WO2014189143A1 - 対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置 - Google Patents

対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置 Download PDF

Info

Publication number
WO2014189143A1
WO2014189143A1 PCT/JP2014/063751 JP2014063751W WO2014189143A1 WO 2014189143 A1 WO2014189143 A1 WO 2014189143A1 JP 2014063751 W JP2014063751 W JP 2014063751W WO 2014189143 A1 WO2014189143 A1 WO 2014189143A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
capture
target substance
substance
concentration
Prior art date
Application number
PCT/JP2014/063751
Other languages
English (en)
French (fr)
Inventor
秀和 新井
勝雄 中村
俵田 啓
Original Assignee
株式会社住化分析センター
関西電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住化分析センター, 関西電力株式会社 filed Critical 株式会社住化分析センター
Priority to JP2015518305A priority Critical patent/JPWO2014189143A1/ja
Publication of WO2014189143A1 publication Critical patent/WO2014189143A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms

Definitions

  • the present invention relates to a method for measuring the concentration of a target substance in a sample solution using an immunochromatography method, an immunochromatography kit, and an immunochromatography apparatus.
  • Heavy metals especially cadmium, have public water quality standards for drinking water and groundwater, environmental standards for soil, and discharge standards for the environment because of their harmful effects on the human body and the environment. In addition, it is important to inspect the amount of heavy metals contained in agricultural products, marine products, livestock products and the like.
  • a visual determination kit using a chemical measurement method As a method for detecting heavy metals, a visual determination kit using a chemical measurement method is used. For example, “Pack Test (registered trademark)” Total amount of metal (5 types) manufactured by Kyoritsu RIKEN “Model WAK-Me” uses the PAN Color Comparison Method, and when the sample solution contains any of copper, zinc, manganese, nickel and cadmium, the color develops. The presence or absence of these metals can be confirmed visually.
  • a visual determination kit using such a chemical measurement method generally has low detection sensitivity and low selectivity for a detection target substance. For this reason, there is a demand for a method for detecting heavy metals with higher sensitivity and selectivity.
  • the immunochromatography method is a method for detecting a substance to be detected contained in a sample solution easily and in a short time by using an antigen-antibody reaction, and particularly in the medical field, pregnancy determination and infectious disease. It is widely used for diagnosis.
  • Non-Patent Document 1 discloses the detection of cadmium contained in rice by immunochromatography using an anti-cadmium-ethylenediaminetetraacetic acid complex (Cd-EDTA) monoclonal antibody labeled with colloidal gold. Yes. Furthermore, it is also disclosed that the concentration of cadmium can be quantified based on the obtained numerical value by digitizing the intensity of the band appearing on the test line of the immunochromatography apparatus using a chromatographic reader.
  • Cd-EDTA anti-cadmium-ethylenediaminetetraacetic acid complex
  • Non-Patent Document 1 discloses that the concentration of cadmium can be quantified by quantifying the density of the band appearing on the test line using a chromatographic reader. It has the problem of being extremely difficult.
  • the density of the test line is the highest when cadmium is not present in the sample solution, and becomes lighter as the cadmium concentration in the sample solution is increased.
  • a linear relationship exists between the test line concentration and the cadmium concentration when the cadmium concentration is in the range of 0.01 mg kg ⁇ 1 to 0.1 mg kg ⁇ 1. It recognized. However, for example, when the concentration of cadmium in the sample solution is lower than 0.01 mg kg ⁇ 1 , it is extremely difficult to determine the concentration based on the test line density.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method that enables visual determination of concentration using a chromatography method.
  • the present inventors have developed a new immunochromatography in which an area (control line) in which an antibody capable of capturing an anti-Cd-EDTA monoclonal antibody is immobilized is provided downstream of a test line in the immunochromatography apparatus disclosed in Non-Patent Document 1.
  • a lithographic apparatus was produced.
  • the control line in the immunochromatography apparatus is provided to confirm the effectiveness of color development in the test line.
  • Non-Patent Document 1 the immunochromatography apparatus disclosed in Non-Patent Document 1 is not provided with a control line itself.
  • a measurement method is a method for measuring the concentration of a target substance in a sample solution using an immunochromatography method, Contacting the sample solution with an antibody that specifically binds to the target substance; A first capturing step of capturing the antibody that has not formed a complex with the target substance in the contacting step with a first capturing substance; A second capture step of capturing the antibody not captured in the first capture step with a second capture substance; Measuring the concentration of the target substance, and In the measurement step, the concentration of the target substance is measured based on the color intensity of the labeling substance bound to the antibody captured in the second capture step.
  • the concentration of the target substance is visually compared with the color of the labeling substance bound to the antibody captured in the second capture step and a color sample. You may measure.
  • the concentration of the target substance in the measurement step, may be measured based on the color intensity of the labeling substance bound to the antibody captured in the first capture step.
  • the antibody that has not formed the complex so that color development derived from the antibody that has not formed the complex is not detected in the measurement step. Is preferably captured.
  • the target substance may be a heavy metal.
  • the heavy metal may be cadmium.
  • the kit according to the present invention is an immunochromatography kit for use in the measurement method according to the present invention, At least an immunochromatography device and a color sample
  • the immunochromatography apparatus includes a first capture region for capturing the antibody that does not form a complex with the target substance, among antibodies that specifically bind to the target substance, with a first capture substance; A second capture region for capturing the antibody that has not been captured in the first capture region with a second capture substance;
  • the color sample is characterized in that it shows the relationship between the coloring intensity of the labeling substance bound to the antibody captured in the second capturing region and the concentration of the target substance.
  • the kit according to the present invention may further include a second color sample indicating the relationship between the coloring intensity of the labeling substance bound to the antibody captured in the first capturing region and the concentration of the target substance. .
  • the complex in the first capture region, is not formed so that color development derived from the antibody that does not form the complex in the second capture region is not detected. It is preferable that the first capture substance in an amount capable of capturing the antibody is immobilized.
  • the immunochromatography apparatus is an immunochromatography apparatus for use in the measurement method according to the present invention, A first capture region for capturing by the first capture substance the antibody that does not form a complex with the target substance among antibodies that specifically bind to the target substance; It has at least a second capture region for capturing the antibody that has not been captured in the first capture region with a second capture substance.
  • the complex is formed in the first capture region so that color development derived from the antibody that does not form the complex in the second capture region is not detected. It is preferable that an amount of the first capture substance capable of capturing the non-antibody is immobilized.
  • the concentration of the target substance can be measured with high sensitivity and high selectivity. Further, according to the measurement method of the present invention, the concentration of the target substance is measured based on the color development intensity of the labeling substance bound to the antibody captured in the second capturing step, so the concentration of the target substance is visually determined. It becomes possible to do. Therefore, it is possible to measure the concentration of a large number of samples more easily and quickly.
  • the immunochromatography kit according to the present invention (also referred to as “kit according to the present invention”) can be used in the measurement method according to the present invention.
  • the concentration of the target substance can be measured with high sensitivity and high selectivity.
  • a color sample showing the relationship between the coloring intensity of the labeling substance bound to the antibody captured in the second capture region of the immunochromatography apparatus of the kit and the concentration of the target substance Therefore, it is possible to visually determine the concentration of the target substance by comparing the color intensity of the labeling substance bound to the antibody captured in the second capture region with the color sample. Therefore, it is possible to measure the concentration of a large number of samples more easily and quickly.
  • the immunochromatography apparatus according to the present invention can be used in the measurement method according to the present invention. For this reason, according to the immunochromatography apparatus according to the present invention, it is possible to visually determine the concentration of the target substance. Therefore, it is possible to measure the concentration of a large number of samples more easily and quickly.
  • FIG. 1 It is a figure which shows typically the structure of the immunochromatography apparatus which concerns on one Embodiment of this invention. It is a figure which shows typically the structure of the immunochromatography apparatus of a nonpatent literature 1.
  • A is a figure which shows typically the structure of the immunochromatography apparatus used in the Example,
  • (b) is the density
  • a method for measuring the concentration of a target substance according to the present invention is a method for measuring the concentration of a target substance in a sample solution using an immunochromatography method.
  • the concentration of the target substance is measured based on the color intensity of the labeling substance bound to the antibody captured in the second capturing step.
  • the concentration measuring method of the present invention can be carried out using the immunochromatography apparatus according to the present invention (hereinafter referred to as “immunochromatography apparatus of the present invention”).
  • immunochromatography apparatus of the present invention First, the immunochromatography apparatus of the present invention will be described below.
  • FIG. 1 is a diagram schematically showing a configuration of an immunochromatography apparatus according to an embodiment of the present invention.
  • the immunochromatography apparatus 1 of the present invention includes an antibody 3 that specifically binds to a target substance 2, and detects an antibody 3 that does not form a complex 5 with the target substance 2 as a first capture substance 6. And a second capture region for capturing the antibody 3 not captured in the first capture region by the second capture substance 7. .
  • a first capture region and a second capture region are arranged in this order along the moving direction of the sample solution on the nitrocellulose membrane as the carrier 10. Is provided. That is, the first capture region is provided upstream of the second capture region.
  • the first capture region is referred to as “control line”, and the second capture region is referred to as “test line”.
  • a medium other than the nitrocellulose membrane can be used as long as the liquid can move inside by capillarity.
  • Specific examples include polyvinylidene fluoride (PVDF).
  • a sample dropping region and a contact region may be further provided in this order upstream of the first capture region.
  • a sample absorption region may be provided downstream of the second capture region.
  • upstream and downstream are concepts based on the moving direction of the sample liquid in the immunochromatography apparatus.
  • the sample liquid moves in the carrier 10 of the immunochromatography apparatus by capillary action.
  • the arrows shown in FIG. 1 indicate the moving direction of the sample solution.
  • the direction in which the sample liquid moves in the carrier 10 (the direction in which it flows) is referred to as “downstream”, and the direction opposite to the liquid movement direction is referred to as “upstream”.
  • sample solution refers to a specimen (test substance) introduced into an immunochromatography apparatus, and may or may not contain a substance (target substance) to be detected.
  • sample dropping area is an area where the sample liquid is dropped, and a sample pad 11 is provided.
  • the sample pad 11 is not particularly limited as long as the sample pad 11 has hydrophilicity and a filter function, and for example, glass fiber, cellulose fiber, or the like can be used.
  • the “contact region” is a region in which the target substance 2 and the detection antibody 3 are brought into contact with each other to form the antigen-antibody complex 5.
  • a conjugate pad 8 is provided in the contact area, and the detection antibody 3 is held in the conjugate pad 8 so as to be movable in accordance with the flow of the sample liquid.
  • a labeling substance 4 is bound to the detection antibody 3.
  • the conjugate pad 8 is not particularly limited as long as it can hold the detection antibody 3 so as to be movable according to the flow of the sample solution.
  • glass fiber or the like can be used.
  • the detection antibody 3 is not particularly limited as long as it is an antibody that specifically binds to the target substance 2.
  • an antibody that specifically binds to cadmium can be used.
  • a mouse monoclonal antibody produced by a hybridoma deposited under the deposit number FERM P-19703 described in Non-Patent Document 1 can be preferably used.
  • the target substance 2 detected by the immunochromatography apparatus 1 of the present invention is not limited to cadmium, and a heavy metal other than cadmium may be the target substance.
  • the “heavy metal” is a general term for metals having a specific gravity of 4 or more, and examples of the metal other than cadmium include mercury, lead, and hexavalent chromium.
  • proteins, peptides, nucleic acids, light metals, and the like may be used as the target substance 2.
  • the “light metal” is a generic term for metals having a specific gravity smaller than 4, and examples thereof include aluminum, magnesium, beryllium, titanium, alkaline earth metal, and alkali metal.
  • the detection antibody 3 may be appropriately selected according to the type of the target substance 2.
  • the labeling substance 4 is bound to the detection antibody 3.
  • the labeling substance 4 is not particularly limited as long as it is a substance that can be used as a labeling agent such as colloidal metal (for example, gold colloid) and latex particles.
  • the particle size of the labeling substance 4 is 2 to 500 nm, preferably 20 to 40 nm. Since the labeling substance 4 is bound to the detection antibody 3, the amount of fine particles can be detected based on the color density. As a result, the concentration of the target substance 2 in which the detection antibody 3 and the antigen-antibody complex 5 are formed can be measured based on the color density.
  • an antigen 6 to which the detection antibody 3 specifically binds is immobilized on a carrier 10 as a first capture substance.
  • the detection antibody 3 that has not formed the antigen-antibody complex 5 with the target substance 2 is captured by the antigen 6.
  • the antigen 6 may be any antigen that has at least an epitope in the molecule to which the detection antibody 3 specifically binds.
  • the same substance as the target substance 2 can be used as the antigen 6 as it is.
  • the antigen 6 may be a partial peptide of the target substance 2 and a peptide having at least an epitope in the molecule to which the detection antibody 3 specifically binds.
  • the detection antibody 3 that did not form the antigen-antibody complex 5 with the target substance 2 is captured by the antigen 6, and the detection antibody that forms the antigen-antibody complex 5 with the target substance 2 3 may be captured by antigen 6. That is, since the antigen-antibody reaction is a reversible reaction, the detection antibody 3 that has formed the antigen-antibody complex 5 with the target substance 2 dissociates from the target substance 2 to re-form the complex with the antigen 6. There is a case.
  • the moving speed of the sample liquid moving in the carrier 10 the immersion time of the sample liquid, the amount of the detection antibody 3, the amount of the antigen 6, the concentration balance of the detection antibody 3 and the antigen 6, and the like, Can be made difficult.
  • the moving speed of the sample solution moving in the carrier 10 is determined by the material of the carrier 10, the porosity, and the like.
  • the optimal sample solution movement speed is such that the detection antibody 3 that forms the antigen-antibody complex 5 with the target substance 2 does not dissociate from the target substance 2 to re-form the complex with the antigen 6; It depends on the type of antibody 3 and antigen 6.
  • the material, the porosity, and the like of the carrier 10 may be set as appropriate so that the moving speed of the sample solution becomes an optimum speed.
  • an antibody 7 that specifically binds to the detection antibody 3 is immobilized on the carrier 10 as a second capture substance.
  • the detection antibody 3 that has not been captured by the antigen 6 in the “first capture region” is captured by the capture antibody 7.
  • the capture antibody 7 is not particularly limited as long as it is an antibody that specifically binds to the detection antibody 3.
  • an anti-mouse IgG antibody obtained from an animal species other than a mouse can be used as the capture antibody 7.
  • the “detection antibody 3 not captured by the antigen 6 in the first capture region” means (i) the detection antibody 3 that forms the antigen-antibody complex 5 with the target substance 2, and (ii) The detection antibody 3 that does not form the antigen-antibody complex 5 with the target substance 2 but is not captured by the antigen 6 in the first capture region.
  • the background value increases as the ratio of the detection antibody 3 corresponding to the above (ii) among the detection antibodies 3 captured in the second capture region increases. That is, the color development on the test line is detected even when the target substance 2 is not contained in the sample solution. Therefore, from the viewpoint of lowering the background value, the detection antibody 3 (target substance 2 and antigen-antibody complex 5 corresponding to the above (ii) is formed in the second capture region in the first capture region.
  • the antigen 6 (first capture substance) in an amount capable of capturing the detection antibody 3 that does not form the antigen-antibody complex 5 with the target substance 2 is fixed so that the color development derived from the non-detection antibody 3) is not detected. It is preferable. As a result, the background value can be lowered.
  • the color development derived from the detection antibody 3 corresponding to (ii) above (the detection antibody 3 that does not form the target substance 2 and the antigen-antibody complex 5) in the second capture region is not detected.
  • “Amount that can capture detection antibody 3 that does not form antigen-antibody complex 5 with substance 2” means an amount that can capture all detection antibody 3 that does not form antigen-antibody complex 5 with target substance 2 Otherwise, the detection antibody 3 that has not formed the antigen-antibody complex 5 with the target substance 2 is captured to such an extent that the color development derived from the detection antibody 3 corresponding to (ii) above is not detected in the second capture region. Any amount can be obtained.
  • the required amount of antigen 6 immobilized on the first capture region varies depending on the type of antigen 6, the type of detection antibody 3, the amount of detection antibody 3 used, and the like. For this reason, when the target substance 2 is not contained in the sample solution, the target substance 2 and the antigen-antibody are prevented so that the color development derived from the detection antibody 3 corresponding to the above (ii) is not detected in the second capture region. What is necessary is just to set suitably the quantity which can capture
  • the amount of the capture antibody 7 immobilized on the second capture region is preferably an amount capable of capturing all the detection antibodies 3 to be used. Thereby, when all of the detection antibodies 3 form the target substance 2 and the antigen-antibody complex 5, it is possible to capture all of the complex 5 in the second capture region.
  • the required amount of capture antibody 7 immobilized on the second capture region varies depending on the type of detection antibody 3, the amount of detection antibody 3 used, and the like. For this reason, what is necessary is just to set suitably the quantity which can capture
  • the immobilization of the antigen 6 to the carrier 10 in the “first capture region” can be performed by applying an aqueous solution containing the antigen 6 to the carrier 10 and drying it at 50 ° C. for 30 minutes, for example.
  • the capture antibody 7 can be fixed to the carrier 10 in the “second capture region” in the same manner.
  • an absorption pad 9 capable of absorbing the sample liquid is provided.
  • the absorption pad 9 has a role of keeping the development of the sample solution in the carrier 10 constant.
  • the absorbent pad 9 is not particularly limited as long as it can absorb liquid, and for example, cellulose or the like can be used.
  • the sample liquid dropped on the sample dropping region moves in the carrier 10 by capillary action.
  • the target substance 2 in the sample solution flowing into the conjugate pad 8 forms the detection antibody 3 and the antigen-antibody complex 5 (contact process).
  • the antigen-antibody complex 5 and the detection antibody 3 that did not form the antigen-antibody complex 5 move in the carrier 10, and the detection antibody 3 that did not form the antigen-antibody complex 5 is first captured. Captured by the antigen 6 in the region (first capture step). That the detection antibody 3 has been captured by the antigen 6 can be confirmed using the color development of the labeling substance 4 in the first capture region (control line) as an index.
  • the detection antibody 3 that has not been captured in the first capture region moves further downstream in the carrier 10 and is captured by the capture antibody 7 in the second capture region (second capture step). That the detection antibody 3 has been captured by the capture antibody 7 can be confirmed using the color development of the labeling substance 4 in the second capture region (test line) as an index.
  • the concentration of the target substance 2 in the sample liquid can be measured using the color intensity of the labeling substance 4 in the second capture region as an index (measurement step).
  • a contact process may be performed within the conjugate pad 8 (FIG. 1).
  • the contact step adds the detection antibody to the sample solution containing the target substance, and the formation of the antigen-antibody complex is in an equilibrium state.
  • the incubation can be performed by incubating at 20 to 37 ° C. for 1 to 60 minutes.
  • the sample solution containing the detection antibody may be subjected to an immunochromatography apparatus.
  • the contact step is not particularly limited as long as the target substance and the detection antibody can form an antigen-antibody complex as described above.
  • the measurement process is a process of measuring the concentration of the target substance.
  • the concentration of the target substance is measured based on the color intensity of the labeling substance bound to the detection antibody 3 captured in the second capture process. That is, the concentration of the target substance is measured using the color intensity in the second capture region as an index.
  • the concentration of the target substance there is a correlation between the concentration of the target substance and the color intensity in the second capture region (see, for example, the graph in FIG. 4A). For this reason, if a calibration curve indicating the relationship between the concentration of the target substance and the color development intensity in the second capture region is prepared in advance, the color development intensity in the second capture region is included in the sample liquid based on the calibration curve. The concentration of the target substance can be calculated.
  • the color intensity in the second capture region may be confirmed visually or by measuring the absorbance using a chromatograph reader or the like.
  • the “color sample” indicates the relationship between the coloring intensity of the labeling substance bound to the detection antibody captured in the second capturing region and the concentration of the target substance.
  • the color sample can be prepared based on color development in the second capture region when standard solutions of target substances of various concentrations are prepared and each standard solution is supplied to a chromatography apparatus. By visually comparing the color of the second capturing region and the color sample, the concentration of the target substance contained in the sample liquid can be easily measured. Note that the correlation between the concentration of the target substance and the color intensity in the second capture region may differ depending on the lot of immunochromatography equipment used and the measurement conditions. It is preferable to prepare a sample. Thereby, a density
  • the concentration measurement method of the present invention is suitable for concentration measurement when the concentration of the target substance in the sample solution is lower.
  • the concentration of the target substance contained in the sample solution is 0 to It is suitable for concentration measurement at 60 ng / mL (ppb), preferably 0 to 30 ng / mL, more preferably 0 to 10 ng / mL.
  • ppb 60 ng / mL
  • water quality has the strictest international standard value for cadmium, and the standard value is 3 ng / mL. According to the concentration measuring method of the present invention, it is possible to visually measure the concentration of the reference value.
  • Non-Patent Document 1 a sample dropping region (sample pad 31), a first capture region, and sample absorption are formed on a nitrocellulose film as a carrier 30.
  • a region (absorption pad 29) is provided in this order.
  • the first capture region corresponds to the first capture region (control line) of the immunochromatography apparatus 1 (FIG. 1) of the present invention, and cadmium-ethylenediaminetetraacetic acid complex (Cd-EDTA) and ovalbumin (OVA) are used as the antigen 26.
  • Cd-EDTA-OVA which is a complex with nitrocellulose, is immobilized on the nitrocellulose membrane.
  • the first capture region is used as a test line.
  • a sample liquid and a detection antibody 23 mixed in advance are dropped into a sample dropping region.
  • the sample solution dropped into the sample dropping region moves in the carrier 30 by capillary action.
  • Detection antibody 23 that did not form antigen-antibody complex 25 with Cd-EDTA 22 in the sample solution is captured by Cd-EDTA-OVA 26 in the first capture region. Since colloidal gold 24 is bound to the detection antibody 23 as a labeling substance, the detection antibody 23 that has not formed the antigen-antibody complex 25 is detected using the color development of the gold colloid 24 in the first capture region as an index. .
  • the density of the test line is the highest when no cadmium is present in the sample solution, and the concentration of cadmium in the sample solution is increased. It gets thinner. For this reason, when the concentration of cadmium contained in the sample solution is low, it is very difficult to visually confirm the change in the density of the test line.
  • a second capture region is further provided downstream of the first capture region in the immunochromatography device disclosed in Non-Patent Document 1, and the first capture region is used as a control line.
  • the color of the first capture region becomes the highest when no cadmium is present in the sample solution, and becomes lighter as the concentration of cadmium in the sample solution increases. .
  • the concentration of the target substance may be measured based on the color intensity of the labeling substance bound to the detection antibody captured in the first capturing step. That is, in the concentration measurement method of the present invention, the color intensity of the first capture area may be simultaneously confirmed together with the color intensity of the second capture area. As a result, more accurate concentration measurement is possible. Further, it is possible to visually confirm a wider concentration range.
  • the color intensity in the first capture region may be confirmed visually or by measuring the absorbance using a chromatograph reader or the like.
  • it is preferable to measure the concentration of the target substance by comparing the color of the first capture region with the second color sample.
  • the second color sample is different from the color sample prepared as a color comparison target in the second capture region, and prepares standard solutions of target substances of various concentrations, and chromatographs each standard solution. It can be produced based on the color development in the first capture region when used in the apparatus.
  • the detection antibody that did not form the antigen-antibody complex so that the color development derived from the detection antibody that did not form the antigen-antibody complex in the measurement step was not detected Is preferably captured.
  • the detection antibody that did not form the antigen-antibody complex so that the color development derived from the detection antibody that did not form the antigen-antibody complex was not detected in the measurement step It is necessary to optimize the amount of trapped material. As described above, the required amount of the first capture substance varies depending on the type of the first capture substance, the type of detection antibody, the amount of detection antibody used, and the like.
  • the antigen-antibody complex is formed so that the color development derived from the detection antibody that did not form the antigen-antibody complex in the measurement step is not detected.
  • the quantity which can capture the detection antibody which is not according to the kind of 1st capture
  • the first capturing step is performed under the condition that the detection antibody that forms a complex with the target substance does not re-form the complex with the first capturing substance.
  • the immersion time is preferably 5 to 10 minutes.
  • the concentration of the target substance contained in the sample liquid can be visually measured using an immunochromatography apparatus. For this reason, the concentration of the target substance can be measured more easily.
  • kits of the present invention are an immunochromatography kit for use in the measurement method of the present invention, and includes at least an immunochromatography apparatus and a color sample.
  • the kit of the present invention may further include a second color sample indicating the relationship between the coloring intensity of the labeling substance bound to the detection antibody captured in the first capturing region and the concentration of the target substance.
  • the kit according to the present invention may include a reagent necessary for supplying the specimen to the chromatography apparatus.
  • a reagent necessary for supplying the specimen to the chromatography apparatus For example, in the case of a kit equipped with an immunochromatography apparatus using a mouse monoclonal antibody produced by a hybridoma deposited with the accession number FERMP-19703 as the detection antibody when the target substance is cadmium, the cadmium is captured by the antibody.
  • the ethylenediaminetetraacetic acid complex (EDTA) solution may be provided.
  • you may provide the instructions for using the kit of this invention.
  • the concentration of the target substance contained in the sample solution can be visually measured. For this reason, the concentration of the target substance can be measured more easily.
  • Example 1 An immunochromatography apparatus 61 having the structure shown in FIG.
  • Cd-EDTA-OVA (0.66 mg / mL, 10 mM HEPES pH 7.0), which is a complex of cadmium-ethylenediaminetetraacetic acid complex (Cd-EDTA) and ovalbumin (OVA), is used as the first capture substance 66. It was.
  • the second capture substance 67 goat-derived anti-mouse IgG antibody (1 mg / mL, model number: A90-116A, manufactured by BETYL Laboratories Inc.) was used.
  • an antibody (anti-Cd-EDTA antibody) 63 that specifically recognizes Cd-EDTA a mouse monoclonal antibody produced by a hybridoma deposited under accession number FERM P-19703 was used.
  • As the labeling substance 64 a gold colloid (model number: CRL-EMGC40, manufactured by BB International) was used.
  • Cd-EDTA-OVA which is the first trapping substance 66
  • nitrocellulose membrane 70 HF120, manufactured by Millipore
  • the nitrocellulose membrane 70 was heated and dried at 40 ° C. for 90 minutes, and then fixed by dehumidifying and drying in a desiccant-containing container for a day and night, thereby forming a first capture region (control line).
  • an anti-mouse IgG antibody as the second capture substance 67 was applied at a position 35 mm from the upstream of the nitrocellulose membrane 70 so as to have a width of about 1 mm.
  • the anti-mouse IgG antibody was adjusted by appropriately diluting with a BSA solution (1 mg / mL, 10 mM HEPES, pH 7.0). Thereafter, the nitrocellulose membrane 70 was dried by heating at 40 ° C. for 90 minutes, and then fixed by dehumidifying and drying in a desiccant-containing container for a day and night to form a second capture region (test line).
  • the conjugate pad 68 (G014 type, manufactured by Millipore) was cut to a width of 8 mm ⁇ 3 to 5 mm, impregnated with a colloidal gold-labeled anti-Cd-EDTA antibody, heated and dried at 40 ° C. for 90 minutes, and then in a container containing a desiccant. It was dehumidified and dried overnight. The concentration of the colloidal gold-labeled anti-Cd-EDTA antibody at this time was adjusted so that the gold colloid absorbance OD520 was 0.18.
  • the nitrocellulose membrane 70 was cut to a width of 3 to 5 mm, and a sample pad 71 (G014 type, manufactured by Millipore) having a similar width and a 20 mm length of absorption pad 69 (G083 type, manufactured by Millipore) were cut out. .
  • a sample pad 71, a conjugate pad 68, and an absorption pad 69 were arranged and bonded to the nitrocellulose film 70 as shown in FIG.
  • the immunochromatography apparatus thus obtained was used for the following experiments.
  • FIG. 3B is a diagram showing the relationship between the concentration of cadmium (target substance) contained in the sample solution and the color intensity in the second capture region. As shown in FIG. 3B, it was confirmed that when the concentration of cadmium contained in the sample solution increases, the color intensity in the second capture region of the immunochromatography apparatus increases.
  • Example 2 The relationship between the immersion time in the sample solution of the immunochromatography apparatus and the color intensity in the second capture region was confirmed.
  • the absorbance measured using the above immunochromatographic reader (model number: C10066, manufactured by HAMAMATSU) is an absorbance of 5 to 500 mAbs.
  • Fig. 4 shows a graph of the results of Tables 3 and 4.
  • 4A shows the result when the immersion time is 5 minutes
  • FIG. 4B shows the result when the immersion time is 10 minutes.
  • the color intensity in the second capture region is the same as the color intensity when the immersion time is 5 minutes. It was confirmed that they were almost the same.
  • Example 3 The color change over time of the second capture region after the immersion in the sample solution of the immunochromatography apparatus was confirmed.
  • FIG. 5 shows a graph of the results in Table 6.
  • the concentration of cadmium contained in the sample solution was low (0 to 10 ng / mL)
  • almost no color change with time after standing at room temperature was observed.
  • the concentration of cadmium contained in the sample solution was high (30 to 60 ng / mL)
  • the color development tended to become stronger with the lapse of time until about 10 minutes after standing at room temperature. .
  • Example 4 The cross-reactivity of anti-Cd-EDTA monoclonal antibody with zinc and manganese was confirmed.
  • Zinc standard solution 500 ng / mL, 10 mM HCl
  • manganese standard solution 500 ng / mL, 10 mM HCl
  • Fig. 6 shows a graph of the results in Table 7. As shown in FIG. 6, no influence of cross-reactivity was observed for each of zinc and manganese.
  • Example 5 It was confirmed whether it was possible to visually determine the color development in the second supplemental region in the immunochromatography apparatus after immersing the immunochromatography apparatus in samples containing Cd at different concentrations.
  • Samples 1 to 5 were prepared in the same manner as in Examples 1 to 3. Specifically, using 1 mM HCl and EDTA solution, Cd was dissolved so that the Cd concentrations were 0 ng / mL, 1 ng / mL, 2 ng / mL, 3 ng / mL, and 5 ng / mL, respectively.
  • Cd was dissolved so that the Cd concentrations were 0 ng / mL, 1 ng / mL, 2 ng / mL, 3 ng / mL, and 5 ng / mL, respectively.
  • the sample pad portion of the immunochromatography apparatus was immersed in the sample 1, 2, 3, 4, or 5 for 5 minutes under the conditions of a temperature of 25 ° C. and a humidity of 42%. Thereafter, a plurality of arbitrarily selected monitors visually confirmed color development in the second supplementary region in the immunochromatography apparatus.
  • the horizontal axis represents Cd concentration (ng / mL), and the vertical axis represents absorbance (mAbs).
  • the percentage of persons who can visually recognize the color development in the second supplemental area in the above-mentioned monitor (referred to as “recognition rate (%)”) is 0%, and 50% The case was indicated by ⁇ , and the case of 100% was indicated by ⁇ .
  • the recognition rate exceeds 50%, it is determined that the coloration in the second supplemental area is a threshold value that can be visually recognized. From the results shown in FIG. 7, it was determined that when the absorbance was 20 mAbs (that is, when the Cd concentration was 3 ng / mL), the threshold in which the color development in the second supplementary region could be visually recognized.
  • a range of Cd concentration in which a linear relationship is recognized between the test line concentration and Cd concentration, that is, surrounded by a broken line in FIG. Use the highly linear part of the S-curve. Since the horizontal axis in FIG. 8 is a logarithm in the range other than the portion surrounded by the broken line, the concentration changes drastically when the absorbance slightly shifts. Therefore, it is usually used for quantification of the Cd concentration. Not.
  • the range normally used for Cd determination is not used, but the range surrounded by the solid line in FIG. 8 is used. That is, according to the immunochromatography apparatus according to the present invention, the first capture region is used as a control line, and the second capture region is used as a test line, so that even if the Cd concentration is as low as 3 ng / mL, The darkness of the band in the second supplemental area can be set to 20 mAbs, which is a visually observable threshold value.
  • the Cd concentration is 3 ng / mL or more by using the range surrounded by the solid line, which is a concentration range lower than the range surrounded by the above-described broken line.
  • the band can be visually confirmed, and when the Cd concentration is less than 3 ng / mL, the band cannot be visually confirmed.
  • the 3 ng / mL is a water quality environmental standard value of Cd concentration determined by the World Health Organization (WHO). For this reason, by using the immunochromatography apparatus according to the present invention, it can be visually confirmed whether or not the sample satisfies the Cd water quality environmental standard defined by WHO.
  • the concentration of the target substance can be visually measured by an immunochromatography method. Further, even in a sample containing a low concentration target substance that could not be measured by the conventional immunochromatography method, the concentration can be measured visually.
  • the concentration of the target substance can be measured more easily and quickly. Therefore, the present invention can be used in a wide variety of industries using immunochromatography.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 本発明は、クロマトグラフィー法を用いた目視での濃度判定を可能とする方法であり、液体試料と対象物質に特異的に結合する抗体とを接触させる接触工程と、上記接触工程において上記対象物質と複合体を形成しなかった上記抗体を第1捕捉物質によって捕捉する第1捕捉工程と、上記第1捕捉工程において捕捉されなかった上記抗体を第2捕捉物質によって捕捉する第2捕捉工程と、上記対象物質の濃度を測定する測定工程と、を含む。

Description

対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置
 本発明は、イムノクロマトグラフィー法を用いた試料液中の対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置に関する。
 重金属類、特にカドミウムは、人体および環境に対する有害性から、公的機関によって飲料水や地下水における水質基準、土壌における環境基準、環境への排出基準が設けられている。また、農作物、水産物、畜産物等に含まれている重金属の量を検査することは重要である。
 重金属類を検出する方法として、化学的測定法を利用した目視判定キットが利用されている。例えば、共立理化学研究所社製の「パックテスト(登録商標) 金属総量(5種)
 型式 WAK-Me」は、PAN比色法(PAN Color Comparison Method)を利用しており、試料液中に銅、亜鉛、マンガン、ニッケルおよびカドミウムのいずれかが含まれている場合に発色するため、これらの金属の有無を目視にて確認することができる。しかし、このような化学的測定法を利用した目視判定キットは、一般的に、検出感度が低く、検出対象物質に対する選択性も低い。このため、より高感度且つ選択性の高い重金属類の検出方法が求められている。
 そこで、イムノクロマトグラフィー法によって、重金属類を検出することが試みられている。イムノクロマトグラフィー法は、試料液中に含まれている検出対象物質を、抗原抗体反応を利用することによって簡易的に且つ短時間で検出する方法であり、特に、医療分野において、妊娠判定や感染症の診断等に広く利用されている。
 例えば、非特許文献1には、金コロイド標識した抗カドミウム-エチレンジアミン四酢酸錯体(Cd-EDTA)モノクローナル抗体を用いて、米に含まれているカドミウムをイムノクロマトグラフィー法によって検出することが開示されている。さらには、イムノクロマトグラフィー装置のテストラインに出現するバンドの濃さを、クロマトリーダーを用いて数値化することによって、得られた数値に基づきカドミウムの濃度を定量できることも開示されている。
佐々木 和裕ら,BUNSEKI KAGAKU, Vol 56, No. 1, pp. 29-36 (2007)
 イムノクロマトグラフィー法は、抗原抗体反応を利用するため、従来の化学的測定法を利用した検出方法と比較して高感度且つ選択性が高いという利点を有する。しかし、イムノクロマトグラフィー法は、主として定性的な判定に使用され、定量的な使用には適していない。非特許文献1には、テストラインに出現するバンドの濃さを、クロマトリーダーを用いて数値化することによって、カドミウムの濃度を定量できることが開示されているが、目視で濃度を判定することは極めて困難であるという課題を有する。
 また、非特許文献1に開示されたイムノクロマトグラフィー装置では、テストラインの濃さは、試料液中にカドミウムが存在しない場合に最も濃くなり、試料液中のカドミウムの濃度の増大に伴い薄くなる。実際、非特許文献1に開示されたイムノクロマトグラフィー装置では、カドミウムの濃度が0.01mg kg-1~0.1mg kg-1の範囲で、テストラインの濃さとカドミウム濃度との間に直線関係が認められている。しかし、例えば、試料液中のカドミウムが0.01mg kg-1より低濃度の場合にはテストラインの濃さに基づく濃度判定は極めて困難である。
 本発明は、上記の問題点に鑑みてなされたものであり、クロマトグラフィー法を用いた目視での濃度判定を可能とする方法を提供することにある。
 本発明者らは、非特許文献1に開示されたイムノクロマトグラフィー装置におけるテストラインの下流に、抗Cd-EDTAモノクローナル抗体を捕捉可能な抗体を固定化した領域(コントロールライン)を設けた新たなイムノクロマトグラフィー装置を作製した。そして、かかる新規イムノクロマトグラフィー装置において、コントロールラインに出現するバンドの濃さと試料液中に含まれているカドミウムの濃度とに相関があること、およびコントロールラインの濃さ(発色強度)と色見本とを比較することによって、目視での濃度の判定が可能となることを初めて見出し、かかる新規知見に基づいて本発明を完成させるに至った。通常、イムノクロマトグラフィー装置におけるコントロールラインは、テストラインにおける発色の有効性を確認するために設けられているものである。このため、コントロールラインの発色を指標として対象物質の有無を判定するという発想自体がこれまでにない。また、コントロールラインの発色強度に基づいて対象物質の濃度を目視で判定できるという報告もこれまでに全くない。そもそも、非特許文献1に開示されたイムノクロマトグラフィー装置には、コントロールライン自体が設けられていない。
 すなわち、上記の課題を解決するために、本発明に係る測定方法は、イムノクロマトグラフィー法を用いて試料液中の対象物質の濃度を測定する方法であって、
 上記試料液と、当該対象物質に特異的に結合する抗体とを接触させる接触工程と、
 上記接触工程において上記対象物質と複合体を形成しなかった上記抗体を、第1捕捉物質によって捕捉する第1捕捉工程と、
 上記第1捕捉工程において捕捉されなかった上記抗体を、第2捕捉物質によって捕捉する第2捕捉工程と、
 上記対象物質の濃度を測定する測定工程と、を含み、
 上記測定工程では、上記対象物質の濃度を、上記第2捕捉工程において捕捉した上記抗体に結合された標識物質の発色強度に基づいて測定することを特徴としている。
 本発明に係る測定方法では、上記測定工程では、上記対象物質の濃度を、上記第2捕捉工程において捕捉した上記抗体に結合された上記標識物質の発色と色見本とを目視で比較することによって測定してもよい。
 本発明に係る測定方法では、上記測定工程では、さらに、上記第1捕捉工程において捕捉した上記抗体に結合された標識物質の発色強度に基づいて、上記対象物質の濃度を測定してもよい。
 本発明に係る測定方法では、上記第1捕捉工程では、上記測定工程において、上記複合体を形成しなかった上記抗体に由来する発色が検出されないように、上記複合体を形成しなかった上記抗体を捕捉することが好ましい。
 本発明に係る測定方法では、上記対象物質は、重金属であり得る。
 本発明に係る測定方法では、上記重金属は、カドミウムであり得る。
 本発明に係るキットは、本発明に係る測定方法に用いるためのイムノクロマトグラフィーキットであって、
 イムノクロマトグラフィー装置と、色見本とを少なくとも備え、
 上記イムノクロマトグラフィー装置は、上記対象物質に特異的に結合する抗体の内、上記対象物質と複合体を形成していない上記抗体を第1捕捉物質によって捕捉するための第1捕捉領域と、
 上記第1捕捉領域において捕捉されなかった上記抗体を、第2捕捉物質によって捕捉するための第2捕捉領域と、を少なくとも有し、
 上記色見本は、上記第2捕捉領域において捕捉された上記抗体に結合された標識物質の発色強度と、上記対象物質の濃度との関係を示すものであることを特徴としている。
 本発明に係るキットでは、上記第1捕捉領域において捕捉された上記抗体に結合された標識物質の発色強度と、上記対象物質の濃度との関係を示す第2色見本をさらに備えていてもよい。
 本発明に係るキットでは、上記第1捕捉領域には、上記第2捕捉領域において上記複合体を形成していない上記抗体に由来する発色が検出されないように、上記複合体を形成していない上記抗体を捕捉可能な量の上記第1捕捉物質が固定されていることが好ましい。
 本発明に係るイムノクロマトグラフィー装置は、本発明に係る測定方法に用いるためのイムノクロマトグラフィー装置であって、
 対象物質に特異的に結合する抗体の内、当該対象物質と複合体を形成していない上記抗体を第1捕捉物質によって捕捉するための第1捕捉領域と、
 当該第1捕捉領域において捕捉されなかった上記抗体を、第2捕捉物質によって捕捉するための第2捕捉領域と、を少なくとも有していることを特徴としている。
 本発明に係るイムノクロマトグラフィー装置では、上記第1捕捉領域には、上記第2捕捉領域において上記複合体を形成していない上記抗体に由来する発色が検出されないように、上記複合体を形成していない上記抗体を捕捉可能な量の上記第1捕捉物質が固定されていることが好ましい。
 本発明に係る測定方法によれば、イムノクロマトグラフィー法を用いるので、高感度且つ高い選択性をもって対象物質の濃度を測定することが可能となる。また、本発明に係る測定方法によれば、対象物質の濃度を、第2捕捉工程において捕捉した抗体に結合された標識物質の発色強度に基づいて測定するので、対象物質の濃度を目視で判定することが可能となる。従って、より簡便且つ迅速に多数の試料の濃度を測定することが可能となる。
 また、本発明に係るイムノクロマトグラフィーキット(「本発明に係るキット」ともいう。)は、本発明に係る測定方法に用いることができる。本発明に係るキットによれば、イムノクロマトグラフィー法を用いるので、高感度且つ高い選択性をもって対象物質の濃度を測定することが可能となる。また、本発明に係るキットによれば、本キットが有するイムノクロマトグラフィー装置の第2捕捉領域において捕捉された抗体に結合された標識物質の発色強度と、対象物質の濃度との関係を示す色見本を備えているので、第2捕捉領域において捕捉した抗体に結合された標識物質の発色強度と、色見本とを比較することによって、対象物質の濃度を目視で判定することが可能となる。従って、より簡便且つ迅速に多数の試料の濃度を測定することが可能となる。
 また、本発明に係るイムノクロマトグラフィー装置は、本発明に係る測定方法に用いることができる。このため、本発明に係るイムノクロマトグラフィー装置によれば、対象物質の濃度を目視で判定することが可能となる。従って、より簡便且つ迅速に多数の試料の濃度を測定することが可能となる。
本発明の一実施形態に係るイムノクロマトグラフィー装置の構成を模式的に示す図である。 非特許文献1に記載のイムノクロマトグラフィー装置の構成を模式的に示す図である。 (a)は、実施例で用いたイムノクロマトグラフィー装置の構成を模式的に示す図であり、(b)は、試料液中に含まれているカドミウムの濃度と第2捕捉領域における発色強度との関係を示す図である。 浸漬時間と発色強度との関係を示す図であり、(a)は、浸漬時間を5分間とした場合の結果を示し、(b)は、浸漬時間を10分間とした場合の結果を示す。 浸漬後の経時的な発色変化を示す図である。 抗Cd-EDTAモノクローナル抗体と亜鉛およびマンガンとの交差反応性を確認した結果を示す図である。 試料中に含まれているカドミウムの濃度と第2捕捉領域における発色強度との関係、および第2捕捉領域における発色を目視にて判定できるかを確認した結果を示す図である。 試料中に含まれているカドミウムの濃度と第2捕捉領域における発色強度との関係を示す曲線である。
 以下、本発明の実施の形態について、詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変形を加えた態様で実施できるものである。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
 〔1.対象物質の濃度測定方法およびイムノクロマトグラフィー装置〕
 本発明に係る対象物質の濃度測定方法(以下、「本発明の濃度測定方法」という。)は、イムノクロマトグラフィー法を用いて試料液中の対象物質の濃度を測定する方法であって、上記試料液と、当該対象物質に特異的に結合する抗体とを接触させる接触工程と、上記接触工程において上記対象物質と複合体を形成しなかった上記抗体を、第1捕捉物質によって捕捉する第1捕捉工程と、上記第1捕捉工程において捕捉されなかった上記抗体を、第2捕捉物質によって捕捉する第2捕捉工程と、上記対象物質の濃度を測定する測定工程と、を含み、上記測定工程では、上記対象物質の濃度を、上記第2捕捉工程において捕捉した上記抗体に結合された標識物質の発色強度に基づいて測定するものである。
 本発明の濃度測定方法は、本発明に係るイムノクロマトグラフィー装置(以下、「本発明のイムノクロマトグラフィー装置」という。)を用いて実施することができる。そこで、まず、本発明のイムノクロマトグラフィー装置について以下に説明する。
 (1-1.イムノクロマトグラフィー装置)
 図1は、本発明の一実施形態に係るイムノクロマトグラフィー装置の構成を模式的に示す図である。図1に示すように、本発明のイムノクロマトグラフィー装置1は、対象物質2に特異的に結合する抗体3の内、対象物質2と複合体5を形成していない抗体3を第1捕捉物質6によって捕捉するための第1捕捉領域と、当該第1捕捉領域において捕捉されなかった抗体3を、第2捕捉物質7によって捕捉するための第2捕捉領域と、を少なくとも有している構成である。
 図1に示すように、本発明のイムノクロマトグラフィー装置1においては、担体10としてのニトロセルロース膜上に、第1捕捉領域と、第2捕捉領域とが、試料液の移動方向に沿ってこの順に設けられている。すなわち、第1捕捉領域は、第2捕捉領域の上流に設けられている。本発明のイムノクロマトグラフィー装置1においては、第1捕捉領域を「コントロールライン」と称し、第2捕捉領域を「テストライン」と称する。
 担体10としては、液体が内部を毛細管現象によって移動可能な媒体であれば、ニトロセルロース膜以外のものを使用することが可能である。具体的には、例えば、ポリフッ化ビニリデン(PVDF)等を挙げることができる。
 本発明のイムノクロマトグラフィー装置1には、さらに、第1捕捉領域の上流に、試料滴下領域および接触領域がこの順に設けられていてもよい。また、第2捕捉領域の下流には、試料吸収領域が設けられていてもよい。
 なお、本明細書において、用語「上流」および「下流」は、イムノクロマトグラフィー装置内における試料液の移動方向を基準とした概念である。試料液は、イムノクロマトグラフィー装置の担体10内を毛細管現象によって移動する。図1に示した矢印は、試料液の移動方向を示している。本明細書においては、担体10内を試料液が移動する方向(流れていく方向)を「下流」、液体の移動方向と逆方向を「上流」と呼ぶ。また、上記「試料液」は、イムノクロマトグラフィー装置に導入される検体(被検物)をいい、検出の対象としている物質(対象物質)を含んでいても、いなくてもよい。
 上記「試料滴下領域」は、試料液が滴下される領域であり、サンプルパッド11が設けられている。
 サンプルパッド11は、サンプルパッド11としては、親水性およびフィルター機能を有するものであれば特に限定されず、例えば、グラスファイバー、セルロースファイバー等を使用することができる。
 上記「接触領域」は、対象物質2と、検出抗体3とを接触させて抗原-抗体複合体5を形成させる領域である。接触領域にはコンジュゲートパッド8が設けられており、コンジュゲートパッド8内には、試料液の流れに応じて検出抗体3が移動可能なように保持されている。検出抗体3には、標識物質4が結合されている。
 コンジュゲートパッド8としては、検出抗体3を試料液の流れに応じて移動可能なように保持することができるものであれば特に限定されず、例えば、グラスファイバー等を使用することができる。
 検出抗体3としては、対象物質2に特異的に結合する抗体であれば特に限定されない。例えば、対象物質2がカドミウムである場合は、カドミウムに特異的に結合する抗体を使用することができる。このような抗体としては、例えば、非特許文献1に記載の受託番号FERM P-19703として寄託されたハイブリドーマにより産生されるマウスモノクローナル抗体を好適に利用することができる。
 本発明のイムノクロマトグラフィー装置1によって検出される対象物質2は、カドミウムに限定されるものではなく、カドミウム以外の重金属を対象物質としてもよい。なお、上記「重金属」とは、比重が4以上の金属の総称であり、カドミウム以外には、例えば、水銀、鉛、六価クロム等を挙げることができる。また、重金属以外にも、タンパク質、ペプチド、核酸、軽金属等を対象物質2としてもよい。なお、上記「軽金属」とは、比重が4よりも小さい金属の総称であり、例えば、アルミニウム、マグネシウム、ベリリウム、チタン、アルカリ土類金属、アルカリ金属等を挙げることができる。この場合は、対象物質2の種類に応じて、検出抗体3を適宜選択すればよい。
 検出抗体3には、標識物質4が結合されている。標識物質4としては、コロイド金属(例えば、金コロイド等)、ラテックス粒子等の標識化剤として使用できる物質であれば特に限定されない。標識物質4の粒径は、2~500nm、好ましくは20~40nmである。検出抗体3に標識物質4が結合されていることにより、色の濃淡に基づいて微粒子の量を検出することができる。その結果、色の濃淡に基づいて、検出抗体3と抗原-抗体複合体5を形成した対象物質2の濃度を測定することができる。
 上記「第1捕捉領域」には、第1捕捉物質として、検出抗体3が特異的に結合する抗原6が、担体10上に固定されている。「第1捕捉領域」では、対象物質2と抗原-抗体複合体5を形成しなかった検出抗体3が、抗原6によって捕捉される。
 抗原6としては、検出抗体3が特異的に結合するエピトープを分子内に少なくとも有するものであればよい。例えば、抗原6として、対象物質2と同じ物質をそのまま使用することができる。また、対象物質2がタンパク質等である場合は、抗原6は、対象物質2の部分ペプチドであり、且つ検出抗体3が特異的に結合するエピトープを分子内に少なくとも有するペプチドであってもよい。
 第1捕捉領域においては、対象物質2と抗原-抗体複合体5を形成しなかった検出抗体3が抗原6によって捕捉される以外に、対象物質2と抗原-抗体複合体5を形成した検出抗体3が抗原6によって捕捉される場合がある。すなわち、抗原-抗体反応は、可逆的な反応であるため、対象物質2と抗原-抗体複合体5を形成した検出抗体3が、対象物質2から解離して抗原6と複合体を再形成する場合がある。担体10内を移動する試料液の移動速度、試料液の浸漬時間、検出抗体3の量、抗原6の量、検出抗体3および抗原6の濃度バランス等を最適化することによって、このような現象を起こりにくくすることができる。
 例えば、担体10内を移動する試料液の移動速度は、担体10の材質、空隙率等によって決定される。対象物質2と抗原-抗体複合体5を形成した検出抗体3が、対象物質2から解離して抗原6と複合体を再形成しないような最適な試料液の移動速度は、対象物質2、検出抗体3および抗原6の種類によって変わる。このため、対象物質2、検出抗体3および抗原6の種類に応じて、試料液の移動速度が最適な速度となるように担体10の材質、空隙率等を適宜設定すればよい。
 上記「第2捕捉領域」には、第2捕捉物質として、検出抗体3に特異的に結合する抗体7(捕捉抗体7)が、担体10上に固定されている。「第2捕捉領域」では、上記「第1捕捉領域」において抗原6によって捕捉されなかった検出抗体3が、捕捉抗体7によって捕捉される。
 捕捉抗体7としては、検出抗体3に特異的に結合する抗体であれば特に限定されない。例えば、検出抗体3としてマウス由来のモノクローナル抗体を用いる場合は、捕捉抗体7として、マウス以外の動物種から取得された抗マウスIgG抗体等を用いることができる。
 ここで、上記「第1捕捉領域において抗原6によって捕捉されなかった検出抗体3」とは、(i)対象物質2と抗原-抗体複合体5を形成している検出抗体3、および(ii)対象物質2と抗原-抗体複合体5を形成していないが第1捕捉領域において抗原6によって捕捉されなかった検出抗体3、をいう。
 第2捕捉領域おいて捕捉される検出抗体3の内、上記(ii)に該当する検出抗体3の割合が多くなると、バックグラウンドの値が高くなる。すなわち、試料液中に対象物質2が全く含まれていない場合にもテストラインにおける発色が検出されることになる。このため、バックグラウンドの値を低くする観点から、第1捕捉領域には、第2捕捉領域において上記(ii)に該当する検出抗体3(対象物質2と抗原-抗体複合体5を形成していない検出抗体3)に由来する発色が検出されないように、対象物質2と抗原-抗体複合体5を形成していない検出抗体3を捕捉可能な量の抗原6(第1捕捉物質)が固定されていることが好ましい。これにより、バックグラウンドの値を低くすることができる。
 なお、上記「第2捕捉領域において上記(ii)に該当する検出抗体3(対象物質2と抗原-抗体複合体5を形成していない検出抗体3)に由来する発色が検出されないように、対象物質2と抗原-抗体複合体5を形成していない検出抗体3を捕捉可能な量」とは、対象物質2と抗原-抗体複合体5を形成していない検出抗体3を全て捕捉可能な量でなくとも、第2捕捉領域において上記(ii)に該当する検出抗体3に由来する発色が検出されない程度に、対象物質2と抗原-抗体複合体5を形成していない検出抗体3を捕捉し得る量であればよい。
 第1捕捉領域に固定される抗原6の必要量は、抗原6の種類、検出抗体3の種類、使用される検出抗体3の量等によって変わる。このため、試料液中に対象物質2が全く含まれていない場合に、第2捕捉領域において上記(ii)に該当する検出抗体3に由来する発色が検出されないように対象物質2と抗原-抗体複合体5を形成していない検出抗体3を捕捉可能な量を、抗原6の種類、検出抗体3の種類、使用される検出抗体3の量等に応じて適宜設定すればよい。
 また、第2捕捉領域に固定される捕捉抗体7の量は、使用する検出抗体3を全て捕捉し得る量であることが好ましい。これにより、検出抗体3の全てが対象物質2と抗原-抗体複合体5を形成した場合に、第2捕捉領域において複合体5を全て捕捉することができる。
 第2捕捉領域に固定される捕捉抗体7の必要量は、検出抗体3の種類、使用される検出抗体3の量等によって変わる。このため、使用する検出抗体3を全て捕捉可能な量を、検出抗体3の種類、使用される検出抗体3の量等に応じて適宜設定すればよい。
 「第1捕捉領域」における担体10への抗原6の固定は、抗原6を含有している水溶液を担体10に塗布し、例えば、50℃にて30分間乾燥させることによって行うことができる。「第2捕捉領域」における、担体10への捕捉抗体7の固定も同様の方法によって行うことができる。
 上記「試料吸収領域」には、試料液を吸収可能な吸収パッド9が設けられている。吸収パッド9には、担体10内の試料液の展開を一定に保つ役割がある。吸収パッド9としては、液体を吸収可能なものであれば特に限定されず、例えば、セルロース等を使用することができる。
 本発明のイムノクロマトグラフィー装置1においては、試料滴下領域に滴下された試料液は、毛細管現象によって担体10内を移動する。まず、コンジュゲートパッド8内に流入した試料液中の対象物質2は、検出抗体3と抗原-抗体複合体5を形成する(接触工程)。その後、抗原-抗体複合体5および抗原-抗体複合体5を形成しなかった検出抗体3は、担体10内を移動し、抗原-抗体複合体5を形成しなかった検出抗体3が第1捕捉領域において抗原6によって捕捉される(第1捕捉工程)。抗原6によって検出抗体3が捕捉されたことは、第1捕捉領域(コントロールライン)における標識物質4の発色を指標として確認できる。第1捕捉領域において捕捉されなかった検出抗体3は、担体10内をさらに下流へと移動し、第2捕捉領域において捕捉抗体7によって捕捉される(第2捕捉工程)。捕捉抗体7によって検出抗体3が捕捉されたことは、第2捕捉領域(テストライン)における標識物質4の発色を指標として確認できる。本発明のイムノクロマトグラフィー装置1においては、試料液中の対象物質2の濃度を、第2捕捉領域における標識物質4の発色強度を指標として測定することができる(測定工程)。
 なお、本発明のイムノクロマトグラフィー装置に接触領域が設けられている場合は、接触工程は、コンジュゲートパッド8(図1)内で行われてもよい。
 また、本発明のイムノクロマトグラフィー装置に接触領域が設けられていない場合は、接触工程は、対象物質を含んでいる試料溶液中に検出抗体を添加し、抗原-抗体複合体の形成が平衡状態になるまで、例えば、20~37℃にて、1~60分間インキュベートすることによって行うことができる。その後、検出抗体を含む試料溶液をイムノクロマトグラフィー装置に供すればよい。接触工程は、上記のように、対象物質と検出抗体とが抗原-抗体複合体を形成できる条件であれば、その条件は特に限定されない。
 測定工程は、対象物質の濃度を測定する工程である。測定工程において、対象物質の濃度は、第2捕捉工程において捕捉した検出抗体3に結合された標識物質の発色強度に基づいて測定される。すなわち、対象物質の濃度は、第2捕捉領域における発色強度を指標として測定される。
 後述する実施例に示すように、対象物質の濃度と第2捕捉領域における発色強度との間には相関関係がある(例えば、図4の(a)のグラフを参照)。このため、対象物質の濃度と第2捕捉領域における発色強度との関係を示す検量線を予め作成しておけば、かかる検量線に基づいて、第2捕捉領域における発色強度から試料液中に含まれている対象物質の濃度を算出することができる。
 第2捕捉領域における発色強度は、目視で確認してもよく、クロマトリーダー等を用いて吸光度を測定することによって確認してもよい。第2捕捉領域における発色強度を目視で確認する場合は、第2捕捉領域の色と色見本とを比較することにより、対象物質の濃度を測定することが好ましい。なお、後述する実施例に示すように、第2補足領域のバンドの濃さ(吸光度)が20mAbsを以上となる場合に、第2補足領域における発色を目視で確認できるといえる。ここで、上記「色見本」とは、第2捕捉領域において捕捉された検出抗体に結合された標識物質の発色強度と、対象物質の濃度との関係を示すものである。色見本は、種々の濃度の対象物質の標準液を用意し、各標準液をそれぞれクロマトグラフィー装置に供した場合の第2捕捉領域における発色に基づいて作成することができる。第2捕捉領域の色と色見本とを目視で比較することにより、試料液中に含まれている対象物質の濃度を簡便に測定することができる。なお、使用するイムノクロマトグラフィー装置のロットや、測定条件等によって、対象物質の濃度と第2捕捉領域における発色強度との相関が異なる可能性があるため、ロット毎および測定条件毎に検量線または色見本を作製することが好ましい。これにより、より正確に濃度を測定することができる。
 本発明の濃度測定方法は、試料液中の対象物質の濃度がより低濃度である場合の濃度測定に適している。例えば、対象物質がカドミウムであり、検出抗体として受託番号FERM P-19703として寄託されたハイブリドーマにより産生されるマウスモノクローナル抗体を用いる場合は、試料液中に含まれている対象物質の濃度が0~60ng/mL(ppb)、好ましくは0~30ng/mL、より好ましくは0~10ng/mLである場合の濃度測定に適している。例えば、最も厳しいカドミウムの国際基準値が設けられているものは水質であり、その基準値は、3ng/mLである。本発明の濃度測定方法によれば、この基準値の濃度を目視で測定することが可能となる。
 ここで、非特許文献1に開示されたイムノクロマトグラフィー装置の構成を説明する。図2に示すように、非特許文献1に開示されたイムノクロマトグラフィー装置21においては、担体30としてのニトロセルロース膜上に、試料滴下領域(サンプルパッド31)と、第1捕捉領域と、試料吸収領域(吸収パッド29)と、がこの順に設けられている。第1捕捉領域は、本発明のイムノクロマトグラフィー装置1(図1)の第1捕捉領域(コントロールライン)に相当し、抗原26としてカドミウム-エチレンジアミン四酢酸錯体(Cd-EDTA)と卵白アルブミン(OVA)との複合体であるCd-EDTA-OVAがニトロセルロース膜上に固定されている。非特許文献1に開示されたイムノクロマトグラフィー装置では、第1捕捉領域をテストラインとしている。
 非特許文献1に開示されたイムノクロマトグラフィー装置21においては、試料液と検出抗体23とを予め混合したものを試料滴下領域に滴下する。試料滴下領域に滴下された試料液は、毛細管現象によって担体30内を移動する。試料液中のCd-EDTA22と抗原-抗体複合体25を形成しなかった検出抗体23は、第1捕捉領域においてCd-EDTA-OVA26によって捕捉される。検出抗体23には標識物質として金コロイド24が結合されているので、抗原-抗体複合体25を形成しなかった検出抗体23は、第1捕捉領域における金コロイド24の発色を指標として検出される。
 上述したように、非特許文献1に開示されたイムノクロマトグラフィー装置21では、テストラインの濃さは、試料液中にカドミウムが存在しない場合に最も濃くなり、試料液中のカドミウムの濃度の増大に伴い薄くなる。このため、試料液中に含まれているカドミウムの濃度が低い場合に、テストラインの濃さの変化を目視で確認することは非常に困難である。
 これに対して、本発明のイムノクロマトグラフィー装置においては、非特許文献1に開示されたイムノクロマトグラフィー装置における第1捕捉領域の下流に、第2捕捉領域をさらに設け、第1捕捉領域をコントロールラインとし、第2捕捉領域をテストラインとすることによって、対象物質の濃度が低濃度である場合であっても、目視での濃度測定を可能とした。
 なお、本発明のイムノクロマトグラフィー装置においては、第1捕捉領域(コントロールライン)の発色は、試料液中にカドミウムが存在しない場合に最も濃くなり、試料液中のカドミウムの濃度の増大に伴い薄くなる。このため、本発明の濃度測定方法では、さらに、第1捕捉工程において捕捉した検出抗体に結合された標識物質の発色強度に基づいて、対象物質の濃度を測定してもよい。すなわち、本発明の濃度測定方法では、第2捕捉領域の発色強度と併せて、第1捕捉領域の発色強度を同時に確認してもよい。これによって、より正確な濃度測定が可能となる。また、より広い濃度範囲を目視で確認することが可能となる。
 第1捕捉領域における発色強度は、目視で確認してもよく、クロマトリーダー等を用いて吸光度を測定することによって確認してもよい。第1捕捉領域における発色強度を目視で確認する場合は、第1捕捉領域の色と第2色見本とを比較することにより、対象物質の濃度を測定することが好ましい。かかる第2色見本は、第2捕捉領域の色の比較対象として作製された色見本とは別のものであり、種々の濃度の対象物質の標準液を用意し、各標準液をそれぞれクロマトグラフィー装置に供した場合の第1捕捉領域における発色に基づいて作製することができる。
 本発明の濃度測定方法では、第1捕捉工程では、測定工程において抗原-抗体複合体を形成しなかった検出抗体に由来する発色が検出されないように抗原-抗体複合体を形成しなかった検出抗体を捕捉することが好ましい。測定工程において抗原-抗体複合体を形成しなかった検出抗体に由来する発色が検出されないように抗原-抗体複合体を形成しなかった検出抗体を捕捉するためには、検出抗体の量と第1捕捉物質の量とを最適化する必要がある。上述したように、第1捕捉物質の必要量は、第1捕捉物質の種類、検出抗体の種類、使用される検出抗体の量等によって変わる。このため、試料液中に対象物質が全く含まれていない場合に、測定工程において抗原-抗体複合体を形成しなかった検出抗体に由来する発色が検出されないように抗原-抗体複合体を形成していない検出抗体を捕捉可能な量を、第1捕捉物質の種類、検出抗体の種類、使用される検出抗体の量等に応じて適宜設定すればよい。
 また、本発明の濃度測定方法では、第1捕捉工程は、対象物質と複合体を形成した検出抗体が、第1捕捉物質と複合体を再形成しない条件で行うことが好ましい。
 本発明の濃度測定方法では、イムノクロマトグラフィー装置のサンプルパッドを試料液に浸漬させることによって接触工程を行う場合は、浸漬時間を5~10分間とすることが好ましい。これにより、測定工程において、標識物質の発色を安定して検出することができる。
 本発明の濃度測定法によれば、イムノクロマトグラフィー装置を用いて試料液中に含まれている対象物質の濃度を目視で測定することができる。このため、より簡便に対象物質の濃度を測定することができる。
 〔2.イムノクロマトグラフィーキット〕
 本発明に係るキット(以下、「本発明のキット」と称する。)は、本発明の測定方法に用いるためのイムノクロマトグラフィーキットであって、イムノクロマトグラフィー装置と、色見本とを少なくとも備えている。本発明のキットは、第1捕捉領域において捕捉された検出抗体に結合された標識物質の発色強度と、対象物質の濃度との関係を示す第2色見本をさらに備えていてもよい。
 本発明の測定方法については、上記「1.対象物質の濃度測定方法およびイムノクロマトグラフィー装置」の項で説明したとおりであるので、説明を省略する。イムノクロマトグラフィー装置、色見本、第2色見本については、上記「1-1.イムノクロマトグラフィー装置」の項で説明したとおりであるので、説明を省略する。
 本発明に係るキットは、検体をクロマトグラフィー装置に供するために必要な試薬を備えていてもよい。例えば、対象物質がカドミウムであり、検出抗体として受託番号FERMP-19703として寄託されたハイブリドーマにより産生されるマウスモノクローナル抗体を用いるイムノクロマトグラフィー装置を備えたキットの場合は、カドミウムを上記抗体によって捕捉するためのエチレンジアミン四酢酸錯体(EDTA)溶液を備えていてもよい。また、本発明のキットを使用するための指示書を備えていてもよい。
 本発明のキットを用いれば、試料液中に含まれている対象物質の濃度を目視で測定することができる。このため、より簡便に対象物質の濃度を測定することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、本発明を実施例により具体的に説明するが、本発明は実施例によって限定されるものではない。
 〔実施例1〕
 図3の(a)に示す構造のイムノクロマトグラフィー装置61を作製した。
 第1捕捉物質66として、カドミウム-エチレンジアミン四酢酸錯体(Cd-EDTA)と卵白アルブミン(OVA)との複合体であるCd-EDTA-OVA(0.66mg/mL、10mM HEPES pH7.0)を用いた。第2捕捉物質67として、ヤギ由来抗マウスIgG抗体(1mg/mL、型番:A90-116A、BETYL Laboratories 社製)を用いた。Cd-EDTAを特異的に認識する抗体(抗Cd-EDTA抗体)63として、受託番号FERM P-19703として寄託されたハイブリドーマにより産生されるマウスモノクローナル抗体を用いた。標識物質64として、直径40nmの金コロイド(型番:CRL EMGC40、BB International社製)を用いた。
 ニトロセルロース膜70(HF120、ミリポア社製)の上流から30mmの位置に、約1mm幅になるように第1捕捉物質66であるCd-EDTA-OVAを塗布した。その後、ニトロセルロース膜70を40℃で90分間加熱乾燥後、乾燥剤入り容器で一昼夜除湿乾燥することにより固定化し、第1捕捉領域(コントロールライン)とした。
 また、ニトロセルロース膜70の上流から35mmの位置に、約1mm幅になるように、第2捕捉物質67である抗マウスIgG抗体を塗布した。抗マウスIgG抗体はBSA溶液(1mg/mL、10mM HEPES、pH7.0)で適宜希釈し調節した。その後、ニトロセルロース膜70を40℃で90分間加熱乾燥後、乾燥剤入り容器で一昼夜除湿乾燥することにより固定化し、第2捕捉領域(テストライン)とした。
 コンジュゲートパッド68(G014タイプ、ミリポア社製)は8mm×3~5mm幅に切り取り、金コロイド標識した抗Cd-EDTA抗体を含浸させ、40℃で90分間加熱乾燥し、その後乾燥剤入り容器で一昼夜除湿乾燥した。このときの金コロイド標識した抗Cd-EDTA抗体の濃度は、金コロイドの吸光度OD520で0.18になるように調製した。
 ニトロセルロース膜70を3~5mm幅で切り取り、同様の幅で長さ20mmのサンプルパッド71(G014タイプ、ミリポア社製)および長さ20mmの吸収パッド69(G083タイプ、ミリポア社製)を切り取った。ニトロセルロース膜70に、サンプルパッド71、コンジュゲートパッド68、吸収パッド69を図3の(a)に示すように配置して貼り合わせた。
 このようにして得られたイムノクロマトグラフィー装置を、以下の実験に使用した。
 まず、表1に示した試料を調製した。
Figure JPOXMLDOC01-appb-T000001
 試料1~6に、それぞれ、イムノクロマトグラフィー装置のサンプルパッド部分を5分間浸漬させた。その結果を図3の(b)に示す。図3の(b)は、試料液中に含まれているカドミウム(対象物質)の濃度と第2捕捉領域における発色強度との関係を示す図である。図3の(b)に示したように、試料液中に含まれているカドミウムの濃度が高くなると、イムノクロマトグラフィー装置の第2捕捉領域における発色強度が強くなることが確認された。
 〔実施例2〕
 イムノクロマトグラフィー装置の試料液への浸漬時間と、第2捕捉領域における発色強度との関係を確認した。
 まず、表2に示した試料を調製した。
Figure JPOXMLDOC01-appb-T000002
 試料1~4に、それぞれ、イムノクロマトグラフィー装置のサンプルパッド部分を5分間浸漬させ、その後、イムノクロマトリーダ(型番:C10066、HAMAMATSU製)を用いて第2捕捉領域のバンドの濃さ(吸光度)を測定した(n=2)。
 同様に、試料1~4に、それぞれ、イムノクロマトグラフィー装置のサンプルパッド部分を10分間浸漬させ、その後、イムノクロマトリーダ(型番:C10066、HAMAMATSU製)を用いて第2捕捉領域のバンドの濃さ(吸光度)を測定した(n=2)。上記イムノクロマトリーダ(型番:C10066、HAMAMATSU製)を用いて測定される吸光度は、5~500mAbsの吸光度である。
 浸漬時間を5分間とした場合の結果を表3に示し、浸漬時間を10分間とした場合の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3および4の結果をグラフ化したものを図4に示す。図4の(a)は、浸漬時間を5分間とした場合の結果を示し、(b)は、浸漬時間を10分間とした場合の結果を示す。図4の(a)および(b)に示したように、浸漬時間を10分間に延長した場合であっても、第2捕捉領域における発色強度は、浸漬時間が5分間の場合の発色強度とほぼ同じであることが確認された。
 〔実施例3〕
 イムノクロマトグラフィー装置の試料液への浸漬後の、第2捕捉領域の経時的な発色変化を確認した。
 まず、表5に示した試料を調製した。
Figure JPOXMLDOC01-appb-T000005
 試料1~4に、それぞれ、イムノクロマトグラフィー装置のサンプルパッド部分を5分間浸漬させ、直後にイムノクロマトリーダを用いて第2捕捉領域のバンドの濃さ(吸光度)を測定した(n=2)。さらに、イムノクロマトグラフィー装置を、室温(25℃)にて一定時間(5分間、10分間および15分間)放置した後で、第2捕捉領域のバンドの濃さ(吸光度)を測定した(n=1)。
 結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果をグラフ化したものを図5に示す。図5に示したように、試料液中に含まれているカドミウムの濃度が低濃度(0~10ng/mL)の場合は、室温にて放置後の経時的な発色変化はほとんど認められなかった。一方、試料液中に含まれているカドミウムの濃度が高濃度(30~60ng/mL)の場合は、室温にて放置後10分間くらいまでは、時間の経過とともに発色が強くなる傾向があった。
 〔実施例4〕
 抗Cd-EDTAモノクローナル抗体と亜鉛およびマンガンとの交差反応性を確認した。
 亜鉛標準液(500ng/mL、10mM HCl)およびマンガン標準液(500ng/mL、10mM HCl)を、それぞれマイクロチューブに150μLずつ分取した。さらに、それぞれのマイクロチューブに、EDTA溶液を10μL加えて十分に混合した。各混合試料に、イムノクロマトグラフィー装置のサンプルパッド部分を5分間浸漬させた(n=2)。
 結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7の結果をグラフ化したものを図6に示す。図6に示したように、亜鉛およびマンガンのそれぞれについて、交差反応性の影響は認められなかった。
 〔実施例5〕
 イムノクロマトグラフィー装置をそれぞれ異なる濃度にてCdを含んでいる試料に浸漬した後の、上記イムノクロマトグラフィー装置における第2補足領域における発色を目視にて判定することが可能かどうかを確認した。
 実施例1~3の場合と同様にして試料1~5を調製した。具体的には、10mM HClおよびEDTA溶液を用いて、Cd濃度がそれぞれ0ng/mL、1ng/mL、2ng/mL、3ng/mL、5ng/mLとなるようにCdを溶解し、試料1~5を調製した。
 温度25℃、湿度42%の条件下にて、イムノクロマトグラフィー装置のサンプルパッド部分を、試料1、2、3、4、または5に対して5分間浸漬した。その後、任意に選出された複数のモニターが上記イムノクロマトグラフィー装置における第2補足領域における発色を目視にて確認した。
 その結果を図7に示す。図7では横軸にCd濃度(ng/mL)とし、縦軸に吸光度(mAbs)とした。図7中、上記のモニターの内、第2補足領域における発色を目視で認識できた者の割合(「認識率(%)」という。)が、0%の場合を×で示し、50%の場合を△で示し、100%の場合を○で示した。
 本発明では、認識率が50%を超える場合を、第2補足領域における発色を目視で認識できる閾値であると判断することとした。そして、図7の結果から、吸光度が20mAbsの時(すなわちCd濃度が3ng/mLの時)が、第2補足領域における発色を目視で認識できる閾値であると判断した。
 ここで、実施例3の表6における5分後(展開直後)の上記第2捕捉領域のバンドの吸光度と試料中のCd濃度との関係を図8に示した。図8において、Cd濃度の対数を横軸とし、吸光度(mAbs)を縦軸とした。
 通常のイムノクロマトグラフィー装置を用いた対象物質、例えばCd濃度の定量では、テストラインの濃さとCd濃度との間に直線関係が認められるCd濃度の範囲、すなわち図8中、破線で囲まれた、S字曲線の直線性の高い部分を利用する。上記破線で囲まれた部分以外の範囲は、図8の横軸が対数であるため、わずかに吸光度がずれただけで極端に濃度が変わってしまうので、通常、Cd濃度の定量には用いられていない。
 これに対して、本発明では、通常Cdの定量に用いる範囲を使用せず、あえて、図8の実線で囲まれた範囲を利用する。すなわち、本発明に係るイムノクロマトグラフィー装置によれば、第1捕捉領域をコントロールラインとし、第2捕捉領域をテストラインとすることにより、Cdの濃度が3ng/mLと低濃度であっても、上記第2補足領域におけるバンドの濃さを目視可能な閾値である20mAbsに設定することができる。
 従って、本発明に係るイムノクロマトグラフィー装置によれば、通常使用される上記破線で囲まれた範囲よりも低い濃度範囲である、実線で囲まれた範囲を利用し、Cd濃度が3ng/mL以上の場合には上記バンドを目視確認することを可能とし、かつ、Cd濃度が3ng/mL未満の場合には、上記バンドを目視確認できないようにすることができる。なお、この3ng/mLとは世界保健機関(WHO)が定めるCd濃度の水質環境基準値である。このため、本発明に係るイムノクロマトグラフィー装置を用いることによって、試料が、WHOが定めるCdの水質環境基準を満たしているか否かを目視にて確認できる。
 上述したように、本発明によれば、イムノクロマトグラフィー法によって対象物質の濃度を目視で測定することができるという効果を奏する。また、従来のイムノクロマトグラフィー法では、測定できなかった低濃度の対象物質を含んでいる試料においても、その濃度を目視にて測定できる。
 さらに、WHOが定めるCdについての水質環境基準(3ng/mL)を満たしているか否かを目視にて確認できる。
 よって、本発明によれば、対象物質の濃度測定を、より簡便且つ迅速に行うことができる。このため、本発明は、イムノクロマトグラフィー法を利用する種々広範な産業において利用可能である。
 1 イムノクロマトグラフィー装置
 2 対象物質
 3 抗体
 4 標識物質
 5 抗原-抗体複合体
 6 第1捕捉物質
 7 第2捕捉物質
 8 コンジュゲートパッド
 9 吸収パッド
10 担体
11 サンプルパッド
 

Claims (11)

  1.  イムノクロマトグラフィー法を用いて試料液中の対象物質の濃度を測定する方法であって、
     上記試料液と、当該対象物質に特異的に結合する抗体とを接触させる接触工程と、
     上記接触工程において上記対象物質と複合体を形成しなかった上記抗体を、第1捕捉物質によって捕捉する第1捕捉工程と、
     上記第1捕捉工程において捕捉されなかった上記抗体を、第2捕捉物質によって捕捉する第2捕捉工程と、
     上記対象物質の濃度を測定する測定工程と、を含み、
     上記測定工程では、上記対象物質の濃度を、上記第2捕捉工程において捕捉した上記抗体に結合された標識物質の発色強度に基づいて測定することを特徴とする測定方法。
  2.  上記測定工程では、上記対象物質の濃度を、上記第2捕捉工程において捕捉した上記抗体に結合された上記標識物質の発色と色見本とを目視で比較することによって測定することを特徴とする、請求項1に記載の測定方法。
  3.  上記測定工程では、さらに、上記第1捕捉工程において捕捉した上記抗体に結合された標識物質の発色強度に基づいて、上記対象物質の濃度を測定することを特徴とする、請求項1または2に記載の測定方法。
  4.  上記第1捕捉工程では、上記測定工程において、上記複合体を形成しなかった上記抗体に由来する発色が検出されないように、上記複合体を形成しなかった上記抗体を捕捉することを特徴とする、請求項1から3のいずれか1項に記載の測定方法。
  5.  上記対象物質は、重金属であることを特徴とする請求項1から4のいずれか1項に記載の測定方法。
  6.  上記重金属は、カドミウムであることを特徴とする請求項5に記載の測定方法。
  7.  請求項1から6のいずれか1項に記載の測定方法に用いるためのイムノクロマトグラフィーキットであって、
     イムノクロマトグラフィー装置と、色見本とを少なくとも備え、
     上記イムノクロマトグラフィー装置は、上記対象物質に特異的に結合する抗体の内、上記対象物質と複合体を形成していない上記抗体を第1捕捉物質によって捕捉するための第1捕捉領域と、
     上記第1捕捉領域において捕捉されなかった上記抗体を、第2捕捉物質によって捕捉するための第2捕捉領域と、を少なくとも有し、
     上記色見本は、上記第2捕捉領域において捕捉された上記抗体に結合された標識物質の発色強度と、上記対象物質の濃度との関係を示すものであることを特徴とするキット。
  8.  上記第1捕捉領域において捕捉された上記抗体に結合された標識物質の発色強度と、上記対象物質の濃度との関係を示す第2色見本をさらに備えていることを特徴とする、請求項7に記載のキット。
  9.  上記第1捕捉領域には、上記第2捕捉領域において上記複合体を形成していない上記抗体に由来する発色が検出されないように、上記複合体を形成していない上記抗体を捕捉可能な量の上記第1捕捉物質が固定されていることを特徴とする、請求項7または8に記載のキット。
  10.  請求項1から6のいずれか1項に記載の測定方法に用いるためのイムノクロマトグラフィー装置であって、
     対象物質に特異的に結合する抗体の内、当該対象物質と複合体を形成していない上記抗体を第1捕捉物質によって捕捉するための第1捕捉領域と、
     当該第1捕捉領域において捕捉されなかった上記抗体を、第2捕捉物質によって捕捉するための第2捕捉領域と、を少なくとも有していることを特徴とするイムノクロマトグラフィー装置。
  11.  上記第1捕捉領域には、上記第2捕捉領域において上記複合体を形成していない上記抗体に由来する発色が検出されないように、上記複合体を形成していない上記抗体を捕捉可能な量の上記第1捕捉物質が固定されていることを特徴とする、請求項10に記載のイムノクロマトグラフィー装置。
PCT/JP2014/063751 2013-05-24 2014-05-23 対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置 WO2014189143A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518305A JPWO2014189143A1 (ja) 2013-05-24 2014-05-23 対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013110129 2013-05-24
JP2013-110129 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014189143A1 true WO2014189143A1 (ja) 2014-11-27

Family

ID=51933693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063751 WO2014189143A1 (ja) 2013-05-24 2014-05-23 対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置

Country Status (2)

Country Link
JP (1) JPWO2014189143A1 (ja)
WO (1) WO2014189143A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094825A1 (ja) * 2015-12-02 2017-06-08 東洋紡株式会社 イムノクロマト試験片
CN108508213A (zh) * 2018-05-25 2018-09-07 清华大学深圳研究生院 重金属铅离子的检测试剂盒及其应用
CN108593619A (zh) * 2018-05-25 2018-09-28 清华大学深圳研究生院 重金属镉离子的检测试剂盒及其应用
CN108680737A (zh) * 2018-05-25 2018-10-19 清华大学深圳研究生院 重金属铬离子的检测试剂盒及其应用
CN108956972A (zh) * 2018-05-25 2018-12-07 清华大学深圳研究生院 重金属汞离子的检测试剂盒及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071520A (ja) * 2004-09-03 2006-03-16 Enbiotec Laboratories:Kk Pcbの簡易検出方法
JP2010025887A (ja) * 2008-07-24 2010-02-04 Tokiwa Chemical Industries Co Ltd 簡易測定方法
JP2011069800A (ja) * 2009-09-28 2011-04-07 Bl:Kk ヒトインフルエンザウイルスh1亜型の免疫学的鑑別検出法
JP2012073270A (ja) * 2010-02-26 2012-04-12 Sekisui Medical Co Ltd 偽陽性反応を抑制する検体抽出液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071520A (ja) * 2004-09-03 2006-03-16 Enbiotec Laboratories:Kk Pcbの簡易検出方法
JP2010025887A (ja) * 2008-07-24 2010-02-04 Tokiwa Chemical Industries Co Ltd 簡易測定方法
JP2011069800A (ja) * 2009-09-28 2011-04-07 Bl:Kk ヒトインフルエンザウイルスh1亜型の免疫学的鑑別検出法
JP2012073270A (ja) * 2010-02-26 2012-04-12 Sekisui Medical Co Ltd 偽陽性反応を抑制する検体抽出液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHIRO SASAKI ET AL.: "Rapid Determination of Cadmium in Rice by Immunochromatography Using Anti-( Cd -EDTA) Antibody Labeled with Gold Particle", BUNSEKI KAGAKU, vol. 56, no. 1, 5 January 2007 (2007-01-05), pages 29 - 36 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017094825A1 (ja) * 2015-12-02 2017-06-08 東洋紡株式会社 イムノクロマト試験片
JPWO2017094825A1 (ja) * 2015-12-02 2018-09-20 東洋紡株式会社 イムノクロマト試験片
CN108508213A (zh) * 2018-05-25 2018-09-07 清华大学深圳研究生院 重金属铅离子的检测试剂盒及其应用
CN108593619A (zh) * 2018-05-25 2018-09-28 清华大学深圳研究生院 重金属镉离子的检测试剂盒及其应用
CN108680737A (zh) * 2018-05-25 2018-10-19 清华大学深圳研究生院 重金属铬离子的检测试剂盒及其应用
CN108956972A (zh) * 2018-05-25 2018-12-07 清华大学深圳研究生院 重金属汞离子的检测试剂盒及其应用

Also Published As

Publication number Publication date
JPWO2014189143A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
EP2592418B1 (en) Diagnostic detecting device
EP2063269B1 (en) Chromatography apparatus for detecting Staphylococcus aureus
US8093057B2 (en) System for quantitative measurement of glycohemoglobin and method for measuring glycohemoglobin
WO2014189143A1 (ja) 対象物質の濃度測定方法、イムノクロマトグラフィーキットおよびイムノクロマトグラフィー装置
US8999728B2 (en) Diagnostic detection device
US11714084B2 (en) Method and associated device for rapid detection of target biomolecules with enhanced sensitivity
KR102051345B1 (ko) 제어된 사이즈의 금 나노입자를 이용한 측면 흐름 분석-기반 바이오센서 및 b형 간염 바이러스를 진단하는 방법
WO2010144534A1 (en) Female fertility test
EP1801590A1 (en) Method of assaying antigen and reagent therefor
JP2002202310A (ja) 物質の検出試薬及び検出方法
KR20120029549A (ko) 신속한 결과 및 향상된 감도를 갖는 측방 유동 면역 분석 디바이스
CN112513613A (zh) 用于放大侧向流动测定信号的系统、装置和方法
JP2008268043A (ja) 検査デバイスの検出部の形成方法及びラテラルフロー免疫測定用検査デバイス
Matsuda et al. Chromatographic immunoassays: strategies and recent developments in the analysis of drugs and biological agents
JP4653574B2 (ja) ヘモグロビンA1cの測定方法
KR20160120675A (ko) 래피드 정량 진단 키트
US8110403B2 (en) Immunoassay method
JP5118479B2 (ja) イムノクロマト分析法及びイムノクロマト分析キット
KR102593963B1 (ko) 면역학적 측정용 시약 조성물 및 이의 용도
WO2017078170A1 (ja) Ck19に特異的なモノクローナル抗体およびこれを産生するハイブリドーマ、癌の検出キット、癌の検出方法および癌の転移の判定方法
JP7153545B2 (ja) イムノクロマトグラフィー試験片、並びに、それを用いる被験物質測定方法及びイムノクロマトグラフィー試験キット
JP2010032396A (ja) バイオセンサ
JP4783872B2 (ja) 免疫測定方法
US8039268B2 (en) Immunochromatoassay method and immunochromatoassay kit
KR101726181B1 (ko) 면역크로마토그래피 분석용 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801738

Country of ref document: EP

Kind code of ref document: A1