヤの製造方法。
  12.  前記ポリマーがポリビニルピロリドン、ポリN-ビニルアセトアミド、ポリN-ビニルホルムアミド、ポリビニルカプロラクタム、ポリアクリルアミドからなる群より選択される少なくとも一種である請求項10または請求項11に記載の銀ナノワイヤの製造方法。
  13.  前記脂肪族アルコールの1気圧での沸点が100℃以上、粘度が25℃で10Pa・s以下である請求項10から請求項12のいずれかに記載の銀ナノワイヤの製造方法。
  14.  前記ハロゲン化物は、NaCl、CoCl、SnCl、CuCl、NiCl、FeCl、ZnCl、NaBr、NaI、KBr、KIおよびRNCl、RNBr、RNI(Rは炭素数が1~12のアルキル基)に示される4級アンモニウム塩からなる群から選択され、前記硫化物が、NaSおよびKSからなる群から選択され、前記炭酸塩が、NaCOおよびKCOからなる群から選択され、前記硫酸塩が、NaSOおよびKSOからなる群から選択される請求項10から請求項13のいずれかに記載の銀ナノワイヤの製造方法。
  15.  前記脂肪族アルコールがエチレングリコールおよびプロピレングリコールからなる群から選択される1以上であり、かつ前記ハロゲン化物、硫化物、炭酸塩および硫酸塩から選択される少なくとも一種の濃度が1×10-8~1×10-2Mである請求項10から請求項14のいずれかに記載の銀ナノワイヤの製造方法。
  16.  前記加熱工程中に溶液の紫外・可視吸収スペクトルを測定し、350nmでの吸収強度(A350)に対する420nmでの吸収強度(A420)の比率(A420nm/A350nm)が2を超えず、かつ、380nmでの吸収強度(A380)がピーク時の半分以下にならない時点で反応を停止することを特徴とする請求項15に記載の銀ナノワイヤの製造方法。
  17.  請求項10から請求項16のいずれかに記載の銀ナノワイヤの製造方法により製造した銀ナノワイヤ。
     
PCT/JP2014/063851 2013-05-24 2014-05-26 金属ナノワイヤの製造方法及び金属ナノワイヤ並びに銀ナノワイヤの製造方法及び銀ナノワイヤ WO2014189149A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/893,329 US10099291B2 (en) 2013-05-24 2014-05-26 Method for producing metal nanowires and silver nanowires
JP2015518308A JP6416757B2 (ja) 2013-05-24 2014-05-26 金属ナノワイヤの製造方法及び銀ナノワイヤの製造方法
CN201480029788.7A CN105246621B (zh) 2013-05-24 2014-05-26 金属纳米丝的制造方法和金属纳米丝以及银纳米丝的制造方法和银纳米丝
KR1020157032184A KR102053673B1 (ko) 2013-05-24 2014-05-26 금속 나노와이어의 제조 방법 및 금속 나노와이어, 및 은 나노와이어의 제조 방법 및 은 나노와이어

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013110243 2013-05-24
JP2013-110243 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014189149A1 true WO2014189149A1 (ja) 2014-11-27

Family

ID=51933697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063851 WO2014189149A1 (ja) 2013-05-24 2014-05-26 金属ナノワイヤの製造方法及び金属ナノワイヤ並びに銀ナノワイヤの製造方法及び銀ナノワイヤ

Country Status (5)

Country Link
US (1) US10099291B2 (ja)
JP (1) JP6416757B2 (ja)
KR (1) KR102053673B1 (ja)
CN (1) CN105246621B (ja)
WO (1) WO2014189149A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170066636A (ko) * 2014-12-26 2017-06-14 쇼와 덴코 가부시키가이샤 은 나노 와이어의 제조 방법, 상기 방법으로 얻어진 은 나노 와이어 및 상기 은 나노 와이어를 함유하는 잉크
JP2020066760A (ja) * 2018-10-22 2020-04-30 トヨタ自動車株式会社 銀ナノワイヤの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247271B2 (en) * 2015-09-30 2022-02-15 Showa Denko K.K. Method for producing metal nanowire
CN107914022A (zh) * 2017-11-16 2018-04-17 中国计量大学 一种具有表面拉曼增强效果的银纳米线的制备方法
CN112154038B (zh) * 2018-05-25 2023-04-07 星光Pmc株式会社 银纳米线的制造方法
CN112475314B (zh) * 2020-11-23 2023-06-13 青岛大学 一种铱基纳米线的合成方法
CN113477936A (zh) * 2021-06-30 2021-10-08 海南深远海新能源科技有限公司 一种钯及其合金纳米晶的制备方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202125A (ja) * 2007-02-22 2008-09-04 Tokai Rubber Ind Ltd ナノ粒子含有溶液の製造方法および導電性ペースト
JP2009155674A (ja) * 2007-12-25 2009-07-16 Osaka Univ 金属のナノ粒子を製造する方法
JP2009221563A (ja) * 2008-03-18 2009-10-01 Ricoh Co Ltd 金ナノロッドとその製造方法、金ナノロッドを用いた電磁波吸収体、色材、光記録材料および二光子反応材料
WO2012022332A2 (de) * 2010-07-02 2012-02-23 Rent A Scientist Gmbh Verfahren zur herstellung von silber-nanodrähten

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299162A (ja) 2008-06-16 2009-12-24 Fujifilm Corp 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体
US9080255B2 (en) 2011-03-31 2015-07-14 The Hong Kong University Of Science And Technology Method of producing silver nanowires in large quantities
CN103042225B (zh) * 2012-11-05 2015-05-13 中科院广州化学有限公司 一种线状纳米银及其制备方法与应用
CN103084584A (zh) * 2013-01-29 2013-05-08 中国科学院理化技术研究所 一种利用水热法制备银纳米线的方法
CN103100724B (zh) * 2013-02-21 2015-04-08 中国科学院深圳先进技术研究院 银纳米线的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202125A (ja) * 2007-02-22 2008-09-04 Tokai Rubber Ind Ltd ナノ粒子含有溶液の製造方法および導電性ペースト
JP2009155674A (ja) * 2007-12-25 2009-07-16 Osaka Univ 金属のナノ粒子を製造する方法
JP2009221563A (ja) * 2008-03-18 2009-10-01 Ricoh Co Ltd 金ナノロッドとその製造方法、金ナノロッドを用いた電磁波吸収体、色材、光記録材料および二光子反応材料
WO2012022332A2 (de) * 2010-07-02 2012-02-23 Rent A Scientist Gmbh Verfahren zur herstellung von silber-nanodrähten

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170066636A (ko) * 2014-12-26 2017-06-14 쇼와 덴코 가부시키가이샤 은 나노 와이어의 제조 방법, 상기 방법으로 얻어진 은 나노 와이어 및 상기 은 나노 와이어를 함유하는 잉크
KR101990346B1 (ko) 2014-12-26 2019-06-18 쇼와 덴코 가부시키가이샤 은 나노 와이어의 제조 방법, 상기 방법으로 얻어진 은 나노 와이어 및 상기 은 나노 와이어를 함유하는 잉크
JP2020066760A (ja) * 2018-10-22 2020-04-30 トヨタ自動車株式会社 銀ナノワイヤの製造方法
JP7239297B2 (ja) 2018-10-22 2023-03-14 トヨタ自動車株式会社 銀ナノワイヤの製造方法

Also Published As

Publication number Publication date
KR20150143631A (ko) 2015-12-23
KR102053673B1 (ko) 2019-12-09
JP6416757B2 (ja) 2018-10-31
US10099291B2 (en) 2018-10-16
CN105246621A (zh) 2016-01-13
JPWO2014189149A1 (ja) 2017-02-23
US20160121403A1 (en) 2016-05-05
CN105246621B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
JP6416757B2 (ja) 金属ナノワイヤの製造方法及び銀ナノワイヤの製造方法
KR102465793B1 (ko) 은 나노 와이어의 제조방법, 은 나노 와이어, 분산액, 및 투명 도전막
Zhang et al. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M (OH) 3] parents
Wang et al. Controlled synthesis and characterization of nanostructured EuF3 with different crystalline phases and morphologies
JP6653973B2 (ja) 金属ナノワイヤーの製造方法
Chen et al. Structure-controlled solventless thermolytic synthesis of uniform silver nanodisks
Yang et al. Preparation of silver nanowires via a rapid, scalable and green pathway
KR20100112049A (ko) 이온성 액체를 이용한 금속 나노구조체의 제조방법
Chen et al. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres
TW201350436A (zh) 製造高長寬比銀奈米線之方法
Li et al. A facile hydrothermal approach to the synthesis of nanoscale rare earth hydroxides
Bao et al. Controlled synthesis of uniform LaF3 polyhedrons, nanorods and nanoplates using NaOH and ligands
Shukla et al. Lyotropic liquid crystalline nano templates for synthesis of ZnS cogwheels
KR20170106086A (ko) 구리 나노구조물의 제조방법
Zhao et al. Growth mechanism, modified morphology and optical properties of coral-like BaTiO3 architecture through CTAB assisted synthesis
JP2020066760A (ja) 銀ナノワイヤの製造方法
Lei et al. Controlling the size of silver nanowires through one-pot polyol method with trace halide and its effect on kinetic process
KR101307973B1 (ko) 금속 촉매를 이용한 은 나노와이어의 제조방법
CN107030294A (zh) 一种超细银纳米丝及其液封制备方法
KR101934183B1 (ko) 고압수열합성법을 이용하여 은 나노와이어를 제조하는 방법 및 이를 이용한 투명 전도성 전극 필름
KR20150097152A (ko) 은 나노와이어 제조방법
JP2013087027A (ja) 錫ドープ酸化インジウム粒子
KR102003692B1 (ko) 금속 나노와이어 및 이의 제조 방법
JP2015209555A (ja) 銀ナノワイヤおよびその製造方法
Abbasi et al. Glycerol and Water Mediated Synthesis of Silver Nanowires in the Presence of Cobalt Chloride as Growth Promoting Additive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157032184

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015518308

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14893329

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800573

Country of ref document: EP

Kind code of ref document: A1